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Abstract

The amazing growth of computational power, storage capacity and data sources opens new
exciting frontiers in the processing and analysis of data. This brings up new challenges when
modeling phenomena with complex dependence structures, as both statisticians and applied
researchers must deal with high dimensional problems and provide accurate inference with a
reasonable computational effort. As a consequence, a tradeoff among complexity of the model,
its interpretability and accuracy, and availability of efficient algorithms is a difficult, yet crucial,
issue in modern data analysis. A theoretical understanding of widely applied methodologies and
algorithms is therefore vital to provide convincing guarantees for the quality of the inference.

A natural framework to address the above issues is provided by Bayesian inference. Indeed
it combines principled modeling and coherent learning methodology with the availability of
sampling schemes and other computational algorithms. In particular, this thesis will focus mostly
(though not exclusively) on discrete Bayesian Nonparametric models, which allow for extremely
flexible learning mechanisms that can capture complex features of the phenomenon of interest.
However, the presence of an infinite dimensional parameter space makes the mathematical and
methodological investigation more demanding.

Within this framework, this thesis follows three distinct, but related, directions: (i) mod-
elling complex dependence structures (e.g. time series, multi-samples data...) via a Bayesian
nonparametric approach, (ii) mathematical investigation of the resulting inferential procedures,
complemented by the proposal of methods for measuring and tuning dependence and proving fre-
quentist asymptotic properties, (iii) rigorous analysis of the computational algorithms employed
for posterior inference with the aforementioned structures, with a focus on high dimensional
problems. A unifying thread shared by all these lines of research is the study of the specific
probabilistic structure considered: indeed, the choice of a particular dependence structure (more
specifically hierarchical models), which is often selected through modelling considerations (prior
information, domain-specific knowledge, etc.), requires the investigation of the associated in-
ferential and computational properties. Indeed, different specifications may have significantly
different levels of analytical tractability and the performance of routinely used MCMC algo-
rithms (e.g. gradient-based methods, Gibbs samplers) may greatly vary.

Foundations of Bayesian learning are discussed in the first Chapter, with a focus on the
predictive viewpoint; the relevance of hierarchical structures is also emphasized. Chapters 2 and
3 discuss various classes of hierarchical models, based on different nonparametric priors; both
theoretical and methodological aspects are presented. The last Chapter, finally, deals with the
computational challenges arising in high dimensional hierarchical models.
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Chapter 1

Introduction to Bayesian statistics:
the role of exchangeability

1.1 Introduction

A common way to introduce Bayesian statistics is to say that parameters are treated as random
quantities, in constrast with the classical setting where they are unknown, but fixed. This entails
that a Bayesian model can be written as

Xi| 0% f(x|0), 0~n(0), (1.1)
where f(z | 0) is the likelihood function and m(@) is the prior distribution. Thus, Bayesian
inference becomes the study of the posterior distribution, which is the law of 8 given the data
X1 = (X1, ..., X,) and represents the update of the prior beliefs with the collected information.
Thanks to Bayes’ Theorem, under suitable regularity conditions, the posterior density can be

easily computed as
7T(9 ’ Xl:n) X f (Xl;n | 6) 7T(9) (1.2)

Within this perspective, the relevance of formula is that it allows to perform the funda-
mental inversion: from the effects (i.e. the observations) we want to deduce the causes (i.e. the
parameters). Many books start from representation to introduce Bayesian methodologies
(e.g. Robert| (2007)); Ghosal and Van der Vaart| (2017)) and there are valid reasons to do so: for
example, from a decision theoretic standpoint, Bayesian estimators enjoy optimal properties (see
Chapters 2,8 and 9 of Robert| (2007)). Moreover, since a Bayesian analysis is based on ,
it automatically satisfies the Likelihood principle (e.g. Chapter 1 in Robert| (2007))), which is
often seen as a natural requirement.

Nevertheless, this is not the only way to look at Bayesian models and certainly not the way I
was introduced to the Bayesian way. According to this perspective, in a sense that we will make
precise, Bayesian statistics becomes free of Bayes’ Theorem: actually, even the formulation
becomes no more the starting point, but rather the consequence of a deeper principle,
both philosophically and mathematically. The goal of this Chapter is to present formally such
viewpoint, which I find extremely fascinating: it is therefore a small tribute to all the professors
that introduced me to this world, namely (in chronological order) Raffacle Argiento, Matteo
Ruggiero, Antonio Lijoi, Igor Priinster and Sonia Petrone. The textbook closest to this point of
view is probably Regazzini (1996), which unfortunately has never been translated into English.
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6 EXCHANGEABILITY AND BAYESIAN STATISTICS

The central theme is prediction. We are given a set of observations Xi., = =1.,, that we
assume have been collected under the same experimental conditions, and we want to predict the
(n + 1)-th, i.e. X, 1. Within the classical setting, the usual assumptions of independence and
identical distribution make this task conceptually challenging, since the predictive distribution
p(Tpy1 | T1:n) strictly speaking does not depend on xj.,. Instead, notice that this does not
happen for Bayesian models as in , since

Pansr | o) = [ Fansr | 6)7(d8 | 210) (13)

which depends on Xi., = x1,, through the posterior distribution. Thus, a classical statistician
would probably define a likelihood depending on some parameter 6, choose a suitable estimator
0= é(X 1:n) and use it to predict new values: therefore X,,; depends on Xj., only through the
estimation of the parameters. An alternative, which we follow here, is to modify the probabilistic
assumption on the data, making p(zy,+1 | £1.,) directly depend on z1.y, as in . This is where
the notion of exchangeability comes into play.

We say that a vector Xi., = (Xi,...,X,) is exchangeable if for any permutation 7= we have
that (Xﬂ(l), e an(n)> has the same distribution of Xi.,. A sequence {X;}; is exchangeable if

(X1,...,X,) is exchangeable for every n. Loosely speaking, exchangeability means that order
does not matter. In the case of binary variables, i.e. X; € {0,1}, it implies that only the
frequencies of Os and 1s matter, rather than the specific occurrences: vectors of n elements
with the same number of successes yield the same distribution. With a statistical perspective,
exchangeability seems a reasonable way to formalize the loose expression “under the same ex-
perimental conditions”: observing a value at position ¢ or j, with 4,5 = 1,...,n, should not
affect our inference. Clearly, independence and identical distribution implies exchangeability,
but the reverse implication does not hold. Consider observations generated according to model
, which are only conditionally independent, and notice that

p(X1,..., Xn) = /H f(Xi [ 0)m(df) = /H f(Xr@) | O)m(do) =p (Xm), e 7X7r(n)> , (1.4)
=1 i=1

for every n and permutation 7. Thus the sequence { X, },, with law given by is exchangeable.
Incredibly enough, also the converse holds: an exchangeable sequence {X;}; is such that it can
be represented as in (L.1]). This is the content of the celebrated de Finetti’s Theorem (de Finetti
1929, [1937; Hewitt and Savage, |1955)): an exchangeable distribution can be (uniquely) written
as a mixture of independent laws. Therefore, parameters 6 arise directly by the assumption
of exchangeability (which relates only to the observables) and the prior is exactly the mixing
measure. We can say more: an exchangeable law is characterized by the predictive distributions
P(Tnt1 | Z1:n), see Theorem {4 below. Therefore in this sense every Bayesian analysis concerns
prediction: a family of (coherent) predictive distributions implies an exchangeable law, which
in turn implies representation and the existence of §. This Bayesian focus on prediction,
even when inference on the parameters is of interest, is not a novel idea, yet still receives
considerable attention, see e.g. |Fong et al.| (2021); Holmes and Walker| (2023); Fortini and
Petrone| (2023). In the next Sections we will discuss in details de Finetti’s Theorem and its
implications for parametric and nonparametric inference: its extension to more involved settings
(i.e. partial exchangeability) and the connection with hierarchical modelling is discussed. For
a stimulating account of de Finetti’s contributions to Probability and Statistics we refer to
Cifarelli and Regazzini| (1996)), while Kingman| (1978 provides an excellent review on the uses
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of exchangeability. For a more introductory and divulgative treatment, see|Diaconis and Skyrms
(2018).

