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Abstract

The amazing growth of computational power, storage capacity and data sources opens new
exciting frontiers in the processing and analysis of data. This brings up new challenges when
modeling phenomena with complex dependence structures, as both statisticians and applied
researchers must deal with high dimensional problems and provide accurate inference with a
reasonable computational effort. As a consequence, a tradeoff among complexity of the model,
its interpretability and accuracy, and availability of efficient algorithms is a difficult, yet crucial,
issue in modern data analysis. A theoretical understanding of widely applied methodologies and
algorithms is therefore vital to provide convincing guarantees for the quality of the inference.

A natural framework to address the above issues is provided by Bayesian inference. Indeed
it combines principled modeling and coherent learning methodology with the availability of
sampling schemes and other computational algorithms. In particular, this thesis will focus mostly
(though not exclusively) on discrete Bayesian Nonparametric models, which allow for extremely
flexible learning mechanisms that can capture complex features of the phenomenon of interest.
However, the presence of an infinite dimensional parameter space makes the mathematical and
methodological investigation more demanding.

Within this framework, this thesis follows three distinct, but related, directions: (i) mod-
elling complex dependence structures (e.g. time series, multi-samples data...) via a Bayesian
nonparametric approach, (ii) mathematical investigation of the resulting inferential procedures,
complemented by the proposal of methods for measuring and tuning dependence and proving fre-
quentist asymptotic properties, (iii) rigorous analysis of the computational algorithms employed
for posterior inference with the aforementioned structures, with a focus on high dimensional
problems. A unifying thread shared by all these lines of research is the study of the specific
probabilistic structure considered: indeed, the choice of a particular dependence structure (more
specifically hierarchical models), which is often selected through modelling considerations (prior
information, domain-specific knowledge, etc.), requires the investigation of the associated in-
ferential and computational properties. Indeed, different specifications may have significantly
different levels of analytical tractability and the performance of routinely used MCMC algo-
rithms (e.g. gradient-based methods, Gibbs samplers) may greatly vary.

Foundations of Bayesian learning are discussed in the first Chapter, with a focus on the
predictive viewpoint; the relevance of hierarchical structures is also emphasized. Chapters 2 and
3 discuss various classes of hierarchical models, based on different nonparametric priors; both
theoretical and methodological aspects are presented. The last Chapter, finally, deals with the
computational challenges arising in high dimensional hierarchical models.
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Chapter 1

Introduction to Bayesian statistics:
the role of exchangeability

1.1 Introduction

A common way to introduce Bayesian statistics is to say that parameters are treated as random
quantities, in constrast with the classical setting where they are unknown, but fixed. This entails
that a Bayesian model can be written as

Xi | θ iid∼ f(x | θ), θ ∼ π(θ), (1.1)

where f(x | θ) is the likelihood function and π(θ) is the prior distribution. Thus, Bayesian
inference becomes the study of the posterior distribution, which is the law of θ given the data
X1:n = (X1, . . . , Xn) and represents the update of the prior beliefs with the collected information.
Thanks to Bayes’ Theorem, under suitable regularity conditions, the posterior density can be
easily computed as

π(θ | X1:n) ∝ f
(
X1:n | θ

)
π(θ). (1.2)

Within this perspective, the relevance of formula (1.2) is that it allows to perform the funda-
mental inversion: from the effects (i.e. the observations) we want to deduce the causes (i.e. the
parameters). Many books start from representation (1.1) to introduce Bayesian methodologies
(e.g. Robert (2007); Ghosal and Van der Vaart (2017)) and there are valid reasons to do so: for
example, from a decision theoretic standpoint, Bayesian estimators enjoy optimal properties (see
Chapters 2, 8 and 9 of Robert (2007)). Moreover, since a Bayesian analysis is based on (1.2),
it automatically satisfies the Likelihood principle (e.g. Chapter 1 in Robert (2007)), which is
often seen as a natural requirement.

Nevertheless, this is not the only way to look at Bayesian models and certainly not the way I
was introduced to the Bayesian way. According to this perspective, in a sense that we will make
precise, Bayesian statistics becomes free of Bayes’ Theorem: actually, even the formulation
(1.1) becomes no more the starting point, but rather the consequence of a deeper principle,
both philosophically and mathematically. The goal of this Chapter is to present formally such
viewpoint, which I find extremely fascinating: it is therefore a small tribute to all the professors
that introduced me to this world, namely (in chronological order) Raffaele Argiento, Matteo
Ruggiero, Antonio Lijoi, Igor Prünster and Sonia Petrone. The textbook closest to this point of
view is probably Regazzini (1996), which unfortunately has never been translated into English.
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6 Exchangeability and Bayesian Statistics

The central theme is prediction. We are given a set of observations X1:n = x1:n, that we
assume have been collected under the same experimental conditions, and we want to predict the
(n + 1)-th, i.e. Xn+1. Within the classical setting, the usual assumptions of independence and
identical distribution make this task conceptually challenging, since the predictive distribution
p(xn+1 | x1:n) strictly speaking does not depend on x1:n. Instead, notice that this does not
happen for Bayesian models as in (1.1), since

p(xn+1 | x1:n) =
∫
f(xn+1 | θ)π(dθ | x1:n), (1.3)

which depends on X1:n = x1:n through the posterior distribution. Thus, a classical statistician
would probably define a likelihood depending on some parameter θ, choose a suitable estimator
θ̂ = θ̂(X1:n) and use it to predict new values: therefore Xn+1 depends on X1:n only through the
estimation of the parameters. An alternative, which we follow here, is to modify the probabilistic
assumption on the data, making p(xn+1 | x1:n) directly depend on x1:n, as in (1.3). This is where
the notion of exchangeability comes into play.

We say that a vector X1:n = (X1, . . . , Xn) is exchangeable if for any permutation π we have
that

(
Xπ(1), . . . , Xπ(n)

)
has the same distribution of X1:n. A sequence {Xi}i is exchangeable if

(X1, . . . , Xn) is exchangeable for every n. Loosely speaking, exchangeability means that order
does not matter. In the case of binary variables, i.e. Xi ∈ {0, 1}, it implies that only the
frequencies of 0s and 1s matter, rather than the specific occurrences: vectors of n elements
with the same number of successes yield the same distribution. With a statistical perspective,
exchangeability seems a reasonable way to formalize the loose expression “under the same ex-
perimental conditions”: observing a value at position i or j, with i, j = 1, . . . , n, should not
affect our inference. Clearly, independence and identical distribution implies exchangeability,
but the reverse implication does not hold. Consider observations generated according to model
(1.1), which are only conditionally independent, and notice that

p(X1, . . . , Xn) =
∫ n∏

i=1
f(Xi | θ)π(dθ) =

∫ n∏
i=1

f(Xπ(i) | θ)π(dθ) = p
(
Xπ(1), . . . , Xπ(n)

)
, (1.4)

for every n and permutation π. Thus the sequence {Xn}n with law given by (1.1) is exchangeable.
Incredibly enough, also the converse holds: an exchangeable sequence {Xi}i is such that it can
be represented as in (1.1). This is the content of the celebrated de Finetti’s Theorem (de Finetti,
1929, 1937; Hewitt and Savage, 1955): an exchangeable distribution can be (uniquely) written
as a mixture of independent laws. Therefore, parameters θ arise directly by the assumption
of exchangeability (which relates only to the observables) and the prior is exactly the mixing
measure. We can say more: an exchangeable law is characterized by the predictive distributions
p(xn+1 | x1:n), see Theorem 4 below. Therefore in this sense every Bayesian analysis concerns
prediction: a family of (coherent) predictive distributions implies an exchangeable law, which
in turn implies representation (1.1) and the existence of θ. This Bayesian focus on prediction,
even when inference on the parameters is of interest, is not a novel idea, yet still receives
considerable attention, see e.g. Fong et al. (2021); Holmes and Walker (2023); Fortini and
Petrone (2023). In the next Sections we will discuss in details de Finetti’s Theorem and its
implications for parametric and nonparametric inference: its extension to more involved settings
(i.e. partial exchangeability) and the connection with hierarchical modelling is discussed. For
a stimulating account of de Finetti’s contributions to Probability and Statistics we refer to
Cifarelli and Regazzini (1996), while Kingman (1978) provides an excellent review on the uses
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of exchangeability. For a more introductory and divulgative treatment, see Diaconis and Skyrms
(2018).

1.2 de Finetti’s Theorem

Let (Ω,F ,P) be a probability space, where the sequence of random variables {Xn}n is defined.
The state space, also called sampling space, is denoted by X and hereafter assumed to be Polish,
i.e. homeomorphic to a separable complete metric space. The resulting Borel σ-algebra on X is
denoted by X . We define in the usual way the product spaces

(
X(n),X (n)

)
and

(
X(∞),X (∞)

)
.

We will not dwell too much on measure theoretic details, throughout this document we think of
X either being equal to Rd or to a discrete (finite or countable) space: however, notice that a
minimal amount of assumptions on the sampling space is required for de Finetti’s Theorem to
hold, see Dubins and Freedman (1979) for counterexamples on non standard spaces.

We call P (X) the space of probability measures on X, endowed with P(X), the smallest
σ-algebra on P (X) that makes the maps

mB : P (X) → R+, mB(P ) = P (B)

measurable, for every B ∈ X . The definition of a σ-algebra is necessary to construct probability
measures on P (X), that will play the role of prior distributions. For every P ∈ P (X) we define
the associated product measures with P (n) ∈ P (X(n)) and P (∞) ∈ P (X(∞)), whose measurability
can be easily proven. Finally, we call random probability measure any measurable function P
from (Ω,F ,P) taking values in

(
P (X),P(X)

)
. We are now ready to state de Finetti’s Theorem.

Theorem 1. The sequence {Xn}n is exchangeable if and only if there exists a probability measure
Q on

(
P (X),P(X)

)
such that for every n we have

P (X1 ∈ A1, . . . , Xn ∈ An) =
∫
P (X)

n∏
i=1

P (Ai)Q(dP ), (1.5)

for every A ∈ X (∞). Moreover
1
n

n∑
i=1

δXi(·) → Q(·) (1.6)

weakly almost surely, as n → ∞.

Equation (1.5) is the formal mathematical translation of the usual representation (1.1): ex-
changeable sequences can be written as mixture of independent and identically distributed (i.i.d.)
sequences, i.e. there exists a random probability measure conditional to which observations are
i.i.d., as in (1.1). Notice that if Q is degenerate over a finite dimensional space, we recover the
parametric setting. For example, the case

Q
({
P ∈ P (X) : P (dx) = N(θ, 1)dx, θ ∈ R

})
= 1

corresponds to the Bayesian model with Gaussian likelihood and a prior on the location param-
eter θ. Moreover, the limit (1.6) implies that the de Finetti measure, or prior, can be recovered
as the weak limit of the empirical distribution. Thus parameters arise by assumptions on the
observables and are identifiable, in the sense that are measurable with respect to the σ-algebra
generated by the sequence of observations: loosely speaking, knowing the entire sequence of
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datapoints is equivalent to knowing the realisation of Q. Notice that, as discussed in (1.4),
representation (1.5) can be easily shown to imply exchangeability, so that only the converse im-
plication is of interest. Before providing a formal proof of Theorem 1, we provide some intuition
on why it should hold, considering the simple case of binary observations.

1.2.1 de Finetti’s Theorem for binary data

Here we assume that X = {0, 1}, so that de Finetti’s Theorem can be written in the following
way.

Theorem 2. The sequence {Xn}n is exchangeable if and only if there exists a probability measure
Q on the unit interval such that

P
(
(X1, . . . , Xn) = (x1, . . . , xn)

)
=
∫ 1

0
θ
∑n

i=1 xi(1 − θ)n−
∑n

i=1 xiQ(dθ),

for every (x1, . . . , xn) ∈ {0, 1}n. Moreover 1
n

∑n
i=1 δXi(·) → Q(·) weakly almost surely, as n →

∞.

Therefore, when dealing with binary sequences, a probability of success θ is sampled from Q and
the n observations are obtained by drawing with replacement from a un urn with proportion
given by θ and 1−θ. This is the setting where de Finetti’s Theorem has been proven for the first
time (de Finetti, 1929), but here we consider the arguments given in Diaconis and Freedman
(1980b). More accessible accounts can be found in Heath and Sudderth (1976) and Chapter 7
of Diaconis and Skyrms (2018).

Fix n ∈ N and let (X1, . . . , Xn) ∈ {0, 1}n be an exchangeable random vector. This means
that vectors with the same number of successes yield the same probability, i.e.

P
(
X1 = x1, . . . , Xn = xn | Sn = r

)
=


1

(n
r)

if ∑n
i=1 xi = r

0 else
,

where Sn = ∑n
i=1Xi. The interpretation is that, conditional on observing r successes, the vector

(X1, . . . , Xn) is obtained by sampling without replacement from an urn with r balls with label
1. Therefore, denoting with Pr(x1, . . . , xn) the distribution above, which does not depend on
the specific exchangeable law under consideration, we have

P (X1 = x1, . . . , Xn = xn) =
n∑
r=0

Pr(x1, . . . , xn)P(Sn = r)

= 1( n∑n

i=1 xi

)P(Sn =
n∑
i=1

xi),

so that the the distribution of (X1, . . . , Xn) is a mixture of urn sampling schemes, where the
mixing measure is given by the law of the number of successes. Similarly, if (X1, . . . , XN ) is
exchangeable and n ≤ N , denoting ∑n

i=1 xi = r we have

P (X1 = x1, . . . , Xn = xn) =
N∑
s=r

P(X1 = x1, . . . , Xn = xn | SN = s)P(SN = s).
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Reasoning as before, conditional on observing s successes out of N trials, the vector (X1, . . . , Xn)
is obtained by sampling n times without replacement from an urn with s balls with label 1 and
N − s balls with labels 0. Then by exchangeability we obtain

P(X1 = x1, . . . , Xn = xn | SN = s) = P(X1 = 1, . . . , Xr = 1, Xr+1 = 0, . . . , Xn = 0 | SN = s)

= s

N

s− 1
N − 1 · · · s− r + 1

N − r + 1
N − s

N − r
· · · N − s− n+ r + 1

N − n+ 1 .

If n and r are fixed, but N grows (i.e. we are closer to an exchangeable sequence), sampling
with or without replacement from an urn become very similar. More formally, Theorem 4 in
Diaconis and Freedman (1980b) shows that∣∣∣∣∣∣ sN s− 1

N − 1 · · · s− r + 1
N − r + 1

N − s

N − r
· · · N − s− n+ r + 1

N − n+ 1 −
(
s

N

)r (N − s

N

)n−r∣∣∣∣∣∣ ≤ 4 n
N

uniformly over r and s. Thus we obtain

P (X1 = x1, . . . , Xn = xn) =
N∑
s=r

(
s

N

)r (N − s

N

)n−r
P(SN = s) + oN (1),

where oN (1) is a function g(N) such that g(N) → 0 as N → ∞. Writing θ = s/N and
denoting with µN (θ) the discrete probability measure supported on {1/N, 2/N, . . . , 1} such that
µN (θ) = P(SN = Nθ), we have

P (X1 = x1, . . . , Xn = xn) =
∫ 1

0
θ
∑n

i=1 xi(1 − θ)n−
∑n

i=1 xiµN (dθ) + oN (1). (1.7)

Therefore, in order to prove Theorem 2 it suffices to prove that µN (dθ) converges weakly to
some probability measure Q, which is exactly equivalent to 1

N

∑N
i=1 δXi(·) → Q(·) weakly almost

surely, as N → ∞. We will show this in the next Section, by proving a Strong Law of Large
Numbers for exchangeable sequences. Notice that representation (1.7) implies that de Finetti’s
Theorem holds approximately if (X1, . . . , XN ) is an exchangeable vector and n is much smaller
than N . For more details on representation of finitely exchangeable laws, see Diaconis and
Freedman (1980b).

1.2.2 Laws of Large Numbers for exchangeable sequences

Laws of Large Numbers for independent random variables are a crucial component of the study
of statistical methods in the classical sense. A similarly prominent role is played by the corre-
sponding laws for exchangeable sequences: the effect of dependence across the random variables
is given by the convergence to a non degenerate random variable.

For every n ∈ N a measurable function f : X(∞) → R is n-symmetric if for every permuta-
tion π of {1, . . . , n} we have

f(x) = f
(
xπ(1), . . . , xπ(n), xn+1

)
, . . . x ∈ X(∞).

We denote by Sn ∈ X (∞) the σ-algebra generated by n-symmetric functions. It is clear that
a (n + 1)-symmetric function is also n-symmetric, so that Sn+1 ⊂ Sn. We also denote with
S = limn→∞ Sn = ∩∞n=1Sn the smallest σ-algebra on X(∞) that makes the n-symmetric functions
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for every n ∈ N measurable. We are ready to state the Law of Large Numbers for exchangeable
sequences.

Theorem 3. Let {Xn}n be an exchangeable sequence and φ : X → R a measurable function
with E[|φ(X1)|] < ∞. Then there exists a random variable φ̃ such that

1
n

n∑
i=1

φ(Xi) → φ̃,

almost surely and in L1, as n → ∞. Moreover φ̃ = E[φ(X1) | S] almost surely.

Proof. Let f be a n-symmetric function and take j ∈ {1, . . . , n}. Then by exchangeability we
have

E
[
φ(Xj)f(X)

]
= E

[
φ(X1)f(Xj , X2, Xj−1, X1, Xj+1, . . . )

]
= E

[
φ(X1)f(X)

]
,

where the last equality follows by n-symmetricity. This means that

1
n

n∑
j=1

E
[
φ(Xj)f(X)

]
= E

[
φ(X1)f(X)

]
,

which implies that

∫
A

 1
n

n∑
j=1

φ(Xj)

 dP =
∫
A
φ(X1) dP =

∫
A
E
[
φ(X1) | Sn

]
dP, A ∈ Sn

where the latter equality holds by definition of conditional expectation. Note that 1
n

∑n
j=1 φ(Xj)

is Sn-measurable, so that
1
n

n∑
j=1

φ(Xj) = E
[
φ(X1) | Sn

]
almost surely. Denote Yn = E

[
φ(X1) | Sn

]
and notice that by the Law of Iterated Expectation

we have
E
[
Yn | Sn+1

]
= E

[
E
[
φ(X1) | Sn

]
| Sn+1

]
= E

[
φ(X1) | Sn+1

]
= Yn+1,

so that {Yn}n is a reversed martingale with respect to {Sn}n. By the convergence theorem for
reversed martingales it holds

1
n

n∑
i=1

φ(Xi) = E
[
φ(X1) | Sn

]
→ E

[
φ(X1) | S

]
,

almost surely and in L1, as n → ∞.

Let φ = 1B. Then Theorem (3) states that

1
n

n∑
i=1

δXj (B) → E[1B | S] = P(X1 ∈ B | S). (1.8)

Moreover, it is easy to show that S belongs to the tail σ-algebra, i.e. S ⊂ T = ∩∞n=1σ
(
{Xi}i≥n

)
,

which implies P(X1 ∈ B | S) being T -measurable. If the observations Xi’s are independent and
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identically distributed, which is a particular case of exchangeability, by Kolmogorov’s 0-1 Law
we have P(X1 ∈ B | S) ∈ {0, 1} and P(X1 ∈ B | S) is degenerate, recovering the standard Law
of Large Numbers.

Convergence as in (1.8), though holding for every B ∈ X , is not enough to prove weak
convergence of the empirical measure, that we denote with P̂n(·) = 1

n

∑n
i=1 δXj (·). The additional

steps strongly depend on the Polishness of X, as detailed in the next corollary.

Corollary 1. If {Xn}n is an exchangeable sequence on a Polish space, then there exists a
random probability measure such that P̂n → P̃ weakly almost surely, as n → ∞. Moreover
P̃ (B) = P(X1 ∈ B | S) almost surely.

Proof. Since X is Polish, there exists a sequence of uniformly continuous and bounded func-
tions such that Pn → P weakly if and only if

∫
gk(x)Pn(dx) →

∫
gk(x)P (dx) for every k =

1, 2, . . . . Moreover, measurability of P̂n with respect to P(X) can be easily shown, since the sets{
P ∈ P (X) : P (A) ∈ C

}
, for every A ∈ X and C Borel set of R, form a generating class for

P(X).
Since X is Polish, there exists a version P̃ of the conditional probability distribution of X1

given S, such that P̃ (B) = P(X1 ∈ B | S). Therefore

E
[
gk(X1) | S

]
=
∫
gk(x)P̃ (dx)

almost surely for every k = 1, 2, . . . . Therefore, by applying Theorem (3) to every k we have∫
gk(x)P̂n(dx) = 1

n

n∑
i=1

gk(Xi) → E
[
gk(X1) | S

]
=
∫
gk(x)P̃ (dx)

almost surely as n → ∞. Thus the result follows.

An immediate consequence of Corollary 1 is the proof of Theorem 2: indeed it implies weak
convergence of measures µN (dθ) in (1.7), almost surely as in N → ∞. In the next Section we
prove de Finetti’s Theorem for a generic sampling space.

1.2.3 Proof of de Finetti’s Theorem

The original proof for an arbitrary sampling space is given in Hewitt and Savage (1955). Here
instead, we follow the same reasoning of Kingman (1978), which is based on the Strong Law
of Large Numbers given in Theorem 3. For an argument based on approximating exchangeable
sequences with finite exchangeable vectors, see Diaconis and Freedman (1980b).

Proof of Theorem 1. Let P̃ be the conditional probability distribution ofX1 given S, i.e. P̃ (B) =
P(X1 ∈ B | S). Such P̃ exists since X is Polish. By Corollary 1, for every n ∈ N and
A1, . . . , An ∈ X we have

n∏
i=1

P̃ (Ai) = E

 n∏
i=1

P̃ (Ai) | P̃

 = E

 n∏
i=1

lim
N→∞

P̂N (Ai) | P̃


= lim

N→∞
E

 n∏
i=1

P̂N (Ai) | P̃

 ,
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where the latter equality holds by Dominated Convergence Theorem. Notice that

n∏
i=1

P̂N (Ai) =
n∏
i=1

1
N

N∑
i=1

δXi(Ai) = 1
Nn

n∏
i=1

N∑
i=1

δXi(Ai).

Denote with C the set of ordered samples (j1, . . . , jn) of n elements in {1, . . . , N} with possible
repetitions. Similarly, define with D the subset of C with no repetitions, i.e. j1 ̸= . . . ̸= jn. Thus
we can write

n∏
i=1

P̂N (Ai) = lim
N→∞

1
Nn

∑
D

n∏
i=1

δXji
(Ai) + lim

N→∞

1
Nn

∑
C\D

n∏
i=1

δXji
(Ai)

and
n∏
i=1

P̃ (Ai) = lim
N→∞

1
Nn

∑
D

n∏
i=1

E
[
δXji

(Ai) | P̃
]

+ lim
N→∞

1
Nn

∑
C\D

n∏
i=1

E
[
δXji

(Ai) | P̃
]
. (1.9)

Notice moreover that

1
Nn

∑
C\D

E

 n∏
i=1

δXji
(Ai) | P̃

 ≤ Card
(
C\D

)
Nn

= Nn −N(N − 1) · · · (N − n+ 1)
Nn

→ 0, (1.10)

as N → ∞. Combining (1.9) and (1.10), by exchangeability we have
n∏
i=1

P̃ (Ai) = lim
N→∞

1
Nn

∑
D

E
[
δXj1

(A1) · · · δXjn
(An) | P̃

]
= lim

N→∞

1
Nn

∑
D

P
(
Xj1 ∈ A1, . . . Xjn ∈ An | P̃

)
= lim

N→∞

Card(D)
Nn

P
(
X1 ∈ A1, . . . Xn ∈ An | P̃

)
= P

(
X1 ∈ A1, . . . Xn ∈ An | P̃

)
.

Therefore, if Q is the law of P̃ , we have

P (X1 ∈ A1, . . . , Xn ∈ An) =
∫
P (X)

P
(
X1 ∈ A1, . . . Xn ∈ An | P̃

)
Q(dP̃ )

=
∫
P (X)

n∏
i=1

P̃ (Ai)Q(dP̃ ),

as desired.

Uniqueness of representation (1.5) follows by uniqueness of the weak limit, since Q is given by
the limit of the empirical distribution.



1.3. CONSEQUENCES OF DE FINETTI’S THEOREM 13

1.3 Consequences of de Finetti’s Theorem

As mentioned before, de Finetti’s Theorem and in particular representation (1.5) yield a pro-
found philosphical meaning. Statistical models as in (1.1) follow as a consequences of the
exchangeability assumption: thus, the existence of parameters arise by a suitable homogene-
ity requirement on the observables. It is beyond the scope of this thesis (and my personal
knowledge) to discuss in detail the philosophical consequences and issues of such viewpoint: we
refer to Section 2 of Cifarelli and Regazzini (1996) for an extensive treatment of de Finetti’s
interpretation of the representation theorem and the links with the problem of induction.

The second part of the Theorem, i.e. the convergence (1.6) of the empirical measure, says
that the prior measure can be derived by an infinite sequence of exchangeable observations.
Thus, specifying a Bayesian model is equivalent to specify how prediction is performed, i.e. a
family of transition kernels

pn(A;x1:n) = P
(
Xn+1 ∈ A | X1 = x1, . . . , Xn = xn

)
. (1.11)

The next theorem, due to Fortini et al. (2000), shows that, at least in principle, providing
suitable predictive distributions is equivalent to exchangeability.

Theorem 4. A sequence of transition kernels {pn}n as in (1.11) identifies the law of an ex-
changeable sequence {Xn}n if and only if

1. pn(A;x1:n) = pn
(
A;xπ(1), . . . , xπ(n)

)
for every n ∈ N, A ∈ X and permutation π of

{1, . . . , n}.

2. For every A,B ∈ X it holds∫
A
pn+1(B;x1, . . . , xn, xn+1) pn(dxn+1;x1:n) =

∫
B
pn+1(A;x1, . . . , xn, xn+1) pn(dxn+1;x1:n).

While the first requirement of Theorem 4, i.e. that prediction should not depend on the order of
the collected datapoints, is easily satisfied, the second one is less intuitive. It can be rewritten
as

P
(
Xn+1 ∈ A,Xn+2 ∈ B | X1:n = x1:n

)
= P

(
Xn+1 ∈ B,Xn+2 ∈ A | X1:n = x1:n

)
for every A,B ∈ X and it is in general hard to come up with sequences of predictive distributions
that satisfy such condition. Therefore the usual route, as we will see in the next Sections, is to
exploit de Finetti’s Theorem and pass through the definition of a prior law Q on

(
P (X),P(X)

)
.

This justifies the usual way of formulating a Bayesian model as in (1.1). An alternative, that
we do not consider here, is to consider a different (weaker) type of dependence among the
observations that allows to define a predictive rule in a simpler way, see e.g. Holmes and Walker
(2023); Fortini and Petrone (2023); Berti et al. (2023).

1.4 Parametric setting and Bayes’ Theorem

As explained in the Introduction and justified in the previous Section, it is customary to start
a Bayesian analysis by explicitly defining a joint law of the parameters and the observations.
Formally, denoting with Θ the parameter space, which we assume to be Polish with Borel σ-
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algebra B, the pair (X, θ) has joint distribution

P (X ∈ A, θ ∈ B) =
∫
B
Pθ(A)Π(dθ), (1.12)

where Π ∈ P (Θ) is the prior distribution and Pθ ∈ P (X) is the likelihood. In the previous
Sections we had Θ = P (X) and B = P(X), so that Pθ(A) = θ(A), for every θ ∈ Θ. We use a
different notation here, since we want to restrict to the parametric finite dimensional case. The
following discussion is based mostly on Chapters 2 − 3 of Regazzini (1996) and Chapter 1 of
Szabó and van der Vaart (2023).

In order to formalize representation (1.12) we need to define the notion of a Markov kernel
Q from (Θ,B) to (X,X ) as a map Q : Θ × X → [0, 1] such that

(i) The map A → Q(θ,A) is a probability measure for every θ ∈ Θ.

(ii) The map θ → Q(θ,A) is measurable for every A ∈ X .

Thus we assume that the statistical model {Pθ ; θ ∈ Θ} is such that Q(θ,A) = Pθ(A) is a Markov
kernel from (Θ,B) to (X,X ), which formalizes Pθ being the conditional distribution of X given
θ. Requirement (ii) of the definition of Markov kernel makes the right hand side of (1.12) well
defined. It is possible to show that there exists a suitable probability space on which the pair
(X, θ) can be constructed: see Szabó and van der Vaart (2023) for details.

Thus, given a statistical model {Pθ ; θ ∈ Θ} defined as a Markov kernel and a prior distribu-
tion Π, we define the posterior distribution as a Markov kernel Q(x,B) = Π(B | x) from (X,X )
to (Θ,B) such that

P (X ∈ A, θ ∈ B) =
∫
A

Π(B | x)P (dx), (1.13)

where P (A) = P(X ∈ A) =
∫

Θ Pθ(A)π(dx) is the marginal distribution of X induced by the joint
distribution (1.12). Notice that representation (1.13) looks very similar to representation (1.12),
with opposite roles played by X and θ: therefore the posterior distribution is defined through a
suitable disintegration of the joint distribution of the pair (X, θ). It is possible to show that a
posterior distribution exists as soon as Θ is Polish, see Theorem 1.3 in Szabó and van der Vaart
(2023). Ancillarly, notice that this justifies taking Θ = P (X), since the latter is a Polish space
if X is Polish.

The problem now becomes how to compute the posterior distribution as defined in (1.13):
the relevance of parametric models and Bayes’ Theorem stems from this issue. Indeed, assume
there exist a σ-finite measure µ on (X,X ) and a measurable map (x, θ) → pθ(x) such that

Pθ(A) =
∫
A
pθ(x)µ(dx) (1.14)

for every A ∈ X . If this holds we say that the statistical model is dominated: usual choices for
µ are the Lebesgue measure on Rd or the counting measure. In this case Bayes’ formula states

Π(B | x) =


∫

B
pθ(x)Π(dθ)∫

Θ pθ(x)Π(dθ) if
∫

Θ pθ(x)Π(dθ) > 0

0 else
(1.15)

The next theorem shows that (1.15) defines a version of the posterior distribution; we use the
term version to emphasize that the posterior distribution is uniquely defined only up to a null
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set, with respect to the marginal P . Notice moreover that if
∫

Θ pθ(x)Π(dθ) = 0 the choice of the
value of Π(B | x) is irrelevant, as the following proof shows. The following proof is well known,
we follow the lines of Proposition 1.8 in Szabó and van der Vaart (2023).

Theorem 5. Let a σ-finite measure µ on (X,X ) and a measurable map (x, θ) → pθ(x) be
such that (1.14) holds for every A ∈ X . Then formula (1.15) gives a version of the posterior
distribution Π(B | x).

Proof. It is not difficult to prove that (x,B) → Π(B | x) is a Markov kernel: in particular,
requirement (ii) follows by Fubini’s Theorem. By (1.12) and again Fubini’s Theorem we have

P(X ∈ A, θ ∈ B) =
∫
B
Pθ(A)Π(dθ) =

∫
B

∫
A
pθ(x)µ(dx)Π(dθ)

=
∫
A

∫
B
pθ(x)Π(dθ)µ(dx),

for every A ∈ X and B ∈ B. In particular, with B = Θ, we have that p(x) =
∫

Θ pθ(x)µ(dx)
is the density of P with respect to µ. Therefore, the set N = {x : p(x) = 0} is such that
P (N) = 0. Therefore, for every x ∈ N c we can write∫

B
pθ(x)Π(dθ) = Π(B | x)p(x),

with Π(B | x) as in (1.15). Therefore we can write

P(X ∈ A, θ ∈ B) =
∫
A∩Nc

Π(B | x)p(x)µ(dx) +
∫
A∩N

∫
B
pθ(x)Π(dθ)µ(dx).

Since P (N) = 0, disintegration (1.13) holds.

Formula (1.15) is thus the cornerstone of Bayesian parametric models. However, if the support
of Π is large, e.g. it is equal to P (X), the assumption of dominated statistical model is often not
satisfied. For instance let Θ be the set of discrete probability measures on R and Pθ(A) = θ(A),
with θ of the form

θ =
∑
i≥1

WiδZi , (1.16)

where {Wi}i are random probability weights and Zi are random atoms sampled i.i.d. by a fixed
distribution Q0 ∈ P (R). Thus, fixing θ means specifying weights and atoms. It is clear that Pθ
is not dominated by the Lebesgue measure, for every θ. Moreover, for every discrete measure
µ there exists θ such that the supports of µ and θ are disjoint. Therefore formula (1.15) can
not be applied to models as in (1.16) and we need to rely on other tools to obtain the posterior
distribution. This is the topic of the next Section.

1.5 Bayesian nonparametrics and the Dirichlet process

Reiterating from the previous discussion, when the statistical model is dominated we can rely
on Bayes’ formula (1.15) to obtain the posterior distribution. When the model is not domi-
nated, and this usually happens when Θ is infinite dimensional, two problems arise: first of
all it is a challenging task to define a meaningful probability measure (i.e. the prior) on an
infinite dimensional space, moreover the computation of the posterior distribution requires ad
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hoc reasoning. In this Section we focus on the setting induced by the Dirichlet process (Fergu-
son, 1973), which solves at once the aforementioned issues. We will then have the first example
of Bayesian nonparametric model: we will call it discrete, because its realizations are almost
surely discrete probability measures. Throughout this thesis we will fit into this framework, but
other prossibilities are available (e.g. models based on Gaussian processes, see Williams and
Rasmussen (2006)). Notice that the term nonparametric refers not to a lack of parameters, but
rather to infinitely many of them, in order to span an infinite dimensional space.

1.5.1 Constructing infinite dimensional priors through projections

Combining the notations used in the previous Sections, our parametric space is Θ = P (X) and
we want to define a probability measure Q ∈ P (Θ) whose realizations are denoted by P ∈ P (X).
Therefore we can say that P is a random probability measure, i.e. a measurable function from
(Ω,F ,P) to (P (X),P(X)).

Notice that we can equivalently describe P as a stochastic process over sets, i.e.
{
P (A) : A ∈ X

}
,

so that specifying the law of the prior means specifying the law of the process. In particular,
for every ordered collection of sets (A1, . . . , Ak), with Ai ∈ X , we can define

QA1,...,Ak
(C) = P

((
P (A1), . . . , P (Ak)

)
∈ C

)
for every C ∈ B

(
[0, 1]k

)
, where B

(
[0, 1]k

)
denotes the Borel σ-algebra on [0, 1]k. Spanning over

the sets (A1, . . . , Ak) we obtain the collection Q =
{
QA1,...,Ak

: A1, . . . , Ak ∈ X , k ≥ 1
}
. It is

easy to prove that Q satisfies the following properties:

(P1) If π is a permutation of {1, . . . , k} and πC =
{

(xπ(1), . . . , xπ(k)) : (x1, . . . , xk) ∈ C
}

then

QA1,...,Ak
(C) = QAπ(1),...,Aπ(1)(πC)

for every C ∈ B
(
[0, 1]k

)
.

(P2) QX(C) = δ1(C) for every for every C ∈ B
(
[0, 1]

)
.

(P3) For every refinement (B1, . . . , Bn) of A1, . . . , Ak), i.e.

• (B1, . . . , Bn) is a partition of X into X -sets;
• Any set Aj = ∪(j)Bi, where (j) =

{
i ∈ {1, . . . , n} : Bi ⊂ Aj

}
;

then

QA1,...,Ak
(C) = QB1,...,Bn


x ∈ [0, 1]n :

∑
(1)

xi, . . . ,
∑
(k)

xi

 ∈ C




for every C ∈ B
(
[0, 1]k

)
.

(P4) For every {An}n in X monotonically decreasing to the empty set ∅, then QAn → 0 weakly
as n → ∞.

A well-known result, oftentimes called Kolmogorov’s Extension Theorem, says that also the
converse holds, i.e. a collection Q satisfying (P1) − (P4) defines a random probability measure.
We state the result below for definiteness.
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Theorem 6. If Q =
{
QA1,...,Ak

: A1, . . . , Ak ∈ X , k ≥ 1
}

satisfies (P1) − P4) then there exists
a unique probability measure Q on (P (X),P(X)) whose finite dimensional projections are in Q.
Moreover, there exists a random probability measures P with probability distribution Q.

Thus, we can use Theorem 6 to define a prior over P(X) working just on the finite dimensional
distributions. This is the strategy exploited in (Ferguson, 1973) to construct a nonparametric
prior, i.e. the Dirichlet process, for the first time. However, we need first of all to state some
useful properties of the Dirichlet distribution, which will play the role of finite dimensional
projections.

1.5.2 Dirichlet distribution and basic properties

Let (Y1, . . . , Yn) be independent random variables such that Yj ∼ Ga(αj , 1), with αj ≥ 0.
Defining Wj = Yj/

∑n
i=1 Yi, it is possible to show that the vector (W1, . . . ,Wn−1) has density

f(w1, . . . , wn−1) = Γ(α1 + · · · + αn)∏n
i=1 Γ(αi)

n−1∏
i=1

wαi−1
i

1 −
n−1∑
i=1

wi

αn−1

1∆n−1(w1, . . . , wn−1),

where ∆n−1 =
{

(w1, . . . , wn−1) : wi ≥ 0,∑n−1
i=1 wi ≤ 1

}
. We say that (W1, . . . ,Wn−1) has the

law of a Dirichlet distribution and we write (W1, . . . ,Wn−1) ∼ Dn−1(α1, . . . , αn), with density
dn−1(w ; α1, . . . , αn).

It is easy to show that W1 ∼ Beta(α1, α2) and, if 0 < r1 < · · · < rl = n, with l < n, it holds r1∑
i=1

Wi, . . . ,
rl∑

i=rl−1+1
Wi

 ∼ Dl−1

 r1∑
i=1

αi, . . . ,

rl−1∑
i=rl−2+1

αi

 . (1.17)

Moreover the mean can be easily computed as

E
[
Wj
]

= αj∑n
i=1 αi

, j ∈ {1, . . . , n}. (1.18)

Assume we have observations (X1, . . . , XN ) taking values in {1, . . . , n}. A typical Bayesian
exchangeable model is given by

P
(
Xi = j | (W1, . . . ,Wn)

)
= Wj , (W1, . . . ,Wn−1) ∼ Dn−1(α1, . . . , αn),

where Wn = 1 −
∑n−1
i=1 Wi. Using Bayes’s formula it is not difficult to show that the model

above is conjugate, i.e. the posterior distribution is again Dirichlet distributed. More precisely
we have

(W1, . . . ,Wn−1) | X1:N ∼ Dn−1 (α1 +N1, . . . , αn +Nn) , Nj = Card
(
{i : Xi = j}

)
. (1.19)

Therefore the relevance of group j is reinforced according to the number of collected obser-
vations equal to j. Indeed, if α = ∑n

i=1 αi, thanks to (1.18) the posterior mean is equal to
E
[
Wj | X1, . . . , XN

]
= (αj +Nj)/(α+N). Thus we can obtain the predictive distribution of a
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new observation as

P
(
XN+1 = j | X1, . . . , XN

)
= E

[
P
(
XN+1 = j | W1, . . . ,Wn

)
| X1, . . . , XN

]
= E

[
Wj | X1, . . . , XN

]
= αj +Nj

α+N

= α

α+N
αj + N

α+N

Nj

N
.

(1.20)

Interestingly, the predictive distribution is a convex linear combination of the prior guess and
the empirical frequency: moreover the weight assigned to the prior guess vanishes, as N → ∞.
In the next Section we show how to use the Dirichlet distribution to define a prior over an
infinite dimensional space, through Theorem 6.

1.5.3 Dirichlet process: definition

Let α be a non null and finite measure on (X,X ). Call θ = α(X) the concentration parameter
and Q0 = α/θ ∈ P (X) the baseline distribution. Setting αi = α(Ai), with i = 1, . . . , k, we write

QA1,...,Ak
(C) = Γ(θ)∏k

j=1 Γ(αj)

∫
C∩∆k−1

wα1−1
1 · · · wαk−1−1

k−1 (1 − w1 − · · · − wn−1)αk−1 dw,

for every (A1, . . . , Ak) partition of X and for every C ∈ B
(
[0, 1]k

)
. Thus, we assign a Dirichlet

distribution to every partition of the space, with weights given by α(Aj). Consider now a generic
ordered collection of sets (A1, . . . , Ak) and denote with (C1, . . . , Ck′) the induced partition, i.e.
such that

Aj = ∪(j)Ci, (j) =
{
i ∈ {1, . . . , k′} : Ci ⊂ Aj

}
.

Thus we define

QA1,...,Ak
(C) = QC1,...,Ck′


(w1, . . . , wk′−1) ∈ ∆k′−1 :

∑
(1)

wi, . . . ,
∑
(k)

wi

 ∈ C


 . (1.21)

We have now defined Q =
{
QA1,...,Ak

: A1, . . . , Ak ∈ X , k ≥ 1
}

and the next theorem shows it
defines a proper random probability measure.

Theorem 7. Let Q defined as in (1.21). Then requirements (P1) − (P4) are satisfied, so there
exists a random probability measure P , which has finite dimensional distributions as in Q.

Theorem 7 has been originally proven in (Ferguson, 1973). For a more detailed proof, see
Chapter 3 of Regazzini (1996). In the following we will use the notation P ∼ DP (θ,Q0) to say
that P is a random probability measure endowed with the law of a Dirichlet process (DP), with
concentration parameter θ and baseline distribution Q0.

This strategy relies mostly on Kolmogorov’s Extension Theorem and the nice properties of
the Dirichlet distribution (especially (1.17)). It is therefore difficult to use the same reasoning
beyond this case, with the notable exception of the Normalized Inverse Gaussian process (Lijoi
et al., 2005). In the next Chapters we will see different construction of the Dirichlet process,
which will allow for various generalizations. In the next Section, instead, we study the statistical
model associated to the DP and the associated posterior distribution.
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1.5.4 Dirichlet process: posterior distribution

Consider the following Bayesian model for exchangeable data

Xi | P iid∼ P, P ∼ DP (θ,Q0). (1.22)

Thus, now the random parameter is the entire distribution of the observations, whose prior is
given by the law of a Dirichlet process. Notice that

P(X ∈ A) = E
[
P(X ∈ A | P )

]
= E[P (A)] = Q0(A),

since P (A) ∼ Beta
(
θQ0(A), θQ0(Ac)

)
, by definition of the Dirichlet process. Thus the baseline

distribution is the marginal of X according to model (2.1) and plays the role of the prior guess
for the law of the observations. It is clear that the resulting statistical model is not dominated,
so that formula (1.15) can not be applied. The idea is to rely again on the finite dimensional
distributions, following the same lines of Chapter 3 in Regazzini (1996).

Let (A1, . . . , Ak) be an ordered partition of X. Then the posterior distribution
P
(
P (A1) ∈ B1, . . . , P (Ak−1) ∈ Bk−1 | X1

)
needs to satisfy the following integral equation

P
(
P (A1) ∈ B1, . . . ,P (Ak−1) ∈ Bk−1, X1 ∈ C

)

=
∫
C
P
(
P (A1) ∈ B1, . . . , P (Ak−1) ∈ Bk−1 | x1

)
Q0(dx1),

for every C ∈ X . Denote Ci = Ai ∩ C and C ′i = Ai ∩ Cc, so that by definition(
P (C1), P (C ′1), . . . , P (Ck)

)
∼ D2k−1

(
α1, α

′
1, . . . , αk, α

′
k

)
,

where αi = α(Ci) and α′i = α(C ′i). Therefore we obtain

P
(
P (A1) ∈ B1, . . . , P (Ak−1) ∈ Bk−1, X1 ∈ C

)

=
∫

∆2k−1
1B1×···×Bk−1(x+ y)

 k∑
i=1

xi

 Γ(θ)∏k
j=1 Γ(αj)Γ(α′j)

k∏
j=1

x
αj−1
j y

α′j−1
j dxdy

=
k∑
i=1

∫
∆2k−1

1B1×···×Bk−1(x+ y) Γ(θ)∏k
j=1 Γ(αj)Γ(α′j)

xαi
i y

α′i−1
i

∏
j ̸=i

x
αj−1
j y

α′j−1
j dxdy

=
k∑
i=1

αi
θ

∫
∆2k−1

1B1×···×Bk−1(x+ y)d2k−1(x, y ; α1, α
′
1, . . . , αi + 1, . . . , α′k) dxdy,

with yk = 1 −
∑k
j=1 xj −

∑k−1
j=1 yj . Noticing that Q0(Ci) = αi/θ and denoting α̃j = α(Aj), by
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applying (1.17) we have

P
(
P (A1) ∈ B1, . . . , P (Ak−1) ∈ Bk−1, X1 ∈ C

)

=
k∑
i=1

Q0(Ci)
∫

∆k−1∩(B1,...,Bk−1
dk−1(w ; α̃1, . . . , α̃i + 1, . . . , α̃k) dw

=
∫
C

∫
∆k−1∩(B1,...,Bk−1

dk−1
(
w ; α̃1 + 1A1(x), . . . , α̃k + 1Ak

(x)
)

dwQ0(dx).

Therefore, by definition of conditional probability, we have(
P (A1), . . . , P (Ak−1)

)
| X1 ∼ Dk−1

(
α(A1) + 1A1(x), . . . , α(Ak) + 1Ak

(x
)

for every ordered partition. Considering instead an arbitrary ordered collection of sets (A1, . . . , Ak),
with the same reasoning it is possible to prove that the finite dimensional distributions of P ,
conditional to X, are as in (1.21) with a new measure α′ = α + δX . Therefore we proved the
following theorem for the posterior distribution of model (2.1).

Theorem 8. Consider a random variable X generated according to model (2.1). Then it holds

P | X ∼ DP

(
θ + 1, θ

θ + 1Q0 + 1
θ + 1δX

)

In order to compute the posterior distribution P | X1:n, with X1:n = (X1, . . . , Xn), Theorem 8
can be applied sequentially to get

P | X1:n ∼ DP

(
θ + n,

θ

θ + n
Q0 + n

θ + n
P̂n

)
, (1.23)

where P̂n = 1
n

∑n
i=1 δXi . In the next section we explore some basic properties of model (2.1).

1.5.5 Dirichlet process: basic properties

Thanks to the availability of the posterior distribution given in Theorem 8, we can extract useful
quantity for model (2.1). In particular we have that

P (A) | X1:n ∼ Beta
(
θQ0(A) + nP̂n(A), θQ0(Ac + nP̂n(Ac)

)
,

so that the predictive distribution reads

P
(
Xn+1 ∈ A | X1:n

)
= E

[
P
(
Xn+1 ∈ A | P

)
| X1:n

]
= E

[
P (A) | X1:n

]
= Q0(A) + nP̂n(A)

θ + n
= θ

θ + n
Q0(A) + n

θ + n
P̂n(A).

(1.24)

Therefore the predictive is a convex linear combination of the prior guess and the empirical
distribution of the observed datapoints. Interestingly, the fact that the prediction rule is a
linear combination of Q0 and the empirical measure is a characterization of the Dirichlet process
(Regazzini, 1978; Lo, 1991). Moreover, the higher θ the higher the weight associated to the
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baseline distribution: therefore θ measures the confidence on the prior guess. From (1.24) we
can devise a simple scheme to sample n observations from model (2.1):

1. Sample X1 ∼ Q0.

2. For every i ≥ 1 sample

Xi+1 ∼

Q0 w.p. θ
θ+i

P̂i w.p. i
θ+i

This is often called a Pólya urn scheme, since it behaves as sampling with reinforcement from
an urn with infinitely many colors. It is then clear that a sample X1:n from model (2.1) yields
ties with positive probability and moreover

P(Xi+1 = new | X1:i) = θ

θ + i
,

assuming that Q0 is diffuse. Notice that the probability of a new value depends only on θ and
n: in the following Chapters we will see suitable generalizations, to obtain dependence also on
the number of distinct values observed in X1:i (De Blasi et al., 2013). Calling Wi ∈ {0, 1} the
variable equal to 1 if Xi is new, we can denote with Kn = ∑n

i=1Wi the number of distinct values
out of a sample of n elements. By the above formula, we have that Wi are independent Bernoulli
random variables with parameter θ/(θ + i− 1). Therefore

E [Kn] =
n∑
i=1

E [Wi] = θ
n∑
i=1

1
θ + i− 1 ,

which behaves approximately as log(1 + n/θ), with n large. It is possible to say more, that is
Kn/ log(n) → θ almost surely, as n → ∞ (see Korwar and Hollander (1973) for a proof). Thus,
the number of clusters (i.e. distinct values) grows logarithmically with n, regardless of the choice
of θ and Q0: in the next Chapters we will introduce other processes for which it is possible to
tune the growth rate with suitable hyperparameters.

A sample X1:n from model (2.1) can be equivalently described by the k ≤ n unique values
and the associated partition in k clusters. By exchangeability, partitions with the same mul-
tiplicities (n1, . . . , nk), with ni > 0 and ∑k

i=1 ni = n, yield the same probability. Therefore
an object of great interest is given by the Exchangeable Partition Probability Function (EPPF)
Π(n)
k (n1, . . . , nk), i.e. the distribution over partitions of {1, . . . , n} with multiplicities (n1, . . . , nk)

induced by model (2.1). By exchangeability and (1.24) we have

Π(n)
k (n1, . . . , nk) = P

(
X1 = 1, . . . , Xn1 = 1, Xn1+1 = 2, . . . , Xn = k

)
= 1
θ + 1 · · · n1 − 1

θ + n1 − 1
θ

θ + n1
· · · n2 − 1

θ + n1 + n2 − 1 · · · nk − 1
θ + n− 1

= θk

(θ)(n)

k∏
j=1

Γ(nj),

(1.25)

where θ(n) = θ(θ + 1) · · · (θ + n− 1) is the Pochammer symbol.
Finally, again thanks by the conjugacy given by Theorem 8, it is possible to prove that

realizations of the Dirichlet process are almost surely discrete probability measures. This is
formalized in the next lemma.
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Lemma 1. Let Q be the law of a Dirichlet process with parameters θ and Q0. Then

Q (discrete probability measures over X) = 1.

Proof. For every P ∈ P (X) denote with EP = {x ∈ X : P ({x}) > 0} the set of atoms
of P . Then the set Γd ⊂ P (X) of discrete probability measures over X can be defined as
Γd =

{
P ∈ P (X) : P (EP ) = 1

}
Thus, the statement is equivalent to Q(Γd) = 1.

Denoting Ex =
{
P ∈ P (X) : P ({x}) > 0

}
, we have thatQ(Γd) = 1 if and only if P

(
QX1

(
EX1

)
= 1

)
=

1, where Qx is the posterior law of the Dirichlet process given X1 = x, with X1 from model
(2.1). By Theorem 8 we have that

P
(
{X1} | X1

)
∼ Beta

(
θQ0({X1}) + 1, θ − θQ0({X1})

)
,

where P is a random probability measure with law Q. Therefore

QX1

(
EX1

)
= QX1

({
P ∈ P (X) ; P ({X1}) > 0

})
= 0,

as desired.

1.6 Beyond exchangeability

As we saw in the previous Sections, the most common assumption underlying Bayesian models
is exchangeability, which corresponds to invariance of the joint distribution of the observations
with respect to finite permutations. However, most often the data present features that make
exchangeability unrealistic, e.g. presence of covariates, temporal dependence, different exper-
imental conditions. Therefore de Finetti’s Theorem has been generalized over the decades to
different probabilitic models: we mention for example exchangeability for Markov chains (Dia-
conis and Freedman, 1980a), arrays (Aldous, 1981) and networks (Caron and Fox, 2017). See
Aldous (1985) for a detailed representation. Moreover, de Finetti’s Theorem has been proven
to be robust under small deviations from exchangeability, see e.g. Campbell et al. (2023).

In this thesis we focus on the setting where collected data may refer to different features,
populations, or, in general, may be collected under different experimental conditions. Such
situations entail a significant level of heterogeneity and opportunities for borrowing information,
that can be exploited through the notion of partial exchangeability (de Finetti, 1938), which
implies exchangeability within each experimental condition, but not across. Two sequences of
observationsX = (Xi)i≥1 and Y = (Yj)j≥1, taking values in a space X, are partially exchangeable
if and only if, for all sample sizes (n,m) and all permutations (π1, π2),(

(Xi)ni=1, (Yj)mj=1

)
d=
(
(Xπ1(i))ni=1, (Yπ2(j))mj=1

)
.

From an inferential point of view, partial exchangeability entails that the order of the observa-
tions within each sample is non-informative, while the fact of belonging to a specific sample is
relevant and has to be taken into account. Moreover, there exists a generalized version of de
Finetti’s Theorem (de Finetti, 1938) which states that X and Y are partially exchangeable if
and only if there exist random probability measures (P1, P2) such that for every i, j = 1, . . . , n

(Xi, Yj) | P1, P2
iid∼ P1 × P2, (P1, P2) ∼ Q, (1.26)
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Figure 1.1: Graphical models of different hierarchical structures. Left: inducing dependence across
groups. Center: defining a more flexible likelihood. Right: defining a more flexible prior.

with Q ∈ P
(
P 2(X)

)
playing the role of the prior. The analogy with model (1.1) is clear:

conditional on the parameters (P1, P2), observations are independent, with law given by the
corresponding group. The joint distribution of the pair (P1, P2) models the dependence, i.e. the
borrowing of information, across groups: in particular, if P1 = P2 almost surely exchangeability
is recovered. Representation (26) can be easily extended to d groups, through a vector of d
random probability measures (P1, . . . , Pd) with prior distribution Q ∈ P

(
P d(X)

)
. The literature

has thus developed a plethora of models specifying such law Q: in the next Chapters we will
focus on Bayesian nonparametric models for partially exchangeable data, starting from the the
early works of Cifarelli and Regazzini (1978); MacEachern (1999, 2000). We terminate the
Chapter, instead, on the role played by hierarchical structures in exchangeable and partially
exchangeable models.

1.7 Hierarchical structures for Bayesian modelling
Hierarchies play a key role in Bayesian modelling, since they provide a simple and effective way to
define the joint distribution of random quantities. Thanks to the well-known Chain Rule, we say
that the pair (X,Y ) is defined hierarchically if the marginal distribution of X, namely P(X ∈ A),
and the conditional distribution P(Y ∈ A | X) are specified. This is usually represented through
Directed Acyclic Graphs (DAG), as in Figure 1.1, with “X → Y ”. Therefore we can use such
graphs to easily describe the probabilistic structure among the objects of interest.

In particular, we will use hierarchies for three distinct, yet related, task. We describe them
through the Dirichlet process model defined in (2.1).

1. Inducing dependence across groups: in the setting of partial exchangeability, de-
scribed in the previous Section, hierarchies can be used to induce dependence across dis-
tinct groups that share some common features. As shown in the left part of Figure 1.1,
group j is modelled through the prior Pj , depending on a common hyperparameter ψ: the
latter, being endowed with a suitable prior distribution, induces dependence across Pj and
therefore across datapoints Xj . An example is given by the Hierarchical Dirichlet process
(Teh et al., 2006) defined as

Pj | ψ ∼ DP (θj , ψ), ψ ∼ DP (θ,Q0).

Therefore ψ plays the role of the common baseline distribution for all the groups. The re-
sulting simple probabilistic structure, as in the left of Figure 1.1, allows to greatly simplify
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the theoretical and computational analysis.

2. Defining a more flexible likelihood: the discreteness of the Dirichlet process, as shown
in Lemma 1, may be a weakness of model (2.1). Therefore it is customary to convolve this
discrete structure with a suitable kernel k(x θ), depending on a parameter θ and dominated
by a σ-finite measure µ, so that the resulting likelihood is also dominated by µ: simple
examples for k are the normal and Poisson kernels, depending on the nature of the data.
The resulting model, introduced in Lo (1984) and often termed Dirichlet process mixtures,
can be defined as

Xi | θi ∼ k(x | θi), θi | P iid∼ P, P ∼ DP (θ,Q0).

Therefore the discreteness of the Dirichlet process implies a latent clustering structure,
which can be used to automatically partition the observations in groups. The dependence
structure is defined by the center of Figure 1.1.

3. Defining a more flexible prior: as seen in the last Section, the predictive and asymp-
totic properties of the Dirichlet process model (2.1) crucially depend on the concentration
parameter θ. Thus, since its role is fundamental, it is common to place a suitable hy-
perprior to learn it from the data. The corresponding model, called mixture of Dirichlet
processes and first defined in Antoniak (1974), is given by

Xi | P iid∼ P, P | θ ∼ DP (θ,Q0), θ ∼ P0,

where P0 ∈ P (R+). The graph is illustrated in the right part of Figure 1.1.

Notice the modular property illustrated in the above three tasks: already defined objects (as the
Dirichlet process) can be used as building blocks for more complex models, which need to adapt
to specific features of the phenomenon of interest. In the next three Chapters we will discuss
modelling, theoretical and computational aspects of hierarchical models.
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Chapter 2

Hierarchies based on the Dirichlet
process

2.1 Introduction

The most well known Bayesian nonparametric model for exchangeable data is likely the one
induced by the Dirichlet process (DP, Ferguson (1973)), i.e.

Xi | P iid∼ P, P ∼ DP (θ,Q0), (2.1)

where θ > 0 is the concentration parameter and Q0 is the baseline distribution. For brevity in
the following we often write P ∼ DP (α), where α = θQ0 is a finite measure. As discussed in the
previous chapter, the DP has nice analytical properties which allow to perform posterior inference
and prediction. In the next Sections we will study two distinct problems where hierarchies help
to generalize and robustify model (2.1).

First, we show how to model time series data in a nonparametric way using the Fleming-
Viot process: the latter is a suitable stochastic process, used to model the evolution of the
law describing the phenomenon, whose invariant measure is exactly the Dirichlet process. The
Section is based on the works of Ascolani et al. (2021, 2023b). Secondly we study Dirichlet
process mixtures, discussed in the last chapter, which convolve the DP with a suitable kernel:
the discreteness of the process induces a latent clustering of the datapoints, which is often of
interest. It has been shown (Miller and Harrison, 2013, 2014) that such clustering is often
inconsistent in terms of the number of cluster, while we prove that this issue may be resolved
placing an hyperprior on θ in (2.1). This is based on Ascolani et al. (2023a).

2.2 Time series modelling with the Fleming-Viot process

2.2.1 Hidden Markov models

We assume to observe datapoints collected at p times 0 = t0 < · · · < tp−1 = T , possibly in
different amount at different times. In this setting exchangeability is clearly not appropriate, so
we consider the general framework of Hidden Markov models (Cappé et al., 2009), i.e.

Xi
tn | Ptn

iid∼ Ptn , {Ptn : n = 0, . . . , p− 1}. (2.2)

27
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Therefore observations collected at the same time are exchangeable, so that the data are assumed
to be partially exchangeable (de Finetti, 1938) as defined in the last Chapter. In the following,
we will denote for brevity Xi := Xti and X0:T := (X0, . . . ,XT ), where Xi is the set of ni
observations collected at time ti. Similarly, we sometimes denote Pi := Pti .

From representation (2.2), specifying a BNP model for temporally dependent observations
requires to define a family of random probability measures {Ptn : n = 0, . . . , p − 1}, indexed
by time. Previous contributions in this framework include Canale and Ruggiero (2016); Caron
et al. (2007, 2017); Caron and Teh (2012); Dunson (2006); Griffin and Steel (2011); Gutiérrez
et al. (2016); Kon Kam King et al. (2020); Mena and Ruggiero (2016); Rodriguez and Ter Horst
(2008). Many proposals start from the celebrated stick-breaking representation of the Dirichlet
process Sethuraman (1994), whereby P in (2.1) is such that

P
d=
∑
i≥0

Vi

i−1∏
j=1

(1 − Vj) δXi , Vi
iid∼ Beta(1, θ), Xi

iid∼ Q0, (2.3)

and the temporal dependence is induced by letting each Vi and/or Xi depend on time in a
way that preserves the marginal distributions. Those are all examples of Dependent Dirichlet
processes (MacEachern, 1999, 2000), such that the marginal distribution of Xi is given by the
law of a Dirichlet process. This approach has many advantages, among which: simplicity and
versatility, since inducing dynamics on Vi or Xi allows for a variety of solutions; flexibility, since
under mild conditions the resulting processes have large support (cf. Barrientos et al. (2012));
ease of implementation, since strategies for posterior computation based on MCMC sampling
are readily available. However, the stick-breaking structure makes the analytical derivation
of further posterior information, like for example characterizing the predictive distribution of
the observations, often a daunting task. This typically holds for other approaches to temporal
Bayesian nonparametric modelling as well. Determining explicitly such quantities would not
only give a deeper insight into the model posterior properties, which otherwise remain obscure
to a large extent, but also provide a further tool for direct application or as a building block in
more involved dependent models, whose computational efficiency would benefit from an explicit
computation. In the next Sections we consider a different approach, based on the Fleming-Viot
process.

2.2.2 Fleming-Viot process

We consider a class of dependent Dirichlet processes with continuous temporal covariate. In-
stead of inducing the temporal dependence through the building blocks of the stick-breaking
representation (2.3), we let the dynamics of the dependent process be driven by a Fleming–Viot
(FV) diffusion. FV processes have been extensively studied in relation to population genetics
(see Ethier and Kurtz (1993) for a review), while their role in Bayesian nonparametrics was first
pointed out in Walker et al. (2007) (see also Favaro et al. (2009)). A loose but intuitive way of
thinking a FV diffusion is of being composed by infinitely-many probability masses, associated
to different locations in the sampling space X, each behaving like a diffusion in the interval [0, 1],
under the overall constraint that the masses sum up to 1. In addition, locations whose masses
touch 0 are removed, while new locations are inserted at a rate which depends on a parameter
θ > 0. As a consequence, the random measures Pt and Ps, with t ̸= s, will share some, though
not all, of their support points.

The transition function that characterizes a FV process admits the following natural in-
terpretation in Bayesian nonparametrics (cf. Walker et al. (2007)). Initiate the process at the
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Random Probability Measure (RPM) P0 ∼ DP (α), and denote by Dt a time-indexed latent
variable taking values in Z+. Conditional on Dt = m ∈ Z+, the value of the process at time t is
a posterior DP Pt with law

Pt | (Dt = m,Y1, . . . , Ym) ∼ DP

α+
m∑
i=1

δXi

 Xi | P0
iid∼ P0. (2.4)

Here, the realisation of the latent variable Dt determines how many atoms m are drawn from
the initial state P0, to become atoms of the posterior Dirichlet from which the arrival state is
drawn. Such Dt is a pure-death process, which starts at infinity with probability one and jumps
from state m to state m− 1 after an exponentially distributed waiting time with inhomogenous
parameter λm = m(θ + m − 1)/2. The transition probabilities of Dt have been computed by
Griffiths (1980); Tavaré (1984), and in particular

P(Dt = m | D0 = ∞) = dm(t) (2.5)

where
dm(t) =

∞∑
k=m

e−λkt(−1)k−m
(θ + 2k − 1)(θ +m)(k)

m!(k −m)! ,

λk = k(θ + k − 1)/2 and where θ(k) = θ(θ − 1) · · · (θ − k + 1) is the Pochhammer symbol. Here
the fact that D0 = ∞ almost surely should be understood as an entrance boundary, i.e., the
process decreases from infinity at infinite speed so that at each t > 0 the value of Dt is finite.
The unconditional transition of the FV process is thus obtained by integrating Dt, X1, . . . , XDt

out of (2.4), leading to

Qt(x, dx′) =
∞∑
m=0

dm(t)
∫
Xm

DP

α+
m∑
i=1

δyi

 (dx′)x(dy1) · · ·x(dym). (2.6)

This was first found by Ethier and Griffiths (1993). It is known that DP (α) is the invariant
measure of Qt, i.e. if P0 ∼ DP (α) all the marginal RPMs Pt are Dirichlet processes with the
same parameter. In particular, the death process Dt determines the correlation between RPMs
at different times. Indeed, a larger t implies a lower m with higher probability, hence a decreasing
(on average) number of support points will be shared by the random measures P0 and Pt when
t increases. On the contrary, as t → 0 we have Dt → ∞, which in turn implies infinitely-many
atoms shared by P0 and Pt, until the two RPMs eventually coincide.

For definiteness, we formalise the following definition.

Definition 1. A Markov process {Pt}t≥0 taking values in the space of atomic measures on X
is a Fleming–Viot dependent Dirichlet process with parameter α, denoted Pt ∼ FV-DDP(α), if
P0 ∼ DP (α) and its transition function is (2.6).

Seeing a FV-DDP as a collection of RPMs, one is immediately led to wonder about the support
properties of the induced prior. The weak support of a DDP indexed by an R+-valued covariate
is the smallest closed set in B{P (X)R+} with probability one, where P (X) is the set of probability
measures on X and B{P (X)R+} is the Borel σ-field generated by the product topology of weak
convergence. Barrientos et al. (2012) investigated these aspects for a large class of DDPs based
on the stick-breaking representation of the Dirichlet process. Since no such representation is
known for the FV process, our case falls outside that class. The following proposition states
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that a FV-DDP has full weak support, relative to the support of Q0.

Proposition 1. Let α = θQ0 and X be the support of Q0. Then the weak support of a FV-
DDP(α) is given by P (X)R+.

In order to formalise the statistical setup, we cast the FV-DDP into a hidden Markov model
framework. A hidden Markov model is a double sequence {(Ptn , Xtn), n ≥ 0} where Ptn is an
unobserved Markov chain, called hidden or latent signal, and Xtn are conditionally independent
observations given the signal. The signal can be thought of as the discrete-time sampling of a
continuous time process, and is assumed to completely specify the distributions of the observa-
tions, called emission distributions. While the literature on hidden Markov models has mainly
focused on finite-dimensional signals, infinite-dimensional cases have been previously considered
in Beal et al. (2001); Van Gael et al. (2008); Stepleton et al. (2009); Yau et al. (2011); Zhang
et al. (2014); Papaspiliopoulos et al. (2016).

Here we take Ptn to be a FV-DDP as in Definition 1, evaluated at p times 0 = t0 < · · · <
tp−1 = T . The sampling model is thus

Xi
tn | Ptn

iid∼ Ptn , Pt ∼ FV-DDP(α). (2.7)

It follows that any two variables Xi
tn , X

j
tm are conditionally independent given Ptn and Ptm , with

product distribution Ptn × Ptm .
In addition, similarly to mixing a DP with respect to its parameter measure as in Antoniak

(1974), one could also consider randomizing the parameter α in (2.7), e.g. by letting α = αγ
and γ ∼ π on an appropriate space.

We will sometimes refer to X0:T as the past values, since the inferential interest will be
set at time T + t. We will also denote by (x∗1, . . . , x∗K) the K distinct values in X0:T , where
K ≤

∑T
i=0 ni. In this framework, Papaspiliopoulos et al. (2016) showed that the conditional

distribution of the RPM PT , given X0:T , can be written as

L(PT |X0:T ) =
∑

m∈M
wmDP

α+
K∑
j=1

mjδx∗j

 . (2.8)

The weights wm can be computed recursively as detailed in Papaspiliopoulos et al. (2016). In
particular, M is a finite convex set of vector multiplicities m = (m1, . . . ,mK) ∈ ZK+ determined
by X0:T , which identify the mixture components in (2.8) with strictly positive weight. We will
call M the set of currently active indices. In particular, M is given by the points that lie between
the counts of (x∗1, . . . , x∗K) in XT , which is the bottom node, and the counts of (x∗1, . . . , x∗K) in
X0:T , which is the top node. For example, if T = 1 suppose we observe X0 = (x∗1, x∗2) for some
values x∗1 ̸= x∗2 and X1 = X0, hence K = 2. Then the top node is (2, 2) since in X0:1 there are 2
of each of (x∗1, x∗2) and the bottom node is (1, 1) which is the counts of (x∗1, x∗2) in X1. Cf. Figure
2.1. Note that observations with K = 3 distinct values would generate a 3-dimensional graph,
with the origin (0, 0, 0) linked to 3 level-1 nodes (1, 0, 0), (0, 1, 0), (0, 0, 1), and so on. In general,
each upper level node is obtained by adding 1 to one of the lower node coordinates.

We note here that the presence of dm(t) in (2.6) makes the computations with FV processes
in principle intractable, yielding in general infinite mixtures difficult to simulate from (cf. Jenkins
and Spano (2017)). It is then remarkable that conditioning on past data one is able to obtain
conditional distribution for the signal given by finite mixtures as in (2.8).
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Figure 2.1: Red indices in the graph identify active mixture components at time T , i.e. the set M in (2.8), corresponding
to points m ∈ ZK

+ with positive weight. In this example K = 2, and the graph refers to M at time T = 1 if we observe
X0 = (x∗1, x∗2) = X1.

2.2.3 Predictive inference

Predictive distribution

In the above framework, we are now interested in predictive inference, which requires obtaining
the predictive distribution of X1

T+t, . . . , X
k
T+t|X0:T , that is the marginal distribution of a k-

sized sample drawn at time T + t, given data collected up to time T , when the random measures
involved are integrated out. See Figure 2.2. Note that by virtue of the stationarity of the
FV process, if P0 ∼ DP (α), then P(Xt ∈ A) = Q0(A) for any t ≥ 0. Note also that if one
mixes model (2.7) by randomizing the parameter measure α = αγ as mentioned above, the
evaluation the predictive distributions is of paramount importance for posterior computation.
Indeed, one needs the distribution of γ|X0:T , and if for example γ has discrete support on Z+
with probabilities {pj , j ∈ Z+}, then

P(γ = j|X0:T ) ∝ pjP(X0:T |j) ∝ pjP(X0|j)P(X1|X0, j) · · ·P(XT |X0:T−1, j).

Denote for brevity X1:k
T+t := (X1

T+t, . . . , X
k
T+t) the k values drawn at time T + t. For m ∈ ZK+ ,

let {n ∈ ZK+ : n ≤ m} be the set of nonnegative vectors such that ni ≤ mi for all i. Define also
|n| := ∑K

j=1 ni, and
L(M) := {n ∈ ZK+ : n ≤ m,m ∈ M} (2.9)

to be all the points in ZK+ lying below the top node of M. E.g., if M is given by the red nodes
in Figure 2.1, then L(M) is given by all nodes shown in the figure.

Proposition 2. Assume (2.7), and let the law of PT given data X0:T be as in (2.8), where the
weights wm have been computed recursively. Then, for any Borel set A of X, the first observation
at time T + t has distribution

P
(
XT+t ∈ A|X0:T

)
=

∑
n∈L(M)

pt(M,n)
(

θ

θ + |n|
Q0(A) + |n|

θ + |n|
Pn(A)

)
(2.10)
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P0 Pt1 . . . PT PT+t

X0 Xt1
. . . XT ?

Figure 2.2: The predictive problem depicted as a graphical model. The upper yellow nodes are nonobserved states of
the infinite-dimensional signal, the lower green nodes are conditionally independent observed data whose distribution is
determined by the signal, the light gray node is the object of interest.

and the (k + 1)st observation at time T + t, given the first k, has distribution

P
(
Xk+1
T+t ∈ A|X0:T , X

1:k
T+t

)
=

∑
n∈L(M)

p
(k)
t (M,n)

×
(

θ

θ + |n| + k
Q0(A) + |n|

θ + |n| + k
Pn(A) + k

θ + |n| + k
Pk(A)

) (2.11)

where

Pn = 1
|n|

K∑
i=1

niδx∗i , Pk = 1
k

k∑
j=1

δ
Xj

T +t
(2.12)

and (x∗1, . . . , x∗K) are the distinct values in X0:T .

Before discussing the details of the above statement, a heuristic read of (2.10) is that the first
observation at time T + t is either a draw from the baseline distribution Q0, or a draw from a
random subset of the past data points X0:T , identified by the latent variable n ∈ L(M). Given
how L(M) is defined, XT+t can therefore be thought of as being drawn from a mixture of Pólya
urns, each conditional on a different subset of the data, ranging from the full dataset to the empty
set. Indeed, recall that the top node of M, hence of L(M) in (2.9), is the vector of multiplicities
of the distinct values (x∗1, . . . , y∗K) contained in the entire dataset X0:T . The probability weights
associated to each lower node n ∈ L(M) are determined by a death process on L(M), that
differs from Dt in (2.5). In particular this is a Markov process that jumps from node m to node
m − ei after an Exponential amount of time with parameter mi(θ + |m| − 1)/2, with ei being
the canonical vector in the ith direction. The weight associated with node n ∈ L(M) is then
given by the probability that such death process is in n after time t, if started from any node
in M. For example, if M is as in Figure 2.1, than the weight of the node (0, 2) is given by the
probability that the death process is in (0, 2) after time t if started from any other node of M.
Being a non increasing process, the admissible starting nodes are (2, 2) and (1, 2). Figure 2.3
highlights these two admissible paths of the death process which land at node (0, 2).

The transition probabilities of this death process are

pm,n(t) = p|m|,|n|(t)HG(m − n; m, |m − n|), 0 ≤ n ≤ m, (2.13)
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Figure 2.3: The weight associated to an index n ∈ L(M) at time T + t is determined by the probability that the death
process reaches n from any active index m ∈M at time T . For M as in Figure 2.1, the weight of the mixture component
with index n = (0, 2), i.e., no atoms x∗1 and 2 atoms x∗2, is the sum of the probabilities of reaching node (0, 2) via the path
starting from (1, 2) (left) and from (2, 2) (right).

where HG(i; m, |i|) is the multivariate hypergeometric probability function evaluated at i, namely

HG(i; m, |i|) =
(m1

i1

)
. . .
(ml

il

)
(|m|
|i|
) , l = dim(m)

with dim(m) denoting the dimension of vector m, while p|m|,|n|(t) is the probability of descending
from level |m| to |n| (see Lemma 7 in the Supplementary Material). Hence, in general, the
probability of reaching node n ∈ L(M) from any node in M is

pt(M,n) =
∑

m∈M,m≥n
wmpm,n(t). (2.14)

In conclusion, with probability pt(M,n) the first draw at time T + t will be either from Q0, with
probability θ/(θ+ |n|), or a uniform sample from the subset of data identified by the multiplicity
vector n.

Concerning the general case for the (k+1)st observation at time T + t, trivial manipulations
of (2.11) provide different interpretative angles. Rearranging the term in brackets one obtains

θn
θn + k

Q0,n + k

θn + k
Pk, (2.15)

which bears a clear structural resemblance to the predictive distribution of the DP. Here

θn = θ + |n|, P0,n := θ

θ + |n|
Q0 + |n|

θ + |n|
Pn

play the role of concentration parameter and baseline probability measure (i.e, the initial urn
configuration), respectively. Thus (2.11) can be seen as a mixture of Pólya urns where the base
measure has a randomised discrete component Pn. Unlike the exchangeable case, observations
not drawn from empirical measure Pk of the current sample can therefore be drawn either from
Q0 or from the empirical measure Pn, where past observations are assigned multiplicities n with
probability p(k)

t (M,n).
An alternative interpretation is obtained by developing the sum in (2.11) to obtain a single
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generalised Pólya urn, written in compact form as

P
(
Xk+1
T+t ∈ · | X0:T , X

1:k
T+t

)
= AkQ0(·) +

K∑
i=1

Ci,kδy∗i (·) +BkPk(·) (2.16)

where A is a Borel set of X. In this case, the first observation is either from Q0 or a copy of a
past value X0:T , namely

X1
T+1 ∼

Q0 w.p. A0

δx∗i w.p. Ci,0,

while the (k + 1)st can also be a copy of one of the first k current observations X1:k
T+t, namely

Xk+1
T+1 ∼


Q0 w.p. Ak
δy∗i w.p. Ci,k
Pk w.p. Bk.

The pool of values to be copied is therefore given by past values X0:T and current, already
sampled observations X1:k

T+t.
After each draw, the weights associated to each node need to be updated according to the

likelihood that the observation was generated by the associated mixture component, similarly
to what is done for mixtures of Dirichlet processes. Specifically,

p
(k+1)
t (M,n) ∝ p

(k)
t (M,n)p(xk+1

T+t | x1:k
T+t,n) (2.17)

where

p(xk+1
T+t | x1:k

T+t,n) :=
θq0(xk+1

T+t) +∑K
i=1 niδx∗i ({xk+1

T+t}) +∑k
j=1 δxj

T +t
({xk+1

T+t})

θ + |n| + k
(2.18)

is the predictive distribution of the (k + 1)st observation given the previous k and conditional
on n, and q0 is the density of Q0 with respect to the Lebsegue or the counting measure.

As a byproduct of Proposition 2, we can evaluate the correlation between observations at
different time points.
Proposition 3. For t, s > 0, let Xt, Xt+s be from (2.7). Then

Corr(Xt, Xt+s) = e−
θ
2 s

θ + 1 .

Unsurprisingly, the correlation decays to 0 as the lag s goes to infinity. Moreover,

Corr(Xt, Xt+s) → 1
θ + 1 , as s → 0

which is the correlation of two observations from a DP as in (2.1).

Sampling from the predictive distribution

In order to make Proposition 2 useful in practice, we provide an explicit algorithm to sample
from the predictive distribution (2.11), which can be useful per se or for approximating posterior
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quantities of interest. Exploiting (2.15) and the fact that (2.11) can be seen as a mixture of
Pólya urns, we can see n ∈ ZK+ as a latent variable whereby, given n, sampling proceeds very
similarly to a usual Pólya urn.

Recalling that |n| = ∑K
j=1 ni, a simple algorithm for the (k+1)st observation would therefore

be:
• sample n ∈ L(M) w.p. p(k)

t (M,n);
• sample from Q0, Pn or Pk with probabilities proportional to θ, |n|, k respectively;
• update weights p(k)

t (M,n) to p(k+1)
t (M,n) for each n ∈ L(M).

A detailed pseudo-code description is provided in Algorithm 1.

Algorithm 1 Exact sampling from (2.11)
1:

Input: - active nodes at time T : M
- precision parameter: θ
- last mixture weights p(k)

t (M,n), n ∈ L(M)
- past unique observations: x∗1, . . . , x∗K
- current observations: x1

T+t, . . . , x
k
T+t

2: Sample n w.p. p(k)
t (M,n), n ∈ L(M)

3: Sample X from Q0, Pn or Pk w.p. θ
θ+|n|+k ,

|n|
θ+|n|+k ,

k
θ+|n|+k respectively

4: Set xk+1
T+t = X

5: Update parameters:
6: for n ∈ L(M) and p(xk+1

T+t | x1:k
T+t) as in (2.18) do

7: p
(k+1)
t (M,n) = p

(k)
t (M,n)p(xk+1

T+t | x1:k
T+t)

8: Normalize p(k+1)
t (M,n)

A possible downside of the above sampling strategy is that when the set L (M) is large,
updating all weights may be computationally demanding. Indeed, the size of the set L(M)
is |L(M)| = ∏K

j=1(1 + mj), where mj is the multiplicity of x∗j in the data, which can grow
considerably with the number of observations (cf. also Proposition 2.5 in Papaspiliopoulos and
Ruggiero (2014)). It is however to be noted that, due to the properties of the death process that
ultimately governs the time-dependent mixture weights, typically only a small portion of these
will be significantly different from zero. Figure 2.4 illustrates this point by showing the nodes
in {0, . . . , 50} with weight larger than 0.05 at different times, if at time 0 there is a unit mass at
the node 50, when θ = 1. A deeper investigation of these aspects in a similar, but parametric,
framework, can be found in Kon Kam King et al. (2021).

Hence an approximate version of the above algorithm can be particularly useful to exploit this
aspect. We can therefore target a set M̃ ⊂ L (M) such that |M̃|l|L(M)| and∑n∈M̃ pt (M,n) ≈ 1
by inserting a Monte Carlo step in the algorithm and simulate the death process with a large
number of particles. The empirical frequencies of the particles landing nodes will then provide an
estimate of the weights pt(M,n) in (2.10). Furthermore, the simulation of the multidimensional
death process can be factorised into simulating a one-dimensional death process, which simply
tracks the number of steps down the graph, and hypergeometric sampling for choosing the
landing node within the reached level. A simple algorithm for simulating the death process is
as follows: for i = 1, . . . , N ,
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Figure 2.4: Nodes in {0, . . . , 50} (black dots) with probability of being reached by the death process bigger than .05 after
lags .01, .1, .2, .5 and 1 (horizontal axis). Starting with mass 1 at the point 50, only a handful of nodes have significant
mass after these lags.

• draw m with probability wm and set m = |m|;
• run a one-dimensional death process from m, and let n be the landing point after time t;
• draw n(i) ∼ HG(n,m/|m|);

and return {n(i), i = 1, . . . , N}. Note, in turn, that the simulation of the death process trajecto-
ries does not require to evaluate its transition probabilities (2.13), which are prone to numerical
instability, and can instead be straightforwardly set up in terms of successive exponential draws
by repeating the following cycle: for i ≥ 1,

• draw Zi ∼ Exp(m(θ +m− 1)/2)
• if ∑j≤i Zj < t set m = m− 1 else return n = m− i+ 1 and exit cycle.

Algorithm 2 outlines the pseudocode for sampling approximately from (2.11) according to this
strategy.

Asymptotics

We investigate two asymptotic regimes for (2.11). The following Proposition shows that when
t → ∞, the FV-DDP predictive distribution converges to the usual Pólya urn.