1.2 de Finetti’s Theorem

Let (2, F,P) be a probability space, where the sequence of random variables {X,,},, is defined.
The state space, also called sampling space, is denoted by X and hereafter assumed to be Polish,
i.e. homeomorphic to a separable complete metric space. The resulting Borel o-algebra on X is
denoted by X. We define in the usual way the product spaces (X("), X (")) and (X(OO), X (°°)>.
We will not dwell too much on measure theoretic details, throughout this document we think of
X either being equal to R? or to a discrete (finite or countable) space: however, notice that a
minimal amount of assumptions on the sampling space is required for de Finetti’s Theorem to
hold, see |Dubins and Freedman| (1979) for counterexamples on non standard spaces.

We call P(X) the space of probability measures on X, endowed with P(X), the smallest
o-algebra on P(X) that makes the maps

mp : P(X) - Ry, mp(P)=P(B)

measurable, for every B € X'. The definition of a o-algebra is necessary to construct probability
measures on P(X), that will play the role of prior distributions. For every P € P(X) we define
the associated product measures with P € P(X(™) and P(®) ¢ P(X(*)), whose measurability
can be easily proven. Finally, we call random probability measure any measurable function P
from (Q, F,P) taking values in (P(X),P(X)). We are now ready to state de Finetti’s Theorem.

Theorem 1. The sequence { X}, is exchangeable if and only if there exists a probability measure
Q on (P(X),P(X)) such that for every n we have

P(X) € Ar,...,Xn € Ay) = /P(X) ﬁ P(4,)Q(dP), (1.5)
=1

for every A € X(>). Moreover
1 n
=3 6x() = Q) (L6)
iz

weakly almost surely, as n — oo.

Equation is the formal mathematical translation of the usual representation : ex-
changeable sequences can be written as mixture of independent and identically distributed (i.i.d.)
sequences, i.e. there exists a random probability measure conditional to which observations are
i.i.d., as in . Notice that if ) is degenerate over a finite dimensional space, we recover the
parametric setting. For example, the case

Q({P e P(X) : Pde) = N(6,1)dz, 0 € R}) =1

corresponds to the Bayesian model with Gaussian likelihood and a prior on the location param-
eter #. Moreover, the limit implies that the de Finetti measure, or prior, can be recovered
as the weak limit of the empirical distribution. Thus parameters arise by assumptions on the
observables and are identifiable, in the sense that are measurable with respect to the o-algebra
generated by the sequence of observations: loosely speaking, knowing the entire sequence of
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datapoints is equivalent to knowing the realisation of (). Notice that, as discussed in ,
representation can be easily shown to imply exchangeability, so that only the converse im-
plication is of interest. Before providing a formal proof of Theorem [I|, we provide some intuition
on why it should hold, considering the simple case of binary observations.

1.2.1 de Finetti’s Theorem for binary data

Here we assume that X = {0, 1}, so that de Finetti’s Theorem can be written in the following
way.

Theorem 2. The sequence { X, },, is exchangeable if and only if there exists a probability measure
Q@ on the unit interval such that

1 n n
P((X1,..., Xn) = (21, 2n)) :/0 O 1 i (1 — 0)" S T Q(dh),

for every (x1,...,2z,) € {0,1}". Moreover 1 377" | 6x,(-) — Q(-) weakly almost surely, as n —
00.

Therefore, when dealing with binary sequences, a probability of success 6 is sampled from () and
the n observations are obtained by drawing with replacement from a un urn with proportion
given by 6 and 1—6. This is the setting where de Finetti’s Theorem has been proven for the first
time (de Finetti, 1929), but here we consider the arguments given in Diaconis and Freedman
(1980Db)). More accessible accounts can be found in Heath and Sudderth| (1976 and Chapter 7
of Diaconis and Skyrms| (2018)).

Fix n € N and let (X1,...,X,) € {0,1}" be an exchangeable random vector. This means
that vectors with the same number of successes yield the same probability, i.e.

a0 Y=
P(Xi=a1,...,Xn=an | Sp=1)= ) = ,
0 else

where S, = > 1" ; X;. The interpretation is that, conditional on observing r successes, the vector
(X1,...,X,) is obtained by sampling without replacement from an urn with r balls with label
1. Therefore, denoting with P.(z1,...,x,) the distribution above, which does not depend on
the specific exchangeable law under consideration, we have

n

P(X; =x1,..., Xy =x,) = ZPT($1,...,:U”)IP’(Sn:r)

r=0
1 n
= mp(sn =Y @),
i—1 Ti i=1
so that the the distribution of (X7i,...,X,) is a mixture of urn sampling schemes, where the
mixing measure is given by the law of the number of successes. Similarly, if (Xi,...,Xy) is

exchangeable and n < N, denoting > ;" | x; = r we have

N
P(Xi=a1,...,Xn=ap) =Y P(X1=21,...,Xn =2 | Sn = s)P(Sy = 3).

s=r
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Reasoning as before, conditional on observing s successes out of N trials, the vector (X1, ..., X},)
is obtained by sampling n times without replacement from an urn with s balls with label 1 and
N — s balls with labels 0. Then by exchangeability we obtain

P(Xlzl‘l,...,Xn:LL‘n’SNZS):P(Xl:1,...,X7«:1,X7~+1:0,...,XHZO|SN:8)
s s—1 s—r+1N-—s N—-s—n+r+1
- NN-1 N—r+1N-—r N-n+1 '

If n and r are fixed, but N grows (i.e. we are closer to an exchangeable sequence), sampling
with or without replacement from an urn become very similar. More formally, Theorem 4 in
Diaconis and Freedman! (1980b]) shows that

s s—1 s—r+1N-—s N—-—-s—n+r+1 <3>T<N—s>n_r

NN-1 N—-r+1N—-r  N-n+1 N

uniformly over r and s. Thus we obtain

N r _ n—r
P(Xlzwben:xn):z_:(;) <NN ) P(SNZS)“‘ON(l),

where on(1) is a function g(N) such that g(N) — 0 as N — oco. Writing § = s/N and
denoting with () the discrete probability measure supported on {1/N,2/N, ..., 1} such that
pun(0) =P(Sy = NO), we have

1 n n
P(X1=21,...,Xp = 2n) = /O f2i=1 i (1 — )" 2i=1 % (d6) + on (1), (1.7)

Therefore, in order to prove Theorem [2| it suffices to prove that py(df) converges weakly to
some probability measure @), which is exactly equivalent to % Zfil dx,(-) = Q(-) weakly almost
surely, as N — oo. We will show this in the next Section, by proving a Strong Law of Large
Numbers for exchangeable sequences. Notice that representation implies that de Finetti’s
Theorem holds approximately if (Xi,..., Xx) is an exchangeable vector and n is much smaller
than N. For more details on representation of finitely exchangeable laws, see Diaconis and

Freedman| (1980b)).

1.2.2 Laws of Large Numbers for exchangeable sequences

Laws of Large Numbers for independent random variables are a crucial component of the study
of statistical methods in the classical sense. A similarly prominent role is played by the corre-
sponding laws for exchangeable sequences: the effect of dependence across the random variables
is given by the convergence to a non degenerate random variable.

For every n € N a measurable function f : X(®) — R is n-symmetric if for every permuta-
tion 7 of {1,...,n} we have

f(l') - f (xﬂ(l)a SRR xﬂ'(n)7$n+1) RRRR S X(OO)
We denote by S, € X(®) the o-algebra generated by n-symmetric functions. It is clear that

a (n + 1)-symmetric function is also n-symmetric, so that S,4+1 C S,. We also denote with
S =limy 00 Sp = NS2 1Sy, the smallest o-algebra on X (%) that makes the n-symmetric functions
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for every n € N measurable. We are ready to state the Law of Large Numbers for exchangeable
sequences.

Theorem 3. Let {X,}, be an exchangeable sequence and ¢ : X — R a measurable function
with E[|p(X1)|] < co. Then there exists a random variable ¢ such that

almost surely and in L', as n — oo. Moreover ¢ = E[p(X1) | S] almost surely.

Proof. Let f be a n-symmetric function and take j € {1,...,n}. Then by exchangeability we
have

E [p(X;) f(X)] = E [p(X1) f(Xj, X2, Xj—1, X1, Xjy1,... )] = E [p(X1) f(X)],

where the last equality follows by n-symmetricity. This means that

n

Y E[p(X;)f(X)] =E [o(X1)f(X)],

j=1

which implies that

1 n
/A (nggp(xj)) dPZ/Ago(Xl)szfAE[so(Xl)lSn] dP, A€ Sy

where the latter equality holds by definition of conditional expectation. Note that % i1 p(X5)
is Sp,-measurable, so that

LS (X)) =E[o(x1) | 5]
j=1

almost surely. Denote Y, = E [¢(X1) | S,] and notice that by the Law of Iterated Expectation
we have

E[Ya | Sur] = E [E[p(X1) | Su] | Sas1] = E [0(X1) | Sura] = Yo,

so that {Y,}, is a reversed martingale with respect to {S,,},. By the convergence theorem for
reversed martingales it holds

n

> e(Xi) =E[p(X1) | Sa] = E[p(X1) | S],

1
i3

almost surely and in L', as n — oo. O

Let ¢ = 1g. Then Theorem states that
1 n
EZcSXj(B)—HE[]lB |S]=P(X; € B|S). (1.8)
i=1

Moreover, it is easy to show that S belongs to the tail o-algebra, i.e. S C T =N, 0 ({X;}izn),
which implies P(X; € B | S) being T-measurable. If the observations X;’s are independent and
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identically distributed, which is a particular case of exchangeability, by Kolmogorov’s 0-1 Law
we have P(X; € B| S) € {0,1} and P(X; € B | S) is degenerate, recovering the standard Law
of Large Numbers.
Convergence as in , though holding for every B € X, is not enough to prove weak
1

convergence of the emp1r1cal measure, that we denote with P, (-) = ~ >i=10x,(-). The additional

steps strongly depend on the Polishness of X, as detailed in the next corollary

Corollary 1. If {X,}, is an exchangeable sequence on a Polish space, then there exists a
(andom probability measure such that b, » P weakly almost surely, as n — oo. Moreover
P(B) =P(X; € B|S) almost surely.

Proof. Since X is Polish, there exists a sequence of uniformly continuous and bounded func-
tions such that P, — P weakly if and only if [gx(z)P,(dz) — [gx(z)P(dx) for every k =
1,2,.... Moreover, measurability of P, with respect to P(X) can be easily shown, since the sets
{P e P(X): P(A) € C}, for every A € X and C Borel set of R, form a generating class for
P(X).

Since X is Polish, there exists a version P of the conditional probability distribution of X
given S, such that P(B) = P(X; € B |S). Therefore

E [gk(Xl ‘S /gk d.??)

almost surely for every k = 1,2,.... Therefore, by applying Theorem to every k we have

[ aPutdn) = 530000 > B[ (X0) 8] = [ u(o)Pld)

almost surely as n — oo. Thus the result follows. O

An immediate consequence of Corollary [I] is the proof of Theorem [2} indeed it implies weak
convergence of measures py(df) in (1.7)), almost surely as in N — oo. In the next Section we
prove de Finetti’s Theorem for a generic sampling space.

1.2.3 Proof of de Finetti’s Theorem

The original proof for an arbitrary sampling space is given in Hewitt and Savage| (1955). Here
instead, we follow the same reasoning of |Kingman| (1978)), which is based on the Strong Law
of Large Numbers given in Theorem [3] For an argument based on approximating exchangeable
sequences with finite exchangeable vectors, see |Diaconis and Freedman (1980b).

Proof of Theorem[1]. Let P be the conditional probability distribution of X; given S, i.e. P(B)
P(X; € B | S). Such P exists since X is Polish. By Corollary |1 l for every n € N and
Ay, ..., A, € X we have

HP(Ai):]E HP(AZ)\P :E{H]\}im Pn(A;) | P
=1 =1 =1 VT
= Jim & | T P40 7|,
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where the latter equality holds by Dominated Convergence Theorem. Notice that

0 e S

i=1i=1

Denote with C the set of ordered samples (j1,...,7n) of n elements in {1,..., N} with possible
repetitions. Similarly, define with D the subset of C with no repetitions, i.e. j; # ... # j,. Thus
we can write

EPN(Az):]\}gnoomzngéxh(Az)-l- lim N”cz\;)l;[l x;, (Ai)
and
no 1 n ~ 1 n B
HPM)—ﬁﬂmm%Hyﬂ&ﬁ&)ﬂ*ﬁﬂuw%:HEP&WM|ﬂ' (1.9)
1= 1= C\D 1=

Notice moreover that

e 22| [T, 017

C\D =1

< Card(C\D) N"-N(N-1)---(N—-n+1)

N = o —0, (1.10)

as N — oo. Combining (|1.9) and (1.10)), by exchangeability we have

.. Card(D) .
= lim “=2P (X0 € Ar,.. Xy € Ay | P)

=P (X1 €41,... X, € A, | P).
Therefore, if Q is the law of P, we have

P(X) € Ar,..., X, € Ay) = /(PC&eAthﬁe%yﬂQmﬁ
P(X

—L@HPA

as desired. ]

Uniqueness of representation (1.5]) follows by uniqueness of the weak limit, since @ is given by
the limit of the empirical distribution.



1.3. CONSEQUENCES OF DE FINETTI’'S THEOREM 13

1.3 Consequences of de Finetti’s Theorem

As mentioned before, de Finetti’s Theorem and in particular representation yield a pro-
found philosphical meaning. Statistical models as in follow as a consequences of the
exchangeability assumption: thus, the existence of parameters arise by a suitable homogene-
ity requirement on the observables. It is beyond the scope of this thesis (and my personal
knowledge) to discuss in detail the philosophical consequences and issues of such viewpoint: we
refer to Section 2 of |Cifarelli and Regazzini (1996) for an extensive treatment of de Finetti’s
interpretation of the representation theorem and the links with the problem of induction.