Proposition 4. Under the hypotheses of Proposition 2, we have

L
(
Xk+1
T+t |X0:T , X

1:k
T+t

)
−→ θ

θ + k
Q0 + k

θ + k
Pk, a.s., as t → ∞,

in total variation distance, with Pk as in (2.12).

Here the statement is almost sure with respect to the probability measure induced by the
FV model on the space of measure-valued temporal trajectories. A heuristic interpretation of
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Algorithm 2 Approximate sampling from (2.11)
1:

Input: - active nodes at time T : M
- time to propagate: t
- precision parameter: θ
- mixture weights at time T : wm
- past unique observations: x∗1, . . . , x∗K
- number of Monte Carlo iterates: N

2: M̃ = ∅; w = ∅
3: for i ∈ 1 : N do
4: Sample m w.p. wm, m ∈ M
5: n = |m|; s = t
6: for j ≥ 1 do
7: Sample Z from Exp(n(θ + n− 1)/2) and set s = s− Z
8: if s > 0 and n > 0 then
9: Set n = n− 1

10: else
11: Return n and exit cycle.
12: Sample n ∼ HG(n,m/|m|)
13: if n ̸∈ M̃ then
14: Add n to M̃ and add 1 to w
15: else
16: Add 1 to the corresponding element of w
17: Normalize w.
18: Apply algorithm 1 with M = M̃ and pt(M,n) = w

the above result is that, when the lag between the last and the current data collection point
diverges, the information given by past observations X0:T becomes obsolete, and sampling from
(2.11) approximates sampling from the prior Pòlya urn. This should be intuitive, as very old
information, relative to the current inferential goals, should have a negligible effect.

The following proposition shows that when k → ∞ in (2.11), we recover the law of PT+t
given X0:T as de Finetti measure.

Proposition 5. Under the hypotheses of Proposition 2, we have

L
(
Xk+1
T+t |X0:T , X

1:k
T+t

)
−→ P ∗, a.s., as k → ∞,

weakly, where P ∗ ∼ L(PT+t|X0:T ).

Here P ∗ is a random measure with the same distribution as the FV-DDP at time T + t given
only the past information X0:T . Recall for comparison that the same type of limit for the
exchangeable case yields

L(Xk+1|Y1, . . . , Xk) −→ P ∗, P ∗ ∼ Πα, as k → ∞,

where DP (α) is the de Finetti measure of the sequence and P ∗ is sometimes called the directing
random measure.
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2.2.4 Illustration

We illustrate predictive inference using FV-DDPs, based on Proposition 2. Besides the usual
prior specification regarding models based on the Dirichlet process, that concern the choice of
the total mass θ and of the baseline distribution P0, here we can also introduce a parameter
σ > 0 that controls the speed of the DDP. This acts as a time rescaling, whereby the data
collection times ti are rescaled to σti. This additional parameter provides extra flexibility for
estimation, as it can be used to adapt the prior to the correct time scale of the underlying data
generating process.

Synthetic data

We consider data generated by the model

Xt ∼ 1
2Po(µ−1

t , 0) + 1
2Po(ν−1

t , 5),

µt =µt−1 + εt, εt ∼ Exp(1),
νt = νt−1 + ηt, ηt ∼ Exp(1), ηt ⊥⊥ ϵt

where Po(λ, b) denotes a b-translated Poisson distribution with parameter λ (i.e. if Y ∼ Po(λ, b)
then Y − b ∼ Po(λ)), and where µ−1

0 = ν−1
0 = 5, for t = 0, 1, 2, . . . . We collect 15 observations

at each t ∈ {0, . . . , 15} and consider one-step-ahead predictions based on the first 5 and 15 data
collection times.

We fit the data by using a FV-DDP model as specified in (2.7), with the following prior
specification. We consider two choices for P0, a Negative Binomial with parameters (2, 0.5)
and a Binomial with parameters (99, 0.3), which respectively concentrate most of their mass
around small values and around the value 30. We consider a uniform prior on θ concentrated
on the points {.5, 1, 1.5, . . . , 15}. A continuous prior could also be envisaged, at the cost of
adding a Metropolis–Hastings step in the posterior simulation, which we avoid here for the
sake of computational efficiency. Similarly, for σ we consider a uniform prior on the values
{0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.5}. The estimates are obtained by means of 500 replicates of (2.11)
of 1000 observations each, using the approximate method outlined in Algorithm 2 with 10000
Monte Carlo iterates. We also compare the FV-DDP estimate with that obtained using the
DDP proposed in Mena and Ruggiero (2016). This is constructed from the stick-breaking
representation (2.3) by letting

Vi(tn) ∼ cδV ′ + (1 − c)δVi(tn−1), V
′ ∼ Beta(1, θ).

in (2.3) and keeping the locations fixed. We let the resulting DDP be the mixing measure in a
time-dependent mixture of Poisson kernels, which provides additional flexibility to this model
with respect to our proposal. Furthermore, we give the competitor model a considerable advan-
tage by training it also with the data points collected at times 6 and 7, which provide information
on the prediction targets, and by centering it on the Negative Binomial with parameters (2, 0.5),
rather than on the above mentioned mixture, which puts mass closer to where most mass of the
true pmf lies.

Figure 2.5 shows the results on one-step-ahead prediction with 15 collection times: the point-
wise credible intervals, computed with the empirical quantiles, are also plotted. The posterior of
σ (not shown) concentrates most of the mass on points 0.7 and 0.9, which leads to learning the
correct time scale for prediction, resulting in an accurate estimate of the true pmf. The credible
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intervals are quite wide, and a better precision may be achieved by increasing the number of
time points at which the data are recorded.
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Figure 2.5: One-step-ahead prediction and 95% pointwise credible intervals, based on 15 data collection times.

We compare the previous results with those obtained by choosing σ via out-of-sample val-
idation. This is done here using times 0 to 4 as training and time 5 as test, whereby for each
σ ∈ {.0001, .001, .01, .1, 0.5, 1, 1.5} we compute the sum of absolute errors (SAE) between the
FV-DDP posterior predictive mean and the true pmf. These are shown in Table 3.1, leading to
choose σ = .01.

σ .0001 .001 .01 .1 .5 1 1.5
SAE .1410 .1345 .1064 .1301 .1261 .1595 .1847

Table 2.1: Sum of the absolute error between predicted and true pmf at time 5 for different values of σ.

Table 3.2 shows the posterior weights of relevant values of θ among those with positive prior
mass, for the above mentioned choices of Q0 and using the chosen value of σ. The model correctly
assigns all posterior probability to the Negative Binomial centering (Binomial not reported in
the table), which moves mass towards smaller values as time increases.

θ 1 1.5 2 3
NegBinom .5644 .001694 .04702 0.3868

Table 2.2: Relevant posterior weights of θ

Figure 2.6 shows the results in this case for the one- and two-step-ahead predictions given
only 5 data collection times. The true pmf is correctly predicted by the FV-DDP estimate even in
this short horizon scenario, and the associated 95% pointwise credible intervals are significantly
sharper if compared to Figure 2.5, obtained with a longer horizon. The prediction based on the
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alternative DDP mixture does not infer correctly the target, leading to an associated normalised
ℓ1 distance from the true pmf of 12.72% and 12.84%, compared to 4.95% and 4.90% for the FV-
DDP prediction.
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Figure 2.6: One- (left) and two-step-ahead prediction (right) based on 5 data collection times, with 95% pointwise
credible intervals.

Karnofsky score data

We consider the dataset hodg used in Klein and Moeschberger (2003), which contains records
on the time to death or relapse and the Karnofsky score for 43 patients with a lymphoma
disease. The Karnofsky score (KS) is an index attributed to individual patients, with higher
values indicating a better prognosis.

In the framework of model (2.7), we take the times of death or relapse as collection times and
let the KS of the survivors at each time be the data. We aim at predicting the future distribution
of the KS among the patients who are still in the experiment at that time, which would be an
indirect assessment of the effectiveness of the score in describing the patients’ prognosis. We
also include censored observations (patients leaving the experiment for reasons different from
death or relapse), without having them trigger a collection time. The FV-DDP appears as the
ideal modeling tool in this framework since it includes a probabilistic mechanism that accounts
for the reduced number of observations through different time points.

We train the model up to 42, 108 and 406 days after the start of the experiment, and we
make predictions 28, 112 and 144 days ahead, respectively. As regards the prior, we put a
uniform distribution on the observed scores (note that new score values cannot appear along the
experiment) and we uniformly randomize θ over {.5, 1, 1.5, . . . , 15}, analogously to Section 2.2.4.
Given the results of the previous subsection for different approaches to selecting σ, here, after
transforming the lags in annual, we proceed by selecting σ for each value of θ by maximizing
the probability that the death process makes the right number of transitions in the desired laps
of time. Some of the selected values for σ1, σ2, σ3 for the three different trainings, depending on
θ, are shown in Table 2.3.

Figure 2.7 shows the three predictions of the scores distribution. Coherently with the in-
tuition, as the experiment goes by, individuals with higher KS become predominant: from 70
to 230 days the predicted weight associated to a score of 90 increases of more than 10%, and
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θ .5 1 1.5 · · · 29 29.5 30
σ1 0.4947 0.4913 0.4885 · · · 0.3235 0.3266 0.3228
σ2 0.6059 0.6014 0.5696 · · · 0.3684 0.3130 0.3361
σ3 0.6149 0.6150 0.5789 · · · 0.3063 0.3018 0.2901

Table 2.3: Choice of σ for some values of θ for the three trainings.
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Figure 2.7: From top left: pmf prediction at 70, 230 and 550 days after the experiment. Bottom right: Kaplan-Meyer
estimate of the survival times up to time 550.

similarly for 100. However the distribution of the scores remains pretty stable, apart from the
lowest values, meaning that the highest scoring patients actually had much better prognoses, as
showed by the third prediction.

These findings are consistent with the Kaplan-Meyer estimate (Kaplan and Meier, 1958) of
the survival function, shown in the bottom right panel, which decreases rapidly between 70 and
230 and flattens after that point, implying that the FV-DDP prediction adapted to the periods
of quick change in the underlying distribution and periods of relative steady behaviour.
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2.2.5 Smoothing distribution

In this Section we are interested in determining the so-called smoothing distributions of the
marginal states Pti of an unobserved Markov process, often called the hidden or latent signal,
evaluated at time ti given samples Xt0 , . . . , Xtp−1 from the observation model, which is param-
eterised by the signal state, collected before and after ti. Here 0 = t0 < · · · < tp−1 = T and
0 < i < p− 1. These conditional distributions are typically used to improve previous estimates
obtained at a certain time once additional observations become available at later times, often
resulting in a smoother estimated trajectory for the unobserved signal, and they also constitute
the starting point for performing Bayesian inference on the model parameters (see, e.g., Kon
Kam King et al. (2021)).

In particular we characterize the laws of the marginal states of FV model (2.7), given sam-
ples from the respective underlying populations collected before and after the state temporal
index, thus solving the smoothing problem. We show that these distributions can be written as
finite mixtures of laws of Dirichlet random measures respectively, whose time-dependent mixture
weights are fully described and can account for different time intervals between data collection
times. As a byproduct of the above results, we describe the predictive distribution for further
samples from the population given the entire dataset, which are shown to be mixtures of gener-
alized Pólya urns. Our results prove that computable smoothing and conditional sampling from
the population are feasible with signals given by the FV process, bringing forward this model
as possible canonical choice in a nonparametric framework for hidden Markov models.

Some operators on measures

To obtain the smoothing distributions we are going to exploit the projective properties of the
FV process. To this end, we need to set a few tools that ease notation and computation for the
respective finite-dimensional counterparts.

Consider a Markov process P on RK , K < ∞, with transition function Qt and initial
distribution ν. We assume Qt is reversible with reversible measure ν0. In this section we regard
P as generic, but as anticipated above this setting will be used to model finite-dimensional
projections of the measure-valued diffusion Pt. The dimension K can therefore be thought of as
representing the number of cells in which types in the population have been grouped or binned.
Accordingly, iid observations collected at time t given Pt = pt generate multiplicities associated
to the K groups which can be encoded into a vector n ∈ ZK+ , whose associated density is p(n|pt).
We can then define the following operators acting on measures ξ:

• Update:
Un(ξ)(dp) := p(n|p)ξ(dp)

pξ(n) , pξ(n) :=
∫
p(n|p)ξ(dp). (2.19)

This provides the conditional measure ξ given observations with associated multiplicities
n. It is analogous to Bayes’ Theorem with p acting as the random parameter and ξ as its
prior: hence, Un(ξ) yields the posterior, whereas the denominator pξ(n) is the marginal
likelihood of n obtained by integrating out the random parameter x. Here the multiplicities
n are observed at the same time p refers to, as in (2.7).

• Forward propagation:

Ft(ξ)(dp′) := ξQt(dp′) =
∫
ξ(dp)Qt(p,dp′). (2.20)
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This yields the unconditional measure of Ps+t if ξ is that of Ps, once the initial state is
integrated out.

• Backward propagation:

Bt(ξ)(dp′) := ξQ′t(dp′) =
∫
ξ(dx)Qt(x, dx′). (2.21)

It is the forward propagation obtained by using the transition function of the time reversal
of the signal, denoted here Q′t.

With a slight abuse of notation, when ξ is dominated by a sigma-finite measure µ on RK ,
we specialize the previous operators as acting on densities, e.g., if ξ(dp) = f(p)µ(dp), then
Un(f)(p) := p(n|p)f(p)/pf (n) and pf (n) :=

∫
p(n|p)f(p)µ(dp), and similarly for (2.20) and

(2.21). Note that the specific form of the backward transition is not necessary for our treatment,
as we will leverage on Bayes’ Theorem. See, e.g., Lemma 3 below.

Remark 1. Expanding on the above, and assuming all probability distributions of interest are
dominated by µ, one could define a smoothing operator acting on two densities fs, fu, indexed
by s < u, by letting

Sn
s,t,u(fs, fu)(p) := C Ft−s(fs)(x)Bu−t(fu)(p) Un(f0)(p)/f0(p)2, (2.22)

for every p such that f0(p) > 0, where s < t < u, f0 is the density of ν0 with respect to
µ and C is a normalising constant that makes the left hand side a density. This yields the
distribution of Pt, given observations at time t, if Ps ∼ fs and Pu ∼ fu, obtained by jointly
propagating Ps forward of a t−s interval, Pu backward of a u−t interval, and then conditioning
on observations collected at time t. The rationale of this operator can be outlined by considering
that, for t0 < t1 < t2, if xt1 |pt1 ∼ p(xt1 |pt1), we have

p(pt1 |pt0 , xt1 ,pt2) ∝ p(pt1 |pt0)p(xt1 |pt1 ,pt0)p(pt2 |pt1 ,pt0 , xt1)
= p(pt1 |pt0)p(xt1 |pt1)p(pt2 |pt1)

where we have used the fact that conditionally on pt1, yt1 is independent on everything else,
together with the Markov property. By virtue of Bayes’ Theorem, we now have p(pt2 |pt1) =
p(pt2)p(pt1 |pt2)/p(pt1) and p(pt1 |xt1) = p(pt1)p(xt1 |pt1)/p(xt1) whereby the previous expression
is proportional to p(pt1 |pt0)p(pt1 |pt2)p(pt1 |xt1)/p(pt1)2. This operator will not be essential for
our calculations of the next sections, but it can provide a unified treatment of the previous
operators applied at stationarity. In fact, we have the following special cases:

S0
s,t,u(fs, f0) = Ft−s(fs), S0

s,t,u(f0, fu) = Bu−t(fu), Sn
s,t,u(f0, f0) = Un(f0).

Appropriate compositions of the above operators allow to represent all quantities of interest
in this framework. For example p(pti |ni−1,ni,ni+1) = Sni

ti−1,ti,ti+1(Uni−1(f0),Uni+1(f0)) identifies
the distribution of Pti given observations at times ti−1, ti, ti+1, obtained by first updating the
stationary measure at times ti−1, ti+1 given observations with multiplicities nt−1,nti+1 respec-
tively, then propagating both distributions to the intermediate time ti, and finally updating the
output of the last operation given the multiplicities observed at time ti.
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Preliminary results on projections

A projection of the Dirichlet process law onto a measurable partition (A1, . . . , AK) of the sam-
pling space X yields a Dirichlet distribution with parameters (α(A1), . . . , α(AK)), whose density
with respect to the Lebesgue measure on the (K − 1)-dimensional simplex, denoted πα(x),
α = (α(A1), . . . , α(AK)), is proportional to pα−1 := p

α(A1)−1
1 . . . p

α(AK)−1
K . With a little abuse

of notation, we will use the symbol πα to denote both the Dirichlet density and the corresponding
measure. Similarly, a projection of a FV process with transition (2.6) onto the same partition
yields a Wright–Fisher diffusion, denoted WFα, with transition function

Qt(p,dp′) =
∞∑
m=0

dm(t)
∑

m∈ZK
+ : |m|=m

pm
(
m

m

)
πα+m(dp′), (2.23)

and dm(t) as in (2.6), which has reversible distribution πα. We will denote by qt(· |p) the
corresponding density function. In this scenario, (2.7) reduces to

Xi
t |Pt = P iid∼ Categorical(p), P ∼ WFα, (2.24)

whereby for each i, Xi
t = j with probability pj , for j = 1, . . . ,K, and the update operator (2.19)

yields the familiar Bayesian update for Dirichlet distributions Un(πα) = πα+n. It is useful to
note for later reference that in (2.19) the marginal likelihood is

m(n) := pπα(n) = B(α + n)
B(α) , B(α) :=

∏K
j=1 Γ(αj)
Γ(|α|) (2.25)

often called Dirichlet-Categorical distribution. Define now

h(p,n) := p(n|p)
m(n) = B(α)

B(α + n)pn, n ∈ ZK+ , (2.26)

where p(n|p) is the categorical likelihood in (2.24) expressed in terms of multiplicities of types.
It will also be useful to note that for n,m ∈ ZK+ , we have

h(p,n)h(p,m) = c(n,m)h(p,n + m) (2.27)

where
c(n,m) = m(n + m)

m(n)m(m) = B(α)B(α + m + n)
B(α + n)B(α + m) . (2.28)

Recall now that the WF diffusion is known to have moment-dual given by Kingman’s typed
coalescent. More specifically, let Mt be a death process on ZK+ with rates λm = mj(θ+|m|−1)/2
from m to m − ej , where ej is the canonical vector in direction j. Then the following duality
identity

E[h(Pt,m)|P0 = p] = E[h(p,Mt)|P0 = m] (2.29)

holds with h as in (2.26). We will denote by pn,m(t) the transition probabilities of Mt (cf. Pa-
paspiliopoulos et al. (2016), Section 4.2). The above duality is used to prove the following
Lemma, needed later.
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Lemma 2. Let ni+1 be the multiplicities observed at time ti+1. Then

p(ni+1|pti) = m(ni+1)
∑

0≤m≤ni+1

pni+1,m(ti+1 − ti)h(pti ,m). (2.30)

The next lemma formalizes the fact that a backward propagation, after a change of measure
with respect to the stationary distribution, yields an analogous distributional result to a for-
ward propagation, somehow carrying over the reversibility of FV processes to their conditional
versions. In the following statement, the forward and backward operators Ft,Bt are applied to
laws of FV states by extension of (2.20)-(2.21), with Qt as in (2.6).

Lemma 3. Assume (2.7), let x∗1, . . . , x∗K be distinct values and n ∈ ZK+ . Then Ft(DP
(
α+∑K

j=1 njδx∗j

)
) =

Bt(DP
(
α+∑K

j=1 njδx∗j

)
), with Ft,Bt as in (2.20)-(2.21), and in particular

Bt
(
DP

α+
K∑
j=1

njδx∗j

) =
∑

0≤k≤n
pn,k(t)DP

α+
K∑
j=1

kjδx∗j

 . (2.31)

Thanks to this equivalence between backward and forward propagation, we have that the same
result of Lemma 2 holds with ni+1 replaced by ni−1, i.e., referred to time ti−1, leading to the
expression obtained by replacing ti+1 − ti with ti − ti−1 in the right hand side of (2.30).

Main result

Using the results of the previous section, the characterization of the smoothing distribution
for conditional FV processes will be provided in three steps. First, in Theorem 9, we show
that conditioning on observations collected at adjacent times yields a finite mixture of laws of
Dirichlet random measures; then, in Proposition 6, we give a full description of the mixture
weights for different choices of the offspring distribution Q0; finally, in Proposition 7, we show
how the general expression can be obtained by recursive computation based on the previous
results.

We denote by Xi−1,Xi,Xi+1 vectors of observations collected as in (2.7) at times ti−1, ti,
ti+1 respectively, with associated multiplicities ni−1,ni,ni+1 for the distinct values (x∗1, . . . , x∗K)
observed overall.

Theorem 9. Under model (2.7), let Xi−1,Xi,Xi+1 be as above. Then there exist weights
summing up to one, denoted wki−1,ni,ki+1(∆i,∆i+1), for ki−1 ≤ ni−1,ki+1 ≤ ni+1, such that

L(Pti |Xi−1,Xi,Xi+1) =

=
∑

0≤ki−1≤ni−1

∑
0≤ki+1≤ni+1

wki−1,ni,ki+1(∆i,∆i+1)DP
(
αki−1+ni+ki+1

)
, (2.32)

where ∆i = ti − ti−1, ∆i+1 = ti+1 − ti, and

αki−1+ni+ki+1 = α+
K∑
j=1

(ki−1,j + ni,j + ki+1,j)δx∗j . (2.33)

Remark 2. In the previous result, we have used notation ki−1 and ki+1 for the integrating
variables, whose indices should help the intuition by indicating the time point they refer to.
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Note however that in principle these quantities are determined at time ti, being the number
of lineages in a time-reversed genealogy. Instead of using generic integrating variables i, j, we
choose to adopt this notational convention here and later for the sake of readability.

The previous result provides an explicit representation of the conditional law of a FV state
given observations at adjacent times, but does not investigate in full detail the mixture weights,
denoted generically in the Theorem statement, which we do next. To pursue this task, by looking
at the proof of Theorem 9 we need to compute

lim
n→∞

m(n)(ki−1 + ni + ki+1)
Cnm(n)(ki−1)m(n)(ni)m(n)(ki+1)

, (2.34)

where m(n) denotes the marginal distribution in (2.25) relative to the model induced by the
partition Bn and Cn is the normalizing constant. In the setting of Theorem 9, denote now by

Di−1 =
{
j ∈ {1, . . . ,K} : ni−1,j > 0 and either ni,j > 0 or ni+1,j > 0

}
,

Di+1 =
{
j ∈ {1, . . . ,K} : ni+1,j > 0 and either ni,j > 0 or ni−1,j > 0

}
,

the set of distinct values in Xi−1 shared with Xi or Xi+1, and those in Xi+1 shared with Xi−1
or Xi, respectively. Then

D =
{

(k,k′) ≤ (ni−1,ni+1) : kj > 0, k′j′ > 0, ∀j ∈ Di−1 and j′ ∈ Di+1
}

is the set of multiplicities (k,k′) not greater than (ni−1,ni+1) such that the frequency of distinct
values shared between different collection times is strictly positive. For example, if ti is the
current time index, suppose we have ni−1 = (1, 3, 0), ni = (0, 0, 1) and ni+1 = (0, 2, 1), whereby
of the three types observed overall, at time ti−1 we observed multiplicities 1 and 3 for the first
two, at time ti an instance of a third type, and so on. Then

D =
{
(i, j) : i ≤ (1, 3, 0), j ≤ (0, 2, 1), i2 > 0, j2 > 0, j3 > 0

}
is given by vectors of multiplicities not greater than (ni−1,ni+1), with positive entries for type
two, which is shared by times ti−1, ti+1, and for type three, limited to the second coordinate,
since it is shared by time ti+1 and the current time. In other words, multiplicities not greater
than those observed, with positive entries for types: (i) observed at both times different from
the current, or (ii) observed at the current time and at least another time. Notice that D = ∅
corresponds to the case in which no values are shared between the three collection times ti−1, ti
and ti+1, which holds, for example, when all the observations are distinct.

Before stating the result, note that when Q0 is supported by a countably infinite set, m(n)
can be defined by extension of (2.25), where all but a finite number of terms simplify in the
ratio. Let also a(b) = a(a+ 1) . . . (a+ b− 1) denote the Pochhammer symbol.

Proposition 6. In the setting of Theorem 9, let p̃ = pni−1,ki−1(∆i)pni+1,ki+1(∆i+1). Then

A. if Q0 is discrete,

w
ni−1,ni+1
ki−1,ni,ki+1

(∆i,∆i+1) ∝ p̃
m(ki−1 + ni + ki+1)
m(ki−1)m(ni)m(ki+1) ; (2.35)
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B. if Q0 is nonatomic and D = ∅,

w
ni−1,ni+1
ki−1,ni,ki+1

(∆i,∆i+1) ∝ p̃
θ(|ki−1|)θ(|ki+1|)

(θ + |ni|)(|ki−1|+|ki+1|)
;

C. if Q0 is nonatomic and D ≠ ∅,

w
ni−1,ni+1
ki−1,ni,ki+1

(∆i,∆i+1) ∝ p̃
θ(|ki−1|)θ(|ki+1|)

(θ + |ni|)(|ki−1|+|ki+1|)

K∏
j=1

(ki−1,j + ni,j + ki+1,j − 1)!
(ki−1,j − 1)! (ni,j − 1)! (ki+1,j − 1)!

if (ki−1,ki+1) ∈ D, and zero otherwise.

We now have a full description of (2.32), which is a finite mixture of laws of Dirichlet random
measures whose parameter measure α + ∑K

j=1(ki−1,j + ni,j + ki+1,j)δx∗j contains, besides the
unnormalised offspring measure α, the current observations Xi and a subset of the observations
(Xi−1,Xi+1) collected at adjacent times. The mixture weights are in turn determined by the
following two elements. The first is given by the transition probabilities of the death process
associated to the typed coalescent, which determines the probability that past and future data
are atoms in the respective random measures as a function of the distance between time ti
and the adjacent times. As the lags ∆i and ∆i+1 grow, the number of survived lineages is
lower with higher probability and the random measures in the mixture will carry, on average,
less information in terms of types observed at different times. The second element is the joint
marginal likelihood of past, present and future data. For instance, when the offspring distribution
is discrete, the ratio in (2.35) is higher when m(ki−1 + ni + ki+1) > m(ki−1)m(ni)m(ki+1),
i.e. when sampling jointly ki−1, ni and ki+1 has high probability relative to sampling them
separately: this provides a smoothing effect by favouring the nodes (ki−1,ni,ki+1) with the
same types collected at different times. Such mechanism comes to an extreme when the offspring
distribution is nonatomic. In this case, the weights of the mixture components that do not carry
atoms observed at multiple times, in the sense of the set D, vanish in the limit.

The above results do not include the case of α having both a continuous and discrete com-
ponent. The same tools used for proving Proposition 6 can in principle be used to deal with this
case as well, where we expect parts A, B and C of the statement to hold for the respective parts
of the parameters measure. In essence, values drawn by the discrete part of α are subjected to
the probability that lineages survive as controlled by the term p̃ (hence ultimately by the death
process), whereas values drawn from the continuous part of α are also, in addition, subjected to
whether they are shared across collection times. A full description of such results would require
a cumbersome notation and would not add further valuable insight, hence, we will not pursue
this task here.

Let now X0:T be the entire dataset sampled in model (2.7), and let K be the number of
distinct values in X0:T . Denoting by ←ni−1 the total multiplicities of the vector Xt0:i−1 , we know
there exist weights {v1,m} such that

L(Pti |Xt0:i−1) =
∑

ki−1≤
←
n i−1

v1,ki−1DP

α+
K∑
j=1

ki−1,jδx∗j

 . (2.36)

This can be obtained recursively starting from Pt0 ∼ DP (α), where the reversible measure
DP (α) acts as prior (or unconditional distribution) for the marginal state of the signal. Upon
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observing Xt0 , the update yields L(Pt0 |Xt0) = DP
(
α+∑K0

j=1 n0,jδx∗j

)
,where n0 is the vector

of multiplicities of the K0 distinct values in Xt0 . Propagating forward the previous through Ft,
one obtains

L(Pt1 |Xt0) =
∑

k0≤n0

pn0,k0(t1 − t0)DP

α+
K0∑
j=1

k0,jδx∗j

 ,
which can then be updated once data in t1 become available by observing that (2.19) satisfies

Un

(
H∑
i=1

wiξi

)
=

H∑
i=1

wipξi
(n)∑H

h=1whξh(n)
Un(ξi).

Proceeding in this way, alternating updates and forward propagations, leads to (2.36); see Pa-
paspiliopoulos et al. (2016), Section 3.1, for further details. Denoting now by →ni+1 the total
multiplicities of the vector Xti+1:T , by virtue of Lemma 3 and of the linearity of (2.21), there
exist weights {v2,n} such that

L(Pti |Xti+1:T ) =
∑

ki+1≤
→
n i+1

v2,ki+1DP

α+
K∑
j=1

ki+1,jδx∗j

 . (2.37)

This can also be obtained by working backwards from PT ∼ DP (α), then updating given the mul-
tiplicities np−1 of theKp−1 distinct values in XT , which yields L(PT |XT ) = DP

(
α+∑Kp−1

j=1 np−1,jδx∗j

)
,

then, using Lemma 3, propagating backwards to get

L(PT |XT ) =
∑

kp−1≤np−1

pnp−1,kp−1(tp−1 − tp−2)DP

α+
Kp−1∑
j=1

kp−1,jδx∗j

 ,
and so on. The following proposition connects the two above distributions to yield the general
representation.

Proposition 7. Assume (2.36) and (2.37) hold, and let ni be the vector of multiplicities of Xti

relative to the K distinct values in the whole dataset X0:T . Then

L(Pti |X0:T ) =
∑

ki−1≤
←
n i−1

∑
ki+1≤

→
n i+1

pki−1,ni,ki+1DP
(
αki−1+ni+ki+1

)
, (2.38)

where αki−1+ni+ki+1 is as in (2.33) and the weights

pki−1,ni,ki+1 =
∑

h≤
←
n i−1: h≥ki−1

∑
l≤
→
n i+1: l≥ki+1

v1,hv2,lw
h,l
ki−1,ni,ki+1

, ki−1 ≤←ni−1,ki+1 ≤→ni+1,

(2.39)
with wh,l

ki−1,ni,ki+1
as in Proposition 6, sum up to one.

The proof of Proposition 7 clarifies that the smoothing mixture is computed in two steps:
first L(Pti−1 |Xt0:i−1) and L(Pti+1 |Xti+1:N ) are computed through backward and forward filtering
respectively, then the smoothing operator is applied, as in Theorem 9. The first step leads to
two mixtures whose number of components is ∏K

k=1(1 +∑i−1
j=0 ntj ,k) and ∏K

k=1(1 +∑N
j=i+1 ntj ,k)

respectively, as shown in Section 4 of Kon Kam King et al. (2021). Recall that here K is the
number of distinct values observed in the entire dataset, which is considered as given. Since
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each distinct element of the smoothing distribution is now given by a distinct choice of ki−1 and
ki+1, the total number of components in the smoothing distribution is therefore

K∏
k=1

(
1 +

i−1∑
j=0

ntj ,k

)(
1 +

N∑
j=i+1

ntj ,k

)
. (2.40)

As expected, smoothing comes at a greater nominal computational cost than filtering, since,
roughly speaking, it combines information from both past and future. However, the actual cost of
smoothing is expected to be much lower than the nominal, due to two factors. The first, specific
to the current modelling assumptions, is that in the scenario of Statement C in Proposition 6,
with a continuous baseline distribution, the number of components is automatically pruned by
the smoothing operator, which discards values that are not shared across times. Hence (2.40)
represents a crude upper bound. The second factor is that some mixture component weights
are typically negligible. This aspect, which had already been noted in Chaleyat-Maurel and
Genon-Catalot (2006) and was investigated in detail for Wright–Fisher and Cox–Ingersoll–Ross
models in Kon Kam King et al. (2021), suggests various possible pruning strategies that allow to
approximate the smoothing distribution, lowering the actual computational cost by some order
of magnitudes while keeping a high precision in the approximation.

Predictive distributions

As a corollary to Proposition 7, we can derive the predictive distribution of further samples
collected at time ti, given the original data set X0:T . This extends Proposition 2.

Corollary 2. In the setting of Proposition 7, let (2.38) be the conditional law of Pti given X0:T .
Then the law of the (k + 1)th further sample Xk+1 from Pti is

P(Xk+1 ∈ A|X0:T , X
1:k) =

=
∑

ki−1≤
←
n i−1

∑
ki+1≤

→
n i+1

pki−1,ni,ki+1

αki−1+ni+ki+1(A) +∑k
j=1 δY j (A)

θ + |ki−1| + |ni| + |ki+1| + k
(2.41)

for every Borel set A of X, with αki−1+ni+ki+1 is as in (2.33) and pki−1,ni,ki+1 as in Proposition
7.

Here for brevity we have used the notationXk+1 for the additional (k+1)-st sample instead of the
correct notation X |ni|+k+1, given the original dataset already contains |ni| observations sampled
at ti. Recall that the predictive distribution for observations sampled from a Dirichlet random
measure is described by the Blackwell–MacQueen Pólya urn scheme, whereby for α = θQ0,

X1 ∼ Q0, Xk+1|X1, . . . , Xk ∼
α+∑k

j=1 δXj

θ + k
.

It is then clear that (2.41) is a finite mixture of generalized Pólya urn schemes, whose sampling
mechanism can be described as follows. For each k ≥ 1, given we already observed the further
sample Y 1:k,

• choose a pair (ki−1,ki+1) with probability pki−1,ni,ki+1

• draw a categorical random variable J ∈ {1, 2, 3} with probabilities proportional to θ, |ki−1|+
|ni| + |ki+1| and k respectively
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• given X1:k, draw

Xk+1 ∼


Q0, if J = 1,∑K

j=1(ki−1,j+ni,j+ki+1,j)δx∗
j

|ki−1|+|ni|+|ki+1| , if J = 2,
1
k

∑k
j=1 δXj , if J = 3,

where (x∗1, . . . , x∗K) in the second expression are the distinct values in X0:T .

We conclude the section with the observation that (2.38) is the de Finetti measure of the sequence
{X |ni|+k, k ≥ 1}, i.e.

P(X |ni|+k+1 ∈ · |Xt0:N , X
|ni|+1:|ni|+k) → P ∗ a.s.

weakly as k → ∞ and P ∗ is the law in (2.38). This can be proved along the same lines of
Proposition 5.

2.3 Clustering consistency with Dirichlet process mixtures

2.3.1 Introduction

As we discussed in the last chapter, Bayesian nonparametric methods have experienced a huge
development in the last two decades, often standing out for their flexibility and coherent proba-
bilistic foundations; see the monographs by Müller et al. (2017) and Ghosal and Van Der Vaart
(2017) for recent stimulating accounts. The success of the Dirichlet process in actual implemen-
tations of the Bayesian approach to nonparametric problems is mostly due to its mathematical
tractability, which is highlighted by conjugacy and flexibility, assessed in terms of its large
topological support.

Let P ∼ DP (α,Q0) be random probability measure, where now α > 0 denotes the concen-
tration parameter: in this Section θ will be used to denote parameters of the likelihood. Since
P is almost surely discrete, if one wishes to model continuous data one may convolve it with a
density kernel k parametrized by a latent variable θ that is drawn from a Dirichlet process. This
yields the popular Dirichlet process mixture (Lo, 1984), which exhibits appealing asymptotic
properties in the context of density estimation: in several relevant cases, the posterior distri-
bution concentrates at the true data-generating density at the minimax-optimal rate, up to a
logarithmic factor, as the sample size increases (Ghosal et al., 1999; Ghosal and Van der Vaart,
2007). Such a model and many of its variants are widely used across scientific areas, thanks also
to the availability of a wide variety of efficient computational methods to perform inference, see
for instance Escobar and West (1995, 1998); MacEachern and Müller (1998); Neal (2000); Blei
and Jordan (2006).

Since they are draws from the Dirichlet process, which is almost surely discrete, the latent
parameters θi’s exhibit ties with positive probability. Hence, the Dirichlet process mixture model
is also routinely used to perform clustering since it partitions observations into groups based
on whether their corresponding latent parameters θi coincide or not. The ubiquitous use of
Dirichlet process mixtures for clustering motivates the interest in the asymptotic behaviour of
the posterior distribution of the underlying partition, and in particular in the inferred number
of clusters (i.e. subpopulations), as the number of observations increases. Nguyen (2013) showed
posterior consistency of the mixing distribution P under general conditions. However, this does
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not imply consistency for the number of clusters, due to the use of the Wasserstein distance.
Indeed, Miller and Harrison (2013) proved that Dirichlet process mixtures are not consistent
for the number of components when data are generated from a mixture with a single standard
normal component. See also Miller and Harrison (2014) for extensions. These results, however,
are derived under the assumption that the concentration parameter α is known and fixed. This
is crucial because the clustering behaviour of Dirichlet process mixtures is governed by the choice
of α. Indeed, under the Dirichlet process mixture model, the prior probability of observing ties
is a function solely of α, since P(θi = θj) = 1/(α+ 1).

In order to have a more flexible distribution on the clustering of the data, in most implemen-
tations of the Dirichlet process mixture a prior π for α is specified, leading to a mixing measure
that is itself a mixture in the sense of Antoniak (1974). Here we show that introducing such a
prior has a major impact on the asymptotic behaviour of the number of clusters, as Dirichlet
process mixtures can be consistent for the number of clusters.

We provide consistency results under fairly general conditions on π and for a moderately
large class of kernels k, including uniform and truncated normal distributions. Following Miller
and Harrison (2013), we focus on data-generating mixtures with a single component. Our
results also extend to the more general case of finite mixtures with multiple components, when
a suitable separation assumption between the elements of the mixtures is fulfilled. Crucially, we
prove consistency for cases where using a non-random α yields inconsistency, thus suggesting
that a hyperprior may be beneficial even beyond the cases considered here. We stress that the
framework we study is arguably closer to the way Dirichlet process mixtures are used in practice,
compared to holding α fixed.

Studying an asymptotic regime where the data-generating truth is a mixture with a finite
and fixed number of components entails some degree of model misspecification. Indeed, Dirichlet
process mixtures are nonparametric models with an infinite number of components or, in other
words, a number of clusters growing with the size of the dataset. Thus, our results can be
interpreted as a form of robustness of the prior: if the number of components of the data-
generating is finite, it can still be recovered by adapting appropriately the value of α, despite the
prior is concentrated on mixtures with infinitely many components. In particular we show that,
under the data generation mechanisms we consider, the posterior distribution of α converges to
a point mass at 0 at a specific rate, which is crucial to ensure consistency.

2.3.2 Dirichlet process mixtures and random partitions

Henceforth, we will be focusing on Dirichlet process mixture models with a prior on the concen-
tration parameter, namely

Xi|θi
ind.∼ k(·|θi), θi | P iid∼ P, P | α ∼ DP(α,Q0), α ∼ π, (2.42)

where k( · |θ) is some density function, for every θ. Since we are interested in the distribution of
the number of clusters, it is reasonable to rewrite (2.42) in terms of the distribution on partitions,
related to the so-called Chinese restaurant process. For every pair of natural numbers (n, s)
such that s ≤ n, denote with τs(n) the set of partitions of {1, . . . , n} into s non empty subsets.
Conditionally on α, the sequence (θi)i≥1 induces a prior distribution on the space of partitions
of N that, for every n ≥ 2, is characterized by

P(A | α) = αs

α(n)

s∏
j=1

(aj − 1)!, (A = {A1, . . . , As} ∈ τs(n), s ≤ n), (2.43)
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where α(n) = α · · · (α+ n− 1) is the ascending factorial and aj = |Aj | stands for the cardinality
of set Aj . Conditionally on the partition A, the probability distributions of the data X1:n =
(X1, . . . , Xn) and of the cluster-specific parameters θ̂1:s = (θ̂1, . . . , θ̂s) are

P(X1:n | θ̂1:s, A) =
s∏
j=1

∏
i∈Aj

k(Xi | θ̂j), P(θ̂1:s | A,α) = P(θ̂1:s | A) =
s∏
j=1

q0(θ̂j), (2.44)

where q0 is the density of Q0 with respect to the Lebsegue or the counting measure. The number
of clusters in a sample of size n is denoted by Kn and under (2.42) its distribution is given by
P(Kn = s) =

∫ ∑
A∈τs(n) P(A | α)π(dα). Since we are concerned with the large sample properties

of P(Kn = s | X1:n), we focus on the joint distribution of the vector (X1:n,Kn) which, for every
x1:n = (x1, . . . , xn) ∈ Xn, is given by

P(X1:n = x1:n,Kn = s) =
∑

A∈τs(n)
P(A)

s∏
j=1

m(xAj ), (2.45)

where P(A) =
∫

pr(A|α)π(dα) and m(xAj ) =
∫ ∏

i∈Aj
k(xi | θ)q0(θ)dθ is the marginal likelihood

for the subset of observations identified by Aj , given that they are clustered together. We study
the asymptotic behaviour of the posterior induced by model (2.42) when the observations are
independent and identically distributed samples from a finite mixture, that is we assume the
following data generation mechanism

Xi
iid∼ P∗ =

t∑
j=1

pjRj , (i = 1, 2, . . . ), (2.46)

where, for every t ≥ 1, the Rj ’s are distinct probability measures on X and the pj ’s are probability
weights, i.e. pj ∈ (0, 1) for every j and ∑j pj = 1. We will let P (n)

∗ and P
(∞)
∗ be the product

probability measures induced on Xn and X∞ respectively, and denote (2.46) by X1:∞ ∼ P
(∞)
∗ .

In the following, we will consider each Rj to be dominated by a suitable measure and denote
the resulting density by fj(·) := f(· | θ∗j ). We say that model in (2.42) is well-specified for P∗ if
k(·|θ) = f(· | θ), that is if the data-generating distribution is a mixture of kernels belonging to
the same parametric family that defines (2.42).

We say that posterior consistency for the number of clusters holds if P(Kn = t | X1:n) → 1 as
n → ∞ in P (∞)

∗ -probability. The conditional probability P(Kn = t | X1:n) is defined with respect
to the model in (2.42), while the convergence in probability is with respect to the data-generating
process X1:∞ ∼ P

(∞)
∗ .

2.3.3 Main consistency results

The investigation of the asymptotics of the number of clusters Kn, induced by the model in
(2.42), will rely on the following assumptions on the prior π of α

A1. Absolute continuity: π is absolutely continuous with respect to the Lebesgue measure and
its density is still denoted as π;

A2. Polynomial behaviour around the origin: ∃ ϵ, δ, β such that ∀α ∈ (0, ϵ) it holds 1
δα

β ≤
π(α) ≤ δαβ;
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A3. Subfactorial moments: ∃D, ν, ρ > 0 such that
∫
αsπ(α) dα < Dρ−sΓ(ν + s + 1) for every

s ≥ 1.

The first two assumptions are sufficient to study the posterior moments of α, conditional to
the number of groups Kn, as will be clarified in Proposition 10. Assumption A3, instead, will
be useful specifically for consistency purposes: the minimum value of ρ required to achieve
consistency depends on the problem at hand, that is on the specific choice of P in (2.46) and k
in (2.42), as will be stated in Theorems 11 and 12. Assumptions A1-A3 are satisfied by common
families of distributions, as displayed in the next lemma.

Lemma 4. The following choices of π satisfy assumptions A1, A2 and A3 (for a fixed ρ > 0)

(1) every distribution with bounded support that satisfies assumptions A1 and A2, such as the
uniform distribution over (0, c), with c > 0;

(2) The Generalized Gamma distribution with density proportional to αd−1e−( α
a )p

, provided
that p > 1;

(3) The Gamma distribution with shape ν and rate ρ.

The rate parameter of the Gamma distribution corresponds to the quantity ρ in assumption
A3.

2.3.4 General consistency result for location families with bounded support

For our general result we consider kernels of the form

k(x | θ) = g(x− θ) (x ∈ R), (2.47)

where θ ∈ R is a location parameter. Here g is a density function on the real line satisfying the
following assumptions

B1. g is strictly positive on some interval [a, b] and 0 elsewhere;

B2. g is differentiable with bounded derivative in (a, b);

B3. The base measure Q0 is absolutely continuous with respect to the Lebesgue measure, and
its density q0 is bounded.

The above assumptions essentially require that the kernel is a location-family distribution with
positive density on a bounded support. The class is fairly general and it includes, as relevant
special cases, the uniform distribution and the truncated Gaussian distribution, among others.

When considering a mixture of the kernels in (2.47) as data generation mechanism satisfying
B1–B3, with true parameters θ∗ = (θ∗1, . . . , θ∗t ), we say that θ∗ is completely separated if |θ∗j −
θ∗k| > b−a, for every j ̸= k. This assumption is somewhat restrictive, but sufficient to prove that
the addition of a prior on α may solve the inconsistency issue. Indeed, we have the following
general consistency result.

Theorem 10. Suppose k and q0 satisfy assumptions B1–B3. If π satisfies assumptions A1–A3
with ρ high enough then, for every P∗ as in (2.46) with t ∈ {1, 2, . . . }, fj = k(·|θ∗j ), θ∗ completely
separated and θ∗j belonging to the interior support of Q0 for every j, we have

P(Kn = t | X1:n) → 1
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as n → ∞ in P
(∞)
∗ -probability. On the contrary, if π(α) = δα∗(α), with α∗ > 0, then

lim supP(Kn = t | X1:n) < 1

as n → ∞ in P
(∞)
∗ -probability.

As discussed above, the minimum value of ρ needed depends on the specific function g and
prior distribution Q0. Therefore, a prior on the concentration parameter yields consistency when
the true data generating distribution meets a condition of complete separability, that informally
amounts to having cluster locations sufficiently distinct. This condition is automatically satisfied
when t = 1. We additionally show that, even under such an assumption, the Dirichlet process
mixture model with fixed α still fails to be consistent at the number of clusters. Hence, a prior
on α is crucial to overcome issues with learning the true number of clusters as the sample size
increases.

Moreover, the posterior mass on a smaller number of clusters than the truth vanishes under
mild conditions, as explained in the next proposition.

Proposition 8. Let P∗ be as in (2.46), with true parameters θ∗1, . . . , θ∗t . Let θ∗j belong to the
support of Q0 for every j = 1, . . . , t and let k satisfy assumptions B1–B3 above or H1–H4 in
the supplementary material. Then

P(Kn < t | X1:n) → 0 (2.48)

in P
(∞)
∗ -probability as n → ∞.

Consistency on specific examples

Theorem 10 requires ρ in assumptionA3 to be high enough, depending on the specific formulation
of the model. In order to provide an example, we focus on the case of uniform kernel and t = 1,
that is

f = Unif(θ∗ − c, θ∗ + c), k(·|θ) = Unif(θ − c, θ + c), q0 = Unif(θ∗ − c, θ∗ + c), (2.49)

where θ∗ ∈ R is a fixed location parameter and c > 0.

Theorem 11. Consider f , k and q0 as in (2.49), and assume π satisfies A1–A3 (with ρ ≥ 38).
Then

P(Kn = 1 | X1:n) → 1

as n → ∞ in P
(∞)
∗ -probability.

As a second example, we move beyond bounded kernels and consider a simple, yet interesting,
case. More precisely, we specialize model (2.42) to Gaussian kernels and assume constant data,
equal to some fixed real number θ∗, setting

f = δθ∗ , k(·|θ) = N(θ, 1), q0 = N(0, 1). (2.50)

Unlike the other examples, this case is not well-specified, as k(·|θ) ̸= f(·) for every θ. This
makes the definition of true or data-generating number of clusters more delicate. Nonetheless,
being an example with constant data, one would hope the posterior of the number of clusters to
concentrate on one cluster. However, even in such a limiting case, Miller and Harrison (2013)
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show that under (2.42) with fixed concentration parameter P(Kn = 1|X1:n) does not converge
to 1 as n diverges.

Theorem 12. Consider (f, k, q0) as in (2.50) and assume π satisfies A1–A3 (with ρ > 16).
Then

P(Kn = 1 | X1:n) → 1

P
(∞)
∗ -almost surely as n → ∞.

Finally, the previous consistency results are related to another property of general interest,
namely the posterior distribution of the concentration parameter converges to a point mass at
0, if posterior consistency for the number of clusters holds.

Proposition 9. Let the data be generated as in (2.46) with t ∈ N and assume π satisfies A1
and A2. Then if P(Kn = t | X1:n) → 1 we have

π(α | X1:n) → δ0

weakly, as n → ∞, in P
(∞)
∗ -probability.

This is not surprising since the Dirichlet process mixture model is concentrated on mixtures
with infinitely many components and one way to achieve consistency is to let α tend to zero,
which entails that the prior is swamped by the data.

2.3.5 Methodology and proof technique

The role of the prior on the concentration parameter

Our proofs of consistency in Theorems 10, 11 and 12 rely on the following lemma.

Lemma 5. The convergence P(Kn = t | X1:n) → 1 as n → ∞ in P
(∞)
∗ -probability holds true if

and only if one has, in P
(∞)
∗ -probability,

∑
s ̸=t

P(Kn = s | X1:n)
P(Kn = t | X1:n) → 0 as n → ∞ . (2.51)

Working with the ratios of conditional probabilities in (2.51) is beneficial, as the marginal
distribution of X1:n involved in the definition of P(Kn = t | X1:n) cancels. Also, it is convenient
to write such ratios of probabilities as follows: first, recall from (2.43) and (2.45) that

P(X1:n = x1:n,Kn = s) =
∫

αs

α(n)π(α)dα
∑

A∈τs(n)

s∏
j=1

(aj − 1)!m(xAj )

for every s ≥ 1, which implies that

P(Kn = s | X1:n)
P(Kn = t | X1:n) =

∫ αs

α(n)π(α) dα∫ αt

α(n)π(α) dα︸ ︷︷ ︸
C(n,t,s)

∑
A∈τs(n)

∏s
j=1(aj − 1)!∏s

j=1m(XAj )∑
B∈τt(n)

∏t
j=1(bj − 1)!∏t

j=1m(XBj )︸ ︷︷ ︸
R(n,t,s)

. (2.52)
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The decomposition of (2.52) into the factors C(n, t, s) and R(n, t, s) is useful to understand the
role of the prior distribution over α, and to compare our results with the one of Miller and
Harrison (2013, 2014). In particular, the term R(n, t, s) does not depend on α and, hence, on
the choice of π. This is indeed the key term studied in Miller and Harrison (2014), where it is
shown that, under some assumptions, lim inf R(n, t, s) > 0 as n → ∞ in P

(∞)
∗ -probability, for

t < s. On the contrary, C(n, t, s) incorporates information about α and its prior distribution.
In the fixed α case, which can be thought of as having a degenerate prior π = δα for some
α > 0, the term C(n, t, s) boils down to αs−t which is constant with respect to n. This is
sufficient for Miller and Harrison (2014) to deduce lack of consistency for fixed α, which means
that lim sup P(Kn = t | X1:n, α) < 1 as n → ∞ in P

(∞)
∗ -probability for every α > 0.

However, once a non-degenerate prior π is employed, C(n, t, s) depends on n and, as we
show in the next section, converges to 0 as n → ∞ under mild assumptions on π. Thus,
lim inf R(n, t, s) > 0 is not anymore sufficient to establish whether consistency holds true or not.
Instead, one needs to compare the rate at which C(n, t, s) converges to 0 with the behaviour
of R(n, t, s), as done in the following sections. Further lower bounds for R(n, t, s) for general
values of s are given in Miller and Harrison (2014); Yang et al. (2019). However, once combined
with C(n, t, s), these are too loose to deduce either consistency or lack thereof. Therefore, we
need to exploit different techniques to determine the rate of R(n, t, s). Since P(Kn = t | X1:n) =∫
P(Kn = t | X1:n, α)π(α | X1:n) dα, we deduce lim sup P(Kn = t | X1:n, α) < 1 for every

α > 0. This, however, does not imply that lim sup pr(Kn = t | X1:n) < 1, as one first needs
to ascertain whether limit and integral can be interchanged. The main reason is that, in the
asymptotic regime we are considering, the posterior distribution π(α | X1:n) concentrates around
0 as n → ∞, see Proposition 9 above.

Asymptotic behaviour of the concentration parameter

We are now concerned with studying C(n, t, s) in (2.52). We prove that for priors π satisfy-
ing assumptions A1–A3 C(n, t, s) converges to 0 at a logarithmic rate in n. The asymptotic
behaviour of C(n, t, s) is not specific to some kernel k and data generating distribution f and
thus can be useful to prove consistency, or lack thereof, for arbitrary Dirichlet process mix-
ture models with random concentration parameter. In order to facilitate the intuition, the
term C(n, t, s) can be interpreted as a moment of α, conditional on the n observations be-
ing clustered in t groups. Indeed, under (2.42) it holds π(α | Kn = t) ∝ αt

α(n)π(α) and thus
C(n, t, t + s) =

∫
αsπ(α | Kn = t) dα = E(αs | Kn = t). The next proposition shows its

asymptotic behaviour.

Proposition 10. Suppose π satisfies A1–A2. Then there exist F,G > 0 such that for every
0 < s ≤ n− t

F
γ{t+ s+ β, ϵ log(n)}

{log(n) + 1}s
≤ C(n, t, t+ s) ≤ Gs

ϵs
E[αt+s−1]γ{t+ s+ β, ϵ log(n)}

{logn/(1 + ϵ)}s ,

where γ(x, y) is the lower incomplete Gamma function and E[αs] =
∫
αsπ(α) dα.

Thus, for a fixed s that does not depend on n, C(n, t, t + s) decreases logarithmically as a
function of n since γ(x, y) ≤ γ(x) for every x and y. Thus, by looking at the ratios in (2.52),
the addition of a prior favours a smaller number of clusters when n → ∞, with s fixed.

The consistency results of the previous section are established by combining Proposition 10
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with suitable upper bounds on R(n, t, s) to prove the convergence in (2.51), so that

E

n−t∑
s=1

pr(Kn = t+ s | X1:n)
pr(Kn = t | X1:n)

 ≤ 1
logn

n−t∑
s=1

h(s),

where h(s) is a function that depends on the specific kernel k and is such that lim sup∑n
s=1 h(s) <

∞ for every s. The following lemma shows how the problem simplifies in this case, when t = 1.

Lemma 6. Assume (X1, X2, . . . ) is an exchangeable sequence. Then for every n

E

 ∑
A∈τs(n)

∏s
j=1(aj − 1)!
(n− 1)!

∏s
j=1m(XAj )
m(X1:n)

 =
∑

a∈Fs(n)

n

s!∏s
j=1 aj

E


∏s
j=1m(XAa

j
)

m(X1:n)

 ,
where the sum runs over Fs(n) = {a ∈ {1, . . . , n}s : ∑s

j=1 aj = n} and Aa is an arbitrary
partition in τs(n) such that |Aa

j | = aj for j = 1, . . . , s.

2.3.6 Discussion

There are many avenues to extend our results and some of the tools we introduced here may
prove useful to accomplish such tasks. First of all, the separability assumption given in Theorem
10 could be relaxed to prove consistency in the setting with a general number of components.
The main issue is that R(n, t, s) in (2.52) is harder to study, since it becomes the ratio of sums
over the space of partitions: in particular Lemma 6 is not easy to generalize and this explains
why the case t = 1 is simpler to address. Different mixture kernels present similar difficulties.
Summarising, the impact of the prior is fully understood, by Proposition 10, but a more general
positive result would require finer bounds on the likelihood component.

Another interesting question is whether consistency can also be attained by estimating the
concentration parameter through maximization of the marginal likelihood, in an empirical Bayes
fashion (Liu, 1996; McAuliffe et al., 2006). In this paper we preferred to focus on the fully
Bayesian approach because it is arguably the one most commonly employed by practitioners.
Moreover, the empirical Bayes estimator of α may not be well defined on (0,∞), thus raising
theoretical and practical issues.

It is also worth noticing that our consistency results require the kernel to be perfectly spec-
ified: even a small amount of misspecification will probably lead the number of clusters to
diverge. Indeed, recovering the true density will require an increasing number of components.
This phenomenon has been formally studied in Cai et al. (2021) for finite mixture models, when
a prior on the number of components is placed.

The asymptotic analysis of the posterior distribution of the number of clusters for Dirichlet
process mixtures has recently attracted considerable theoretical interest (Yang et al., 2019; Ohn
and Lin, 2023; Cai et al., 2021), and has motivated various methodological developments (Miller
and Harrison, 2018; Zeng and Duan, 2020). Ohn and Lin (2023) showed that, if α is sent
deterministically to 0 at appropriate rates as n → ∞, the posterior distribution of the number
of clusters concentrates on finite values when data are generated from a finite mixture, which
is a necessary condition for consistency. Such results are similar in spirit to ours, although
our setting is arguably more natural in a Bayesian framework. Moreover, another interesting
extension would be the the case with a growing number of components, rather than fixed: indeed,
in this setting a Dirichlet-based model would be a natural choice. We do not pursue this task
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here, but see Ohn and Lin (2023) for a discussion on asymptotic properties of Bayesian models
for mixtures of this type.
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A1 Proofs of Section 2.2

Lemma 7. The transition probabilities p|m|,|n|(t) in (2.13) equal e−λ|m|t when n = m and|m−n|−1∏
h=0

λ|m|−h

 (−1)|m−n|
|m−n|∑
k=0

e−λ|m|−kt∏
0≤h≤|m−n|,h̸=k(λ|m|−k − λ|m|−h) ,

when 0 < n ≤ m, where λn = n(θ + n− 1)/2.

Proof. See Papaspiliopoulos et al. (2016), Lemma 4.1.

Proof of Proposition 1

Proof. In this proof we use the same notation of Barrientos et al. (2012) and denote by G(t) the
FV-DDP, i.e. G(t) = Xt. We also emphasise the elementary event ω ∈ Ω by writing G(t, ω). By
Eq. 3 in Barrientos et al. (2012), it suffices to show that for ϵ > 0, N ∈ N and (t1, . . . , tN ) ∈ RN+
we have

P
{
ω ∈ Ω :

[
G(ti, w)(A0), . . . , G(ti, w)(Ak)

]
∈ B(sti , ϵ), i = 1, . . . , N

}
> 0. (53)

Here:

• A0, . . . , Ak is a partition of X, with Ai a measurable set with P0-null boundary;

• B(sti , ϵ) = {(w0, . . . , wk) ∈ ∆k : w(ti,j) − ϵ < wj < w(ti,j) + ϵ, j = 0, . . . , k}, with ∆k =
{(w0, . . . , wk) : wi ≥ 0, i = 0, . . . , k,∑k

i=0wi = 1} the k-simplex.

• sti = (w(ti,0), . . . , w(ti,k)) =
(
Qti(A0), . . . , Qti(Ak)

)
∈ ∆k.

• Qti , , i = 1, . . . , N is a probability measure absolutely continuous with respect to Q0.

As is well known, projecting a Dirichlet process DP (α) on a partition A0, . . . , Ak yields a k-
dimensional Dirichlet density πα with parameters (α(A0), . . . ,
α(Ak)). Similarly, projecting a FV process yields a a k-dimensional Wright-Fisher (WF) diffu-
sion, which is reversible and stationary with respect to πα. Consistently with (2.6), the transition
density of the WF is given by:

Pt(x,dx′) =
∞∑
m=0

dm(t)
∑

m∈Zk+1
+ :|m|=m

(
m

m

)
xmπα+m(x′)dx′.

Then we can rewrite (53) as:∫
B(st1 ,ϵ)

· · ·
∫
B(stN

,ϵ)
πα(x1)Pt2−t1(x1,x2) . . . PtN−tN−1(xN−1,xN ) dx1 . . . dxN

Since B(st1 , ϵ) has strictly positive Lebsegue measure, we just need to show that the integrand
is strictly bigger than 0 for any (x1, . . . ,xN ) ∈ B(st1 , ϵ) × · · · × B(stN , ϵ). Clearly πα(x1) > 0
for any x1 ∈ B(st1 , ϵ). For what concerns 1 < j ≤ N , we have:

Ptj−tj−1(xj−1,xj) ≥ d0(tj − tj−1)πα(xj) > 0, ∀xj ∈ B(stj , ϵ),
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which completes the proof.

Proof of Proposition 2

Conditioning on the random measure PT+t at time T + t yields

P
(
Xk+1
T+t ∈ A | X0:T , X

1:k
T+t

)
=E

[
P
(
Xk+1
T+t ∈ A | PT+t,X0:T , X

1:k
T+t

)
| X0:T , X

1:k
T+t

]
=E

[
P
(
Xk+1
T+t ∈ A | PT+t

)
| X0:T , X

1:k
T+t

]
=E

[
PT+t(A) | X0:T , X

1:k
T+t

]
(54)

where the second equality follows from the conditional independence of the observations given
the signal; cf. (2.7). From (2.8), eq. (3.7) in Papaspiliopoulos et al. (2016) implies that PT+t |
X0, . . . ,XT is the mixture of Dirichlet processes

∑
n∈L(M)

pt (M,n)DP

α+
K∑
i=1

niδx∗i

 .
By linearity of the expectation and the predictive of the Dirichlet process, when k = 0 the RHS
of (57) reads

∑
n∈L(M)

pt (M,n)E

DP
α+

K∑
i=1

niδx∗i

 (A)

 =

=
∑

n∈L(M)
pt (M,n)

[
θ

θ + |n|
Q0 (A) + |n|

θ + |n|

K∑
i=1

niδx∗i (A)
]

=
∑

n∈L(M)
pt(M,n) θ

θ + |n|
Q0 (A) +

∑
n∈L(M)

pt (M,n) |n|
θ + |n|

Pn,

which is (2.10) with k = 0. When k > 0, by the conjugacy property of mixture of Dirichlet
processes the RHS of (57) reads

E

 ∑
n∈L(m)

pt(M,n)Π
α+
∑K

i=1 niδx∗
i

∣∣∣∣∣X1:k
T+t


=

∑
n∈L(M)

p
(k)
t (M,n)E

[
Π
α+
∑K

i=1 niδx∗
i

+
∑k

j=1 δxj

]

yielding (2.11).
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Proof of Proposition 3

Proof. Denote:
E0[X] =

∫
xQ0(dx)

E0[X2] =
∫
x2Q0(dx)

Then we want to compute:

Corr(Xt, Xt+s) = Cov(Xt, Xt+s)
E0[X2] − E2

0[X] = E[XtXt+s] − E2
0[X]

E0[X2] − E2
0[X]

The only object left to compute is

E[XtXt+s] =
∫
xtxt+sQ(dxt,dxt+s)

Note that from Proposition 2 we can write the joint distribution using the chain rule::

Q(dxt,dxt+s) = Q0(dxt)

(1 − e−
θ
2 s
)
Q0(dxt+s) + θe−

θ
2 s

θ + 1 Q0(dxt+s) + e−
θ
2 s

θ + 1δxt(dxt+s)


so we get:

E[XtXt+s] =

1 − e−
θ
2 s + θe−

θ
2 s

θ + 1

E2
0[X] + e−

θ
2 s

θ + 1E0[X2]

Consequently:

Cov(Xt, Xt+s) = e−
θ
2 s

θ + 1
(
E0[X2] − E2

0[X]
)

from which the result follows.

Proof of Proposition 4

Proof. Denote by P0,k the predictive distribution of the Dirichlet process. We have to prove
that ∣∣∣∣P(Xk+1

T+t ∈ A | X0:T , X
1:k
T+t

)
− P0,k(A)

∣∣∣∣ → 0, (55)

as t → ∞. Using the triangle inequality the LHS of (55) is smaller than:∣∣∣∣∣∣∣
∑

n∈L(M)
p

(k)
t (M,n) −|n|

θ + |n| + k
P0,k(A)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∑

n∈L(M)
p

(k)
t (M,n) |n|

θ + |n| + k
Pn(A)

∣∣∣∣∣∣∣
Note now that the time-dependence of (2.11) is ultimately due to p|m|,|n|(t) in (2.13). These are
the transition probabilities of a one-dimensional death process on Z+ which jumps from m to
m − 1 at infinitesimal rate λm = m(θ + m − 1)/2. It can be easily verified that, as t → ∞, we
have p|m|,0(t) → 1 for any m and p|m|,|n|(t) → 0 for any 0 < n ≤ m, and similar statement holds
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for (3.6). Then, denoting B1, B2 the two sums in the previous display respectively, we have

0 ≤ max{B1, B2} ≤
∑

n∈L(M)
p

(k)
t (M,n) |n|

θ + |n| + k
→ 0

which implies (55), as desired.

Proof of Proposition 5

Proof. By de Finetti’s Representation Theorem Pk → P ∗ as k → ∞, with P ∗ being the de
Finetti measure of the sequence

(
Xk
T+t

)
k≥1

. Moreover, recalling that L(M) is a finite set, we
have:

lim
k→∞

∑
n∈L(M)

p
(k)
t (M,n) k

θ + |n| + k
= lim

k→∞

∑
n∈L(M)

p
(k)
t (M,n) = 1

As regards the other two components of (2.11) we have

0 ≤ lim
k→∞

∑
n∈L(M)

p
(k)
t (M,n) 1

θ + |n| + k
≤ lim

k→∞

∑
n∈L(M)

1
θ + |n| + k

= 0

and we have the result.

A2 Proofs of Section 2.2.5

Proof of Lemma 2

Proof. Using (2.26), we have

p(ni+1|pti) =
∫
p(ni+1|pti+1)qti+1−ti(pti+1 |pti)dpti+1

=m(ni+1)
∫
h(pti+1 ,ni+1)qti+1−ti(pti+1 |pti)dpti+1

=m(ni+1)E[h(Pti+1 ,ni+1)|Pti = pti ],

where the integral is over the (K − 1)-dimensional simplex, from which (2.29) leads to the
result.

Proof of Lemma 3

Proof. Denote by ni−1 and ni+1 the multiplicities of types for observations sampled at times
ti−1 and ti+1 respectively in the setting of (2.24). Then Papaspiliopoulos and Ruggiero (2014)
showed that

Fti−ti−1(πα+ni−1)(pti) =
∑

0≤k≤ni−1

pni−1,k(ti+1 − ti)πα+k(pti). (56)
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Furthermore, using (2.19) first and then Lemma 2 we have

Bti+1−ti (πα+ni+1)(pti) = p(pti |ni+1) = p(pti)p(ni+1|pti)
m(ni+1)

= p(pti)
∑

0≤k≤ni+1

pni+1,k(ti+1 − ti)h(pti ,k)

=
∑

0≤k≤ni+1

pni+1,k(ti+1 − ti)h(pti ,k)p(pti)

=
∑

0≤k≤ni+1

pni+1,k(ti+1 − ti)πα+k(pti)

where the last identity follows from from (2.26) and (2.19). By equating ni−1 with ni+1 and
ti−ti−1 with ti+1 −ti, one can now see that Bt(πα+n) = Ft(πα+n), with Bt as in (2.21). The fact
that Ft(DP

(
α+∑K

j=1 njδx∗j

)
) equals the right hand side of (2.31) now follows from Theorem

3.1 in Papaspiliopoulos et al. (2016), and the same proof can be used to show (2.31), by seeing
Bt(πα+n) as the projection of Bt(DP

(
α+∑K

j=1 njδx∗j

)
) onto an arbitrary partition, from which

the first statement also follows.

Proof of Theorem 9

Proof. Without loss of generality, let i = 1 and denote P1 = Pt1 . Given a measurable partition
A = (A1, . . . , Am) of X, let P1(A) := (P1(A1), . . . , P1(Am)) and denote by X(A) the list of
labels derived from binning X into A, i.e., whose i-th element is j if Xi ∈ Aj . Further, let
{Bn, n ≥ 1} = {(Bn

1 , . . . , B
n
n), n ≥ 1} be a sequence of increasingly finer partitions of X such

that Bn is finer than A, for every n, and such that maxj diam(Bn
j ) → 0 as n diverges. Since

Bn is increasingly finer, we have that
(
E
[
f(P1(A))|X0(Bn),X1(Bn),X2(Bn)

])
n

is a martingale
for every bounded and continuous function f (see Proposition V.2.7 in Cinlar (2011)). Thus,
by the martingale convergence theorem we have that P1(A)|X0(Bn),X1(Bn),X2(Bn) converges
weakly to P1(A)|X0,X1,X2 as n → ∞. The left hand side of the previous expression can
be characterized, by virtue of de Finetti’s Theorem, in terms of the predictive distributions
of X1:k

1 (A)|X0(Bn),X1(Bn),X2(Bn) for arbitrary k, where X1:k
1 (A) denotes k samples from

P1(A). Without loss of generality, let now n be large enough that different observations lie
in different sets of Bn, and write, for brevity, P1,n := P1(Bn) and Xi,n := Xi(Bn). Let also
p(x1:k|X0,n,X1,n,X2,n) be the density of the vector X1:k

1 (A) evaluated at x1:k, conditional on
the binned observation X0,n,X1,n,X2,n. Then we have

p(x1:k|X0,n,X1,n,X2,n) ∝ p(x1:k,X0,n,X1,n,X2,n) = E
[
p(x1:k,X0,n,X1,n,X2,n|P1,n)

]
= E

[
p(x1:k|P1,n)p(X0,n|P1,n)p(X1,n|P1,n)p(X2,n|P1,n)

] (57)
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where in the last identity we have used the conditional independence of the observations given
the signal state (cf. (2.7)). By Lemma 2 and the subsequent comment we get

p(X0,n|P1,n) ∝
∑

0≤ki−1≤ni−1

pni−1,ki−1h(P1,n,ki−1)

p(X2,n|P1,n) ∝
∑

0≤ki+1≤ni+1

p′ni+1,ki+1h(P1,n,ki+1)

p(X1,n|P1,n) ∝ h(P1,n,ni)

where pni−1,ki−1 := pni−1,ki−1(∆i) and p′ni+1,ki+1
:= pni+1,ki+1(∆i+1). By linearity and by (2.27),

(57) is thus proportional to

∑
0≤ki−1≤ni−1

∑
0≤ki+1≤ni+1

pn,ki−1p
′
m,ki+1

m(n)(ki−1 + ni + ki+1)
m(n)(ki−1)m(n)(ni)m(n)(ki+1)

× E
[
p(x1:k|P1,n)h(P1,n,ki−1 + ni + ki+1)

]
,

where m(n) denotes the marginal distribution in (2.25) relative to the model induced by the
partition Bn. Moreover, using (2.26) and (2.19) it can be seen that

E
[
p(n′|p)h(p,n)

]
=
∫
p(n′|p)p(n|p)

m(n) p(p)dp = m(n,n′)
m(n) = mn(n′),

with mn(n′) := p(n′|n), hence we can write

E
[
p(x1:k|P1,n)h(P1,n,ki−1 + ni + ki+1)

]
= mki−1+ni+ki+1(x1:k).

Note that the above identity holds since Bn is finer than A. Hence the left hand side of (57)
equals ∑

0≤ki−1≤ni−1

∑
0≤ki+1≤ni+1

pni−1,ki−1p
′
ni+1,ki+1

× m(n)(ki−1 + ni + ki+1)
Cnm(n)(ki−1)m(n)(ni)m(n)(ki+1)

mki−1+ni+ki+1(n′)

where Cn is a normalizing constant and n′ is the vector of multiplicities associated to x1:k.
Since mki−1+ni+ki+1(n′) is the distribution induced by the Pólya Urn scheme of the Dirichlet–
multinomial model, it follows that the law of X1:k

1 (A)|X0,n,X1,n,X2,n is exchangeable. Note
in particular that this marginal distribution does not depend on the partition Bn, since A is
a coarser partition. Given the arbitrariness of k, we can appeal to de Finetti’s Theorem to
conclude that the law of P1(A)|X0,n,X1,n,X2,n is given by∑

0≤ki−1≤ni−1

∑
0≤ki+1≤ni+1

pni−1,ki−1p
′
ni+1,ki+1

× m(n)(ki−1 + ni + ki+1)
Cnm(n)(ki−1)m(n)(ni)m(n)(ki+1)

DP
(
α(A) + ki−1(A) + ni(A) + ki+1(A)

)
(58)

where α(A) = (α(A1), . . . , α(Am)) and ki−1(A),ni(A),ki+1(A) denote the multiplicities pro-
jected onto A. The limit as n → ∞ can now be computed by virtue of the martingale conver-
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gence theorem. The proof is completed by observing that the limiting weights do not depend
on the partition Bn and the previous display coincides with the projection onto the partition A
of a finite mixture of laws of Dirichlet processes.

Proof of Proposition 6

Proof. Statement A follows from the fact that ultimately the limit partition sets with positive
multiplicities will be those coinciding with the support points of Q0.

Assume now, without loss of generality, that the partition Bn is such that the first observation
lies in Bn

1 , the second in Bn
2 and so on. The density of a vector k of multiplicities is in this case

determined by the Blackwell–MacQueen Pólya urn scheme to be

m(n)(k) =
∏K
j=1

∏kj−1
h=0

(
θQ0(Bn

j ) + h
)

θ(|k|) ,

with the convention that ∏−1
h=0 = 1. Denoting mn(n′) := p(n′|n), as in the proof of Theorem 9,

it follows that

m(n)(ki−1 + ni + ki+1)
m(n)(ki−1)m(n)(ni)m(n)(ki+1)

= m
(n)
ni (ki−1 + ki+1)

m(n)(ki−1)m(n)(ki+1)

= θ(|ki−1|)θ(|ki+1|)

(θ + |ni|)(|ki−1|+|ki+1|)

K∏
j=1

∏ki−1,j+ki+1,j−1
h=0

(
θQ0(Bn

j ) + ni,j + h
)

∏ki−1,j−1
h=0

(
θQ0(Bn

j ) + h
)∏ki+1,j−1

h=0

(
θQ0(Bn

j ) + h
) .

If D = ∅, since no values are shared across times, we have that, for every j, at most one between
ki−1,j and ki+1,j is non zero, and in such case we have ni,j = 0. Then, if ki−1,j > 0 we have
ki+1,j = 0 and ni,j = 0, so

∏ki−1,j+ki+1,j−1
h=0

(
θQ0(Bn

j ) + ni,j + h
)

∏ki−1,j−1
h=0

(
θQ0(Bn

j ) + h
)∏ki+1,j−1

h=0

(
θQ0(Bn

j ) + h
) = 1,

and the same happens when ki+1,j > 0, ki−1,j = 0 and ni,j = 0. This leads to statement B.

If D ≠ ∅, since some values are shared across times, there exists a j such that one of the
following is true: (i) ni,j > 0 and ki−1,j > 0; (ii) ni,j > 0 and ki+1,j > 0; (iii) ki−1,j > 0 and
ki+1,j > 0. In case (i)

∏ki−1,j+ki+1,j−1
h=0

(
θQ0(Bn

j ) + ni,j + h
)

∏ki−1,j−1
h=0

(
θQ0(Bn

j ) + h
)∏ki+1,j−1

h=0

(
θQ0(Bn

j ) + h
) → ∞

as n → ∞, since Q0(Bn
j ) → 0 and the denominator vanishes. Case (ii) is obtained similarly. In
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case (iii), rewrite the weights as
∏ki−1,j+ki+1,j−1
h=0

(
θQ0(Bn

j ) + ni,j + h
)

∏ki−1,j−1
h=0

(
θQ0(Bn

j ) + h
)∏ki+1,j−1

h=0

(
θQ0(Bn

j ) + h
)

=
∏ki−1,j−1
h=0

(
θQ0(Bn

j ) + ni,j + h
)

∏ki−1,j−1
h=0

(
θQ0(Bn

j ) + h
) ∏ki−1,j+ki+1,j−1

h=ki−1,j

(
θQ0(Bn

j ) + ni,j + h
)

∏ki+1,j−1
h=0

(
θQ0(Bn

j ) + h
) .

(59)

Here the left factor is such that∏ki−1,j−1
h=0

(
θQ0(Bn

j ) + ni,j + h
)

∏ki−1,j−1
h=0

(
θQ0(Bn

j ) + h
) ≥ 1

and the right factor can be written∏ki−1,j+ki+1,j−1
h=ki−1,j

(
θQ0(Bn

j ) + ni,j + h
)

∏ki+1,j−1
h=0

(
θQ0(Bn

j ) + h
) =

∏ki+1,j−1
h=0

(
θQ0(Bn

j ) + ki−1,j + ni,j + h
)

∏ki+1,j−1
h=0

(
θQ0(Bn

j ) + h
) .

Therefore, the left hand side of (59) is greater than or equal to
∏ki+1,j−1
h=0

(
θQ0(Bn

j ) + ki−1,j + ni,j + h
)

∏ki+1,j−1
h=0

(
θQ0(Bn

j ) + h
)

which diverges to infinity as n → ∞ as well. Thus, nodes with shared observations have divergent
unnormalized weights. Let S = Di−1 ∪Di+1 be the set of shared values and let (ki−1,ki+1) ∈ D.
Then, we can write the associated weight as

θ(|ki−1|)θ(|ki+1|)

(θ + |ni|)(|ki−1|+|ki+1|)

×
K∏
j=1

∏ki−1,j+ni,j+ki+1,j−1
h=0

(
θQ0(Bn

j ) + h
)

∏ki−1,j−1
h=0

(
θQ0(Bn

j ) + h
)∏ni,j−1

h=0

(
θQ0(Bn

j ) + h
)∏ki+1,j−1

h=0

(
θQ0(Bn

j ) + h
)

= θ(|ki−1|)θ(|ki+1|)

(θ + |ni|)(|ki−1|+|ki+1|)

×
∏
j∈S

∏ki−1,j+ni,j+ki+1,j−1
h=1

(
θQ0(Bn

j ) + h
)

∏ki−1,j−1
h=1

(
θQ0(Bn

j ) + h
)∏ni,j−1

h=1

(
θQ0(Bn

j ) + h
)∏ki+1,j−1

h=1

(
θQ0(Bn

j ) + h
)

× 1∏
j∈S Q0(Bn

j )∏ni,j−1
h=0 Q0(Bn

j )
.

Here the third factor on the right hand side is common to each node and is cancelled upon
normalizing, while the second factor converges to the product in statement C, proving the
result.
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Proof of Proposition 7

Proof. The first statement follows as in the proof of Theorem 9 by noting that conditioning on
Xi−1,Xi+1 in (2.32) is qualitatively analogous to conditioning to Xt0:i−1 ,Xti+1,T in (2.36)-(2.37),
since the main argument (57) is based on the factorization of the likelihoods of the data collected
prior, concurrently and after the signal state. The second statement follows by the linearity of
the expected value in (57) and by readjusting the weights.

Proof of Corollary 2

Proof. The statement can be easily proved by noting that

P(Xi ∈ A|X0:T ) =E
[
P(Xi ∈ A|Pi,X0:T )|X0:T

]
= E

[
Pi(A)|X0:T

]
and using (2.38), after recalling that if W ∼ DP (α) then E(W ) = α/α(X).

A3 Proofs of Section 2.3

Proof of Lemma 5

Proof. The result immediately follows upon noting that

P(Kn = t | X1:n) =

1 +
∑
s ̸=t

P(Kn = s | X1:n)
P(Kn = t | X1:n)


−1

.

Proof of Proposition 10

By assumptions A1 and A2 there exist ϵ, δ, β > 0 such that

1
δ2

∫ ϵ
0
αt+s+β

α(n) dα∫ ϵ
0
αt+β

α(n) dα
≤
∫ ϵ

0
αt+s

α(n) π(α) dα∫ ϵ
0

αt

α(n)π(α) dα
≤ δ2

∫ ϵ
0
αt+s+β

α(n) dα∫ ϵ
0
αt+β

α(n) dα
. (60)

Notice that, if assumption A2 holds for ϵ ≥ 1, it holds also for ϵ < 1. Thus, without loss of
generality, we will assume ϵ < 1 and the main object of interest will be

En[αs] =
∫ ϵ

0
αspn(α)dα,

where En denotes the expected value with respect to the probability distribution with density

pn(α) = fn(α)∫ ϵ
0 fn(x) dx, fn(x) = xt+β

x(n) 1(0,ϵ)(x), (61)

where 1A stands for the indicator function of set A. We now provide three lemmas that will be
useful to prove Proposition 10.

Lemma 8. Let f and g be two pdf’s on R such that g(x)/f(x) is non-decreasing in x. Then∫
h(x)f(x)dx ≤

∫
h(x)g(x)dx for every non-decreasing h : R → R.
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Proof. Let X ∼ f and Y ∼ g. Since g(x)/f(x) is non-decreasing we have g(x0)f(x1) ≤
g(x1)f(x0) for every x0 < x1. Thus we have

FY (x1)f(x1) =
∫ x1

−∞
g(x0)f(x1)dx0 ≤

∫ x1

−∞
g(x1)f(x0)dx0 = FX(x1)g(x1)

and

{1 − FX(x0)}g(x0) =
∫ ∞
x0

g(x0)f(x1)dx1 ≤
∫ ∞
x0

g(x1)f(x0)dx1 = {1 − FY (x0)}f(x0).

It follows

FY (x)
FX(x) ≤ g(x)

f(x) ≤ 1 − FY (x)
1 − FX(x) ,

for every x ∈ R, which implies

FY (x)
1 − FY (x) ≤ FX(x)

1 − FX(x) .

Thus, Y stochastically dominates X, i.e. the corresponding cdf’s satisfy FY (x) ≤ FX(x) for
every x ∈ R, which implies that E[h(X)] ≤ E[h(Y )] for every non-decreasing h.