The second part of the Theorem, i.e. the convergence of the empirical measure, says
that the prior measure can be derived by an infinite sequence of exchangeable observations.
Thus, specifying a Bayesian model is equivalent to specify how prediction is performed, i.e. a
family of transition kernels

pn(A;xl:n) =P (Xn+1 cA ‘ X = Tlyen. ,Xn = :rn) . (111)

The next theorem, due to [Fortini et al. (2000), shows that, at least in principle, providing
suitable predictive distributions is equivalent to exchangeability.

Theorem 4. A sequence of transition kernels {pn}n as in (1.11)) identifies the law of an ex-
changeable sequence { Xy}, if and only if

1. pn(A;21:) = D (A; xﬂ(l),...,xw(n)) for every n € N, A € X and permutation m™ of

{1,...,n}.

2. For every A, B € X it holds

/Aanrl(B;5517-~axn7$n+l)pn(dxn+1;$1:n):/Bpn+1(A;l'1v'~-7xna$n+1)pn(d$n+1;x1:n)-

While the first requirement of Theorem[4] i.e. that prediction should not depend on the order of
the collected datapoints, is easily satisfied, the second one is less intuitive. It can be rewritten
as

P (XnJrl € A, Xni2 €B | Xim = m1:11) =P (Xn+1 € B, X2 € A ‘ X = xl:n)

for every A, B € X and it is in general hard to come up with sequences of predictive distributions
that satisfy such condition. Therefore the usual route, as we will see in the next Sections, is to
exploit de Finetti’s Theorem and pass through the definition of a prior law @ on (P(X), P(X)).
This justifies the usual way of formulating a Bayesian model as in . An alternative, that
we do not consider here, is to consider a different (weaker) type of dependence among the
observations that allows to define a predictive rule in a simpler way, see e.g. |[Holmes and Walker
(2023)); |[Fortini and Petrone| (2023); Berti et al. (2023]).

1.4 Parametric setting and Bayes’ Theorem
As explained in the Introduction and justified in the previous Section, it is customary to start

a Bayesian analysis by explicitly defining a joint law of the parameters and the observations.
Formally, denoting with © the parameter space, which we assume to be Polish with Borel o-
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algebra B, the pair (X, ) has joint distribution
P(X € A0¢cB)= / Py(A)II(d6), (1.12)
B

where II € P(©) is the prior distribution and Py € P(X) is the likelihood. In the previous
Sections we had © = P(X) and B = P(X), so that Py(A) = 0(A), for every § € ©. We use a
different notation here, since we want to restrict to the parametric finite dimensional case. The
following discussion is based mostly on Chapters 2 — 3 of |Regazzini| (1996) and Chapter 1 of
Szabo and van der Vaart| (2023).

In order to formalize representation we need to define the notion of a Markov kernel
Q from (0,B) to (X, X) asamap Q : © x X — [0,1] such that

(1) The map A — Q(0, A) is a probability measure for every 6 € ©.
(7i) The map 6 — Q(0, A) is measurable for every A € X.

Thus we assume that the statistical model { Py ; 6 € ©} is such that Q(0, A) = Py(A) is a Markov
kernel from (©, B) to (X, X'), which formalizes Py being the conditional distribution of X given
6. Requirement (iz) of the definition of Markov kernel makes the right hand side of well
defined. It is possible to show that there exists a suitable probability space on which the pair
(X, 0) can be constructed: see |Szabd and van der Vaart| (2023) for details.

Thus, given a statistical model {Py; § € ©} defined as a Markov kernel and a prior distribu-
tion II, we define the posterior distribution as a Markov kernel Q(x, B) = II(B | x) from (X, X)
to (O, B) such that

P(XeAfeB) = /AH(B | 2)P(dx), (1.13)

where P(A) =P(X € A) = [g Py(A)m(dx) is the marginal distribution of X induced by the joint
distribution . Notice that representation looks very similar to representation ,
with opposite roles played by X and 6: therefore the posterior distribution is defined through a
suitable disintegration of the joint distribution of the pair (X,#). It is possible to show that a
posterior distribution exists as soon as © is Polish, see Theorem 1.3 in [Szabd and van der Vaart
(2023). Ancillarly, notice that this justifies taking ©® = P(X), since the latter is a Polish space
if X is Polish.

The problem now becomes how to compute the posterior distribution as defined in (1.13]):
the relevance of parametric models and Bayes’” Theorem stems from this issue. Indeed, assume
there exist a o-finite measure p on (X, X) and a measurable map (x,0) — py(x) such that

Po(A) = [ pal@)u(da) (1.14)

for every A € X. If this holds we say that the statistical model is dominated: usual choices for
v are the Lebesgue measure on R? or the counting measure. In this case Bayes’ formula states

pra(w)H(dG)
(B | z) = { Jopo@)1(dd)
0 else

if fopo(z)II(df) >0 (1.15)

The next theorem shows that ((1.15)) defines a version of the posterior distribution; we use the
term version to emphasize that the posterior distribution is uniquely defined only up to a null
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set, with respect to the marginal P. Notice moreover that if [g pg(z)II(d#) = 0 the choice of the
value of II(B | x) is irrelevant, as the following proof shows. The following proof is well known,
we follow the lines of Proposition 1.8 in [Szabd and van der Vaart| (2023).

Theorem 5. Let a o-finite measure p on (X, X) and a measurable map (x,0) — po(x) be
such that (1.14) holds for every A € X. Then formula (L.15) gives a version of the posterior
distribution II(B | x).

Proof. 1t is not difficult to prove that (x,B) — II(B | z) is a Markov kernel: in particular,
requirement (¢7) follows by Fubini’s Theorem. By (1.12)) and again Fubini’s Theorem we have

IP’(XGA,HGB):/BPQ( 1(d6) //pg )I1(d6)

= [ [ mlonsu(aa),

for every A € X and B € B. In particular, with B = ©, we have that p(z) = [g po(z)p(dz)
is the density of P with respect to u. Therefore, the set N = {z : p(z) = 0} is such that
P(N) = 0. Therefore, for every x € N¢ we can write

Am@mmmszmwm»

with II(B | ) as in (1.15)). Therefore we can write

IP’(XGA,GGB):/ (B | 2)p(x)u(de) / /p(, )u(da).
ANNe ANN
Since P(N) = 0, disintegration (1.13]) holds. O

Formula is thus the cornerstone of Bayesian parametric models. However, if the support
of I is large, e.g. it is equal to P(X), the assumption of dominated statistical model is often not
satisfied. For instance let © be the set of discrete probability measures on R and Py(A) = 6(A),
with 0 of the form

0=> Wiz, (1.16)

i>1

where {W;}; are random probability weights and Z; are random atoms sampled i.i.d. by a fixed
distribution Qg € P(R). Thus, fixing # means specifying weights and atoms. It is clear that P
is not dominated by the Lebesgue measure, for every 6. Moreover, for every discrete measure
p there exists 6 such that the supports of p and 6 are disjoint. Therefore formula can
not be applied to models as in and we need to rely on other tools to obtain the posterior
distribution. This is the topic of the next Section.