Lemma 9. Under assumptions A1 and A2, for every n− t > s ≥ 1 it holds

γ[t+ s+ β, ϵ{log(n) + 1}]
δ2γ[t+ β, ϵ{log(n) + 1}] {log(n)+1}−s ≤

∫ ϵ
0
αt+s

α(n) π(α) dα∫ ϵ
0

αt

α(n)π(α) dα
≤ δ2γ{t+ s+ β, ϵ log(n)}

γ{t+ β, ϵ log(n)} {log(n)/(1+ϵ)}−s,

where γ(x, y) is the lower incomplete Gamma function and we recall that ϵ, δ, β > 0 are such
that for every α ∈ (0, ϵ) it holds 1

δα
β ≤ π(α) ≤ δαβ.

Proof. By (60) it suffices to find suitable bounds of En[αs]. For the upper inequality we apply
Lemma 8 with f = pn, g(α) ∝ (cn)−ααt+β−1

1(α∈[0,ϵ]) with c = (1 + ϵ)−1 and h(α) = αs. To
verify that g(α)/pn(α) is non-decreasing for α ∈ (0, ϵ] we compute

d
dα log

{
g(α)
pn(α)

}
= − log

(
n

1 + ϵ

)
+
n−1∑
i=1

1
α+ i

≥ − log
(
n+ ϵ

1 + ϵ

)
+
n−1∑
i=1

1
i+ ϵ

≥ 0,

where the last inequality follows from

∫ k

1

1
x+ ϵ

dx <
k−1∑
i=1

1
i+ ϵ
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for every k > 1. Thus, since h(α) = αs is non-decreasing in α it follows by Lemma 8 that

En[αs] ≤
∫ ϵ

0 α
t+s+β−1(cn)−αdα∫ ϵ

0 α
t+β−1(cn)−α dα = {log(cn)}−s

∫ ϵ log(cn)
0 zt+s+β−1e−zdz∫ ϵ log(cn)

0 zt+β−1e−z dz

={log(cn)}−sγ{t+ s+ β, ϵ log(cn)}
γ{t+ β, ϵ log(cn)} .

The lower bound again follows from Lemma 8 with f(α) ∝ (en)−ααt+β−1
1(α∈[0,ϵ]), g(α) = pn(α)

and h(α) = αs. To verify that pn(α)/f(α) is non-decreasing for α ∈ (0, ϵ] we compute

d
dα log

{
pn(α)
f(α)

}
= −

n−1∑
i=1

1
α+ i

+ log(n) + 1

≥ −
n−1∑
i=1

1
i

+ log(n) + 1 ≥ 0,

where the last inequality follows from

k∑
i=1

1
i

≤ log(k) + 1

for every k ≥ 1. Thus, since h(α) = αs is non-decreasing in α, we have

En[αs] ≥
∫ ϵ

0 α
t+s+β−1(en)−αdα∫ ϵ

0 α
t+β−1(en)−α dα = {log(en)}−s

∫ ϵ log(en)
0 zt+s+β−1e−zdz∫ ϵ log(en)

0 zt+β−1e−z dz

= {log(en)}−sγ{t+ s+ β, ϵ log(en)}
γ{t+ β, ϵ log(en)} .

The proof is completed by combining the bounds with (60).

Lemma 10. For every ϵ > 0, there exists M > 0 such that, for every n ≥ 1, it holds

M

∫ ϵ

0

αt

α(n) π(α) dα ≥
∫ ∞
ϵ

αt

α(n) π(α) dα .

Proof. Define p =
∫∞

ϵ
αtπ(α) dα∫ ϵ

2
0 αtπ(α) dα

. Then

∫ ϵ

0

αt

α(n) π(α) dα−
∫ ∞
ϵ

αt

α(n) π(α) dα =
∫ ϵ

0

αt

α(n) π(α) dα−
∫ ϵ

2

0
p
αt

ϵ(n) π(α) dα

≥
∫ ϵ

2

0

αt

α(n) π(α) dα−
∫ ϵ

2

0
p
αt

ϵ(n) π(α) dα.

Choose m such that
(
ϵ
2

)(m)
< ϵ(m)

p , which is always possible because
{
ϵ(m)

}−1 (
ϵ
2

)(m)
→ 0 as

m → ∞. Thus ∫ ϵ

0

αt

α(n) π(α) dα ≥
∫ ∞
ϵ

αt

α(n) π(α) dα, n ≥ m
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and it suffices to set M = max(P, 1) with

P = max
1≤i≤m


∫∞
ϵ

αt

α(i) π(α) dα∫ ϵ
0

αt

α(i) π(α) dα

 .

Proof of Proposition 10. We first prove the upper bound. We have

C(n, t, t+ s) ≤
∫∞

0
αt+s

α(n) π(α) dα∫ ϵ
0

αt

α(n)π(α) dα
=
∫ ϵ

0
αt+s

α(n) π(α) dα∫ ϵ
0

αt

α(n)π(α) dα
+
∫ ϵ

0
αt+s

α(n) π(α) dα∫ ϵ
0

αt

α(n)π(α) dα

∫∞
ϵ

αt+s

α(n) π(α) dα∫ ϵ
0
αt+s

α(n) π(α) dα
.

Moreover, it holds∫∞
ϵ

αt+s

α(n) π(α) dα∫ ϵ
0
αt+s

α(n) π(α) dα
≤
∫∞
ϵ αt+s−1π(α) dα∫ ϵ
0 α

t+s−1π(α) dα ≤ δ

∫∞
ϵ αt+s−1π(α) dα∫ ϵ

0 α
t+s+β−1 dα ≤ δ E(αt+s−1) t+ s+ β

ϵt+s+β
,

where the first inequality follows since α(n) ≥ ϵ(n) for α ∈ (ϵ,∞) and α(n) ≤ ϵ(n) for α ∈ (0, ϵ),
while the second one follows from assumption A2. Moreover, E stands for the expected value
with respect to π. Thus from Lemma 13 it holds

C(n, t, t+ s) ≤
δ2
{

1 + E(αt+s−1) t+s+β
ϵt+s+β

}
γ{t+ s+ β, ϵ log(n)}

γ{t+ β, ϵ log(n)} {log(n)/(1 + ϵ)}−s.

Then choose G = 4δ2

ϵt+βγ(t+β,ϵ log 2) to obtain the upper bound. For the lower bound, apply Lemma
13 and Lemma 10 to get

C(n, t, t+ s) ≥ 1
M + 1

∫ ϵ
0
αt+s

α(n) π(α) dα∫ ϵ
0

αt

α(n)π(α) dα
≥ 1
M + 1

γ[t+ s+ β, ϵ{log(n) + 1}]
δ2γ[t+ β, ϵ{log(n) + 1}] {log(n) + 1}−s.

Then choose F = 1
(M+1)δ2γ(t+β) .

The following corollary of Proposition 10 will be useful.

Corollary 3. Suppose π satisfies assumptions A1 and A2. Then G > 0 as in Proposition 10 is
such that for every 0 < s < n and n ≥ 4 it holds

C(n, t, t+ s) ≤ GΓ(t+ β + 1)2ss
ϵ

E[αt+s−1] log{n/(1 + ϵ)}−1.

Proof. By Proposition 10 we have

C(n, t, t+ s) ≤ Gs

ϵs
E[αt+s−1]γ{t+ s+ β, ϵ log(n)}

log{n/(1 + ϵ)}s .

Note that

γ{t+ s+ β, ϵ log(n)} =
∫ ϵ log(n)

0
xt+s+β−1e−x dx ≤ ϵs−1{log(n)}s−1Γ(t+ β + 1),
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that implies

γ{t+ s+ β, ϵ log(n)}
ϵs logs{n/(1 + ϵ)} ≤ Γ(t+ β + 1)

ϵ

[
log(n)

log{n/(1 + ϵ)}

]s−1

log{n/(1 + ϵ)}−1.

Moreover, since ϵ < 1, we have log{n/(1 + ϵ)} ≥ 1
2 log(n) for every n ≥ 4. Combining the

inequalities above we obtain the desired result.

Proof of Lemma 6

Proof. We need to study R(n, 1, s) as in (2.52). Taking the expectation with respect to the data
generating distribution we have

E[R(n, 1, s)] =
∑

A∈τs(n)

∏s
j=1(aj − 1)!
(n− 1)! E

[∏s
j=1m(XAj )
m(X1:n)

]

=
∑

a∈Fs(n)

(
n

a1 · · · aj

)∏s
j=1(aj − 1)!
s!(n− 1)! E

∏s
j=1m(XAa

j
)

m(X1:n)


=

∑
a∈Fs(n)

n

s!∏s
j=1 aj

E

∏s
j=1m(XAa

j
)

m(X1:n)

 .

Proof of Lemma 4

Proof. Assumptions A1 and A2 are immediately satisfied in all three cases discussed in the
statement of the lemma. We thus focus on proving that A3 is satisfied, considering each of the
three cases separately. Suppose first that the support of the density π is contained in [0, c] with
c > 0. Then ∫ ∞

0
αsπ(α) dα ≤ cs .

Thus in this case assumption A3 is satisfied for every ρ > 0 because cs < Dρ−sΓ(s + 1) with
D = max

s∈N
(cρ)s

Γ(s+1) for every ρ > 0. Suppose now the prior is given by a Generalized Gamma
distribution, so that ∫ ∞

0
αsπ(α) dα = p

adΓ
(
d
p

) ∫ ∞
0

αd+s−1e−( α
a )p

dα .

The condition p > 1 implies that, for every fixed ρ > 0 and a > 0, there exists k > 0 such that
ρα ≤

(
α
a

)p
for every α ≥ k. Thus

∫ ∞
0

αd+s−1e−( α
a )p

dα ≤
∫ k

0
αs+d−1e−( α

a )p

dα+
∫ ∞
k

αs+d−1e−ρα dα

≤ ks+d−1e−( k
a )p

+ ρ−d−sΓ(s+ d).
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Also, ∫ ∞
0

αsπ(α) dα ≤ p

adΓ
(
d
p

)Γ(s+ d)

ks+d−1e−( k
a )p

Γ(s+ d) + ρ−d−s

 ≤

≤ Dρ−sΓ(s+ d),

with D = max
s∈N

p

adΓ
(

d
p

) {ks+d−1e
−( k

a )p
ρs

Γ(s+d) + ρ−d
}

, so that also in this case assumption A3 is satis-

fied for every ρ > 0. Finally, in the case of Gamma distribution we get∫ ∞
0

αsπ(α) dα = Γ(ν + s)
Γ(ν) ρ−s

and assumption A3 holds.

Proof of Theorem 10

Through a linear rescaling, we may assume [a, b] = [−c, c] without loss of generality. We rewrite
the assumptions on g and Q0 as

T1. ∃m,M such that 0 < m ≤ g(x) ≤ M < ∞ for every x ∈ [−c, c];

T2. g is differentiable on (−c, c) and ∃R such that |g
′(x)
g(x) | ≤ R < ∞ for every x ∈ (−c, c);

T3. ∃U > 0 such that h(y) = q0(y) + q0(−y) ≤ U for every y ∈ [0, 2c];

T4. ∃L > 0 such that q0(θ) ≥ L for every θ in a neighborhood of θ∗j , for every j.

Denote with f(x) = ∑t
j=1 pjk(x | θ∗j ) the density of the data generating P = ∑t

j=1 pjRj , with
t ∈ N, pj ∈ (0, 1) and ∑t

j=1 pj = 1. Since θ∗ = (θ∗1, . . . , θ∗t ) is completely separated and
X∞ ∼ P

(∞)
∗ , each point x has non-null density for at most one component of the mixture, i.e.

x ∈ [θ∗i + a, θ∗i + b] ⇒ f(x) = pik(x | θ∗i ) = pig(x− θ∗i ).

Therefore we can define

Cj =
{
i ∈ {1, . . . , n} : xi ∈ [θ∗j + a, θ∗j + b]

}
, nj = |Cj |.

Notice that Ci ∩ Cj = ∅ for every i ̸= j and {1, . . . , n} = ⋃t
j=1Cj , so that ∑t

j=1 nj = n.
Moreover, defining

C(n) =
{
nj > 0 for every j

}
,

for every x1:n ∈ C(n) it holds

∑
A∈τs(n)

s∏
j=1

(aj − 1)!
s∏
j=1

m(xAj ) = 0 for every s < t,

∑
B∈τt(n)

t∏
j=1

(bj − 1)!
t∏

j=1
m(xBj ) =

t∏
j=1

(nj − 1)!
t∏

j=1
m(xCj ).

(62)
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Since pj > 0 for every j = 1, . . . , s, we have P (n)
∗ (C(n)) → 1 as n → ∞. We need a technical

lemma.

Lemma 11. Let Ωn be a sequence of sets depending on X1:n, and let Zn be random variables
on the same probability space such that P (∞)(Ωn) → 1 and

Zn1Ωn → 0

in P
(∞)
∗ -probability as n → ∞. Then Zn → 0 in P

(∞)
∗ -probability as n → ∞.

Proof. By assumption P
(∞)
∗

(
1ΩnZn > ϵ

)
→ 0 as n → ∞. Thus, we have

P
(∞)
∗ (Zn > ϵ) ≤ P

(∞)
∗

{
(Zn > ϵ) ∩ Ωn

}
+ P

(∞)
∗ (Ωc

n) → 0

as n → ∞.

Thus by Lemma 11 it suffices to study

P(Kn = s | X1:n)
P(Kn = t | X1:n)1C(n) =

∫ αs

α(n)π(α) dα∫ αt

α(n)π(α) dα

∑
A∈τs(n)

∏s
j=1(aj − 1)!∏s

j=1m(XAj )∑
B∈τt(n)

∏t
j=1(bj − 1)!∏t

j=1m(XBj )
1C(n) . (63)

By (62), we have
P(Kn = s | X1:n)
P(Kn = t | X1:n)1C(n) = 0

for every s < t. Let us now consider the case s > t. Again by complete separability, A ∈ τs(n)
yields positive marginal density only if A is a refinement of the partition {C1, . . . , Ct}, i.e. if

A ∈ τ̃s(n) =
{
A ∈ τs(n) : ∀ i = 1, . . . , s there exists j ∈ {1, . . . , t} such that Ai ⊂ Cj

}
.

Therefore, if A ∈ τ̃s(n), we write the j-the element as Aj = (Aj1, . . . , Ajsj
) with ajk = |Ajk|, so

that ∑
A∈τ̃s(n)

s∏
j=1

(aj − 1)!
s∏
j=1

m(XAj ) =
∑
s∈S

t∏
j=1

∑
Aj∈τsj (nj)

sj∏
k=1

(ajk − 1)!
sj∏
k=1

m(X
Aj

k
),

where S =
{

(s1, . . . , st) : 1 ≤ sj ≤ nj , ∀j, and ∑t
j=1 sj = s

}
. By the above and (62) we can

rewrite (63) as

P(Kn = s | X1:n)
P(Kn = t | X1:n)1C(n) = C(n, t, s)

∑
A∈τ̃s(n)

∏s
j=1(aj − 1)!∏s

j=1m(XAj )∏t
j=1(nj − 1)!∏t

j=1m(XCj )
1C(n)

= C(n, t, s)
∑

s

t∏
j=1

∑
Aj∈τsj (nj)

∏sj

k=1(ajk − 1)!
(nj − 1)!

∏sj

k=1m(X
Aj

k
)

m(ACj ) 1C(n) ,

(64)

where
m(XCj ) =

∫
R

∏
i∈Cj

k(Xi | θj)Q0(dθj) =
∫
R

∏
i∈Cj

g(Xi − θj)Q0(dθj)
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and
m(X

Aj
h
) =

∫
R

∏
i∈Aj

h

k(Xi | θh)Q0(dθh) =
∫
R

∏
i∈Aj

h

g(Xi − θh)Q0(dθh),

with h = 1, . . . , sj . We divide and multiply by

n∏
i=1

f(Xi) =
t∏

j=1

∏
i∈Cj

pjk(Xi | θ∗j ) =
t∏

j=1

sj∏
h=1

∏
i∈Aj

h

pjk(Xi | θ∗j ),

so that the sum on the right hand side of (64) becomes

∑
s

t∏
j=1

∑
Aj∈τsj (nj)

∏sj

k=1(ajk − 1)!
(nj − 1)!

∏sj

k=1
∫
R
∏
i∈Aj

k

g(Xi−θk)
pjg(Xi−θ∗j ) Q0(dθk)∫

R
∏
i∈Cj

g(Xi−θj)
pjg(Xi−θ∗j ) Q0(dθj)

1C(n) , for s > t. (65)

We start with the denominator. The next lemma specifies the behaviour of the maximum for
each group, where Xj

(r) denotes the r-th order statistic of XCj .

Lemma 12. For every j = 1, . . . , t it holds

Y j
nj

:= min
[
1, nj(log(n))

1
2t {c+ θ∗j −Xj

(nj)}
]

→ 1

in P
(∞)
∗ -probability as n → ∞.

Proof. First, notice that nj → ∞ P
(∞)
∗ -almost surely as n → ∞. By definition Y j

nj
≤ 1, so we

have to prove that ∀ϵ > 0
P

(∞)
∗

(
1 − Y j

nj
> ϵ

)
→ 0

as nj → ∞. Without loss of generality assume θ∗j = 0. Thus, by definition we have

P
(∞)
∗ (1 − Y j

nj
> ϵ) = P

(∞)
∗

[
nj(log(n))

1
2t {c−Xj

(n)} ≤ 1 − ϵ
]

= P
(∞)
∗

Xj
(n) ≥ c− 1 − ϵ

nj(log(n)) 1
2t


= 1 −

1 −
∫ c

c− 1−ϵ

nj (log(n))
1
2t

g(x) dx


n

.

Thus, by T1 we have that
∫ c
c− 1−ϵ

nj (log(n))
1
2t

g(x) dx ≤ M(1−ϵ)
nj(log(n))

1
2t

, so that

P
(∞)
∗ (1 − Y j

nj
> ϵ) ≤ 1 −

1 − M(1 − ϵ)
nj(log(n)) 1

2t


n

= 1 − e

− M(1−ϵ)

(log(n))
1
2t

+nj o

(
1

nj (log(n))
1
2t

)
→ 0,

as n → ∞, by the Taylor expansion of the logarithmic function.
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Lemma 13. For every j = 1, . . . , t it holds

∏
i∈Cj

g(xi − θj)
g(xi)

≥ e−R1[0, 1
nj

](|θj − θ∗j |)1[xj
(nj )−c,x

j
(1)+c](θj − θ∗j ).

with R defined in T2 and xj(r) denotes the r-th order statistic of xCj .

Proof. Without loss of generality assume θ∗j = 0. Define p(x) := log g(x), with x ∈ [−c, c], so
that p′(x) = g′(x)

g(x) . By T2 and the Fundamental Theorem of Integral Calculus

|p(y) − p(x)| =
∣∣∣∣∫ y

x
p′(t) dt

∣∣∣∣ ≤
∫ y

x

∣∣∣∣∣g′(t)g(t)

∣∣∣∣∣ dt ≤ R|y − x|, −c < x ≤ y < c.

Thus, we have

g(x− θj)
g(x) = ep(x−θj)−p(x) = e−{p(x)−p(x−θj)} ≥ e−R|θj |, x ∈ [−c, c].

Finally, we get

∏
i∈Cj

g(xi − θj)
g(xi)

≥ e−Rnj |θj |1[xj
(nj )−c,x

j
(1)+c](θj) ≥ e−Rn|θj |1[0, 1

nj
](|θj |)1[xj

(nj )−c,x
j
(1)+c](θj)

≥ e−R1[0, 1
nj

](|θj |)1[xj
(nj )−c,x

j
(1)+c](θj).

Lemma 14. For every j = 1, . . . , t there exists K > 0 and Nj ∈ N such that for all nj ≥ Nj it
holds ∫

R

∏
i∈Cj

g(Xi − θj)
g(Xi − θ∗j )

q0(θj) dθj ≥
K

1
t Y j

nj

nj(log(n)) 1
2t

,

with Y j
nj

defined in Lemma 12.

Proof. Without loss of generality assume θ∗j = 0. Notice that, by T4, there exists Nj ∈ N such
that q0(θ) ≥ L for every θ ∈

[
− 1
Nj
, 0
]
. Thus, applying Lemma 13 and considering nj ≥ Nj , we

get∫
R

∏
i∈Cj

g(Xi − θj)
g(Xi)

q0(θj) dθj ≥ e−R
∫
R
1[0, 1

nj
](|θj |)1[Xj

(nj )−c,x
j
(1)+c](θj) q0(θj) dθj

≥ e−R
∫ 0

− 1
nj

1{Xj
(nj )≤θj+c} q0(θj) dθj ≥ Le−R min

{
1
nj
, c−Xj

(nj)

}
,

with L defined in T4. Thus, multiplying both the numerator and the denominator by nj(log(n)) 1
2t ,
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with n ≥ N , we have∫
R

∏
i∈Cj

g(Xi − θj)
g(Xi)

q0(θj) dθj ≥ 2Le−R min
{

1
nj
, c−Xj

(nj)

}

≥
K

1
t min

[
1, nj(log(n)) 1

2t {c−X(n)}
]

nj(log(n)) 1
2t

= K
1
2tYn

nj(log(n)) 1
2t

,

with K = (2Le−R)t.

Define the event

Ωn =
{

for every j = 1, . . . , t it holds: nj ≥ Nj , Y
j
nj

∈ [1/2, 1]
}
, (66)

such that P (n)
∗ (Ωn) → 1 thanks to Lemma 12 and Lemma 14. Thus, an upper bound of (65)

with Ωn in place of C(n) is given by

T (n) := 2t
√

log(n)
K

∑
s

t∏
j=1

∑
Aj∈τsj (nj)

nj

∏sj

k=1(ajk − 1)!
(nj − 1)!

sj∏
h=1

∫
R

∏
i∈Aj

h

g(Xi − θh)
g(Xi − θ∗j )

Q0(dθh)1Ωn , (67)

for s > t. Now we apply the expected value with respect to the values of each group, as shown
in the next lemma.

Lemma 15. Under X1:n ∼ P
(n)
∗ , for every j = 1, . . . , t, sj ≥ 1 and (θ1, . . . , θsj ) ∈ Rsj , we have

E

 sj∏
h=1

∫
Rsj

∏
i∈Aj

h

g(Xi − θh)
g(Xi − θ∗j )

q0(θh) dθh

 ≤
(
U

m

)sj sj∏
h=1

1
ajh + 1

,

with m and U defined in T1 and T3.

Proof. Without loss of generality assume θ∗j = 0. Taking the expectation under P (n)
∗ we have

E

∫Rsj

sj∏
h=1

∏
i∈Aj

h

g(Xi − θh)
g(Xi)

q0(θh) dθh

 =
∫
Rsj

∫
[−c,c]nj

sj∏
h=1

∏
i∈Aj

h

g(xi − θh)q0(θh) dxi dθh, (68)

By the change of variables z = x− θh, we have∫ c

−c
g(x− θh)1[θh−c,θh+c](x) dx =

∫ c−θh

−c−θh

g(z)1[−c,c](z) dz.

If θh > 0, then∫ c−θh

−c−θh

g(z)1[−c,c](z) dz = 1[0,2c](θh)
∫ c−θh

−c
g(z) dz

= 1[0,2c](θh)
(

1 −
∫ c

c−θh

g(z) dz
)

≤ 1[0,2c](|θh|)
(
1 −m|θh|

)
.
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Similarly, if θh < 0 we get∫ c−θh

−c−θh

g(z)1[−c,c](z) dz = 1[−2c,0](θh)
∫ c

−c−θh

g(z) dz

= 1[−2c,0](θh)
(

1 −
∫ −c−θh

−c
g(z) dz

)
≤ 1[0,2c](|θh|)

(
1 −m|θh|

)
.

Thus ∫ c

−c
g(x− θh)1[θh−c,θh+c](x) dx ≤ 1[0,2c](|θh|)

(
1 −m|θh|

)
, h = 1, . . . , sj ,

which implies
sj∏
h=1

∏
i∈Aj

h

∫ c

−c
g(x− θh)1[θh−c,θh+c](x) dx ≤

sj∏
h=1

1[0,2c](|θh|)
(
1 −m|θh|

)
.

Considering h defined as in T3, we have∫
R
1[0,2c](|θh|)

(
1 −m|θh|

)
q0(θh) dθh =

∫ 2c

0

(
1 −m|θh|

)
h(θh) dθh, h = 1, . . . , sj .

Combining the above with (68) we get

E

∫Rsj

sj∏
h=1

∏
i∈Aj

h

g(Xi − θh)
g(Xi)

q0(θh) dθh

 =
∫
Rsj

∫
[−c,c]nj

sj∏
h=1

∏
i∈Aj

h

g(xi − θh)q0(θh) dxi dθh

≤
sj∏
h=1

∫ 2c

0

(
1 −m|θh|

)
h(θh) dθh.

(69)

With U defined as in T3, we have∫ 2c

0
(1 −my)a

j
hh(y) dy ≤ U

∫ 2c

0
(1 −my)a

j
h dy.

Now consider the change of variables u = 1 −my and compute

∫ 2c

0
(1 −my)a

j
h dy = 1

m

∫ 1

1−2mc
ua

j
h du = 1 − (1 − 2mc)a

j
h

+1

m(ajh + 1)
≤ 1
m(ajh + 1)

.

Finally, through (69), we have

E

∫Rsj

sj∏
h=1

∏
i∈Aj

h

g(Xi − θh)
g(Xi)

q0(θh) dθh

 ≤
sj∏
h=1

∫ 2c

0

(
1 −m|θh|

)
h(θh) dθh

≤
(
U

m

)sj sj∏
h=1

1
ajh + 1

,

as desired.
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We have the next two technical lemmas.

Lemma 16. Let p∗ = minj∈{1,...,t} pj ∈ (0, 1). It holds

∑
s∈S

s!∏t
j=1 sj !

=
∑

s

(
s

s1, . . . , st

)
≤ (p∗)−s,

where S =
{

(s1, . . . , st) : sj ≤ nj and
∑t
j=1 sj = s

}
.

Proof. The result follows immediately from

∑
s∈S

(
s

s1, . . . , st

)
≤ (p∗)−s

∑
s∈S

(
s

s1, . . . , st

)
t∏

j=1
p
sj

j

≤ (p∗)−s
∑

s∈Rt

(
s

s1, . . . , st

)
t∏

j=1
p
sj

j = (p∗)−s,

where Rt =
{

(s1, . . . , st) : ∑t
j=1 sj = s

}
, since the sum on the right-hand side is the sum of

the probabilities over all the possible values of a multinomial distribution with parameters
(s, p1, . . . , pt).

Lemma 17. For every p > 1 and for every integers s ≥ 2 and n ≥ s it holds

∑
a∈Fs(n)

(
n∏s

j=1 aj

)p
< Cs−1

p ,

where Fs(n) =
{

a ∈ {1, . . . , n}s : ∑s
j=1 aj = n

}
and Cp = 2pζ(p), with ζ(p) = ∑∞

a=1
1
ap < ∞.

Proof. We prove the result by induction. Consider the base case s = 2. By the strict convexity
of x 7→ xp for p > 1 we have

∑
a∈F2(n)

(
n

a1a2

)p
=

n−1∑
a=1

{
n

a(n− a)

}p
= 2p

n−1∑
a=1

(1
2

1
a

+ 1
2

1
n− a

)p
< 2p

n−1∑
a=1

1
ap

< Cp,

for every n ≥ 2. For the induction step, assume that for some s ≥ 3 we have

∑
a∈Fs−1(n)

 n∏s−1
j=1 aj

2

< Cs−2
p
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for all n ≥ s− 1. Then

∑
a∈Fs(n)

(
n∏s

j=1 aj

)p
=

n−s+1∑
as=1

∑
(a1,...,as−1)∈Fs−1(n−as)

(
n∏s

j=1 aj

)p

=
n−s+1∑
as=1

{
n

(n− as)as

}p ∑
(a1,...,as−1)∈Fs−1(n−as)

 n− as∏s−1
j=1 aj

p

≤ Cs−2
p

n−s+1∑
as=1

{
n

(n− as)as

}p
< Cs−1

p

and thus the thesis follows by induction.

In the following we will drop the subscript in Cp when the value of p is clear from the context,
thus denoting C = Cp.

Lemma 18. Consider the setting of (2.42) with (f, k, q0) as in Theorem 10. Moreover, assume
π(α) satisfies assumptions A1, A2, and A3. Then, under X1:∞ ∼ P

(∞)
∗ we have

E

1Ωn

n−t∑
s=1

P(Kn = t+ s |X1:n)
P(Kn = t |X1:n)

 → 0

as n → ∞, with Ωn as in (66).

Proof. Applying Lemma 15 we can upper bound the expected value of T (n) in (67) as follows

E
[
T (n)

]
≤ 2t

√
log(n)
K

(
U

m

)s∑
s

t∏
j=1

∑
Aj∈τsj (nj)

nj

(nj − 1)!∏sj

k=1(ajk + 1)

≤ 2t
√

log(n)
K

(
U

m

)s∑
s

t∏
j=1

1
sj !

∑
aj∈Fsj (nj)

 nj∏sj

k=1 a
j
k

2

,

where the last inequality follows from Lemma 6. Moreover, from Lemma 17 we have

∑
aj∈Fsj (nj)

 nj∏sj

k=1 a
j
k

2

< Csj ,

with constant C < 7. Thus

E
[
T (n)

]
≤ 2t

√
log(n)
K

(
UC

m

)s∑
s

t∏
j=1

1
sj !
. (70)

Moreover, from Corollary 3 and A3 we have

C(n, t, t+ s) ≤ GΓ(t+ β + 1)2ss
ϵ

E(αt+s−) log{n/(1 + ϵ)}−1

≤ DGΓ(t+ β + 1)2ss
ϵ

ρ−(t+s−1)Γ(ν + t+ s) log{n/(1 + ϵ)}−1, n ≥ 4 .
(71)
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By (70), combined with Lemma 16, and (71) we finally have

E
[
1Ωn

n−t∑
s=1

P(Kn = s+ t|X1:n)
P(Kn = t|X1:n)

]
=

n−t∑
s=1

C(n, t, t+ s)E[1ΩnR(n, t, t+ s)]

≤ 2tρ1−t(U/m)tDGΓ(t+ β + 1)
√

log(n)
Kϵ log{n/(1 + ϵ)}

n−1∑
s=1

s(2CUp∗/m)sρ−sΓ(ν + t+ s)
(s+ 1)!︸ ︷︷ ︸
<∞

→ 0,

as n → ∞, where finiteness follows by taking ρ sufficiently large.

Proof of Theorem 10. First of all, assume π(·) satisfies A1 −A3. By Lemma 18 it holds

1Ωn

n−t∑
s=1

P(Kn = t+ s |X1:n)
P(Kn = t |X1:n) → 0

in P
(∞)
∗ –probability as n → ∞. The desired result then follows from Lemma 11 with Zn =∑n−t

s=1
P(Kn=t+s |X1:n)
P(Kn=t |X1:n) and Ωn as in (66).

Assume instead π(α) = δα∗(α) with α∗ > 0. By (64) we have

P(Kn = t+ 1 | X1:n)
P(Kn = t | X1:n) ≥ α∗

∑
s∈S

t∏
j=1

∑
Aj∈τsj (nj)

∏sj

k=1(ajk − 1)!
(nj − 1)!

∏sj

k=1m(X
Aj

k
)

m(ACj ) .

Notice that, with n high enough, n1 > 1 almost surely. Then, denoting i ∈ C1, we consider the
special case

s = (2, 1, . . . , 1), A1
1 = {i}, A1

2 = AC1\{i},

and Aj = {ACj } for every j ≥ 2. Thus we can write

P(Kn = t+ 1 | X1:n)
P(Kn = t | X1:n) ≥ α∗

∑
i∈C1

1
n1 − 1

m(Xi)m
(
XC1\i

)
m
(
XCj

) . (72)

By T1 we have

m
(
XCj

)
=
∫
R

∏
j∈C1

g(Xj − θ)q0(θ) dθ

≤ M

∫
R

∏
j∈C1\i

g(Xj − θ)q0(θ) dθ = Mm
(
XC1\i

)
.

Moreover, by T4 there exists ϵ > 0 such that

m(Xi) =
∫
R
g(Xi − θ)q0(θ)dθ ≥ m

∫ θ∗1+ϵ

θ∗1−ϵ
q0(θ)dθ ≥ 2mLϵ.

Therefore, (72) becomes

P(Kn = t+ 1 | X1:n)
P(Kn = t | X1:n) ≥ 2α∗mLϵ

M

∑
i∈C1

1
n1 − 1 = 2α∗mLϵ

M

n1
n1 − 1 ,
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and
lim inf

n→∞

∑
s ̸=t

P(Kn = s | X1:n)
P(Kn = t | X1:n) ≥ lim inf

n→∞
P(Kn = t+ 1 | X1:n)
P(Kn = t | X1:n) ≥ α∗mLϵ

M
> 0.

Then

lim sup
n→∞

P(Kn = t | X1:n) = lim sup
n→∞

1 +
∑
s ̸=t

P(Kn = s | X1:n)
P(Kn = t | X1:n)


−1

= 1
1 + lim infn→∞

∑
s ̸=t

P(Kn=s|X1:n)
P(Kn=t|X1:n)

> 0,

which completes the proof.

Proof of Proposition 8

We adapt the proof of Theorem 2.1 in Cai et al. (2021). Denote by

Ψ =
{
k(· | θ) : θ ∈ Θ ⊆ Rp

}
the family of kernels, dominated by µ, either Lebesgue or counting measure, and with common
domain X ⊆ Rq. Denote with Bx(ϵ) the closed ball of center x ∈ X and radius ϵ > 0. Let Θ̄ be
the closure of Θ and define the set

B :=
{
θ̄ ∈ Θ̄\Θ : lim

θ→θ̄

{
sup
x
k(x | θ)

}
= ∞

}
.

Let Gs be the set of mixtures of exactly s elements in Ψ, that is

f ∈ Gs ⇔ f =
s∑
j=1

qjk(· | θj),

with qj > 0 for every j, ∑s
j=1 qj = 1 and θi ̸= θh for every i ̸= h. Let P(G) be the set of

probability measures on a generic space G; with a slight abuse of notation we will say f ∈ P(G)
when f is the density of a probability measure P ∈ P(G). Therefore, given P ∈ Gt, with weights
{pj}tj=1 and parameters {θ∗j}tj=1, we define the Kullback-Leibler neighborhoods of P as

KLϵ(P ) :=
{
h ∈ P (X) :

∫
log

{∑t
j=1 pjk(x | θ∗j )

h(x)

}
P (dx) < ϵ

}
, (73)

for ϵ > 0. We make the following assumptions:

H1. For every θ̄ ∈ Θ\B, for µ-almost every x ∈ X there exists A := A(θ̄, x) ⊂ Θ\B neighbor-
hood of θ̄ so that the mapping θ ∈ A → k(x | θ) is continuous. Moreover B is closed;

H2. Let {θi}∞i=1 ⊂ Θ. If ||θi|| → ∞ as i → ∞, then for every compact set K ⊂ X,∫
K k(x | θi)µ(dx) → 0, as i → ∞. If θi → θ̄ ∈ B, then there exists x∗ ∈ X such that
k(· | θi) → δx∗(·) weakly as i → ∞;

H3. If f ∈ Gt, then there exist no f ′ ∈ Gs, with s < t, such that f(x) = f ′(x) µ-almost surely;

H4. For every P ∈ Gt, t ≥ 1, with θ∗1, . . . , θ
∗
t belonging to the support of Q0, we have

pr(h ∈ Kϵ(P )) > 0 for every ϵ > 0, where h follows the prior distribution in (2.42).
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Assumption H2 says that, when θ diverges or converges to elements in B, the kernel k degen-
erates: it is satisfied for instance when the elements of θ are location or scale parameters. H3
instead implies that the clustering problem is not ill-posed, in the sense that different numbers
of components always lead to different distribution. H4 finally requires that the finite mixtures
of the kernel k(· | θ) belongs to the Kullback-Leibler support of the prior. They are all weak
requirements, satisfied by the most common kernels. Next Lemma shows that they are satisfied
under assumptions B1 −B3.

Lemma 19. Suppose the kernel k(x | θ) satisfies assumptions B1 − B3. Then H1 − H4 are
fulfilled.

Proof. Assumption H3 can be easily deduced from B1 and (2.47). As regards H1, since
supθ∈Θ,x∈X k(x | θ) < ∞, we have B = ∅. Moreover, fix θ̄ ∈ R. If x > θ + b, choose

A(θ̄, x) =
(
θ̄ − x− θ̄ − b

2 , θ̄ + x− θ̄ − b

2

)
,

so that x > θ + b that implies k(x | θ) = 0 for every θ ∈ A(θ̄, x). Similarly, if x < θ + a, choose

A(θ̄, x) =
(
θ̄ − θ̄ + a− x

2 , θ̄ + θ̄ + a− x

2

)
.

Finally, if x ∈ (θ̄ + a, θ̄ + b), denoting d = min{θ̄ + b− x, x− θ̄ − a}, choose

A(θ̄, x) =
(
θ̄ − d

2 , θ̄ + d

2

)
.

Then k(x | θ) = g(x− θ) for every θ ∈ A(θ̄, x) and g is continuous on (a, b), by B2. Thus we can
find the required neighborhood A(θ̄, x) for every x ̸∈ {θ̄+ a, θ̄+ b}, that is for µ-almost every x,
since µ is the Lebesgue measure. Therefore H1 is satisfied.

H2 follows since θ is a location parameter and Θ̄ = Θ. We are left to show that H4 is
satisfied: we prove the case t = 1 and the general setting follows similarly.

Recall that assumptions B1−B3 can be rewritten as T1−T4 in the proof of Theorem 10 and
let f(x) = k(x | θ∗) be the density function of P . Fix δ > 0, ϵ > 0 and denote r = 1 − exp(ϵ/4).
Define the set

F(δ, r) :=
{
p(x) =

∞∑
j=1

qjk(x | θj) : q1 ∈ [1 − r, 1], q2 ∈ [r/2, 1],

0 ≤ θ∗ − θ1 ≤ δ, 0 ≤ θ2 − θ∗ ≤ δ

}
.

(74)

We denote [aj , bj ] := [a + θj , b + θj ], with j ≥ 1, and similarly [a∗, b∗] := [a + θ∗, b + θ∗]. Then
we can choose δ small enough such that

[a1, b1] ∪ [a2, b2] ⊇ [a∗, b∗],
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for every θ1 and θ2 as in (74). Moreover, for every x ∈ S1 := [a1, b1] ∩ [a∗, b∗] we have

log
{
g(x− θ∗)
q1g(x− θ1)

}
= − log(q1) + log

{
g(x− θ∗)
g(x− θ1)

}
≤ ϵ/4 + log

{
g(x− θ∗)
g(x− θ1)

}
≤ ϵ/4 +R|θ∗ − θ1|

with R > 0 as in T2. Therefore we can choose δ small enough so that

log
{
g(x− θ∗)
q1g(x− θ1)

}
<
ϵ

2 (75)

for every x ∈ S1. Similarly, we can choose δ small enough so that for every x ∈ S2 := [a∗, b∗] \
[a1, b1] we have ∫

S2
g(x− θ∗) log

{
g(x− θ∗)
q2g(x− θ2)

}
dx < ϵ

2 . (76)

Indeed, since g(x− θ∗) ≤ M and m ≤ g(x− θ2) for every x in S2, with m and M as in T1, we
have

g(x− θ∗) log
{
g(x− θ∗)
q2g(x− θ2)

}
< M log{2M/(mr)},

and S2 has arbitrarily small length with δ small enough. For every p ∈ F(δ, r), by applying (75)
and (76), we have∫ b∗

a∗
g(x− θ∗) log

{
g(x− θ∗)∑∞

j=1 qjg(x− θj)

}
dx =

∫
S1
g(x− θ∗) log

{
g(x− θ∗)∑∞

j=1 qjg(x− θj)

}
dx+

∫
S2
g(x− θ∗) log

{
g(x− θ∗)∑∞

j=1 qjg(x− θj)

}
dx ≤

∫
S1
g(x− θ∗) log

{
g(x− θ∗)
q1g(x− θ1)

}
dx+

∫
S2
g(x− θ∗) log

{
g(x− θ∗)
q2g(x− θ2)

}
dx ≤ ϵ.

Thus, F(δ, r) ⊆ Kϵ(P ) for δ small enough. Moreover, since θ∗ belongs to the support of Q0 and
the Dirichlet process prior has full weak support on the space of probability weights {qj}j , we
have that

pr{h ∈ Kϵ(P )} ≥ pr{h ∈ F(δ, r)} > 0,

as desired.

The proof of Proposition 8 will rely on the following Lemma.

Lemma 20. Let assumption H4 be satisfied and let P ∈ Gt with parameters θ∗1, . . . , θ∗t belonging
to the support of Q0. Assume there exists U weak neighborhood of P such that U ∩ Gs = ∅ for
every s < t. Then

pr
(
Kn < t | X1:n

)
→ 0,

in P (∞)-probability as n → ∞.

Proof. By assumption H4, the posterior distribution is consistent at P under the weak topology,
in virtue of Schwartz theorem (see e.g.Theorem 6.16 and Example 6.20 in Ghosal and Van Der
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Vaart (2017)), so that
pr(h ∈ Uc | X1:n) → 0, (77)

in P (∞)-probability as n → ∞. Moreover, we have

pr(h ∈ Uc | X1:n) ≥ pr(h ∈ Uc | X1:n,Kn < t)pr
(
Kn < t | X1:n

)
.

Notice that, conditional on Kn < t, the domain of the posterior distribution is a subset of
∪s<tGs. Thus we have pr(h ∈ Uc | X1:n,Kn < t) = 1 and

pr(h ∈ Uc | X1:n) ≥ pr
(
Kn < t | X1:n

)
.

The result follows from (77).

We need two technical Lemmas.

Lemma 21. Assume a sequence {fi}∞i=1 ⊂ ∪s<tGs is such that fi → f ∈ P(X) weakly as i → ∞.
Then there exist s′ < t and a sequence {f ′i}∞i=1 ⊂ Gs′ such that f ′i → f weakly as i → ∞.

Proof. Define
as := sup{i ≥ 1 : fi ∈ Gs}

with s < t. By construction, there exists s′ such that as′ = ∞ and {f ′i} is the subsequence of
elements of {fi} that belong to Gs′ .

Lemma 22. Let
{
fi = ∑s

j=1 qj,ik(· | θj,i)
}∞
i=1

⊂ Gs be such that fi → f ∈ P(X) weakly as
i → ∞. Then there exist s′ ≤ s and a sequence {f ′i}∞i=1 ⊂ Gs′ such that f ′i → f weakly as
i → ∞ and

lim inf
i
q′j,i > 0

for every j = 1, . . . , s′.

Proof. If lim inf i qj,i = 0 for every j = 1, . . . , s, the statement is true by taking s := s′ and
f ′i := fi for every i ≥ 1. Then assume there exists l such that lim inf i ql,i = 0. Consider a
subsequence {f̃i}∞i=1, with weights {q̃j,i}i and parameters {θ̃j,i}i, such that limi q̃l,i = 0 and
define

f ′i(x) =
∑
j ̸=l

q̃j,i∑
r ̸=l q̃r,i

k(x | θ̃j,i),

where ∑r ̸=l q̃r,i → 1, by construction. Let A ⊂ X, then
∣∣∣∣∫
A
f̃i(x)µ(dx) −

∫
A
f ′i(x)µ(dx)

∣∣∣∣ =
∑
j ̸=l

(
q̃j,i∑
r ̸=l q̃r,i

− q̃j,i

)∫
A
k(x | θ̃j,i)µ(dx)

+ q̃l,i

∫
A
k(x | θ̃l,i)µ(dx) ≤

∑
j ̸=l

(
q̃j,i∑
r ̸=l q̃r,i

− q̃j,i

)
+ q̃l,i → 0,

as i → ∞. Therefore, since A is arbitrary and {f̃i} converges to f , also {f ′i} converges weakly
to f and {f ′i}∞i=1 ∈ Gs−1. The result follows by applying recursively the above procedure for
every l satisfying lim inf i ql,i = 0.
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Proof of Proposition 8. By Lemma 19 we can assume H1 −H4 and by Lemma 20, it suffices to
prove the existence of a weak neighborhood U of P such that U ∩Gs = ∅, for every s < t. Assume
by contradiction that no such U exists. Then, there exists a sequence {fi} ∈ ∩s<tGs such that
fi → f weakly, as i → ∞, where f is the density of P . By Lemmas 21 and 22 we can assume
without loss of generality that {fi} ∈ Gs, with s < t, and lim inf i qj,i > 0 for every j = 1, . . . , s.
We will consider three scenarios, of which at least one must hold: (i) there exists l ∈ {1, . . . , s}
such that lim supi ||θl,i|| = ∞, (ii) the sequences {θj,i}∞i=1, with j = 1, . . . , s, belong to a compact
set C ⊂ Θ\B for i large enough, (iii) the sequences {θj,i}∞i=1, with j = 1, . . . , s, belong to a
compact set C ⊂ Θ and there exists l ∈ {1, . . . , s} such that lim inf i infθ∈B ||θl,i − θ|| = 0.

First consider case (i) and assume there exists 1 ≤ l ≤ s such that ||θl,r(i)|| → ∞ as i → ∞
for a suitable subsequence r(i). Fix 0 < ϵ < lim inf i ql,i and choose K ⊂ X compact set such
that P (K) > 1 − ϵ/4. By assumption H2 we have∫

Kc
fr(i)(x)µ(dx) > ql,r(i)

∫
Kc
k(x | θl,r(i))µ(dx) > ϵ

2 ,

for i large enough, which contradicts the weak convergence of {fi}∞i=1 to f .
Second, assume to be in case (ii) and there exists a compact set C ⊂ Θ\B such that θi,j ∈ C

for every i ≥ 1 and j = 1, . . . , s. Define the set

Ds :=

ν(dθ) =
s∑
j=1

qjδθj
(dθ) : θj ∈ C, qj > 0,

s∑
j=1

qj = 1

 ⊂ P(Θ).

Since C is compact, we have that Ds is tight. By Prokhorov’s Theorem Ds is also relatively
compact, so that there exists a subsequence r(i) such that

νr(i) =
s∑
j=1

qj,r(i)δθj,r(i) → ν ∈ P(Θ)

weakly as i → ∞. By Lemma 4.1 in Cai et al. (2021) we have ν ∈ Ds, so that ν = ∑s
j=1 q̃jδθ̃j

for
some q̃j ∈ (0, 1), ∑s

j=1 q̃j = 1 and θ̃j ∈ C, for j = 1, . . . , s. By H1 and C ⊂ Θ\B, for µ-almost
every x ∈ X, we can find Cj := Cj(x, θ̃j), with j = 1, . . . , s, closed neighborhood of θ̃j , so that
k(x | θ) is continuous as a function of θ, with θ ∈ Cj . Define D :=

{⋃s
j=1Cj

}
∩ C compact

set: notice that D ̸= ∅, since θ̃j ∈ C ∩ Cj , with j = 1, . . . , s. Moreover, by construction, the
mapping θ ∈ D → k(x | θ) is continuous and therefore bounded, since D is compact. Since
νi → ν weakly, as i → ∞, there exists I such that for every i ≥ I we have θj,r(i) ∈ D, for every
j = 1, . . . , s. Thus, by definition of weak convergence we have

s∑
j=1

qj,r(i)k(x | θj,r(i)) =
∫
k(x | θ)νr(i)(dθ) →

∫
k(x | θ)ν(dθ) =

s∑
j=1

q̃jk(x | θ̃j),

as i → ∞. Since almost sure pointwise convergence of densities implies weak convergence, we
have

fr(i) → f̃ =
s∑
j=1

q̃jk(· | θ̃j)

weakly as i → ∞. By uniqueness of the weak limit, f̃(x) = f(x) for µ-almost every x, that
contradicts H3.



86 Hierarchies based on the Dirichlet process

Third, consider case (iii). Since θj,i ∈ C ⊂ Θ compact set, for every j = 1, . . . , s and i ≥ 1,
there exists a suitable subsequence r(i) such that θl,r(i) → θ̄. Since B is closed by H1, we have
that θ̄ ∈ B. By definition of B, this is not possible if µ is the counting measure, since k(x | θ) ≤ 1,
for every x ∈ X and θ ∈ Θ. Thus, let µ be the Lebesgue measure. Then we can fix ϵ > 0 such
that

P (Bx∗(ϵ)) <
lim inf i ql,i

4 ,

with x∗ as in H2. Then by H2 we have∫
Bx∗ (ϵ)

fr(i)(x)µ(dx) > ql,r(i)

∫
Bx∗ (ϵ)

k(x | θl,r(i))µ(dx) > lim inf i ql,i
2 ,

for i large enough, that again contradicts the weak convergence of {fi}∞i=1 to f .

Proof of Theorem 11

The marginal distribution is available and given by the following lemma.

Lemma 23. Consider k and q0 as in (2.49). Then it holds

m(x1:n) = 2c− {max(x1:n, θ
∗) − min(x1:n, θ

∗)}
(2c)n+1 , (x1:n ∈ [θ∗ − c, θ∗ + c]n).

Proof. Note that xi ∈ (θ − c, θ + c) for all i ∈ {1, . . . , n} if and only if θ ∈ (max(x1:n) −
c,min(x1:n) + c). Thus

m(x1:n) = 1
(2c)n+1

∫
Θ

n∏
i=1

1(θ−c,θ+c)(xi)1(θ∗−c,θ∗+c)(θ)dθ

= 1
(2c)n+1

∫
Θ
1(max(x1:n)−c,min(x1:n)+c)(θ)1(θ∗−c,θ∗+c)(θ)dθ

= 2c− {max(x1:n, θ
∗) − min(x1:n, θ

∗)}
(2c)n+1 .

Define Range(XA) = maxi∈A (Xi) − mini∈A (Xi). Lemma 23 has an important corollary, that is
stated after a technical lemma.

Lemma 24. Let A ⊂ {1, . . . , n} such that |A| = a, Then it holds:

2c− {max(XA, θ
∗) − min(XA, θ

∗)}
(2c)a+1 ≤ 2c− Range(XA)

(2c)a+1 .

Proof. The result follows immediately from max(XA, θ
∗) ≥ max(XA) and min(XA, θ

∗) ≤ min(XA).

Corollary 4. In the setting of (2.42) with (f, k, q0) as in (2.49), define

Ωn =
{
x ∈ X∞ : max(x1:n) ≥ θ∗ and min(x1:n) ≤ θ∗

}
.
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Then ∏s+1
j=1 m(XAj )
m(X1:n) 1Ωn(X1:∞) ≤

∏s+1
j=1{2c− Range(XAj )}

(2c)s{2c− Range(X1:n)} , (78)

for every A ∈ τs+1(n) .

Proof. As regards the numerator, apply firstly Lemma 23 and then Lemma 24 to get

m(XAj ) =
2c− {max(XAj , θ

∗) − min(XAj , θ
∗)}

(2c)aj+1 ≤
2c− Range(XAj )

(2c)aj+1 , j = 1, . . . , s+ 1 .

Apply Lemma 23 to m(x1:n) for every x ∈ Ωn, to get

m(X1:n)1Ωn(X1:∞) = 2c− {max(X1:n, θ
∗) − min(X1:n, θ

∗)}
(2c)n+1 1Ωn(X1:∞)

= 2c− {max(X1:n) − min(X1:n)}
(2c)n+1 1Ωn(X1:∞),

as desired.

The lemma below shows that, in order to prove Theorem 11, it is sufficient to show

1Ωn(X1:∞)
n−1∑
s=1

pr(Kn = s+ 1|X1:n)
pr(Kn = 1|X1:n) → 0

in P
(∞)
∗ -probability.

Lemma 25. Consider f as in (2.49) and define Ωn =
{
x ∈ X∞ : max(x1:n) ≥ θ∗ and min(x1:n) ≤ θ∗

}
.

Let {Yn} be a sequence of positive random variables. Thus, Yn1Ωn(X1:∞) → 0 in P (∞)
∗ -probability

implies Yn → 0 in P
(∞)
∗ -probability.

Proof. First of all, by definition of f we have

max(X1:n) → θ∗ + c, min(X1:n) → θ∗ − c

almost surely with respect to P (∞)
∗ as n → ∞. Then P (∞)

∗ (Ωn) → 1, as n → ∞, by definition of
Ωn. Thus, fix ϵ > 0 and notice that

P
(∞)
∗ (Yn > ϵ) = P

(∞)
∗

{
(Yn > ϵ) ∩ Ωn

}
+ P

(∞)
∗

{
(Yn > ϵ) ∩ Ωc

n

}
.

The first term on the right-hand side goes to 0, since Yn1Ωn(X1:∞) → 0 in P
(∞)
∗ -probability,

while the second vanishes because P (∞)(Ωc
n) → 0, both as n → ∞.

Combining Corollary 4 and Lemma 25 we are ready to prove Theorem 11.

Proof of Theorem 11. For every s ≥ 1 and A ∈ τs(n), from Corollary 4 we have∏s
j=1m(XAj )
m(X1:n) 1Ωn(X1:∞) ≤

∏s
j=1{2c− Range(XAj )}

(2c)s−1{2c− Range(X1:n)} .
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Note that {2c− Range(XAj )}/(2c) ∼ Beta(2, aj − 1) independently for j = 1, . . . , s. Moreover,
recall that if Z ∼ Beta(α, β) then for p > −α

E[Zp] = Γ(α+ p)Γ(α+ β)
Γ(α+ p+ β)Γ(α) .

Thus, by Hölder’s inequality with exponents 3 and 3/2 we get

E
[∏s

j=1m(XAj )
m(X1:n)

]
≤ E

 s∏
j=1

m(XAj )3

1/3

E
[
m(X1:n)−3/2

]2/3

=
{

Γ(5)
Γ(2)

}s/3{Γ(1/2)
Γ(2)

}2/3{ s∏
j=1

Γ(1 + aj)
Γ(aj + 4)

}1/3{ Γ(1 + n)
Γ(n− 1/2)

}2/3

.

By the recursive definition of the Gamma function and recalling that Γ(1/2) = π1/2, the upper
bound above becomes

E
[∏s

j=1m(XAj )
m(X1:n)

]
≤ 24s/3π1/3

{
s∏
j=1

Γ(1 + aj)
Γ(aj + 4)

}1/3{ Γ(1 + n)
Γ(n− 1/2)

}2/3

= 24s/3π1/3
{

s∏
j=1

1
(aj + 3)(aj + 2)(aj + 1)

}1/3{(n− 1/2)Γ(1 + n)
Γ(n+ 1/2)

}2/3

.

Moreover, exploiting again the recursive definition of the Gamma function, Gautschi’s Inequality,
i.e. Γ(1+n)

Γ(n+1/2) ≤ (n+ 1)1/2, and (n+ 1)/(aj + 1) < n/aj , we have

E
[∏s

j=1m(XAj )
m(X1:n)

]
≤ 24s/3K

{
s∏
j=1

(n+ 1)3

(aj + 1)3

}1/3

≤ 24s/3K

(
n3∏s
j=1 a

3
i

)1/3

= 24s/3K
n∏s

j=1 aj
.

Thus, applying Lemma 6 and Lemma 17 with p = 2 and C = 4ζ(2) < 7 we get

E[R(n, 1, s)] ≤ 24s/3K

s!
∑

a∈Fs(n)

(
n∏s

j=1 aj

)2

<
Cs−124s/3K

s! ,

where R(n, 1, s) is defined as in (2.52). From Corollary 3 we have

C(n, 1, s+ 1) ≤ GΓ(2 + β)2ss
ϵ

E(αs) log{n/(1 + ϵ)}−1, n ≥ 4 .

Thus, combining the inequalities above with (2.52) and assumption A3 we have

E
[
1Ωn(X1:∞)

n−1∑
s=1

pr(Kn = s+ 1|X1:n)
pr(Kn = 1|X1:n)

]
=

n−1∑
s=1

C(n, 1, s+ 1)E{1Ωn(X1:∞)R(n, 1, s+ 1)}

≤ 241/3DGKΓ(2 + β)
ϵ log{n/(1 + ϵ)}

n−1∑
s=1

s(2C241/3)sρ−sΓ(ν + s+ 1)
(s+ 1)!︸ ︷︷ ︸
<∞

→ 0 as n → ∞ ,
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where finiteness follows from ρ ≥ 38 > 241/3 × 2C. This implies that

n−1∑
s=1

P(Kn = s+ 1|X1:n)
P(Kn = 1|X1:n) → 0

in L1 and thus in P
(∞)
∗ -probability as n → ∞. Lemma 25 with Yn = ∑n−1

s=1
pr(Kn=s+1|X1:n)

pr(Kn=1|X1:n)
concludes the proof.

Proof of Theorem 12

We first need the following result.

Lemma 26. Let k and q0 be as in (2.50) and x1 = · · · = xn = θ∗ for some θ∗ ∈ R. Then

∏s
j=1m(xAj )
m(x1:n) =

{
n+ 1∏s

j=1(aj + 1)

}1/2

exp
{
θ∗2

2

(
− n2

n+ 1 +
s∑
j=1

a2
j

aj + 1

)}
<

(
n∏s

j=1 aj

)1/2

,

for every s = 1, . . . , n and every partition A = {A1, . . . , As} ∈ τs(n).

Proof. Since the marginal likelihood can be rewritten as

m(xAj ) = (aj + 1)−1/2q0(θ∗)aj exp
{
θ∗2

2
a2
j

aj + 1

}
,

the first equality is obtained. The inequality follows from

− n2

n+ 1 +
s∑
j=1

a2
j

aj + 1 = n− n2

n+ 1 +
s∑
j=1

(
a2
j

aj + 1 − aj

)
= n

n+ 1 −
s∑
j=1

aj
aj + 1 =

=
s∑
j=1

aj

(
1

n+ 1 − 1
aj + 1

)
≤ 0

and
n+ 1∏s

j=1(aj + 1) ≤ n∏s
j=1 aj

,

which easily follows from aj ≤ n, for every j = 1, . . . , s.

Proof of Theorem 12. First, we study R(n, 1, s) as defined in (2.52). Since all the observations
are almost surely equal, we have

R(n, 1, s) =
∑

a∈Fs(n)

n

s!∏s
j=1 aj

∏s
j=1m(XAa

j
)

m(X1:n) ,

where Aa is an arbitrary partition in τs(n) such that |Aa
j | = aj for j = 1, . . . , s. By application

of Lemma 26 and Lemma 17 with p = 3/2, it turns out that the constant C = 2 3
2 ζ
(

3
2

)
< 8 is

such that

R(n, 1, s) < 1
s!

∑
a∈Fs(n)

(
n∏s

j=1 aj

)3/2

<
Cs−1

s! .
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From Corollary 3 we have

C(n, 1, s+ 1) ≤ GΓ(2 + β)2ss
ϵ

E(αs) log{n/(1 + ϵ)}−1, n ≥ 4 . (79)

Thus, combining the inequalities above with (2.52) and assumption A3 we have

n−1∑
s=1

pr(Kn = s+ 1|X1:n)
pr(Kn = 1|X1:n) =

n−1∑
s=1

C(n, 1, s+ 1)R(n, 1, s+ 1)

≤ DGΓ(2 + β)
ϵ log{n/(1 + ϵ)}

n−1∑
s=1

s(2C)sρ−sΓ(ν + s+ 1)
(s+ 1)!︸ ︷︷ ︸
<∞

→ 0 as n → ∞ ,

(80)
where the finiteness follows from ρ > 16 > 2C. Then we conclude applying a variation of
Lemma 5 with equalities and limits in probability replaced by almost sure equalities and limits
(the proof of Lemma 5 extends trivially to that case).

Proof of Proposition 9

Proof. Under (2.42), for every ϵ > 0 we have

P(α < ϵ | X1:n) =
n∑
s=1

P(α < ϵ | Kn = s) P(Kn = s | X1:n) =

≥ P(α < ϵ | Kn = t) P(Kn = t | X1:n).

By assumption, P(Kn = t | X1:n) → 1 in P (∞)
∗ -probability as n → ∞. Moreover, by Proposition

10 with s = 1 we get
E[α | Kn = t] = C(n, t, t+ 1) → 0,

as n → ∞. It follows P(α < ϵ | Kn = t) → 1 in P
(∞)
∗ -probability as n → ∞, as desired.
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Chapter 3

Hierarchies beyond the Dirichlet
process

3.1 Introduction

As discussed in the first Chapter, the model induced by the law of a Dirichlet process suffers
from few limitations. First of all, the weights of the predictive distribution depend on the past
datapoints only through the number of observations: moreover the concentration parameter
θ is the only tunable parameter that affects the predictive and clustering behaviour. This
implies a quite rigid structure, where for example the growth of the number of clusters is always
logarithmic regardless of the specification. In this Chapter we explore some extensions which
deal with such limitations and their usage in hierarchical models.

In the next Section we employ models based on Completely Random measures (Kingman,
1967; Regazzini et al., 2003; Barrios et al., 2013) to study the different types of borrowing
of information which can be induced by Bayesian nonparametric models; in the last Section
instead we construct trees of random probability measures, based on the Pitman–Yor process
(Pitman and Yor, 1997; Pitman, 2006), with applications to partially exchangeable data. The
two Sections are based on the works of Ascolani et al. (2023a) and Ascolani et al. (2023b),
respectively.

3.2 Full range borrowing of information priors

3.2.1 Introduction

As discussed in the first Chapter, real phenomena often present a level of heterogeneity that
makes exchangeability unrealistic: collected data may refer to different features, populations,
or, in general, may be collected under different experimental conditions. Such situations entail
a significant level of heterogeneity and opportunities for borrowing information, that can be
exploited through the notion of partial exchangeability, which implies exchangeability within
each experimental condition, but not across. Two sequences of observations X = (Xi)i≥1 and
Y = (Yj)j≥1, taking values in a space X, are partially exchangeable if and only if, for all sample
sizes (n,m) and all permutations (π1, π2),(

(Xi)ni=1, (Yj)mj=1

)
d=
(
(Xπ1(i))ni=1, (Yπ2(j))mj=1

)
.
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with d= denoting equality in distribution. From an inferential point of view, partial exchange-
ability entails that the order of the observations within each sample is non-informative, while
the belonging to a specific sample is relevant and has to be taken into account. Moreover, by de
Finetti’s representation theorem (de Finetti, 1938) X and Y are partially exchangeable if and
only if there exist random probabilities (P1, P2) such that for any i, j = 1, . . . , n

(Xi, Yj) | P1, P2
i.i.d.∼ P1 × P2 (P1, P2) ∼ Q (3.1)

with Q playing the role of the prior. The dependence induced by Q at the level of the ob-
servables defines the Bayesian learning mechanism and it connects to the notion of borrowing
of information. This term was first coined by John Tukey (Brillinger, 2002) and popularized
with reference to Stein’s paradox and empirical Bayes techniques in Efron and Morris (1977).
More generally, statisticians refer to borrowing of information when many samples contribute to
inference related to just one sample. Imagine to collect the samples (Xi)ni=1 and (Yj)mj=1, while
being interested only in the parameter P1 associated to X. The simplest approach could be to
disregard the second sample (Yj)mj=1, with the drawback of losing potentially useful information.
The typical borrowing instead consists in shrinking the estimates for different samples towards
each other: shrinkage is justified by the fact that distributions of different, but related, popu-
lations are expected to be similar in terms of shape and/or location. However, many contexts
may still require borrowing of information between (Xi)ni=1 and (Yj)mj=1, but without necessarily
resulting in shrinkage. Indeed, one’s available prior information may imply that the responses
in different groups have a negative association and, thus, tend to be dissimilar in location, which
makes shrinkage undesirable. Similarly, when there is no pre-experimental knowledge on the
dependence between Xi and Yj , a flexible prior specification allowing also for negative associ-
ation would be more appropriate. A toy parametric example to further clarify that borrowing
does not necessary imply classic shrinkage is provided in Section A2. Some applied scenarios of
borrowing of information not resulting in shrinkage are, for instance, the study of survival times
and abundances of competitive species (Lee et al., 2020), the incorporation of retrospective data
to study associations between biomarkers (Gong et al., 2021), the association between dental
caries and dental fluorosis (Lorenz et al., 2018), the analysis of stocks and bonds returns (see
Bhardwaj and Dunsby, 2013, and Section 3.2.6), and the clustering of multivariate responses
with missing entries (see Section 3.3.8). In this paper we introduce a class of nonparametric
priors that allows for a more general version of borrowing, which includes shrinkage as a special
case. These can be used as core building blocks for models tailored to specific applications.

Starting from the pioneering works of Cifarelli and Regazzini (1978) and MacEachern (1999,
2000), Bayesian nonparametric contributions for non–exchangeable data have grown substan-
tially, see Foti and Williamson (2013), Müller et al. (2015) and Quintana et al. (2022) for
insightful reviews. The vast majority of nonparametric models for partially exchangeable data
entails that the random probabilities in (26) are such that

P1
a.s.= ∑

k≥1 J̄kδθk

P2
a.s.= ∑

k≥1 W̄kδϕk

θk
i.i.d.∼ Q0, ϕk

i.i.d.∼ Q0 (3.2)

where the random weights
(
(J̄k), (W̄k)

)
and the atoms

(
(θk), (ϕk)

)
are independent and θk ⊥ ϕh

for k ̸= h. In this paper we focus on this class of models and, for ease of exposition, take P1 and
P2 with the same marginal distribution.
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A first prominent strategy for defining Q is to explicitly assign the distribution of the
weights and the atoms in (3.2) so to create dependence between P1 and P2: this approach
led to dependent Dirichlet processes (MacEachern, 1999, 2000; Quintana et al., 2022), depen-
dent stick-breaking processes, kernel stick-breaking processes (Dunson and Park, 2008), probit
stick-breaking processes (Rodriguez and Dunson, 2011) and others. Despite their flexibility and
the availability of posterior sampling schemes, the derivation of analytical results is very difficult
for these models; it is often not clear how the dependence of the series reflects at the level of
the observables and therefore such methods may lack transparency.

A second popular strategy, analytically more tractable, relies on completely random measures
(CRMs) either working directly on the law of multi-dimensional vectors of CRMs (Epifani and
Lijoi, 2010; Griffin and Leisen, 2017; Riva-Palacio and Leisen, 2021) or combining conditionally
independent CRMs, using additive structures (Müller et al., 2004; Griffin et al., 2013; Lijoi and
Nipoti, 2014; Lijoi et al., 2014a,b), nested structures (Rodriguez et al., 2008; Camerlenghi et al.,
2019a), or hierarchical structures (Teh et al., 2006; Camerlenghi et al., 2019b). CRMs are then
suitably transformed to obtain the random probabilities in (3.2).

Dependent random probabilities clearly induce dependence across groups of observations.
The simplest and most intuitive way to quantify the dependence structure is through correla-
tions. Therefore, when considering correlations among observables, we will implicitly assume
real-valued Xi’s and Yj ’s, namely X = R. All other results and concepts are valid for general
spaces X. A first result in this direction shows that, regardless of the specific dependent model,
observations in different groups cannot be more correlated (in absolute sense) than the ones in
the same group.

Proposition 11. Suppose X and Y are partially exchangeable sequences, such that P1 and P2
in (26) have the same marginal distribution. Then

−Corr(Xi, Xi′) ≤ Corr(Xi, Yj) ≤ Corr(Xi, Xi′),

for any i, i′ and j.

Due to exchangeability within each group, the upper bound in Proposition 11 is always
non–negative and it can be shown that, for all the models as in (3.2), the correlation between
observations in the same sample, Corr(Xi, Xi′), is determined by the probability of a tie. As
for the correlation across samples Corr(Xi, Yj), we show that a similar result holds true, with
hyper-ties, the new notion we introduce, replacing ties.

Moreover, note that for known models based on CRMs, which allow for the computation of
the correlation, Corr(Xi, Yj) turns out to be positive. This implies that the literature available
to date is focused on models that attain a limited range of possible values of the correlation,
when it can be evaluated. Here we aim to overcome this limitation and introduce a novel class
of priors which yield a wider range of correlation values among the observables, including those
with negative sign. The next result shows that the sign of the correlation is only determined by
the dependence structure between the atoms.

Proposition 12. Suppose X and Y are partially exchangeable sequences, such that the un-
derlying P1 and P2 are as in (3.2). Moreover, for any k and k′, let Corr(θk, ϕk′) ≥ 0. Then
Corr (Xi, Yj) ≥ 0, for any i and j.

For instance, hierarchical processes (Teh et al., 2006; Camerlenghi et al., 2019b), which
represent one of the most popular dependent models, induce dependence by the sharing of atoms
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across groups. However, by Proposition 12, this means that achieving negative correlation is
impossible. Hence, a flexible joint distribution for the sequence of atoms must be specified. This
task is accomplished by our proposal, termed normalized CRMs with Full-Range Borrowing of
Information (n-FuRBI), that allows to attain any possible value for the correlation specified
in Proposition 11. Moreover, it encompasses many previous constructions as special cases.
We will show that it nicely combines the flexibility of the random series construction with the
analytical tractability featured by CRMs. Our proposal allows to consider any interesting choice
of borrowing of information: independence, classical shrinkage, but also repulsion of estimates
for different samples, generating what we term full–range borrowing of information. Note that
the repulsive behaviour of n-FuRBI is different from the one featured by the priors introduced
in Petralia et al. (2012) and Quinlan et al. (2017), that induce repulsion among the atoms of a
single random probability measure.

3.2.2 General results on dependent processes

The vast majority of dependent processes introduced in the literature are almost surely discrete
and therefore admit a series representation as in (3.2). A key preliminary step leading to the
definition of hyper-tie and n-FuRBI priors is the observation that the random probabilities in
(3.2) can be embedded intoP̃1

a.s.= ∑
k≥1 J̄kδ(θk,ϕk)

P̃2
a.s.= ∑

k≥1 W̄kδ(θk,ϕk)
(θk, ϕk)

i.i.d.∼ G0, (3.3)

with G0 a probability distribution on X×X, whose marginals equal Q0. While P̃1 and P̃2 share
the same atoms, the weights and the atoms are independent and the pair of random probability
measures P1 and P2 in (3.2) are obtained as the projections over different coordinates of P̃1 and
P̃2, namely P1(·) = P̃1(·×X) and P2(·) = P̃2(X×·). The structure of popular models is recovered
by letting either G0 = Q2

0, which corresponds to independence, or G0(dθ,dϕ) = Q0(dθ)δ{θ}(dϕ),
that is θk = ϕk for any k as happens for, e.g., hierarchical processes (see Camerlenghi et al.,
2019b). Almost sure discreteness implies that a sample from the random probability measure
P1 (or P2) will display ties with positive probability. The probability of a tie, i.e. a coincidence
of any two observations i and j in the same sample, is

β := P(Xi = Xj) =
∑
k≥1

E(J̄2
k ) =

∑
k≥1

E(W̄ 2
k ) = P(Yi = Yj) (3.4)

with (J̄k)k≥1 and (W̄k)k≥1 equal in distribution since we are assuming, for simplicity, that P1
and P2 are equal in distribution. When considering jointly the two samples, the concept of tie
can be replaced by the one of hyper-tie, that is two observations in different samples coinciding
with components having the same label. According to (26), its probability is

γ :=
∑
k≥1

P(Xi = θk, Yj = ϕk) =
∑
k≥1

E(J̄kW̄k). (3.5)

Sampling from components with the same label is equivalent to sampling the same atom at the
level of the underlying (P̃1, P̃2) in (3.3). Clearly, when the atoms are shared between P1 and P2,
i.e. G0(dθ,dϕ) = Q0(dθ)δ{θ}(dϕ), a hyper-tie corresponds to an actual tie between observations
in different samples.
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The next result shows the relationship between β and γ, the probabilities of a tie and hyper-
tie, respectively: in particular, the probability of a tie is always larger and equality is attained
if and only if the probability weights of P̃1 and P̃2 are almost surely equal.

Proposition 13. Let (P1, P2) be as in (3.2) and β, γ as in (3.4) and (3.5), respectively. Then
0 ≤ γ ≤ β and β = γ if and only if W̄k

a.s.= J̄k for any k.

Hyper-ties play a crucial role in determining the dependence between observables across groups,
as the ties do for the dependence between observables within groups, as shown by the next
proposition.

Proposition 14. Consider model (26) with (P1, P2) as in (3.2). Then, for any i ̸= i′ and any
j ̸= j′

Corr(Xi, Xi′) = Corr(Yj , Yj′) = β Corr(Xi, Yj) = γ ρ0

with ρ0 the correlation between two random variables jointly sampled from G0.

Thus, while the correlation between observations in the same sample equals the probability of a
tie, the correlation between observations from different samples is determined by the probability
of a hyper-tie, corrected by the correlation between atoms. Clearly a suitable choice of the joint
distribution of the atoms makes the latter negative. Thus, by choosing G0 appropriately, for
instance as a bivariate normal, it is easy to tune the correlation according to the available prior
knowledge. The following Corollary shows the values that can be attained, once the marginal
law is specified.

Corollary 5. Consider model (26) with (P1, P2) as in (3.2). If the marginal distribution of p̃1
and p̃2 is fixed, then Corr(Xi, Yj) ∈ [−β, β] and the extreme values are attained if and only if
the jumps are equal and ρ0 = ±1.

Interestingly, with equal weights and jumps, which corresponds to full exchangeability, one
achieves the extreme case of Corr(Xi, Yj) = β. Null correlation, instead, is attained when
atoms are uncorrelated or when the probability of hyper-ties is zero. Lastly, maximum negative
correlation Corr(Xi, Yj) = −β is attained with equal weights and negatively correlated atoms
and can be thought of as the opposite case with respect to exchangeability, at least in terms of
correlation. Ties and hyper-ties play a similar role also in the predictive structure, as the next
result shows.

Proposition 15. Consider model (26) with (P1, P2) as in (3.2). Then

P (X1 ∈ A,X2 ∈ B) = βQ0(A ∩B) + (1 − β)Q0(A)Q0(B).

and
P (X1 ∈ A, Y1 ∈ B) = γG0(A×B) + (1 − γ)Q0(A)Q0(B).

The result is indeed quite intuitive. If X1 and Y1 form a hyper-tie (with probability γ) they come
from the same pair of atoms and need to be sampled jointly; otherwise they refer to different
atoms and are sampled independently. The same happens inside each group, where X1 and X2
are equal with probability β.

Example 1. The hierarchical Dirichlet process (Teh et al., 2006) is characterized by the hierar-
chical representation Pi | P̃0

i.i.d.∼ DP(θ, P0), with P0 ∼ DP(θ0, Q0), where Q0 is a diffuse measure
and DP(α,H) denotes the law of a Dirichlet process with concentration parameter α > 0 and
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baseline distribution H. Since the Pi’s share the atoms, an hyper-tie corresponds to an actual
tie between observations in different samples, so that with simple computations we get

β = Corr(Xi, Xj) = 1 − θθ0
(1 + θ)(1 + θ0) , γ = Corr(Xi, Yj) = 1

1 + θ0
.

Thus, the correlation among the observables is forced to be positive, with θ0 tuning the depen-
dence; see Example 1 in Camerlenghi et al. (2019b) for more details.

Given the above results and considerations, it should be clear that γ defined in (3.5) is crucial
for tuning the level of dependence. However, closed form expressions of γ are available only for
a few cases and, in fact, we are facing a trade–off: on the one hand we have dependent processes
based on the stick-breaking representation, that allow for high flexibility while sacrificing the
availability of analytical results; on the other hand we have constructions based on CRMs, for
which an extensive theory has been developed, though they are not as effective for tuning the
dependence, since all the existing instances produce non-negative correlation across samples.
In the following we combine the best of both approaches through n-FuRBI: they are flexible
processes that can attain any value for the correlation between the observables, while at the
same time a posterior representation can be derived. Their construction is based on CRMs and
completely random vectors, reviewed in the next section.

3.2.3 Some basics on completely random measures

As shown in Lijoi and Prünster (2010), many Bayesian nonparametric models can be obtained
as suitable transformations of CRMs; among others, these include the Dirichlet process, the
Pitman-Yor process and the neutral-to-the-right priors. The extension of CRMs to the bivariate
setting is provided by completely random vectors µ = (µ1, µ2), whose components take values in
the space of boundedly finite measures on X and are such that, for every collection of pairwise
disjoint sets (Ai)ni≥1, the random vectors (µ1(A1), µ2(A1)), . . . , (µ1(An), µ2(An)) are mutually
independent. We focus on the case of no fixed atoms and no deterministic component, so that
the marginal CRMs µ1 and µ2 are almost surely discrete and can be written as sum of X–valued
random atoms with random weights, i.e.

µ1
a.s.=

∑
i≥1

Jiδκi , µ2
a.s.=

∑
i≥1

Wiδκi .

In the following section it will be convenient to use the reparametrization κi = (θi, ϕi) ∈ X = X1×
X2. Such completely random vectors are characterized by the Lévy-Khintchine representation

E
{
e−µ1(f1)−µ2(f2)

}
= exp

−
∫

R2
+×X

{1 − e−s1 f1(x)−s2 f2(x)} v(ds1, ds2, dx)

 (3.6)

where µi(fi) =
∫
X fi(x)µi(dx) for R+-valued fi and v(ds1, ds2,dx) is the joint Lévy intensity.

We shall focus on the homogeneous case, in which jumps (Jj)j≥1 and locations (Xj)j≥1 are
independent. In terms of Lévy intensity it reads v(ds1, ds2, dx) = ρ(ds1,ds2)α(dx) for some
finite measure α on X and measure ρ. Moreover, in the sequel we will also need the joint and
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marginal Laplace exponents given by

ψb(λ1, λ2) :=
∫

R2
+×X

(1 − e−λ1s1−λ2s2)ρ(ds1, ds2)α(dx), λ1 > 0, λ2 > 0.

ψ(λ) :=
∫

R+×X

(1 − e−λs)ρ(ds)α(dx) λ > 0,

For an exhaustive account on CRMs, we refer to Kingman (1967, 1993). Completely random
vectors and CRMs are often normalized to obtain random probability measures, as introduced
in Regazzini et al. (2003), i.e. P (·) = µ(·)/µ(X). Notice that in principle any random measure
µ such that P(0 < µ(X) < ∞) = 1 can be normalized in order to define a random probabil-
ity measure. However, the strength of completely random vectors and measures lies in their
Lévy–Khintchine representations and unique correspondence with the associated Lévy intensity,
which allow a high degree of analytical tractability. CRMs and the corresponding normalized
probabilities have been extensively studied to model exchangeable data (see, for instance, James
et al., 2006, 2009, 2010; Lijoi and Prünster, 2010; Favaro et al., 2016; Camerlenghi et al., 2018).
Similarly, a completely random vector can be used to model dependence between two groups.
For more details on completely random vectors and an interesting account of their dependence
structure, we refer to Catalano et al. (2021, 2023). Since the two measures in the vector share
all the atoms, by virtue of Proposition 12 the induced model yields non–negative correlation be-
tween samples. The issue is addressed in the next section, by means of a novel class of random
probability measures that leverage the dependence structure specifed for the atoms.

3.2.4 Full-range borrowing of information nonparametric prior

In this section we introduce n-FuRBI and for simplicity we still consider only the case of two
samples with the same a priori marginal distribution.

Definition 2. Consider a completely random vector (µ̃1, µ̃2) on X2 with Lévy intensity v(ds1,ds2,dx1,dx2) =
ρ(ds1, ds2) α(dx1,dx2), where α(dx1,dx2) = θG0(dx1,dx2), where θ = α(X2) ∈ (0,+∞), and
G0 is a non-atomic probability measure on X2 such that G0(· × X) = G0(X × ·) = Q0(·). Then
µ1 and µ2 defined as

µ1(·) = µ̃1(X × ·) µ2(·) = µ̃2(· × X)

are CRMs with Full-Range Borrowing of Information (FuRBI CRMs) and underlying Lévy
intensity v. The normalized versions Pj(·) = µj(·)/µj(X) for j = 1, 2 are said normalized CRMs
with Full-Range Borrowing of Information (n-FuRBI).

Essentially, first a pair of random measures endowed with the same locations is constructed on
the product space X2; as a second step, the coordinates of each pair of atoms are split. Thus,
the n-FuRBI admit a representation as in (3.2) and (3.3). In general FuRBI CRMs are not
completely random vectors, because the joint sampling of the atoms forbids the independence
of the vector evaluated on pairwise disjoint sets. However, the representation in terms of a
completely random vector in the product space is useful to characterize the joint law of the
FuRBI CRMs, as shown in the following proposition.

Proposition 16. Let (µ1, µ2) be a vector of FuRBI CRMs. Then

(i) µ1 and µ2 are CRMs with intensity ρ(ds)θQ0(dx), where ρ(ds) =
∫
R+
ρ(ds1, ds).
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(ii) For any A and B, the following equality holds

E
[
e−λ1µ1(A)−λ2µ2(B)

]
= exp{−G0(A×Bc)ψ(λ1) −G0(Ac ×B)ψ(λ2)}

× exp{−G0(A×B)ψb(λ1, λ2)},

where ψ denotes the common marginal Laplace exponent and ψb the joint Laplace exponent
of (µ1, µ2).

(iii) The joint law of (µ1, µ2) is characterized by the joint Lévy intensity of (µ̃1, µ̃2).

The next proposition shows that the β and γ associated to any couple of n-FuRBI can be
computed through their Laplace exponents.

Proposition 17. Consider (P1, P2) n-FuRBI. Then the probability of a tie and of a hyper-tie
are respectively

β = −
∫
R+
u

{
d2

du2ψ(u)
}
e−ψ(u) du, γ = −

∫
R2

+

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2.

Thus, the crucial value of γ can be obtained by computing, analytically or numerically, a bivariate
integral. The two results above show a recurrent trait of our approach: interesting quantities
will be usually rewritten in terms of the original completely random vector, in order to exploit
its analytical tractability. We conclude this section with two examples of FuRBI CRMs, that
also show how some existing constructions can be obtained as special cases.

Example 2 (FuRBI CRMs with equal jumps). Let ρ(ds1)δs1(ds2) θ G0(dx1, dx2) be the under-
lying Lévy intensity. The series representation of the corresponding FuRBI CRMs is

µ1(·) a.s.=
∑
k≥1

Wkδθk
µ2(·) a.s.=

∑
k≥1

Wkδϕk
with (θk, ϕk)

i.i.d∼ G0.

Therefore, γ = β, so that a tie and a hyper–tie are observed with the same probability.

Example 3 (Extended Compound FuRBI CRMs). Consider the Lévy intensity

v(ds1,ds2,dx1,dx2) =
∫
z−2h(s1/z, s2/z) ds1ds2v

∗(dz) θ G0(dx1,dx2),

where h is some density and v∗ is a Lévy intensity that satisfies∫
z−2

∫
min{1, ||s||}h(s1/z, s2/z) ds1ds2v

∗(dz) < ∞, ||s|| =
√
s2

1 + s2
2.

The series representation of the corresponding FuRBI CRMs is

µ1(·) a.s.=
∑
k≥1

m1,kWkδθk
µ2(·) a.s.=

∑
k≥1

m2,kWkδϕk

where (θk, ϕk)
i.i.d∼ G0 and (m1,k,m2,k)

iid∼ h. When G0 is degenerate on the main diagonal, one
retrieves the class of compound random measures introduced by Griffin and Leisen (2017).
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Correlation structure between n-FuRBI

In order to analyze the dependence between the marginal n-FuRBI priors P1 and P2, it is useful
to compute the correlation of the random probability measures evaluated on the same set A.
In all the existing CRM-based models such a correlation does not depend on the specific set
considered and, hence, it is often used as a global measure of dependence. The next proposition
provides the covariance structure between two n-FuRBI.

Proposition 18. Let P1 and P2 be n-FuRBI. Then for any A,B, such that 0 ≤ Q0(A) ≤ 1 and
0 ≤ Q0(B) ≤ 1, we have Cov(P1(A), P2(B)) = γ

[
G0(A×B) −Q0(A)Q0(B)

]
and

Corr(P1(A), P2(B)) = γ

β

G0(A×B) −Q0(A)Q0(B)√
Q0(A)(1 −Q0(A))Q0(B)(1 −Q0(B))

.

By setting A = B, from the previous results one immediately deduces that Cov(P1(A), P2(A)) =
γ
[
G0(A×A) −Q0(A)2

]
and

Corr(P1(A), P2(A)) = γ

β

G0(A×A) −Q0(A)2

Q0(A)(1 −Q0(A)) .

Unlike what usually happens with existing models, here the correlation can be negative, when
A is such that G0(A × A) < Q0(A)2, that is when G0 exhibits a repulsive behaviour between
the coordinates in X2. Moreover, the correlation depends on the specific set on which the two
measures are evaluated and, therefore, it has to be interpreted as a local measure of dependence.
See Section A2 for an illustration of this phenomenon on sets of the form (−∞, x). Note that
here and in the following we use the prefix S to indicate sections of the supplementary material.

Example 4 (n-FuRBI with equal jumps). In this case, Proposition 13 entails β = γ. Therefore

Corr
(
P1(A), P2(A)

)
= G0(A×A) −Q0(A)2

Q0(A)(1 −Q0(A)) .

Moreover, still by virtue of Proposition 13, for a given G0 this is the highest possible correlation
in absolute value.

Proposition 14 then provides the correlation between the observables, which is even more im-
portant from a modeling perspective.

Example 5 (Gamma n-FuRBI with equal jumps). If the common marginal is the law of a
Dirichlet process, then Corr(Xi, Yj) = ρ0/(1 + θ). Choosing appropriately ρ0 and θ the entire
range (−1, 1) becomes available.

Note that hyper-ties allow to perform a more general type of borrowing, compared to ties, even
when the correlation is positive. While ties are a useful construction to model multiple samples
that share certain values/latent parameters, hyper-ties can borrow information even when the
two samples have no common values/latent parameter. This aspect will play a crucial role in
the data-analyses of Sections 3.2.6 and 3.3.8; for these the assumption of common values would
be highly unrealistic.
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3.2.5 Inference

Posterior Characterization

Having provided an exhaustive description of the a priori properties of n-FuRBI, the following
key step is to provide a tractable posterior characterization. Conjugacy is out of question
here: even in the exchangeable context it is a property characterizing the Dirichlet process (see
James et al., 2006). Nevertheless, conditional on a set of suitable latent variables, the posterior
distribution of the original completely random vector (µ1, µ2) turns out to be again a completely
random vector leading to a neat posterior characterization and viable methods for sampling.

Consider a sample of n observations (Xi)ni=1 from p̃1 with unique values X∗n =
(
X∗1 , . . . , X

∗
k

)
and associated multiplicities (n1, . . . , nk); analogously, consider m observations (Yj)mj=1 from p̃2
with unique values Y ∗m =

(
Y ∗1 , . . . , Y

∗
c

)
and multiplicities (m1, . . . ,mc). While it is immediate

to check for ties, hyper-ties cannot be identified deterministically from the data. To this end,
we define a latent random element p encoding the hyper-ties, such that p =

{
(il, jl)

}
l, where

(i, j), with 1 ≤ i ≤ k and 1 ≤ j ≤ c, denotes a hyper-tie between X∗i and Y ∗j . Moreover (i, 0),
with 1 ≤ i ≤ k, denotes that X∗i does not form a hyper-tie with any value in Y ∗m and (0, j),
with 1 ≤ j ≤ c, denotes that Y ∗j does not form an hyper-tie with any value in X∗n.

Therefore, if (i, j) ∈ p with i ̸= 0 and j ̸= 0, it means that X∗i and Y ∗j come from the
same pair of atoms in representation (3.3). Instead, (i, 0) ∈ p implies that X∗i is the only value
associated to a specific pair, and similarly for Y ∗j if (0, j) ∈ p. Since we are working with unique
values, it is clear that each X∗i and Y ∗j can form at most one hyper-tie, i.e. it is associated to a
unique member of p. This justifies the following formal definition.

Definition 3. We say that p =
{
(il, jl)

}
l is a compatible hyper-ties structure for (Xi)ni=1 and

(Yj)mj=1 if, firstly, for any 1 ≤ i ≤ k, there exists exactly one il such that il = i, thus each element
of X∗n forms at most one hyper-tie; secondly, for any 1 ≤ j ≤ c, there exists exactly one jl such
that jl = j, thus each element of Y ∗m forms at most one hyper-tie; lastly, for any l, if il = 0 then
jl ̸= 0, thus at least one coordinate refers to an element of X∗n or Y ∗m.

As a simple example, suppose that Xn and Y m contain respectively 2 and 1 unique values. Then
k = 2, c = 1 and the support of p is

P =
{

{(1, 1), (2, 0)}, {(1, 0), (2, 1)}, {(1, 0), (2, 0), (0, 1)}
}
.

Once the latent structure p is identified, its elements can be conveniently partitioned into the
set ∆p =

{
(i, j) ∈ p | i ̸= 0 and j ̸= 0

}
, which includes all the hyper-ties, and the sets ∆1

p ={
(i, j) ∈ p | j = 0

}
and ∆2

p =
{
(i, j) ∈ p | i = 0

}
. If X∗i and Y ∗j form a hyper-tie, it means that

(X∗i , Y ∗j ) is an actual atom in representation (3.3). Instead, if X∗i does not form a hyper-tie, we
have a partial knowledge of the original pair: the unknown second coordinate can be sampled
from PX∗i (·), that is the conditional distribution given X∗i , induced by the joint measure G0,
which will henceforth be assumed to be non–atomic. A similar argument applies if Y ∗j does not
form a hyper-tie.

In order to simplify notation, we set gi,j = g0(X∗i , Y ∗j ), gi,0 = p0(X∗i ), and g0,j = q0(Y ∗j ),
where g0 and q0 are the density functions of G0 and Q0 respectively, that we assume exist with
respect to suitable dominating measures. Finally, we consider the following integrals

τn,m(u) =
∫
R2

+

e−u1s1−u2s2sn1s
m
2 ρ(ds1,ds2), u = (u1, u2),
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where often n and m will be equal to ni and mj , with 1 ≤ i ≤ k and 1 ≤ j ≤ c. For consistency,
we set n0 = m0 = 0.

The key result of the section relies on a latent structure that is identified by random variables
whose conditional distributions, given (Xi)ni=1 and (Yj)mj=1, are available. Indeed, these random
variables are given by p, whose probability mass function is proportional to ∏

(i,j)∈p
gi,j

∫
R2

+

un−1
1 um−1

2
∏

(i,j)∈p
τni,mj (u) e−ψb(u) du,

the vector (U1, U2), whose density on R2
+ is proportional to un−1

1 um−1
2

∏
(i,j)∈p τni,mj (u)e−ψb(u),

the variables {Zxi }i, whose distribution is PX∗i (·), for any i = 1, . . . k, and {Zyj }j , whose distribu-
tion is PY ∗j (·), for any j = 1, . . . , c. We are now ready to state the key posterior characterization.

Theorem 13. Let(Xi)ni=1 and (Yj)mj=1 be from model (26), with Q being the law of a n-FuRBI.
Then, the distribution of (µ̃1, µ̃2) conditional on (Xi)ni=1, (Yj)mj=1 and the set of latent variables
(p, U1, U2, {Zxi }i, {Zyj }j) is

(µ̂1, µ̂2) +
∑

(i,j)∈∆p

Ji,jδ(X∗i ,Y ∗j ) +
∑

(i,j)∈∆1
p

Ji,0δ(X∗i ,Zx
i ) +

∑
(i,j)∈∆2

p

J0,jδ(Zy
j ,Y
∗

j

),
where (µ̂1, µ̂2) is a completely random vector with intensity e−U1s1−U2s2ρ(ds1,ds2)G0(dx) and
Ji,j = (J1

i,j , J
2
i,j), with i = 0, . . . , k e j = 0, . . . , c, are jumps with density proportional to

sni
1 s

mj

2 e−U1s1−U2s2ρ(ds1,ds2). Moreover (µ̂1, µ̂2) and Ji,j are independent.
Conditional on the latent variables, the structure is quite intuitive: the posterior is the law of a
completely random vector with modified intensity and fixed locations, given by the pairs formed
by the hyper-ties. This is somehow reminiscent of the posterior structures of exchangeable
models (James et al., 2009; Lijoi and Prünster, 2010), with the key novelty played by the new
notion of hyper-ties, in addition to the identification of a suitable latent structure.

The distribution of the latent variables admits a nice interpretation. For instance, the mass
function of the latent structure p is the product of two terms: the probability of observing the
number of hyper-ties identified by p times the likelihood that exactly those pairs are formed,
through the density function g0. Thus, thanks to the homogeneity of the original completely
random vector, we observe a separate effect for jumps and locations on this hidden clustering
structure. The next corollary shows how the posterior distribution of the normalized measures
can be deduced from Theorem 13. The statement focuses on P̃1, though an analogous represen-
tation holds also for P̃2.
Corollary 6. Under the same assumptions of Theorem 13, conditional on (Xi)ni=1, (Yj)mj=1 and
the latent variables (p, U1, U2, {Zxi }i, {Zyj }j), the random probability measure P̃1 in (3.3) equals
in distribution

w1
µ̂1
T1

+ w2

∑
(i,j)∈∆p

J1
i,jδ
(
X∗i ,Y

∗
j

)∑
(i,j)∈∆p

J1
i,j

+ w3

∑
(i,j)∈∆1

p
J1
i,0δ(X∗i ,Zx

i )∑
(i,j)∈∆1

p
J1
i,0

+ w4

∑
(i,j)∈∆2

p
J1

0,jδ
(
Zy

j ,Y
∗

j

)∑
(i,j)∈∆2

p
J1

0,j
,

where T1 = µ̂1(X × X), while

w1 ∝ T1, w2 ∝
∑

(i,j)∈∆p

J1
i,j , w3 ∝

∑
(i,j)∈∆1

p

J1
i,0, w4 ∝

∑
(i,j)∈∆2

p

J1
0,j ,
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with the constraint
∑4
i=1wi = 1.

Predictive structure

Prediction of new observations arises naturally within the Bayesian framework, since it coincides
with the estimate of the distribution under a square loss function. Moreover, it has the merit of
providing intuition on how the model behaves and learns and it can be used to develop marginal
algorithms that avoid the direct sampling of P1 and P2, which are infinite-dimensional objects.
In Proposition 15 we saw how to sample the first pair of observations. The next result tackles
the general case.

Theorem 14. Consider samples (Xi)ni=1 and (Yj)mj=1 from model (26), with the same setting of
Theorem 13. Then there exist probability weights ξ0, {ξxi } and {ξyj } such that

P
(
Xn+1 ∈ C | (Xi)ni=1, (Yj)mj=1

)
= ξ0P0(C) +

k∑
i=1

ξxi δX∗i (C) +
c∑
j=1

ξyjPY ∗j (C) .

Analogously, there exist probability weights η0, {ηxi } and {ηyj } such that for any C ∈ X

P
(
Ym+1 ∈ C | (Xi)ni=1, (Yj)mj=1

)
= η0P0(C) +

c∑
j=1

ηyj δY ∗j (C) +
k∑
i=1

ηxi PX∗i (C) .

Explicit formulae for the weights are available in the proof of Theorem 14, in Section A1. In
specific cases they can be computed in closed form, conditional to the latent variables: see e.g.
example 10 in Section A2 for the Inverse Gaussian case with equal jumps.

Hence, the marginal predictive distributions have a quite intuitive form: they are linear
combinations of the centering distribution Q0, a weighted version of the empirical distribution
and a last term that depends on the other sample. The crucial differences with respect to
prediction rules arising in the exchangeable case (Lijoi and Prünster, 2010; De Blasi et al.,
2015) is the addition of the last term, which clearly shows how posterior inference changes when
incorporating heterogeneous information and performing borrowing of information.

Example 6 (n-FuRBI with equal atoms). If the joint distribution G0 is degenerate such that the
atoms are completely shared between P1 and P2, then PZ(·) = δZ(·). Therefore, the last term in
Theorem 14 becomes a weighted version of the empirical distribution relative to the other sample.

Algorithms for posterior inference and prediction are derived in Section A2.

3.2.6 Numerical Illustrations and Real Data Analyses

Bayesian mixture models

Discrete Bayesian models, as the one specified in (26), are usually not employed directly on
the data, but as a building block in hierarchical mixture models: in this setting X and Y are
hidden values that describes the clustering structure within the data. Such models have been
introduced by Lo (1984) for the Dirichlet processes and gained popularity thanks also to the
availability of sampling methods for posterior inference (Escobar and West, 1995; Ishwaran and
James, 2001; Neal, 2000). Suppose {f(· | x) : x ∈ X} is a family of probability density kernels
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on a space W. Then the model can be formulated as

Wi |Xi
ind∼ f(· | Xi)

Xi | P1
i.i.d.∼ P1

,
Vj |Yj

ind∼ f(· | Yj)

Yj | P2
i.i.d.∼ P2

, (P1, P2) ∼ n-FuRBI.

where (Wi)ni=1 and (Vj)mj=1 are the observable samples and are assumed to be conditionally
independent, given (Xi)ni=1 and (Yj)mj=1. Integrating out the latent variables (Xi)ni=1 and (Yj)mj=1,
the data are random draws from suitable countable mixtures, i.e.

Wi | P1
i.i.d.∼

∫
f(· | x)P1(dx), Vj | P2

i.i.d.∼
∫
f(· | y)P2(dy).

Example 7 (Gaussian mixtures). We assume f(· | x) := N(· | x, σ2), with σ2 positive known
constant, to be the normal density. Thus, the latent parameter is the mean, i.e. X = R. In this
case Cov(Xi, Yj) = Cov(Wi, Vj), so that the joint behavior of the latent means is reflected on the
observations: this shows the importance of the correlation structure given by Proposition 14 also
for hierarchical models. Alternatively, the latent parameters could specify both the mean and the
variance, with X = R × R+.

The goal is then to draw samples from the posterior distribution given (Wi)ni=1 and (Vj)mj=1:
however this requires to integrate out all the possible partitions of the n + m latent variables.
As detailed in Section A2., it is possible to devise a Gibbs sampler for drawing from the posterior
distribution of (Xi)ni=1 and (Yj)mj=1. Once a posterior sample (Xi)ni=1 and (Yj)mj=1 is generated,
relevant quantities of interest can be approximated by exploiting the conditional independence
of (Wi)ni=1 and (Vj)mj=1, given the latent variables.

Simulation study for density estimation

We consider a simple application with simulated data, in order to understand how inference
changes when taking into account heterogeneous sources of information. Assume the follow-
ing generating mechanism: Wi

i.i.d.∼ N(· | 10, 1), for i = 1, . . . , 20, and Vj
i.i.d.∼ N(· | −10, 1),

for j = 1, . . . , 100. Supposing only the phenomenon associated to the first sample is of inter-
est, hierarchical mixtures are considered to make prediction on the unknown density of Wi.
The kernel considered is the one specified in Example 7, with known σ2 = 1 and latent mean
µ. Four different approaches for modelling dependence between (Wi)i≥1 and (Vi)i≥1 are de-
vised: the exchangeable approach, according to which sequences W and V are supposed to
form one exchangeable sequence, inducing the highest positive correlation between Wi and Vj ;
the independent approach, according to which the sample (Vi)i≥1 is disregarded entirely, that
is (Wi)i≥1 and (Vi)i≥1 are treated independently; the hierarchical approach, where we use a
hierarchical Dirichlet process (see Example 1) that corresponds to a classical borrowing of in-
formation; the FuRBI approach, where the underlying random probability measures p̃1 and p̃2
are n-FuRBI with equal weights and the distribution on the atoms is G0(· | ρ0) = N2

(
· | 0, 1, ρ0

)
with ρ0 ∼ Unif([−1, 1]), where N2(· | m,σ2

0, ρ0) denotes the bivariate normal distribution with
mean vector m, common variance σ2

0 and correlation ρ0. It can be proven that under this spec-
ification Corr(Wi, Vj) = 0, so that a priori W and V are marginally uncorrelated. The prior
specification is purposely simple, especially regarding the base measure and the concentration
parameter, in order to single out the effect of the borrowing between the two groups as much as
possible.
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For the first two cases and the n-FuRBI, the marginal distribution is given by a Dirichlet
process with θ = 1 and Q0(·) = N(· | 0, 1); instead for the hierarchical process the concentration
parameters are fixed in order to match the expected number of different clusters with the other
methods, for a fair comparison. As highlighted in Example 5, n-FuRBI with equal jumps lead to
the most general setting in terms of achievable correlation between samples; moreover, choosing
the marginal processes to derive from a Gamma process, we can achieve any value in the interval
(−1, 1), tuning appropriately the concentration parameter θ.

Figure 3.1: Left: mean posterior densities for the case with opposite true means. Right: mean
integrated error (computed on a grid and as the median over 50 different samples) for the four
estimates, varying the true mean of V .

The left panel of Figure 3.1 shows the performances of the four methods, after the application
of the blocked Gibbs sampler provided in the supporting material: the mean posterior density
(computed pointwise) is depicted. The exchangeable approach behaves very badly, as expected,
because the two samples have clearly a different distribution. The independent choice leads to
a reasonable estimate, even if it still overestimates the probability mass around the prior mean
(because of the small sample size of the first sample). The hierarchical estimate is quite good, but
our proposal, instead, fits almost perfectly the target density and seems to exploit the opposite
behaviour of the two phenomena: this is clearly highlighted by the posterior distribution of ρ0,
whose approximated mean is close to −0.9.

One may wonder whether these superior performances follow from the precise specification
above, with opposite true means. Therefore, we repeated the experiment keeping the same gener-
ating mechanism for W , but with the true mean of V ranging in the set {−16,−14, . . . , 14, 16}:
the mean integrated absolute error (computed on a grid and as the median over 50 different
samples) is depicted in the right panel of Figure 3.1. It is apparent that the FuRBI approach
almost always yields the smallest error, regardless of the true value. Its performance is close to
the exchangeable case only when the two true means are equal, that is when exchangeability
actually holds; analogously, the n-FuRBI priors yield the highest error when the mean of V
corresponds to the prior mean, i.e., when the other group provides less additional information.
The hierarchical process captures the right dependence when the two means coincide, but can
be misled when they are close; finally, when the second sample is very far from the first one it
performs better than the independent model, probably thanks to the different inner clustering
structure. The results are also summarized in Table 3.1. Thus, n-FuRBI seem to be always
capable of combining heterogeneous information in the right way; in particular, at least in this
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Figure 3.2: Posterior median of
the correlation (obtained through
100 simulation studies) between the
three unknown means. Black with
triangular shapes: correlation be-
tween the first and third component.
Red with square shapes: correlation
between the first and second compo-
nents. Green with circular shapes:
correlation between the second and
third component.

Mean of V Exch. Ind. FuRBI Hier.
-16 1.769 0.995 0.163 0.604
-10 1.769 0.995 0.189 0.592
0 1.737 0.995 0.489 0.587
10 0.205 0.995 0.338 0.397
16 1.666 0.995 0.435 0.592

Table 3.1: Mean integrated absolute error associated to the four methods for some values of the
mean of V . The values in bold are the smallest ones for each row.

example, they recognize the most useful type of borrowing of information. In Section S5.1 simi-
lar experiments are conducted, using different data generating distributions: they show that the
conclusions hold even when the data display significantly different features, as multimodality or
heavy tails.

Finally, we consider a similar application with three groups, in order to see whether n-
FuRBI are able to discern more complex types of dependence. We assume to observe W1,i

i.i.d.∼
N(· | 10, 1), W2,i

i.i.d.∼ N(· | x, 1), and W3,i
i.i.d.∼ N(· | −10, 1), where i = 1, . . . , 20 and x ∈

{−10,−9, . . . , 10}. Then, for each value of x we apply the same n-FuRBI with the same weights
described above, but where the atoms are distributed according to

G0 (·) = N3

·
∣∣∣∣∣0, 1,

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1


 ,

where N3(· | µ0, σ
2,Ψ) denotes a multivariate normal distribution with mean µ0, all the variances

equal to σ2 and correlation matrix Ψ and ρ12, ρ13, ρ23
i.i.d.∼ Unif([−1, 1]). The posterior medians

of ρ12, ρ13 and ρ23 are depicted in Figure 3.2, for any value of x. The results are in line with our
intuition: the correlation between the first and second component is always close to −1 (indeed
they have opposite behaviour relative to the prior), while ρ13 and ρ23 vary linearly with x, being
positive when the means have the same sign.

Predicting stocks and bonds returns
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Figure 3.3: Empirical correlation between aver-
age stock return and average commodity return
computed on a moving window of 12 months us-
ing data from March 2011 to January 2021.

Findings from the previous section and Sec-
tion A2 suggest that n-FuRBI may be used
to enhance density estimates and predic-
tion in multi-sample data. Here, the per-
formance is showcased on a real dataset
of stocks and bonds returns. We col-
lected monthly returns of January 2021 for
a sample of 49 stocks portfolios from the
Kenneth R. French’s Data Library (data
available at http://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.
html) and for a sample of 55 commodi-
ties from the Primary Commodity Prices
Database of the International Monetary Fund (data available at https://www.imf.org/en/
Research/commodity-prices).

We employ a Bayesian mixture model and assume that stock and bonds returns, denoted by
Wi and Vj , respectively, are sampled from mixtures of normals where the mixing distributions
act on mean and variance of the kernel, i.e.,

Wi | P1
i.i.d.∼

∫
N(· | x, σ2

w)P1(dx,dσ2
w) Vj | P2

i.i.d.∼
∫
N(· | y, σ2

v)P2(dy,dσ2
v).

Stocks and commodities exhibit correlation that largely varies over time ranging from positive
to negative values (see, for instance, Bhardwaj and Dunsby, 2013, and Figure 3.3). As conse-
quence, commodities returns contain useful information to make inference over the distribution
of stocks portfolios, and viceversa. Thus, borrowing of information represents a natural strat-
egy to improve inference. However, returns may differ even largely in value between the two
sets of financial instruments, especially in periods of negative correlation. For instance, in our
dataset, 53% of the observed stocks returns are negative, while only 16% of the bonds returns
have negative sign. As such, classical nonparametric borrowing, consisting in sharing of mixture
components, is not appropriate and, as shown in the following, possibly harmful. We instead
make use of n-FuRBI models as prior distribution, i.e.,

(P1, P2) | θ, z,G0 ∼ n-FuRBI(θ, ρ,G0)
θ ∼ Gamma(α, β)

The base measure G0 is chosen so that marginal distributions are given by normalized CRMs
with conjugate Normal-InverseGamma base measure, i.e.

G0(dx,dy, dσ2
w, dσ2

v | ρ0) =N2(dx, dy | m,Σ(λ1, λ2, σ
2
w, σ

2
vρ0))

× InvGamma(dσ2
w | α1, β1) × InvGamma(dσ2

v | α2, β2)

with

m = (m1,m2)′ and Σ =


σ2

w
λ1

ρ0
σw

λ
1/2
1

σv

λ
1/2
2

ρ0
σw

λ
1/2
1

σv

λ
1/2
2

σ2
v
λ2


and we use the following joint underlying Lévy intensity v(ds1, ds2, dx1, dx2) = {z [ρ(ds1)δ0(ds2)+
ρ(ds2)δ0(ds1)] + (1 − z) ρ(ds1)δs1(ds2)} θ G0(dx1, dx2), with z ∼ Unif([0, 1]). We term the re-

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://www.imf.org/en/Research/commodity-prices
https://www.imf.org/en/Research/commodity-prices
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(a) FuRBI with ρ0 ∈ [−1, 1] (b) FuRBI with ρ0 = −0.95 (c) FuRBI with ρ0 = 0.95

(d) Exchangeable model (e) GM-dependent model (f) Independent model

Figure 3.4: Posterior density estimates for stocks returns.

sulting n-FuRBI additive n-FuRBI, since the series representation of the corresponding FuRBI
CRMs is

µ1(·) a.s.=
∑
k≥1

Wkδθ0,k
+
∑
k≥1

Jkδθ1,k
µ2(·) a.s.=

∑
k≥1

Wkδϕ0,k
+
∑
k≥1

Vkδϕ2,k
,

where (θ0,k, ϕ0,k)
i.i.d∼ G0, θ1,k

i.i.d∼ P0 and ϕ2,k
i.i.d∼ P0. When G0 is degenerate on the main

diagonal (i.e. ρ0 = 1), one retrieves GM-dependent completely random measures (Lijoi et al.,
2014a,b; Lijoi and Nipoti, 2014). In order to obtain two Dirichlet processes marginally we set
ρ(s) = s−1e−s, so that β = 1/1 + θ and γ = (1−z) 3F2(θ−θ z+2, 1, 1; θ+2, θ+2; 1)θ/(1 + θ)2,
where 3F2 is the generalized hypergeometric function.

The Bayesian paradigm requires the elicitation of a prior guess about the phenomenon, by
tuning the hyperparameters of the model. In particular, we set the a priori expectations m1 and
m2 in the two groups equal to the empirical averages of the two groups in December 2020, i.e., the
month preceding the data collection, leading to m1 = 5.8591 and m2 = 3.9731. In the following,
we say that a financial instrument is outperforming if its observed return is higher than its a
priori expected value. In order to assign ρ0, we use the results of Propositions 14 and 15. The
elicited ρ0 should reflect our prior opinion about the correlation, which means that it should
induce a learning mechanism agreeing with the following principle: under positive/negative
correlation, conditioning on the event of outperforming commodities, the prior probability of
outperforming/underperforming stocks should increase. Prior opinion about the correlation can
be formulated working with financial experts and, thanks to n-FuRBI, incorporated through
an informative prior on the parameter ρ0. Here, we consider three scenarios: in the first and
second, we derive inferential results under a prior opinion of negative and positive correlation,
respectively, while in the third scenario we assume that no information on the correlation is
available. The three scenarios are obtained with, respectively, ρ0 = 0.95, ρ0 = −0.95, and using
a uniform prior on ρ0. After standardizing the data, we set the remaining hyperparameters in
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a weakly informative way, i.e. λ1 = λ2 = 1, α1 = α2 = 2, and β1 = β2 = 4. Sensitivity analysis,
carried out in Section A2, shows that results are robust with respect to different choices for λj ,
αj and βj for j = 1, 2. We perform 50, 000 iterations of the marginal algorithm (Section A2)
and discard the first 10, 000 as burn–in.

Finally, we compare our approach with three alternative models: the independent model
and the exchangeable model, described in the previous section, and the GM-dependent model
from Lijoi et al. (2014b),which performs classical borrowing based on ties and shares the same
addictive structure of additive n-FuRBI.

ALCPO MLCPO
FuRBI ρ0 ∈ [−1, 1] -1.2347 -0.9627
FuRBI ρ0 = −0.95 -1.2925 -1.0115
FuRBI ρ0 = 0.95 -1.2896 -1.0149
Exch -1.5024 -1.1521
GM-dep -1.4864 -1.1557
Ind -1.3495 -1.1017

Table 3.2: ALCPO and MLCPO under the three
models. Best performance is highlighted in bold.

Figure 3.4 displays the posterior den-
sity estimates for stocks returns. The
analogous figure for bonds returns can be
found in Section A2. Models employing
additive n-FURBI produce density esti-
mates that better resemble the empirical
distribution. The best performance is at-
tained with a non-informative prior over
the correlation ρ0: this is probably due to
the fact that the intensity and direction
of the borrowing of information concen-
trate on the optimal value for the dataset.

The FuRBI models with fixed ρ0 perform worse compared to full-borrowing; nonetheless, thanks
to their flexibility, they still produce better results than other competitors. The GM-dependent
and the exchangeable models yield the worst density estimates in terms of resemblance of the
histogram, as expected. Indeed, the type of borrowing they perform, based on ties, is not
appropriate for the specific problem. Lastly, we note that the independent model appears to
provide a reasonable density estimation, but presents significantly higher uncertainty. While
Figure 3.4 provides insight on the model performance, an important caveat is in order: a too
close resemblance of the empirical distribution may indicate overfitting. Note moreover that,
given the low numerosity of the samples, the histogram is very much influenced by few obser-
vations unlike the density estimates: since this is due by the presence of a prior, a more refined
analysis should include different choices of the baseline measure in order to assess the impact
on the final estimate.

To evaluate the predictive performance, we resort to the conditional predictive ordinates
(CPOs) statistics (see, e.g. Gelfand et al., 1992; Barrios et al., 2013). Essentially, for each value
i, we train the model without the i-th observation and compute the predictive density at the
observed point. For the first sample it reads CPOw

i = f̃(wi | w−i, v), for i = 1, . . . , n and
analogously for the second sample we have CPOv

j = f̃(vj | w, v−j), for j = 1, . . . ,m, where w
and v denote the vectors of observed returns for, respectively, stocks and commodities. Table 3.2
displays the average logarithmic CPO (ALCPO) and the median logarithmic CPO (MLCPO) in
the overall sample. Higher values correspond to a better performance, and the n-FuRBI exhibits
the best performance.

Clustering of multivariate data with missing entries

We now show how to leverage on our methodology to perform borrowing of information and
clustering with multivariate data affected by missing entries. The n-FuRBI priors are very well
suited for this problem: indeed, incomplete observations can be interpreted as projections of
latent complete observations and, in particular, hyper-ties between incomplete observations can
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be thought of as actual ties between complete observations.
We consider a P -variate (P > 1) dataset with missing entries and divide the dataset into

distinct samples based on the missing entries: denote by (W (j1,...,jl)
i , i = 1, . . . , n(j1,...,jl)) the

sample where l outcomes with labels (j1, . . . , jl) are missing. The dimension of the vector
W

(j1,...,jl)
i is therefore Pj1,...,jl = P−l. Denote by qj1,...,jl the corresponding unknown distribution,

i.e.,
W

(x)
i | qx

i.i.d.∼ qx for i = 1, . . . , nx and x ∈ I,

where I is the index set of all the possible combinations of missing variables identifying different
samples, which are at most 2P − 1. Independent analyses for each sample should clearly be
avoided and classical nonparametric borrowing cannot even be specified because the support
spaces of different samples differ one from the other.

To perform clustering, we assume that each qx is a mixture of multivariate normal kernels
with diagonal covariance matrix and mixing measure p̃x on locations, i.e.

W
(x)
i | Px, σ2 i.i.d.∼

∫
NPx(· | µ

x
, σ2

x)Px(dµ
x
),

where σ2 =
(
σ2

1, . . . , σ
2
P

)
, σ2

x is the restriction of σ2 to all the elements besides x andNK(· | µ, τ2)
denotes the K-variate normal distribution with mean vector µ and diagonal covariance matrix
given by τ2. Independence of the kernel (implied by the diagonal covariance matrix) is a common
assumption in clustering models for multivariate responses (see, for instance, Gao et al., 2020;
Franzolini et al., 2023): in this way we are forcing the clustering structure to encode all the
dependence across responses. The Px are distributed as

(Px, x ∈ I) ∼ additive n-FuRBI,

described in the last Section. The atoms of (Px, x ∈ I) are costrained so that an hyper-tie
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Figure 3.5: Simulated data: left panel shows true clusters locations, right panel shows complete
simulated data for n = 1000 before applying the missingness mechanisms.
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simul missing % of missing n-FuRBI n-FuRBI n-FuRBI mice + mice +
number mechanism entries z = 0.2 z = 0.5 z = 0.8 k-means DPM

n.1 MCAR 16.1% 0.7883 0.7882 0.7881 0.7408 0.7734
n.2 MNAR 16.7% 0.7703 0.7704 0.7706 0.6323 0.7617
n.3 MCAR 35.9% 0.7292 0.7285 0.7283 0.6786 0.7165
n.4 MNAR 34% 0.7304 0.7301 0.7432 0.6391 0.7328

Table 3.3: Rand indexes for 5 competing methods: 3 n-FuRBI models with varying parameter
z, mice+k-means and mice+DPM. For n-FuRBI and mice+DPM the posterior expected value is
computed averaging over the Rand indexes of all clustering configurations visited by the MCMC
chain after burn-in.

simul missing % of missing n-FuRBI n-FuRBI n-FuRBI mice + mice +
number mechanism entries z = 0.2 z = 0.5 z = 0.8 k-means DPM

n.1 MCAR 16.1% 4.24 4.19 4.22 3 5.48
n.2 MNAR 16.7% 4.59 3.29 3.37 2 5.36
n.3 MCAR 35.9% 4.38 4.18 4.20 3 7.01
n.4 MNAR 34% 4.28 4.17 4.59 2 5.85

Table 3.4: Estimated number of clusters for 5 competing methods. The posterior mean is used
for n-FuRBI and mice+DPM, while the number of clusters is selected by maximizing the average
silhouette for mice+k-means. The true number of clusters is equal to 4.

can be interpreted as an actual tie between complete observations: moreover the choice of
dependent weights allows to recover group-specific features, if the missingness mechanism is
informative. Section A2 provides a discussion of this and contains the details about the choice
of the hyperparameters.

First, we conduct a simulation study where data for n = 1, 000 items, P = 3 responses, and
K = 4 clusters are simulated from a mixture of Gaussian distributions. Figure 3.5 shows the
locations of the true clusters and the complete simulated data before deleting entries. Then,
different missingness mechanisms are applied to determine the entries to be treated as miss-
ing. Missing completely at random (MCAR) scenarios are obtained by sampling missing entries
uniformly, while, in missing non at random (MNAR) scenarios the probability of being miss-
ing depends on the true cluster allocation. Different combinations of missing variables define
different samples: the number of samples ranges from 3 to 6 among simulation scenarios. The
detailed distributions of missing values are provided in Section A2. Different values of the hyper-
parameter z of the Lévy intensity are considered. Our results are compared with those obtained
with two alternative approaches, called “mice + k-means" and “mice + DPM", which follow a
two-steps procedure: first one imputes missing data by chained equations as implemented in the
R package mice (van Buuren and Groothuis-Oudshoorn, 2011), then, the clustering structure is
estimated with, respectively, k-means and a Dirichlet process mixture. Note that the number of
clusters for k-means is chosen to maximize the average silhouette. For each run of the n-FuRBI
model, we perform 25, 000 iterations of the MCMC chain and discard the first half as burn-in.
Tables 3.3 and 3.4 summarize the performance of the models. The n-FuRBI priors outperform
the alternatives in all scenarios considered, in term of estimating both the number of clusters
and the clustering configuration, measured by Rand indexes between the estimated configura-
tion and the true clustering structure. Moreover, the posterior distribution of n-FuRBI models
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Figure 3.6: Scatter plots of the four scores (after standardization) for the brandsma dataset.
Coordinates of missing data are set equal to their respective posterior median. Different colors
and symbols denote the three estimated clusters obtained minimizing the variation of information
loss with respect to the posterior distribution.

reflects uncertainty both about the estimated clustering configuration and about the imputation
mechanism, which is instead ignored by two-steps procedures.

Finally, we apply the model also on the brandsma dataset (Snijders and Bosker (2012)), which
refers to grade 8 students (age about 11 years) in elementary schools in the Netherlands (see,
Brandsma and Knuver, 1989). The goal is to cluster n = 4, 106 pupils, based on their IQ verbal
score (IQV), IQ performance score (IQP), language score (LRP), and arithmetic score (APR).
The number of subjects presenting missing entries is 339 out of 4, 106 (i.e., 8.26%). As before,
different combinations of missing variables define different samples: the number of samples is 7
in the brandsma dataset. In this real data analysis, the final clustering configuration provides a
lower dimensional description of the data rather than an estimate of ideal true clusters. Data
are standardized before running the model, so that the sample means and variances are equal
to 0 and 1. Figure 3.6 shows the estimated clustering configuration obtained minimizing the
variation of information loss with respect to the posterior distribution. The model identifies three
clusters, which show as major tendency that groups of students performing above/below average
for one of the four scores tends to perform above/below average also for the other scores. In
particular, a first cluster includes 53% of the subjects, which have lower performances: indeed
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cluster averages of the standardized scores are IQV= −0.371, IQP= −0.398, LRP= −0.387,
and APR= −0.435. Instead the second cluster, including 44% of the subjects, retains the
best students: the cluster averages of the standardized scores are IQV= 0.609, IQP= 0.595,
LRP= 0.629, and APR= 0.642. Finally, the students with worst scores are allocated to a third
cluster whose averages are IQV= −2.01, IQP= −1.43, LRP= −1.90, and APR= −1.34.

3.2.7 Conclusion

We investigated the dependence induced across groups in a wide class of Bayesian nonparametric
models, introducing the notion of hyper-tie. We showed how hyper-ties play a crucial role in
driving the Bayesian learning mechanism and the borrowing of information across samples. We
noted that existing nonparametric priors either do not allow an explicit evaluation of the value
of the correlation or, when they do, they are able to induce only non-negative correlation. Thus
we designed n-FuRBI, a novel class of dependent nonparametric priors, which may induce either
positive or negative correlation between the random probabilities as well as across samples
introducing a novel and flexible idea of borrowing of strength. This allows to achieve high
flexibility as well as analytical tractability, while outperforming competing models in different
scenarios. Our class of priors is immediately applicable to model multi-sample data through
mixture models, as shown in the analysis of the financial dataset. Moreover, it allows also for a
variety of interesting extensions since it can be seen as an effective building block to model non
trivial dependencies in more complex data analyses as showcased in a clustering problem with
mutivariate data in presence of missing entries.

3.3 Trees of random probability measures

3.3.1 Introduction

In the nonparametric setting, a common choice for the prior distribution is the law of a Dirichlet
process (Ferguson, 1973), or suitable generalizations such as Pitman-Yor process (Pitman and
Yor, 1997; Pitman, 2006) or processes derived from completely random measures (Kingman,
1967; James et al., 2006, 2009). In a partially exchangeable setting, a common approach is to
combine distributions as above, in order to induce various types of dependence between groups:
this leads to additive structures (Lijoi et al., 2014a), nested structures (Rodriguez et al., 2008)
and hierarchical structures.

The latter, that are the starting point of this Section, work by creating a hierarchy of random
measures that therefore turn out to be dependent. The graphical model is given by the left part
of Figure 3.7: a common, latent random measure P0 specifies the law of Pi, i = 1, 2, 3, that are
associated to three distinct groups. When the random measures are discrete, as in the case of
the hierarchical Dirichlet process (Teh et al., 2006) the induced clustering implies the presence of
ties both within and across groups, leading to a nice and interpretable borrowing of information.
This is particularly interesting for instance in topic modelling, where each document is described
with a multinomial kernel and each parameter corresponds a topic (i.e. a distribution over all
the possible words). Therefore, P0 becomes a pool of common topics that are shared, with
different relevance, by distinct documents. In this context the hierarchical Dirichlet process is
the nonparametric extension of the well-known Latent Dirichlet Allocation (Blei et al., 2003),
that describes the documents as a mixture of latent topics. Even if it is endowed with great
analytical tractability, the Dirichlet process has well–known limitations, both in the exchangeable
and non-exchangeable case: consequently, Camerlenghi et al. (2019b) provided a general theory
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P0 P2
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P0 P1 . . . Pt

P1,1

P1,2
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Figure 3.7: Graphical models of a hierarchical structure (left) and a tree structure (right)

for hierarchies of random measures, that allows the usage of various extensions of the Dirichlet
process.
Notice that, looking again at Figure 3.7, a hierarchical model can be seen as a very special tree,
where P0 is the root and the observations are collected at the leaves. However, this structure
is sometimes too simple to describe all the relevant features of the data. Still considering the
topic modelling framework, we may be interested in a corpus of documents that grows in time
(e.g. papers submitted each year to a specific conference): it is reasonable to believe that the
documents, and the latent topics, yield a temporal dependence that could be exploited. Indeed,
a graphical model as in the right part of Figure 3.7 would be more accurate: P0 plays again the
role of the common pool of topics, while the red nodes correspond to the distribution associated
to the years of interest, linked to the random measures describing the single documents, given
by the green nodes. Motivated by those applications, many models describing similar structures
have been introduced, both parametric (Blei and Lafferty, 2006) and nonparametric (Caron
et al., 2007,?; Teh, 2006; Wang et al., 2017). Similar probabilistic structures, but in different
contexts, have been proposed in Gnedin and Iksanov (2020); Nieto-Barajas (2021). Such propos-
als focus mostly on temporal dependence and it is often not clear how to incorporate additional
information: for instance, in the example above, we may want to distinguish papers belonging to
different scientific fields. Moreover, documents may be seen as an ordered collection of chapters
and sections, which the usual hierarchical structure is not able to capture. The usefulness of
incorporating this order will be shown in Section 3.3.8.

In this work we propose a methodology to construct a generic tree of random probability
measures, chosen to describe the underlying features of the dataset. In particular, to each node
is associated a random measure endowed with the law of a Pitman-Yor process (Pitman and
Yor, 1997; Pitman, 2006), and the edges are given by a hierarchical structure. The construction
allows to collect observations at any node (not necessarily the leaves) and to handle properly
missing data at every position of the tree. Moreover, thanks to the nice analytical properties of
Pitman-Yor process, and its characterization through σ-stable processes, we are able to explicitly
assess the impact of the geometry of the tree on the clustering properties of the model. Indeed,
considering again the right part of Figure 3.7, it is reasonable that some topics at time 2 actually
come from time 1 and this should be reflected on the dependence between P1 and P2. We show
that our construction implies this behaviour and that such dependence can be suitably tuned
using appropriate hyperparameters. Furthermore, the predictive distribution can be derived and
allows to perform posterior inference. To summarize, this paper has three goals: (i) provide a
general framework to encode various types of dependence through trees of random probability
measures; (ii) give explicit expressions for prior quantities of interest (e.g. correlation across
groups) and the predictive distribution; (iii) allow to collect data at different (possibly internal)
nodes and handle missing data without additional complications.
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Throughout the paper we will focus on topic modelling applications, mainly to show the
implications of our proposal. However, the construction is completely general and the tree
structure is appropriate beyond a corpus of documents. For instance in An et al. (2008) a
similar structure, based on kernel stick breaking priors, is used for image analysis. Moreover,
similar models can be applied to microbiome data: each document corresponds to a biological
sample and each distinct term to a bacterial species. See Sankaran and Holmes (2019) for a
review. In this context, tree structures arise naturally to describe compositional data (see Wang
et al. (2021) for an example using Pólya trees).

Trees of Pitman-Yor processes have already appeared in language models called sequence
memoizers (Wood and Teh, 2009; Teh, 2006). In this case the observations typically take values
in a finite space (e.g. words in a dictionary), so that the base measure at the root of the tree is
atomic. See also Johnson et al. (2006); Wood et al. (2011) for more details. Our treatment is
different in the sense that the sampling space is completely general: moreover, the base measure
at the root is diffuse, which is crucial to derive the clustering properties and the predictive
distribution (see Theorem 15).

3.3.2 Pitman-Yor process

As discussed extensively, in this document we focus on discrete nonparameteric priors: indeed,
considering structures as in Figure 3.7, discreteness allows to make ties both within and across
groups, leading to a natural way of borrowing information. Therefore, we assume the realizations
of the prior law Q to be almost surely discrete, i.e. P d= ∑

j≥1WjδXj , where {Wj}j are random
probability weights and Xj independent random atoms sampled from a suitable probability
measure Q0 on the sampling space X. A popular choice for the distribution of the weights is
given by

Wi = Vi

i−1∏
j=1

(1 − Vj), Vi ∼ Beta(1 − σ, θ + iσ), (3.7)

with σ ∈ [0, 1) and θ > 0. This representation, often called stick-breaking construction, leads to
the definition of the Pitman-Yor (PY) process (Pitman and Yor, 1997; Pitman, 2006). Notice
that the choice σ = 0 corresponds to the well-known Dirichlet process (Ferguson, 1973).

Defining the process through the weights, as in (3.7), though often useful from a computa-
tional perspective, makes a theoretical analysis quite challenging. However, the PY process can
be also defined through the predictive distribution, which reads

Xn+1 | X1:n ∼ θ + σKn

θ + n
Q0 + 1

θ + n

Kn∑
i=1

(nj − σ)δX∗j , (3.8)

where Kn is the number of distinct values
(
X∗1 , . . . , X

∗
Kn

)
in the sample X1:n = (X1, . . . , Xn),

with multiplicities (n1, . . . , nKn). Thus, the (n+ 1)-th observation can be either completely new
from the baseline Q0 either copies one of the already observed datapoints: it is then clear that a
sample from model for exchangeable data with Q being the law of a PY process exhibits ties with
positive probability. A special role is played by the parameter σ, which reinforces the probability
of observing new values according to the number of distinct species. The predictive distribution
(3.8) is an example of the general class of Gibbs-type priors, which stand out for analytical
tractability: see De Blasi et al. (2015) for a recent review. A natural way to characterize such
priors is through the Exchangeable Partition Probability Function (EPPF), which describes the
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Figure 3.8: Graphical model of a generic tree structure.

induced law on the partitions of n elements (i.e. on the clustering): this representation will be
thoroughly discussed in Section 3.3.5).

Finally, it is possible to represent a Pitman-Yor process through Completely Random Mea-
sures (CRMs). The latter are random objects on the space of discrete finite measures, which are
endowed with nice analytical properties. Many Bayesian nonparametric priors can be described
through CRMs (see e.g. Regazzini et al. (2003); James et al. (2006, 2009)), allowing to explicitly
derive many posterior quantities of interest. In particular, the law of a PY process is given by
a suitable change of measure of the normalized σ-stable process (Pitman and Yor, 1997). See
Section 3.2.3 above or Section A3 in the Appendix for more details. This is the characterization
we will use for the proofs of all the results in this document.

3.3.3 Building a tree

The graphical model of a tree is illustrated in Figure (3.8). The tree is divided in subsequent
levels, where level 0 always corresponds to the root p0. All the other nodes are identified by
a vector of integers, say p, whose position is specified by its values and the level by its length,
denoted |p|. For instance in figure 3.8, P2,1 is the random measure associated to node p = (2, 1)
at level |p| = 2.

In a tree structure, nodes are connected by edges, that define a children-parent relationship
among the nodes. We denote with (p, i) the i-th child of p (counting from left to right) and
with p the father of p, that is the vector of length (|p| − 1) derived from p by truncating the
last component. Finally, considering p ∈ T , we denote with C(p) ⊂ T the set of children of p.
In order to define a proper tree, each node different from the root must have a parent, so that
we can say that

T ⊂
∞⋃
k=1

Nk+ is a tree if and only if

0 ∈ T
∀p ∈ T , with |p| ≥ 2, ∃ q ∈ T s.t. q = p

(3.9)

In other words, a tree must contain the root and each other node must have a single edge
connecting it to the lower level. Allowing to observe data at each node, the model reads

Xp,i | Pp
i.i.d.∼ Pp,

{
Pp ; p ∈ T

}
∼ Q,

where Xp,i denotes the i-th observation collected at node p.
In order to define the law Q, we need to specify the distribution of the nodes and how the

edges affect the dependence among them. In particular, we define the child-parent relation as

Pp | Pp
i.i.d.∼ PY(σp, θp, Pp),
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using the notation introduced in the previous Section. In other words, children are conditionally
independent given the father node, that plays the role of the baseline distribution, i.e. it provides
the pool of available atoms. Endowing the root with the law of a PY with a diffuse baseline
distribution Q0, we can write the model in a recursive fashion as

Xp,i | Pp
i.i.d.∼ Pp, Pp | Pp

i.i.d.∼ PY(σp, θp, Pp), P0 ∼ PY(σ0, θ0, Q0). (3.10)

Therefore, each edge corresponds to the creation of a new hierarchy. This makes the depencence
between arbitrary nodes p and q far from trivial; indeed the strength of their relation will
depend on the path of hierarchies that leads from the root to p and q. This is the matter of
next Section.

3.3.4 Prior properties and dependence between the nodes

Considering two nodes p and q, we will call m ∈ T the Most Recent Common Ancestor (MRCA)
of p and q, that is the the node on the lowest level that is a relative (e.g. connected through
a series of edges) of both p and q. More formally, if P(p) ⊂ T is the path of connected nodes
from the root to p, the MRCA is the element with the highest length belonging to the set
P(p) ∩ P(q).

For future reference, from now on we will denote

γp = 1 − σp
θp + 1 . (3.11)

As shown in the next two propositions, the set {γp}p∈T plays a crucial role in determining the
dependence structure induced by model (3.10). We start from the relation between random
measures located at arbitrary positions of the tree.

Proposition 19. Let T be a tree with model (3.10). Let p, q ∈ T be such that m ∈ T is their
MRCA. Then, for every set A we have

E[Pp(A)] = Q0(A), Corr
(
Pp(A), Pq(A)

)
=

1 −
∏

l∈P(m)(1 − γl)√
1 −

∏
l∈P(p)(1 − γl)

√
1 −

∏
l∈P(q)(1 − γl)

.

If moreover γl = γ, for every l ∈ T , we have

Corr
(
Pp(A), Pq(A)

)
= 1 − (1 − γ)|m|+1√

1 − (1 − γ)|p|+1
√

1 − (1 − γ)|q|+1
.

Proposition 19 shows that the tree is centered around the baseline distribution of the root Q0,
in the sense that Q0(A) is the average of each node, for every A. Moreover, the correlation is
always positive and independent of the specific set considered: this is reminiscent of most of
the priors for partially exchangeable models (e.g. Camerlenghi et al. (2019b)). It is easy to see
that the correlation is an increasing function of P(m), in the sense that the longer the path
the stronger the dependence. The intuition is that a long path from the root to the common
ancestor leads to a large number of nodes (i.e. information) shared between p and q: in the
context of topic modelling it implies a larger number of topics shared by documents p and q,
as expected. In this sense, our proposal induces the relationships discussed in the Introduction:
as we go along the tree, nodes become more and more correlated.
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Alternatively, it is possible to measure dependence at the level of the observations, as the
next Propositions highlights.

Proposition 20. Let T be a tree with model (3.10). Let p, q ∈ T be such that m ∈ T is their
MRCA. Then for every i and j we have

P(Xp,i ∈ A) = Q0(A), Corr
(
Xp,i, Xq,j

)
= P

(
Xp,i = Xq,j

)
= 1 −

∏
l∈P(m)

(1 − γl).

If moreover γl = γ, for every l ∈ T , we obtain

Corr
(
Xp,i, Xq,j

)
= P

(
Xp,i = Xq,j

)
= 1 − (1 − γ)|m|+1.

The intuition is analogous to Proposition 19: dependence becomes stronger along the tree.
Interestingly, the correlation between observations at different nodes depends only on the path
to the MRCA: indeed the longer P(m) the higher the probability of a tie. Using the tools of
Proposition 20 we can derive the joint distribution of a pair (Xp,i, Xq,j).

Corollary 7. Let T be a tree with model (3.10). Let p, q ∈ T be such that m ∈ T is their
MRCA. Then for every indexes i and j and sets A and B we have

P
(
Xp,i ∈ A,Xq,j ∈ B

)
=

1 −
∏

l∈P(m)
(1 − γl)

Q0(A ∩B) +

 ∏
l∈P(m)

(1 − γl)

Q0(A)Q0(B).

The sampling mechanism yields a nice interpretation: with probability
1 −

∏
l∈P(m)(1 − γl), that intuitively quantifies the informations shared between p and q, the

observations are sampled together, otherwise they are collected independently. The next example
shows how the above formulas simplify in the particular case of the Dirichlet process, i.e. when
σp = 0.

Example 8. Consider model (3.10) with σp = 0 for every p ∈ T . If m is the MRCA of nodes
p and q, it holds

γp = 1
1 + θp

and Corr
(
Xp,i, Xq,j

)
= 1 −

∏
l∈P(m)

θl
1 + θl

.

Moreover, if θp = θ for every p ∈ T we get

Corr
(
Xp,i, Xq,j

)
= 1−

(
θ

1 + θ

)|m|+1

, Corr
(
Pp(A), Pq(A)

)
=

1 −
(

θ
1+θ

)|m|+1√
1 −

(
θ

1+θ

)|p|+1
√

1 −
(

θ
1+θ

)|q|+1
.

If θ → ∞ the correlations vanish, since the law of the random measures Pp degenerate on the
deterministic distribution Q0; the opposite happens if θ → 0, leading to the maximal correlation.

Therefore, thanks to the nice analytical tractability of the PY process, the prior dependence can
be suitably tuned by the researcher through simple formulas depending on {((σp, θp) ; p ∈ T }.
Moreover, using similar tools, it is possible to derive the full predictive structure of model (3.10),
and therefore an algorithm for posterior sampling, as will be illustrated in the next Section.
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3.3.5 Random partitions and the predictive distribution

A common way to explain the clustering induced by the exchangeable model consists in using
a Chinese Reasturant metaphor: the clusters are thought as customers sitting at the same
table, where the unique value associated to the cluster is the common dish served. With a
hierarchical structure (see Camerlenghi et al. (2019b)), the metaphorical restaurant becomes
a franchise: considering again the left part of Figure 3.7, the red nodes correspond to three
distinct restaurants, whose customers are again subdivided in tables. However, now the dishes
come from the same menu, that is given by the yellow node; since also P0 is almost surely
discrete, different tables may have the same dish. This metaphor is not only amusing, but is
also useful to make explicit the dependence within and across nodes (i.e. restaurants): indeed,
if the clustering at the restaurant level (i.e. red nodes) is available, sampling a new observation
requires only to decide whether to open a new table (whose dish will be sampled from P0). This
is the key idea underlying the algorithms for posterior sampling with hierarchical structures (see
Teh et al. (2006); Camerlenghi et al. (2019b)).

Luckily, it is possible to extend the culinary metaphor to model (3.10) associated to a tree
T . Indeed each node p corresponds to a restaurant, whose customers are subdivided in lp•
tables (the notation will be clear in the following). The dishes associated to the tables come
from the parent node p, that is itself a restaurant, so that they are clustered again. Proceeding
recursively, the actual dishes come from the root P0, that plays the role of the common menu
available to all the restaurants. Notice that at each node p there are the proper customers (i.e.
observations collected at p) and dishes coming from the children nodes.

More formally, let T be a tree with d levels with nj , j = 1, . . . , d, observations collected at
each level. Denote with Lj ⊂ T the set of nodes in level j. Then the metaphor becomes as
follows

• at level d, the nd customers are divided in ld• = ∑
p∈Ld

lp• ≤ nd tables;

• at level d− 1, the nd−1 + ld• customers are divided in ld−1• = ∑
p∈Ld−1

lp• tables;

...

• at level 1, the n1 + l2• customers are divided in l1• = ∑
p∈L1 lp• tables;

• at level 0, the l1• customers are divided in k tables, whose dishes are sampled from Q0.
Since Q0 is diffuse, the dishes are almost surely different.

The dishes at level j become new customers at level j−1 and therefore observations are clustered
in coarser partitions, as we go from the leaves to the root. The latter is the common restaurant
that specifies the dishes available to all the customers, regardless of the position of the restaurant.
Notice that this latent clustering is not observed in a sample from model (3.10). Indeed we only
observe the k distinct dishes and which dish is associated to a customer: however, two customers
may share the same dish without seating at the same table, as we discussed. It turns out that
knowing the division in tables at each node greatly simplifies the computation, as will be shown
in Theorem 15 below.

In order to formalize this, we need to evaluate the partial Exchangeable Partition Probability
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Function (pEPPF) associated to model (3.10), defined as

Π(n)
k

(
np ; p ∈ T

)
= E

∫
Xk
∗

k∏
j=1

∏
p∈T

P
np,j
p (dxj), (3.12)

where np = (np,1, . . . , np,k) is a vector of positive integers such that np = ∑k
j=1 np,j and

n = ∑d
i=1 ni, with ni = ∑

p∈Li
np number of observations per level. Moreover, Xk∗ is the subset

of Xk∗ given by vectors with all distinct entries. Indeed, Π(n)
k

(
np ; p ∈ T

)
is the probability of

observing exactly the partition {np ; p ∈ T } when sampling np observations at node p. In this
context k is the number of distinct values in the overall sample and np the vector of associated
multiplicities observed at node p.

The pEPPF can be composed starting from the random partitions induced by an exchange-
able sequence, described by the Exchangeable Partition Probability Function (EPPF). In partic-
ular, for any p ∈ {1, . . . , n} and any vector of positive integers (r1, . . . , rp) such that ∑p

j=1 rj = n,
we set

Φ(n)
p,p(r1, . . . , rp) =

∏p−1
i=1 (θ + iσ)

(θp + 1)n−1

p∏
i=1

(1 − σp)ri−1 (3.13)

This is the EPPF induced by a Pitman-Yor process with parameters (σp, θp, Q0), with Q0 diffuse,
see De Blasi et al. (2015); Pitman (2006). We are now able to evaluate the pEPPF (3.12).

Theorem 15. Let T be a tree with d levels. Suppose the sequences {
(
Xp,j

)
j≥1 : p ∈ T } are

partially exchangeable according to model (3.10). Then

Π(n)
k

(
np ; p ∈ T

)
=
∑

l

∑
q

1
l!

(
n
q

)
Φ(l1•)

0,k (l1,1, . . . , l1,k)
d∏
i=1

∏
p∈Li

Φ(np+lp+1•)
p,lp• (qp,1, . . . , qp,k),

with
1
l!

(
n
q

)
=

d∏
i=1

∏
p∈Li

k∏
j=1

1
lp,j !

(
np,j + lp+1,j

qp,j,1, . . . , qp,j,lp,j

)

and where

1.
∑

l = ∑d
i=1

∑
p∈Li

∑
lp, where

∑
lp = ∑np,1+lp+1,1

lp,1=1 · · ·
∑np,k+lp+1,k

lp,k=1 and lp+1,j = ∑
g∈Cp lg,j,

with lp,j ∈ {1, . . . , np,j + lp+1,j};

2.
∑

q = ∑d
i=1

∑
p∈Li

∑
qp

, where qp = (qp,1, . . . , qp,k) and qp,j is a vector of positive integers
such that

∑lp,j

t=1 qp,j,t = np,j + lp+1,j;

3. lp• = ∑k
j=1 lp,j and Φ(n)

r,p (·) is as in (3.13).

Within the culinary metaphor, lp,j is the number of tables in node p eating dish j, so that
lp• = ∑k

j=1 lp,j is the total number of tables at node p, whose dishes are given by qp. In
particular, qp,j,t is the number of customers in restaurant p eating dish j at table t, with
t = 1, . . . , lp,j . Notice that, given q and l, the pEPPF reduces to the product

Φ(l1•)
0,k (l1,1, . . . , l1,k)

d∏
i=1

∏
p∈Li

Φ(np+lp+1•)
p,lp• (qp,1, . . . ,qp,k), (3.14)
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which displays the random partitions associated to each node of the tree. The product form
above makes the predictive distribution very explicit: for instance the probability to a sample a
completely new value at node p, conditional on q and l, becomes

∏
r∈P(p)

Φ(nr+lr+1•+1)
r,lr•+1 (qr,1, . . . ,qr,k, 1)

Φ(nr+lr+1•)
r,lr• (qr,1, . . . ,qr,k)

=
∏

r∈P(p)

θr + σrlr•
θr + nr + lr+1•

,

that is exactly the probability of creating a new table in each node (i.e. restaurant) in the path
from p to the root.

Then it becomes natural to include the sampling of l and q in the algorithm for posterior
inference. Therefore, we introduce a set of latent variables T =

{
Tp ; p ∈ T

}
, that describes the

clustering structure. In terms of the Chinese restaurant metaphor, Tp,j is the label of the table of
customer (observation) j at restaurant (node) p. Consequently, a sample X = {

(
Xp,i

)np
i=1 ; p ∈

T }, with unqiue values {X∗1 , . . . , X∗k} and multiplicities np, will be endowed with latent variables
of the form

Tp =
(
Tp,1, . . . , Tp,np+lp+1•

)
,

for every p ∈ T . In particular Tp,i is the label associated with observation Xp,i, with i =
1, . . . , np, while Tp,i with i > np + 1 refers to one of the tables of p’s children, whose common
value we denote again with Xp,i. Moreover we denote with T ∗p,r the r-th unique label in Tp, i.e.
one of the tables in node p, associated to the value (dish) XT ∗p,r

. Thus, l and q can be recovered
from T by

lp,j =
{

number of unique values T ∗p,r such that XT ∗p,r
= j

}
and

qp,j,T ∗p,r
=

number of labels Tp,i such that Tp,i = T ∗p,r if XT ∗p,r
= j

0 if XT ∗p,r
̸= j

Therefore, it is possible to devise a Gibbs sampler on the augmented space {(X ,T) ; p ∈ T } to
perform posterior inference: more explicit details are given in the next Section. Moreover, the
pEPPF is not only useful to unveil the clustering structure and devise suitable algorithms for
posterior inference, but it also allows to derive interesting properties of model (3.10). In Section
3.3.7 we use it to derive the asymptotic behaviour of the number of clusters.

3.3.6 Posterior sampling

Assume to collect a set of observations X = {
(
Xp,i

)np
i=1 ; p ∈ T } from model (3.10). In order

to perform statistical inference it is necessary to evaluate the distribution of {Pp ; p ∈ T }
conditional on the sample X . However the latter is not available in closed form, due to the
complexity arising by the hierarchical strcuture: thus we need to provide approximations through
MCMC methods. The algorithms presented in this Section can be easily extended to mixture
models.

A first approach is called conditional and consists in simulating trajectories of Pp by its
posterior distribution. The latter is a difficult task, since Pp is infinite-dimensional: clever
algorithms (Walker, 2007; Papaspiliopoulos and Roberts, 2008) for exact sampling have been
proposed for the case of mixture models, but it is not immediate to extend them to the tree
structure. For example, the retrospective sampler introduced in Papaspiliopoulos and Roberts
(2008) requires a Metropolis-Hastings step for the allocation variables, whose generalization to
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the hierarchical structure seems challenging. An alternative would be to approximate Pp by
truncating the series representation given by (3.7). This leads to an efficient sampler in the
exchangeable case (see e.g. Ishwaran and James (2001)), but in our setting this would require
a truncation at each node: thus, the propagation of the associated error (and the consequent
choice of the trucncation threshold) becomes a significantly harder issue.

A second approach, termed marginal, is given by integrating out the random probability
measures Pp and sample directly new observations at each node. See Escobar and West (1995)
for marginal algorithms in the exchangeable case. In our setting, for example, the distribution
of m new observations Xp,np+1, . . . , Xp,np+m is given by

P
(

∩mi=1

{
Xp,np+i ∈ Ai

})
=
∫ m∏

i=1
Pp(Ai)Q(Pp | X ), (3.15)

where Q(· | X ) is the posterior distribution of {Pp ; p ∈ T } induced by model (3.10).

Direct evaluation and exact sampling of (3.15) are infeasible, but the availability of the
pEPPF in Theorem 15 allows to explicitly derive the full conditionals of the set {(X ,T) ; p ∈ T },
using the notation of the previous Section. Therefore it is possible to devise a Gibbs sampler on
the augmented space to sample new observations at different nodes. Assume for simplicity that
we want to sample a single new observation at node q, that may be placed everywhere on the
tree: the algorithm can be straightforwardly extended to multiple new observations at different
nodes. In this case, the algorithm requires to sample node specific labels Tq,i, associated to some
observation Xi, and the new pair

(
Tp,np+1, Xp,np+1

)
. As regards the former, the conditional

distribution is given by

P
(
Tq,i = new | X ,T−i

)
∝

θq + σql
−i
q•

θq + nq + lq+1• − 1 ,

P
(
Tq,i = T ∗q,r | X ,T−i

)
∝

q−iq,Xi,T ∗q,r
− σq

θq + nq + lq+1• − 1 ,
(3.16)

where qq,t is the number of customers at table t in node q, while the superscript (−i) refers
to quantities computed after the removal of the label Tq,i. Notice that if the sampling of Tq,i
results in a new label, i.e. creating a new table, this implies that lq• is increased by one and a
new label at the parent node q must be sampled by its conditional distribution, as in (3.16) with
q in place of q. This procedure must be performed recursively along P(q) until a label copies
one of the dishes at the same level (second line in (3.16) or the the root is reached. Therefore,
sampling a label in q may lead to creating new labels in the path from the root to q, reflecting
the hierarchical structure of model (3.10). As regards sampling the pair

(
Tp,np+1, Xp,np+1

)
,

similarly to (3.16) the label Tp,np+1 yields a conditional distribution

P
(
Tp,np+1 = new | X ,T

)
∝ θp + σplp•
θp + np + lp+1•

,

P
(
Tp,np+1 = T ∗p,r | X ,T

)
∝

qp,XT∗p,r
,t − σp

θp + np + lp+1•
,

(3.17)
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while for the value it holds

Xp,np+1 | Tp,np+1,X ,T ∼

δXq,T∗q,r
if Tp,np+1 copied T ∗q,r, with q ∈ P(p)

Q0 otherwise
(3.18)

Therefore the new value either copies one of the already existing observations either is sampled
by the base measure of the root, becoming a completely new value. The algorithm then reads:

1. Initialize T.

2. For every t = 1, . . . , T :

• For every q ∈ T , sample Tq,i for every i = 1, . . . , nq + lq+1• as in (3.16). Sample the
possibly new labels in the previous levels.

• Sample Tp,np+1 as in (3.17). Sample the possibly new labels in the previous levels.
• Sample Xp,np+1 according to (3.18).

A nice byproduct of the above algorithm is that it provides the full clustering structure at each
iteration. By Theorem 15 and especially (3.14), conditional on T the dependence among the
random measure greatly simplifies: in particular Pp will depend only on Pq, with q ∈ P(p)\{p}.
The latter fact makes posterior sampling of Pp much simpler, by sampling sequentially at each
level starting from the root, so that a marginal algorithm can be also used if direct sampling of
the random measures is required.

3.3.7 Distribution of the number of clusters

When studying discrete priors, the number of clusters, i.e. the number of distinct values in
a sample of n observations, is often a crucial object. This happens either in species sampling
problems, when the data are given by frequencies, or in mixture models, when the clustering
structure is latent. In topic modelling it represents the number of topics used to describe all the
documents in the corpus.

Given a tree T with d levels and denoting with Kn the number of clusters, with n = ∑d
i=1 ni,

we say that Kn behaves asymptotically as a deterministic sequence λ(n) if

lim
n→∞

Kn

λ(n) = M

almost surely, where M is a positive and finite random variable. For simplicity we use the
notation Kn ≈ λ(n). Let

λσ(n) =

nσ if σ > 0
log(n) if σ = 0

(3.19)

Notice that λσ(n) describes the asymptotic behaviour of Kn arising from a single PY process
with parameter σ, see De Blasi et al. (2015) for more details. We consider the regime in which
n = np, with p ∈ T , so that all the observations are collected at a single node.
Theorem 16. Let T be a tree and p ∈ T . If n = np we have

Kn ≈

 ∏
q∈P(p)

λσq

 (n)
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almost surely as n → ∞, where λσ1λσ2(n) = λσ1

(
λσ2(n)

)
.

The asymptotic behaviour of Kn is given by combining the ones of the nodes forming a path
from the root to p; the asymptotic rate becomes lower as we go along the tree, as expected. If
the σp’s are all strictly positive or all equal to 0 (i.e. the nodes have Dirichlet process law) the
behaviour becomes particularly simple, as shown in the next example.

Example 9. Assume σq = 0 for every q ∈ P(p). Thus, under the setting of Theorem 16 we
have

Kn ≈ log . . . log︸ ︷︷ ︸
|p|+1 times

n,

almost surely as n → ∞. Assume instead σq > 0 for every q ∈ P(p), then

Kn ≈ n
∏

q∈P(p) σq ,

almost surely as n → ∞.

This behaviour is reminiscent to the exchangeable case: Kn diverges almost surely, with a rate
that depends on the position in the tree. We consider now an alternative regime, where m ≥ 1
observations are collected at each level i = 1, . . . , d, and the number of levels diverge. This is
somewhat complementary to the first case, in the sense that the sample is spread over the whole
tree.

Theorem 17. Let {Td}d be a sequence of trees such that Td has d levels and the restriction of
Td+1 to the first d levels is equal to Td, for every d. Moreover, assume there exists θ̄ and σ̄ < 1
such that θp ≤ θ̄ and σp ≤ σ̄, for every p ∈ T . Then, if m ≥ 1 observations are collected at each
level different from 0, we have

lim sup
d→∞

Kn < ∞

almost surely, where n = n(d) = md.

The intuition is that the observations become more and more correlated (see Proposition 20), so
that in the limit with infinite-levels the probability of a completely new value (i.e. dish) becomes
negligible.

Theorems 16 and 17 show that the geometry of the tree is crucial for the clustering properties
of the model and should be chosen wisely. Indeed, a change in the level for a specific node p
leads to a substantial change in its rate of divergence; moreover, each node separately would
yield an infinite number of clusters, so it is really the tree structure that leads to a finite amount
in the second regime. Notice that the techniques of Theorems 16 and 17 could be applied to
different regimes than the two considered, without additional difficulties.

In order to appreciate this variety, we consider as an example three different structures:

(i) a single-node tree (i.e. exchangeable case), distributed as a Pitman Yor process (PY) with
parameters σ and θ;

(ii) a hierarchical process with a single group, in which the two nodes are distributed as PY
with parameters σ and θ. All the observations are collected at the leaf and the model is
denoted with HPY;
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P0 P0 P1 P0 P1 P2 . . .

Figure 3.9: Three different structures: single-node tree (left), hierarchical process (center) and
sequence of nodes (right).
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Figure 3.10: Proportion of new values for each subset of 10 elements out of 500, with m = 10
and averaging over 1000 samples, for PY, HPY and DHPY.

(iii) a sequence of nodes distributed as a Normalized Stable Process (NSP) with parameters σ
and θ. It is a special tree with a single branch. At each node m = 10 observations are
collected and the model is denoted with DHPY.

The three specifications are shown in Figure 3.9. According to Theorems 16 and 17 the number
of clusters in the first two settings should diverge with rates nσ and nσ

2 respectively, with
σ ∈ (0, 1), while in the third scenario a finite amount of clusters should be observed. Figure 3.10
shows the average proportion of new values for each batch of 10 observations: as expected, PY
and HPY have a similar decay, but with different rate (single-node tree has the highest number
of clusters), while for DHPY the proportion of new values drops close to zero after few batches.
Therefore, our proposal is able to encompass a large variety of prior clustering behaviours and
the structure of the tree should be chosen with care, that should be tuned according to the
problem at hand, as showed in the next Section.

3.3.8 Application

We consider a topic modelling application, in which model (3.10) is convolved with a kernel.
Consider a vocabulary of V words and let X to be the space of probability distributions over
{1, . . . , V }: therefore, each value (i.e. topic) sampled at node p, say Xp, is a vector of V
elements, denoted with Xp(w), with w = 1, . . . , V . Each node p corresponds to a document,
whose words {Yp,i}

np
i=1 are assumed to be exchangeable with multinomial kernel. In formula it

reads
P
(
Yp,i = w | Xp

)
= Xp(w), (3.20)

with w = 1, . . . , V . The baseline distribution of the root, denoted with Q, is a Dirichlet distri-
bution with V elements and common parameter α: it means that a priori there is no preference
among the words.
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Specification (3.20) implies that each document is a mixture of topics, that are shared within
the whole corpus with different relevance among the documents. See Blei et al. (2003); Teh et al.
(2006) for more details.

The goal of the analysis may be either explorative, that is studying which topics arise in the
corpus and how they are distributed, or predictive, to sample new words associated to the corpus.
The work Blei and Lafferty (2006) is probably the most connected to our proposal in the context
of topic modelling, since it is a dynamic extension of the well known latent Dirichlet allocation
(Blei et al., 2003). However, being a parametric model, it requires to specify the number of
topics, that in our nonparametric framework is automatically chosen through the data. Instead
Caron et al. (2007, 2017) propose a time-varying model based on Pólya urns, whose invariant
distribution is given by the Dirichlet or the Pitman-Yor process, with an elegant formulation.
A weakness of the above constructions, shared with Wang et al. (2017), is that they are defined
to accomodate temporal dependence and it is not easy to introduce additional structures, e.g.
the field of the document. Within our framework, instead, the tree can be suitably defined
to describe appropriately any structure of the corpus. In the following we show how encoding
information about the corpus architecture may make inference and prediction more robust, in
particular with a high percentage of missing data.

Alice in Wonderland

A book can be considered as a sequence of chapters, that have a precise order. Moreover, it
is reasonable to assume that later chapters regard mostly topics from the previous part of the
books.

Considering the first three chapters of Alice in Wonderland (by Lewis Carroll) we show how
it is possible to model them with our proposal. As shown in the left part of Figure 3.11, their
relationship can be described through a very specific tree, with a single branch: notice that
observations (i.e. words) are collected at all nodes apart from the root. For comparison we
consider also a hierarchical process, depicted in the left part of Figure 3.11: the three chapters
are still dependent, through the common root P0, but the sequentiality of the chapters is not
included.

For both models each node is endowed with a Pitman-Yor distribution with node-specific
random parameters θ and σ, with Gamma and uniform priors respectively. Standard stop
words (e.g. conjuctions) have been eliminated and only the roots of the words are taken into
consideration, through a so-called stemming procedure (in particular the Porter algorithm, see
e.g. Jivani et al. (2011)). This leaves around 5000 distinct words, after eliminating the ones
appearing less than 4 times. The parameter α of the baseline distribution is set equal to 50/V ,
to avoid a negligible prior variance.

In order to compare the performances, we hold out an increasing portion of words in chap-
ter 2 and measure how well the two models replace the missing data. Figure 3.12 depicts the
perplexity, that measures the discrepancy between the held-out words and the predictive distri-
butions (see Teh et al. (2006)), for the two models: it is clear that the tree structure behaves
better and has a good reconstruction even with a high proportion of missing words. This shows
that incorporating the structures of the data in the model architecture may better predictive
performances.
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P1

Figure 3.11: Two structures to model the first three chapters of Alice in Wonderland: tree (left)
and hierarchical process (right).
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Figure 3.12: Perplexity associated to hierarchical and tree structures with an increasing pro-
portion of missing words from the second chapter of Alice in Wonderland. Results are averaged
over 20 runs.

A1 Proofs of Section 3.2

Proof of Proposition 11

Proof. Consider two partially exchangeable sequences X and Y whose elements take value in R.
By de Finetti’s representation theorem, there exist two random probability measures P1 and P2
such that (

Xi, Yj
)

| P1, P2
i.i.d.∼ P1 × P2.

Note that Cov(Xi, Yj) = E
[
Cov(Xi, Yj | P1, P2)

]
+ Cov

(
E[Xi | P1],E[Yj | P2]

)
, where the first

term equals 0, so that

Cov(Xi, Yj) = Cov
(∫

xP1(dx),
∫
xP2(dx)

)
,
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and analogously

Cov(Xi, Xi′) = Cov
(∫

xP1(dx),
∫
xP1(dx)

)
= var

(∫
xP1(dx)

)
.

Lastly assume that P1
d= P2, where d= indicates equality in distribution. By the Cauchy-Schwartz

inequality

−Var
(∫

xP1(dx)
)

≤ Cov
(∫

xP1(dx),
∫
xP2(dx)

)
≤ Var

(∫
xP1(dx)

)
,

which, in terms of the observables, can be equivalently rewritten as

−Cov(Xi, Xi′) ≤ Cov(Xi, Yj) ≤ Cov(Xi, Xi′).

Proof of Proposition 12

Proof. By definition of covariance we have

Cov(Xi, Yj) = Cov

∑
j≥1

Jjθj ,
∑
k≥1

Wkϕk

 =
∑
j≥1

∑
k≥1

Cov
(
Jjθj ,Wkϕk

)
.

For arbitrary j and k we have

E
[
JjWkθjϕk

[
= E[JjWk]E[θjϕk] ≥ E[JjWk]E[θj ]E[ϕk],

since Cov(θj , ϕk) ≥ 0. Denoting c = E[θj ] = E[ϕk], we get

Cov
(
Jjθj ,Wkϕk

)
≥ c2Cov(Jj ,Wk).

Finally, since P1 and P2 are random probability measures it holds

Cov(Xi, Yj) ≥ c2Cov

∑
j≥1

Jj ,
∑
k≥1

Wk

 = 0,

which completes the proof.

Proof of Proposition 13

Proof. Recall that

β :=
∑
k≥1

E(J̄2
k ) =

∑
k≥1

E(W̄ 2
k ) γ :=

∑
k≥1

E(J̄kW̄k).

Since
E(J̄kW̄k) ≤

√
E(J̄2

k )E(W̄ 2
k ) = E(J̄2

k )

it follows that γ ≤ β. Moreover, the equality holds if and only if J̄k
a.s= ak + W̄k, for any k, with

ak ∈ R. However the equality of marginal distributions implies ak = 0.



132 Hierarchies beyond the Dirichlet process

Proof of Proposition 14

Proof. Recall that

Cov(Xi, Yj) = Cov

∑
k≥1

J̄kθk,
∑
h≥1

W̄hϕh

 =
∑
k≥1

∑
h≥1

Cov
(
J̄kθk, W̄hϕh

)
.

and for arbitrary k and h, we have

E[J̄kW̄hθkϕh] =E[J̄kW̄h]E[θkϕh]

=E[J̄kW̄h]
{
E[θkϕk]1{k=h} + E[θk]E[ϕh]1{k ̸=h}

}
,

while
E[J̄kθk] = E[J̄k]E[θk].

Thus, setting c = E[θk] = E[ϕh], we have

Cov(Xi, Yj) =
∑
k≥1

E[J̄kW̄h]E[θkϕk] − c2 ∑
k≥1

E[J̄k]E[W̄k] + +c2 ∑
k≥1

∑
h̸=k

Cov
(
J̄k, W̄h

)
where ∑

k≥1

∑
h̸=k

Cov
(
J̄k, W̄h

)
=Cov

∑
k≥1

J̄k,
∑
h≥1

W̄h

−
∑
k≥1

Cov
(
J̄kW̄k

)
= −

∑
k≥1

E[J̄kW̄h] +
∑
k≥1

E[J̄k]E[W̄k]

Putting everything together we obtain

Cov(Xi, Yj) =
∑
k≥1

E[J̄kW̄k]Cov(θk, ϕk).

Moreover
Var(Xi) = Var(Yj) =

∫ ∫
xG0(dx,dy) = var(θk)

Thus, Corr(Xi, Yj) = γ ρ0 proving the second statement in Proposition 4. Finally, applying the
same procedure marginally, we get

Cov(Xi, X
′
i) =

∑
k≥1

E[J̄2
k ] Var(θk)

which proves the first statement in Proposition 14.