1.5 Bayesian nonparametrics and the Dirichlet process

Reiterating from the previous discussion, when the statistical model is dominated we can rely
on Bayes’ formula to obtain the posterior distribution. When the model is not domi-
nated, and this usually happens when O is infinite dimensional, two problems arise: first of
all it is a challenging task to define a meaningful probability measure (i.e. the prior) on an
infinite dimensional space, moreover the computation of the posterior distribution requires ad
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hoc reasoning. In this Section we focus on the setting induced by the Dirichlet process (Fergu-
son, [1973)), which solves at once the aforementioned issues. We will then have the first example
of Bayesian nonparametric model: we will call it discrete, because its realizations are almost
surely discrete probability measures. Throughout this thesis we will fit into this framework, but
other prossibilities are available (e.g. models based on Gaussian processes, see Williams and
Rasmussen (2006])). Notice that the term nonparametric refers not to a lack of parameters, but
rather to infinitely many of them, in order to span an infinite dimensional space.

1.5.1 Constructing infinite dimensional priors through projections

Combining the notations used in the previous Sections, our parametric space is © = P(X) and
we want to define a probability measure @) € P(©) whose realizations are denoted by P € P(X).
Therefore we can say that P is a random probability measure, i.e. a measurable function from
(Q, F,P) to (P(X),P(X)).

Notice that we can equivalently describe P as a stochastic process over sets, i.e. {P(A) : A€ X},
so that specifying the law of the prior means specifying the law of the process. In particular,
for every ordered collection of sets (A1, ..., Ag), with 4; € X', we can define

for every C € B ([O, 1]k>, where B ([0, 1]’“) denotes the Borel g-algebra on [0, 1]*. Spanning over

the sets (Ai,..., A;) we obtain the collection @ = {Qua, .4, : A1,..., Ay € X,k >1}. Tt is
easy to prove that @) satisfies the following properties:

(P1) If 7 is a permutation of {1,...,k} and 7C = {(a:w(l), cen Triy) (21, Tg) € C’} then
Qay,...a,(C) = Qa .. A, (TC)

for every C € B ([0, 1]"7).
(P2) Qx(C) = 61(C) for every for every C € B([0,1]).
(P3) For every refinement (B, ..., B,) of Ay,..., Ax), i.e.

o (Bi,...,B,) is a partition of X into X-sets;
o Any set A; = U, B;, where (j) = {i € {1,...,n} : B; C A;};

then

Qar,n(C)=Qpy,..B, | g2 €[0,1]" 2 [ D ai,....,> wi| €C
1) (k)

for every C € B ([0, 1]’“)

(P4) For every {A,}, in X monotonically decreasing to the empty set (), then @4, — 0 weakly
as nm — oo.

A well-known result, oftentimes called Kolmogorov’s Extension Theorem, says that also the
converse holds, i.e. a collection @ satisfying (P1) — (P4) defines a random probability measure.
We state the result below for definiteness.
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Theorem 6. If Q = {Qa,.. 4, : A1,...,A; € X,k > 1} satisfies (P1) — P4) then there exists
a unique probability measure Q on (P(X),P(X)) whose finite dimensional projections are in Q.
Moreover, there exists a random probability measures P with probability distribution Q).

Thus, we can use Theorem |§| to define a prior over P(X) working just on the finite dimensional
distributions. This is the strategy exploited in (Ferguson, |1973) to construct a nonparametric
prior, i.e. the Dirichlet process, for the first time. However, we need first of all to state some
useful properties of the Dirichlet distribution, which will play the role of finite dimensional
projections.

1.5.2 Dirichlet distribution and basic properties

Let (Y1,...,Y,) be independent random variables such that Y; ~ Ga(aj,1), with a; > 0.
Defining W; =Y}/ > L, Y, it is possible to show that the vector (W1,...,W,_1) has density

an—1
Do+ +an) o e s
f(wl,...,wn_l): ( 1@ 111(&‘) n) Hwial ! (1—2101 IlAn_l(wl,...,wn_l),
= ! i=1 i=1

where A, _1 = {(wl, ceyWpo1) tw; >0, 2?2_11 w; < 1}. We say that (Wy,...,W,_1) has the

law of a Dirichlet distribution and we write (Wy,...,W,_1) ~ Dy_1(a1,..., ), with density
dn—l(QS Oy .. ,an).

It is easy to show that W) ~ Beta(a,a2) and, if 0 < 71 < --- < r; =n, with [ < n, it holds

T1 T 1 Ti—1
ZWi,..., Z Wz NDZ,1 ZO&Z',..., Z a; | . (117)
i=1 i=ri_1+1 i=1 i=r_g+1
Moreover the mean can be easily computed as
E[W;] = =2 je{l,...,n}. (1.18)
D1 Qi
Assume we have observations (Xi,...,Xy) taking values in {1,...,n}. A typical Bayesian

exchangeable model is given by
P (Xz = ] ‘ (Wl, ceey Wn)) = Wj, (Wl, ceey Wn—l) ~ Dn_l(al, e ,an),

where W,, = 1 — E?:_ll W;. Using Bayes’s formula it is not difficult to show that the model
above is conjugate, i.e. the posterior distribution is again Dirichlet distributed. More precisely
we have

(Wl, .. ~7Wn—1> ’ Xi.n~D,_1 (041 4+ Ny, o, + Nn)7 Nj = Card ({Z X, = ]}) . (119)

Therefore the relevance of group j is reinforced according to the number of collected obser-
vations equal to j. Indeed, if @ = 1" a;, thanks to (1.18) the posterior mean is equal to
E[W; | X1,...,Xn] = (aj + Nj)/(a + N). Thus we can obtain the predictive distribution of a
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new observation as

P(Xns1 =5 X1, Xn) =E P (Xyy1 =5 | Wi, , W) | X, X

_ _Oéj—l-Nj
_E[M/j|X1""’XN]_m (1.20)
e NN

a+N "7 a+NN’

Interestingly, the predictive distribution is a convex linear combination of the prior guess and
the empirical frequency: moreover the weight assigned to the prior guess vanishes, as N — oc.
In the next Section we show how to use the Dirichlet distribution to define a prior over an
infinite dimensional space, through Theorem [6]

1.5.3 Dirichlet process: definition

Let o be a non null and finite measure on (X, X). Call 8 = a(X) the concentration parameter
and Qo = /0 € P(X) the baseline distribution. Setting a; = a(A;), with i = 1,..., k, we write

F 0 a1 — ap_1—1 o —
j=1 7 k—1

for every (A, ..., Ax) partition of X and for every C € B ([O, 1]"') Thus, we assign a Dirichlet
distribution to every partition of the space, with weights given by a(A;). Consider now a generic
ordered collection of sets (Aj, ..., Ag) and denote with (C1,...,Cy ) the induced partition, i.e.
such that

A =UpCi G)={ie{l,....K} : Cic A5}

Thus we define
QAl,...,Ak(C) = Qchwck, (wl, - ,wk/,l) ISAVVERT Zwi’ ceey Zwi ceC . (1.21)
(1) (k)

We have now defined ) = {QAL---,Ak cAq, . A e Xk > 1} and the next theorem shows it
defines a proper random probability measure.

Theorem 7. Let Q) defined as in (1.21)). Then requirements (P1) — (P4) are satisfied, so there
exists a random probability measure P, which has finite dimensional distributions as in Q).

Theorem m has been originally proven in (Ferguson| [1973). For a more detailed proof, see
Chapter 3 of Regazzini| (1996). In the following we will use the notation P ~ DP(6, Q) to say
that P is a random probability measure endowed with the law of a Dirichlet process (DP), with
concentration parameter  and baseline distribution Q.