Proof of Corollary 5

Proof. The result immediately follows from Propositions 13 and 14.
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Proof of Proposition 15

Proof. Let β be the probability of a tie. By definitionwe get

P (X1 ∈ A,X2 ∈ B) =P(X1 ∈ A,X2 ∈ B | X1 = X2)β+
+ P(X1 ∈ A,X2 ∈ B | X1 ̸= X2)(1 − β),

which, by independence of the atoms, equals

P (X1 ∈ A,X2 ∈ B) =P(X1 ∈ A ∈ B)β+
+ P(X1 ∈ A)P(X2 ∈ B)(1 − β).

Analogously, we have

P (X1 ∈ A, Y1 ∈ B) =P(X1 ∈ A, Y1 ∈ B | X1 and Y1 form an hyper-tie )γ+
+ P(X1 ∈ A, Y1 ∈ B | X1 and Y1 do not form an hyper-tie )(1 − γ),

where γ is the probability of a hyper-tie, which equals

P (X1 ∈ A, Y1 ∈ B) =P((X1, Y1) ∈ A×B | X1 and Y1 form an hyper-tie )γ+
+ P(X1 ∈ A)P(Y1 ∈ B)(1 − γ).

Proof of Proposition 16

Proof. The first point follows from the Lévy-Khintchine representation of the Laplace functional
of a CRV. As for (ii), one has

E
(
exp{−λ1µ1(A) − λ2µ2(B)}

)
=E

(
exp{−λ1µ̃1(A× X) − λ2µ̃2(X ×B)}

)
=E

(
exp{−λ1µ̃1(A×Bc) − λ1µ̃1(A×B)+

− λ2µ̃2(Ac ×B) − λ2µ̃2(A×B)}
)
.

By independence of evaluations on disjoint sets, µ̃1(C) and µ̃2(D) are independent if C ∩D = ∅,
so that the right hand side reads

E
(
exp{−λ1µ1(A) − λ2µ2(B)}

)
=E

(
exp{−λ1µ̃1(A×Bc)}

)
E
(
exp{−λ2µ̃2(Ac ×B)}

)
×

× E
(
exp{−λ1µ̃1(A×B) − λ2µ̃2(A×B)}

)
.

The result follows upon upon using the expressions of the marginal and joint Laplace exponents
of µ̃1 and µ̃2. Since from the joint Lévy intensity it is possible to recover the joint Laplace
exponent, (iii) is also proved.

Proof of Proposition 17

We want to show that

P (X ∈ A, Y ∈ B) = Q0(A)Q0(B) (1 − δ) +G0(A×B)δ,
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where
δ := −

∫
R2

+

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2.

is the probability of a pseudo-tie. We start with three Lemmas.

Lemma 27. If ψb is the joint Laplace exponent of a CRV, then∫
R2

+

{
∂

∂u1
ψb(u1, u2)

}{
∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2 = 1 − δ.

Proof. Integrating by parts∫ ∞
0

{
∂

∂u1
ψb(u1, u2)

}{
∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1

= −
∫ ∞

0

{
∂

∂u2
ψb(u1, u2)

}{
∂

∂u1
e−ψb(u1,u2)

}
du1

=
[−

{
∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2)

∞
0

+
∫ ∞

0

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1

]

=
[{

∂

∂u2
ψb(0, u2)

}
e−ψb(0,u2) +

∫ ∞
0

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1

]
.

Note that
∫∞

0

{
d

du2
ψb(0, u2)

}
e−ψb(0,u2) du2 = 1, by the fundamental theorem of calculus. Thus

the result follows immediately.

Lemma 28. We have∫
R2

+

E
(
e−u1µ̃1(X×X)−u2µ̃2(X×X)µ̃1(C)µ̃2(C)

)
du1du2 = G0(C)2 (1 − δ) +G0(C)δ.

Proof. By independence of evaluations on disjoint sets it follows that∫
R2

+

E
(
e−u1µ̃1(X×X)−u2µ̃2(X×X)µ̃1(C)µ̃2(C)

)
du1du2

=
∫
R2

+

E
(
e−u1µ̃1(C)−u2µ̃2(C)−u1µ̃1(Cc)−u2µ̃2(Cc)µ̃1(C)µ̃2(C)

)
du1du2

=
∫
R2

+

E
(
e−u1µ̃1(C)−u2µ̃2(C)µ̃1(C)µ̃2(C)

}
E
(
e−u1µ̃1(Cc)−u2µ̃2(Cc)

)
du1du2

=
∫
R2

+

E
(

∂

∂u1

∂

∂u2
e−u1µ̃1(C)−u2µ̃2(C)

)
E
(
e−u1µ̃1(Cc)−u2µ̃2(Cc)

)
du1du2

=
∫
R2

+

∂

∂u1

∂

∂u2

[
E
(
e−u1µ̃1(C)−u2µ̃2(C)

)]
E
(
e−u1µ̃1(Cc)−u2µ̃2(Cc)

)
du1du2

=
∫
R2

+

∂

∂u1

∂

∂u2

{
e−G0(C)ψb(u1,u2)

}
e−G0(Cc)ψb(u1,u2) du1du2

=
∫
R2

+

∂

∂u1

{
−G0(C) ∂

∂u2
ψb(u1, u2)e−G0(C)ψb(u1,u2)

}
e−G0(Cc)ψb(u1,u2) du1du2.
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Performing the derivative with respect to u1, the latter expression can be written as follows

=
∫
R2

+

{
G0(C)2 ∂

∂u1
ψb(u1, u2) ∂

∂u2
ψb(u1, u2)

}
e−G0(C)ψb(u1,u2)e−G0(Cc)ψb(u1,u2) du1du2+

+
∫
R2

+

{
−G0(C) ∂

∂u1∂u2
ψb(u1, u2)

}
e−G0(C)ψb(u1,u2)e−G0(Cc)ψb(u1,u2) du1du2

=
∫
R2

+

{
G0(C)2 ∂

∂u1
ψb(u1, u2) ∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2+

+
∫
R2

+

{
−G0(C) ∂

∂u1∂u2
ψb(u1, u2)

}
eψb(u1,u2) du1du2

By Lemma 27 we then obtain∫
R2

+

E
(
e−u1µ̃1(X×X)−u2µ̃2(X×X)µ̃1(C)µ̃2(C)

)
du1du2 = G0(C)2 (1 − δ) +G0(C)δ,

as desired.

Lemma 29. Let C,D be such that C ∩D = ∅. Then∫
R2

+

E
(
e−u1µ̃1(X×X)−u2µ̃2(X×X)µ̃1(C)µ̃2(D)

)
du1du2 = G0(C)G0(D) (1 − δ)

Proof. Let Y = (C ∪D)c. Since C and D are disjoint, by independence of evaluations on disjoint
sets it holds∫

R2
+

E
(
e−u1µ̃1(X×X)−u2µ̃2(X×X)µ̃1(C)µ̃2(D)

)
du1du2

=
∫
R2

+

E
(
e−u1µ̃1(C∪D)−u2µ̃2(C∪D)µ̃1(C)µ̃2(D)

}
E
{
e−u1µ̃1(Y )−u2µ̃2(Y )

)
du1du2

=
∫
R2

+

E
(
e−u1µ̃1(C)−u2µ̃2(C)µ̃1(C)

)
E
(
e−u1µ̃1(D)−u2µ̃2(D)µ̃2(D)

)
×

× E
(
e−u1µ̃1(Y )−u2µ̃2(Y )

)
du1du2

=
∫
R2

+

∂

∂u1

{
e−G0(C)ψb(u1,u2)

} ∂

∂u2

{
e−G0(D)ψb(u1,u2)

}
e−G0(Y )ψb(u1,u2) du1du2

= G0(C)G0(D)
∫
R2

+

{
∂

∂u1
ψb(u1, u2) ∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2

The result follows by applying Lemma 27.
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Proof of Proposition 17. We have

P (X ∈ A, Y ∈ B) = E
[
µ1(A)
µ1(X)

µ2(B)
µ2(X)

[
= E

[
µ̃1(A× X)
µ̃1(X × X)

µ̃2(X ×B)
µ̃2(X × X)

]
=

=
∫
R2

+

E
(
e−u1µ̃1(X×X)−u2µ̃2(X×X)µ̃1(A× X)µ̃2(X ×B)

)
du1du2 =

=
∫
R2

+

E
(
e−u1µ̃1(X×X)−u2µ̃2(X×X)

{
µ̃1(A×B)µ̃2(A×B) + µ̃1(A×B)µ̃2(Ac ×B)+

+ µ̃1(A×Bc)µ̃2(A×B) + µ̃1(A×Bc)µ̃2(Ac ×B)
})

du1du2

We compute each integral separately applying Lemmas 28 and 29 and obtain

P (X ∈ A, Y ∈ B) = G0(A× X)G0(X ×B) (1 − δ) +G0(A×B)δ
= Q0(A)Q0(B) (1 − δ) +G0(A×B)δ,

(21)

as desired. Then the probability of a tie in the product space is given exactly by δ, denoted γ in
the manuscript. The probability of a tie is given by the particular case ψb(u1, u2) = ψ(u1 + u2),
since

−
∫
R2

+

{
∂2

∂u1∂u2
ψb(u1 + u2)

}
e−ψb(u1+u2) du1du2 = −

∫ ∞
0

∫ u

0
dv
{
∂2

∂u2ψb(u)
}
e−ψb(u) du,

with the change of variables u = u1 + u2 and v = u1.

Proof of Proposition 18

Proof. Since
E
(
P1(A)P2(B)

)
= P (X ∈ A, Y ∈ B) ,

by (21) we have

E
[
P1(A)P2(B)

]
= G0(A× X)G0(X ×B) (1 − γ) +G0(A×B)γ.

Finally,

Cov
(
P1(A), P2(B)

)
= G0(A× X)G0(X ×B) (1 − γ) +G0(A×B)γ −G0(A× X)G0(X ×B)
= γ

{
G0(A×B) −G0(A× X)G0(X ×B)

}
.

From this one also obtains

Var
(
P1(A)

)
= Cov

(
P1(A), P1(A)

)
= β

{
Q0(A) −Q0(A)2

}
= βQ0(A)

{
1 −Q0(A)

}
,

and the desired result follows.
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Proof of Theorem 13

Proof. We need to compute the conditional Laplace functional of (µ̃1, µ̃2), i.e.

E
(
e−
∫
X2 h1(x) µ̃1(dx)−

∫
X2 h2(x) µ̃2(dx) | (Xi)ni=1, (Yj)mj=1

)
,

with hi : X2 → R+ measurable functions. Define Aj = Aj,ϵ =
{
x ∈ X | d(x,X∗i ) < ϵ

}
and

Bj = Bj,ϵ =
{
x ∈ X | d(x, Y ∗j ) < ϵ

}
, with 1 ≤ i ≤ k and 1 ≤ j ≤ c, such that Ai ∩ Aj = ∅ and

Bi ∩Bj = ∅ for any i ̸= j. Moreover, denote

Ak+1 =
(
∪ki=1Ai

)c
, Bc+1 = (∪ci=1Bi)c .

Thus our goal becomes to compute

E
[
e−
∫
X2 h1(x) µ̃1(dx)−

∫
X2 h2(x) µ̃2(dx) | (Xi)ni=1, (Yj)mj=1

]
= lim

ϵ→0
E
[
e−
∫
X2 h1(x) µ̃1(dx)−

∫
X2 h2(x) µ̃2(dx) | X∗n ∈ ×k

j=1Aj , Y
∗
m ∈ ×c

j=1Bj

]

= lim
ϵ→0

E
[
e−
∫
X2 h1(x) µ̃1(dx)−

∫
X2 h2(x) µ̃2(dx)∏k

j=1 P1(Aj)nj
∏c
j=1 P2(Bj)mj

]
E
[∏k

j=1 P1(Aj)nj
∏c
j=1 P2(Bj)mj

] .

(22)

We start to evaluate

E
[
P1(A1)n1 . . . P1(Ak)nkP2(B1)m1P2(Bc)mc

]
=

= E
[
µ1(A1)n1 . . . µ1(Ak)nkµ2(B1)m1µ2(Bc)mc

µ1(X)nµ2(X)m

]

= E
[
µ̃1(A1 × X)n1 . . . µ̃1(Ak × X)nk µ̃2(X ×B1)m1 µ̃2(X ×Bc)mc

µ̃1(X × X)nµ̃2(X × X)m

)
= I.

By Netwon’s binomial

µ̃1(Ah × X) =
∑

ih1 +...ihc+1=nh

(
nh

ih1 , . . . , i
h
c+1

)
c+1∏
r=1

µ̃
ihr
1 (Ah ×Br), h = 1, . . . , k,

µ̃2(X ×Br) =
∑

jr
1+...jr

k+1=mr

(
mr

jr1 , . . . , j
r
k+1

)
k+1∏
h=1

µ̃
jr

h
2 (Ah ×Br), r = 1, . . . , c.

For ease of notation denote

∑
i,j

(
n

i

)(
m

j

)
=

∑
i11+...i1c+1=n1

(
n1

i11, . . . , i
1
c+1

)
· · ·

∑
ic+1
1 +...ik+1

c+1 =nk+1

(
nk+1

ik+1
1 , . . . , ik+1

c+1

)
×

×
∑

j1
1+...j1

k+1=m1

(
m1

j1
1 , . . . , j

1
k+1

)
· · ·

∑
jk+1

1 +...jk+1
k+1=mk+1

(
mk+1

jk+1
1 , . . . , jk+1

k+1

)
.
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Thus
I =

∑
i,j

(
n

i

)(
m

j

)
Ii,j ,

with

Ii,j = E

∏k
h=1

∏c
r=1 µ̃

ihr
1 (Ah ×Br)µ̃

jr
h

2 (Ah ×Br)
µ̃1(X × X)n ×

×
∏k
h=1 µ̃

ihc+1
1 (Ah ×Bc+1)∏c

r=1 µ̃
jr

k+1
2 (Ak+1 ×Br)

µ̃2(X × X)m


Letting µ̃1 := µ̃1(X × X) and µ̃2 := µ̃2(X × X), we have

1
µ̃1(X × X)nµ̃2(X × X)m = 1

Γ(n)Γ(m)

∫
R2

+

un−1
1 um−1

2 e−u1µ̃1−u2µ̃2 du,

with u = (u1, u2). Thus, by Fubini’s Theorem

Ii,j =
∫
R2

+

un−1
1 um−1

2
Γ(n)Γ(m)E

[
e−u1µ̃1−u2µ̃2


k∏

h=1

c∏
r=1

µ̃
ihr
1 (Ah ×Br)µ̃

jr
h

2 (Ah ×Br)

×

×
k∏

h=1
µ̃
ihc+1
1 (Ah ×Bc+1)

c∏
r=1

µ̃
jr

k+1
2 (Ak+1 ×Br)

]
du =

=
∫
R2

+

un−1
1 um−1

2
Γ(n)Γ(m) ρi,j(u) du.

By independence of evaluations on disjoint sets we have

ρi,j(u) = E


k∏

h=1

c∏
r=1

e−u1µ̃1(Ah×Br)−u2µ̃2(Ah×Br)µ̃
ihr
1 (Ah ×Br)µ̃

jr
h

2 (Ah ×Br)

×

×


k∏

h=1
e−u1µ̃1(Ah×Bc+1)−u2µ̃2(Ah×Bc+1)µ̃

ihc+1
1 (Ah ×Bc+1)

×

×


c∏

r=1
e−u1µ̃1(Ak+1×Br)−u2µ̃2(Ak+1×Br)µ

jr
k+1

2 (Ak+1 ×Br)




This can be equivalently written as

k∏
h=1

c∏
r=1

E
[
e−u1µ̃1(Ah×Br)−u2µ̃2(Ah×Br)µ̃

ihr
1 (Ah ×Br)µ̃

jr
h

2 (Ah ×Br)
]

×

×
k∏

h=1
E
[
e−u1µ̃1(Ah×Bc+1)−u2µ̃2(Ah×Bc+1)µ̃

ihc+1
1 (Ah ×Bc+1)

]
×

×
c∏

r=1
E
[
e−u1µ̃1(Ak+1×Br)−u2µ̃2(Ak+1×Br)µ̃

jr
k+1

2 (Ak+1 ×Br)
]
.
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Considering each element separately we have

E
[
e−u1µ̃1(Ah×Br)−u2µ̃2(Ah×Br)µ̃i1(Ah ×Br)µ̃j2(Ah ×Br)

]

= E
[
(−1)i+j ∂i+j

∂ui1∂u
j
2
e−u1µ̃1(Ah×Br)−u2µ̃2(Ah×Br)

]

= (−1)i+j ∂i+j

∂ui1∂u
j
2
E
[
e−u1µ̃1(Ah×Br)−u2µ̃2(Ah×Br)

]
= (−1)i+j ∂i+j

∂ui1∂u
j
2

{
e
−
∫

Ah×Br

∫
R2

+
(1−e−u1s1−u2s2 ) ρ(ds)G0(x)

}
.

Recall that we are interested in the limit as ϵ → 0, so that

∂i+j

∂ui1∂u
j
2

{
e
−
∫

Ah×Br

∫
R2

+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

}
∼ e
−
∫

Ah×Br

∫
R2

+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

×

× ∂i+j

∂ui1∂u
j
2


∫
Ah×Br

∫
R2

+

(1 − e−u1s1−u2s2) ρ(ds)G0(dx)

 ,
(23)

where we say f ∼ g if limϵ→0 f(x)/g(x) = 1. By simple algebra we get

∂i+j

∂ui1∂u
j
2

{
e
−
∫

Ah×Br

∫
R2

+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

}
= ∂i+j−1

∂ui−1
1 ∂uj2

{
−
∫
Ah×Br

∫
R2

+

e−u1s1−u2s2×

× s1 ρ(ds)G0(dx)e
−
∫

Ah×Br

∫
R2

+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

}

= ∂i+j−2

∂ui−2
1 ∂uj2

{∫
Ah×Br

∫
R2

+

e−u1s1−u2s2s2
1 ρ(ds)G0(dx)e

−
∫

Ah×Br

∫
R2

+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

+

∫
Ah×Br

∫
R2

+

e−u1s1−u2s2s1 ρ(ds)G0(dx)

2

e
−
∫

Ah×Br

∫
R2

+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

}
,

and

lim
ϵ→0

(∫
Ah×Br

∫
R2

+
e−u1s1−u2s2s1 ρ(ds)G0(dx)

)2

∫
Ah×Br

∫
R2

+
e−u1s1−u2s2s2

1 ρ(ds)G0(dx) = 0.
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By applying this argument repeatedly we obtain (23). Thus, letting ρ(u) = ∑
i,j

(n
i

)(m
j

)
ρi,j(u),

by aggregating the terms we have

ρ(u) ∼
∑
i,j

(
n

i

)(
m

j

)
(−1)n+me−ψb(u)×

×
k∏

h=1

c∏
r=1

 ∂i
h
r +jr

h

∂u
ihr
1 ∂u

jr
h

2

∫
Ah×Br

∫
R2

+

(1 − e−u1s1−u2s2) ρ(ds)G0(dx)

×

×
k∏

h=1

 ∂i
h
c+1

∂u
ihc+1
1

∫
Ah×Bc+1

∫
R2

+

(1 − e−u1s1−u2s2) ρ(ds)G0(dx)

×

×
c∏

r=1

 ∂j
r
k+1

∂u
ir
k+1

2

∫
Ak+1×Br

∫
R2

+

(1 − e−u1s1−u2s2) ρ(ds)G0(dx)


=
∑
i,j

(
n

i

)(
m

j

)
(−1)n+mV (i, j).

The following three Lemmas characterize the set of indices (i, j) that are relevant once the limit
is taken.

Lemma 30. Consider (i, j) such that 0 < ihr , i
h
l < nh, with r > l and 1 ≤ h ≤ k. Then ∃(ĩ, j̃)

such that limϵ→0 V (i, j)/V (ĩ, j̃) → 0.

Proof. For ease of notation set ih = (ih1 , . . . , ihc+1). Then

• If r = c+ 1, set ĩh = (ih1 , . . . , ihl + ihc+1, . . . , 0).

• If jrh = 0, set ĩh = (ih1 , . . . , ihl + ihr , . . . , 0, . . . ).

• If jlh = 0, set ĩh = (ih1 , . . . , 0, . . . , ihr + ihl , . . . ).

• If jlh > 0 and jrh > 0, set j̃r = (jr1 , . . . , 0, . . . , jrk+1 +jrh) and ĩh = (ih1 , . . . , ihl + ihr , . . . , 0, . . . ).

For example in the last case we have

lim
ϵ→0

var(i, j)
var(ĩ, j̃)

= lim
ϵ→0

∫
Ah×Br

∫
R2

+
e−u1s1−u2s2s

ihr
1 s

jr
h

2 ρ(ds)G0(dx)∫
Ac+1×Br

∫
R2

+
e−u1s1−u2s2s

jr
h

+jr
c+1

2 ρ(ds)G0(dx)
= 0,

as desired.

Thus, Lemma 34 guarantees that ih has exactly one element different from 0, that is equal to
nh.

Lemma 31. Consider (i, j) such that ihr = nh and jrh = 0. Then there exists (̃i, j̃) such that
limϵ→0 V (i, j)/V (̃i, j̃) → 0.

Proof. Set (ĩ, j̃) equal to (i, j), apart from ĩhr = 0 and ĩhc+1 = nh.

Lemma 32. Consider (i, j) such that ihc+1 = nh and jrh > 0. Then there exists (̃i, j̃) such that
limϵ→0 V (i, j)/V (̃i, j̃) → 0.
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of Lemma S2.6. Set (ĩ, j̃) equal to (i, j), apart from j̃rh = 0 and j̃rk+1 = mr.

The three lemmas imply that each relevant (i, j) corresponds to an admissible latent structure,
i.e.

ρ(u) ∼
∑
p∈P

(−1)n+me−ψb(u) ∏
(i,j)∈∆p

 ∂ni+mj

∂uni
1 ∂u

mj

2

∫
Ai×Bj

∫
R2

+

(1 − e−u1s1−u2s2) ρ(ds)G0(dx)

×

×
∏

(i,j)∈∆1
p

 ∂ni

∂uni
1

∫
Ai×Bc+1

∫
R2

+

(1 − e−u1s1−u2s2) ρ(ds)G0(dx)

×

×
∏

(i,j)∈∆2
p

 ∂mj

∂u
mj

2

∫
Ak+1×Bj

∫
R2

+

(1 − e−u1s1−u2s2) ρ(ds)G0(dx)

 .
Evaluating the derivatives we have

ρ(u) ∼
∑
p∈P

e−ψb(u) ∏
(i,j)∈∆p


∫
Ai×Bj

∫
R2

+

e−u1s1−u2s2sni
1 s

mj

2 ρ(ds)G0(dx)

×

×
∏

(i,j)∈∆1
p


∫
Ai×Bc+1

∫
R2

+

e−u1s1−u2s2sni
1 ρ(ds)G0(dx)

×

×
∏

(i,j)∈∆2
p


∫
Ak+1×Bj

∫
R2

+

e−u1s1−u2s2s
mj

2 ρ(ds)G0(dx)

 .
Finally, we get

I ∼
∑
p∈P

∫
R2

+

un−1
1 um−1

2
Γ(n)Γ(m) e

−ψb(u) ∏
(i,j)∈∆p


∫
Ai×Bj

∫
R2

+

e−u1s1−u2s2sni
1 s

mj

2 ρ(ds)G0(dx)

×

×
∏

(i,j)∈∆1
p


∫
Ai×Bc+1

∫
R2

+

e−u1s1−u2s2sni
1 ρ(ds)G0(dx)

×

×
∏

(i,j)∈∆2
p


∫
Ak+1×Bj

∫
R2

+

e−u1s1−u2s2s
mj

2 ρ(ds)G0(dx)

 du.

Evaluating the numerator of (22) the same reasoning yields a formula asymptotic to

∑
p∈P

∫
R2

+

un−1
1 um−1

2
Γ(n)Γ(m) e

−ψh(u) ∏
(i,j)∈∆p


∫
Ai×Bj

∫
R2

+

e−(h1(x)+u1)s1−(h2(x)+u2)s2sni
1 s

mj

2 ρ(ds)G0(dx)


∏

(i,j)∈∆1
p


∫
Ai×Bc+1

∫
R2

+

e−(h1(x)+u1)s1−(h2(x)+u2)s2sni
1 ρ(ds)G0(dx)


∏

(i,j)∈∆2
p


∫
Ak+1×Bj

∫
R2

+

e−(h1(x)+u1)s1−(h2(x)+u2)s2s
mj

2 ρ(ds)G0(dx)

 du.
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where ψh(u) =
∫
X2
∫
R2

+

(
1 − e−(h1(x)+u1)s1−(h2(x)+u2)s2

)
ρ(ds)G0(dx). Note that

1 − e−(h1(x)+u1)s1−(h2(x)+u2)s2 = e−u1s1−u2s2
[
eu1s1+u2s2 − 1 + 1 − e−h1(x)s1−h2(x)s2

]
=
[
1 − e−u1s1−u2s2

]
+
[
1 − e−h1(x)s1−h2(x)s2

]
,

so that
e−ψh(u) = e−ψb(u)e

−
∫
X2
∫
R2

+
[1−e−h1(x)s1−h2(x)s2 ]ρ(ds)G0(dx)

= e−ψb(u)E
[
e−
∫
X2 h1(x) µ̂1(dx)−

∫
X2 h2(x) µ̂2(dx)

]
.

Furthermore

G0(Ah ×Br) = ϵ
G0(Ah ×Br)

ϵ
∼ ϵgh,r, 1 ≤ i ≤ c, 1 ≤ j ≤ k,

and
G0(Ah × dx) ∼ ϵgh,c+1QX∗

h
(dx), G0(dx×Br) ∼ ϵgk+1,rPY ∗r (dx).

Thus, evaluating the limit in (22) we get

E
[
e−
∫
X2 h1(x) µ̃1(dx)−

∫
X2 h2(x) µ̃2(dx) | (Xi)ni≥1, (Yj)mj≥1

]
=

×
∑
p∈P

∫
R2

+

E
[
e−
∫
X2 h1(x) µ̂1(dx)−

∫
X2 h2(x) µ̂2(dx)

]
×

×
∏

(i,j)∈∆p

∫
R2

+

e−h1(X∗i ,Y
∗

j )s1−h2(X∗i ,Y
∗

j )s2 s
ni
1 s

mj

2 e−u1s1−u2s2ρ(ds)
τni,mj(u)

×

×
∏

(i,j)∈∆1
p

∫
X

∫
R2

+

e−h1(X∗i ,x2)s1−h2(X∗i ,x2)s2 s
ni
1 e
−u1s1−u2s2ρ(ds)
τni,0(u)

QX∗i (dx2)×

×
∏

(i,j)∈∆2
p

∫
X

∫
R2

+

e−h1(x1,Y ∗2 )s1−h2(x1,Y ∗2 )s2 s
mj

2 e−u1s1−u2s2ρ(ds)
τ0,mj(u)

PY ∗j (dx1)×

×


∫
R2

+
un−1

1 um−1
2

∏
(i,j)∈p gi,jτni,mj (u)e−ψb(u) du∑

q∈P
∫
R2

+
un−1

1 um−1
2

∏
(i,j)∈q gi,jτni,mj (u)e−ψb(u)du

×

×
un−1

1 um−1
2

∏
(i,j)∈p τni,mj (u)e−ψb(u) du∫

R2
+
un−1

1 um−1
2

∏
(i,j)∈p τni,mj (u)e−ψb(u) du

,

as desired.

Proof of Corollary 6

Proof. We use the shorthand notation µ1(f) =
∫
X f(x) µ̃1(dx) for any measurable function

f : X → R such that µ1(|f |) < ∞. Letting U be the set of latent variables of Theorem 13, i.e.
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U = (p, U1, U2, Z
x, Zy) for any y1, . . . , yn ∈ (0, 1) and A1, . . . , An ∈ X 2 we get

P
(
P̃1(A1) ≤ y1, . . . , P̃1(An) ≤ yn | U, (Xi)ni=1, (Yj)mj=1

)
=P

(
µ̃1(1A1 − y1) ≤ 0, . . . , µ̃1(1An − yn) ≤ 0 | U, (Xi)ni=1, (Yj)mj=1

]
.

The result follows since the finite dimensional distributions of P̃1 given U , (Xi)ni=1, and (Yj)mj=1
coincide with the ones of the normalized posterior distribution of µ̃1, given U , (Xi)ni=1, and
(Yj)mj=1.

Proof of Theorem 14

Proof. Set H = (p, U1, U2) with domain D. Then

P(Xn+1 ∈ dx | (Xi)ni=1, (Yj)mj=1) = E[P1(dx) | (Xi)ni=1, (Yj)mj=1]

=
∫
D
E[P1(dx) | H = h, (Xi)ni=1, (Yj)mj=1]F (dv),

where F (·) is the posterior distribution of H, with h = (p, u1, u2). Recalling the notation in
Corollary 6 we have

E[P1(dx) |H = h, (Xi)ni=1, (Yj)mj=1] = E
[
µ̂1(dx× X)

R

]
+ E

∑(i,j)∈∆p
J1
i,jδX∗i

R

+

+ E

∑(i,j)∈∆1
p
J1
i,c+1δX∗i

R

+ E

∑(i,j)∈∆2
p
J1
k+1,jδZy

j

R

 =
4∑

k=1
Ik,

where R = T1 +∑
(i,j)∈∆p

J1
i,j +∑

(i,j)∈∆1
p
J1
i,c+1 +∑

(i,j)∈∆2
p
J1
k+1,j .

Set S = ∑
(i,j)∈∆p

J1
i,j +∑

(i,j)∈∆1
p
J1
i,c+1 +∑

(i,j)∈∆2
p
J1
k+1,j and exploit the conditional indepen-

dence between J1
ij and µ̂1 to obtain

I1 =
∫
R+

E
[
e−vS

]
E
[
µ̂1(dx× X)e−vT1

]
dv

= θP0(dx)
∫
R+

 ∏
(i,j)∈p

τni,mj (u1 + v, u2)
τni,mj (u1, u2)

 τ1,0(u1 + v, u2)e−ψ
u

b
(v,0) dv,
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where ψub (λ1, λ2) is the Laplace exponent of (µ̂1, µ̂2) in Theorem 13. Observing that ψub (v, 0) +
ψ(u1, u2) = ψ(u1 + v, u2) and denoting with L(·) the distribution of p, we obtain

ξ0 =
∫
D
I1 F (du)

= θQ0(dx)
∫ ∫

R3
+

{
un−1

1 um−1
2

 ∏
(i,j)∈p

τni,mj (u1 + v, u2)

 τ1,0(u1 + v, u2)×

× e−ψ(u1+v,u2) du1du2dvL(dp)
}

= θQ0(dx)
n

∫ ∫
R2

+

un1u
m−1
2

 ∏
(i,j)∈p

τni,mj (u1, u2)

 τ1,0(u1, u2)e−ψ(u1,u2) du1du2L(dp)

= θQ0(dx)
n

∫
D
u1τ1,0(u1, u2)F (du),

where the second equality follows from the change of variables (w, z) = (u1 + v, u1). The proof
for the remaining weights follows along the same lines and leads to

ξxi = 1
n

∫
D
u1

[
τni+1,mj (u1, u2)
τni,mj (u1, u2) + τni+1,0(u1, u2)

τni,0(u1, u2)

]
F (du)

and
ξyi = 1

n

∫
D
u1
τ1,mj (u1, u2)
τ0,mj (u1, u2) F (du).

The weights for Ym+1 can be computed in an analogous fashion.

A2 Additional material for Section 3.2

A toy example of borrowing of information

Classical borrowing of information across samples is typically associated to positive correlation
across observations in different populations and, as a consequence, it induces shrinkage of the
predictions. Let us consider the toy situation in which observations coming from two different
populations have been collected and a normal model is assumed

Xi | µx
i.i.d.∼ N(µx, 1) for i = 1, . . . , n

Yj | µy
i.i.d.∼ N(µy, 1) for j = 1, . . . ,m

To obtain a working model, one has to specify a certain prior over µx and µy. The main typical
strategies one may employ are the following:

• Modeling µx and µy as independent, which ultimately means that we do not consider the
information coming from one population to be relevant for inference on the other.

• Modeling µx and µy as dependent, which induces borrowing of information. This typically
reflects the idea that, if the observed values of Y1, . . . , Ym are on average higher than our
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prior guess on µy, then we should upwards revise our belief on µx and our prediction for
X1.

To clarify this last point, we compare a typical strategy used to perform borrowing of informa-
tion, which is provided by the following hierarchy

µx | µ0 ∼ N(µ0, 1)
µy | µ0 ∼ N(µ0, 1)

µ0 ∼ N(ν, 1)
(24)

with the case of independent priors, namely

µx ∼ N(ν, 2) µy ∼ N(ν, 2)
µx ⊥ µy

(25)

where the variance is chosen to match the marginal distributions of the hierarchical specification.
We assume that only the sample (Y1, . . . , Ym) has been observed and we discuss its impact on the
posterior distribution of µx and on the predictive distribution of X1 under the two specifications.
Under independence in (25), one obviously has

p(µx | (Yj)mj=1) = N(ν, 2)

while under model (24) the new distribution of µx is

p(µx | (Yj)mj=1) ∝
∫
R
p(µx | µ0) p(µ0 | (Yj)mj=1)dµ0

= N
( 1

2m+ 1ν + 2m
2m+ 1

ν + ȳ

2 , 1 + m+ 1
2m+ 1

)
,

where ȳ denotes the empirical average of Y1, . . . , Ym, and

E[X1 | (Yj)mj=1] = E[µx | (Yj)mj=1] = ν + m

2m+ 1(ȳ − ν)

Therefore, when ȳ > ν the borrowing results in an increase of the estimate for µx and of the
prediction for X1, while if ȳ < ν the borrowing of information induces the opposite effect. The
shrinking behaviour is ultimately a consequence of the fact that the hierarchical prior in (24)
induces positive correlation across Xi and Yj . However, what we show in the main paper is that
classical shrinkage of the estimates is not the only way to borrow information within partially
exchangeable populations, neither necessarily the best one.

Example of correlation between FuRBI priors on Borel set

Consider a pair of n-FuRBI priors with equal jumps (see Example 4 in the main document),
where the baseline distribution G0 is given by a bivariate normal with zero mean, unit variances
and correlation ρ ∈ {−0.99,−0.5, 0, 0.5, 0.99}. In Figure 13 we depict the correlations on sets
of the form (−∞, x], with x ∈ [−5, 5] and for each value of the correlation. Notice that such
correlation may be of particular interest in survival settings, where the distribution function is
often the main focus.

When ρ = 0, the correlation is equal to 0 as expected, since G0(A × A) = Q0(A)2 and
the numerator of the formula in Proposition 8 vanishes. For values of ρ different from 0, the
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Figure 13: Correlation on Borel
sets of the form (−∞, x], with x ∈
[−5, 5]. The four lines, from bot-
tom to top, correspond to ρ ∈
{−0.99,−0.5, 0, 0.5, 0.99}.

correlation is symmetric around 0, due to the symmetry of the Gaussian distribution, and
different signs indicate opposite behaviours: therefore, ρ < 0 implies negative correlation on
such Borel sets.

However, note that a different sign does not mean a completely specular behaviour: for
instance the correlation with ρ = 0.99 is higher in absolute value than the one with ρ = −0.99.
This is due to the fact that it is somewhat impossible to have strictly negative correlation on
all Borel sets. Intuitively, if the two priors have high negative correlation on (−∞, 0], it means
that one of them has much larger mass on (−∞, 0] and the other on (0,+∞): therefore, both
priors will have a high mass on (−∞, a], with a large positive number, so that the correlation
can not attain again large negative values.

Finally, if ρ → 1, then the correlation converges to the constant function 1, that is the value
obtained with equal atoms: indeed, the two priors will have equal jumps and linearly dependent
atoms (see Corollary 1).

Algorithms for posterior inference

In this section we address the issue of sampling from the posterior distribution. In discrete
nonparametric models, we need to distinguish whether the random probability measures are
directly applied to the data or rather convoluted with a suitable kernel (known as mixture
model, see Section 3.2.6).

Nevertheless, from a computational perspective, if the first problem is solved the second one
can be tackled in a similar way: it is indeed easy to propose a Gibbs sampler that alternates
sampling of suitable latent variables and the posterior distribution given data originated by the
random probability measure.

Therefore, in the following three sections, we assume to collect observations from

(Xi, Yj) | (P1, P2) i.i.d.∼ P1 × P2 (P1, P2) ∼ Q (26)

Marginal posterior samplers

The first approach is to directly simulate the trajectories of (P1, P2) from its posterior, giving
rise to so–called conditional algorithms. See, e.g, Ishwaran and James (2001); Walker (2007);
Papaspiliopoulos and Roberts (2008); Arbel and Prünster (2017). Conditional samplers for the
n-FuRBI priors can be found in Sections S3.2-3 below.

Alternatively, and this is the route followed in this section, one can use marginal algorithms,
that integrate out the random measures and sample sequentially from the predictive distributions
(see, for instance, Neal, 2000).
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Given (Xi)ni=1 and (Yj)mj=1 and using the results in Theorem 2, we can sample iteratively
new observations from P1 as follows

1. Compute weights ξ0, {ξxi } and {ξyj } from (Xi)ni=1 and (Yj)mj=1.

2. Draw Xn+1 from m(dx) = ξ0Q0(dx) +∑k
i=1 ξ

x
i δX∗i (dx) +∑c

j=1 ξ
y
jPY ∗j (dx).

The algorithm is straightforward, but relies on the computation of the weights at point (a):
this is not optimal, since in general the explicit evaluation can be demanding. Nonetheless,
Theorem 1 and Corollary 2 show that, conditionally on a suitable set of latent variables, the
posterior representation simplifies greatly. Indeed, given ((Xi)ni=1, (Yj)mj=1, U1, U2, p), the predic-
tive distribution of the first sample is

m(dx) ∝ θτ1,0(U1, U2)Q0(dx) +
∑

(i,j)∈∆p

τni+1,mj (U1, U2)
τni,mj (U1, U2) δX∗i (dx)

+
∑

(i,j)∈∆1
p

τni+1,0(U1, U2)
τni,0(U1, U2) δX∗i (dx) +

∑
(i,j)∈∆2

p

τ1,mj (U1, U2)
τ0,mj (U1, U2)PY

∗
j

(dx).
(27)

Those new weights, whose derivation can be found in Section S1.4, are easier to compute, as the
next example shows.

Example 10 (Inverse Gaussian n-FuRBI with equal jumps). In this case

τn,m(u1, u2) =
∫
R
sn+me−(u1+u2)sρ(ds) := τn+m(u1 + u2),

where ρ(ds) is the common marginal jump intensity. If the Lévy intensity is v(ds, dx) =
e−s/2/(s3/2√

2π)ds α(dx) the resulting normalized CRM corresponds to the normalized inverse
Gaussian process (Lijoi et al., 2005). We obtain τj(u) = 2j−1Γ

(
j − 1/2

)
/(

√
π(2u+ 1)j−1/2),

where u = u1 + u2. Thus, conditionally on the latent variables, we have

m(dx) ∝ θQ0(dx) + 2√
2U + 1

∑
(i,j)∈∆p

(
ni +mj − 1

2

)
δX∗i (dx)

+ 2√
2U + 1

∑
(i,j)∈∆1

p

(
ni − 1

2

)
δX∗i (dx) + 2√

2U + 1
∑

(i,j)∈∆2
p

(
mj − 1

2

)
PY ∗j (dx),

where U = U1 + U2. Sampling from this mixture is straightforward.

Thus we can derive a second marginal algorithm.

1. Draw (U1, U2, p) from their conditional distributions specified in Section 5.

2. Draw Xn+1 from m(dx) in (27).

However, even the full conditional distribution of p may not always be available in closed form,
and it may be computationally intensive to evaluate, since it may have a very large support.
When this is the case, we may encode the latent clustering structure in a more convenient way
introducing two arrays of latent variables Cx = (ci,x)i≥1 and Cy = (cj,y)j≥1 such that ci,x = ci′,x
denotes a tie between Xi and Xi′ , cj,y = cj′,y denotes a tie between Yj and Yj′ , while ci,x = cj,y
denotes a hyper-tie between Xi and Yj . Moreover, we reorder the unique values in X∗n and
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Y ∗m, so that X∗c = Xi if and only if ci,x = c and Y ∗c = Yj if and only if cj,y = c. Therefore,
P(cn+1,x = c | Cx, Cy, X∗n, Y ∗m) is

P(Xn+1 = X∗c | Cx, Cy, X∗n, Y ∗m), for c ∈ Cx∫
P(Xn+1 = x | Cy, Y ∗m) pY ∗c (x)dx, for c ∈ Cy \ Cx∫
P(Xn+1 = x) q0(x)dx, otherwise

Finally, the distribution of p, given Cx and Cy, is degenerate. Moreover, the posterior distribution
of (U1, U2) given p is equal to the posterior distribution of (U1, U2) given Cx and Cy. Therefore,
we may build a marginal algorithm sampling Cx and Cy instead of p, without modifying the full
conditional distribution for U1 and U2. The final marginal algorithm boils down to

1. Draw (U1, U2) and cn+1,x

2. Sample Xn+1 from m(dx) =


δX∗cn+1,x

(dx), if cn+1,x ∈ Cx
PY ∗cn+1,x

(dx), if cn+1,x ∈ Cy \ Cx
Q0(dx), otherwise

The advantage of such approach is twofold. First, we do not need to sample directly the full
conditional distribution of p. Second, when the algorithm is applied to mixture models, as in
section 6, sampling the unique values, instead of single observations, improves the mixing of the
algorithm (cfr. Neal, 2000).

Conditional posterior sampler based on the law of the CRV

To develop a conditional algorithm, we can sample from the distribution of (µ1, µ2) and then
normalize each draw to get an approximate realization of the random probabilities. Here we
develop a general conditional sampler based on this approach that can be tailored to specific
choices of the intensity in the prior.

By Theorem 13, we know that a posteriori µ̂ = (µ̂1, µ̂2) is the sum of two components, that
we call µobs and µ̂ and are such that

µobs =
∑

(i,j)∈∆p

Ji,jδ(X∗i ,Y ∗j ) +
∑

(i,j)∈∆1
p

Ji,c+1δ(X∗i ,Zx
i ) +

∑
(i,j)∈∆2

p

Jk+1,jδ(Zy
j ,Y
∗

j

).
where Ji,j = (J1

i,j , J
2
i,j), and

µ̂ =

+∞∑
h=1

S1
hδ(Vh,Wh),

+∞∑
h=1

S2
hδ(Vh,Wh)


is a CRV with Lévy intensity e−U1s1−U2s2ρ(ds1, ds2)G0(dx). Denote the marginal and joint tail
integrals of µ̂ as

N1(s) =
+∞∫
s

+∞∫
0

e−U1s1−U2s2ρ(du1, du2), N2(s) =
+∞∫
0

+∞∫
s

e−U1s1−U2s2ρ(du1, du2)
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and

N(s1, s2) =
+∞∫
s1

+∞∫
s2

e−U1s1−U2s2ρ(du1, du2).

Lastly, define the correspondent Lévy copula as F (x, y) = N(N−1
1 (x), N−1

2 (y)). If F (x, y) is
continuous on [0,+∞]2, the iterative conditional sampler based on the Ferguson and Klass
algorithm (Ferguson and Klass, 1972) reads

(a) Generate µobs as follows

(a1) Generate (U1, U2,p) from the distributions specified in Section 5;
(a2) Generate Ji,j = (J1

i,j , J
2
i,j) from the distributions specified in Theorem 13;

(a3) Generate Zxi and Zyj from the distributions specified in Section 5.

(b) Generate an approximation of µ̂, given by
(

M∑
h=1

S1
hδ(Vh,Wh),

M∑
h=1

S2
hδ(Vh,Wh)

)
as follows

(b1) Generate ξx1 , . . . , ξxM from a Poisson Process with unit rate;

(b2) Generate ξy1 , . . . , ξ
y
M from ξyh ∼ ∂

∂xF (x, ξ)

∣∣∣∣∣∣
x=ξx

h

(b3) Determine (S1
h, S

2
h) solving

ξxh = N1(S1
h) ξyh = N2(S2

h)

(b4) Generate (Vh,Wh) from G0.

(c) Obtain a draw from P1 as follows

P1 ≈

M∑
h=1

S1
hδVh

+∑
(i,j)∈∆p

J1
i,jδX∗i +∑

(i,j)∈∆1
p
J1
i,c+1δX∗i +∑

(i,j)∈∆2
p
J1
k+1,jδZy

j

M∑
h=1

S1
h +∑

(i,j)∈∆p
J1
i,j +∑

(i,j)∈∆1
p
J1
i,c+1 +∑

(i,j)∈∆2
p
J1
k+1,j

.

An analogous approximation can be computed for p̃2.

Conditional posterior sampler for gamma process with equal jumps

Alternatively, a second strategy for conditional algorithms is to sample approximate draws from
the posterior distribution of the random probabilities (P1, P2). We provide an example for
gamma FuRBI CRMs with equal jumps.

In the case of a process with equal jumps, we know from the definition that the measures
in the product space are p1 = p2 = p. Therefore, posterior inference can be conducted without
loss of generality on

p =
∑
k≥1

W̄kδ(θk,ϕk), with (θk, ϕk)
i.i.d.∼ G0(·),

where {W̄k}k are the weights of a Dirichlet process, which can defined through the popular
stick-breaking construction (Sethuraman, 1994). In this context, Ishwaran and James (2001)
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developed a conditional algorithm for hierarchical mixture models, called blocked Gibbs sampler,
based on the approximation

p ≈
N∑
k=1

W̄kδ(θk,ϕk), for large N.

Exploiting the appealing analytical properties of the Dirichlet process, it is possible to devise
simple formulae for the posterior distribution of the N jumps and N locations: see Section 5 of
Ishwaran and James (2001) for more details.

Sampling from mixture models using marginal algorithms

Consider the mixture model defined in Section 3.2.6. Starting from the algorithms studied in
the previous paragraphs, we devise a Gibbs sampler for drawing from the posterior distribution
of (Xi)ni=1 and (Yj)mj=1.

Denoting by Xt = (Xt
1, . . . , X

t
n) and Y t = (Y t

1 , . . . , Y
t
n) the vectors sampled at step t, the

algorithm reads

1. Initialize at random X0 and Y 0.

2. For any t ≥ 1 do:

(b.1) Draw (U1, U2,p) given Xt−1 and Y t−1, from the distributions specified in Theorem
1.

(b.2) Draw Xn, given (U1, U2,p) as follows: for any i sample Xt
i from

q(dx | Xt
−i) = qi,0(U1, U2)P0(dx) +

∑
(i,j)∈∆p

qi,j(U1, U2)δX∗i

+
∑

(i,j)∈∆1
p

q1
i,j(U1, U2)δX∗i (dx) +

∑
(i,j)∈∆p

q2
i,j(U1, U2)PY ∗j (dx),

where Xt
−i =

(
Xt

1, . . . , X
t
i−1, X

t−1
i+1 , . . . X

t−1
n

)
, with unique values

(
X∗1 , . . . , X

∗
k

)
and

multiplicities (n1, . . . , nk). Analogously,
(
Y ∗1 , . . . , Y

∗
c

)
denotes the unique values in

Y t−1 with multiplicities (m1, . . . ,mc). The mixing proportions are given by

qi,0(U1, U2) ∝ θτ1,0(U1, U2)
∫
X
f(Wi | x)P0(dx),

qi,j(U1, U2) ∝
τni+1,mj (U1, U2)
τni,mj (U1, U2) f(Wi | X∗i ),

q1
i,j(U1, U2) ∝ τni+1,0(U1, U2)

τni,0(U1, U2) f(Wi | X∗i ),

q2
i,j(U1, U2) ∝

τ1,mj (U1, U2)
τ0,mj (U1, U2)

∫
X
f(Wi | x)PY ∗j (dx)

(c) Sample Y t similarly to point (b).

Once a sample of (Xi)ni=1 and (Yj)mj=1 is available, sampling new observations Xn+1 and Yn+1
proceeds as explained in Section S3.1.
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Additional simulation studies

Additional simulation scenarios

We consider the same setting of the numerical illustrations, with different data generating dis-
tributions. Formally we have

Wi
i.i.d.∼ p(· − 10), Vj

i.i.d.∼ p(· − v),

where v ∈ [−16, 16] and p(·) is a density function. In the main manuscript we let p(·) = N(· |
0, 1), while here we consider three different choices

p1(·) = Exp(· | 1), p2(·) = 0.5N(· | 5, 1) + 0.5N(· | −5, 1), p3(·) = t(· | 3),

where t(· | q) denotes the density of a Student’s t distribution with q degrees of freedom. We let
i = 1, . . . , 20, j = 1, . . . , 100 and consider the same nonparametric models of Section 6.2, with
Gaussian kernel. Therefore, the prior specification is misspecified in the first and third case,
with different tail behaviours of the kernel with respect to the true data generating mechanism.
This implies a more complex behaviour of the latent clustering structure: indeed the posterior
distribution places positive mass to more than one clusters, in order to accommodate for the
misspecification. The mean integrated error for the three cases is depicted in Figure 14, for
different values of v. The interpretation is similar to the one discussed in Section 6.2: the
FuRBI specification yields an advantage especially when v is far from 0, corresponding to the
prior mean, and from 10, when the means of the two groups coincide. Indeed, in the first case
the borrowing provides little information, while in the second one exchangeability holds.

The second setting, corresponding to the two-components mixture, apparently seems more
problematic for the FuRBI model, which yields a less distinct advantage. Clearly, when v is close
to zero the exchangeable and hierarchical models are favoured, since the two true distributions
share one of the modes. Moreover, the availability of only 20 observations for the first group
makes it more difficult to both detect the presence of two clusters and tune appropriately the
correlation. Indeed, the left part of figure 15 depicts the error when 50 observations for the first
group are collected: as expected, the performances of the FuRBI approach significantly improve.

Finally, the right part of figure 15 shows the error when the two distributions are different:
the first group is endowed with a Student’s t density, while the second one is exponentially
distributed. Notice that the two groups are now very far in distributional sense, especially in
terms of tail behaviour. The plot indicates an interesting trade-off: when v is far from the
prior mean (i.e. 0) the FuRBI approach allows to alleviate the prior misspecification, otherwise
borrowing information from very different distributions may be detrimental.

Logit stick-breaking prior and borrowing of information

Figure 16 is based on the same data of Section 3.2.6. See Rigon and Durante (2021) for the
model and the associated algorithm. Once again, including a flexible dependence on the atoms
allows to a better borrowing and thus density estimation.
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Figure 14: Mean integrated error (computed on a grid and as the median over 50 different
samples) for the four models, as the true mean of the second group varies. Rotating clockwise
from the top left panel: data generated from shifted exponential, mixtures of two Gaussians and
shifted Student’s t distributions.

Figure 15: Mean integrated error (computed on a grid and as the median over 50 different
samples) for the four models, as the true mean of the second group varies. Left: data generated
from mixtures of two Gaussians (50 observations for the first group). Right: data generated
from shifted Student’s t (first group) and shifted exponential (second group) distributions.
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Figure 16: Left panel: density estimates for the logit stick-breaking model with only dependent
weights, and thus, ρ0 = 1. Right panel: density estimates for the logit stick-breaking model with
dependent weights and atoms. Shaded areas denote 95% credible intervals. Data are simulated
according to Wi

i.i.d.∼ N(· | 10, 1), for i = 1, . . . , 20 (for sample n.1), and Vj
i.i.d.∼ N(· | −10, 1), for

j = 1, . . . , 100 (for sample n.2).

(a) FuRBI full (b) FuRBI −0.95 (c) FuRBI 0.95

(d) Exchangeable model (e) GM-dependent model (f) Independent model

Figure 17: Density estimates for bonds returns.

Predicting stocks and bonds returns: additional results

Density estimation for bond returns

Sensitivity analysis

Figure 17 shows the results obtained with different specifications of the hyperparameters, which
are

• Specification n.1: λj = 0.1, αj = 3, and βj = 3, j = 1, 2,

• Specification n.2: λj = 0.1, αj = 1.5, and βj = 4.5, j = 1, 2,

• Specification n.3: λj = 0.01, αj = 0.1, and βj = 0.2, j = 1, 2.
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Clustering multivariate data with missing entries: additional details

Choosing the hyperparameters

Assume P = 3, as in the simulation study of Section 6.4: the general case follows accord-
ingly. In this case I = {∅, (1), (2), (3), (1, 2), (2, 3), (1, 3), (1, 2, 3)}. In order to specify the prior,
assumptions on the missing generating mechanism should be made. The missing completely
at random (MCAR) assumption implies that each observation W

(x)
i , for x ∈ I, is the result

of randomly eliminating entries from an (unobserved) complete observation Wi. For instance,
W

(1)
i = (w2,i, w3,i) is obtained from a latent Wi = (w1,i, w2,i, w3,i) after eliminating the first

entry. Under this assumption the latent complete observations Wi are exchangeable, because
the original value of Wi is independent from the mechanism that generates the missing values.
Thus, there exists q such that Wi | q i.i.d.∼ q and qx is the projection of q onto coordinates different
than x, e.g. q(1)(·, ·)

a.s=
∫
q(dx1, ·, ·). This implies that the weights of qx should be almost surely

the same for every x. Instead, if the missing mechanism is not completely at random, qx can not
be described as the projection of a unique q. Indeed the missing mechanism may be informative,
leading to sample-specific features. Therefore, the choice of an additive n-FuRBIs allows qx to
have sample-specific components when needed.

As for the baseline distribution G0 on µ̃, suppose that an hyper-tie is sampled between an
observation (w2,i, w3,i) from sample “(1)” and one observation (w1,i, w3,i) from sample “(2)”, thus
assigning the two observations to the same cluster. G0 is then used to sample the corresponding
locations: (X∗2 , X∗3 ) and (Y ∗1 , Y ∗3 ). Since we want to interpret the hyper-tie between incomplete
observations as a tie between complete observations, we must have X∗3 = Y ∗3 , while X∗2 and Y ∗1
are sampled jointly with a certain correlation ρ1,2 and depending on X∗3 through correlations
ρ1,3 and ρ2,3. Therefore, since coordinates corresponding to the same original variable should
be assigned the same value, G0 is actually degenerate on a P = 3 dimensional space. In
the simulation and real data application G0 is a 3-variate normal, whose correlation matrix
ρ0 depends on correlation parameters ρ12, ρ23, ρ13 on which a truncated uniform hyperprior
is used, where the truncation ensures that the matrix is almost-surely positive-definite. Since
the data are centered, the mean of G0 is instead fixed equal to a vector of all 0. Moreover,
an independent Gamma(3, 3) prior is assigned to the three variances (σ2

1, σ
2
2, σ

2
3). Finally, the

concentration parameter θ is set equal to 0.1 in order to favor sparsity, i.e., a lower number of
clusters.
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Simulating scenarios: missing data distribution
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(a) MCAR 16.1% missing entries
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(b) MNAR 17.7% missing entries
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(c) MCAR 35.9% missing entries
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(d) MNAR 34% complete observations

Figure 18: Percentages of missing entries of each variable-cluster pair.

A3 Proofs of Section 3.3

Preliminary results on Pitman-Yor and σ-stable processes

Let X the sampling space and denote with MX the set of boundedly finite measures on (X,X );
we refer to Daley and Vere-Jones (2007) for technical details. If Q0 is a probability measure on
X and σ ∈ (0, 1), we define a random variable µσ that takes value in MX as

E
[
e−uµσ(A)

]
= e−Q0(A)uσ

, u > 0. (28)

We say that µσ is endowed with the law of a σ-stable process, denoted with Pσ, which is an
example of Completely Random Measure (Kingman, 1967). The latter can be normalized under
suitable conditions Regazzini et al. (2003); James et al. (2009) to obtain random probability
measures.

Consider the following model

Xi | P i.i.d.∼ P, P ∼ PY(σ, θ,Q0), (29)

with σ ∈ [0, 1), θ > 0 and Q0 arbitrary probability measure on X. Let Pσ,θ be absolutely



156 Hierarchies beyond the Dirichlet process

continuous with respect to Pσ, with Radon-Nikodym derivative

Pσ,θ
Pσ

(m) = σΓ(θ)
Γ(θ/σ)m

−θ(X).

The resulting random measure µσ,θ can be shown (Pitman and Yor, 1997) to be such that

P (·) d= µσ,θ(·)
µσ,θ(X) , (30)

with P as in (29). Therefore, the PY process can be represented through a σ-stable process,
with a suitable change of measure. For ease of notation, as the in main document, we denote

γ = 1 − σ

θ + 1 . (31)

We start with a well-known result, to show the mathematical techniques employed throught the
paper. The computations in this proof follow the ones in Section 2 of James et al. (2006).

Lemma 33. Consider model (29). Then it holds E[P (A)] = Q0(A) for every A ∈ X .

Proof. By representation (30) we write

E[P (A)] = E
[
µσ,θ(A)
µσ,θ(X)

]
= σΓ(θ)

Γ(θ/σ)E
[
µσ(A)
µ1+θ
σ (X)

]
,

where µσ is a σ-stable CRM. Notice that

1
µ1+θ
σ (X)

=
∫ ∞

0

uθ

Γ(θ + 1)e
−uµσ(X) du,

so that by Fubini Theorem we get

E[P (A)] = σ

θΓ(θ/σ)

∫ ∞
0

uθE
[
µσ(A)e−uµσ(X)

]
du

= σ

θΓ(θ/σ)

∫ ∞
0

uθE
[
µσ(A)e−uµσ(A)

]
E
[
e−uµσ(Ac)

]
du,

by independence over evaluation on disjoint sets (which holds since µσ is a completelt random
measure). By (28) we have E

[
e−uµσ(Ac)

]
= e−Q0(Ac)uσ and

E
[
µσ(A)e−uµσ(A)

]
= − d

duE
[
e−uµσ(A)

]
= Q0(A)σuσ−1e−Q0(A)uσ

,

which implies

E[P (A)] = Q0(A) σ2

θΓ(θ/σ)

∫ ∞
0

uθ+σ−1e−u
σ du

= Q0(A)σΓ(θ/σ + 1)
θΓ(θ/σ)

∫ ∞
0

σ

Γ(θ/σ + 1u
θ+σ−1e−u

σ du

= Q0(A),
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as desired.

Now we give three preliminary lemmas.

Lemma 34. Consider model (29). If A ∈ X then it holds

E
[
P 2(A)

]
= (1 − γ)Q2

0(A) + γQ0(A)

Proof. By representation (30), proceeding as in the proof of Lemma 33 we get

E
[
P 2(A)

]
= σΓ(θ)

Γ(θ/σ)E
[
µ2
σ(A)

µ2+θ
σ (X)

]
= σΓ(θ)

Γ(θ + 2)Γ(θ/σ)

∫ ∞
0

uθ+1E
[
µ2
σ(A)e−uµσ(X)

]
du

= σΓ(θ)
Γ(θ + 2)Γ(θ/σ)

∫ ∞
0

uθ+1E
[
µ2
σ(A)e−uµσ(A)

]
E
[
e−uµσ(Ac)

]
du.

By applying again (28) we have

E
[
µ2
σ(A)e−uµσ(A)

]
= d2

du2E
[
e−uµσ(A)

]
= −σQ0(A) d

du
{
uσ−1e−Q0(A)uσ

}
=
[
σ2Q2

0(A)u2σ−2 − σ(σ − 1)Q0(A)uσ−2
]
e−Q0(A)uσ

,

which implies

E
[
P 2(A)

]
= σΓ(θ)

Γ(θ + 2)Γ(θ/σ)

∫ ∞
0

[
σ2Q2

0(A)u2σ+θ−1 − σ(σ − 1)Q0(A)uσ+θ−1
]
e−u

σ du

= Q2
0(A)θ + σ

θ + 1 +Q0(A)1 − σ

θ + 1 = (1 − γ)Q2
0(A) + γQ0(A),

as desired.

Lemma 35. Consider model (29). If A,B ∈ X are disjoint, then it holds

E
[
P (A)P (B)

]
= (1 − γ)Q0(A)Q0(B).

Proof. By representation (30), proceeding as in the proof of Lemma 33 we get

E
[
P (A)P (B)

]
= σΓ(θ)

Γ(θ/σ)E
[
µσ(A)µσ(B)
µ2+θ
σ (X)

]
= σΓ(θ)

Γ(θ + 2)Γ(θ/σ)

∫ ∞
0

uθ+1E
[
µσ(A)µσ(B)e−uµσ(X)

]
du

= σΓ(θ)
Γ(θ + 2)Γ(θ/σ)

∫ ∞
0

uθ+1E
[
µσ(A)e−uµσ(A)

]
E
[
µσ(B)e−uµσ(B)

]
E
[
e−uµσ((A∪B)c)

]
du

= Q0A)Q0(B) σ3Γ(θ)
Γ(θ + 2)Γ(θ/σ)

∫ ∞
0

uθ+2σ−1e−u
σ du

= (1 − γ)Q0(A)Q0(B),

as desired.

Lemma 36. Consider model (29). Then

E
[
P (A)P (B)

]
= γQ0(A ∩B) + (1 − γ)Q0(A)Q0(B),
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for every A,B ∈ X .

Proof. By definition we have

E
[
P (A)P (B)

]
= E

[(
P (A ∩B) + P (A\B)

) (
P (A ∩B) + P (B\A)

)]
= E

[
P 2(A ∩B)

]
+ E

[
P (A ∩B)P (B\A)

]
+ E

[
P (A ∩B)P (A\B)

]
+ E

[
P (A\B)P (B\A)

]
.

Applying Lemmas 34 and 35 we get

E
[
P (A)P (B)

]
= γQ0(A ∩B) + (1 − γ)Q0(A ∩B

[
Q0(A ∩B) +Q0(B\A)

]
+ (1 − γ)Q0(A\B)

[
Q0(A ∩B) +Q0(B\A)

]
= γQ0(A ∩B) + (1 − γ)Q0(A)Q0(B),

as desired.

Proof of Propositions 19 and 20 and Corollary 7

We need three preliminary lemmas.

Lemma 37. Let T be a tree. For every p ∈ T and q ∈ P(p) it holds

E
[
Pp(A) | Pq

]
= Pq(A),

for every A ∈ X .

Proof. For q = p the result holds by construction, while for q = p it holds by Lemma 33. Thus
we prove the result by induction on the elements of P, assuming

E
[
Pp(A) | Pg

]
= Pg(A),

with g ∈ P(p) and |g| ≤ |p|. By the Double Expectation Theorem we have

E
[
Pp(A) | Pg

]
= E

[
E
[
Pp(A) | Pg

]
| Pg

]
= E

[
Pg(A) | Pg

]
= Pg(A),

by Lemma 33.

Lemma 38. Let T be a tree. Let p, q ∈ T with MRCA m. Then it holds:

E
[
Pp(A)Pq(B)

]
= E

[
Pm(A)Pm(B)

]
,

for every A,B ∈ X .

Proof. By the Double Expectation Theorem and Lemma 37 we get immediately

E
[
Pp(A)Pq(B)

]
= E

[
E
[
Pp(A)Pq(B) | Pm

]]
= E

[
E
[
Pq(B) | Pm

]
E
[
Pp(B) | Pm

]]
= E

[
Pm(A)Pm(B)

]
,

since m ∈ P(p) ∩ P(q).
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Lemma 39. Let T be a tree and p ∈ T . Then it holds:

E
[
Pp(A)Pp(B)

]
=

∏
l∈P(p)

(1 − γl)Q0(A)Q0(B) +

1 −
∏

l∈P(p)
(1 − γl)

Q0(A ∩B),

for every A,B ∈ X .

Proof. By the Double Expectation Theorem we have

E
[
Pp(A)Pp(B)

]
= E

[
E
[
Pp(A)Pp(B) | Pp

]]
.

Since Pp | Pp ∼ PY
(
σp, θp, Pp

)
, we get

E
[
Pp(A)Pp(B)

]
= γpE

[
Pp(A ∩B)

]
+ (1 − γp)E

[
Pp(A)Pp(B)

]
= γpQ0(A ∩B) + (1 − γp)E

[
Pp(A)Pp(B)

]
by Lemma 36 and the first point of Proposition 19. Thus we need to solve the recursionRp = γpQ0(A ∩B) + (1 − γp)Rp,

R0 = Q0(A)Q0(B)

whose solution is given exactly by

Rp =
∏

l∈P(p)
(1 − γl)Q0(A)Q0(B) +

1 −
∏

l∈P(p)
(1 − γl)

Q0(A ∩B).

Proof of Proposition 19. As regards the first point, by the Double Expectation Theorem we have

E
[
Pp(A)

]
= E

[
E
[
Pp(A) | P0

]]
= E

[
P0(A)

]
= Q0(A),

by Lemma 37. As regards the second point, through Lemma 39, we obtain

E
[
Pp(A)Pp(A)

]
=

∏
l∈P(p)

(1 − γl)Q0(A)Q0(B) +

1 −
∏

l∈P(p)
(1 − γl)

Q0(A ∩B),

E
[
Pq(A)Pq(A)

]
=

∏
l∈P(q)

(1 − γl)Q0(A)Q0(B) +

1 −
∏

l∈P(q)
(1 − γl)

Q0(A ∩B).
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Instead, by Lemma 38 we have

E
[
Pp(A)Pq(A)

]
= E

[
Pm(A)Pm(A)

]
=

∏
l∈P(m)

(1 − γl)Q0(A)Q0(B) +

1 −
∏

l∈P(m)
(1 − γl)

Q0(A ∩B).

Then it holds

Cov
(
Pp(A), Pq(A)

)
= E

[
Pp(A)Pq(A)

]
− E

[
Pp(A)

]
E
[
Pq(A)

]
=

1 −
∏

l∈P(m)
(1 − γl)

[Q0(A) −Q0(A)2
]
,

and

Var
(
Pp(A)

)
= E

[
Pp(A)Pp(A)

]
− E2 [Pp(A)

]
=

1 −
∏

l∈P(p)
(1 − γl)

[Q0(A) −Q0(A)2
]
,

Var
(
Pq(A)

)
= E

[
Pq(A)Pq(A)

]
− E2 [Pq(A)

]
=

1 −
∏

l∈P(q)
(1 − γl)

[Q0(A) −Q0(A)2
]
,

from which the result follows.

Proof of Proposition 20 and Corollary 7. The first point of Proposition 20 follows immediately
by

P(Xp,i ∈ A) = E
[
Pp(A)

]
= Q0(A),

by Lemma 37. Similarly, Corollary 1 follows by noticing

P
(
Xp,i ∈ A,Xq,j ∈ B

)
= E

[
Pp(A)Pq(B)

]
= E

[
Pm(A)Pm(B)

]
=

∏
l∈P(m)

(1 − γl)Q0(A)Q0(B) +

1 −
∏

l∈P(m)
(1 − γl)

Q0(A ∩B),

by Lemmas 38 and 39. Thus the joint distribution of the vector
(
Xp,i, Xq,j

)
is given by

µ(dxp, dyq) =
∏

l∈P(m)
(1 − γl)Q0(dxp)Q0(dxq) +

1 −
∏

l∈P(m)
(1 − γl)

Q0(dxp)δxq(xp),

from which the second point of Proposition 20 immediately follows.

Proof of Theorem 15

We start by reporting Lemma 1 in the supplementary material of Camerlenghi et al. (2019b)
for the case of the σ-stable process, that will be useful in the following.
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Lemma 40. Let σ ∈ (0, 1). Define τq(u) = σΓ(q−σ)
Γ(1−σ) u

σ−q and

ξn,i =
∑

q

1
i!

(
n

q1, . . . , qi

)
τq1(u) . . . τqi(u), (A1)

where the sum runs over all vectors q = (q1, . . . , qi) of positive integers such that
∑i
j=1 qj = n.

Then the following relation holds

(−1)n dn
dun e

−cuσ = e−cu
σ

n∑
i=1

ciξn,i, (A2)

for every c > 0.

Then we prove a preliminary lemma.

Lemma 41. Let P ∼ PY(σ, θ,Q), with Q probability measure on X. Consider a collection of
disjoint sets A1, . . . , Ak and a vector (n1, . . . , nk) of positive integers such that

∑k
j=1 nj = n.

Then we have

E

 k∏
j=1

Pnj (Aj)

 =
∑

l

∑
q

 k∏
j=1

Q(Aj)lj
 k∏

j=1

1
lj !

(
nj

qj,1, . . . , qj,lj

)Φ(n)
l•

(q1, . . . , qk),

where

1.
∑

l = ∑n1
l1=1 · · ·

∑nk
lk=1 and l• = ∑k

j=1 lj;

2.
∑

q = ∑
q1

· · ·
∑

qk
, where qj = (q1, . . . , qk) is a vector of positive integers such that∑lj

t=1 qj,t = nj and
∑

qj
is as in (A1).

Proof. Let µσ be a σ-stable process with parameter σ. With the same reasoning of the proof of
Lemma 33 we have

E

 k∏
j=1

Pnj (Aj)

 = E

∏k
j=1 µ

nj
σ (Aj)

µθ+n
σ (X)


= σΓ(θ)

Γ(θ/σ)Γ(θ + n)

∫ ∞
0

uθ+n−1E
[
e−uµσ(X−)

] k∏
j=1

E
[
e−uµσ(Aj)µ

nj
σ (Aj)

]
du,

where X− = (A1 ∪ · · · ∪Ak)c. Moreover, by Lemma 40 we have

E
[
e−uµσ(Aj)µ

nj
σ (Aj)

]
= dunj

dunj
E
[
(−1)nje−uµσ(Aj)

]
= (−1)nj

dunj

dunj
e−Q(Aj)uσ

= e−Q(Aj)uσ
nj∑
lj=1

Qlj (Aj)ξnj ,lj (u).
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Therefore, by definition (A1) of ξn,i

E

 k∏
j=1

pnj (Aj)

 = σΓ(θ)
Γ(θ/σ)Γ(θ + n)

∫ ∞
0

un+θ−1e−u
σ

k∏
j=1

nj∑
lj=1

Qlj (Aj)ξnj ,lj (u) du

=
∑

l

 k∏
j=1

Q(Aj)lj
 σΓ(θ)

Γ(θ/σ)Γ(θ + n)

∫ ∞
0

un+θ−1e−u
σ

k∏
j=1

ξnj ,lj (u) du

=
∑

l

∑
q

 k∏
j=1

Q(Aj)lj
 k∏

j=1

1
lj !

(
nj

qj,1, . . . , qj,lj

) σΓ(θ)
Γ(θ/σ)Γ(θ + n)×

×
∫ ∞

0
uθ+n−1e−u

σ
k∏
j=1

lj∏
t=1

τqj,t(u) du.

By definition of τq(u) we have

k∏
j=1

lj∏
t=1

τqj,t(u) = σl•

Γl•(1 − σ)

k∏
j=1

lj∏
t=1

Γ(qj,t − σ)uσl•−n

and
∫∞

0 uθ+σl•−1e−u
σ du = Γ(l•+θ/σ)

σ , which implies

σΓ(θ)
Γ(θ/σ)Γ(θ + n)

∫ ∞
0

uθ+n−1e−u
σ

k∏
j=1

lj∏
t=1

τqj,t(u) du = σl•Γ(l• + θ/σ)Γ(θ)
Γ(θ/σ)Γ(θ + n)

k∏
j=1

lj∏
t=1

Γ(qj,t − σ)
Γ(1 − σ)

= 1
(θ + 1)(n−1)

σl•Γ(l• + θ/σ)
θΓ(θ/σ)

k∏
j=1

lj∏
t=1

(1 − σ)qj,t−1

=
∏l•−1
i=1 (θ + iσ)

(θ + 1)(n−1)

k∏
j=1

lj∏
t=1

(1 − σ)qj,t−1 = Φ(n)
l•

(q1, . . . ,qk),

as desired.

Proof of Theorem 15. Denoting np = (np,1, . . . , np,k), for any x1 ̸= . . . ̸= xk we evaluate

M(dx1, . . . ,dxk) = E

 d∏
i=1

∏
p∈Li

k∏
j=1

P
np,j
p (dxj)


= lim

ϵ→0
E

 d∏
i=1

∏
p∈Li

k∏
j=1

P
np,j
p (Aj)

 = lim
ϵ→0

M(A1, . . . , Ak),

where Aj = Aj,ϵ = B(xj , ϵ) is a ball of radius ϵ around xj , with ϵ > 0 small enough so that
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Ai ∩Aj = ∅, for any i ̸= j. By basic properties of conditional expectation, we get

M(A1, . . . , Ak) = E

E
 d∏
i=1

∏
p∈Li

k∏
j=1

P
np,j
p (Aj) | Pg ; g ∈ Ld−1




= E

d−1∏
i=1

∏
p∈Li

k∏
j=1

P
np,j
p (Aj)E

 ∏
p∈Ld

k∏
j=1

P
np,j
p (Aj) | Pg ; g ∈ Ld−1


 .

Conditional to
{
Pg ; g ∈ Ld−1

}
, the random measures Pp, with p ∈ Ld, are independent, so that

E

 ∏
p∈Ld

k∏
j=1

P
np,j
p (Aj) | Pg ; g ∈ Ld−1

 =
∏

p∈Ld

E

 k∏
j=1

P
np,j
p (Aj) | Pg ; g ∈ Ld−1

 .
By Lemma 41, we have

E

 k∏
j=1

P
np,j
p (Aj) | Pg ; g ∈ Ld−1

 =
∑
lp

∑
qp

k∏
j=1

P
lp,j
p (Aj)×

×
k∏
j=1

1
lp,j !

(
np

qp,j,1, . . . , qp,j,lp,j

)
Φ(np)
lp•,p(qp,1, . . . ,qp,k).

By definition of lp+1 and readjusting the terms, thanks to the linearity of the expected value we
are left with computing

E

d−2∏
i=1

∏
p∈Li

k∏
j=1

P
np,j
p (Aj)

∏
p∈Ld−1

k∏
j=1

P
np,j+lp+1,j
p (Aj)

 =

E

d−2∏
i=1

∏
p∈Li

k∏
j=1

P
np,j
p (Aj)E

 ∏
p∈Ld−1

k∏
j=1

P
np,j+lp+1,j

p−1 (Aj) | Pg ; g ∈ Ld−2


 ,

therefore we apply repeatedly Lemma 41. In the end we obtain

M(A1, . . . , Ak) =
∑

l

∑
q

1
l!

(
n
q

)
E

 k∏
j=1

P
l1,j

0 (Aj)

 d∏
i=1

∏
p∈Li

Φ(np+lp+1•)
lp•,i

(qp,1, . . . ,qp,k).

As ϵ → 0, the non-atomicity of Q0 implies

E

 k∏
j=1

P
l1,j

0 (Aj)

 =

 k∏
j=1

Q0(dxj)

Φ(l1•)
k,0 (l1,1, . . . , l1,k).

Finally, the result follows by noticing

Π(n)
k (np ; p ∈ T ) =

∫
Xk
M(dx1, . . . ,dxk).
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Proof of Theorem 16

Proof. If |p| = 1, the result follows by Theorems 7 and 8 of Camerlenghi et al. (2019b). We
prove the main result by induction on the number of levels. Assume that for every q with
|q| = k − 1 it holds

Kq,n ≈

 ∏
g∈P(q)

λσg

 (n) = λq(n),

where we use the notation Kq,n to emphasize that the observations are collected at q. Assume
now that p has level k. By the same reasoning of Remark 1 or of the proof of Theorem 7 in
Camerlenghi et al. (2019b), it holds

Kp,n
a.s.= Kp,K′p,n

,

where K ′p,n is the number of distinct values in Tp =
(
Tp,1, . . . , Tp,n

)
, with Tp,i | Qp ∼ Qp and

Qp ∼ PY(σp, θp, Q), Q being a diffuse measure. Therefore we can write

Kp,n
λp(λσp(n))

a.s.=
Kp,K′p,n

Kp,λσp (n)

Kp,λσp (n)

λp(λσp(n)) .

The second product on the right hand side converges almost surely to a finite random variable,
by induction hypothesis, while

Kp,K′p,n

Kp,λσp (n)
=

λp
(
K ′p,n

)
λp
(
λσp(n)

) Kp,K′p,n
/λp

(
K ′p,n

)
Kp,λσp (n)/λp

(
λσp(n)

)
By definition, K ′p,n/λσp(n) converges almost surely to a finite random variable, so that by
induction hypothesis the same happens for the ratio on the left hand side. Thus, we conclude

Kp,n ≈ λp(λσp(n)) =

 ∏
q∈P(p)

λσq

 (n),

as desired.

Proof of Theorem 17

Proof. Let d = |n/m| be the level at which the n-th observation is collected, where |a| is the
lowest integer bigger than a. Moreover, let mq be the number of observations collected at node
q. By Theorem 15, conditional on the first n− 1 observations and the auxiliary variables T, the
probability that the n-th observation is completely new is given by

∏
r∈P(p)

Φ(nr+lr+1•+1)
r,lr•+1 (qr,1, . . . ,qr,k, 1)

Φ(nr+lr+1•)
r,lr• (qr,1, . . . ,qr,k)

=
∏

r∈P(p)

θr + σrlr•
θr +mr + lr+1•

,
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where p is the node at level d where the observation is collected. By hypothesis we have

θr + σrlr•
θr +mr + lr+1•

≤ θ̄ + σ̄(mr + lr+1•)
θ̄ +mr + lr+1•

≤ θ̄ + σ̄m(d− |r| + 1)
θ̄ +m(d− |r| + 1)

≤ θ̄ + σ̄m(d+ 1)
θ̄ +m(d+ 1)

.

Since the last bound does not depend on the data and T we can write

P (Kn −Kn−1 = 1) ≤
(
θ̄ + σ̄m(d+ 1)
θ̄ +m(d+ 1)

)d+1

≈ σ̄d+1,

as d → ∞. Therefore ∞∑
n=1

P (Kn −Kn−1 = 1) < ∞

and the result follows by Borel-Cantelli Lemma.
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Chapter 4

Gibbs samplers for parametric
hierarchical models

4.1 Introduction

Gibbs samplers Casella and george (1992) are a family of Markov Chain Monte Carlo (MCMC)
algorithms Brooks et al. (2011) commonly used in various scientific fields. In the context of
Bayesian Statistics, they are routinely employed to draw samples from posterior distributions of
unknown parameters conditional to the observed data Green et al. (2015); Martin et al. (2023).
Like most MCMC methods, they are guaranteed to converge to the correct posterior distribution
as the number of iterations tends to infinity under mild assumptions (Roberts and Sahu, 1994).
However, understanding how quickly this convergence occurs, for example by quantifying the
so-called mixing time of the Markov chain generated by the algorithm, is in general a hard
task. In this paper we address this question for Gibbs samplers targeting certain classes of high-
dimensional Bayesian hierarchical models. Analysing convergence properties, such as mixing
times, is the key technical step needed to rigorously quantify the computational cost of MCMC
algorithms.

Hierarchical models

Our motivating example is given by classical Bayesian hierarchical models of the form

Yj | θj ∼ f(· | θj) j = 1, . . . , J,

θj | ψ iid∼ p(· | ψ) j = 1, . . . , J,
ψ ∼ p0(·) .

(4.1)

Here the observed dataset Y1:J = (Yj)j=1,...,J is divided into J groups, with data for each group
typically containing multiple observations, e.g. Yj = (Yj1, . . . , Yjm). Each group features some
local (i.e. group-specific) parameters θj ∈ Rℓ, while ψ ∈ RD are global (hyper)-parameters.
Above f(· | θ), p(· | ψ) and p0(·) denote some likelihood function, local prior and global prior,
respectively. See Section 4.4 for the assumptions we require on each of those. Given model (4.1),
posterior inferences are based on the conditional distribution of ψ and θ = (θ1, . . . , θJ) given
Y1:J , which we denote as L(dθ,dψ|Y1:J). Hierarchical models such as (4.1) are the workhorse
of Bayesian Statistics and are commonly employed in many applied contexts (see e.g. Gelman
and Hill (2007); Gelman et al. (2013) and references therein). In this paper, we are mostly

171



172 Gibbs samplers for parametric hierarchical models

Figure 4.1: Integrated autocorrelation times (on log-scale) of Gibbs samplers targeting the posterior
distribution of model (4.1) with specification (4.2). Quantiles refer to repetitions over datasets randomly
generated according to the model with true parameters µ∗ = τ∗ = 1. Left: m = 3. Right: m = 5. See
Section 4.5 for more details.

interested in the high-dimensional regime where J → ∞, so that both the number of datapoints
and parameters, i.e. n = Jm and p = Jℓ+D respectively, diverge.

One iteration of a Gibbs sampler targeting L(dθ, dψ|Y1:J) sequentially samples each param-
eter from its full-conditional distribution, i.e. it performs the updates θj ∼ L(dθj |Y1:J , ψ) for
j = 1, . . . , J and ψ ∼ L(dψ|Y1:J ,θ). Algorithms based on conditional updates are well-suited to
model (4.1), since they naturally exploit the underlying sparse dependence structure. In par-
ticular, the conditional independence of θ1, . . . , θJ given Y1:J and ψ implies that the sequence
of updates from the low-dimensional distributions L(dθj |Y1:J , ψ) for j = 1, . . . , J is equivalent
to an exact joint update from the high-dimensional distribution L(dθ|Y1:J , ψ). Also, since local
parameters interact only with local data conditional on ψ, i.e. L(dθj |Y1:J , ψ) = L(dθj |Yj , ψ),
one iteration of the Gibbs sampler can typically be implemented with a computational cost
that scales linearly with J . For the sake of comparisons, a similar cost is required by a single
likelihood evaluation or a single posterior gradient evaluation for model (4.1). See also Remark
13 in Section 4.4 for related discussion.

The key question to properly assess the effectiveness of Gibbs samplers targeting model (4.1)
is how fast the resulting Markov chain converges to its stationary distribution L(dθ, dψ|Y1:J). In-
terestingly, such chain often enjoys dimension-free convergence speed, meaning that the number
of iterations required to converge does not grow (or grows only logarithmically) with J . Figure
4.1 illustrates numerically this behaviour on a hierarchical logistic model, where the likelihood
and prior in (4.1) are specified as

f(y | θ) =
(
m

y

)
eyθ

(1 + eθ)m , p(θ | ψ) = N(θ | µ, τ−1), ψ = (µ, τ), (4.2)

with y ∈ {0, . . . ,m} and m being a positive integer. The prior for ψ = (µ, τ) is set to µ | τ ∼
N
(
0, 103/τ

)
and τ ∼ Gamma(0.1, 0.1). Full details on the simulation set-up of Figure 4.1 are

described in Section 4.5. The results suggest that the number of iterations required by the Gibbs
sampler to draw each sample from L(dθ,dψ|Y1:J) remains bounded as J grows and asymptotes
to a finite value as J → ∞. Combined with cost per iteration, this implies a computational
complexity that grows linearly with J . Note that this complexity is smaller than the one of
popular gradient-based MCMC methods when applied to these models (see Section 4.1 for more
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details), supporting the idea that Gibbs samplers can achieve state-of-the-art performances for
hierarchical models with sparse dependence structures.

In Section 4.4 we provide rigorous support to the above empirical evidences. In particular,
we study the asymptotic behavior of mixing times of Gibbs samplers targeting model (4.1).
There we prove that mixing times remain bounded as J → ∞ under mild assumptions on the
likelihood f and the global prior p0. We instead require stronger assumptions on the local priors
p(· | ψ), which we assume to be in the exponential family. Our results (see e.g. Theorem 20) are
average-case ones and hold with high probability with respect to the law of the data-generating
process. To do so we assume the observed data Y1:J to be randomly generated. This allows to
use tools of Bayesian asymptotics, such as Bernstein-von Mises type statements (see e.g. Chapter
10 of Van der Vaart (2000)), to characterize the asymptotic posterior behaviour as J → ∞ and
then extract information about the limiting behaviour of the associated sequence of MCMC
algorithms.

Related literature

The literature on performances of MCMC methods is very broad. The most well-studied classes
of algorithm are probably gradient-based ones, such as Langevin (Roberts and Tweedie, 1996)
and Hamiltonian (Neal, 2011) Monte Carlo, see e.g. Dalalyan (2017); Durmus and Moulines
(2017); Dwivedi et al. (2019) and related literature. Available results suggest that the number
of iterations (or target gradient evaluations) required by those algorithm to converge to station-
arity increases with dimensionality, e.g. growing as O(Jα) with the dimensionality J , for some
α > 0 that depends on the setup and type of algorithm (Roberts and Rosenthal, 1998; Beskos
et al., 2013; Wu et al., 2022). In the context of hierarchical models, given that each target
gradient evaluation has a linear cost in J , this leads to a computational cost to sample from
L(dθ,dψ|Y1:J) that scales super-linearly with J , e.g. as O(J1+α) with α > 0. Comparing these
results to the one we develop here for Gibbs samplers suggests that, while being state-of-the-art
black-box schemes to sample from generic high-dimensional distributions with appropriate regu-
larity conditions (e.g. log-concavity), default gradient-based MCMC schemes can be suboptimal
for high-dimensional hierarchical models. See also Papaspiliopoulos et al. (2023) for related
numerical evidences.

Compared to gradient-based MCMC, results for Gibbs-type schemes are less abundant and
more model-dependent. Notable recent examples include Yang and Rosenthal (2022); Jin and
Hobert (2022); Qin and Hobert (2022), which provide convergence bounds for hierarchical mod-
els, similar to (4.1), with Gaussian and Poisson likelihoods. Another recent result is given by
Qin and Hobert (2019), which provides dimension-free convergence bounds for Gibbs samplers
for high-dimensional probit regression models under appropriate regimes. Providing sharp non-
asymptotic analyses like the ones above requires proof techniques, such as drift-and-minorization
techniques (Rosenthal, 1995) and random mappings Qin and Hobert (2019), that are usually
likelihood-specific and potentially hard to construct. For example, they may require to devise
and study a suitable Lyapunov function that depends on the specific choices of both likelihood
and priors in (4.1) (see e.g. formulae (6) and (33) in Jin and Hobert (2022) and Yang and
Rosenthal (2022), respectively). On the other hand, these approaches provide non-asymptotic
bounds that apply to fixed sample size and dimensionality, thus being complimentary to the
high-dimensional asymptotic analysis we develop here.

Interestingly, there are relatively few papers combining the tools of Bayesian asymptotics
and MCMC theory in rigorous ways. The work in Belloni and Chernozhukov (2009) uses
Bernstein-von Mises Theorem to provide polynomial bounds on the convergence of random walk
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Metropolis-Hastings schemes. After that, very recent papers use similar techniques to provide
complexity analysis of MCMC schemes, see e.g. Nickl and Wang (2022); Negrea et al. (2022);
Tang and Yang (2022) dealing with gradient-based methods, the first in the context of inverse
problems. A brief discussion about the use of asymptotic posterior characterisations to study
the convergence properties of Gibbs samplers is given in Roberts and Sahu (2001). A more in-
depth use of Bayesian asymptotics to study data augmentation procedures is given in Kamatani
(2014), which also considers hierarchical models. See Remark 14 in Section 4.4 for more details
on the results in Kamatani (2014). Finally, an interesting exception is given by Bayesian variable
selection models, where multiple works have exploited the asymptotic behaviour of the posterior
distribution to characterize the computational performances of Bayesian methods Yang et al.
(2016); Atchadé (2021); Zhou et al. (2022).

Sketch of the main arguments and structure of the paper

The argument we employ to study Gibbs samplers targeting L(dθ, dψ | Y1:J) can be decom-
posed in three main parts. First, if p(· | ψ) belongs to the exponential family, there exists a
set of sufficient statistics T = T (θ), whose dimensionality does not depend on J , such that
L
(
dψ | θ, Y1:J

)
= L

(
dψ | T (θ), Y1:J

)
. Lemma 44 in Section 4.4 shows that, as a result, the

Gibbs sampler on L
(
dθ,dψ | Y1:J

)
has the same mixing times as the one on L

(
dT , dψ | Y1:J

)
.

This allows to focus on the latter distribution which, unlike the former, is intractable but fixed
dimensional. Note that this dimensionality reduction does not require the likelihood f to admit
sufficient statistics (see Remark 12) and is a peculiar property of Gibbs samplers, since it exploits
the presence of exact updates. The second step consists in studying the asymptotic behaviour of
L
(
dT ,dψ | Y1:J

)
as J increases. In particular, Proposition 23 shows that a suitable rescaling of

(T , ψ) converges to a multivariate Gaussian distribution in total variation distance. The proof
combines a classical Bernstein-von Mises Theorem for ψ (Lemma 45) with a less standard Cen-
tral Limit Theorem for T conditional on ψ (Lemma 46). More details can be found in Section
4.4. The final and key point is then to connect the convergence of the target distributions, in
this case {L

(
dT , dψ | Y1:J

)
}J≥1, to the convergence of the associated Gibbs sampler operators.

Theorem 18 proves that the limiting behaviour of a sequence of Gibbs samplers is equivalent to
the behaviour of the Gibbs sampler on the limiting distribution: this is shown in total variation
distance and under warm start assumption. The fundamental link is given by Proposition 21,
which provides an upper bound on the distance between Gibbs sampler operators in terms of the
one between the target distributions. Since those results are of independent interest and are not
specific to hierarchical models, we start by developing those in a general setup in Section 4.2.
Then, Section 4.3 recalls the Bernstein-von Mises Theorem and illustrates the results of Section
4.2 to the fixed-dimensional setting. Section 4.4 develops the main results of the paper dealing
with general hierarchical models (see e.g. Theorem 20) and Section 4.5 verifies the general condi-
tions for some specific likelihood families, e.g. Gaussian, binomial and categorical, together with
providing numerical simulations and extension to different graphical model structures. Since a
warm start initialization for the sampler is assumed throughout, the availability of feasible starts
is discussed in Section 4.6. Finally, Section 4.7 discusses extensions and future work.

4.2 Gibbs sampler and asymptotics

In this section, after recalling basic definitions about Gibbs kernels and mixing times, we connect
the convergence of a sequence of target distributions to the convergence of the associated Gibbs
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kernels. This leads to Theorem 18, which characterizes the limiting behaviour of the Gibbs
samplers mixing times. Throughout this section, the target distributions are assumed to have
fixed dimensionality.

Setup and notation

Let (πn)n≥1 =
(
πn(· | Y (n))

)
n≥1

be a sequence of probability distributions on a common product
space X = X1×· · ·×XK , where each πn is allowed to depend on some observed data Y (n) ∈ Y(n).
In our applications, πn(· | Y (n)) represents the posterior distribution of some unknown parameter
x ∈ X conditioned on the data Y (n). For the sake of brevity, we will often omit the explicit
dependence on Y (n).

Let Pn be the Markov transition kernel of the deterministic-scan Gibbs sampler targeting
πn, defined as the product of K kernels

Pn = Pn,1 · · · Pn,K . (4.3)

For each i ∈ {1, . . . ,K}, Pn,i is the transition kernel on X that updates the i-th coordinate
drawing it from its conditional distribution πn(dxi|x(−i)), where x(−i) = (xj)j ̸=i, while leaving
the other components unchanged. Equivalently

Pn,i
(
x, Sx,i,A

)
=
∫
A
πn
(
dyi | x(−i)

)
, A ⊂ Xi, i = 1, . . . , n,

with Sx,i,A =
{
y ∈ X : yj = xj ∀ j ̸= i and yi ∈ A

}
. It is easy to show that Pn,i is reversible with

respect to πn for every i, so that πn is the invariant distribution of Pn (Roberts and Rosenthal,
2004; Hobert, 2011; Chlebicka et al., 2023).

Given ϵ ∈ (0, 1), define the ϵ-total variation mixing time of Pn with starting distribution
µn ∈ P(X ), where P(X ) denotes the set of probability distribution on X , as

t
(n)
mix(ϵ, µn) = inf

{
t ≥ 0 :

∥∥∥µnP tn − πn
∥∥∥
TV

< ϵ

}
, (4.4)

where P t denotes the t-th power of P , µnP tn(A) =
∫
X P

t
n(x, A)µn(dx) for any A ⊆ X and ∥ · ∥TV

denotes the total variation norm. By definition, mixing times quantify the number of Markov
chain’s iterations required to obtain a sample from the target distribution πn up to error ϵ. We
will focus on worst-case mixing times with respect to M -warm starts. The set of M -warm starts
relative to a distribution π is defined as

N (π,M) =
{
µ ∈ P(X ) : µ(A) ≤ Mπ(A) for all A ⊆ X

}
, M ≥ 1, π ∈ P(X ) , (4.5)

and the associated worst-case mixing times for Pn targeting πn are

t
(n)
mix(ϵ,M) = sup

µn∈N (πn,M)
t
(n)
mix(ϵ, µn) . (4.6)

Remark 3. While being common in the literature, see e.g. Dalalyan (2017); Dwivedi et al.
(2019); Tang and Yang (2022) for gradient-based methods, the warm start assumption can be
quite stringent and potentially unrealistic. In particular, assuming that the algorithm can be
initialised by sampling the starting configuration from a warm start with relatively small M (e.g.
one that does not grow exponentially fast with dimensionality) may be unrealistic. In Section
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4.6 we show that in the specific case of hierarchical models as in (4.1) a feasible start, i.e. a
starting distribution which can be implemented in practice and allows to control the value of M ,
is available under some assumptions.

Assumptions on the sequence of target distributions

We consider settings where a rescaled version of the sequence (πn)n≥1 converges to a well defined
limiting distribution as n → ∞. This is often the case in a Bayesian context where some version
of the Bernstein von-Mises theorem holds (see e.g. Theorem 19 below). The convergence of
(πn)n≥1 occurs with high probability assuming the data Y (n) is randomly generated from some
distribution. In particular, we assume for the rest of this section that Y (n) is random with
distribution Q(n) ∈ P

(
Y(n)

)
. The following assumption specifies the convergence we require for

(πn)n≥1:
(A1) There exists π̃ ∈ P(X ) and a sequence of transformations ϕn : X → X that act

coordinate-wise, i.e. where

ϕn(x) =
(
ϕn,1(x1), . . . , ϕn,K(xK)

)
, x ∈ X (4.7)

with ϕn,j : Xj → Xj injective and measurable, such that

∥π̃n − π̃∥TV → 0 as n → ∞ , (4.8)

in Q(n)-probability, i.e. such that limn→∞Q
(n)(∥π̃n − π̃∥TV > ϵ) = 0 for every ϵ ∈ (0, 1),

where π̃n = πn ◦ ϕ−1
n is the law of x̃ = ϕn(x) under x ∼ πn.

Remark 4. The necessity of rescaling x by some transformation ϕn in (4.7) comes from the
typical behaviour of posterior distributions in Bayesian models. Indeed, without rescaling, πn
often converges to a random variable which is degenerate to a Dirac delta at a fixed value (e.g.
the underlying data-generating parameter). Thus, in order to have a non-trivial limit and total
variation convergence, which is essential for our purposes, a suitable rescaling is needed. In our
context the specific form of this transformation is dictated by the theory of Bayesian asymptotics,
see e.g. Theorem 19 below. Moreover, we assume ϕn to act coordinate-wise because this class
of transformations leaves Gibbs samplers invariant (see e.g. Lemma 42 below), while general
one-to-one transformations can alter the Gibbs sampler dynamics and change its convergence
speed (Papaspiliopoulos et al., 2007b).

Remark 5. The results we develop below could be extended to more general versions of assump-
tion (A1), including ones where the co-domain of ϕn is not equal to the domain, i.e. ϕn : X → Z
for some Z, and where the limiting distribution π̃ is random, i.e. allowed to depend on the se-
quence (Y (n))n. Since (A1) is enough for our purposes and motivating applications, we do not
consider such extensions here to keep notation simple.

Let P̃ and P̃n be the kernels of the Gibbs samplers targeting π̃ and π̃n, respectively. The
following lemma shows that studying total variation convergence from M -warm starts for the
sequence of kernels (Pn)n≥1 is equivalent to doing it for the sequence (P̃n)n≥1 . The proof, which
can be found in Appendix C, relies on the coordinate-wise and bijective requirements of (A1).
Lemma 42. Under Assumption (A1) we have

sup
µn∈N (πn,M)

∥∥∥µnP tn − πn
∥∥∥
TV

= sup
µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n
∥∥∥
TV

.
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Convergence of Gibbs samplers operators

Since by (A1) the stationary distribution of P̃n, the Gibbs samplers targeting π̃n, converges to
the one of P̃ , one may be tempted to translate such convergence at the level of the kernels,
e.g. ∥P̃n(x, ·) − P̃ (x, ·)∥TV → 0 for (π̃-almost) every x ∈ X . However this is not only false for
generic Markov operators, but even in the special class of Gibbs sampler operators: one can
have ∥π̃n − π̃∥TV → 0 as n → ∞, while ∥P̃n(x, ·) − P̃ (x, ·)∥TV ↛ 0 for any x ∈ X , see e.g.
Example A.1 in Appendix A. The reason is that convergence of the joint distribution π̃n in total
variation distance does not imply convergence of the associated conditional distributions, that
are the building blocks of the Gibbs sampler operator. However, it turns out that a control on
the total variation distance between two target distributions is in general sufficient to control
the distance between the corresponding Gibbs sampler operators applied to warm starts. The
following Proposition makes the connection precise. Interestingly, no assumptions on the target
distribution and Gibbs samplers are required.

Proposition 21. Let P1 and P2 be the transition kernels of Gibbs samplers targeting π1 ∈ P(X )
and π2 ∈ P(X ), respectively. Then we have

∥µP1 − µP2∥TV ≤ 2MK ∥π1 − π2∥TV , (4.9)

for every µ ∈ N (π1,M) ∪ N (π2,M) and M ≥ 1.

Proposition 21 translates convergence of the stationary distributions, given by (A1), into
convergence of the Gibbs samplers operators when a warm start is considered. It is worth noting
that a bound of this form cannot hold for generic Markov transition kernels. Indeed, consider
transition kernels P1 and P2 with the same stationary distribution π: by basic properties of
the total variation distance it holds ∥µP1 − µP2∥TV ≤ 2 ∥µ− π∥TV . The latter bound cannot
be improved in general, meaning that it is possible to find ergodic kernels P1 and P2 that get
arbitrarily close to the above upper bound, see Example A.2 in Appendix A.

Proposition 21 is used in the proof of Theorem 18, which shows that the limiting behaviour
of Pn, in terms of distance to stationarity from M -warm starts, is completely characterized by
the behaviour of the limiting operator P̃ . The proof of Theorem 18 also relies on the fact that
the total variation distance between π1 and π2 provides a control on the distance between the
two sets N (π1,M) and N (π2,M), as shown in the following Lemma.

Lemma 43. Let π1, π2 ∈ P(X ). Then, for every µ1 ∈ N (π1,M), there exists µ2 ∈ N (π2,M)
such that ∥µ1 − µ2∥TV ≤ M ∥π1 − π2∥TV .

Lemma 43 implies that, under assumption (A1), for every µ̃ ∈ N (π̃,M) there exists a
sequence {µ̃n}n such that µ̃n ∈ N (π̃n,M) and ∥µ̃n − µ̃∥TV → 0 as n → ∞ in Q(n)-probability.
We can now state Theorem 18.

Theorem 18. Let assumption (A1) holds. Then for every t ∈ N and M ≥ 1 it holds

lim
n→∞

sup
µn∈N (πn,M)

∥∥∥µnP tn − πn
∥∥∥
TV

= sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

,

in Q(n)-probability.

Remark 6. An alternative approach to derive convergence statements on the sequence of Gibbs
kernels would be to consider stronger forms of convergence for the sequence (π̃n)n≥1 than the one
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in total variation distance in (4.8). However, we prefer to derive results under weaker conver-
gence requirements for (π̃n)n≥1 to allow for a more direct use of standard asymptotic results in
the Bayesian literature (e.g. common formulations of the Bernstein-von Mises theorem), which
are usually derived in terms of weaker metrics such as total variation one.

Implications for mixing times

Denote the mixing times of P̃ as

t̃mix(ϵ,M) = sup
µ̃∈N (π̃,M)

inf
{
t ≥ 1 :

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

< ϵ

}
.

The following corollary of Theorem 18 shows how to use t̃mix(ϵ,M) to deduce statements on the
behaviour of the sequence of mixing times of interest, (t(n)

mix(ϵ,M))n≥1.

Corollary 8. Let assumption (A1) holds. If (M, ϵ) ∈ [1,∞)×(0, 1) is such that t̃mix(ϵ,M) < ∞,
then

Q(n)
(
t
(n)
mix(ϵ,M) ≤ t̃mix(ϵ,M)

)
→ 1 (4.10)

as n → ∞. Otherwise, if (M, ϵ) ∈ [1,∞) × (0, 1) is such that t̃mix(ϵ,M) = ∞, then it holds

Q(n)
(
t
(n)
mix(ϵ,M) < T

)
→ 0

as n → ∞, for every ϵ < ϵ and T > 0.

Remark 7 (Mixing times bounded in probability). When t̃mix(ϵ,M) < ∞, the statement in
(4.10) implies that t(n)

mix(ϵ,M) = OP (1) as n → ∞, i.e. that the sequence of random variables
(t(n)
mix(ϵ,M))n≥1 is bounded in probability. The latter means that for every δ > 0 there exist an

integer Nδ and a real constant Bδ < ∞ such that Q(n)(t(n)
mix(ϵ,M) ≤ Bδ) ≥ 1 − δ for every

n ≥ Nδ, which holds by (4.10) taking Bδ = t̃mix(ϵ,M).

By Corollary 8, establishing whether P̃ is ergodic (in the sense of yielding finite mixing times)
or not is enough to discriminate between sequences of kernels (Pn)n≥1 whose mixing times diverge
as n → ∞ as opposed to ones that do not (see e.g. Figure 4.4 in Section 4.5 for an illustration).
Since ergodicity of Gibbs samplers can be established under very mild assumptions (Roberts and
Sahu, 1994), in practice one can expect P̃ to be ergodic and thus (t(n)

mix(ϵ,M))n≥1 to be bounded
in probability whenever (A1) holds for a well-behaved, non-singular limiting distribution π̃.
Sections 4.4 and 4.5 combine Corollary 8 with dimensionality reduction techniques to provide
results on Gibbs samplers targeting high-dimensional hierarchical models.

Remark 8 (Alternative metrics). It is natural to wonder whether the result of Corollary 8
may hold for weaker metrics, like the one induced by the Wasserstein distance. However, it is
possible to find examples where the convergence of the stationary distributions (in Wasserstein
distance) does not imply convergence of the associated mixing times (neither the ones defined
based on the TV distance nor the ones defined based on the Wasserstein one). The intuition is
that the limiting distribution in weaker metrics (e.g. Wasserstein, weak convergence, etc) may
ignore features of the joint distribution, such as full conditionals behaviours, that have a relevant
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impact on Gibbs sampler dynamics. For example, a sequence of increasingly correlated random
variables (whose Gibbs samplers converge slower and slower) may converge to a single point
mass, for which independence and immediate convergence automatically holds. See Example
A.3 in Appendix A.

Explicit limiting bounds

Corollary 8 can also be used to derive quantitative bounds on the limiting behaviour of the mixing
times (t(n)

mix(ϵ,M))n≥1. In particular, if one is able to establish explicit bounds on t̃mix(ϵ,M),
then (4.10) implies a corresponding bound in high probability on t

(n)
mix(ϵ,M) for large n. While

deriving quantitative bounds on Gibbs samplers mixing times is in general hard, the limiting
distribution π̃ is often more tractable than the original sequence (πn)n≥1, a common case being
the one where π̃ is multivariate Gaussian while (πn)n≥1 is not. In those scenarios explicit
bounds on t̃mix(ϵ,M) can be derived using available results on the convergence properties of
Gibbs samplers targeting multivariate Gaussian distributions, see e.g. Amit (1991); Khare and
Zhou (2009); Roberts and Sahu (1997). For example, Theorem 2 in Amit (1991) provides an
explicit bound for deterministic scan Gibbs samplers on Gaussian targets in L2-distance (and
therefore total variation Andrieu et al. (2022)).

In Sections 4.4 and 4.5 we will apply this strategy mostly to cases where K = 2, meaning
that P̃ is a two-block Gibbs sampler. In this situation, one can use spectral gaps to bound
Gibbs samplers mixing times, as shown in the Corollary 9. Given a π-invariant kernel P with
π ∈ P(X ) we define its spectral gap as

Gap(P ) = inf
f :π(f2)<∞,Varπ(f)>0


∫
X 2
[
f(y) − f(x)

]2
π(dx)P (x,dy)

2Varπ(f)

 ,
where f : X → R are measurable functions, π(f) =

∫
X f(x)π(dx) and Varπ(f) =

∫
X
[
f(x) − π(f)

]2
π(dx).

We refer to Rosenthal and Rosenthal (2015) and the proof of Corollary 9 for discussion on why
spectral gaps, which are commonly used for π-reversible chains, can be used to analyse two-block
Gibbs samplers, which are technically not reversible. We also note that Corollary 9 is only one
possible approach to bound t̃mix(ϵ,M) and that any quantitative bound on the latter can be
combined with Corollary 8 to deduce limiting statements on (t(n)

mix(ϵ,M))n≥1.

Corollary 9. Let K = 2, assumption (A1) be satisfied and Gap(P̃ ) > 0. Then, for every
(M, ϵ) ∈ [1,∞) × (0, 1) it holds

Q(n)
(
t
(n)
mix(ϵ,M) ≤ 1 + log(M/2) − log(ϵ)

− log(1 − Gap(P̃ ))

)
→ 1 as n → ∞ .

Given the result of Corollary 9, it is natural to ask whether the convergence proved in The-
orem 18 could be rephrased in terms of spectral gaps, i.e. Gap(Pn) → Gap(P̃ ). However, once
again, convergence in total variation is too weak for this purpose: indeed it is not difficult to
find examples where (A1) holds and the associated Gibbs sampler spectral gaps do not con-
verge, even under the stronger condition requiring ∥P̃n(x, ·) − P̃ (x, ·)∥TV → 0 for any x ∈ X ,
see Example A.4 in Appendix A. Controlling directly the spectral gaps would require extremely
stringent conditions on the convergence of π̃n to π̃ that are rarely satisfied (e.g. uniform con-
vergence of the associated densities on the log-scale, i.e. supx∈X | log π̃n(x) − log π̃(x)| → 0). An
alternative approach to the direct warm-start mixing time analysis that we perform here, would
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be to consider asymptotic behaviours of approximate spectral measures, such as approximate
spectral gaps, see e.g. Atchadé (2021); Tang and Yang (2022).

4.3 Illustrative example: fixed-dimensional parametric models
We first consider the fixed-dimensional case. While this is not our main interest or motivating
application, it allows to show the type of results we will derive and also introduce notation about
classical Bayesian asymptotic results that we will use. In this setting πn(dψ) = p(dψ | Y (n)) is
the posterior distribution of the Bayesian model defined as

Yi | ψ iid∼ f(Y | ψ), ψ ∼ p0(ψ), (4.11)

where ψ = (ψ1, . . . , ψK), with X ∈ RK , and Y (n) = (Y1, . . . , Yn), with Yi ∈ Y, i = 1, . . . , n, so
that Y(n) = Yn. Moreover, if Yi iid∼ Q for some Q ∈ P(Y), we denote with Q(n) and Q(∞) the
associated product measures. We study the mixing times of the Gibbs sampler that updates one
coordinate of ψ at the time as n grows. In order to apply the results of Theorem 18 we need a
suitable transformation of ψ, that is given by the celebrated Bernstein-von Mises Theorem, which
we now recall. The version we provide here, which makes stronger than needed assumptions, can
be obtained combining Theorem 10.1 in Van der Vaart (2000), with other remarks in Chapter
10 therein, incuding Lemmas 10.4 and 10.6.
Theorem 19 (Bernstein-von Mises). Consider model (4.11) and let the map ψ → f(· | ψ)
be one-to-one. Let the map ψ →

√
f(y | ψ) be continously differentiable for every y ∈ Y,

with non-singular and continuous Fisher Information I(ψ). Let the prior measure be absolutely
continuous in a neighborhood of ψ∗ ∈ X with a continuous positive density at ψ∗. Finally, let
Ψ be a compact neighborhood of ψ∗ for which there exists a sequence of tests un such that∫

Y(n)
un(y1, . . . , yn)

n∏
i=1

f(dyi | ψ∗) → 0,

sup
ψ ̸∈Ψ

∫
Y(n)

[
1 − un(y1, . . . , yn)

] n∏
i=1

f(dyi | ψ) → 0, as n → ∞ .

(4.12)

Then, if Yi
iid∼ Qψ∗ for i = 1, 2, . . . with Qψ∗ admitting density f(y | ψ∗), it holds∥∥∥∥L (dψ̃ | Y (n)

)
−N

(
I−1(ψ∗)∆n,ψ∗ , I−1(ψ∗)

)∥∥∥∥
TV

→ 0, as n → ∞

in Q
(∞)
ψ∗ -probability, where ψ̃ =

√
n(ψ − ψ∗) and ∆n,ψ∗ = 1√

n

∑n
i=1 ∇ log f(Yi | ψ)

∣∣∣
ψ=ψ∗

.

Remark 9. Differentiability of
√
f(y | ψ) and continuity of I(ψ) imply that the model is differ-

entiable in quadratic mean, which allows to prove local asymptotic normality of the log-likelihood
function. See Theorem 7.2 and Lemma 7.6 in Van der Vaart (2000).

Remark 10. A test is a measurable function u : Y(n) → [0, 1]. The integrals in (4.12)
represent probabilities of errors of first and second kind, respectively, when the null hypothesis
H0 : ψ = ψ∗ is rejected with probability u(y1, . . . , yn).

Loosely speaking, Theorem 19 implies that, if the model is well-specified and ψ is suitably
rescaled, the posterior distribution converges to a multivariate normal. The result holds under
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some identifiability requirements: first of all, the true parameter ψ∗ must belong to the support
of the prior; moreover, we must be able to separate ψ∗ from the complements of its neighborhood,
given infinitely many data. Such assumption is mild in most interesting cases and it is implied
by the existence of uniformly consistent estimators for ψ (that is guaranteed if the support of
p0 is compact). See Chapter 10 in Van der Vaart (2000) for more details. Finally, the Fisher
Information matrix must be non singular.
Remark 11. Notice that Theorem 19 requires the model to be (perfectly) well-specified, which
rarely happens in practice. However there exist extended versions for the case of misspecified
likelihoods (Kleijn and van der Vaart, 2012), where the limiting distribution is still Gaussian
with a different covariance matrix. Indeed, we expect the results of this and the following sections
to hold in a similar way under misspecification: of course the different limiting distribution will
have an impact on the final result, especially in the application of Corollary 9.

We can now use Theorem 18 and Corollary 8 to bound the mixing times of the Gibbs sampler
associated to model (4.11) as n diverges.
Proposition 22. Let model (4.11) satisfy the hypotheses of Theorem 19 and let Pn be the Gibbs
sampler kernel targeting πn(dψ) = p(dψ | Y (n)) by updating one coordinate of ψ = (ψ1, . . . , ψK)
at a time. Then, for every (M, ϵ) ∈ [1,∞) × (0, 1) there exists T (ψ∗, ϵ,M) < ∞ such that

lim
n→∞

Q
(n)
ψ∗

(
t
(n)
mix(ϵ,M) ≤ T

(
ψ∗, ϵ,M

))
= 1 .

Proposition 22 shows that, under the conditions of Theorem 19 and starting from an M -
warm distribution, the number of iterations required to get ϵ-close to the posterior distribution
does not grow as n → ∞. An application to the normal model with unknown mean and precision
is given by Corollary C.7 in Section C.10 of Appendix C.

The main take-away of this Section is that, under relatively mild conditions, the Gibbs
sampler behaves well with models of fixed dimensionality and growing number of observations.
In the remaining of the paper we consider the more challenging setting of hierarchical models,
where the number of parameters grows with the number of observations: in particular we will
explore situations in which the number of required iterations remains fixed even with a growing
dimensionality of the problem.

4.4 Hierarchical models with exponential family priors
We consider a general class of hierarchical models, with data divided in J groups, each having
a set of group-specific parameters θj . The latter share a common prior with hyper-parameters
ψ. Recalling (4.1), the model under consideration is

Yj | θj ∼ f(· | θj) , θj | ψ iid∼ p(· | ψ) , ψ ∼ p0(·). (4.13)

We assume that the prior for θj ∈ Rℓ belongs to the exponential family, that is

p(θ | ψ) = h(θ)exp


S∑
s=1

ηs(ψ)Ts(θ) −A(ψ)

 , (4.14)

where ψ ∈ RD, h : Rℓ → R+ is a non-negative function and ηs(ψ), Ts(θ) and A(ψ) are
known real-valued functions with domains RD, Rℓ and RD respectively. We will always assume
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the family to be minimal, that is both (η1(ψ), . . . , ηS(ψ)) and (T1(θ), . . . , TS(θ)) are linearly
independent. On the other hand, we let f(y | θ) be an arbitrary likelihood function with data
y ∈ Rm and parameters θ ∈ Rℓ, dominated by a suitable σ-finite measure (usually Lebesgue or
counting one).

Denoting θ = (θ1, . . . , θJ), Y1:J = (Y1, . . . , YJ) and πJ(dθ,dψ) = L
(
dθ, dψ | Y1:J

)
, we are

interested in studying the two-block Gibbs sampler targeting πJ(dθ, dψ), i.e. the kernel defined
as

PJ

((
θ(t−1), ψ(t−1)

)
,
(
dθ(t), dψ(t)

))
= πJ

(
dθ(t) | ψ(t−1)

)
πJ
(
dψ(t) | θ(t)

)
. (4.15)

Throughout Section 4.4 we denote by
(
θ(t), ψ(t)

)
t≥1

the Markov chain with operator PJ , and

by t(J)
mix the associated mixing times, i.e.

t
(J)
mix(ϵ, µ) = inf

{
t ≥ 0 :

∥∥∥µP tJ − πJ
∥∥∥
TV

< ϵ

}
, t

(J)
mix(ϵ,M) = sup

µ∈N (πJ ,M)
t
(J)
mix(ϵ, µ).

Dimensionality reduction

In order to apply Corollary 8 to characterize t
(J)
mix, we would need to study the asymptotic

distribution of πJ as J → ∞. The latter is a distribution over ℓJ + D parameters, there-
fore its dimensionality grows with the size of the data. However, the next lemma shows
that the convergence properties of PJ can be described through a Gibbs sampler on an in-
tractable, but fixed-dimensional target, namely π̂J(dT ,dψ) = L

(
dT ,dψ | Y1:J

)
where T =(∑J

j=1 T1(θj), . . . ,
∑J
j=1 TS(θj)

)
, with Ts as in (4.14). Let

(
T (t), ψ(t)

)
t≥1

=
(
T (θ(t)), ψ(t)

)
t≥1

be the stochastic process obtained as a time-wise mapping of
(
θ(t), ψ(t)

)
t≥1

under (θ, ψ) 7→
(T (θ), ψ). The latter process contains all the information characterising the convergence of(
θ(t), ψ(t)

)
t≥1

, in the sense made precise in the following lemma. Below we denote by P̂J the
kernel of the two-block Gibbs sampler targeting π̂J .

Lemma 44. For each J ≥ 1, the process
(
T (t), ψ(t)

)
t≥1

is a Markov chain, its transition kernel

coincides with P̂J , and its mixing times t̂(J)
mix satisfy

sup
µ∈N (πJ ,M)

t
(J)
mix(ϵ, µ) = sup

ν∈N (π̂J ,M)
t̂
(J)
mix(ϵ, ν) (M, ϵ) ∈ [1,∞) × (0, 1) .

Remark 12 (Prior and likelihood assumptions). In order to reduce the dimensionality of the
Markov chain under consideration, Lemma 44 requires the existence of sufficient statistics only
for the prior density of the group-specific parameters. It does not require any condition on the
likelihood function in model (4.13). In particular, we have L

(
dψ | θ, Y1:J

)
= L

(
dψ | T (θ), Y1:J

)
,

while L
(
dY1:J | θ, ψ

)
̸= L

(
dY1:J | T (θ), ψ

)
in general.

Lemma 44 allows to focus the analysis on the convergence speed of
(
T (t), ψ(t)

)
t≥1

, which
is a chain whose dimensionality does not grow with the size of the data. Note that its target
distribution π̂J is usually not available in closed form, and the corresponding two-block Gibbs
sampler P̂J cannot be implemented directly (unless by implementing the original algorithm PJ

and keeping track of
(
T (t), ψ(t)

)
t≥1

). In this sense the latter chain is useful for convergence
analysis purposes but less so as an algorithmic shortcut.
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The result of Lemma 44 is a peculiar property of the Gibbs sampler, which naturally ignores
ancillary information about ψ in θ. Indeed, the proof of Lemma 44 crucially relies on the
fact that the algorithm is performing exact conditional updates and analogous reductions do
not occur for most other MCMC schemes (e.g. Metropolis-Hastings based schemes, including
gradient-based ones).

This dimensionality reduction trick can be applied beyond hierarchical models and has al-
ready been employed in similar settings, mainly with the idea of obtaining suitable drift functions
(Rosenthal, 1995): for example, in Qin and Hobert (2019) it is used to derive the convergence
complexity of a data augmentation algorithm for the Bayesian probit regression model, while
in Rajaratnam and Sparks (2015) a similar tecnique allows to study the geometric convergence
rate of a Gibbs sampler for high dimensional Bayesian linear regression.

Regularity assumptions and main result

In order to apply the techniques of Theorem 18, we need to provide an asymptotic characteriza-
tion of π̂J . To do so we require the technical assumptions listed in this section. The assumptions
will be verified in specific examples in Section 4.5 and 4.5.

The approach we use to analyse π̂J , which is discussed after Theorem 20, is based on the
decomposition π̂J(dT , dψ) = π̂J(dψ)π̂J(dT | ψ). The first set of assumptions contains standard
regularity and identifiability conditions to study the marginal distribution π̂J(dψ). In particular,
assumptions (B1) − (B3) allow the application of Theorem 19 to the posterior distribution of
ψ. Their applicability has been discussed in Section 4.3. We denote the marginal likelihood of
the model, obtained by integrating out the group specific parameter θ, as

g(y | ψ) =
∫
Rℓ
f(y | θ)p(θ | ψ) dθ , (4.16)

and its Fisher Information matrix as

[
I(ψ)

]
d,d′ = E

[{
∂ψd

log g(Y | ψ)
} {

∂ψd′ log g(Y | ψ)
}]
, d, d′ = 1, . . . , D.

We will assume the following:

(B1) There exists ψ∗ ∈ RD such that Yj iid∼ Qψ∗ for j = 1, 2, . . . , where Qψ∗ admits density
g(y | ψ∗). Moreover the map ψ → g(· | ψ) is one-to-one and the map ψ →

√
g(x | ψ)

is continuously differentiable for every x. Finally, the prior density p0 is continuous and
strictly positive in a neighborhood of ψ∗.

(B2) There exist a compact neighborhood Ψ of ψ∗ and a sequence of tests uj : RmJ → [0, 1]
such that

∫
RmJ uj (y1, . . . , yJ)∏J

j=1 g(yj | ψ∗) dy1:J → 0 and
supψ ̸∈Ψ

∫
RmJ

[
1 − uj (y1, . . . , yJ)

]∏J
j=1 g(yj | ψ) dy1:J → 0, as J → ∞.

(B3) The Fisher Information matrix I(ψ) is non-singular and continuous w.r.t. ψ.

The second set of regularity assumptions (B4)-(B6) are described and discussed in Appendix
B. They deal with smoothness and regularity of the conditional distribution π̂J(T |ψ) and they
allow to derive a suitable conditional Central Limit Theorem in total variation for π̂J(T |ψ) as
J → ∞.

We can now state the main result of this section. Below we denote the product measures
associated to Qψ∗ by Q(J)

ψ∗ and Q
(∞)
ψ∗ .
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Theorem 20. Consider model (4.13) and the Gibbs sampler defined as in (4.15), with mixing
times t(J)

mix(ϵ,M). Then, under assumptions (B1)-(B6), for every (M, ϵ) ∈ [1,∞) × (0, 1) there
exists T (ψ∗, ϵ,M) < ∞ such that

Q
(J)
ψ∗

(
t
(J)
mix(ϵ,M) ≤ T

(
ψ∗, ϵ,M

))
→ 1,

as J → ∞. It follows that t(J)
mix(ϵ,M) = OP (1) as J → ∞.

Remark 13. Theorem 20 provides a formal proof of the linear in J cost for Gibbs samplers on
hierarchical models. Indeed, it proves that a bounded (in J) number of iterations suffices to get a
good mixing: assuming that the cost of a single iteration scales linearly with J , which is typically
the case, this implies an overall computational cost of order OP (J). Note that a single evaluation
of the likelihood of (θ, ψ), or the associated gradients, which is required at every iteration of usual
gradient-based methods, yields a cost of the same order.

Remark 14. The conclusions of Theorem 20 are similar in spirit to those of (Kamatani, 2014,
Thm.1). Also there the convergence of Gibbs Samplers targeting two-level hierarchical models
is studied using tools from Bayesian asymptotics. The results therein, which deal with conver-
gence of ergodic averages when the algorithm is started in stationarity, are quite different from
ours, which deal with mixing times. Nonetheless they also support the idea that Gibbs samplers
targeting two-level hierarchical models can exhibit OP (1) convergence as J → ∞.

Posterior convergence lemmas for Theorem 20

The proof of Theorem 20 can be found in Appendix C. It relies on Lemma 44, which allows to
focus on the two-blocks Gibbs sampler targeting π̂J(dT , dψ), and on Lemmas 45 and 46 below.
These two lemmas imply that π̂J(dT , dψ) satisfies assumption (A1) as J → ∞ and that the
associated limiting kernel is ergodic, thus allowing to apply Corollary 8.

In order to prove (A1) for π̂J(dT , dψ) = L
(
dT ,dψ | Y1:J

)
, we need to identify a suitable

transformation of (T , ψ), denoted by
(
T̃ , ψ̃

)
. We define a one-to-one transformation of ψ as

ψ̃ =
√
J
(
ψ − ψ∗

)
− ∆J , ∆J = 1√

J

J∑
j=1

I−1(ψ∗)∇ log g(Yj | ψ∗). (4.17)

The asymptotic distribution of ψ̃ follows directly through Theorem 19, as summarized in the
next lemma.

Lemma 45. Define ψ̃ as in (4.17). Under assumptions (B1) − (B3) it holds∥∥∥∥L(dψ̃ | Y1:J) −N
(
0, I−1(ψ∗)

)∥∥∥∥
TV

→ 0,

as J → ∞, in Q
(∞)
ψ∗ -probability.

LetM (1)(ψ | y) =
(
M

(1)
1 (ψ | y), . . . ,M (1)

S (ψ | y)
)

∈ RS withM (1)
s (ψ | y) = E

[
Ts(θj) | Yj = y, ψ

]
and[

C(ψ)
]
s,d = EYj

[
∂ψd

M (1)
s

(
ψ | Yj

)]
,
[
V (ψ)

]
s,s′ = EYj

[
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ

)]
, (4.18)
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with s, s′ = 1, . . . S and d = 1, . . . , D. We use the notation EYj [·] for expectations with respect
to the law of Yj as defined in (B1). Then we define a one-to-one transformation of T as

T̃ = 1√
J

J∑
j=1

[
T (θj) −M (1) (ψ∗ | Yj

)]
− C(ψ∗)∆J , (4.19)

with C(ψ∗) defined in (38). The next lemma proves the required asymptotic normality of T̃ ,
conditional to ψ̃ .

Lemma 46. Let T̃ be as in (4.19). Under assumptions (B1)-(B6) for every ψ̃ it holds∥∥∥∥L(dT̃ | Y1:J , ψ̃) −N
(
C(ψ∗)ψ̃, V (ψ∗)

)∥∥∥∥
TV

→ 0,

as J → ∞, for Q(∞)
ψ∗ -almost every (Y1, Y2, . . . ).

Lemma C.18 in Section C.14 of Appendix C combines Lemmas 45 and 46 to prove that
L(dT̃ , ψ̃ | Y1:J) converges in total variation to a multivariate Gaussian vector with non singular
covariance matrix, which allows to apply Corollary 8 as desired.

Remark 15. The definition of T̃ and Lemma 46 are an important part of the proof of Theorem
20. Lemma 46 relies on the fact that, conditional to ψ̃ and Y1:J , T is a sum of independent
(but not identically distributed) terms. The proof of convergence in total variation requires more
than the usual tools from Lindeberg-Feller Central Limit Theorem, as discussed in Appendix B
after assumptions (B5) and (B6).

Analysis of the limiting chain

As a byproduct of the proof of Theorem 20, it is possible to characterize the limiting distribution
of the rescaled vector

(
T̃ , ψ̃

)
, as the next proposition shows.

Proposition 23. Consider the same assumptions of Theorem 20. Then∥∥∥L(dT̃ , dψ̃ | Y1:J) −N (0,Σ)
∥∥∥
TV

→ 0,

as J → ∞, in Q
(∞)
ψ∗ -probability, where

Σ =

V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗) C(ψ∗)I−1(ψ∗)

I−1(ψ∗)C⊤(ψ∗) I−1(ψ∗)

 (4.20)

with C(ψ∗) and V (ψ∗) defined in (38).

The expression for the limiting covariance in (4.20) can be used to investigate the convergence
properties of the limiting Gibbs sampler, since the spectral gap is explicitly computable from
that. We can then apply Corollary 9 and obtain the following result.
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Corollary 10. Under the assumptions of Theorem 20, for every (M, ϵ) ∈ [1,∞) × (0, 1), we
have Q(J)

ψ∗

(
t
(J)
mix(ϵ,M) ≤ T (ψ∗, ϵ,M)

)
→ 1 as J → ∞, with

T
(
ψ∗, ϵ,M

)
= 1 + log(M/2) − log(ϵ)

− log
(
1 − γ(ψ∗)

) ,
γ(ψ∗) = min

{ 1
1 + λi

: λi eigenvalue of V −1(ψ∗)C(ψ∗)I−1(ψ∗)C⊤(ψ∗)
}
.

Thus, once the limiting distribution is obtained, an upper bound on the mixing times can be
derived by computing the eigenvalues of a S × S matrix. As an application, the next corollary
provides the value of γ when S = D = 1.

Corollary 11. Consider the same setting of Corollary 10, with S = D = 1. Then we have

γ(ψ∗) =
VarYj

(
E
[
T (θj) | ψ∗, Yj

])
Var

(
T (θj) | ψ∗

) . (4.21)

By the law of total variance, we have that γ(ψ∗) → 0 if and only if

VarYj

(
E
[
T (θj) | ψ∗, Yj

])
E
[
VarYj

(
T (θj) | ψ∗, Yj

)] → 0,

i.e., loosely speaking, when the data Yj yield little information about T (θj) and therefore about
ψ. This phenomenon arises since model (4.13) is an example of centered parametrization, see
e.g. Gelfand et al. (1995); Papaspiliopoulos et al. (2003, 2007a). The formula in (4.21) resembles
the definition of the so-called Bayesian fraction of missing information (Liu, 1994), with the
notable difference of not involving an infimum over a set of test functions.

4.5 Examples

In this section various examples, which differ by the choice of likelihoods and priors, are dis-
cussed.

Hierarchical normal model

Consider the following hierarchical specification:

Yj,i | θj ∼ N
(
θj , τ

−1
0

)
, i = 1, . . . ,m, j = 1, . . . , J

θj | µ, τ1
iid∼ N(µ, τ−1

1 ) , j = 1, . . . , J
(µ, τ1) ∼ p0(·) .

(4.22)

where (µ, τ1) are unknown hyperparameters. In this section we assume τ0 to be fixed and known,
see Section 4.5 for the case with τ0 unknown. The prior p0 can be any distribution satisfying
the assumptions stated in Proposition 24 below. It can be seen that (4.22) is a particular case
of model (4.13), with f(Yj | θj) = ∏m

i=1N(Yj,i | θj , τ−1
0 ), p(· | µ, τ1) = N(µ, τ−1

1 ). The marginal
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likelihood of Yj conditional to (µ, τ1, τ0) is given by

g(y | µ, τ1, τ0) = N
(
y | µ, τ−1

0 I + τ−1
1 H

)
y ∈ Rm, (4.23)

where I is the m×m identity matrix and H is the m×m matrix of ones.
We consider three Gibbs sampler specifications, which vary depending on which parameters

are unknown and treated as random and which blocking rules are used. First, when τ1 is fixed, we
define P1 as the transition kernel of the Gibbs sampler that targets L

(
dθ, dµ | Y1:J

)
by alternat-

ing updates from L
(
dθ | µ, Y1:J

)
and L

(
dµ | θ, Y1:J

)
. If instead µ and τ1 are unknown, we define

P2 and P3 as the transition kernels of the two Gibbs samplers targeting L
(
dθ,dµ,dτ1 | Y1:J

)
by

alternating updates from L
(
dθ, dµ | τ1, Y1:J

)
and L

(
dτ1 | θ, µ, Y1:J

)
for P2; and L

(
dθ | τ1, Y1:J

)
,

L
(
dµ | θ, τ1, Y1:J

)
, L

(
dτ1 | θ, µ, Y1:J

)
for P3. In the following we will show that the asymptotic

behaviour of P2 and P3 is essentially the same.
It is possible to prove that P1 falls directly in the setting of Theorem 20, with T (θj) = θj

for P1. Even if P2 and P3 are not exactly particular cases of the general theorem, since different
update schemes are considered, it turns out that they can be studied with the same tools
introduced in the previous section, with T (θj) =

(
θj , (θj − µ∗)2

)
.

The next proposition shows that the settings introduced above lead to well-behaved asymp-
totic regimes. Here t(J)

mix,l(ϵ,M) denotes the mixing times of the Gibbs sampler defined by Pl
with l ∈ {1, 2, 3}.

Proposition 24. Let Yj
iid∼ Qψ∗, with Qψ∗ admitting density g(y | ψ∗) as in (4.23), where

ψ∗ = (µ∗, τ∗1 , τ∗0 ), and consider model (4.22) with τ0 = τ∗0 . Consider the Gibbs sampler with
operator Pl, with l ∈ {1, 2, 3}, and let the prior density p0 be continuous and strictly positive in
a neighborhood of µ∗ when l = 1 and (µ∗, τ∗1 ) when l ∈ {2, 3}. Finally, when l = 1 let τ1 = τ∗1 .
Then for every (M, ϵ) ∈ [1,∞) × (0, 1) there exists Tl (ψ∗, ϵ,M) < ∞ such that

Q
(J)
ψ∗

(
t
(J)
mix,l(ϵ,M) ≤ Tl

(
ψ∗, ϵ,M

))
→ 1 as J → ∞, l = 1, 2, 3 . (4.24)

Under model (4.22), the matrices in Corollary 10 can be explicitly computed, leading to the
following result.

Corollary 12. Under the same assumptions and notation of Proposition 24, for every (M, ϵ) ∈
[1,∞) × (0, 1), (4.24) holds with

Tl
(
ψ∗, ϵ,M

)
= 1 + log(M/2) − log(ϵ)

− log
(
1 − γl(ψ∗)

) , l = 1, 2, 3 ,

where

γ1(ψ∗) =
(

1 + τ∗1
mτ∗0

)−1

and γ2(ψ∗) = γ3(ψ∗) = γ1(ψ∗)2 . (4.25)

The expressions for the asymptotic gaps in (4.25) are insightful in many ways. First, µ∗ does
not appear in any of the spectral gaps, meaning that the limiting value of the mean parameter
seems not to play a role in the asymptotic behaviour of the Gibbs sampler. Moreover, the gaps
are a function of the ratio (mτ∗0 )−1τ∗1 , that is the ratio of the prior and likelihood precisions,
respectively. In particular the gaps converge to 0, i.e. the upper bound on the mixing times
diverges, if and only if (mτ∗0 )−1τ∗1 → ∞, which happens when the prior is increasingly more
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informative than the data. As discussed after Corollary 11, such phenomenon arises since
all the three formulations are an example of centered parametrization (Gelfand et al., 1995;
Papaspiliopoulos et al., 2003). On the contrary, the gaps converge to 1, i.e. asymptotically a
single iteration suffices, if and only if (mτ∗0 )−1τ∗1 → 0.

When τ1 is fixed and p0(µ) is Gaussian, then L
(
dθ,dµ | Y1:J

)
is a multivariate Gaussian and

P1 is amenable to finite-sample analysis. In fact, the expression for γ1(ψ∗) appeared previously
in the literature, see e.g. Papaspiliopoulos et al. (2003). The result in Corollary 12 is, however,
different since it is asymptotic and it applies also to general priors.

On the contrary, a finite-sample analysis of P2 are P3 is hard even when p0(µ) is Gaussian (see
e.g. Jin and Hobert (2022); Qin and Hobert (2022); Yang and Rosenthal (2022)) and γ2(ψ∗) and
γ3(ψ∗) did not appear previously in the literature, to the best of our knowledge. It is interesting
that, regardless of the value of (m,µ∗, τ∗1 , τ∗0 ), including the random precision parameter, when
moving from P1 to either P2 or P3, always slows down the sampler (asymptotically), since
γ1(ψ∗) > γi(ψ∗) for i = 2, 3, and that the two blocking rules of P2 and P3 are asymptotically
equivalent in terms of mixing times, since γ2(ψ∗) = γ3(ψ∗).

Models with binary and categorical data

Let now f(y | θ) be a probability mass function, whose point masses are denoted by y0, . . . , ym,
with m < ∞, such that for every θ ∈ RK we have

m∑
r=0

f(yr | θ) = 1, f(yr | θ) > 0, r = 0, . . . ,m. (4.26)

The assumption in (4.26) is mild and holds for most likelihoods usually employed with categorical
data, e.g. multinomial logit and probit. We focus on hierarchical models with normal priors,
i.e.

Yj | θj ∼ f(Yj | θj) , θ1, . . . , θJ | µ, τ iid∼ N(µ, τ−1) , (µ, τ) ∼ p0(·) . (4.27)

For example the case f(y | θ) =
(m
y

)
eyθ

(1+eθ)m , with y = 0, . . . ,m, corresponds to the logistic
hierarchical model with Gaussian random effects. The prior p0 can be any distribution satisfying
the assumptions stated in Proposition 25 below. We define P as the transition kernel of the
Gibbs sampler that targets L

(
dθ, dµ, dτ | Y1:J

)
by alternating updates from L

(
dθ | µ, τ, Y1:J

)
and L

(
dµ, dτ | θ, Y1:J

)
. This is a particular case of the setting of Theorem 20, with ψ = (µ, τ)

and T (θj) = (θj , θ2
j ). Notice that usually L

(
dθ | µ, τ, Y1:J

)
is not known in closed form (with

the notable exception of the probit case, see Durante (2019)), but nonetheless exact sampling is
often feasible through adaptive rejection sampling (see e.g. Gilks and Wild (1992)) since each
θj is one dimensional. The marginal likelihood is given by

g(y | ψ) =
∫
R
f(y | θ)N

(
θ | µ, τ−1

)
dθ. (4.28)

The next lemma shows that assumptions (B4)-(B6) follow directly from (4.27).

Lemma 47. Consider model (4.27) and let Yj
iid∼ Qψ∗, with Qψ∗ admitting density g(y | ψ∗) as

in (4.28), with ψ∗ = (µ∗, τ∗). Then assumptions (B4)-(B6) are satisfied.

Thus, in order to apply Theorem 20, it suffices to prove assumptions (B2) and (B3), i.e. that
the parameters ψ are identifiable with non singular Fisher Information matrix. Therefore, as
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formalized in the next proposition, standard identifiability conditions (which are also necessary
to consistently estimate ψ) are sufficient to prove boundedness of the mixing times.

Proposition 25. Consider model (4.27) and let Yj
iid∼ Qψ∗, with Qψ∗ admitting density g(y | ψ∗)

as in (4.28), where ψ∗ = (µ∗, τ∗). Consider the Gibbs sampler with operator P and let p0 be
continuous and strictly positive in a neighborhood of ψ∗. Let the map ψ → g(· | ψ) be one-to-one,
with non singular and continuous I(ψ). Finally, assume tests as in (B2) exist. Then for every
(M, ϵ) ∈ [1,∞) × (0, 1) there exists T (ψ∗, ϵ,M) < ∞ such that

Q
(J)
ψ∗

(
t
(J)
mix(ϵ,M) ≤ T

(
ψ∗, ϵ,M

))
→ 1 as J → ∞ .

Remark 16. In most cases m ≥ 2 is required to avoid the pair (µ, τ) being not identifiable and
the associated Fisher Information matrix being singular. For example Lemma C.35 in Section
C.23 of Appendix C shows that with the logit link I(ψ) is singular if and only if m = 1.

As already discussed in the Section 4.1, the results of Proposition 25 are illustrated on
simulated data in Figure 4.1. Since mixing times are very hard to approximate numerically
in high-dimensions, we employ the Integrated Autocorrelation Times (IATs) as an empirical
measure of convergence time. The IAT associated to a π-invariant Markov chain X = {X(t)}t≥1
and a test function f ∈ L2(π) is defined as

IAT(f) = 1 + 2
∞∑
t=2

Corr
(
f(X(1)), f(X(t))

)
. (4.29)

Loosely speaking, IAT(f) is the number of MCMC samples that is equivalent to a single in-
dependent sample in terms of estimation of

∫
f(x)π(dx), thus the higher IAT the slower the

convergence. When dealing with hierarchical models as in (4.27), we compute the maximum
IAT over all the parameters (both global and group specific). We estimate the IAT with the
ratio of the number of iterations and the effective sample size, as described in Gong and Flegal
(2015), with the effective sample size computed with the R package mcmcse (Flegal et al., 2021).
For a review of different methods to estimate the IATs, see Thompson (2010). In Figure 4.1
we plot the quantiles of the IATs as a function of the number of groups for the Gibbs sampler,
implemented using adaptive rejection sampling (Gilks and Wild, 1992) for the exact updates
of local parameters with full conditionals L

(
dθj | µ, τ, Y1:J

)
. As expected by Proposition 25,

the IATs do not diverge as J increases for both values of m under consideration. Note that
variability decreases as J increases and the posterior gets closer to its asymptotic limit.

Corollary 13. Consider the same setting of Proposition 25. For every (M, ϵ) ∈ [1,∞) × (0, 1)
define

T
(
ψ∗, ϵ,M

)
= 1 + log(M/2) − log(ϵ)

− log
(
1 − γ(ψ∗)

) ,
for γ(ψ∗) ∈ (0, 1) as in Corollary 10. Then

Q
(J)
ψ∗

(
t
(J)
mix(ϵ,M) ≤ T

(
ψ∗, ϵ,M

))
→ 1 as J → ∞ .

The study of the limiting spectral properties, i.e. of γ(ψ∗), can be useful to predict under
which scenarios the Gibbs sampler will perform well or not for large J . We illustrate this by
considering model (4.27) with logit link and known τ set to 1. In this setting, where µ is
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Figure 4.2: Left: upper bounds on mixing times for model (4.27) with τ known, where τ∗ = 1, µ∗ ∈
(−3, 3), m = 1, M = 2 and ϵ = 0.2. A priori µ ∼ N

(
0, 103). Right: median IATs with J = 2000.

the only global parameter, the value of γ(ψ∗) can be computed as in (4.21) through simple
one-dimensional numerical integration. In Figure 4.2 we compare the resulting mixing time
upper bound, T (ψ∗, ϵ,M), with the numerical estimates of IATs defined in (4.29), obtained by
running a long MCMC chain with a moderately large value of J . We compare such quantities
for different values of the true success probability induced by µ∗, i.e.

∫
R f(1 | θ)N

(
θ | µ∗, 1

)
dθ.

Both theoretical and empirical measures of convergence highlight that the performances of the
Gibbs sampler deteriorate when the problem is not balanced: such conclusion is coherent with
the findings in Johndrow et al. (2019), that considers an asymptotic regime with increasing
imbalancedness.

Different graphical models structure

In the previous subsections we have studied applications of Theorem 20 for some specification of
the hierarchical model in (4.13). These correspond to the graphical models in the leftmost panel
of Figure 4.3. While this structure is very common in Bayesian modeling and it constitutes our
main motivating application, the techniques we developed - and in particular the dimensionality
reduction and posterior asymptotic approach - can be applied to different classes of models,
including other widely used ones. Here we provide two examples, the first is a relatively direct
extension of the model in (4.13) with the addition of parameters in the likelihood, the second
is a more different setting of Gaussian Process regression where the latent parameters are not
independent. See respectively the center and rightmost panels in Figure 4.3 for the resulting
graphical models. More generally, we expect our methodology to be potentially useful to analyse
samplers for models that feature a fixed set of hyperparameters ψ, conditional to which a growing
set of parameters or latent variables is tractable enough for posterior sampling.

Likelihood parameters

Consider again the hierarchical normal model

Yj,i | θj , τ0 ∼ N
(
θj , τ

−1
0

)
, θj | µ, τ1

iid∼ N(µ, τ−1
1 ) , (µ, τ1, τ0) ∼ p0(·) , (4.30)

with i = 1, . . . ,m and j = 1, . . . , J . The unknown parameters are now given by the triplet ψ =
(µ, τ1, τ0). We denote with P the transition kernel of the Gibbs sampler targeting L

(
dθ, dµ, dτ1,dτ0 | Y1:J

)
by alternating updates from L

(
dθ, dµ | τ1, τ0, Y1:J

)
and L

(
dτ1, dτ0 | θ, µ, Y1:J

)
. This cannot be
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Y

Figure 4.3: Graphical models of different hierarchical structures. Left: one level nested model as in
Theorem 20. Center: hyperparameters specifying the likelihood. Right: dependent latent parameters.

seen as a specific case of Theorem 20 with ψ = (µ, τ1, τ0), since τ0 is a parameter of the likelihood
f and therefore there is no conditional independence between Yj and ψ, given θj . However, an
approach similar to the one of the previous section can be employed. In particular, a result
analogous to Lemma 44 can be derived, with T (θj) =

((
θj − Ȳj

)2
,
(
θj − µ

)2) playing the role

of the sufficient statistics and Ȳj = 1
m

∑m
i=1 Yj,i. It is interesting to notice that T in this case

depends also on the data Y1:J , exactly because the group specific parameters θ do not contain
all the information regarding ψ. The next proposition shows that also this specification leads to
a well-behaved asymptotic regime.

Proposition 26. Consider model (4.30) with m ≥ 2 and let Yj
iid∼ Qψ∗, with Qψ∗ admitting

density g(y | ψ∗) as in (4.23), where ψ∗ = (µ∗, τ∗1 , τ∗0 ). Consider the Gibbs sampler with operator
P and let the prior density p0 be a continuous and strictly positive in a neighborhood of ψ∗. Then
for every (M, ϵ) ∈ [1,∞) × (0, 1) there exists T (ψ∗, ϵ,M) < ∞ such that

Q
(J)
ψ∗

(
t
(J)
mix(ϵ,M) ≤ T

(
ψ∗, ϵ,M

))
→ 1 as J → ∞ . (4.31)

An explicit value for T (ψ∗, ϵ,M) can be found through Corollary 9, as shown in the next
corollary.

Corollary 14. Consider the same setting of Proposition 26. Then, for every (M, ϵ) ∈ [1,∞) ×
(0, 1), (4.31) holds with

T
(
ψ∗, ϵ,M

)
= 1 + log(M/2) − log(ϵ)

− log
(
1 − γ(ψ∗)

) ,
where

γ(ψ∗) =

1 + 1
m− 1

(
1 − τ∗1

mτ∗0

)2

+
(
τ∗1
mτ∗0

)2
−1

.

Remark 17. The assumption m ≥ 2 cannot be relaxed: indeed, if a single observation per group
is available, the pair (τ1, τ0) is not identifiable and the Fisher Information matrix is singular.
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Figure 4.4: Quantiles of the integrated autocorrelations times (on log-scale) for model (4.30) with µ∗ = 4,
τ∗

0 = 1 and τ∗
1 = 3. A priori (τ0, τ1) i.i.d.∼ Gamma(1, 1) and p0(µ) ∝ 1. Top left: m = 1 (last points not

plotted due to numerical instability). Center: m = 3. Top right: m = 5.

For an empirical illustration of the issues arising in this context, see the top left panel in Figure
4.4 or Section 6.2 of Rajaratnam and Sparks (2015).

Unlike the case of Corollary 12, in this setting the limiting gap does not depend on m only
through the ratio of prior and likelihood precisions, but also directly on its value. Loosely
speaking, a higher value of m allows to better recover the relation between τ0 and τ1.

The results of Proposition 26 and Corollary 14 are illustrated on simulated data in Figure
4.4, which depicts the Integrated Autocorrelations Times (IATs) as defined in (4.29). When
the model is not identifiable, i.e. m = 1 (top left panel), the IATs diverge with the number of
groups, while with m = 3 and m = 5 they stabilize as J increases. Differently from the binomial
setting of Figure 4.4, the IATs grow for small values of J before the asymptotic regime kicks in.

Gaussian processes

We now consider the popular setting where the groups are identified by a continuous covariate
(e.g. location) and group specific parameters are modeled through a Gaussian process. It
turns out that the main arguments of the paper, namely dimensionality reduction and impact
of posterior asymptotic characterization, can be applied also in this context. This section,
compared to the previous ones, aims to provide a proof of concept rather than a detailed analysis,
e.g. we directly assume limiting statements on the posterior distributions of interest. Nonetheless
we find it useful to show how widely our methodology could be applied and illustrate interesting
directions of ongoing work.

Assume to observe n data points Y (si) with i = 1, . . . , n, at a set of locations (s1, . . . , sn),
together with input variables or covariates x(si) ∈ R. We consider Gaussian Process regression
models of the form

Y (si) | β ∼ f(· | β(si), x(si)), i = 1, . . . , n
β(n) | ψ ∼ N(θ1, τ−1

β R(n))
ψ ∼ p0(·).

(4.32)

where β =
(
β(s1), . . . , β(sn)

)⊤ is a Gaussian Process (GP) observed at (s1, . . . , sn) and f is
a density function with respect to a suitable dominating measure. Here 1n = (1, . . . , 1)⊤ is
an n-dimensional vector and R(n) =

(
Rij
)
i,j=1,...,n is a n × n correlation matrix, with Rij =
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Corr
(
β(si), β(sj)

)
, defined through a suitable kernel function, that we assume to be fixed and

known. Typically, strength of correlation among coefficients at different locations depends on
their distance, with Rij defined e.g. through a kernel of the Matérn family (see e.g. Section
4.2.1 in Williams and Rasmussen (2006)). In this Section we focus on a single real covariate
for notational convenience, but everything could be restated on a general p-dimensional space
with little effort: direct analogues of the next lemma and corollaries similarly follow. We first
consider cases where the likelihood function has no specific hyper-parameters, such as in the
common binary case where Y (sj) | β ∼ Bernoulli(σ(β(sj)x(sj))), with σ logistic link function
and Y (sj) ∈ {0, 1}.

Let Pn be the kernel of the Gibbs sampler which targets πn(dβ,dθ,dτβ) = L
(
dβ,dθ,dτβ | Y (n)

)
,

by sequentially performing updates from the full conditionals of β, θ and τβ. Despite the dif-
ferent graphical model structure, the analysis of mixing times of Pn as n → ∞ can be ap-
proached with the techniques we developed above, regardless of the specific likelihood used in
(4.32). The first step is to perform a dimensionality reduction analogous to the one in Section
4.4. Define ψ = (θ, τβ) and T (β) =

(
Tθ, Tτβ

)
, where Tθ = 1⊤R−1β, Tτβ

= β⊤R−1β, which
play the same role of global parameters and sufficient statistics in Lemma 44. Indeed it holds
L
(
dψ | β, Y (n)) = L(dψ | T (β), Y (n)

)
and we can provide an analogue of Lemma 44 for model

(4.32).

Lemma 48. Let πn and Pn be defined as above for model (4.32). Let P̂n be the transition kernel
of Gibbs sampler targeting π̂n(dT , dθ, dτβ) = L

(
dT , dθ, dτβ | Y (n)

)
which sequentially performs

updates from the full conditionals of T , θ and τβ. Let (T (t), dθ(t), dτ (t)
β )t≥1 be the stochastic pro-

cess obtained as a time-wise transformation of (β(t), dθ(t), dτ (t)
β )t≥1. Then (T (t), dθ(t), dτ (t)

β )t≥1

is a Markov chain, its transition kernel coincides with P̂n, and its mixing times t̂(n)
mix satisfy

sup
µ∈N (πn,M)

t
(n)
mix(ϵ, µ) = sup

ν∈N (π̂n,M)
t̂
(n)
mix(ϵ, ν) M ≥ 1 .

Also, provided a rescaled version of (T , θ, τβ) converges to a suitable limit conditional on the
data, the mixing times are bounded with respect to the number of observations.

Corollary 15. Under model (4.32), let π̂n satisfy assumption (A1) for a given data generat-
ing process Y (n) ∼ Q(n), with limiting distribution π̃. If (M, ϵ) ∈ [1,∞) × (0, 1) is such that
t̃mix(ϵ,M) < ∞, then it holds

Q(n)
(
t
(n)
mix(ϵ,M) ≤ t̃mix(ϵ,M)

)
→ 1 as n → ∞ . (4.33)

In some cases the likelihood contains some unknown parameters that are also included in the
Bayesian model. A common example is the likelihood precision τϵ in normal linear models with
spatially varying regression coefficients (see e.g. Gelfand et al. (2003) or Section 2 in Williams
and Rasmussen (2006)), where

Y (si) | β ∼ N(β(si)x(si), τ−1
ϵ ), i = 1, . . . , n. (4.34)

Let Pn be the Gibbs sampler kernel targeting πn(dβ, dθ,dτβ,dτϵ) = L
(
dβ,dθ,dτβ, dτϵ | Y (n)

)
,

by sequentially performing updates from the full conditionals of β, θ, τβ and τϵ. Analogously to
Section 4.5, the results of Lemma 48 and Corollary 15 extend to this context with ψ = (θ, τβ, τϵ)
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and T defined as T =
(
Tθ, Tτβ

, Tτϵ

)
, where Tτϵ =

(
Y (n) −Dβ

)⊤ (
Y (n) −Dβ

)
and D is the

n× n diagonal matrix with values
(
x(s1), . . . , x(sn)

)
. This is summarized in the next corollary.

Corollary 16. Under model (4.32) with likelihood as in (4.34), assume the conditions of Corol-
lary 15 are satisfied with ψ = (θ, τβ, τϵ) and T =

(
Tθ, Tτβ

, Tτϵ

)
. Then (4.33) holds.

Similarly to the hierarchical normal case, studied in Section 4.5, if the precisions (τβ, τϵ) are
fixed in specification (4.34), then the spectral gap of Pn can be explicitly studied to deduce
limiting bounds on mixing times (see e.g. Bass and Sahu (2016)); while if the precisions are
unknown, as it is mostly the case in applications, the performances of Pn have only been empir-
ically studied through simulations. The methodology we introduce here can be used to formally
analyze the behaviour of these samplers as n → ∞.

To conclude this section, it is important to note that in this context the kernel Pn may
or may not be directly implementable, depending on the specific model formulation. In the
commonly used linear case, the full conditional distribution πn(dβ | ψ) is normal, so that
sampling becomes accessible and Pn is directly the algorithm used to sample from πn. See e.g.
Appendix 2 of Bass and Sahu (2016) for details on the implementation, including expressions for
the full conditionals. In other cases, e.g. for log-concave likelihoods such as the binary regression
ones, adaptive rejection sampling techniques (e.g. Gilks and Wild (1992)) can be used in low
dimensions. In the more general case the exact update from πn(dβ | ψ) is commonly replaced
with a Metropolis update from πn(dβ | ψ) (using e.g. a gradient-based kernel such as MALA
or HMC). In the latter case, the Gibbs kernel Pn we analyse here is an idealized version of the
practically used Metropolis-within-Gibbs kernel. Under suitable (mild) assumptions, we expect
the convergence properties of this idealized scheme to provide a lower bound to the Metropolis-
within-Gibbs schemes used in practice. Also, we expect the convergence of the two kernels to
be of the same order when the kernel used for the Metropolis updates on the full conditional
mixes fast. Providing quantitative results in this direction is an interesting area for future work,
which we are currently pursuing. This would extend the applicability of the proof techniques
developed in this work to broad classes of non conditionally-conjugate models, such as Gaussian
Processes with non-Gaussian likelihood discussed above. See Section 4.7 for more details.

4.6 Feasible start

All the previous results are stated in terms of mixing times from worst case M -warm start,
as defined in (4.5). Since starting from µ ∈ N (πJ ,M) with small M (e.g. not increasing
with J) may be in principle infeasible, it is of interest to provide an explicit example of a
starting distribution that can be implemented in practice, a so-called feasible start, where the
associated value ofM can be controlled. In the setting of Theorem 20, the properties of the Gibbs
samplers combined with the probabilistic structure of hierarchical models allow to translate the
problem of feasible starts into the one of having a good initialisation for the hyper-parameters
ψ, as we now show. Indeed, assume that the maximum marginal likelihood estimator ψ̂J =
arg max∏J

j=1 g(Yj | ψ), with g as in (4.16), is well-defined. Let µJ ∈ P
(
RlJ+D

)
be given by

µJ (B) =
∫
B

Unif
(
ψ̂J , c/

√
J
)

(dψ)
J∏
j=1

p(θj | Yj , ψ) dθ B ⊂ RlJ+D (4.35)
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where c > 0 is a fixed constant and Unif (ψ, r) denotes the uniform distribution over the closed
ball of center ψ and radius r > 0. Therefore, the initial point is obtained by sampling from
the uniform distribution around the maximum likelihood estimator for ψ and, conditional on
this value, from the posterior distribution of the groups specific parameters. The next theorem
shows that this choice leads to a good asymptotic behaviour of the mixing times.

Theorem 21. Consider the same setting of Theorem 20 and let µJ ∈ P
(
RlJ+D

)
as in (4.35).

Then, for every ϵ ∈ (0, 1) there exists T (ψ∗, ϵ, c) < ∞ such that

lim inf
J→∞

Q
(J)
ψ∗

(
t
(J)
mix(ϵ, µJ) ≤ T

(
ψ∗, ϵ, c

))
→ 1 as J → ∞ .

The difference with Theorem 20 is in the specification of the starting distribution, that is now
made explicit. Note that whether or not µJ is a feasible start in practice depends on whether
the maximum likelihood estimate ψ̂J can be computed, using e.g. an Expectation-Maximization
algorithm, up to a O(1/

√
J) error.

Remark 18. By its definition in (4.3), the Gibbs sampler does not depend on the starting point
of the first block. Therefore Theorem 21 extends to any µJ ∈ P

(
RlJ+D

)
such that

µJ
(
RlJ ×A

)
= Unif

(
ψ̂J , c/

√
J
)

(A) A ⊂ RD .

4.7 Future works

A first natural extension in this context would be the case where no fixed dimensional sufficient
statistic is available, i.e. p(· | ψ) in (4.1) does not belong to the exponential family. Since the
above dimensionality reduction does not apply there, a possibility is to study the marginal chain
induced on ψ; indeed the latter has the same properties of the Gibbs sampler on (θ, ψ), see e.g.
Roberts and Rosenthal (2001). Also, in this work we have focused on the case with well-specified
likelihoods but, as discussed after Theorem 19, we expect the misspecified setting to behave in
qualitatively similar ways.

Secondly, when dealing with Gibbs samplers, it is often the case that some of the conditional
updates cannot be performed exactly. A natural solution is to employ more general coordinate-
wise schemes, where exact sampling is replaced by Markov updates with stationary measure
given by the conditional distribution. For example in hierarchical models for categorical data
(see Section 4.5), while in principle exact conditional sampling is feasible, the parameters θj
are often sampled in a Metropolis-within-Gibbs fashion, for reasons of computational efficiency
and easiness of implementation. While algorithmically convenient, the modification makes the-
oretical analysis significantly more involved: in particular Proposition 21 ceases to hold and the
dimensionality reduction given by Lemma 44 is not available without exact sampling. In ongo-
ing work we are considering a different strategy, by providing lower bounds on the approximate
conductance (Lovász and Simonovits, 1993): our preliminary results suggest that, provided the
conditional Markov updates have good spectral properties, general coordinate-wise schemes can
enjoy the same dimension-free convergence of the Gibbs sampler. Another interesting direc-
tion would be to derive results analogous to the ones in Section 4.2 for other MCMC kernels
(e.g. gradient-based ones) under appropriate regularity assumptions on the sequence of target
distribution, potentially exploiting tools from the recent work in Caprio and Johansen (2023).
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Finally, we expect (at least parts of) our methodology to be applicable much beyond hierar-
chical models as in (4.1). For example, when fitting (finite or infinite) Bayesian mixture models,
it is customary to use a Gibbs sampler over a properly augmented space by introducing latent
allocation variables (see e.g. Diebolt and Robert (1994)): this leads to a problem of increasing
dimensionality, since the number of latent variables grows linearly with n. An asymptotic anal-
ysis, as performed in this paper, seems accessible: indeed, posterior concentration results are
available (Nguyen, 2013) and a dimensionality reduction similar to Lemma 44 can be exploited.
However there are still significant challenges to perform a rigorous analysis in this setting: for
example posterior contraction is often proved using Wasserstein distance, that is in general too
weak for our purposes. We leave the discussion of such issues to a future work.
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A1 Simple counter-examples for Section 4.2

Convergence of the stationary distribution does not imply pointwise conver-
gence of Gibbs operators

Let X = [0, 1]2 and define An =
[
rn
ln
, rn+1

ln

]
, where

rn = n− 2kn , ln = 2kn , kn = ⌊log2 n⌋,

with ⌊a⌋ denoting the integer part of a and n ≥ 2. Therefore {An}n is a collection of intervals
with decreasing length, such that x ∈ An infinitely often, for every x ∈ [0, 1]. We define a
sequence {πn}n ⊂ P (X ) as

πn(dx1 | x2) =

1[0,1](x1) dx1, x2 ̸∈ An

δ0(dx1), x2 ∈ An
, πn(dx2) = 1[0,1](x2) dx2,

where 1A(x) dx denotes the uniform measure on A. Define now

π(dx1,dx2) = 1[0,1](x1)1[0,1](x2)dx1dx2

and denote C = {0} ×An. For every B ⊂ X we have

|πn(B) − π(B)| ≤ |πn (B ∩ C) − π (B ∩ C) | + |πn (B ∩ Cc) − π (B ∩ Cc) |
= πn (B ∩ C) ≤ πn (C) .

Therefore we conclude
∥πn − π∥TV ≤ πn (C) → 0,

as n → ∞. However, if Pn and P are the operators of the associated Gibbs samplers, for every
x ∈ X it holds ∥∥Pn(x, ·) − P (x, ·)

∥∥
TV ≥ |Pn(x, C) − P (x, C)|,

so that, since x2 ∈ An infinitely often, we get∥∥Pn(x, ·) − P (x, ·)
∥∥
TV = 1

infinitely often. Incidentally, it is not difficult to show that Gap(Pn) = 0 for every n, while
Gap(P ) = 1. Example 1.4 shows that this mismatch may hold under significantly less patholog-
ical scenarios.

Equality of the stationary distributions does not imply closeness of the tran-
sition operators

Let π1 = π2 = π, with π the standard Gaussian distribution. Moreover, let

P1(x, ·) = ϵπ(·) + (1 − ϵ)δx(·) and P2(x, ·) = ϵπ(·) + (1 − ϵ)δ−x(·),

with ϵ ∈ [0, 1). P1 and P2 are uniformly ergodic transition operators with invariant distribution
π. Let µ be the truncation of π on the positive real numbers: it is easy to show that µ ∈ N (π, 2).



198 Gibbs samplers for parametric hierarchical models

However
∥µP1 − µP2∥TV ≥ (1 − ϵ)

[
µ((0,∞)) − µ((−∞, 0])

]
= 1 − ϵ.

Moreover, it holds that ∥µ− π∥TV = 1/2, so that we conclude

2 ∥µ− π∥TV − ϵ ≤ ∥µP1 − µP2∥TV ≤ 2 ∥µ− π∥TV .

Convergence of the stationary distribution in Wasserstein distance does not
imply convergence of the mixing times for Gibbs sampler operators

Let X = R2 and π̄n(dx) = N(x1 | 0, 1/n)N(x2 | 0, 1/n)dx1dx2. Define πn to be the truncation
of π̄n on the set

A =
{
(−∞, 0] × (−∞, 0]

} ⋃ {
[0,+∞) × [0,+∞)

}
.

Let f : X → R be a Lipschitz function with constant 1. Then it holds∫
X

[
f(x1, x2) − f(0, 0)

]
πn(dx) ≤

∫
X

√
x2

1 + x2
2 πn(dx) → 0,

as n → ∞, so that ∥πn − π∥W → 0, where π(dx) = δ(0,0)(x) and ∥·∥W denotes the Wasserstein
distance.

If P is the kernel of the Gibbs sampler targeting π, then it is immediate to show that

sup
µ∈N (π,M)

∥µP − π∥W = 0

for every M ≥ 1, so that the mixing times in Wasserstein distance are equal to 1 for every ϵ > 0.
Instead, denote with µn the truncation of πn on A1 = (−∞, 0] × (−∞, 0]. It is easy to show

that µn ∈ N (πn, 2), but
µnP

t
n(A1) − πn(A1) = 1

2
for every n and t, where Pn is the kernel of the Gibbs sampler targeting πn. Since the Wasser-
stein distance is stronger than the weak one, there exists an absolute constant c such that∥∥∥µnP tn − πn

∥∥∥
W

≥ c for every n and t. Therefore, with ϵ small enough and M ≥ 2, the mixing
times of Pn in Wasserstein distance are equal to infinity for every n.

Convergence of the stationary distribution does not imply convergence of the
spectral gaps for Gibbs operators

Let X = R2 and
π(dx) = N(x1 | 0, 1)N(x2 | 0, 1)dx1dx2,

where N(x | µ, σ2) is the density function of a gaussian distribution with mean µ and variance
σ2. Define πn to be the truncation of π on the set An, where

An =
{
(−∞, n] × (−∞, n]

} ⋃ {
[n,+∞) × [n,+∞)

}
.