This strategy relies mostly on Kolmogorov’s Extension Theorem and the nice properties of
the Dirichlet distribution (especially ) It is therefore difficult to use the same reasoning
beyond this case, with the notable exception of the Normalized Inverse Gaussian process (Lijoi
et al., 2005). In the next Chapters we will see different construction of the Dirichlet process,
which will allow for various generalizations. In the next Section, instead, we study the statistical
model associated to the DP and the associated posterior distribution.
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1.5.4 Dirichlet process: posterior distribution

Consider the following Bayesian model for exchangeable data

Xi| PP, P~DP(0,Q).

19

(1.22)

Thus, now the random parameter is the entire distribution of the observations, whose prior is

given by the law of a Dirichlet process. Notice that

P(X € A) = E [P(X € 4| P)] = E[P(4)] = Qo(A),

since P(A) ~ Beta (0Qo(A),0Q0(A°)), by definition of the Dirichlet process. Thus the baseline
distribution is the marginal of X according to model and plays the role of the prior guess
for the law of the observations. It is clear that the resulting statistical model is not dominated,
so that formula can not be applied. The idea is to rely again on the finite dimensional

distributions, following the same lines of Chapter 3 in |[Regazzini| (1996).

Let (Ay,..., Ax) be an ordered partition of X. Then the posterior distribution
P (P(A1) € B1,...,P(Ak_1) € Bi_1 | X1) needs to satisfy the following integral equation

P(P(Al) € By,... ,P(Akfl) € B,_1,X € C)

= /CIP) (P(Al) S Bl, R ,P(Akfl) S Bk,1 ‘ .%1) Qo(dxl),
for every C' € X. Denote C; = A; N C and C] = A; N C¢, so that by definition
(P(Cl),P(Ci), .. ,P(Ck)) ~ ng,1 (al,all, . ,ak,az) N

where a; = «(C;) and o = a(C}). Therefore we obtain

P(P(Al) € By,... ,P(Ak_l) € Br_1,X; € C)

1 (z+vy) Ek T a0 ﬁ xaquoc;—l dzdy
= BiX--XBp_1\& 7 j j =
1 k—1 7 ?:1 F(aj)F(a’ J J =

Aak-1 i=1 5) s
k
N a1 —1 af—1
- Z/ ]131><~~><Bk_1(£+y> k ( ) / xquyia’b x?] y]] d&dy
i1 Y Dog—1 j:lr(aj)r(aj) j#i
k
s
= Z ?’ 1B, sxBy 1 (& + y)dor—1(z, y; a1, 0, ..., a; +1,..., ) dady,
=1 Agg—1

with yp = 1 — Z§:1 xj — Zf;ll yj. Noticing that Qo(C;) = ;/6 and denoting &; = (A,

), by
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applying ([1.17)) we have

P(P(Al) € By, .. .,P(Ak_l) € Br_1,X; € C)

k
:ZQO(Q)/ dr—1(w; a1,...,6; +1,...,4;) dw
i=1 Ap_1N(B1,...,Br—1

= / / di_1 (M; o1+ 1a, (x), B A ]lAk(Z')) deo(dx).
C JAR_1N(B1,.-,Bk-1

Therefore, by definition of conditional probability, we have
(P(Al), ce P(Ak_l)) | X1 ~Dp_q (Oé(Al) + 14, (:E), .. ,Oz(Ak) + ﬂAk($)

for every ordered partition. Considering instead an arbitrary ordered collection of sets (A1, ..., Ag),
with the same reasoning it is possible to prove that the finite dimensional distributions of P,
conditional to X, are as in with a new measure o' = a + dx. Therefore we proved the
following theorem for the posterior distribution of model .

Theorem 8. Consider a random variable X generated according to model (2.1). Then it holds

0 1
P|X~DP[O+1 )
| <+79+1Q0+9+1x>

In order to compute the posterior distribution P | Xi.,, with Xi., = (X1,...,X,), Theorem
can be applied sequentially to get

0 n -
P| Xy, ~ DP , 2., 1.2
| X1 <9+n it o ) (1.23)

where P, = %ZLI dx,. In the next section we explore some basic properties of model ([2.1).

1.5.5 Dirichlet process: basic properties

Thanks to the availability of the posterior distribution given in Theorem 8] we can extract useful
quantity for model (2.1]). In particular we have that

P(A) | X1 ~ Beta (6Qo(A) + nPy(A),0Qo(A° +nP,(4°%)),
so that the predictive distribution reads

P(Xp41 €A| X)) =E []P (Xp41 € A| P) | le} = E[P(A) | X1]

_ Qo(A) +nP(A) 6 nooa
- 6+n - 9+nQ0(A)+ 9+nP”(A)'

(1.24)

Therefore the predictive is a convex linear combination of the prior guess and the empirical
distribution of the observed datapoints. Interestingly, the fact that the prediction rule is a
linear combination of (g and the empirical measure is a characterization of the Dirichlet process
(Regazzini, 1978} Lo, [1991). Moreover, the higher 6 the higher the weight associated to the
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baseline distribution: therefore § measures the confidence on the prior guess. From ([1.24]) we
can devise a simple scheme to sample n observations from model (2.1f):

1. Sample Xl ~ Q().

2. For every i > 1 sample

Qo wp. 55
XZ+1 ~ ~ 9Z+7‘
This is often called a Pélya urn scheme, since it behaves as sampling with reinforcement from
an urn with infinitely many colors. It is then clear that a sample X7., from model ({2.1]) yields
ties with positive probability and moreover

6

]P)(Xi_;,_l = new | Xl:i) = 0 —|—7,

9

assuming that Qg is diffuse. Notice that the probability of a new value depends only on 6 and
n: in the following Chapters we will see suitable generalizations, to obtain dependence also on
the number of distinct values observed in X;.; (De Blasi et all 2013)). Calling W; € {0,1} the
variable equal to 1 if X is new, we can denote with K, = >_1"; W; the number of distinct values
out of a sample of n elements. By the above formula, we have that W; are independent Bernoulli
random variables with parameter /(0 + i — 1). Therefore

L 1
E[K,)=) EW]=60) —,
; ;0—1—1—1

which behaves approximately as log(1 + n/6), with n large. It is possible to say more, that is
K, /log(n) — 6 almost surely, as n — oo (see Korwar and Hollander (1973) for a proof). Thus,
the number of clusters (i.e. distinct values) grows logarithmically with n, regardless of the choice
of # and Qp: in the next Chapters we will introduce other processes for which it is possible to
tune the growth rate with suitable hyperparameters.

A sample Xy, from model can be equivalently described by the k < n unique values
and the associated partition in k clusters. By exchangeability, partitions with the same mul-
tiplicities (n1,...,ng), with n; > 0 and Zle n; = n, yield the same probability. Therefore
an object of great interest is given by the Exchangeable Partition Probability Function (EPPF)
ngn) (n1,...,ng), i.e. the distribution over partitions of {1, ..., n} with multiplicities (ni,...,ng)
induced by model . By exchangeability and we have

T (ny,.oong) =P (X1 =1,..., X, =1, Xp, 41 =2,..., X, = k)

1 ny —1 0 ng — 1 ng — 1

C0+1 0+ny—10+m 0+mny+ny—1 0+n—1 (1.25)
ok ﬁ

= ['(n;),
@)y 53

where 0,y = 0(0 +1) - -+ (0 + n — 1) is the Pochammer symbol.