If Pn and P are the operators of the associated Gibbs samplers, it is not difficult to show that

∥πn − π∥TV → 0 and
∥∥Pn(x, ·) − P (x, ·)

∥∥
TV → 0
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as n → ∞, for every x ∈ X . However, if Bn = (−∞, n] × (−∞, n] we have

πn(Bn) > 0 and
∫
Bn

Pn (x, Bc
n)πn(dx) = 0,

so that Gap(Pn) = 0 for every n, while Gap(P ) = 1.

A2 Regularity assumptions (B4)-(B6) for Theorem 20

Let

M (p)
s (ψ | y) = E

[
T ps (θj) | Yj = y, ψ

]
, (36)

M
(p)
s,s′(ψ | y) = E

[
T ps (θj)T ps′(θj) | Yj = y, ψ

]
, (37)

be the posterior moments of T given ψ, denote M (p)(ψ | y) =
(
M

(p)
1 (ψ | y), . . . ,M (p)

S (ψ | y)
)

∈

RS and[
C(ψ)

]
s,d = EYj

[
∂ψd

M (1)
s

(
ψ | Yj

)]
,
[
V (ψ)

]
s,s′ = EYj

[
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ

)]
, (38)

with s, s′ = 1, . . . S and d = 1, . . . , D. Moreover we write Bδ for the ball of center ψ∗ and radius
δ, and denote expectations with respect to the law of Yj as defined in (B1) by EYj [·].

(B4) The expectation M
(p)
s (ψ | y) is well defined for every y and p = 1, . . . , 6. Moreover, there

exist δ4 > 0 and C finite constant such that for every ψ ∈ Bδ4 it holds EYj

[∣∣∣∣∂ψd
M

(6)
s (ψ | Yj)

∣∣∣∣
]
<

C, EYj

[∣∣∣∣∂ψd
∂ψd′M

(1)
s (ψ | Yj)

∣∣∣∣
]
< C,

EYj

[∣∣∣∣∂ψd
M

(1)
s,s′(ψ | Yj)

∣∣∣∣
]
< C and EYj

∣∣∣∣∣∂ψd

{
M

(1)
s (ψ | Yj)M (1)

s′ (ψ | Yj)
}∣∣∣∣∣
 < C for s, s′ =

1, . . . , S and d, d′ = 1, . . . , D. Finally, the matrix V (ψ∗) defined in (38) is non singular.

Assumption (B4) can be understood as a smoothness condition. The posterior distribution of
T should not change considerably, if we move from ψ∗ to a sufficiently close ψ: this is measured
in terms of the derivative of the posterior moments, that must be finite in average. Thanks
to (B4) we can prove a suitable conditional Central Limit Theorem to show convergence of a
rescaled version of T , conditional to ψ and Y1:J .

We define the posterior characteristic function of T (θj) =
(
T1(θj), . . . , TS(θj)

)
and∑k

j=1 T (θj),
given ψ, as φ

(
t | Yj , ψ

)
= E

[
eit
⊤T (θj) | Yj , ψ

]
for t ∈ RS . and φ(k) (t | Y1:k, ψ

)
= ∏k

j=1 φ
(
t | Yj , ψ

)
,

respectively. We will assume:

(B5) There exist k ≥ 1 and δ5 > 0 such that

sup
ψ∈Bδ5

∫
RS

∣∣∣φ(k) (t | Y1:k, ψ
)∣∣∣2 dt < ∞,

for almost every Y1, . . . , Yk
iid∼ Qψ∗ .



200 Gibbs samplers for parametric hierarchical models

(B6) There exist k′ ≥ 1 and δ6 > 0 such that

sup
ψ∈Bδ6

sup
|t|>ϵ

∣∣∣φ(k′) (t | Y1:k′ , ψ
)∣∣∣ < ϕ(ϵ),

for almost every Y1, . . . , Yk
iid∼ Qψ∗ , with ϕ(ϵ) < 1 for every ϵ > 0.

Assumptions (B5) and (B6) allow the convergence of T to hold for the total variation distance,
that is stronger than the weak one, proved through (B4). Loosely speaking, integrability of the
characteristic function and its strictly positive distance from 1 guarantee that the distribution
is far from being discrete: the latter is exactly the case where weak convergence does not
translate to stronger metrics. The problem of proving Central Limit theorems in total variation
distance has received considerable attention over the decades: it can be tackled with Fourier-
based techniques (Petrov, 1956; Smith, 1953), as we do here, but also with Stein’s method (see
Ross (2011) for a survey), Malliavin calculus (e.g. Bally and Caramellino (2015)) or through
bounds based on entropy (e.g. Bobkov et al. (2014)). Conditions (B5) and (B6) are somewhat
reminiscent of the ones in Theorem 19.3 in Bhattacharya and Rao (2010).

A3 Proofs

*

Statement and proof of Lemma 49

Lemma 49. Let N ⊂ P(X ) and π ∈ P(X ). Then

sup
µ∈N

inf
{
t ≥ 1 :

∥∥∥µP t − π
∥∥∥
TV

< ϵ

}
= inf

{
t ≥ 1 : sup

µ∈N

∥∥∥µP t − π
∥∥∥
TV

< ϵ

}
,

for every Markov transition kernel P .

Proof. Let

t(1) = sup
µ∈N

inf
{
t ≥ 1 :

∥∥∥µP t − π
∥∥∥
TV

< ϵ

}
, t(2) = inf

{
t ≥ 1 : sup

µ∈N

∥∥∥µP t − π
∥∥∥
TV

< ϵ

}
.

Assume t(1) < ∞. Then
∥∥∥µP t(1) − π

∥∥∥
TV

< ϵ for every µ ∈ N . This implies

sup
µ∈N

∥∥∥∥µP t(1) − π

∥∥∥∥
TV

< ϵ,

i.e. t(2) ≤ t(1). With a similar reasoning, if t(2) < ∞ we have t(1) ≤ t(2). Therefore t(1) = t(1) if
either t(1) < ∞ or t(2) < ∞.

Assume now t(1) = ∞ and fix t∗ > 0. By definition of t(1) there exists µ ∈ N such that∥∥∥µP t∗ − π
∥∥∥
TV

≥ ϵ,

that implies
sup
µ∈N

∥∥∥µP t∗ − π
∥∥∥
TV

≥ ϵ,
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i.e. t(2) > t∗. Since t∗ is arbitrary, we have t(2) = ∞. With a similar reasoning, if t(2) = ∞ it
holds t(1) = ∞.

*

Statement and proof of Lemma 50

Lemma 50. Let M ≥ 1, π ∈ P(X ), µ ∈ N (π,M) and P be a π-invariant Markov transition
kernel. Then µP t ∈ N (π,M), for every t ∈ N.

Proof. Let A ⊆ X . Since µ ∈ N (π,M) and P is π-invariant, we have (µP )(A) ≤ M(πP )(A) =
Mπ(A). Thus µP ∈ N (π,M) and the result follows by induction on t.

*

Proof of Lemma 42

Proof. Let P̂n = Pn ◦ ϕ−1
n be the push-forward operator of Pn under ϕn, defined as

P̂n(x, B) = Pn
(
ϕ−1
n (x), ϕ−1

n (B)
)

(39)

for every x ∈ ϕn(X ) and B ⊆ X . Since ϕn is an injective transformation, P̂n is a well-defined
Markov transition kernel (see e.g. Lemma 1 in Papaspiliopoulos et al. (2020)). Moreover, since
ϕn is coordinate-wise as in (4.7) we have P̂n = P̂n,1 . . . P̂n,K , where

P̂n,i
(
x, Sx,i,A

)
= Pn,i

(
ϕ−1
n (x), Sϕ−1

n (x),i,ϕ−1
n,i(A)

)
=
∫
ϕ−1

n,i(A)
πn
(
dyi | ϕ−1

n (x)(−i)
)

=
∫
A
π̃n
(
dyi | x(−i)

)
, A ⊂ Xi,

so that P̂n is exactly the operator of the Gibbs sampler targeting π̃n, i.e. P̃n = P̂n.
Therefore, since ϕn is an injective transformation, by Corollary 2 in Roberts and Rosenthal

(2001) we have ∥∥∥µnP tn − πn
∥∥∥
TV

=
∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

,

with µ̃n = µn ◦ ϕ−1
n . To conclude the proof, we show that µ̃n ∈ N (π̃n,M) if and only if

µn ∈ N (πn,M). Indeed, to prove the implication from right to left, by definition of push-
forward measure we have

µ̃n(A) =µn
(
ϕ−1
n (A)

)
=
∫
ϕ−1

n (A)

dµn
dπn

(x)πn(dx) ≤ Mπn
(
ϕ−1
n (A)

)
= Mπ̃n(A),

for every set A ⊂ X . Equivalently we obtain the other implication.

Proof of Proposition 21

For any π ∈ P(X ) and Q Markov transition kernel with state space X , we define (π ⊗Q) ∈
P (X × X ) as

(π ⊗Q) (B) =
∫
B
Q(x, dy)π(dx)

for every B ⊆ X × X .
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Lemma 51. Let π1, π2 ∈ P(X ) and Q be a Markov transition kernel with state space X . Then

∥π1 ⊗Q− π2 ⊗Q∥TV = ∥π1 − π2∥TV .

Proof. By definition of total variation distance we have

∥π1 ⊗Q− π2 ⊗Q∥TV

= sup
f :X×X → [0,1]

∣∣∣∣∣
∫
X×X

f(x,y)Q(x,dy)π1(dx) −
∫
X×X

f(x,y)Q(x,dy)π2(dx)
∣∣∣∣∣

= sup
f :X×X → [0,1]

∣∣∣∣∣
∫
X

(∫
X
f(x,y)Q(x,dy)

)
π1(dx) −

∫
X

(∫
X
f(x,y)Q(x,dy)

)
π2(dx)

∣∣∣∣∣
≤ sup

g :X → [0,1]

∣∣∣∣∣
∫
X
g(x)π1(dx) −

∫
X
g(x)π2(dx)

∣∣∣∣∣ = ∥π1 − π2∥TV .

Also, taking f(x,y) = g(x) for every (x,y) ∈ X × X we have

∥π1 − π2∥TV = sup
g :X → [0,1]

∣∣∣∣∣
∫
X
g(x)π1(dx) −

∫
X
g(x)π2(dx)

∣∣∣∣∣
≤ sup
f :X×X → [0,1]

∣∣∣∣∣
∫
X×X

f(x,y)Q(x, dy)π1(dx) −
∫
X×X

f(x,y)Q(x, dy)π2(dx)
∣∣∣∣∣

=∥π1 ⊗Q− π2 ⊗Q∥TV .

For j = 1, 2, denote the kernel of the Gibbs sampler targeting πj as Pj = Pj,1 . . . Pj,K , where

Pj,i
(
x, Sx,i,A

)
=
∫
A
πj
(
dyi | x(−i)

)
, A ⊂ Xi,

with Sx,i,A =
{
y ∈ X : yj = xj ∀ j ̸= i and yi ∈ A

}
as in the main. By definition, Pi(x,dy)

depends only on x(−i). Thus we can define
(
π(−i) ⊗Q

)
∈ P

(
X (−i) × X

)
as

(
π(−i) ⊗ Pi

)
(B) =

∫
B
Pi
(
x(−i), dy

)
π
(
dx(−i)

)
,

for every B ⊂ X (−i) × X and similarly for

(
π(−1) ⊗ P

)
∈ P

(
X (−1) × X

)
and

π(−i) ⊗
∏
j≥i

Pj

 ∈ P
(
X (−i) × X

)
,

with i = 1 . . . ,K. Given this notation we have the following Lemmas.

Lemma 52. We have

∥µP1 − µP2∥TV ≤ M

∥∥∥∥π(−1)
2 ⊗ P1 − π

(−1)
2 ⊗ P2

∥∥∥∥
TV

for every µ ∈ N (π2,M) and M ≥ 1.
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Proof. By definition of total variation distance

∥µP1 − µP2∥TV = sup
f :X → [0,1]

∣∣∣∣∫
X
f(y)µP1(dy) −

∫
X
f(y)µP2(dy)

∣∣∣∣ .
Then, by definition of N (π2,M), it holds

∥µP1 − µP2∥TV

= M sup
f :X → [0,1]

∣∣∣∣∣
∫
XK

f(y)
M

∫
X (−1)

dµ(−1)

dπ(−1)
2

(x(−1))P1(x(−1),dy)π2
(
dx(−1)

)
−
∫
X

f(y)
M

∫
X (−1)

dµ(−1)

dπ(−1)
2

(x(−1))P2(x(−1), dy)π2
(
dx(−1)

)∣∣∣∣∣
≤ M sup

g :X (−1)×X → [0,1]

∣∣∣∣∣
∫
X (−1)×X

g(x(−1),y)P1
(
x(−1),dy

)
π2
(
dx(−1)

)

−
∫
X (−1)×X

g(x(−1),y)P2
(
x−1,dy

)
π2
(
dx(−1)

)∣∣∣∣∣
= M

∥∥∥∥π(−1)
2 × P1 − π

(−1)
2 ⊗ P2

∥∥∥∥
TV

.

Lemma 53. We have∥∥∥∥∥∥π(−i)
1 ⊗

∏
j≥i

P1,j − π
(−i)
2 ⊗

∏
j≥i

P2,j

∥∥∥∥∥∥
TV

≤ 2 ∥π1 − π2∥TV

+

∥∥∥∥∥∥π(−(i+1))
1 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

(40)
for every i = 1, . . . ,K − 1 and∥∥∥∥π(−K)

1 ⊗ P1,K − π
(−K)
2 ⊗ P2,K

∥∥∥∥
TV

= ∥π1 − π2∥TV .

Proof. We start by proving (40). Notice that, by definition of P1,i and P2,i, we have∫
X (−i)×X

g
(
x(−i),y

)∏
j≥i

P1,j
(
x(−i), dy

)
π

(−i)
1

(
dx(−i)

)
=
∫
X×X (−i)

h
(
x,y(−i)

) ∏
j≥i+1

P1,j
(
x(−i−1),dy

)
π1 (dx)

and ∫
X (−i)×X

g
(
x(−i),y

)∏
j≥i

P2,j
(
x(−i),dy

)
π

(−i)
2

(
dx(−i)

)
=
∫
X×X (−i)

h
(
x,y(−i)

) ∏
j≥i+1

P2,j
(
x(−i−1),dy

)
π2 (dx) ,
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where g : X (−i) × X → R is any measurable function and h is the composition of g and the
function c : X (−i) × X → X × X (−i) that relocates the (K − 1 + i)-th element of a vector after
the (i − 1)-th element. Since there is a one-to-one relationship between functions g and h, we
have ∥∥∥∥∥∥π(−i)

1 ⊗
∏
j≥i

P1,j − π
(−i)
2 ⊗

∏
j≥i

P2,j

∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥π1 ⊗
∏

j≥i+1
P1,j − π2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

. (41)

Then by triangular inequality and Lemma 51 we have∥∥∥∥∥∥π1 ⊗
∏

j≥i+1
P1,j − π2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

≤

∥∥∥∥∥∥π1 ⊗
∏

j≥i+1
P1,j − π2 ⊗

∏
j≥i+1

P1,j

∥∥∥∥∥∥
TV

+

∥∥∥∥∥∥π2 ⊗
∏

j≥i+1
P1,j − π2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

≤ ∥π1 − π2∥TV +

∥∥∥∥∥∥π2 ⊗
∏

j≥i+1
P1,j − π2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

.

(42)
Notice that ∏j≥i+1 P1,j and ∏j≥i+1 P2,j do not depend on xi+1 by construction, that implies∥∥∥∥∥∥π2 ⊗

∏
j≥i+1

P1,j − π2 ⊗
∏

j≥i+1
P2,j

∥∥∥∥∥∥
TV

= sup
h :X×X → [0,1]

∣∣∣∣∣
∫
X×X

h (x,y)
∏

j≥i+1
P1,j

(
x(−(i+1)),dy

)
π2 (dx)

−
∫
X×X

h (x,y)
∏

j≥i+1
P2,j

(
x(−(i+1)), dy

)
π2 (dx)

∣∣∣∣∣,
so that we have∥∥∥∥∥∥π2 ⊗

∏
j≥i+1

P1,j − π2 ⊗
∏

j≥i+1
P2,j

∥∥∥∥∥∥
TV

= sup
h :X×X → [0,1]

∣∣∣∣∣
∫
X (−(i+1))×X

∫
Xi+1

h (x,y)π2
(
dxi+1 | x(−(i+1))

) ∏
j≥i+1

P1,j
(
x(−(i+1)),dy

)
π2
(
dx(−(i+1))

)

−
∫
X (−(i+1))×X

∫
Xi+1

h (x,y)π2
(
dxi+1 | x(−(i+1))

) ∏
j≥i+1

P2,j
(
x(−(i+1)),dy

)
π2
(
dx(−(i+1))

)∣∣∣∣∣
≤

∥∥∥∥∥∥π(−(i+1))
2 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

.
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Moreover, it is clear that∥∥∥∥∥∥π(−(i+1))
2 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

≤

∥∥∥∥∥∥π2 ⊗
∏

j≥i+1
P1,j − π2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

,

thus combining the two above inequalities we get∥∥∥∥∥∥π2 ⊗
∏

j≥i+1
P1,j − π2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥π(−(i+1))
2 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

.

(43)
Combining (41), (42) and (43) with the fact that∥∥∥∥∥∥π(−(i+1))

2 ⊗
∏

j≥i+1
P1,j − π

(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

≤ ∥π1 − π2∥TV

+

∥∥∥∥∥∥π(−(i+1))
1 ⊗

∏
j≥i+1

P1,j − π
(−(i+1))
2 ⊗

∏
j≥i+1

P2,j

∥∥∥∥∥∥
TV

we finally obtain (40). When i = K the result follows by noticing that

π
(−K)
1 ⊗ P1,K = π1 and π

(−K)
2 ⊗ P2,K = π2

by definition.

Proof of Proposition 21. Without loss of generality, let µ ∈ N (π2,M). By Lemma 52 and the
triangle inequality we have

∥µP1 − µP2∥TV ≤ M

∥∥∥∥π(−1)
2 ⊗ P1 − π

(−1)
2 ⊗ P2

∥∥∥∥
TV

≤ M ∥π1 − π2∥TV +M

∥∥∥∥π(−1)
1 ⊗ P1 − π

(−1)
2 ⊗ P2

∥∥∥∥
TV

and the result follows by applying K times Lemma 53.

Proof of Lemma 43

Proof. With an abuse of notation, let π1(x), π2(x) and µ1(x) be densities of π1, π2 and µ1 with
respect to a common dominating measure, such as τ = π1 +π2. Let µ̄ be the measure on X with
density µ̄(x) = min

{
µ1(x),Mπ2(x)

}
for x ∈ X . By construction µ̄ is a sub-probability since

µ̄(X ) =
∫
X
µ̄(x)τ(dx) ≤

∫
X
µ1(x)τ(dx) = 1.

Therefore, we can define a probability distribution µ2 ∈ P(X ) with density

µ2(x) = µ̄(x) + α max
{
Mπ2(x) − µ1(x), 0

}
, x ∈ X

where
α = 1 −

∫
µ̄(x)τ(dx)∫

X max
{
Mπ2(x) − µ1(x), 0

}
τ(dx) ∈ (0, 1).
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Notice that µ2(x) ≤ Mπ2(x) for every x ∈ X since

µ2(x) =

Mπ2(x), if µ1(x) > Mπ2(x) ,
(1 − α)µ1(x) + αMπ2(x), if µ1(x) ≤ Mπ2(x) .

Thus µ2 ∈ N (π2,M). By definition of total variation distance and of µ̃, we have

∥µ1 − µ2∥TV =
∫
X

max
{
µ1(x) − µ2(x), 0

}
τ(dx) =

∫
X

max
{
µ1(x) −Mπ2(x), 0

}
τ(dx)

≤M
∫
X

max
{
π1(x) − π2(x), 0

}
τ(dx) = M ∥π1 − π2∥TV .

Proof of Theorem 18

Proof. By Lemma 42 the statement is equivalent to

lim
n→∞

sup
µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n
∥∥∥
TV

= sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

(44)

in Q(n)-probability, where P̃n is the kernel of the Gibbs sampler targeting π̃.
Consider ∥µ̃nP̃ tn − π̃n∥TV with µ̃n ∈ N (π̃n,M). By Lemma 43, there exists µ̃ ∈ N (π̃,M)

such that
∥µ̃n − µ̃∥TV ≤ M ∥π̃n − π̃∥TV . (45)

By the triangular inequality we can decompose ∥µ̃nP̃ tn − π̃n∥TV as follows∥∥∥µ̃nP̃ tn − π̃n
∥∥∥
TV

≤
∥∥∥µ̃nP̃ tn − µ̃P̃ tn

∥∥∥
TV

+
∥∥∥µ̃P̃ tn − µ̃P̃ t

∥∥∥
TV

+
∥∥∥µ̃P̃ t − π̃

∥∥∥
TV

+ ∥π̃n − π̃∥TV . (46)

Combining (45) with the monotonicity of the total variation distance with respect to the appli-
cation of transition kernels, we obtain∥∥∥µ̃nP̃ tn − µ̃P̃ tn

∥∥∥
TV

≤ ∥µ̃n − µ̃∥TV ≤ M ∥π̃n − π̃∥TV . (47)

For the second term in (46), we want to prove that if µ̃ ∈ N (π̃,M) we have∥∥∥µ̃P̃ tn − µ̃P̃ t
∥∥∥
TV

≤ 2MKt ∥π̃n − π̃∥TV (48)

for every t ≥ 1. Indeed, the case t = 1 holds by Proposition 21. Assume now (48) holds for
t− 1, with t ≥ 2. Then by the triangular inequality we have∥∥∥µ̃P̃ tn − µ̃P̃ t

∥∥∥
TV

≤
∥∥∥µ̃P̃nt − µP̃ t−1P̃n

∥∥∥
TV

+
∥∥∥µP̃ t − µP̃ t−1P̃n

∥∥∥
TV

≤
∥∥∥µ̃P̃ t−1

n − µ̃P̃ t−1
∥∥∥
TV

+
∥∥∥µP̃ t−1P̃ − µP̃ t−1P̃n

∥∥∥
TV

.

By induction hypothesis we have∥∥∥µ̃P̃ t−1
n − µ̃P̃ t−1

∥∥∥
TV

≤ 2MK(t− 1) ∥π̃n − π̃∥TV . (49)
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Moreover, by Lemma 50 we have that µ̃P̃ t−1 ∈ N (π̃,M), so that from the case t = 1 we obtain∥∥∥µP̃ t−1P̃ − µP̃ t−1P̃n
∥∥∥
TV

≤ 2MK ∥π̃n − π̃∥TV . (50)

Then (48) follows by (49) and (50). Combining (46), (47) and (48), for every µ̃n ∈ N (π̃n,M)
there exists µ̃ ∈ N (π̃,M) such that∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

≤ (2MKt+M + 1) ∥π̃n − π̃∥TV +
∥∥∥µ̃P̃ t − π̃n

∥∥∥
TV

.

Thus

sup
µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n
∥∥∥
TV

≤ (2MKt+M + 1) ∥π̃n − π̃∥TV + sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

.

It follows that, for any ϵ > 0, we have

Q(n)

 sup
µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n
∥∥∥
TV

− sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

≥ ϵ


≤ Q(n)

(
∥π̃n − π̃∥TV ≥ (2MKt+M + 1)−1ϵ

)
→ 0,

(51)

as n → ∞ by (A1) and (2MKt+M + 1)−1ϵ > 0.

We now prove the reverse inequality of (51) to establish (44). Given µ̃ ∈ N (π̃,M), by
Lemma 43, there exists µ̃n ∈ N (π̃n,M) such that ∥µ̃− µ̃n∥TV ≤ M ∥π̃n − π̃∥TV . Then we
proceed analogously to above, first decomposing

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

as
∥∥∥µ̃P̃ t − π̃

∥∥∥
TV

≤
∥∥∥µ̃P̃ t − µ̃P̃ tn

∥∥∥
TV

+
∥∥∥µ̃P̃ tn − µ̃nP̃

t
n

∥∥∥
TV

+
∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

+ ∥π̃n − π̃∥TV (52)

and then applying Proposition 21 using an argument analogous to above to get∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

≤
∥∥∥µ̃nP̃ tn − π̃n

∥∥∥
TV

+ (2MKt+M + 1) ∥π̃n − π̃∥TV .

It follows

sup
µn∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n
∥∥∥
TV

≥ sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

− (2MKt+M + 1) ∥π̃n − π̃∥TV .

Fixing ϵ > 0 arbitrary constant we have

Q(n)

 sup
µ̃n∈N (π̃n,M)

∥∥∥µ̃nP̃ tn − π̃n
∥∥∥
TV

− sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

≤ −ϵ


≤ Q(n)

(
∥π̃n − π̃∥TV ≥ ϵ

2MKt+M + 1

)
→ 0,

(53)

as n → ∞ by (A1) and (2MKt + M + 1)−1ϵ > 0. The result follows by combining (51) and
(53).
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Proof of Corollary 8

Proof. Thanks to Lemma 49 we can write

t
(n)
mix(ϵ,M) = inf

t ≥ 1 : sup
µn∈N (πn,M)

∥∥∥µnP tn − πn
∥∥∥
TV

< ϵ


and

t̃mix(ϵ,M) = inf

t ≥ 1 : sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t − π̃
∥∥∥
TV

< ϵ

 .
Assume (A1) and denote t∗ = t̃mix(ϵ,M) < ∞ for brevity. By definition of t∗ we have δ =
supµ̃∈N (π̃,M)

∥∥∥µ̃P̃ t∗ − π̃
∥∥∥
TV

< ϵ. Thus

Q(n)
(
t
(n)
mix(ϵ,M) ≤ t∗

)
= Q(n)

 sup
µn∈N (πn,M)

∥∥∥µnP t∗n − πn
∥∥∥
TV

< ϵ


= Q(n)

 sup
µn∈N (πn,M)

∥∥∥µnP t∗n − πn
∥∥∥
TV

− sup
µ̃∈N (π̃,M)

∥∥∥µ̃P̃ t∗ − π̃
∥∥∥
TV

< ϵ− δ


→ 1,

as n → ∞ by Theorem 18.
As regards the second part of the statement, let (A1) hold and fix T > 0. Denote δ =

supµ̃∈N (π̃,M)

∥∥∥µ̃P̃ T − π̃
∥∥∥
TV

and notice that by assumption δ ≥ ϵ > ϵ. Thus

lim inf
n→∞

Q(n)
(
t
(n)
mix(ϵ,M) < T

)
= lim inf

n→∞
Q(n)

 sup
µn∈N (πn,M)

∥∥∥µnP Tn − πn
∥∥∥
TV

< ϵ


= lim inf

n→∞
Q(n)

δ − sup
µn∈N (πn,M)

∥∥∥µnP Tn − πn
∥∥∥
TV

≥ δ − ϵ


→ 0,

as n → ∞ by Theorem 18.

Proof of Corollary 9

We need a preliminary well known lemma, whose proof we include for self-containedness.

Lemma 54. Let P be a Gibbs sampler kernel with K = 2 and target π ∈ P(X1 × X2). Then∥∥∥µP t − π
∥∥∥
TV

≤ M

2
(
1 − Gap(P )

)t
,

for every µ ∈ N (π,M) and t ≥ 1.

Proof. Let µ ∈ N (π,M) and t ≥ 1. By Corollary 1 in Roberts and Rosenthal (2001) we have∥∥∥µP t − π
∥∥∥
TV

=
∥∥∥µ(−1)P̂ t − π(−1)

∥∥∥
TV

, (54)
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where P̂ is the Markov transition kernel on X2 defined as

P̂ (x2,dy2) =
∫
X1
π(dy2 | y1)π(dy1 | x2) x2 ∈ X2 .

Note that P̂ is π(−1)-reversible. Also, for every f ∈ L2(π(−1)), i.e. f : X2 → R such that
∥f∥2

2 = π(−1)(f2) is finite, we have∫
X 2

2

f(x2)f(y2)P̂ (x2, dy2)π(dx2)

=
∫
X 2

2

f(x2)f(y2)
∫
X1
π(dy2 | y1)π(dy1 | x2)π(dx2)

=
∫
X1

[∫
X2
f(y2)π(dy2 | y1)

] [∫
X2
f(x2)π(dx2 | y1)

]
π(dy1)

=
∫
X1

[∫
X2
f(y2)π(dy2 | y1)

]2

π(dy1) ≥ 0,

so that P̂ is also positive semi-definite. Since P̂ is reversible and positive semi-definite, we have
(see e.g. equation (5) in Andrieu et al. (2022)) that∣∣∣∣∣∣∣P̂ t(f)

∣∣∣∣∣∣∣
2

≤
∣∣|f |

∣∣
2

(
1 − Gap(P̂ )

)t
, (55)

for every f such that π(f) = 0. Choosing f = dµ(−1)

dπ(−1) − 1 and using the reversibility of P̂ (see
e.g. Section 2.1 in Khare and Zhou (2009)) we also have∥∥∥µ(−1)P̂ t − π(−1)

∥∥∥
TV

≤ 1
2

∣∣∣∣∣∣∣µ(−1)P̂ t(f)
∣∣∣∣∣∣∣

2
, (56)

where µ(−1)P̂ t(f) =
∫
f(x2)µ(−1)P̂ t(dx2). With the same choice of f , we have

∣∣|f |
∣∣2
2 =

∫ (dµ(−1)

dπ(−1) (x2) − 1
)2

π−1(dx2) ≤ M2

since µ(−1) ∈ N (π(−1),M). Thus, combining (55) with (56) we obtain∥∥∥µP t − π
∥∥∥
TV

≤ M

2
(
1 − Gap(P̂ )

)t
.

Finally, for every f : X2 → R with
∣∣|f |

∣∣
2 < ∞ it holds∫

X 2
2

[
f(y2) − f(x2)

]2
π(dx2)P̂ (x2,dy2)

2Var(−1)
π (f)

=
∫
X 2
[
g(y) − g(x)

]2
π(dx)P (x, dy)

2Varπ(f) ,

where g(x) = f(x2). Therefore Gap(P̂ ) ≥ Gap(P ) and we get∥∥∥µP t − π
∥∥∥
TV

≤ M

2
(
1 − Gap(P )

)t
,



210 Gibbs samplers for parametric hierarchical models

as desired.

Proof of Corollary 9. By Lemma 54 we obtain

t̃mix(ϵ,M) ≤ 1 + log(M/2) − log(ϵ)
− log

(
1 − Gap(P̃ )

) ,
and the result follows by the first part of Corollary 8.

Proof of Proposition 22

Proof. By Theorem 19, assumption (A1) is satisfied with

ϕn(ψ) =
√
n(ψ − ψ∗) − I−1(ψ∗)∆n,ψ∗ ,

and π̃ = N
(
0, I−1(ψ∗)

)
. Since π̃ is the distribution of a multivariate normal with non singular

covariance matrix, then it is easy to show t̃mix(ϵ,M) < ∞ for every (M, ϵ) ∈ [1,∞) × (0, 1), see
e.g. Theorem 2 in Amit (1991).

Statement and proof of Corollary 17

We illustrate the result of Proposition 22 on a simple example of model (4.11) with normal
likelihood and unknown mean and precision, that is

f(y | µ, τ) = N
(
y | µ, τ−1

)
, (57)

where K = 2 and ψ = (µ, τ). Notice that, even if a conjugate prior exists, it is common to
place independent priors on µ and τ , for which the Gibbs sampler defined in (4.3) becomes a
reasonable option.

Corollary 17. Consider model (4.11) with likelihood as in (57). Let Yi
iid∼ Qψ∗, with Qψ∗

admitting density f(y | ψ∗) and ψ∗ = (µ∗, τ∗) ∈ R×R+. Moreover let p0 be absolutely continuous
in a neighborhood of ψ∗ with a continuous positive density at ψ∗. Consider the Gibbs sampler
defined in (4.3). Then, for every M ≥ 1 and ϵ > 0 we have

Q
(n)
ψ∗

(
t
(n)
mix(ϵ,M) ≤ 1

)
→ 1,

as n → ∞.

For the proof we need a preliminary Lemma, whose proof we include for self-containedness
and because it will be useful to refer to later on.

Lemma 55. Consider the same setting of Corollary 17. Then conditions (4.12) are satisfied.

Proof of Lemma 55. Define

Ψ = Ψ1 × Ψ2 =
[
µ∗ − 1, µ∗ + 1

]
×
[
τ∗

2 , 2τ
∗
]



A3. PROOFS 211

compact neighborhood of ψ∗ and

un(Y1, . . . , Yn) = 1 − 1g1(Y1:n)≤c1 1g2(Y1:n)≤c2 ,

where c1 = 1/2, c2 = (2τ∗)−1 and

g1(Y1:n) =
∣∣∣Ȳ − µ∗

∣∣∣ , and g2(Y1:n) =

∣∣∣∣∣∣ 1n
n∑
i=1

(
Yi − Ȳ

)2
− 1
τ∗

∣∣∣∣∣∣ ,
with Ȳ = 1

n

∑n
i=1 Yi. Since Yi iid∼ N(µ, τ−1), then g1(Y1:n) and g2(Y1:n) are equal in distribution,

respectively, to

h1(Z1:n, µ, τ) =
∣∣∣∣∣ 1√
τ
Z̄ + µ− µ∗

∣∣∣∣∣ , h2(Z1:n, µ, τ) =

∣∣∣∣∣∣1τ 1
n

n∑
i=1

(
Zi − Z̄

)2
− 1
τ∗

∣∣∣∣∣∣ ,
where Zi iid∼ N(0, 1). By the Law of Large numbers we have

Z̄ → 0, and 1
n

n∑
i=1

(
Zi − Z̄

)2
→ 1

almost surely as n → ∞. This implies∫
un(y1, . . . , yn)

n∏
i=1

f(dyi | ψ∗) ≤P
(
h1(Z1:n, µ

∗, τ∗) > c1
)

+ P
(
h2(Z1:n, µ

∗, τ∗) > c2
)

→ 0,

as n → ∞. Also, we have

sup
ψ ̸∈Ψ

∫ [
1 − un(y1, . . . , yn)

] n∏
i=1

f(dyi | ψ) ≤ sup
τ ̸∈Ψ2

P
(
h2(Z1:n, µ, τ) ≤ c2

)
+ sup
µ̸∈Ψ1, τ∈Ψ2

P
(
h1(Z1:n, µ, τ) ≤ c1

)
.

Now notice that by the reverse triangle inequality we have

sup
τ ̸∈Ψ2

P
(
h2(Z1:n, µ, τ) ≤ c2

)
= sup

τ ̸∈Ψ2

P


∣∣∣∣∣∣1τ 1
n

n∑
i=1

(
Zi − Z̄

)2
− 1
τ∗

∣∣∣∣∣∣ ≤ c2


≤ sup

τ ̸∈Ψ2

P


∣∣∣∣∣∣ 1n

n∑
i=1

(
Zi − Z̄

)2
− 1

∣∣∣∣∣∣ ≥
∣∣∣∣1 − τ

τ∗

∣∣∣∣− c2τ

 → 0,

by definition of Ψ2, as n → ∞. Finally, again by reverse triangle inequality, we have

sup
µ̸∈Ψ1, τ∈Ψ2

P
(
h1(Z1:n, µ, τ) ≤ c1

)
≤ sup

µ ̸∈Ψ1, τ∈Ψ2

P
(
|Z̄| ≥

√
τ
(
|µ− µ∗| − c1

))
→ 0,

as n → ∞.
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Proof of Corollary 17. In this case ψ = (µ, τ) and

f(y | ψ) =
√
τ

2πe
− τ

2 (y−µ)2
.

By Lemma 55 conditions (4.12) are satisfied. Also, the map ψ → f(y | ψ) is one-to-one, the
map ψ →

√
f(y | ψ) is continuously differentiable, and the Fisher information matrix is

I(ψ) =
[
τ
2 0
0 1

2τ

]
,

which is non singular and continuous as a function of ψ. Thus the conditions of Theorem 19
and Proposition 22 are satisfied. Finally, since we are considering a two-blocks Gibbs sampler,
by Corollary 9 we have

T
(
ψ∗, ϵ,M

)
= 1 + log(M/2) − log(ϵ)

− log
(
1 − Gap(P̃ )

) ,
where P̃ is the Gibbs sampler targeting a bivariate normal distribution with covariance matrix
given by I−1(ψ∗). Since the latter is diagonal, the Gibbs sampler coincides with independent
sampling, so that Gap(P̃ ) = 1.

Proof of Lemma 44

Proof. Denote by
(
θ(t), ψ(t)

)
t≥1

the Markov chain with kernel PJ defined in (4.15). The Marko-

vianity of the induced sequence
(
T (t), ψ(t)

)
t≥1

follows by the one of
(
ψ(t)

)
t≥1

, which is well

known (Diaconis et al., 2008; Roberts and Rosenthal, 2001). We now show that
(
T (t), ψ(t)

)
t≥1

admits P̂J as kernel. The conditional distribution of
(
T (t), ψ(t)

)
given

(
T (t−1), ψ(t−1)

)
is given

by

L
(
dT (t),dψ(t) | T (t−1), ψ(t−1)

)
= L

(
dT (t) | T (t−1), ψ(t−1)

)
L
(
dψ(t) | T (t), ψ(t−1),T (t−1)

)
= π̂J

(
dT (t) | ψ(t−1)

)
L
(
dψ(t) | T (t), ψ(t−1)

)
,

where the last equality follows by (4.15) and the definition of π̂J . By the exponential family
assumption in (4.14), T is a set of sufficient statistics for ψ, so that

πJ
(
dψ | θ

)
= L

(
dψ | θ, Y1:J

)
= L

(
dψ | T (θ), Y1:J

)
= π̂J

(
dψ | T (θ)

)
. (58)

Combining (4.15) and (58) we have

L
(
dψ(t) | T (t), ψ(t−1)

)
=
∫
πJ
(
dψ(t) | θ

)
πJ
(
dθ | T (t), ψ(t−1)

)
=
∫
π̂J
(
dψ(t) | T (θ)

)
πJ
(
dθ | T (t), ψ(t−1)

)
= π̂J

(
dψ(t) | T (t)

) (59)
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since T (θ) = T (t) almost surely under πJ
(
dθ | T (t), ψ(t−1)

)
. Thus we can conclude

L
(
dT (t), dψ(t) | T (t−1), ψ(t−1)

)
= π̂J

(
dT (t) | ψ(t−1)

)
π̂J
(
dψ(t) | T (t)

)
= P̂J

((
T (t−1), ψ(t−1)

)
,
(
dT (t), dψ(t)

))
,

as desired. From the above one can easily deduce that
(
θ(t), ψ(t)

)
t≥1

and
(
T (t), ψ(t)

)
t≥1

are
co-deinitializing as in Roberts and Rosenthal (2001) and thus, by Corollary 2 therein, for every
µ ∈ P

(
RℓJ × RD

)
we have ∥∥∥µP tJ − πJ

∥∥∥
TV

=
∥∥∥νP̂ tJ − π̂J

∥∥∥
TV

, (60)

where ν ∈ P
(
RS × RD

)
is the push forward of µ under (θ, ψ) 7→ (T (θ), ψ). Moreover, by (4.5)

we have that ν ∈ N (π̂J ,M) whenever µ ∈ N (πJ ,M). It follows that supµ∈N (πJ ,M) t
(J)
mix(ϵ, µ) ≤

supν∈N (π̂J ,M) t̂
(J)
mix(ϵ, ν). For the reverse inequality, fix ν ∈ N (π̂J ,M) and take µ(dθ, dψ) =∫

πJ
(
dθ | T , ψ

)
ν(dT , dψ). By (4.5) we have µ ∈ N (πJ ,M) and thus (60). It follows supν∈N (π̂J ,M) t̂

(J)
mix(ϵ, ν) ≤

supµ∈N (πJ ,M) t
(J)
mix(ϵ, µ) as desired.

Proof of Lemma 45

Proof. The result follows immediately from Theorem 19, whose assumptions are given exactly
by assumption (B1) − (B3), with likelihood g(y | ψ).

Proof of Lemma 46

The proof is divided in two main steps: the result is firstly proved under the weak metric (Lemma
58) and it is then extended to the total variation distance.

First of all we need two technical lemmas, that we prove for completeness.

Lemma 56. Let S and p be two positive integers. Then there exists a constant C = C(S, p)
such that

|x|p ≤ 1 + C
S∑
s=1

x2p
s

for every x ∈ RS.

Proof. Since (1 − |x|p)2 ≥ 0, we have |x|p ≤ 1 + |x|2p. Moreover, by the Multinomial Theorem,
we get

|x|2p =

 S∑
s=1

x2
s

p =
∑
k∈P

(
p

k1 . . . kS

)
S∏
s=1

x2ks
s ,

where P =
{

k = (k1, . . . , kS) : ks positive integer, ∑S
s=1 ks = p

}
. Since

S∏
s=1

x2ks
s ≤

(
max
s

|xs|
)2p

≤
S∑
s=1

x2p
s ,
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the result follows by choosing C = ∑
k∈P

( p
k1 ... kS

)
.

Lemma 57. Under assumption (B3), the random variables ∆J =
(
∆J,1, . . . ,∆J,D

)
defined in

(4.17) are such that for every β > 0 we have

1
Jβ

∆J,d → 0,

Q
(∞)
ψ∗ -almost surely as J → ∞ for every d = 1, . . . , D.

Proof. Recall that

∆J,d = 1√
J

J∑
j=1

[
I−1(ψ∗)∇ log g(Yj | ψ∗)

]
d

=: 1√
J

J∑
j=1

Xj,d

and I−1(ψ∗)∂ψd
log g(Yj | ψ∗) has zero mean and finite variance, by (B3). Therefore, by Cheby-

chev inequality

P

(∣∣∣∣ 1
Jβ

∆J,d

∣∣∣∣ > ϵ

)
≤

Var
(
X1,d

)
ϵ2J1+2β ,

for every ϵ > 0. This implies

∞∑
J=1

P

(∣∣∣∣ 1
Jβ

∆J,d

∣∣∣∣ > ϵ

)
≤
∞∑
J=1

Var
(
X1,d

)
ϵ2J1+2β < ∞,

and the result follows by Borel-Cantelli Lemma.

Weak convergence

In order to ease the following exposition, denote

ψ(J) := ψ∗ + ψ̃ + ∆J√
J

, J ≥ 1 . (61)

The next lemma proves convergence of T̃ using the weak metric, denoted by ∥·∥W .

Lemma 58. Define ψ̃ and T̃ as in (4.17) and (4.19), respectively. Under assumptions (B1) −
(B4), for every ψ̃ ∈ RD it holds∥∥∥∥L(dT̃ | Y1:J , ψ̃) −N

(
C(ψ∗)ψ̃, V (ψ∗)

)∥∥∥∥
W

→ 0, (62)

Q
(∞)
ψ∗ -almost surely as J → ∞.

Proof. For ease of notation, denote

µ = C(ψ∗)ψ̃ and Ξ := V (ψ∗).

By definition of M (p)
s , we have

E
[
T ps (θj) | Yj , ψ(J)

]
= M (p)

s

(
ψ(J) | Yj

)
.
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Conditional on ψ̃, the group specific statistics Ts(θj) are independent across j = 1, . . . , J . Thus,
by Lyapunov version of Central Limit Theorem, in order to obtain (62) it suffices to show

1√
J

J∑
j=1

[
M (1)

(
ψ(J) | Yj

)
−M (1) (ψ∗ | Yj

)]
− C(ψ∗)∆J → µ (63)

1
J

J∑
j=1

Cov
(
Ts(θj), Ts′(θj) | Yj , ψ(J)

)
→ Ξs,s′ (64)

1
J3/2

J∑
j=1

EYj

[∣∣∣T (θj) −M (1) (ψ∗ | Yj
)∣∣∣3 | Yj , ψ(J)

]
→ 0, (65)

Q
(∞)
ψ∗ -almost surely as J → ∞, with s, s′ = 1, . . . , S. We prove the three above results sequen-

tially below, which concludes the proof of (62).

Proof of (63). For any s = 1, . . . , S, by (61) and the multivariate Taylor formula it holds

M (1)
s

(
ψ(J) | Yj

)
−M (1)

s

(
ψ∗ | Yj

)
=

D∑
d=1

ψ̃d + ∆J,d√
J

∂ψd
M (1)
s

(
ψ∗ | Yj

)
+R2(Yj),

where

R2(Yj) =
D∑

d,d′=1

(ψ̃d + ∆J,d)(ψ̃d′ + ∆J,d′)
J

∫ 1

0
(1 − t)∂ψd

∂ψd′M
(1)
s

(
ψ∗ + t

ψ̃ + ∆J√
J

| Yj

)
dt.

Therefore
1√
J

J∑
j=1

[
M (1)
s

(
ψ(J) | Yj

)
−M (1)

s

(
ψ∗ | Yj

)]
=

=
D∑
d=1

(ψ̃d + ∆J,d)
1
J

J∑
j=1

∂ψd
M (1)
s

(
ψ∗ | Yj

)
+ 1√

J

J∑
j=1

R2(Yj) ,
(66)

where

1√
J

J∑
j=1

R2(Yj) =

D∑
d,d′=1

(ψ̃d + ∆J,d)(ψ̃d′ + ∆J,d′)
J1/4

1
J5/4

J∑
j=1

∫ 1

0
(1 − t)∂ψd

∂ψd′M
(1)
s

(
ψ∗ + t

ψ̃ + ∆J√
J

| Yj

)
dt. (67)

As regards (67), for every d, d′ = 1, . . . , D by Lemma 57 it holds

(ψ̃d + ∆J,d)(ψ̃d′ + ∆J,d′)
J1/4 = ψ̃dψ̃d′

J1/4 + ψ̃d
∆J,d′

J1/4 + ψ̃d′
∆J,d

J1/4 + ∆J,d

J1/8
∆J,d′

J1/8 → 0, (68)
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Q
(∞)
ψ∗ -almost surely as J → ∞. Moreover, with the change of variables x = t/J1/4 we have∣∣∣∣∣ 1

J5/4

J∑
j=1

∫ 1

0
(1 − t)∂ψd

∂ψd′M
(1)
s

(
ψ∗ + t

ψ̃ + ∆J√
J

| Yj

)
dt
∣∣∣∣∣

≤
∫ J1/4

0

1
J

J∑
j=1

∣∣∣∣∣∣∂ψd
∂ψd′M

(1)
s

(
ψ∗ + x

ψ̃ + ∆J

J1/4 | Yj

)∣∣∣∣∣∣ dx

≤
∫ J1/4

−J1/4

1
J

J∑
j=1

∣∣∣∂ψd
∂ψd′M

(1)
s

(
ψ∗ + x | Yj

)∣∣∣ dx,

where the last inequality follows from
∣∣∣∣ ψ̃+∆J

J1/4

∣∣∣∣ ≤ 1 for J high enough, thanks to Lemma 57.

Moreover, 1
J1/4 < δ4 for J high enough, so that∣∣∣∣∣ 1

J5/4

J∑
j=1

∫ 1

0
(1 − t)∂ψd

∂ψd′M
(1)
s

(
ψ∗ + t

ψ̃ + ∆J√
J

| Yj

)
dt
∣∣∣∣∣

≤
∫ δ4

δ4

1
J

J∑
j=1

∣∣∣∂ψd
∂ψd′M

(1)
s

(
ψ∗ + x | Yj

)∣∣∣ dx

= 1
J

J∑
j=1

∫ δ4

δ4

∣∣∣∂ψd
∂ψd′M

(1)
s

(
ψ∗ + x | Yj

)∣∣∣ dx.

By the Law of Large Numbers and (B4) it holds

1
J

J∑
j=1

∫ δ4

δ4

∣∣∣∂ψd
∂ψd′M

(1)
s

(
ψ∗ + x | Yj

)∣∣∣ dx

→
∫ δ4

−δ4
E

[∣∣∣∂ψd
∂ψd′M

(1)
s

(
ψ∗ + x | Yj

)∣∣∣] dx < 2Cδ4. (69)

By combining (68) and (69), we can conclude∣∣∣∣∣∣ 1√
J

J∑
j=1

R2(Yj)

∣∣∣∣∣∣ → 0,

Q
(∞)
ψ∗ -almost surely as J → ∞. As regards (66), by the Law of Large Numbers we have

1
J

J∑
j=1

∂ψd
M (1)
s

(
ψ∗ | Yj

)
→ E

[
∂ψd

M (1)
s

(
ψ∗ | Yj

)]
= Cs,d(ψ∗),

that is finite thanks to (B4). Therefore, we can conclude that for any s = 1, . . . , S we have

M (1)
s

(
ψ(J) | Yj

)
−M (1)

s

(
ψ∗ | Yj

)
−

D∑
d=1

Cs,d(ψ∗)∆J,d →
D∑
d=1

Cs,d(ψ∗)ψ̃d,
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Q
(∞)
ψ∗ -almost surely as J → ∞ and thus (63) holds.

Proof of (64). For every s, s′ = 1, . . . , S by multivariate Taylor formula it holds

Cov
(
Ts(θj), Ts′(θj) | Yj , ψ(J)

)
= Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗

)
+R1,cov(Yj),

where

R1,cov(Yj) =
D∑
d=1

ψ̃d + ∆J,d√
J

∫ 1

0
(1 − t)∂ψd

Cov
(
Ts(θj), Ts′(θj) | Yj , ψ∗ + t

ψ̃ + ∆J√
J

)
dt.

Notice that

1
J

J∑
j=1

R1,cov(Yj) =
D∑
d=1

ψ̃d + ∆J,d

J1/4

∫ 1

0
(1−t) 1

J5/4

J∑
j=1

∂ψd
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗ + t

ψ̃ + ∆J√
J

)
dt.

With the same arguments of before we have ψ̃d+∆J,d

J1/4 → 0 and∣∣∣∣∣
∫ 1

0
(1 − t) 1

J5/4

J∑
j=1

∂ψd
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗ + t

ψ̃ + ∆J√
J

)
dt
∣∣∣∣∣

≤ 1
J

J∑
j=1

∫ δ4

−δ4

∣∣∣∂ψd
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗ + x

)∣∣∣ dx

→
∫ δ4

−δ4
E

[∣∣∣∂ψd
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗ + x

)∣∣∣] dx

Q
(∞)
ψ∗ -almost surely as J → ∞. Notice that by (B4) we have

E

[∣∣∣∂ψd
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗ + x

)∣∣∣]

≤ E

[∣∣∣∣∂ψd
M

(1)
s,s′
(
ψ∗ + x | Yj

)∣∣∣∣
]

+ E

∣∣∣∣∣∂ψd

{
M (1)
s

(
ψ∗ + x | Yj

)
M

(1)
s′
(
ψ∗ + x | Yj

)}∣∣∣∣∣


≤ 2C,

for every x ∈ (−δ4, δ4) . Therefore, we can conclude∣∣∣∣∣∣ 1J
J∑
j=1

R1,cov(Yj)

∣∣∣∣∣∣ → 0,

Q
(∞)
ψ∗ -almost surely as J → ∞. Thus, by the Law of Large Numbers we have

1
J

J∑
j=1

Cov
(
Ts(θj), Ts′(θj) | Yj , ψ∗

)
→ E

[
Cov

(
Ts(θj), Ts′(θj) | Yj , ψ∗

)]
,

Q
(∞)
ψ∗ -almost surely as J → ∞.
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Proof of (65). By Lemma 56 we have

1
J3/2

J∑
j=1

EYj

[∣∣∣T (θj) −M (1) (ψ∗ | Yj
)∣∣∣3 | Yj , ψ(J)

]

≤ 1√
J

+ C
1

J3/2

S∑
s=1

J∑
j=1

M (6)
(
ψ(J) | Yj

)
+ C

1
J3/2

S∑
s=1

J∑
j=1

[
M (1) (ψ∗ | Yj

)]6
.

By Jensen inequality
[
M (1) (ψ∗ | Yj

)]6
≤ M (6) (ψ∗ | Yj

)
and by the Law of Large Numbers

1
J

S∑
s=1

J∑
j=1

M (6) (ψ∗ | Yj
)

→
S∑
s=1

E
[
T 6
s (θj) | ψ∗

]
< ∞

Q
(∞)
ψ∗ -almost surely as J → ∞. Thus to prove (65) it suffices to show

1
J3/2

S∑
s=1

J∑
j=1

M (6)
(
ψ(J) | Yj

)
→ 0

Q
(∞)
ψ∗ -almost surely as J → ∞. For every s = 1, . . . , S by multivariate Taylor formula it holds

M (6)
s

(
ψ(J) | Yj

)
= M (6)

s

(
ψ∗ | Yj

)
+R1,6(Yj),

where

R1,6(Yj) =
D∑
d=1

ψ̃d + ∆J,d√
J

∫ 1

0
(1 − t)∂ψd

M (6)
s

(
ψ∗ + t

ψ̃ + ∆J√
J

| Yj

)
dt.

Notice that

1
J

J∑
j=1

R1,6(Yj) =
D∑
d=1

ψ̃d + ∆J,d

J1/4

∫ 1

0
(1 − t) 1

J5/4

J∑
j=1

∂ψd
M (6)
s

(
ψ∗ + t

ψ̃ + ∆J√
J

| Yj

)
dt,

and with the same arguments of before we have ψ̃d+∆J,d

J1/4 → 0 Q(∞)
ψ∗ -almost surely as J → ∞ and∣∣∣∣∣

∫ 1

0
(1 − t) 1

J5/4

J∑
j=1

∂ψd
M (6)
s

(
ψ∗ + t

ψ̃ + ∆J√
J

| Yj

)
dt
∣∣∣∣∣

≤ 1
J

J∑
j=1

∫ δ4

−δ4

∣∣∣∂ψd
M (6)
s (ψ∗ + x | Yj)

∣∣∣ dx

→
∫ δ4

−δ4
E

[∣∣∣∂ψd
M (6)
s (ψ∗ + x | Yj)

∣∣∣] dx < 2δ4C,

by (B4). Therefore, we can conclude ∣∣∣∣∣∣ 1J
J∑
j=1

R1,6(Yj)

∣∣∣∣∣∣ → 0,
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Q
(∞)
ψ∗ -almost surely as J → ∞. Moreover, by the Law of Large Numbers we have

1
J

J∑
j=1

M (6)
s

(
ψ∗ | Yj

)
→ E

[
M (6)
s

(
ψ∗ | Yj

)]
= E

[
T 6
s (θj) | ψ∗

]
,

by (B1) and the definition of conditional expectation. Therefore

1
J3/2

J∑
j=1

M (6)
s

(
ψ∗ + ψ̃d + ∆J,d√

J
| Yj

)
→ 0,

from which (65) follows.

Total variation convergence

We extend the weak convergence to total variation using characteristic functions, in particular
exploiting the conditions in Lemma 61. Here we first state some other technical lemmas that
will be required later on.

Lemma 59. Let X be a RS-valued random vector with zero mean and characteristic function
φX(u). Then for every u ∈ RS

φX(u) =1 − 1
2E

[
(u⊤X)2

]
+ θ

6E
[
|u⊤X|3

]
,

for some θ = θ(u) ∈ C such that |θ| ≤ 1.

Proof. Taylor formula for the complex exponential reads

eix = 1 + ix− x2

2 + x3

6 e
iz,

where z ∈ C is such that 0 ≤ |z| ≤ |x|. By x = u⊤X, we have

φX(u) = 1 + iE
[
u⊤X

]
− 1

2E
[(
u⊤X

)2
]

+ θ

6E
[∣∣∣u⊤X∣∣∣3] ,

with θ = eiz, recalling that |eiz| ≤ 1 for any z. The result follows from E
[
u⊤X

]
= 0.

Lemma 60. Let X ∈ RS and Y ∈ RS be independent random vectors with the same distribution.
Then

φX−Y (u) =
∣∣φX(u)

∣∣2 .
Proof. By independence we can write

φX−Y (u) = E
[
eiu
⊤X
]
E
[
e−iu

⊤X
]
,

where
E
[
eiu
⊤X
]

= E
[
cosu⊤X

]
+ iE

[
sin u⊤X

]
= a+ ib,

for suitable a and b. Since cosx is even and sin x is odd, we can write∣∣φX−Y (u)
∣∣ =

∣∣(a+ ib)(a− ib)
∣∣ = a2 + b2 =

∣∣φX(u)
∣∣2
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Since X − Y has a symmetric density by construction
∣∣φX−Y (u)

∣∣ = φX−Y (u) and the result
follows.

Corollary 18. Let X be a RS-valued random vector with characteristic function φX(u). Then

∣∣φX(u)
∣∣2 ≤ e

−u⊤Var(X)u+ 2|u|3
3

[
1+C

∑S

s=1 E[X6
i ]
]
,

for u ∈ RS, where C is a finite constant independent of u.

Proof. Let Y be an independent copy of X. By Lemma 60, it holds∣∣φX(u)
∣∣2 = φX−Y (u),

where φX−Y (u) is a real function, since it is the characteristic function of a random variable
with symmetric density. Therefore, by Lemma 59 it holds

φX−Y (u) = 1 − 1
2E

[
(u⊤Z)2

]
+ θ

6E
[
|u⊤Z|3

]
,

where Z = X − Y and θ = θ(u) ∈ R. Recalling that ex ≥ 1 + x for every x, we have

φX−Y (u) ≤ e−
1
2E[(u⊤Z)2]+ θ

6E[|u⊤Z|3].

By Lemma 8.8 in Bhattacharya and Rao (2010) it holds

E
[
(u⊤Z)2

]
= 2E

[
(u⊤X)2

]
= 2u⊤Var(X)u

and
E
[
(u⊤Z)3

]
≤ 4E

[
(u⊤X)3

]
≤ 4|u|3E

[
|X|3

]
.

Moreover by Lemma 56 we have

E
[
|X|3

]
≤ 1 + C

S∑
s=1

E
[
X6
i

]
.

Therefore

φX−Y (u) ≤ e
−u⊤Var(X)u+ 2|u|3θ

3

[
1+C

∑S

s=1 E[X6
i ]
]

and the result follows from |θ| ≤ 1.

The following lemma is a minor variation of commonly used techniques to prove total vari-
ation Central Limit Theorems.

Lemma 61. Let (XJ)J≥1 and X be RS-valued random variables with characteristic functions
(φJ)J≥1 and φ, respectively. Denote by L1(RS) the space of complex-valued integrable functions
with domain RS. If

(a) XJ converges weakly to X as J → ∞

(b) φ belongs to L1(RS), i.e.
∫
RS

∣∣φ (t)
∣∣ dt < ∞

(c) limA→∞ lim supJ→∞
∫
|t|≥A

∣∣φJ (t)
∣∣ dt = 0.
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then XJ converges to X in total variation as J → ∞.

Proof. First we prove that limJ→∞ ∥φJ − φ∥L1 = 0. By the triangle inequality, for every A > 0
we have

∥φJ − φ∥L1 ≤
∫
|t|<A

|φJ(t) − φ(t)| dt+
∫
|t|≥A

|φJ(t)| dt+
∫
|t|≥A

|φ(t)| dt . (70)

Since weak convergence implies pointwise convergence of characteristic functions, assumption
(a) implies that φJ(t) → φ(t) as J → ∞ for every t ∈ RS . Thus by the Dominated Convergence
Theorem and |φJ(t)−φ(t)| ≤ |φJ(t)|+ |φ(t)| = 2 , we have

∫
|t|<A |φJ(t)−φ(t)| dt → 0 as J → ∞

for every A > 0. It follows by (70) that

0 ≤ lim sup
J→∞

∥φJ − φ∥L1 ≤
∫
|t|≥A

|φ(t)| dt+ lim sup
J→∞

∫
|t|≥A

|φJ(t)| dt , (71)

for every A > 0. By assumption (b) limA→∞
∫
|t|≥A |φ(t)| dt = 0. Combining with assumption (c),

taking the limit A → ∞ we obtain lim supJ→∞ ∥φJ−φ∥L1 ≤ 0 and thus limJ→∞ ∥φJ−φ∥L1 = 0.
Then, note that φ ∈ L1(RS) and ∥φJ − φ∥L1 → 0 as J → ∞ imply φJ ∈ L1(RS) eventually

as J → ∞, since by the triangle inequality

∥φJ∥L1 ≤ ∥φJ − φ∥L1 + ∥φ∥L1 < ∞

for J large enough. Thus, by the Inversion formula, for J large enough XJ and X admit density
functions w.r.t. the Lebesgue measure, which can be written as fXJ

(t) = 1
(2π)S

∫
RS e−it

⊤tφJ(t) dt
and fX(t) = 1

(2π)S

∫
RS e−it

⊤tφ(t) dt. Thus

|fXJ
(t) − fX(t)| =

∣∣∣∣∣ 1
(2π)S

∫
RS
e−it

⊤tφJ(t) dt− 1
(2π)S

∫
RS
e−it

⊤tφ(t) dt
∣∣∣∣∣

≤
∫
RS

∣∣∣e−it⊤t(φJ(t) − φ(t))
∣∣∣ dt ≤ ∥φJ − φ∥L1 → 0

as J → ∞ for every t ∈ RS . By Scheffé Theorem, total variation convergence is implied by
pointwise convergence of the densities.

Proof of Lemma 46. Fix ψ̃ ∈ RD and denote µ = C(ψ∗)ψ̃ and Ξ = V (ψ∗). We will prove
conditions (a), (b) and (c) of Lemma 61 to show that L(dT̃ | Y1:J , ψ̃) TV→ N (µ,Ξ) for Q(∞)

ψ∗ -
almost every Y as J → ∞.

Condition (a) is shown in Proposition 58. Regarding condition (b), the characteristic function
of the limiting distribution N (µ,Ξ) is φ(t) = eiµ

⊤t− 1
2 t
⊤Ξt, which is integrable since Ξ is positive

definite by (B4).
We now turn to condition (c). Let

φ̃(t | Y1:J , ψ) = E
[
eit
⊤T̃ | Y1:J , ψ

]
t ∈ RS

be the characteristic function of L
(
dT̃ | Y1:J , ψ

)
. Using the definition of T̃ in (4.19), and the
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fact that Ts(θj) are conditionally independent given ψ̃, we can write φ̃ as

φ̃(t | Y1:J , ψ̃) = e−it
⊤αJ

J∏
j=1

φ

(
t√
J

| Yj , ψ(J)
)
,

where αJ = C(ψ∗)∆J + 1√
J

∑J
j=1M

(1)(ψ∗ | Yj), φ
(
t | Yj , ψ

)
= E

[
eit
⊤T (θj) | Yj , ψ

]
as in the

definition of (B5) and ψ(J) as in (61). Since αJ ∈ RS we have |e−it⊤αJ | = 1 and thus

∣∣φ̃(t | Y1:J , ψ)
∣∣ =

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ
)∣∣∣∣∣∣ . (72)

For every ϵ > 0, by (72) and the subadditivity of lim sup we have

lim
A→∞

lim sup
J→∞

∫
|t|>A

∣∣∣φ̃(t | Y1:J , ψ̃)
∣∣∣ dt ≤

lim
A→∞

lim sup
J→∞

∫
A<|t|<ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dt+ lim sup

J→∞

∫
|t|>ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dt.

Lemma 62 shows that the second lim sup in the last line is equal to 0 for every ϵ > 0, while
Lemma 63 shows that the limA→∞ lim supJ→∞ term goes to 0 when ϵ is chosen as in (73). Thus
condition (c) follows by taking ϵ as in (73) in the above inequality.

Lemma 62. Under the same setting and notation as in the proof of Lemma 46, for every ϵ > 0
we have

lim sup
J→∞

∫
|t|>ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dt = 0

Q
(∞)
ψ∗ -almost surely.

Proof. Consider the change of variables x = t/
√
J . Then

∫
|t|>ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dt = JS/2

∫
|x|>ϵ

∣∣∣∣∣∣
J∏
j=1

φ
(
x | Yj , ψ(J)

)∣∣∣∣∣∣ dx.

Let k and Bδ5 be as in (B5) and k′ and Bδ6 be as in (B6). Take J high enough so that J ≥ 2k
as well as ψ(J) ∈ B := Bδ5 ∩Bδ6 , so that

∫
|x|>ϵ

∣∣∣∣∣∣
J∏
j=1

φ
(
x | Yj , ψ(J)

)∣∣∣∣∣∣ dx ≤ sup
ψ∈B

∫
|x|>ϵ

∣∣∣∣∣∣
2k∏
j=1

φ
(
x | Yj , ψ

)∣∣∣∣∣∣
∣∣∣∣∣∣

J∏
j=2k+1

φ
(
x | Yj , ψ

)∣∣∣∣∣∣ dx .

For every a ∈ R+ denote its integer part as ⌊a⌋. By (B6), for every ψ ∈ B we have∣∣∣∣∣∣
J∏

j=2k+1
φ
(
x | Yj , ψ

)∣∣∣∣∣∣ ≤
⌊J−2k

k′ ⌋∏
s=1

As ≤ ϕ(ϵ)⌊
J−2k

k′ ⌋, with As =

∣∣∣∣∣∣∣
2k+1+sk′∏

j=2k+1+(s−1)k′
φ
(
x | Yj , ψ

)∣∣∣∣∣∣∣
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almost surely, where we exploited the fact that each As is distributed as φ(k′) (t | Y1:k′ , ψ
)

in
(B6). Therefore

∫
|x|>ϵ

∣∣∣∣∣∣
J∏
j=1

φ
(
x | Yj , ψ(J)

)∣∣∣∣∣∣ dx ≤ ϕ(ϵ)⌊
J−2k

k′ ⌋ sup
ψ∈B

∫
|x|>ϵ

∣∣∣∣∣∣
2k∏
j=1

φ
(
x | Yj , ψ

)∣∣∣∣∣∣ dx.

almost surely. By Hölder Inequality and (B5), we have

c = sup
ψ∈B

∫
|x|>ϵ

∣∣∣∣∣∣
2k∏
j=1

φ
(
x | Yj , ψ

)∣∣∣∣∣∣ dx ≤ sup
ψ∈B

∫
RS

∣∣∣∣∣∣
2k∏
j=1

φ
(
x | Yj , ψ

)∣∣∣∣∣∣ dx ≤


√√√√√sup
ψ∈B

∫
RS

∣∣∣∣∣∣
k∏
j=1

φ
(
x | Yj , ψ

)∣∣∣∣∣∣
2

dx



√√√√√sup
ψ∈B

∫
RS

∣∣∣∣∣∣
2k∏

j=k+1
φ
(
x | Yj , ψ

)∣∣∣∣∣∣
2

dx

 < ∞,

almost surely. Therefore it holds

∫
|t|>ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dt ≤ JS/2ϕ(ϵ)⌊

J−2k
k′ ⌋c,

that goes to 0 as J → ∞, since ϕ(ϵ) < 1 by (B6).

Lemma 63. Under the same setting and notation as in the proof of Lemma 46, let λ > 0 be
such that the matrix V (ψ∗)−λI is positive definite. Such λ can be found, since V (ψ∗) is positive
definite by (B4). Then, given

ϵ = λ

1 + C
∑S
s=1E

[
Ts(θ1)6 | ψ∗

] (73)

we have

lim
A→∞

lim sup
J→∞

∫
A<|t|<ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dt = 0

Q
(∞)
ψ∗ -almost surely.

Proof. By Corollary 18, we have

∣∣φ(u | Yj , ψ)
∣∣2 ≤ e

−u⊤Var(T (θj)|Yj ,ψ)u+ 2|u|3
3

[
1+C

∑S

s=1 E[Ts(θj)6|Yj ,ψ]
]
,

for every u ∈ RS and ψ ∈ RD. Therefore∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ
)∣∣∣∣∣∣

2

≤ e
−t⊤ 1

J

∑J

j=1 Var(T (θj)|Yj ,ψ)t+ 2|t|3

3
√

J

[
1+C 1

J

∑J

j=1

∑S

s=1 E[Ts(θj)6|Yj ,ψ]
]
. (74)

Notice that in the proof of (65) we have shown through (B4) that

1
J

J∑
j=1

E
[
Ts(θj)6 | Yj , ψ(J)

]
→ E

[
Ts(θ1)6 | ψ∗

]
(75)
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Q
(∞)
ψ∗ -almost surely as J → ∞, for every s = 1, . . . , S. Thus, combining (73) and (75), for every

|t| ≤ ϵ
√
J we have ∣∣∣∣∣∣e

2|t|3

3
√

J

[
1+C 1

J

∑J

j=1

∑S

s=1 E[Ts(θj)6|Yj ,ψ]
]∣∣∣∣∣∣

2

≤ eλt
⊤t, (76)

almost surely for J high enough. Finally by (74) and (76)

∫
A<|t|<ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dt ≤

∫
|t|>A

e−t
⊤Ξ(J)t dt , (77)

with

Ξ(J) = 1
J

J∑
j=1

Var
(
T (θj) | Yj , ψ(J)

)
− λI .

Since Ξ(J) → V (ψ∗) − λI by (64), and V (ψ∗) − λI is positive definite by definition of λ, by
Dominated Convergence Theorem

lim sup
J

∫
A<|t|<ϵ

√
J

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dt ≤

∫
|t|>A

e−t
⊤(V (ψ∗)−λI)t dt , (78)

Since the right hand side of (78) is integrable the conclusion follows by taking A → ∞.

Proof of Theorem 20

We first need a technical lemma.

Lemma 64. Let
{
Y (n)

}
n

be a sequence of random elements with state space Y(n), such that

Y (n) ∼ Q(n) with Q(n) ∈ P
(
Y(n)

)
. Let {πn}n be a sequence of Markov kernels from Y(n) to

X = X1 × X2 and let π ∈ P(X ). If∥∥πn,1(·) − π1(·)
∥∥
TV → 0 and

∥∥πn(· | x) − π(· | x)
∥∥
TV → 0, for π1-almost every x ∈ X1,

as n → ∞ in Q(n)-probability, where πn,1 and π1 are the marginal distributions on X1 of πn and
π respectively, then ∥∥πn(·) − π(·)

∥∥
TV → 0,

as n → ∞ in Q(n)-probability

Proof. Let f : X → [0, 1] be a measurable function. By the triangular inequality we have∣∣∣∣∣
∫
X
f(x1, x2)πn(dx1, dx2) −

∫
X
f(x1, x2)π(dx1, dx2)

∣∣∣∣∣ ≤∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)πn,1(dx1) −

∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1)

∣∣∣∣+∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1) −

∫
X
f(x1, x2)π(dx2 | x1)π1(dx1)

∣∣∣∣ .
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Notice that

sup
f

∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)πn,1(dx1) −

∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1)

∣∣∣∣
≤
∥∥πn,1(·) − π1(·)

∥∥
TV → 0,

as n → ∞ in Q(n)-probability, by assumption. Moreover we have

sup
f

∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1) −

∫
X
f(x1, x2)π(dx2 | x1)π1(dx1)

∣∣∣∣ ≤

∫
X1

sup
f

∣∣∣∣∣
∫
X2
f(x1, x2)πn(dx2 | x1) −

∫
X2
f(x1, x2)π(dx2 | x1)

∣∣∣∣∣ π1(dx1).

The integrand on the right hand side goes to 0 as n → ∞ in Q(n)-probability, by assumption.
Therefore, by Dominated Convergence Theorem, we have

sup
f

∣∣∣∣∫
X
f(x1, x2)πn(dx2 | x1)π1(dx1) −

∫
X
f(x1, x2)π(dx2 | x1)π1(dx1)

∣∣∣∣ → 0,

as n → ∞ in Q(n)-probability, as desired.

Proof of Theorem 20. Lemma 45 shows that ψ̃ converges to a Normal distribution with zero
mean and non-singular covariance matrix I−1(ψ∗). Similarly, Lemma 46 shows that, conditional
to every ψ̃, T̃ converges to a Normal distribution with mean and variance (denoted by E∞[·]
and Var∞(·) ) given by

E∞[T̃ | ψ̃] = C(ψ∗)ψ̃, Var∞
(
T̃ | ψ̃

)
= V (ψ∗).

Therefore, by Lemma 64, we conclude that
(
T̃ , ψ̃

)
converges in total variation to a (S + D)-

dimensional Gaussian distribution π̃ with zero mean and covariance matrix Σ given by

Σ =

 ΣT̃ Σ⊤
ψ̃T̃

Σψ̃T̃ Σψ̃

 ,
where Σψ̃ = I−1(ψ∗) ∈ RD×D and ΣT̃ ∈ RS×S are the limiting variances of ψ̃ and T̃ , while
Σψ̃T̃ ∈ RD×S is the limiting covariance. Thus, thanks to standard properties of the multivariate
Gaussian distribution, the determinant of Σ can be computed as

det(Σ) = det(Σψ̃)det
(

ΣT̃ − Σ⊤
ψ̃T̃

Σ−1
ψ̃

Σψ̃T̃

)
= det(Σψ̃)det

(
Var∞

(
T̃ | ψ̃

))
= det

(
I−1(ψ∗)

)
det

(
V (ψ∗)

)
,

which implies that Σ is non singular. Indeed, det
(
I−1(ψ∗)

)
> 0 by (B3), while det

(
V (ψ∗)

)
> 0

by (B4). Therefore, by Theorem 1 in Roberts and Sahu (1997), the Gibbs sampler on the limit
Gaussian target has a strictly positive spectral gap. Moreover, since the Gibbs sampler in (4.15)
has two blocks, by Lemma 54 we have t̃mix(ϵ,M) < ∞ for every M and ϵ: thus the result follows
by Corollary 8.



226 Gibbs samplers for parametric hierarchical models

Proof of Proposition 23

Proof. Using the notation E∞[·],Var∞(·) and Cov∞(·, ·) for the limiting mean, variance and
covariance, by Propositions 45 and 46 we have

E∞[ψ̃] = 0D, Var∞(ψ̃) = I−1(ψ∗)

and
E∞[T̃ | ψ̃] = C(ψ∗)ψ̃, Var∞

(
T̃ | ψ̃

)
= V (ψ∗).

By standard properties of the multivariate Gaussian distribution we have

E∞[T̃ ] = 0S , Cov∞
(
T , ψ̃

)
= C(ψ∗)Var∞(ψ̃) = C(ψ∗)I−1(ψ∗)

and
Var∞(T ) = Var∞

(
T̃ | ψ̃

)
+ Cov∞

(
T , ψ̃

)
Var−1

∞ (ψ̃)Cov⊤∞
(
T , ψ̃

)
= V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗),

as desired.

Proof of Corollary 10

We need three preliminary lemmas. The first one is a special version of well-known results (e.g.
Roberts and Sahu (1997)).
Lemma 65. The Gibbs sampler targeting the distribution in Proposition 23 can be written as[

T̃ (t)

ψ̃(t)

]
= B

[
T̃ (t−1)

ψ̃(t−1)

]
+
[
U1
U2

]
,

where

B =


OS×S C(ψ∗)

OD×S I−1(ψ∗)C⊤(ψ∗)
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)


and [

U1
U2

]
∼ N

(
0S+D,Σ −BΣB⊤

)
Proof. By Proposition 46 we have

E
[
T̃ (t) | T̃ (t−1), ψ̃(t−1)

]
= C(ψ∗)ψ̃(t−1).

Moreover, by Proposition 23 and standard properties of the multivariate Gaussian distribution,
we have

E
[
ψ̃t | T̃ (t−1), ψ̃(t−1)

]
= E

[
I−1(ψ∗)C⊤(ψ∗)

{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
T̃ (t) | T̃ (t−1), ψ̃(t−1)

]
= I−1(ψ∗)C⊤(ψ∗)

{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)ψ̃(t−1),
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as desired.

Lemma 66. Let

M =

OS×S A

OD×S W

 ,
with A ∈ RS×D and W ∈ RD×D. Then M and W have the same non null eigenvalues.

Proof. Let µ ̸= 0 be an eigenvalue of M , with eigenvector x = [x⊤S , x⊤D]⊤. We have

Mx = µx ⇔
[
AxD
WxD

]
=
[
µxS
µxD

]
,

so that µ is an eigenvalue of W with eigenvector xD. Indeed, xD is different from the null vector,
since µ ̸= 0.

Let λ ̸= 0 be an eigenvalue of W with eigenvector xD. Then

M

[
AxD
λ
xD

]
=
[
AxD
WxD

]
= λ

[
AxD
λ
xD

]
,

so that λ is an eigenvalue of M , with eigenvector[
AxD
λ
xD

]
,

as desired.

Lemma 67. Let A ∈ RD×S and B ∈ RS×D. Then the matrices AB and BA have the same
non-null eigenvalues.

Proof. Let λ ̸= 0 be an eigenvalue of AB, with eigenvector v ∈ RD. Then

λBv = B(AB)v = (BA)Bv.

Since Bv ̸= 0 we conclude that λ is an eigenvalue of BA with eigenvector Bv.

Proof of Corollary 10. With B as in Lemma 65, by Theorem 1 in Roberts and Sahu (1997) the
spectral gap of the Gibbs sampler with operator P̃ is given by

Gap(P̃ ) = min
{
1 − |λi| : λi eigenvalue of B

}
Thus, by Lemma 66, with M := B and

W = I−1(ψ∗)C⊤(ψ∗)
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗),

we have

Gap(P̃ ) = min
{

1 − |λi| : λi eigenvalue of I−1(ψ∗)C⊤(ψ∗)
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)

}
.
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By Lemma 67 with

A = I−1(ψ∗)C⊤(ψ∗), B =
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)

we deduce

Gap(P̃ ) = min
{

1 − |λi| : λi eigenvalue of
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}
.

Notice that {
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

= I −
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
V (ψ∗).

Since λ is an eigenvalue of A if and only if 1 − λ is an eigenvalue of I −A, it follows that

Gap(P̃ ) = min
{

1 − |1 − λi| ; λi eigenvalue of
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}−1
V (ψ∗)

}
.

Moreover the eigenvalues of the inverse are the inverse of the eigenvalues, so that the rate of
convergence is equal to

Gap(P̃ ) = min
{

1 −
∣∣∣∣1 − 1

λi

∣∣∣∣ ; λi eigenvalue of V −1(ψ∗)
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}}
.

Since

V −1(ψ∗)
{
V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}
= I + V −1(ψ∗)C(ψ∗)I−1(ψ∗)C⊤(ψ∗),

we have

Gap(P̃ ) = min
{

1 −
∣∣∣∣1 − 1

1 + λi

∣∣∣∣ ; λi eigenvalue of V −1(ψ∗)C(ψ∗)I−1(ψ∗)C⊤(ψ∗)
}
.

Moreover both V −1(ψ∗) and C(ψ∗)I−1(ψ∗)C⊤(ψ∗) are positive semi-definite, so that also their
product is positive semi-definite and has positive eigenvalues. Therefore we conclude

Gap(P̃ ) = min
{ 1

1 + λi
; λi eigenvalue of V −1(ψ∗)C(ψ∗)I−1(ψ∗)C⊤(ψ∗)

}
and the result follows by Corollary 9.

Proof of Corollary 11

We need a preliminary lemma, that we prove for self-containedness.

Lemma 68. Let p(θ | ψ) be as in (4.14). Then it holds

E[T (θ) | ψ] = ∂ψA(ψ)
∂ψη(ψ) , Var(T (θ) | ψ) =

∂2
ψA(ψ) −

∂2
ψη(ψ)∂ψA(ψ)
∂ψη(ψ)

[∂ψη(ψ)
]−2

.
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Proof. Differentiating the following equality

1 =
∫
p(θ | ψ) dθ, (79)

by the regularity properties of the exponential family we get

0 =
∫
∂ψp(θ | ψ) dθ = ∂ψη(ψ)E[T (θ) | ψ] + ∂ψA(ψ),

and the formula for the expected value follows. As regards the variance, differentiating (79)
twice, we obtain

0 = ∂2
ψη(ψ)E[T (θ) | ψ]−∂2

ψA(ψ)+
[
∂ψη(ψ)

]2
E[T 2(θ) | ψ]−2

[
∂ψη(ψ)

]2
E2[T (θ) | ψ]+

[
∂ψA(ψ)

]2
.

Noticing that [
∂ψη(ψ)

]2
E2[T (θ) | ψ] =

[
∂ψA(ψ)

]2
and rearranging, we get

∂2
ψA(ψ) − ∂2

ψη(ψ)E[T (θ) | ψ] =
[
∂ψη(ψ)

]2
Var(T (θ) | ψ),

from which the result follows.

Proof of Corollary 11. By Corollary 10, we have

γ(ψ∗) = 1
1 + λ

with λ = C2(ψ∗)
V (ψ∗)I(ψ∗) ,

where
C(ψ) = EYj

[
∂ψE[T (θj) | Yj , ψ]

]
,

V (ψ) = EYj

[
Var(T (θj) | Yj , ψ)

]
,

I(ψ) = −EYj

[
∂2
ψ log g(Yj | ψ)

]
,

with g(y | ψ) as in (4.16). As regards C(ψ), notice that

∂ψE[T (θ) | Y, ψ] =
∫
T (θ)f(Y | θ)∂ψp(θ | ψ) dθ

g(Y | ψ) −[∫
T (θ)f(Y | θ)p(θ | ψ) dθ

] [∫
f(Y | θ)∂ψp(θ | ψ) dθ

]
g2(Y | ψ)

=∂ψη(ψ)E
[
T 2(θ) | Y, ψ

]
− ∂ψη(ψ)E2 [T (θ) | Y, ψ

]
=∂ψη(ψ)Var

(
T (θ) | Y, ψ

)
.