Finally, again thanks by the conjugacy given by Theorem [§] it is possible to prove that
realizations of the Dirichlet process are almost surely discrete probability measures. This is
formalized in the next lemma.
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Lemma 1. Let Q) be the law of a Dirichlet process with parameters 0 and Qy. Then
Q (discrete probability measures over X) = 1.

Proof. For every P € P(X) denote with Ep = {z € X : P({z}) > 0} the set of atoms
of P. Then the set I'y C P(X) of discrete probability measures over X can be defined as
I'y={P e P(X) : P(Ep) =1} Thus, the statement is equivalent to Q(I'y) = 1.

Denoting £, = {P € P(X) : P({z}) > 0}, we have that Q(I'y) = 1 if and only if P (QXI (Ex,) = 1) =

1, where @, is the posterior law of the Dirichlet process given X; = x, with X; from model
(2.1). By Theorem (8] we have that

P ({X1} | X1) ~ Beta (0Qo({X1}) + 1,0 — 0Qo({X1})) ,

where P is a random probability measure with law ). Therefore

Qx: (Ex,) = Qx, ({P € P(X); P({X1}) > 0}) =0,

as desired. ]

1.6 Beyond exchangeability

As we saw in the previous Sections, the most common assumption underlying Bayesian models
is exchangeability, which corresponds to invariance of the joint distribution of the observations
with respect to finite permutations. However, most often the data present features that make
exchangeability unrealistic, e.g. presence of covariates, temporal dependence, different exper-
imental conditions. Therefore de Finetti’s Theorem has been generalized over the decades to
different probabilitic models: we mention for example exchangeability for Markov chains (Dia-
conis and Freedman, 1980al), arrays (Aldous, 1981) and networks (Caron and Fox] [2017). See
Aldous) (1985) for a detailed representation. Moreover, de Finetti’s Theorem has been proven
to be robust under small deviations from exchangeability, see e.g. |Campbell et al.| (2023).

In this thesis we focus on the setting where collected data may refer to different features,
populations, or, in general, may be collected under different experimental conditions. Such
situations entail a significant level of heterogeneity and opportunities for borrowing information,
that can be exploited through the notion of partial exchangeability (de Finetti, 1938|), which
implies exchangeability within each experimental condition, but not across. Two sequences of
observations X = (X;);>1 and Y = (Yj);>1, taking values in a space X, are partially exchangeable
if and only if, for all sample sizes (n,m) and all permutations (71, 72),

(X )71) £ (Xm)its (Ve )

From an inferential point of view, partial exchangeability entails that the order of the observa-
tions within each sample is non-informative, while the fact of belonging to a specific sample is
relevant and has to be taken into account. Moreover, there exists a generalized version of de
Finetti’s Theorem (de Finetti, |1938) which states that X and Y are partially exchangeable if
and only if there exist random probability measures (P;, P») such that for every i,7 =1,...,n

(X3, Y)) | P, P X px P, (P, P2) ~Q, (1.26)
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Figure 1.1: Graphical models of different hierarchical structures. Left: inducing dependence across
groups. Center: defining a more flexible likelihood. Right: defining a more flexible prior.

with Q € P (PQ(X)) playing the role of the prior. The analogy with model (1.1)) is clear:

conditional on the parameters (Pj, P»), observations are independent, with law given by the
corresponding group. The joint distribution of the pair (P;, P») models the dependence, i.e. the
borrowing of information, across groups: in particular, if P, = P» almost surely exchangeability
is recovered. Representation can be easily extended to d groups, through a vector of d
random probability measures (P, ..., P;) with prior distribution @ € P (Pd(X)). The literature
has thus developed a plethora of models specifying such law @: in the next Chapters we will
focus on Bayesian nonparametric models for partially exchangeable data, starting from the the
early works of |Cifarelli and Regazzini (1978); MacEachern (1999, 2000). We terminate the
Chapter, instead, on the role played by hierarchical structures in exchangeable and partially
exchangeable models.

1.7 Hierarchical structures for Bayesian modelling

Hierarchies play a key role in Bayesian modelling, since they provide a simple and effective way to
define the joint distribution of random quantities. Thanks to the well-known Chain Rule, we say
that the pair (X,Y) is defined hierarchically if the marginal distribution of X, namely P(X € A),
and the conditional distribution P(Y € A | X)) are specified. This is usually represented through
Directed Acyclic Graphs (DAG), as in Figure with “X — Y. Therefore we can use such
graphs to easily describe the probabilistic structure among the objects of interest.

In particular, we will use hierarchies for three distinct, yet related, task. We describe them
through the Dirichlet process model defined in ({2.1)).

1. Inducing dependence across groups: in the setting of partial exchangeability, de-
scribed in the previous Section, hierarchies can be used to induce dependence across dis-
tinct groups that share some common features. As shown in the left part of Figure
group j is modelled through the prior P;, depending on a common hyperparameter ¢: the
latter, being endowed with a suitable prior distribution, induces dependence across P; and
therefore across datapoints X;. An example is given by the Hierarchical Dirichlet process
(Teh et al., 2006) defined as

Therefore 1 plays the role of the common baseline distribution for all the groups. The re-
sulting simple probabilistic structure, as in the left of Figure allows to greatly simplify
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the theoretical and computational analysis.

2. Defining a more flexible likelihood: the discreteness of the Dirichlet process, as shown
in Lemma |1} may be a weakness of model . Therefore it is customary to convolve this
discrete structure with a suitable kernel k(x ), depending on a parameter § and dominated
by a o-finite measure pu, so that the resulting likelihood is also dominated by p: simple
examples for k are the normal and Poisson kernels, depending on the nature of the data.
The resulting model, introduced in |Lo| (1984)) and often termed Dirichlet process miztures,
can be defined as

Xi |0~ k(x| 0;), 0;| PP, P~ DP(0,Qo).
Therefore the discreteness of the Dirichlet process implies a latent clustering structure,
which can be used to automatically partition the observations in groups. The dependence
structure is defined by the center of Figure [I.1}

3. Defining a more flexible prior: as seen in the last Section, the predictive and asymp-
totic properties of the Dirichlet process model crucially depend on the concentration
parameter 6. Thus, since its role is fundamental, it is common to place a suitable hy-
perprior to learn it from the data. The corresponding model, called mixture of Dirichlet
processes and first defined in [Antoniak (1974), is given by

X; | PP, P0~DP0,Qy). 0~ P,

where Py € P(Ry). The graph is illustrated in the right part of Figure

Notice the modular property illustrated in the above three tasks: already defined objects (as the
Dirichlet process) can be used as building blocks for more complex models, which need to adapt
to specific features of the phenomenon of interest. In the next three Chapters we will discuss
modelling, theoretical and computational aspects of hierarchical models.
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Chapter 2

Hierarchies based on the Dirichlet
process

2.1 Introduction

The most well known Bayesian nonparametric model for exchangeable data is likely the one
induced by the Dirichlet process (DP, Ferguson| (1973)), i.e.

X;|PE P, P~ DP(0,Q), (2.1)

where 6 > 0 is the concentration parameter and Qg is the baseline distribution. For brevity in
the following we often write P ~ DP(«), where a = Q) is a finite measure. As discussed in the
previous chapter, the DP has nice analytical properties which allow to perform posterior inference
and prediction. In the next Sections we will study two distinct problems where hierarchies help
to generalize and robustify model .