Therefore
C2(ψ∗) =

[
∂ψη(ψ∗)

]2
E2
Yj

[
Var

(
T (θj) | Yj , ψ∗

)]
. (80)
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As regards I(ψ), notice that

∂ψ log g(Yj | ψ) =
∫
f(Y | θ)∂ψp(θ | ψ) dθ

g(Y | ψ) = ∂ψη(ψ)
∫
T (θ)f(Y | θ)p(θ | ψ) dθ

g(Y | ψ) − ∂ψA(ψ)

and

∂2
ψ log g(Yj | ψ) = ∂2

ψη(ψ)E
[
T (θ) | Y, ψ

]
− ∂2

ψA(ψ) + ∂ψη(ψ)
∫
T (θ)f(Y | θ)∂ψp(θ | ψ) dθ

g(Y | ψ)

− ∂ψη(ψ)
[∫
T (θ)f(Y | θ)p(θ | ψ) dθ

] [∫
f(Y | θ)∂ψp(θ | ψ) dθ

]
g2(Y | ψ)

= ∂2
ψη(ψ)E

[
T (θ) | Y, ψ

]
− ∂2

ψA(ψ) +
[
∂ψη(ψ)

]2
Var

(
T (θ) | Y, ψ

)
.

Noticing that, by Lemma 68, we have

∂2
ψη(ψ)E

[
T (θ) | Y, ψ

]
− ∂2

ψA(ψ) =

∂2
ψA(ψ) −

∂2
ψη(ψ)∂ψA(ψ)
∂ψη(ψ)


=
[
∂ψη(ψ)

]2
Var

(
T (θ) | ψ

)
,

we get

I(ψ∗) =
[
∂ψη(ψ∗)

]2
Var

(
T (θj) | ψ∗

)
−
[
∂ψη(ψ∗)

]2
EYj

[
Var

(
T (θj) | Yj , ψ∗

)]
=
[
∂ψη(ψ∗)

]2
VarYj

(
E
[
T (θj) | Yj , ψ∗

])
,

(81)

by the Law of Total Variance. Combining (80) and (81), it holds

λ =
E2
Yj

[
Var

(
T (θj) | Yj , ψ∗

)]
V (ψ∗)VarYj

(
E
[
T (θj) | Yj , ψ∗

]) =
EYj

[
Var

(
T (θj) | Yj , ψ∗

)]
VarYj

(
E
[
T (θj) | Yj , ψ∗

]) .
The expression for γ(ψ∗) follows by rearranging and applying the Law of Total Variance.

Proof of Proposition 24

First of all notice that, by Bayes’ Theorem, we have

θj | Yj , µ, τ1
ind.∼ N

(
mj , (mτ0 + τ1)−1

)
, (82)

where
mj = mτ0

mτ0 + τ1
Ȳj + τ1

mτ0 + τ1
µ.

Recall that by (B1) we have

Yj
iid∼ g(· | ψ∗) = N

(
µ∗, (τ∗0 )−1I + (τ∗1 )−1H

)
,
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so that
Ȳj = 1

m

m∑
i=1

Yj,i
iid∼ N

(
µ∗,

1
τ∗1

+ 1
mτ∗0

)
. (83)

Moreover we need some preliminary lemmas.

Lemma 69. Let X ∼ N(ν, σ2). Then

E[Xp] =
p∑
i=0

(
p

i

)
νiσp−iE[Zp−i],

where Z ∼ N(0, 1) and

E[Zs] =

0 if s is odd
2−s/2 s!

(s/2)! if s is even

Proof. The result follows by noticing X = ν+σZ and applying Netwon’s Binomial Theorem.

Lemma 70. Let A be m×m matrix such that A = aI+ bH, with a ̸= b and a ̸= (1−m)b. Then
det(A) = [a+mb]am−1 and A−1 = 1

aI − b
a(a+mb)H.

Proof. We start by the determinant

det


c d · · · d
d c · · · d
...

... . . . ...
d d · · · c

 = [c+ (m− 1)d]det


1 1 · · · 1
d c · · · d
...

... . . . ...
d d · · · c



= [c+ (m− 1)d]


1 1 · · · 1
0 c− d · · · 0
...

... . . . ...
0 0 · · · c− d

 = [c+ (m− 1)d](c− d)m−1,

where the first equality comes by adding to the first row all the others, while the second comes
by subtracting the first row (scaled by d) from all the others. In our case c = a+ b and d = b,
that is det(A) = [a+mb]am−1, as desired. With our assumptions we get that the determinant
is different from zero.

As regards the inverse we prove A−1 = xI + yH for suitable x and y. Indeed

(aI + bH) (xI + yH) = axI + ayH + bxH + byH2 = axI + (ay + bx+mby)H.

Setting the above equal to I, we obtain x = 1/a and

ay + bx+mby = 0 ⇒ y(a+mb) = − b

a
⇒ y = − b

a(a+mb)

as desired.
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Lemma 71. Consider the marginal likelihood as in (4.23), with ψ∗ = (µ∗, τ∗1 , τ∗0 ). Then we have

I(ψ∗) =


mτ∗0 τ

∗
1

τ∗1 +mτ∗0
0 0

0 m2(τ∗0 )2

2(τ∗1 )2(τ∗1 +mτ∗0 )2
m

2(τ∗1 +mτ∗0 )2

0 m
2(τ∗1 +mτ∗0 )2

m−1
2(τ∗0 )2 + (τ∗1 )2

2(τ∗0 )2(τ∗1 +mτ∗0 )2

 (84)

Proof. The log–likelihood l(ψ) = log g(y | ψ) is given by

l(µ, τ0, τ1) = −1
2 log 2π − 1

2 log
(
det(Σ)

)
− 1

2(Y1 − µI)tΣ−1(Y1 − µI),

with Σ = τ−1
0 I + τ−1

1 H. By Lemma 70 with a = τ−1
0 and b = τ−1

1 we have

det(Σ) = [τ−1
0 +mτ−1

1 ](τ−1
0 )m−1, Σ−1 = τ0I − τ2

0
τ1 +mτ0

H.

Thus, the log–likelihood becomes

l(µ, τ0, τ1) = − 1
2 log 2π + m− 1

2 log τ0 − 1
2 log(τ−1

0 +mτ−1
1 ) − τ0

2

m∑
i=1

(Y1,i − µ)2

+ τ2
0

2(τ1 +mτ0)(Y1 − µI)tH(Y1 − µI).

Rewriting the last expression we get

l(µ, τ0, τ1) = − 1
2 log 2π + m− 1

2 log τ0 − 1
2 log(τ−1

0 +mτ−1
1 ) − τ0

2

m∑
i=1

(Y1,i − µ)2

+ τ2
0

2(τ1 +mτ0)

 m∑
i=1

(Y1,i − µ)

2

.

The required derivatives are given by

∂2l

∂µ2 = − mτ0τ1
τ1 +mτ0

,
∂2l

∂τ2
1

= −mτ0(2τ1 +mτ0)
2τ2

1 (τ1 +mτ0)2 + τ2
0

(τ1 +mτ0)3

 m∑
i=1

(Y1,i − µ)

2

,

∂2l

∂τ2
0

= −m− 1
2τ2

0
− τ1(τ1 + 2mτ0)

2τ2
0 (τ1 +mτ0)2 + (τ1 +mτ0)2 − 2mτ0τ1 −m2τ2

0
(τ1 +mτ0)3

 m∑
i=1

(Y1,i − µ)

2

,

∂2l

∂µ∂τ0
=

m∑
i=1

(Y1,i − µ) − 2mτ0τ1 +m2τ2
0

(τ1 +mτ0)2

m∑
i=1

(Y1,i − µ),

∂2l

∂µ∂τ1
= τ2

0
(τ1 +mτ0)2

m∑
i=1

(Y1,i − µ), ∂2l

∂τ0∂τ1
= m

2(τ1 +mτ0)2 − τ0τ1
(τ1 +mτ0)3

 m∑
i=1

(Y1,i − µ)

2

.

The entries of the Fisher Information matrix reported in (84) can then be computed from the
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above expressions by taking expectations with respect to Y1 and exploiting that

E[Y1,i − µ] = 0, E
[
(Y1,i − µ)2

]
= V ar(Y1,i − µ) = τ0 + τ1

τ0τ1
,

E


 m∑
i=1

(Y1,i − µ)

2
 = V ar

 m∑
i=1

(Y1,i − µ)

 = [1, . . . , 1]V ar(Y1)[1, . . . , 1]t

= [1, . . . , 1]
(
τ−1

0 I + τ−1
1 H

)
[1, . . . , 1]t

= m

(
mτ0 + τ1
τ0τ1

)
.

Thus we can compute the entries of the Fisher Information matrix as

E
[
∂2l

∂τ2
0

]
= −m− 1

2τ2
0

− τ1(τ1 + 2mτ0)
2τ2

0 (τ1 +mτ0)2 + m(τ1 +mτ0)2 − 2m2τ0τ1 −m3τ2
0

τ0τ1(τ1 +mτ0)2

= −m− 1
2τ2

0
− τ2

1
2τ2

0 (τ1 +mτ0)2 ,

E
[
∂2l

∂τ2
1

]
= −mτ0(2τ1 +mτ0)

2τ2
1 (τ1 +mτ0)2 + mτ0

τ1(τ1 +mτ0)2 = − m2τ2
0

2τ2
1 (τ1 +mτ0)2 ,

E
[
∂2l

∂µ∂τ0

]
= 0, E

[
∂2l

∂µ∂τ1

]
= 0,

E
[

∂2l

∂τ0∂τ1

]
= m

2(τ1 +mτ0)2 − m

(τ1 +mτ0)2 = − m

2(τ1 +mτ0)2 ,

as desired.

Lemma 72. Let X ∼ N(ν, σ2). Then

∣∣∣∣E [ei(aX2+bX)
]∣∣∣∣ ≤ e

−σ2
2

(2νa+b)2

1+4a2σ4(
1 + 4a2σ4)1/4 ,

for every (a, b) ∈ R2.

Proof. By definition of expectation we have

E
[
ei(aX

2+bX)
]

=
∫
R
ei(az

2+bz) 1√
2πσ2

e−
(z−ν)2

2σ2 dz = e−
ν2

2σ2
√

2πσ2

∫
R
e
− 1

2

[
z2
(

1
σ2−2ia

)
−2z
(

ν
σ2 +ib

)]
dz

Notice that

z2
( 1
σ2 − 2ia

)
− 2z

(
ν

σ2 + ib

)
=
(

1 − 2iaσ2

σ2

)z2 − 2z ν + ibσ2

1 − 2iaσ2 +
(
ν + ibσ2

1 − 2iaσ2

)
−
(
ν + ibσ2

1 − 2iaσ2

)2


=
(

1 − 2iaσ2

σ2

)(
z − ν + iσ2b

1 − 2iaσ2

)2

− (ν + ibσ2)2

σ2(1 − 2iaσ2) ,
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so that
1√

2πσ2

∫
R
e
− 1

2

[
z2
(

1
σ2−2ia

)
−2z
(

ν
σ2 +ib

)]
dz = e

(ν+ibσ2)2

2σ2(1−2iaσ2)
√

1 − 2iaσ2
.

Finally, we get

E
[
ei(aX

2+bX)
]

= e−
ν2

2σ2
e

(ν+ibσ2)2

2σ2(1−2iaσ2)
√

1 − 2iaσ2
. (85)

With simple computations we obtain

(ν + ibσ2)2

2σ2(1 − 2iaσ2) = (ν2 + 2iνbσ2 − b2σ4)(1 + 2iaσ2)
2σ2(1 + 4a2σ4)

= ν2 + 2iνbσ2 − b2σ4 + 2iν2aσ2 − 4νabσ2 − 2iσ6ab2

2σ2(1 + 4a2σ4)

= ν2 + 2i(νbσ2 + ν2aσ2 − σ6ab2) − 4νabσ4 − σ4b2

2σ2(1 + 4a2σ4) .

Thus, by (85) we can write

E
[
ei(aX

2+bX)
]

= e−
ν2

2σ2
e

(ν+ibσ2)2

2σ2(1−2iaσ2)
√

1 − 2iaσ2
,

that implies ∣∣∣∣E [ei(aX2+bX)
]∣∣∣∣ ≤ e

− 4ν2a2σ4+4νabσ4+b2σ4
2σ2(1+4a2σ4)

|
√

1 − 2iaσ2|
= e

−σ2
2

(2νa+b)2

1+4a2σ4(
1 + 4a2σ4)1/4 ,

as desired.

Define

ψ = (µ, τ1) and T = T (θ) =

 J∑
j=1

θj ,
J∑
j=1

(θj − µ∗)2

 . (86)

Next three lemmas show that assumptions (B1) − (B6) are satisfied for (T , ψ) as defined above.

Lemma 73. Consider the setting of Proposition 24. Then assumptions (B1)−(B3) are satisfied
for (T , ψ) as in (86).

Proof. It is easy to show that assumption (B1) is satisfied, with g(·) as in (4.23). As regards
(B2), suitable tests can be defined analogously to Lemma 55.

Finally, by Lemma 71, the Fisher Information is given by

mτ∗0 τ
∗
1

mτ∗0 + τ∗1

for l = 1 and by  mτ∗0 τ
∗
1

mτ∗0 +τ∗1
0

0 m2(τ∗0 )2

2(τ∗1 )2(τ∗1 +mτ∗0 )2

 ,
for l = 2, 3. Therefore (B3) is satisfied for any ψ∗.
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Lemma 74. Consider the setting of Proposition 24. Then assumption (B4) is satisfied for
(T , ψ) as in (86).

Proof. Since T (θj) = (θj , (θj − µ∗)2) it holds

M (p)
s (µ, τ1 | Yj) = E

[
θspj | µ, τ1

]
, M

(1)
1,2 (µ, τ1 | Yj) = E

[
θj(θ∗j − µ∗)2 | µ, τ1

]
.

By Lemma 69 and (82), we obtain

E
[
θkj | µ, τ1

]
=

k∑
i=0

(
k

i

)(
mτ0

mτ0 + τ1
Ȳj + τ1

mτ0 + τ1
µ

)i ( 1
mτ0 + τ1

)(k−i)/2
E[Zk−i].

It is a finite sum of infinitely times differentiable terms (with respect to µ and τ1). Moreover, for
every k ≥ 1, thanks to Lemma 69 and (83), EYj

[
|Ȳj |k | µ, τ1

]
is uniformly bounded over (µ, τ1)

belonging to a bounded set.
Therefore, choosing δ4 < τ∗1 , it is easy to find C < ∞ that satisfies assumption (B4).

Lemma 75. Consider the setting of Proposition 24. Then assumptions (B5) and (B6) are
satisfied for (T , ψ) as in (86).

Proof. Assume µ∗ = 0, the general case follows by similar calculations. Recall that the posterior
distribution of θj is given by N(mj , σ

2), with mj as in (82) and

σ2 = 1
mτ0 + τ1

.

By Lemma 72 we have

∣∣∣∣∣E
[
ei(t1θj+t2θ2

j ) | Yj , µ, τ1

]∣∣∣∣∣
2

≤ e
−σ2 (2mj t2+t1)2

1+4t2
2σ4(

1 + 4t22σ4
)1/2 . (87)

Moreover, notice that ∫
R
e
−cσ2 (2mj t2+t1)2

1+4t2
2σ4 dt1 =

√
π

cσ2

√
1 + 4t22σ4,

for any c > 0. Since θj are independent, given µ and τ1, by Hölder inequality we write

∫
R2

∣∣∣∣∣E
[
e
i(t1
∑3

j=1 θj+t2
∑3

j=1 θ
2
j ) | Y, µ, τ1

]∣∣∣∣∣
2

dt1dt2 =
∫
R2

3∏
j=1

∣∣∣∣∣E
[
ei(t1θj+t2θ2

j ) | Yj , µ, τ1

]∣∣∣∣∣
2

dt1dt2

≤
∫
R2

3∏
j=1

e
−σ2 (2mj t2+t1)2

1+4t2
2σ4(

1 + 4t22σ4
)1/2 dt1dt2 =

∫
R

1(
1 + 4t22σ4

)3/2

∫
R

3∏
j=1

e
−σ2 (2νj t2+t1)2

1+4t2
2σ4 dt1

 dt2

≤
∫
R

1(
1 + 4t22σ4

)3/2

3∏
j=1

∫
R
e
−3σ2 (2νj t2+t1)2

1+4t2
2σ4 dt1


1/3

dt2

=
√

π

3σ2

∫
R

1
1 + 4t22σ4 dt2.
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Therefore ∫
R2

∣∣∣φ(3) (t | Y, ψ
)∣∣∣2 dt ≤

√
π

3σ2

∫
R

1
1 + 4t22σ4 dt2 < ∞,

where the right hand side does not depend on the data and it is a continuous function of µ and
τ1. This implies (B5) is satisfied with k = 3.

As regards (B6), by Lemma 72 if t2 ̸= 0 we have

|φ(1)(t | Yj , µ, τ1)| ≤ 1(
1 + 4t22σ4

)1/4 ,

while if t2 = 0 then
|φ(1)(t | Yj , µ, τ1)| ≤ e−

σ2
2 t21 .

Therefore

|φ(1)(t | Yj , µ, τ1)| ≤ max


1(

1 + 4t22σ4
)1/4 , e

−σ2
2 t21

 ,
so that

sup
|t|>ϵ

|φ(1)(t | Yj , µ, τ1)| ≤ max

 1(
1 + ϵ2σ4)1/4 , e

−σ2
8 ϵ2

 ,
since at least one between t1 and t2 must be larger than ϵ/2. Notice that the right hand side
does not depend on Yj and is strictly smaller than 1 for every triplet (µ, τ1, τ0). Since σ2 is a
continuous function of µ and τ1, assumption (B6) is satisfied by choosing δ6 < τ∗1 and k′ = 1.

Proof of Proposition 24. The result for P1 follows directly by Theorem 20, whose assumptions
are satisfied by Lemmas 73, 74 and 75. As regards P2 and P3, they are not particular cases
of Theorem 20, since the two operators are different by the one in (4.15). However, the result
follows by very similar arguments, that we briefly summarize. Since by construction

L
(
dψ | θ, Y1:J

)
= L

(
dψ | T (θ), Y1:J

)
a direct analogue of Lemma 44 holds. Moreover, following the proof of Theorem 20, Lemmas
45, 46 and 64 hold for T in (86). Finally, Corollary 12 proves that the limiting spectral gaps
associated to P2 and P3 are strictly positive: by Lemma 54 this implies t̃mix(ϵ,M) < ∞ for P2,
being a two-block Gibbs sampler. The same holds for P3, since in the limit it can be reduced to
a two-block Gibbs sampler, as it will be clear by the proof of Corollary 12.

Proof of Corollary 12

We split the proof in two different cases.
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Proof of Corollary 12 for γ1(ψ∗)

Proof. By Corollary 11, the spectral gap is equal to

γ1(ψ) =
VarYj

(
E
[
θj | ψ, Yj

])
Var

(
θj | ψ

) .

By (82) and (83) we have

VarYj

(
E
[
θj | ψ, Yj

])
=
(

mτ0
mτ0 + τ1

)2
, Var

(
Ȳj
)

= mτ0
τ1(mτ0 + τ1) ,

and Var
(
θj | ψ

)
= τ−1

1 , that leads to

γ1(ψ∗) = mτ∗0
mτ∗0 + τ∗1

,

as desired.

Proof of Corollary 12 for γ2(ψ∗) and γ3(ψ∗)

We need a technical Lemma.

Lemma 76. Consider the setting of Proposition 24. Then

C(ψ∗) =

 τ∗1
mτ∗0 +τ∗1

0
0 − τ∗1 +2mτ∗0

τ∗1 (mτ∗0 +τ∗1 )2

 , V (ψ∗) =

 1
mτ∗0 +τ∗1

0
0 2τ∗1 +4mτ∗0

τ∗1 (mτ∗0 +τ∗1 )2

 ,
with C(ψ∗) and V (ψ∗) as in (38).

Proof. Recall that, in the context of Proposition 24, we define T1(θj) = θj and T2(θj) = (θj−µ∗)2.
By (82) we have

E[T1(θj) | Yj , ψ] = mτ0
mτ0 + τ1

Ȳj + τ1
mτ0 + τ1

µ,

E[T2(θj) | Yj , ψ] = 1
mτ0 + τ1

+
(

mτ0
mτ0 + τ1

Ȳj + τ1
mτ0 + τ1

µ− µ∗
)2
.
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Therefore we can compute C(ψ∗) as

EYj

[
∂µM1(ψ∗ | Yj)

]
= τ∗1
mτ∗0 + τ∗1

,

EYj

[
∂µM2(ψ∗ | Yj)

]
= EYj

 2τ∗1
mτ∗0 + τ∗1

(
mτ∗0

mτ∗0 + τ∗1
Ȳj − mτ∗0

mτ∗0 + τ∗1
µ∗
) = 0,

EYj

[
∂τ1M1(ψ∗ | Yj)

]
= EYj

[
− mτ∗0

(mτ∗0 + τ∗1 )2 Ȳj + mτ∗0
(mτ∗0 + τ∗1 )2µ

∗
]

= 0,

EYj

[
∂τ1M2(ψ∗ | Yj)

]
= − 1

(mτ∗0 + τ∗1 )2 +

EYj

2
(

− mτ∗0
(mτ∗0 + τ∗1 )2 Ȳj + mτ∗0

(mτ∗0 + τ∗1 )2µ
∗
)(

mτ∗0
mτ∗0 + τ∗1

Ȳj − mτ∗0
mτ∗0 + τ∗1

µ∗
)

= − 1
(mτ∗0 + τ∗1 )2 − 2 (mτ∗0 )2

(mτ∗0 + τ∗1 )3EYj

[
(Ȳj − µ∗)2

]
= − 1

(mτ∗0 + τ∗1 )2 − 2 mτ∗0
τ∗1 (mτ∗0 + τ∗1 )2 ,

by (83).

We now consider V (ψ∗). Given X ∼ N(µ, σ2), we have

Cov(X,X2) = 2µσ2, Var(X2) = 2σ4 + 4µ2σ2 ,

which can be easily derived by computing the first four moments of X using Lemma 69, which
are E[X] = µ, E[X2] = µ2 + σ2, E[X3] = 3µσ2 + µ3 and E[X4] = 3σ4 + 6µ2σ2 + µ4. By (82)
we have

Var(θj | Yj , ψ∗) = 1
mτ∗0 + τ∗1

,

Cov(θj , (θj − µ∗)2 | Yj , ψ∗) = Cov(θj − µ∗, (θj − µ∗)2 | Yj , ψ∗) = 2 mj − µ∗

mτ∗0 + τ∗1
,

Var((θj − µ∗)2 | Yj , ψ∗) = 2
(mτ∗0 + τ∗1 )2 + 4

mτ∗0 + τ∗1

(
mj − µ∗

)2
= 2

(mτ∗0 + τ∗1 )2 + 4
mτ∗0 + τ∗1

(
mτ∗0

mτ∗0 + τ∗1
(Ȳj − µ∗) + µ∗

)2

.

Therefore, we conclude
EYj

[
Cov(θj , θ2

j | Yj , ψ∗)
]

= 0
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and

EYj

[
Var(θ2

j | Yj , ψ∗)
]

= 2
(mτ∗0 + τ∗1 )2 + 4

mτ∗0 + τ∗1
EYj

( mτ∗0
mτ∗0 + τ∗1

)2

(Ȳj − µ∗)2


= 2

(mτ∗0 + τ∗1 )2 + 4m2(τ∗0 )2

(mτ∗0 + τ∗1 )3EYj

[
(Ȳj − µ∗)2

]
= 2

(mτ∗0 + τ∗1 )2 + 4mτ∗0
τ∗1 (mτ∗0 + τ∗1 )2 ,

as desired.

Lemma 77. Consider the same assumptions of Proposition 24. Then∥∥∥L(dT̃ , dψ̃ | Y1:J) −N (0,Σ)
∥∥∥
TV

→ 0,

as J → ∞, in Q
(∞)
ψ∗ -probability, where (T̃ , ψ̃) are derived by (86) with transformations (4.17)

and (4.19) and where

Σ =


2 τ∗1 +2mτ∗0
m2(τ∗0 )2τ∗1

0 −2 τ
∗
1 (τ∗1 +2mτ∗0 )
m2(τ∗0 )2 0

0 1
mτ∗0

0 1
mτ∗0

−2 τ
∗
1 (τ∗1 +2mτ∗0 )
m2(τ∗0 )2 0 2 (τ∗1 )2(τ∗1 +mτ∗0 )2

m2(τ∗0 )2 0
0 1

mτ∗0
0 mτ∗0 +τ∗1

mτ∗0 τ
∗
1


(88)

Proof. The result follows by an argument similar to the proof of Proposition 23, where

Σ =

V (ψ∗) + C(ψ∗)I−1(ψ∗)C⊤(ψ∗) C(ψ∗)I−1(ψ∗)

I−1(ψ∗)C⊤(ψ∗) I−1(ψ∗)


The entries of Σ can be computed through Lemmas 71 and 76.

Proof of Corollary 12 for γ2(ψ∗) and γ3(ψ∗). Recall that P2 is the transition kernel of the Gibbs
sampler that alternates updates from L

(
dµ,dθ | τ1, Y1:J

)
and L

(
dτ1 | θ, µ, Y1:J

)
. Through the

same reasoning of Lemma 44, the mixing times of P2 are the same of the Gibbs sampler targeting
L
(
dµ, dτ1,dT | Y1:J

)
by alternating updates from L

(
dµ, dT | τ1, Y1:J

)
and L

(
dτ1 | µ,T , Y1:J

)
.

Indeed
L
(
dτ1 | µ,θ, Y1:J

)
= L

(
dτ1 | µ,T (θ), Y1:J

)
.

Therefore, by Corollary 9 γ2(ψ∗) is the spectral gap of the Gibbs sampler alternating updates
from L̃

(
dµ̃, dT̃1,dT̃2 | τ̃1

)
and L̃

(
dτ̃1 | µ̃, T̃1, T̃2

)
, where L̃(·) is the law identified in Lemma 77.

By inspection of the matrix (88),
(
µ̃, T̃1

)
is independent from τ̃1 and T̃2 according to L̃, so that(

µ̃, T̃1
)

is sampled independently from everything else at each iteration. Therefore by the same
arguments of the proof of Corollary 10 we have

γ2(ψ∗) = 1 − Σ2
24

Σ22Σ44
=
(

mτ∗0
mτ∗0 + τ∗1

)2

.
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Instead, recall that P3 is the transition kernel of the Gibbs sampler that alternates updates from
L
(
dθ | τ1, Y1:J

)
, L

(
dµ | θ, τ1, Y1:J

)
and L

(
dτ1 | θ, µ, Y1:J

)
. Reasoning as before, by Corollary

9 γ3(ψ∗) is the spectral gap of the Gibbs sampler alternating updates from L̃
(
dT̃ | µ̃, τ̃1

)
,

L̃
(
dµ̃ | τ̃1, T̃

)
and L̃

(
dτ̃1 | µ̃, T̃

)
, where L̃(·) is the law identified in Lemma 77. By inspection

of the matrix (88), the pair (µ̃, T̃1) is independent from (τ̃1, T̃2), according to L̃. By standard
properties of the Gibbs samplers (e.g. Lemma 2 in Papaspiliopoulos et al. (2020)), the spectral
gap is given by the minimum of the spectral gaps of the Gibbs samplers associated to the two
pairs, i.e.

γ3(ψ∗) = min
{

1 − Σ2
24

Σ22Σ44
, 1 − Σ2

13
Σ11Σ33

}
=
(

mτ∗0
mτ∗0 + τ∗1

)2

.

Notice that the result of Lemma 54 holds even if P3 has three blocks: indeed, by inspection of
the matrix (88), µ̃ and τ̃1 are independent according to L̃, so that the updates L̃

(
dµ̃ | τ̃1, T̃

)
and L̃

(
dτ̃1 | µ̃, T̃

)
can be equivalently seen as a single one.

Proof of Lemma 47

Since it will be useful in the following, we denote

c(µ, τ) = min
r∈{0,...,m}

g(yr | µ, τ) ,

with g(yr | µ, τ) defined in (4.28). Notice that by construction, see e.g. (4.26), we have 0 <
c(µ, τ) ≤ 1. Also, g(yr | µ, τ) is continuous w.r.t. (µ, τ) since it is defined in (4.28) as the integral
of a bounded function, θ 7→ f(y | θ), with respect to the normal kernel which is continuous w.r.t.
(µ, τ). It follows that also c(µ, τ) is continuous, since it is the minimum of a finite number of
continuous functions. Define

c := inf
(µ,τ)∈B

c(µ, τ) > 0 (89)

where B is the largest of the three balls – namely Bδ4 , Bδ5 and Bδ6 – centered at ψ∗ = (µ∗, τ∗)
defined in (B4), (B5) and (B6), respectively. The positivity of c follows from the continuity of
c(µ, τ) and the compactness of B.

Recall that T (θj) =
(
θj , θ

2
j

)
. Thus we need three lemmas.

Lemma 78. Consider the setting of Lemma 47. Then assumption (B4) is satisfied.
Proof. First of all, consider V (ψ∗), as defined in (38). For every y = 0, . . . ,m, we have that the
posterior distribution of θj admits a density with respect to the Lebesgue measure of the form

p(θj | y, µ, τ) ∝ f(yr | θj)N(θj | µ, τ),

which implies that

Var(θj | y, ψ∗) > 0, Var(θ2
j | y, ψ∗) > 0, |Corr(θj , θ2

j | y, ψ∗)| < 1.

Consequently V (ψ∗) is a sum of positive definite matrices and is therefore non singular.
Secondly, let s, p = 1, 2. Then by Bayes’ Theorem it follows

M (p)
s (yr | µ, τ) =

∫
R θ

spf(yr | θ)N(θ | µ, τ−1) dθ∫
R f(yr | θ)N(θ | µ, τ−1) dθ , r = 0, . . . ,m.
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Therefore

|∂µM (p)
1 (yr | µ, τ)| ≤

∣∣∣∣∣
∫
R θ

pf(yr | θ)∂µN(θ | µ, τ−1) dθ∫
R f(yr | θ)N(θ | µ, τ−1) dθ

∣∣∣∣∣+∣∣∣∣∣∣∣∣
(∫

R θ
pf(yr | θ)N(θ | µ, τ−1) dθ

) (∫
R f(yr | θ)∂µN(θ | µ, τ−1) dθ

)
(∫

R f(yr | θ)N(θ | µ, τ−1) dθ
)2

∣∣∣∣∣∣∣∣ .
By definition of c we have

|∂µM (p)
1 (yr | µ, τ)| ≤1

c

∫
R

|θ|p
∣∣∣∂µN(θ | µ, τ−1)

∣∣∣ dθ+

1
c2

(∫
R

|θ|pN(θ | µ, τ−1) dθ
)(∫

R
|θ|p

∣∣∣∂µN(θ | µ, τ−1)
∣∣∣ dθ

)
=τ

c

∫
R

|(θ − µ)θp|N(θ | µ, τ−1) dθ+

τ

c2

(∫
R

|(θ − µ)θ|pN(θ | µ, τ−1) dθ
)(∫

R
|θ|pf

∣∣∣N(θ | µ, τ−1)
∣∣∣ dθ

)
.

The right hand side does not depend on the data, so that

EYj

[
|∂µM (p)

1 (yr | µ, τ)|
]

≤ m
τ

c
E[|(θj − µ)θpj | | µ, τ ] +m

τ

c2E[|(θj − µ)θpj | | µ, τ ]E[|θj |p | µ, τ ].

By the specification of model (4.27), the prior absolute moments are all finite and continuous
function of µ and τ : therefore the right hand side is uniformly bounded for every bounded
neighborhood of (µ∗, τ∗). Using a similar argument for all the other quantities involved, it is
easy to see that assumption (B4) holds for every δ4 < τ∗.

Lemma 79. Consider the setting of Lemma 47. Then assumption (B5) is satisfied with k = 5.

Proof. Consider the random vector X = (X1, X2) = (∑5
j=1 θj ,

∑5
j=1 θ

2
j ). First of all we prove

that X admits a density function with respect to the Lebesgue measure on R2, conditional to
(µ, τ). By Lemma 72 and conditional independence of θj we have

∣∣∣∣E [ei(t1X1+t2X2) | µ, τ1
]∣∣∣∣ ≤ e

−5 σ2
2

(2µt2+t1)2

1+4t2
2σ4(

1 + 4t22σ4
)5/4 ,

where we denote σ2 = τ−1, so that we can write∫
R2

|φX(t | µ, τ)| dt =
∫
R2

∣∣∣∣∣E
[
e
i(t1X1+t2

∑3
j=1 X2) | Y, µ, τ1

]∣∣∣∣∣ dt1dt2

≤
∫
R

1(
1 + 4t22σ4

)5/4

∫
R
e
−5 σ2

2
(2µt2+t1)2

1+4t2
2σ4 dt1

 dt2

=
√

2π
5σ2

∫
R

1(
1 + 4t22σ4

)3/4 dt2 < ∞.

(90)
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Therefore, by the Inversion Formula we have that X admits a density p(x | µ, τ) with respect
to the Lebesgue measure on R2. Thus, by Bayes’ Theorem we can write

p(x | Y1:5, µ, τ) = f(Y1:5 | x, µ, τ)p(x | µ, τ)∫
R2 f(Y1:5 | x, µ, τ)p(x | µ, τ) dx,

where f(Y1:5 | x, µ, τ) =
∫ ∏5

j=1 f(Yj | θj)L(dθ1:5 | x, µ, τ). It is easy to see that f(Y1:5 |
x, µ, τ) ≤ 1 and ∫

R2
f(Y1:5 | x, µ, τ)p(x | µ, τ) dx =

5∏
j=1

g(Yj | µ, τ) ≥ c5,

for every (µ, τ) ∈ Bδ5 , with δ5 to be fixed. We can therefore conclude that

p(x | Y1:5, µ, τ) ≤ p(x | µ, τ)
c5 .

We can now apply the Plancherel identity to get∫
R2

∣∣∣φ(5)(t | Y, µ, τ)
∣∣∣2 dt =

∫
R2
p2(x1, x2 | Y, µ, τ) dx ≤ 1

c10

∫
R2
p2(x1, x2 | µ, τ) dx.

Applying again the Plancherel identity we obtain∫
R2

∣∣∣φ(5)(t | Y, µ, τ)
∣∣∣2 dt ≤ 1

c10

∫
R2

∣∣φX(t | µ, τ)
∣∣2 dt ≤ 1

c10

∫
R2

∣∣φX(t | µ, τ)
∣∣ dt < ∞,

by (90) for every τ > 0. Therefore assumption (B5) follows with δ5 < τ∗.

Lemma 80. Consider the setting of Lemma 47. Then assumption (B6) is satisfied with k′ = 5.

Proof. As shown in the proof of Lemma 79, the vector (∑5
j=1 θj ,

∑5
j=1 θ

2
j ) admits a density with

respect to the Lebesgue measure on R2, conditional to Y and (µ∗, τ∗). Therefore, by Lemma
4 in Chapter 15 of Feller (1970), |φ(5)(t | Y, µ∗, τ∗)| < 1 for every t = (t1, t2). Moreover, by
Riemann-Lebesgue Lemma we have

|φ(5)(t | Y, µ∗, τ∗)| → 0,

as |t| → ∞. We conclude
sup
|t|≥ϵ

∣∣∣φ(5)(t | Y, µ∗, τ∗)
∣∣∣ < 1.

Let δ6 > 0 to be chosen later and (µ, τ) ∈ Bδ6 . Then by Taylor formula we get

|φ(5)(t | Y, µ, τ)|2 = |φ(5)(t | Y, µ∗, τ∗)|2+(µ∗−µ)∂µ|φ(5)(t | Y, µ̄, τ̄)|2+(τ∗−τ)∂τ |φ(5)(t | Y, µ̄, τ̄)|2,
(91)
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where (µ̄, τ̄) ∈ Bδ6 . Notice that

|φ(5)(t | Y, µ, τ)|2 =

∫
R3

cos

t1 5∑
j=1

θj + t2

5∑
j=1

θ2
j


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

 dθ1:5


2

+

∫
R5

sin

t1 5∑
j=1

θj + t2

5∑
j=1

θ2
j


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

 dθ1:5


2

,

which implies

∣∣∣∂µ|φ(5)(t | Y, µ, τ)|2
∣∣∣ ≤2

∣∣∣∣∣∣∣
∫
R5

cos

t1 5∑
j=1

θj + t2

5∑
j=1

θ2
j

 ∂µ


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

 dθ1:5

∣∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣∣
∫
R5

sin

t1 5∑
j=1

θj + t2

5∑
j=1

θ2
j

 ∂µ


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

 dθ1:5

∣∣∣∣∣∣∣
and therefore

∣∣∣∂µ|φ(5)(t | Y, µ, τ)|2
∣∣∣ ≤ 4

∫
R5

∣∣∣∣∣∣∣∂µ


5∏
j=1

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj


∣∣∣∣∣∣∣ dθ1:5

= 4
5∑
j=1

∫
R

∣∣∣∣∣∣∂µ
{

f(Yj | θj)N(θj | µ, τ−1)∫
R f(Yj | ψj)N(ψj | µ, τ−1)dψj

}∣∣∣∣∣∣ dθj .

(92)

Moreover, for every r = 0, . . . ,m, we have∣∣∣∣∣∣∂µ
{

f(yr | θ)N(θ | µ, τ−1)∫
R f(yr | ψ)N(ψ | µ, τ−1)dψ

}∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
{

f(yr | θ)∂µN(θ | µ, τ−1)∫
R f(yr | ψ)N(ψ | µ, τ−1)dψ

}∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

f(yr | θ)∂µN(θ | µ, τ−1)

(∫
R f(yr | ψ)∂µN(ψ | µ, τ−1)dψ

)
(∫

R f(yr | ψ)N(ψ | µ, τ−1)dψ
)2


∣∣∣∣∣∣∣∣∣

≤ |∂µN(θ | µ, τ−1)|
c

+ 1
c2 |∂µN(θ | µ, τ−1)|

(∫
R

|∂µN(ψ | µ, τ−1)|dψ
)

= 2τ |θ − µ|N(θ | µ, τ)
c

+ 4τ2

c2 |θ − µ|N(θ | µ, τ−1)
(∫

R
|ψ − µ|N(ψ | µ, τ−1)dψ

)
.

Therefore, by (92) there exists C(δ6) < ∞ which does not depend on µ and τ such that

∣∣∣∂µ|φ(5)(t | Y, µ, τ)|2
∣∣∣ ≤40τ

∫
R |θ − µ|N(θ | µ, τ−1) dθ

c
+ 80τ2

(∫
R |θ − µ|N(θ | µ, τ−1) dθ

c

)2

≤ C(δ6),

for every (µ, τ) ∈ Bδ6 Notice that C(δ6) becomes smaller as δ6 decreases. Similarly holds for
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∂τ |φ(3)(t | Y, µ, τ)|2, so that by (91) we have

|φ(5)(t | Y, µ, τ)|2 ≤ |φ(5)(t | Y, µ∗, τ∗)|2 + |µ∗ − µ|C(δ6) + |τ∗ − τ |C(δ6)
≤ |φ(5)(t | Y µ∗, τ∗)|2 + 2δ6C(δ6).

Since sup
|t|≥ϵ

|φ(5)(t | Y, µ∗, τ∗)|2 < 1, by choosing δ6 small enough we have

sup
(µ,τ)∈Bδ6

sup
|t|≥ϵ

|φ(5)(t | Y, µ, τ)|2 ≤ sup
|t|≥ϵ

|φ(5)(t | Y, µ∗, τ∗)|2 + 2δ6C(δ6) < 1,

and (B6) is satisfied.

Proof of Lemma 47. Assumption (B4) is satisfied by Lemma 78, assumption (B5) by Lemma 79
and assumption (B6) by Lemma 80.

Proof of Proposition 25

Proof. Requirements (B1)− (B3) of Theorem 20 are satisfied by assumption, while (B4)− (B6)
hold by Lemma 47.

Proof of Corollary 13

Proof. The result is a direct consequence of Corollary 10.

Statement and proof of Lemma 81

Let
f(y | θ) =

(
m

y

)
eyθ

(1 + eθ)m , (93)

where y = 0, . . . ,m. It means that for each group, conditional to θ, m independent Bernoulli
trials are performed, with probability of success given by eθ/(1 + eθ). The following Section is
devoted to the proof of the following lemma.

Lemma 81. Consider the setting of Proposition 25 with likelihood (93). The Fisher Information
Matrix I(µ, τ) is non-singular if and only if m ≥ 2, for every (µ, τ).

First of all we need few preliminary results.

Lemma 82. Consider the setting of Proposition 25 with likelihood (93) and fix (µ, τ). Let
h(y | µ, τ) = log g(y | µ, τ), with g(·) as in (4.28). Then it holds

EY

[
∂

∂µ
h(Y | µ, τ)

]
= EY

[
∂

∂τ
h(Y | µ, τ)

]
= 0

and

EY

( ∂

∂µ
h(Y | µ, τ)

)2
 < ∞, EY

( ∂

∂τ1
h(Y | µ, τ)

)2
 < ∞.
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Moreover, for every y = 0, . . . ,m we have

∂

∂µ
g(y |, µ, τ) =

(
m

y

)∫ eyθ
[
y + yeθ −meθ

]
(1 + eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ

and
∂

∂τ
g(y |, µ, τ) = −

(
m

y

)
1
2τ

∫
(θ − µ)

eyθ
[
y + yeθ −meθ

]
(1 + eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ.

Proof. Through Dominated Convergence Theorem it is easy to verify that

∂

∂µ
g(y | µ, τ) =

(
m

y

)∫
eyθ

(1 + eθ)m
∂

∂µ

{√
τ

2πe
− τ

2 (θ−µ)2
}

dθ

and
∂

∂τ
g(y | µ, τ) =

(
m

y

)∫
eyθ

(1 + eθ)m
∂

∂τ

{√
τ

2πe
− τ

2 (θ−µ)2
}

dθ,

that is integrals and derivatives can be exchanged. Therefore

∂

∂µ
h(y |, µ, τ) = E

[
θ − µ | y, µ, τ

]
,

∂

∂µ
h(y |, µ, τ) = 1

2τ − 1
2E

[
(θ − µ)2 | y, µ, τ

]
and the statements on h(y | µ, τ) easily follow. Moreover

∂

∂µ
g(y | µ, τ) =

(
m

y

)∫
eyθ

(1 + eθ)m (θ − µ)
√
τ

2πe
− τ

2 (θ−µ)2 dθ

=
(
m

y

)∫ eyθ
[
y + yeθ −meθ

]
(1 + eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ

integrating by parts. Similarly

∂

∂τ
g(y | µ, τ) =

(
m

y

)
1
2τ

∫
eyθ

(1 + eθ)m
√
τ

2πe
− τ

2 (θ−µ)2 dθ

−
(
m

y

)
1
2

∫
eyθ

(1 + eθ)m (θ − µ)2
√
τ

2πe
− τ

2 (θ−µ)2 dθ

= −
(
m

y

)
1
2τ

∫
(θ − µ)

eyθ
[
y + yeθ −meθ

]
(1 + eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ.

Lemma 83. Consider the setting of Proposition 25 with likelihood (93) and let y, y′ ∈ {0, 1, . . . ,m}
be such that y < y′ and m ≥ 1. Then

E
[
θ | y, µ, τ

]
< E

[
θ | y′, µ, τ

]
for every (µ, τ1).
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Proof. Fix (µ, τ). Consider the function

r(x) =
∫
θ exθ

(1+eθ)m

√
τ1
2πe
− τ

2 (θ−µ)2 dθ∫ exθ

(1+eθ)m

√
τ

2πe
− τ

2 (θ−µ)2 dθ
.

with x ∈ (0,m). Notice that

r(y) = E
[
θ | y, µ, τ

]
and r(y′) = E

[
θ | y′, µ, τ

]
.

Notice that

d
dxr(x) =

∫
θ2 exθ

(1+eθ)m

√
τ

2πe
− τ

2 (θ−µ)2 dθ∫ exθ

(1+eθ)m

√
τ

2πe
− τ

2 (θ−µ)2 dθ
−


∫
θ exθ

(1+eθ)m

√
τ

2πe
− τ

2 (θ−µ)2 dθ∫ exθ

(1+eθ)m

√
τ

2πe
− τ

2 (θ−µ)2 dθ


2

> 0

for every x ∈ (0,m) by Jensen inequality. Therefore r(x) is strictly increasing and r(y) <
r(y′).

Lemma 84. Consider the setting of Proposition 25 with likelihood (93). Then the Fisher Infor-
mation Matrix I(µ, τ) is non-singular in (µ, τ) if and only if there exists α = α(µ, τ) ̸= 0 such
that

∂

∂µ
g(y | µ, τ) = α

∂

∂τ
g(y | µ, τ)

for every y = 0, . . . ,m.
Proof. Fix a pair (µ, τ). By Lemma 82 the matrix I(µ, τ) is well-defined. The determinant is
given by

EY

( ∂

∂µ
h(Y | µ, τ)

)2
EY

( ∂

∂τ
h(Y | µ, τ)

)2
− E2

( ∂

∂µ
h(Y | µ, τ)

)(
∂

∂τ
h(Y | µ, τ)

) .
By Cauchy–Schwartz inequality, the above formula is always non-negative and it is equal to 0 if
and only if ∂

∂µh(Y | µ, τ) and ∂
∂τ h(Y | µ, τ) are linearly dependent, that is

∂

∂µ
h(y | µ, τ) = α

∂

∂τ
h(y | µ, τ) + β (94)

for every y ∈ {0, 1, . . . ,m} and for constants α and β. By Lemma 82 it is immediate to prove
β = 0. Moreover, by Lemma 83, we deduce that α ̸= 0. Multiplying by g(y | µ, τ) on both sides
of (94) we get the final result.

Proof of Lemma 81. Fix (µ, τ) and let m = 1. Define

α :=
∂
∂µg(0 | µ, τ)
∂
∂τ g(0 | µ, τ)

.

Notice that α is well defined, since ∂
∂τ g(0 | µ, τ) ̸= 0 for every (µ, τ). Then by construction

∂

∂µ
g(0 | µ, τ) = α

∂

∂τ
g(0 | µ, τ)
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and
∂

∂µ
g(1 | µ, τ) = − ∂

∂µ
g(0 | µ, τ) = −α ∂

∂τ
g(0 | µ, τ) = α

∂

∂τ
g(1 | µ, τ),

so that the Fisher Information matrix is singular by Lemma 84.
Let m ≥ 2 and fix (µ, τ). Assume by contradiction that I(µ, τ) is singular. By Lemma 84

we have that there exists α ̸= 0 such that

∂

∂µ
g(y | µ, τ) = α

∂

∂τ
g(y | µ, τ)

for every y ∈ {0, 1, . . . ,m}. By the second part of Lemma 82 for y = 0 and y = m it implies

−m
∫

eθ

(1 + eθ)m+1

√
τ1
2πe

− τ
2 (θ−µ)2 dθ = α

m

2τ

∫
(θ − µ) eθ

(1 + eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ

and

m

∫
emθ

(1 + eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ = −αm2τ

∫
(θ − µ) emθ

(1 + eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ.

Since α ̸= 0, we conclude∫
(θ − µ) emθ

(1+eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ∫ emθ

(1+eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ
=
∫

(θ − µ) eθ

(1+eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ∫ eθ

(1+eθ)m+1

√
τ

2πe
− τ

2 (θ−µ)2 dθ
,

that means
E[θ | m,µ, τ ] = E[θ | 1, µ, τ ].

Since m > 1, the above equality directly contradicts Lemma 83. Therefore the Fisher Informa-
tion matrix is non singular.

Proof of Proposition 26

Define a one-to-one transformation of ψ = (µ, τ1, τ0) as

ψ̃ =
√
J
(
ψ − ψ∗

)
− ∆J , ∆J = 1√

J

J∑
j=1

I−1(ψ∗)∇ log g(Yj | ψ∗), (95)

with g(·) as in (4.23) and I(ψ∗) as in (84).

Lemma 85. Consider the assumptions of Proposition 26. Then it holds∣∣∣∣∣
∣∣∣∣L(dψ̃ | Y1:J) −N

(
0, I−1(ψ∗)

)∣∣∣∣
∣∣∣∣∣
TV

→ 0,

as J → ∞ in Q
(∞)
ψ∗ -probability, with I(ψ∗) non singular matrix as in (84).

Proof. The result follows by Theorem 19. Indeed, the map ψ → g(y | ψ) clearly satisfies
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identifiability and smoothness requirements. Moreover, by Lemma 71 we have

det
(
I(ψ∗)

)
= m3(m− 1)τ∗0

4τ∗1 (τ∗1 +mτ∗0 )3 ,

that is strictly positive for every ψ∗, with m ≥ 2. As regards the testing conditions, analogously
to Lemma 55 define

Ψ =Ψ1 × Ψ2 × Ψ3 =
[
µ∗ − 1, µ∗ + 1

]
×
[
τ∗1
2 , 2τ

∗
1

]
×
[
τ∗0
2 , 2τ

∗
0

]

compact neighborhood of ψ∗ and

uJ(Y1:J) = 1 − 1g1(Y1:J )≤c1 1g2(Y1:J )≤c2 1g3(Y1:J )≤c3 ,

where (c1, c2, c3) are positive constants to be fixed and

g1(Y1:J) =
∣∣∣Ȳ − µ∗

∣∣∣ , g2(Y1:J) =

∣∣∣∣∣∣ 1J
J∑
j=1

(
Ȳj − Ȳ

)2
− 1
τ∗1

− 1
mτ∗0

∣∣∣∣∣∣ ,
g3(Y1:J) =

∣∣∣∣∣∣ 1J
J∑
j=1

(
Yj,1 − Ŷ1

) (
Yj,2 − Ŷ2

)
− 1
τ∗1

∣∣∣∣∣∣ ,
where

Ȳ = 1
J

J∑
j=1

Ȳj , Ŷi = 1
J

J∑
j=1

Yj,i.

By definition of g(·) in (4.23), by the Law of Large numbers we have

∫
uJ(y1:J)

J∏
j=1

g(dyj | ψ∗)

≤ P
(
g1(Y1:J) > c1

)
+ P

(
g2(Y1:J) > c2

)
+ P

(
g3(Y1:J) > c3

)
→ 0,

as J → ∞ for every strictly positive constants (c1, c2, c3). Moreover, notice that

sup
ψ ̸∈Ψ

∫
[1 − uJ(y1:J)]

J∏
j=1

g(dyj | ψ)

≤ sup
τ1 ̸∈Ψ2

P
(
g3(Y1:J) ≤ c3

)
+ sup
τ1∈Ψ2, τ0 ̸∈Ψ3

P
(
g2(Y1:J) ≤ c2

)
+ sup
µ̸∈Ψ1, τ0∈Ψ3, τ1∈Ψ2

P
(
g1(Y1:J) > c1

)
.

With the same reasoning of the proof of Lemma 55, we can find (c1, c2, c3) such that the three
suprema goes to 0 as J → ∞.

We need another technical Lemma.
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Lemma 86. Consider the setting of Proposition 26. Then we have

E
[
(θj − µ)2 | Y, ψ

]
= 1
mτ0 + τ1

+
(

mτ0
mτ0 + τ1

)2
(Ȳj − µ)2,

E
[
(θj − Ȳj)2 | Y, ψ

]
= 1
mτ0 + τ1

+
(

τ1
mτ0 + τ1

)2
(Ȳj − µ)2

and
Var

(
(θj − µ)2 | Y, ψ

)
= 2

(mτ0 + τ1)2 + 4 m2τ2
0

(mτ0 + τ1)3 (Ȳj − µ)2,

Var
(
(θj − Ȳj)2 | Y, ψ

)
= 2

(mτ0 + τ1)2 + 4 τ2
1

(mτ0 + τ1)3 (Ȳj − µ)2

and
Cov

(
(θj − µ)2, (θj − Ȳj)2 | Y, ψ

)
= 2

(mτ0 + τ1)2 − 4 mτ0τ1
(mτ0 + τ1)3 (Ȳj − µ)2.

Proof. Notice that by (82) we have

(θj − µ) | Yj , ψ ∼ N

(
mτ0

mτ0 + τ1
(Ȳj − µ), (mτ0 + τ1)−1

)
and

(θj − Ȳj) | Yj , ψ ∼ N

(
τ1

mτ0 + τ1
(µ− Ȳj), (mτ0 + τ1)−1

)
.

Therefore we have

E
[
(θj − µ)2 | Y, ψ

]
= 1
mτ0 + τ1

+
(

mτ0
mτ0 + τ1

)2
(Ȳj − µ)2,

and similarly for the other case. If X ∼ N(µ, σ2), by Lemma 69 we have E[X4] = 3σ4 +6µ2σ2 +
µ4. In our case, considering σ = (mτ0 + τ1)−1/2 and µ = mτ0

mτ0+τ1
(Ȳj − µ), we have

E
[
(θj − µ)4 | Y, ψ

]
= 3

(mτ0 + τ1)2 + 6 m2τ2
0

(mτ0 + τ1)3 (Ȳj − µ)2 +
(

mτ0
mτ0 + τ1

)4
(Ȳj − µ)4

and

E2
[
(θj − µ)2 | Y, ψ

]
= 1

(mτ0 + τ1)2 + 2 m2τ2
0

(mτ0 + τ1)3 (Ȳj − µ)2 +
(

mτ0
mτ0 + τ1

)4
(Ȳj − µ)4.

Therefore
Var

(
(θj − µ)2 | Y, ψ

)
= 2

(mτ0 + τ1)2 + 4 m2τ2
0

(mτ0 + τ1)3 (Ȳj − µ)2,

and similarly for the other one. Finally, again by Lemma 69, if Z ∼ N(0, 1) we have

E[(σZ + µ1)2 (σZ + µ2)2] = 3σ4 + σ2(µ2
1 + 4µ1µ2 + µ2

2) + µ2
1µ

2
2.

In our case, considering σ = (mτ0 + τ1)−1/2, µ1 = mτ0
mτ0+τ1

(Ȳj − µ) and µ2 = τ1
mτ0+τ1

(µ− Ȳj), we
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have

E
[
(θj − µ)2(θj − Ȳj)2 | Y, ψ

]
= 3

(mτ0 + τ1)2 + m2τ2
0

(mτ0 + τ1)3 (Ȳj − µ)2 + τ2
1

(mτ0 + τ1)3 (Ȳj − µ)2

− 4 mτ0τ1
(mτ0 + τ1)3 (Ȳj − µ)2 + m2τ2

0 τ
2
1

(mτ0 + τ1)4 (Ȳj − µ)4

and

E
[
(θj − µ)2 | Y, ψ

]
E
[
(θj − Ȳj)2 | Y, ψ

]
=

1
(mτ0 + τ1)2 + m2τ2

0
(mτ0 + τ1)3 (Ȳj − µ)2 + τ2

1
(mτ0 + τ1)3 (Ȳj − µ)2 + m2τ2

0 τ
2
1

(mτ0 + τ1)4 (Ȳj − µ)4.

Therefore

Cov
(
(θj − µ)2, (θj − Ȳj)2 | Y, ψ

)
= 2

(mτ0 + τ1)2 − 4 mτ0τ1
(mτ0 + τ1)3 (Ȳj − µ)2,

as desired.

Define

C(ψ) =

0 1
(mτ0+τ1)2

m
(mτ0+τ1)2

0 1
(mτ0+τ1)2

m
(mτ0+τ1)2

 , V (ψ) =

 2
(mτ0+τ1)2 + 4mτ0(τ1)−1

(mτ0+τ1)2 − 2
(mτ0+τ1)2

− 2
(mτ0+τ1)2

2
(mτ0+τ1)2 + 4 τ1(mτ0)−1

(mτ0+τ1)2

 .
(96)

Now we define a linear rescaling of T =
(∑J

j=1(θj − Ȳj)2,
∑J
j=1(θj − µ)2

)
as

T̃ = 1√
J

J∑
j=1


(θj − Ȳj)2 − 1

mτ∗0 +τ∗1
−
(

τ∗1
mτ∗0 +τ∗1

)2 (
Ȳj − µ∗

)2

(θj − µ)2 − 1
mτ∗0 +τ∗1

−
(

mτ∗0
mτ∗0 +τ∗1

)2 (
Ȳj − µ∗

)2

− C(ψ∗)∆J , (97)

with ∆J as in (95). The next lemma shows the asymptotic distribution of T̃ using the weak
topology.

Lemma 87. Define ψ̃ and T̃ as in (95) and (97), respectively. For every ψ̃ ∈ RD it holds∥∥∥∥L(dT̃ | Y1:J , ψ̃) −N
(
C(ψ∗)ψ̃, V (ψ∗)

)∥∥∥∥
W

→ 0,

Q
(∞)
ψ∗ -almost surely as J → ∞.

Proof. The result follows by arguments similar to the proof of Lemma 58. First of all notice
that C(ψ) defined in (96) is such that

C(ψ) =

EYj

[
∂µE[(θj − Ȳj)2 | Yj , ψ

]
EYj

[
∂τ1E[(θj − Ȳj)2 | Yj , ψ

]
EYj

[
∂τ0E[(θj − Ȳj)2 | Yj , ψ

]
EYj

[
∂µE[(θj − µ)2 | Yj , ψ

]
EYj

[
∂τ1E[(θj − µ)2 | Yj , ψ

]
EYj

[
∂τ0E[(θj − µ)2 | Yj , ψ

]
 ,
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since by Lemma 86 we have

EYj

[
∂µE[(θj − Ȳj)2 | Yj , ψ

]
= EYj

[
∂µE[(θj − µ)2 | Yj , ψ

]
= 0,

EYj

[
∂τ0E[(θj − Ȳj)2 | Yj , ψ

]
= EYj

[
∂τ0E[(θj − µ)2 | Yj , ψ

]
= m

(mτ0 + τ1)2 ,

EYj

[
∂τ1E[(θj − Ȳj)2 | Yj , ψ

]
= EYj

[
∂τ1E[(θj − µ∗)2 | Yj , ψ

]
= 1

(mτ0 + τ1)2 .

By the same reasoning in the proofs of (63) and (64) we get

EYj

[
T̃ | Y1:J , ψ

∗ + ψ̃ + ∆J√
J

]
→ C(ψ∗)ψ̃

and ∣∣∣∣∣∣Cov
(

T̃ | Y1:J , ψ
∗ + ψ̃ + ∆J√

J

)
− Cov

(
T̃ | Y1:J , ψ

∗
)∣∣∣∣∣∣ → 0,

Q
(∞)
ψ∗ -almost surely as J → ∞. Then by (83), Lemma 86 and the Law of Large Numbers we

have

Var

 1√
J

J∑
j=1

(θj − Ȳj)2 | Y1:J , ψ
∗

 = 2
(mτ∗0 + τ∗1 )2 + 4 (τ∗1 )2

(mτ∗0 + τ∗1 )3
1
J

J∑
j=1

(Ȳj − µ∗)2

→ 2
(mτ∗0 + τ∗1 )2 + 4 (mτ∗0 )−1τ∗0

(mτ∗0 + τ∗1 )2

and

Var

 1√
J

J∑
j=1

(θj − µ∗)2 | Y1:J , ψ
∗

 = 2
(mτ∗0 + τ∗1 )2 + 4 (mτ∗0 )2

(mτ∗0 + τ∗1 )3
1
J

J∑
j=1

(Ȳj − µ∗)2

→ 2
(mτ∗0 + τ∗1 )2 + 4 mτ∗0 (τ∗1 )−1

(mτ∗0 + τ∗1 )2

and

Cov

 1√
J

J∑
j=1

(θj − Ȳj)2,
1√
J

J∑
j=1

(θj − µ∗)2 | Y1:J , ψ
∗

 = 2
(mτ0 + τ1)2 − 4 mτ0τ1

(mτ0 + τ1)3
1
J

J∑
j=1

(Ȳj − µ)2

→ − 2
(mτ∗0 + τ∗1 )2 ,

Q
(∞)
ψ∗ -almost surely as J → ∞. Finally, by the Law of Large Numbers and calculations similar

to Lemma 86, we have

E
[
(θj − Ȳj)12 | YJ , ψ

]
< ∞, E

[
(θj − µ)12 | YJ , ψ

]
< ∞
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for every ψ. Therefore, with the same arguments in the proof of (65) we conclude that

1
J3/2

J∑
j=1

E

[
(θj − Ȳj)12 | Yj , ψ∗ + ψ̃ + ∆J√

J

]
→ 0, 1

J3/2

J∑
j=1

E

[
(θj − µ∗)12 | Yj , ψ∗ + ψ̃ + ∆J√

J

]
→ 0,

Q
(∞)
ψ∗ -almost surely, as J → ∞. The result then follows by Lyapunov version of Central Limit

Theorem.

We need another technical Lemma.

Lemma 88. Consider the assumptions of Proposition 26. Then it holds

∣∣∣∣E [eit1(θj−µ)2+it2(θj−Ȳj)2 | Yj , ψ
]∣∣∣∣ ≤ e

−
2σ2[νj (t1+t2)−(t1µ+t2Ȳj )]2

1+4σ4(t1+t2)2[
1 + 4(t1 + t2)2σ4]1/4 ,

with (t1, t2) ∈ R2 and

νj = mτ0
mτ0 + τ1

µ+ τ1
mτ0 + τ1

Ȳj , σ2 = 1
mτ0 + τ1

.

Proof. By simple computations we get

t1(θj − µ)2 + t2(θj − Ȳj)2 = (t1 + t2)θ2
j − 2θj(t1µ+ t2Ȳj) + t1µ

2 + t2Ȳ
2
j .

Therefore ∣∣∣∣E [eit1(θj−µ)2+it2(θj−Ȳj)2]∣∣∣∣ ≤
∣∣∣∣∣E
[
ei
(

(t1+t2)θ2
j−2θj(µ+Ȳj)

)]∣∣∣∣∣ .
Then we can apply Lemma 72, with

a = t1 + t2, b = −2(t1µ+ t2Ȳj), ν = mτ0
mτ0 + τ1

µ+ τ1
mτ0 + τ1

Ȳj , σ2 = 1
mτ0 + τ1

.

Consistently with the previous Sections, we denote

φ(t | Yj , ψ) = E
[
eit1(θj−Ȳj)2+it2(θj−µ)2 | Yj , ψ

]
, φ̃(t | Y1:J , ψ) = E

[
eit
⊤T̃ | Y1:J , ψ

]
for every ψ and t = (t1, t2) ∈ R2. The next lemma proves the same convergence of Lemma 87
using the total variation distance.

Lemma 89. Define ψ̃ and T̃ as in (95) and (97), respectively. For every ψ̃ ∈ RD it holds∥∥∥∥L(dT̃ | Y1:J , ψ̃) −N
(
C(ψ∗)ψ̃, V (ψ∗)

)∥∥∥∥
TV

→ 0,

Q
(∞)
ψ∗ -almost surely as J → ∞.

Proof. Since the result holds under the weak metric by Lemma 87, with the same reasoning of
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Lemma 61 it suffices to prove

lim
A→∞

lim
B→∞

lim sup
J→∞

∫
((t1+t2)2≤A,t21≤B)c

∣∣∣φ̃(t | Y1:J , ψ
(J))

∣∣∣ dt = 0

Q
(∞)
ψ∗ -almost surely as J → ∞, where

ψ(J) = ψ∗ + ψ̃ + ∆J√
J

Analogously, denote also

µ(J) = µ∗ + µ̃+ ∆J,1√
J

, τ
(J)
1 = τ∗1 + τ̃1 + ∆J,2√

J
, τ

(J)
0 = τ∗0 + τ̃0 + ∆J,3√

J
.

As in (72) we have ∣∣φ̃(t | Y1:J , ψ)
∣∣ =

∣∣∣∣∣∣
J∏
j=1

φ

(
t√
J

| Yj , ψ
)∣∣∣∣∣∣ .

Therefore, with the change of variables u = t1 + t2 and v = t1, we have∫
((t1+t2)2≤A,t21≤B)c

∣∣∣φ̃(t | Y1:J , ψ
(J))

∣∣∣ dt

=
∫
(u2≤A,v2≤B)c

J∏
j=1

∣∣∣∣∣∣φ
(

(v, u− v)√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dudv

Moreover it is easy to see that{
(u, v) | u2 ≤ A and v2 ≤ B

}c
⊂
{

(u, v) | u2 > A
}

∪
{

(u, v) | u2 ≤ A and v2 > B
}
,

so that
∫
(u2≤A,v2≤B)c

J∏
j=1

∣∣∣∣∣∣φ
(

(v, u− v)√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dudv ≤

∫
u2>A

J∏
j=1

∣∣∣∣∣∣φ
(

(v, u− v)√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dudv

+
∫

(u2≤A,v2>B)

J∏
j=1

∣∣∣∣∣∣φ
(

(v, u− v)√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dudv.

(98)
For every ψ, by Lemma 88 with

νj = mτ0
mτ0 + τ1

µ+ τ1
mτ0 + τ1

Ȳj , σ2 = 1
mτ0 + τ1

we have
J∏
j=1

∣∣∣∣∣∣φ
(

(v, u− v)√
J

| Yj , ψ
)∣∣∣∣∣∣ ≤ e

−
2σ2 1

J

∑J

j=1[u(νj−Ȳj )−v(µ−Ȳj )]2

1+4σ4u2[
1 + 4u2σ4]J/4 .
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Notice that

1
J

J∑
j=1

[
u(νj − Ȳj) − v(µ− Ȳj)

]2
=

= v2

 1
J

J∑
j=1

(µ− Ȳj)2

− 2uv

 1
J

J∑
j=1

(νj − Ȳj)(µ− Ȳj)

+ u2

 1
J

J∑
j=1

(νj − Ȳj)2


=

 1
J

J∑
j=1

(µ− Ȳj)2

v − u
1
J

∑J
j=1(νj − Ȳj)(µ− Ȳj)
1
J

∑J
j=1(µ− Ȳj)2

2

+ u2

 1
J

J∑
j=1

(νj − Ȳj)2 −

{
1
J

∑J
j=1(νj − Ȳj)(µ− Ȳj)

}2

1
J

∑J
j=1(µ− Ȳj)2

 .
As regards the first element in (98), by integrating with respect to v we get

∫
u2>A

J∏
j=1

∣∣∣∣∣∣φ
(

(v, u− v)√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dudv ≤

∫
u2>A

e
−

2σ2
J

1
J

∑J

j=1

[
u(νj−Ȳj )−v(µ(J)−Ȳj )

]2

1+4σ4
J

u2[
1 + 4u2σ4

J

]J/4 dudv

≤
√

π

2σ2
J

1
J

∑J
j=1(µ(J) − Ȳj)2

∫ ∞
A

e

−
2σ2

J
1+4σ4

J
u2 u

2

 1
J

∑J

j=1(νj−Ȳj)2−

{
1
J

∑J

j=1(νj−Ȳj )(µJ−Ȳj )
}2

1
J

∑J

j=1(µ(J)−Ȳj )2


[
1 + 4u2σ4

J

]J/4−1/2 du,

where

σ2
J = 1

mτ
(J)
0 + τ

(J)
1

, νj = mτ
(J)
0

mτ
(J)
0 + τ

(J)
1

µ(J) + τ
(J)
1

mτ
(J)
0 + τ

(J)
1

Ȳj .

By the Law of Large Numbers we have

lim inf 1
J

J∑
j=1

(µ(J) − Ȳj)2 = lim inf 1
J

J∑
j=1

(µ∗ − Ȳj)2 = c1 > 0

Q
(∞)
ψ∗ -almost surely and similarly

lim inf


1
J

J∑
j=1

(νj − Ȳj)2 −

{
1
J

∑J
j=1(νj − Ȳj)(µ(J) − Ȳj)

}2

1
J

∑J
j=1(µ(J) − Ȳj)2

 = c2 > 0,

by Cauchy-Schwartz inequality, Q(∞)
ψ∗ -almost surely. Moreover, by Lemma 57

σ2
J ∈

(
1
2

1
mτ∗0 + τ∗1

,
2

mτ∗0 + τ∗1

)
= (σ2

1, σ
2
2)
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Q
(∞)
ψ∗ -almost surely, for J high enough. Therefore

lim
A→∞

lim
B→∞

lim sup
J→∞

∫
u2>A

J∏
j=1

∣∣∣∣∣∣φ
(

(v, u− v)√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dudv

≤ lim
A→∞

√
π

2σ2
1c1

∫ ∞
A

e
−

2c2σ2
1

1+4σ4
2u2 u

2

[
1 + 4u2σ4

1

]J/4−1/2 du = 0

Q
(∞)
ψ∗ -almost surely. As regards the second addend in (98) we get

lim sup
J→∞

∫
(u2≤A,v2>B)

J∏
j=1

∣∣∣∣∣∣φ
(

(v, u− v)√
J

| Yj , ψ(J)
)∣∣∣∣∣∣ dudv

≤
∫

(u2≤A,v2>B)
e

−
2σ2

1
1+σ4

2A2

[
v−u

1
J

∑J

j=1(νj−Ȳj )(µ(J)−Ȳj )

1
J

∑J

j=1(µ(J)−Ȳj )2

]2

dudv,

Q
(∞)
ψ∗ -almost surely. Fix A > 0 and notice that for every u we have

lim
B→∞

∫ ∞
B

e

−
2σ2

1
1+σ4

2A2

[
v−u

1
J

∑J

j=1(νj−Ȳj )(µ(J)−Ȳj )

1
J

∑J

j=1(µ(J)−Ȳj )2

]2

dv = 0.

Moreover

∫
u2≤A

e

−
2σ2

1
1+σ4

2A2

[
v−u

1
J

∑J

j=1(νj−Ȳj )(µ−Ȳj )

1
J

∑J

j=1(µ−Ȳj )2

]2

dudv < ∞,

so that, by Dominated Convergence Theorem we get

lim
B→∞

∫
(u2≤A,v2>B)

e

−
2σ2

1
1+σ4

2A2

[
v−u

1
J

∑J

j=1(νj−Ȳj )(µ(J)−Ȳj )

1
J

∑J

j=1(µ(J)−Ȳj )2

]2

dudv = 0,

for every A > 0 and the result follows.

Proof of Proposition 26. The result follows by arguments similar to the proof of Theorem 20,
that we briefly summarize. Since by construction

L
(
dψ | θ, Y1:J

)
= L

(
dψ | T , Y1:J

)
a direct analogue of Lemma 44 holds. Moreover, by Lemmas 85 and 89, we can use Lemma 64
to prove that L

(
dT̃ ,dψ̃ | Y1:J

)
, as in (95), converges to a Gaussian vector with non singular

covariance matrix. Finally, Lemma 54 holds for P , being a two-block Gibbs sampler. Therefore
the Gibbs sampler on the limit Gaussian target has a strictly positive spectral gap: thus the
result follows by Corollary 8.
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Proof of Corollary 14

Let ϕ = (τ1, τ0) and define

I(ϕ∗) =

 m2(τ∗0 )2

2(τ∗1 )2(τ∗1 +mτ∗0 )2
m

2(τ∗1 +mτ∗0 )2

m
2(τ∗1 +mτ∗0 )2

m−1
2(τ∗0 )2 + (τ∗1 )2

2(τ∗0 )2(τ∗1 +mτ∗0 )2

 , C(ϕ∗) =

 1
(mτ∗0 +τ∗1 )2

m
(mτ∗0 +τ∗1 )2

1
(mτ∗0 +τ∗1 )2

m
(mτ∗0 +τ∗1 )2


and

V (ϕ∗) =

 2
(mτ∗0 +τ∗1 )2 + 4mτ

∗
0 (τ∗1 )−1

(mτ∗0 +τ∗1 )2 − 2
(mτ∗0 +τ∗1 )2

− 2
(mτ∗0 +τ∗1 )2

2
(mτ∗0 +τ∗1 )2 + 4 τ

∗
1 (mτ∗0 )−1

(mτ∗0 +τ∗1 )2

 .
We have a preliminary Lemma.

Lemma 90. Consider the setting of Proposition 26. Then we have

γ(ψ∗) = min
{ 1

1 + λi
; λi eigenvalue of V −1 (ϕ∗)C(ϕ∗)I−1(ϕ∗)C⊤(ϕ∗)

}
.

Proof. With the same reasoning of Corollary 10, γ(ψ∗) is the spectral gap on the limiting
Gaussian distribution of

(
ψ̃, T̃

)
, given by by Lemmas 85 and 89. By inspecting I(ψ∗) in (84)

and C(ψ∗) in (96), we have that µ̃ is asymptotically independent from everything else, therefore
it suffices to study the Gibbs sampler that alternates updates of (τ̃1, τ̃0) and T̃ . Then the result
follows by the same arguments of Corollary 10.

Proof of Corollary 14. By Lemma 90 we have to study the eigenvalues of

V −1 (ϕ∗)C(ϕ∗)I−1(ϕ∗)C⊤(ϕ∗). (99)

Notice that

I(ϕ∗) = 1
(mτ∗0 + τ∗1 )2

m
2(τ∗0 )2

2(τ∗1 )2
m
2

m
2

(m−1)(mτ∗0 +τ∗1 )2+(τ∗1 )2

2(τ∗0 )2

 , C(ϕ∗) = 1
(mτ∗0 + τ∗1 )2

[
1 m
1 m

]

and

V (ϕ∗) = 1
(mτ∗0 + τ∗1 )2

2 + 4mτ
∗
0

τ∗1
−2

−2 2 + 4 τ∗1
mτ∗0


Notice that

(
(mτ∗0 + τ∗1 )2V (ϕ∗)

)−1
= mτ∗0 τ

∗
1

8(mτ∗0 + τ∗1 )2

2 + 4 τ∗1
mτ∗0

2
2 2 + 4mτ

∗
0

τ∗1


= 1

4(mτ∗0 + τ∗1 )2

[
mτ∗0 τ

∗
1 + 2(τ∗1 )2 mτ∗0 τ

∗
1

mτ∗0 τ
∗
1 mτ∗0 τ

∗
1 + 2(mτ∗0 )2

]
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and

(
(mτ∗0 + τ∗1 )2I(ϕ∗)

)−1
= 2(τ∗1 )2

m2(m− 1)(mτ∗0 + τ∗1 )2

 (m−1)(mτ∗0 +τ∗1 )2+(τ∗1 )2

(τ∗0 )2 −m

−m (mτ∗0 )2

(τ∗1 )2


Therefore

m2(m− 1)(mτ∗0 + τ∗1 )4

2(τ∗1 )2 C(ϕ∗)I−1(ϕ∗)C⊤(ϕ∗) =

−m2 + (m−1)(mτ∗0 +τ∗1 )2+(τ∗1 )2

(τ∗0 )2
m3(τ∗0 )2

(τ∗1 )2 −m

−m2 + (m−1)(mτ∗0 +τ∗1 )2+(τ∗1 )2

(τ∗0 )2
m3(τ∗0 )2

(τ∗1 )2 −m

[ 1 1
m m

]

=
(
m4(τ∗0 )2

(τ∗1 )2 − 2m2 + (m− 1)(mτ∗0 + τ∗1 )2 + (τ∗1 )2

(τ∗0 )2

)[
1 1
1 1

]

=
(
m4(τ∗0 )4 − 2m2(τ∗0 )2(τ∗1 )2 + (m− 1)(τ∗1 )2(mτ∗0 + τ∗1 )2 + (τ∗1 )4

(τ∗0 )2(τ∗1 )2

)[
1 1
1 1

]

and

V −1 (ϕ∗)C(ϕ∗)I−1(ϕ∗)C⊤(ϕ∗) =
(
m4(τ∗0 )4 − 2m2(τ∗0 )2(τ∗1 )2 + (m− 1)(τ∗1 )2(mτ∗0 + τ∗1 )2 + (τ∗1 )4

2m2(m− 1)(τ∗0 )2(mτ∗0 + τ∗1 )4

)
[

2mτ∗0 τ∗1 + 2(τ∗1 )2 2mτ∗0 τ∗1 + 2(τ∗1 )2

2mτ∗0 τ∗1 + 2(mτ∗0 )2 2mτ∗0 τ∗1 + 2(mτ∗0 )2

]

Notice that the matrix on the right hand side admits 0 as an eigenvalue, so that the highest
eigenvalue in absolute value is given by its trace, that is

4mτ∗0 τ∗1 + 2(τ∗1 )2 + 2(mτ∗0 )2 = 2(mτ∗0 + τ∗1 )2,

so that the highest eigenvalue of (99) is given by

m4(τ∗0 )4 − 2m2(τ∗0 )2(τ∗1 )2 + (m− 1)(τ∗1 )2(mτ∗0 + τ∗1 )2 + (τ∗1 )4

m2(m− 1)(τ∗0 )2(mτ∗0 + τ∗1 )2 .

The result follows by noticing

m4(τ∗0 )4 − 2m2(τ∗0 )2(τ∗1 )2 + (τ∗1 )4 =
[
m2(τ∗0 )2 − (τ∗1 )2

]2
= (mτ∗0 − τ∗1 )2(mτ∗0 + τ∗1 )2.

Proof of Lemma 48

Proof. The proof follows the same lines of Lemma 44, that we briefly summarize. Since

L
(
dθ,dτβ | β, Y (n)) = L(dθ,dτβ | T (β), Y (n)

)
(100)
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holds by definition of T , reasoning as in (59) we can conclude

L
(

dT (t),dθ(t),dτ (t)
β |T (t−1), θ(t−1), τ

(t−1)
β

)

= π̂n

(
dT (t) | θ(t−1), τ

(t−1)
β

)
π̂n

(
dθ(t),dτ (t)

β | T (t)
)
,

which proves that the transition kernel of the induced chain
(

T (t), θ(t), τ
(t)
β

)
t≥1

coincides with

P̂n. The second part of the Lemma follows by the same reasoning used in (60).

Proof of Corollary 15

Proof. By Lemma 48 we have

t
(n)
mix(ϵ,M) = sup

ν∈N (π̂n,M)
t̂
(n)
mix(ϵ, ν).

The result then follows by Corollary 8, whose conditions hold by assumption.

Proof of Corollary 16

Proof. It is easy to show that an analogue of Lemma 48 holds, with ψ = (θ, τβ, τϵ) and T =(
Tθ, Tτβ

, Tτϵ

)
. Thus the result follows with the same reasoning of Corollary 15.

Proof of Theorem 21

Denote with µ̃J the push-forward measure of µJ according to transformations (4.17) and (4.19).
The next theorem shows that the rescaled version of µJ is a warm start for the limiting distri-
bution in Proposition 23.

Lemma 91. Let µJ ∈ P
(
RlJ+D

)
be as in (4.35). Then under assumptions (B1) − (B3) there

exists a positive constant M = M(c) such that

Q
(J)
ψ∗

(
µ̃J ∈ N

(
N(0,Σ),M

))
→ 1,

as J → ∞, with Σ as in Proposition 23.

Proof. According to transformations (4.17), we have

µ̃
(−1)
J = Unif

(√
J
(
ψ̂J − ψ∗

)
− ∆J , c

)
.

Denote with Br(x) the closed ball of radius r > 0 and center x ∈ RD. By Theorem 5.39 in
Van der Vaart (2000) it holds

Q
(J)
ψ∗

((√
J
(
ψ̂J − ψ∗

)
− ∆J

)
∈ B1(0)

)
→ 1, (101)
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as J → ∞. Define now
M = max

x∈Bc+1(0)

Vol
(
Bc+1(0)

)
N(x | 0,ΣD) , (102)

where Vol(A) is the volume of set A and N(0,ΣD) is the marginal distribution of N(0,Σ) over
the last D components. It is easy to see that M < ∞ and it does not depend on J . Therefore,
by (101), we conclude

Q
(J)
ψ∗

(
µ̃J ∈ N

(
N(0,Σ),M

))
≤ Q

(J)
ψ∗

 max
x∈Bc+1(0)

dµ̃(−1)
J

dN(0,ΣD)(x) ≤ M


≤ Q

(J)
ψ∗

((√
J
(
ψ̂J − ψ∗

)
− ∆J

)
∈ B1(0)

)
→ 1,

as J → ∞.

Proof of Theorem 21. Let µJ ∈ P
(
RlJ+D

)
be as in (4.35). Thus, by Lemma 91 the event{

µ̃J ∈ N (π̃,M)
}

with M as in (102) holds with probability converging to 1, with respect to the
law Q

(J)
ψ∗ . Then, by Lemma 43, there exists ν̃J ∈ N (π̃J ,M) such that

∥ν̃J − µ̃J∥TV ≤ M ∥π̃J − π̃∥TV .

Therefore, by the above facts, the triangle inequality and Lemma 44 we have∥∥∥µJP tJ − πJ
∥∥∥
TV

=
∥∥∥µ̃J P̃ tJ − π̃J

∥∥∥
TV

≤
∥∥∥µ̃J P̃ tJ − ν̃J P̃

t
J

∥∥∥
TV

+
∥∥∥ν̃J P̃ tJ − π̃J

∥∥∥
TV

≤ ∥µ̃J − ν̃J∥TV +
∥∥∥ν̃J P̃ tJ − π̃J

∥∥∥
TV

≤ M ∥π̃J − π̃∥TV + sup
ν̃J∈N (π̃J ,M)

∥∥∥ν̃J P̃ tJ − π̃J
∥∥∥
TV

= M ∥π̃J − π̃∥TV + sup
νJ∈N (πJ ,M)

∥∥∥νJP tJ − πJ
∥∥∥
TV

.

Thus the result follows by Theorem 20.
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