First, we show how to model time series data in a nonparametric way using the Fleming-
Viot process: the latter is a suitable stochastic process, used to model the evolution of the
law describing the phenomenon, whose invariant measure is exactly the Dirichlet process. The
Section is based on the works of |Ascolani et al. (2021} 2023b). Secondly we study Dirichlet
process mixtures, discussed in the last chapter, which convolve the DP with a suitable kernel:
the discreteness of the process induces a latent clustering of the datapoints, which is often of
interest. It has been shown (Miller and Harrison, 2013| [2014) that such clustering is often
inconsistent in terms of the number of cluster, while we prove that this issue may be resolved
placing an hyperprior on ¢ in (2.1)). This is based on [Ascolani et al. (2023a).

2.2 Time series modelling with the Fleming-Viot process

2.2.1 Hidden Markov models

We assume to observe datapoints collected at p times 0 = ¢y < --- < t,_1 = T, possibly in
different amount at different times. In this setting exchangeability is clearly not appropriate, so
we consider the general framework of Hidden Markov models (Cappé et al., 2009), i.e.

Xi | P, %P, {P,:n=0,...,p—1} (2.2)

27
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Therefore observations collected at the same time are exchangeable, so that the data are assumed
to be partially exchangeable (de Finetti, [1938) as defined in the last Chapter. In the following,
we will denote for brevity X; := X;, and Xo.r = (Xo,...,Xr), where X, is the set of n;
observations collected at time ¢;. Similarly, we sometimes denote P; := P;,.

From representation , specifying a BNP model for temporally dependent observations
requires to define a family of random probability measures {P;,, : n = 0,...,p — 1}, indexed
by time. Previous contributions in this framework include |Canale and Ruggiero (2016); |Caron
et al.| (2007, [2017)); Caron and Teh| (2012)); Dunson| (2006)); \Griffin and Steel (2011)); |Gutiérrez
et al.[(2016); Kon Kam King et al.| (2020); Mena and Ruggiero| (2016); Rodriguez and Ter Horst
(2008). Many proposals start from the celebrated stick-breaking representation of the Dirichlet
process Sethuraman (1994), whereby P in is such that

i—1 . .
PLS V[ -V)ox,,  Vi™Beta(1,6),  Xi % Q, (2.3)

i>0  j=1

and the temporal dependence is induced by letting each V; and/or X; depend on time in a
way that preserves the marginal distributions. Those are all examples of Dependent Dirichlet
processes (MacEachern), (1999, 2000), such that the marginal distribution of X; is given by the
law of a Dirichlet process. This approach has many advantages, among which: simplicity and
versatility, since inducing dynamics on V; or X; allows for a variety of solutions; flexibility, since
under mild conditions the resulting processes have large support (cf. Barrientos et al| (2012));
ease of implementation, since strategies for posterior computation based on MCMC sampling
are readily available. However, the stick-breaking structure makes the analytical derivation
of further posterior information, like for example characterizing the predictive distribution of
the observations, often a daunting task. This typically holds for other approaches to temporal
Bayesian nonparametric modelling as well. Determining explicitly such quantities would not
only give a deeper insight into the model posterior properties, which otherwise remain obscure
to a large extent, but also provide a further tool for direct application or as a building block in
more involved dependent models, whose computational efficiency would benefit from an explicit
computation. In the next Sections we consider a different approach, based on the Fleming-Viot
process.

2.2.2 Fleming-Viot process

We consider a class of dependent Dirichlet processes with continuous temporal covariate. In-
stead of inducing the temporal dependence through the building blocks of the stick-breaking
representation , we let the dynamics of the dependent process be driven by a Fleming—Viot
(FV) diffusion. FV processes have been extensively studied in relation to population genetics
(see Ethier and Kurtz| (1993) for a review), while their role in Bayesian nonparametrics was first
pointed out in Walker et al.| (2007)) (see also |[Favaro et al.| (2009)). A loose but intuitive way of
thinking a FV diffusion is of being composed by infinitely-many probability masses, associated
to different locations in the sampling space X, each behaving like a diffusion in the interval [0, 1],
under the overall constraint that the masses sum up to 1. In addition, locations whose masses
touch 0 are removed, while new locations are inserted at a rate which depends on a parameter
f > 0. As a consequence, the random measures P; and Pj, with t # s, will share some, though
not all, of their support points.

The transition function that characterizes a FV process admits the following natural in-
terpretation in Bayesian nonparametrics (cf. Walker et al. (2007)). Initiate the process at the
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Random Probability Measure (RPM) Py ~ DP(«), and denote by D; a time-indexed latent
variable taking values in Z,. Conditional on Dy = m € Z., the value of the process at time t is
a posterior DP P, with law

m
Pt\(Dt:m,Yl,...,Ym)NDP(a—FZéXi) X; | RN Py (2.4)
i=1

Here, the realisation of the latent variable D; determines how many atoms m are drawn from
the initial state Py, to become atoms of the posterior Dirichlet from which the arrival state is
drawn. Such D; is a pure-death process, which starts at infinity with probability one and jumps
from state m to state m — 1 after an exponentially distributed waiting time with inhomogenous
parameter \,, = m(0 + m — 1)/2. The transition probabilities of D; have been computed by
Griffiths (1980); Tavaré| (1984), and in particular

P(Dy =m | Dy = 00) = dp(t) (2.5)
where
= m!(k —m)! ’

A = k(0 +k —1)/2 and where 03,y = 0(0 —1)--- (0 — k + 1) is the Pochhammer symbol. Here
the fact that Dy = oo almost surely should be understood as an entrance boundary, i.e., the
process decreases from infinity at infinite speed so that at each ¢ > 0 the value of D; is finite.

The unconditional transition of the FV process is thus obtained by integrating D;, Xi,..., Xp,
out of (2.4), leading to

o0

(z, da’) Z pn (t / Dp (a + i 591’) (da")x(dy1) - - - 2(dym)- (2.6)

i=1

This was first found by Ethier and Griffiths (1993). It is known that DP(«) is the invariant
measure of @y, i.e. if Py ~ DP(«) all the marginal RPMs P, are Dirichlet processes with the
same parameter. In particular, the death process D; determines the correlation between RPMs
at different times. Indeed, a larger ¢ implies a lower m with higher probability, hence a decreasing
(on average) number of support points will be shared by the random measures Py and P; when
t increases. On the contrary, as t — 0 we have D; — oo, which in turn implies infinitely-many
atoms shared by Py and F;, until the two RPMs eventually coincide.
For definiteness, we formalise the following definition.

Definition 1. A Markov process {P;}1>0 taking values in the space of atomic measures on X
is a Fleming—Viot dependent Dirichlet process with parameter o, denoted P, ~ FV-DDP(«), if
Py ~ DP(«) and its transition function is (2.6]).

Seeing a FV-DDP as a collection of RPMs, one is immediately led to wonder about the support
properties of the induced prior. The weak support of a DDP indexed by an R, -valued covariate
is the smallest closed set in B{ P(X)®+} with probability one, where P(X) is the set of probability
measures on X and B{P(X)®+} is the Borel o-field generated by the product topology of weak
convergence. Barrientos et al. (2012)) investigated these aspects for a large class of DDPs based
on the stick-breaking representation of the Dirichlet process. Since no such representation is
known for the FV process, our case falls outside that class. The following proposition states
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that a FV-DDP has full weak support, relative to the support of Q.

Proposition 1. Let a = 0Qq and X be the support of Qy. Then the weak support of a FV-
DDP(«) is given by P(X)R+.

In order to formalise the statistical setup, we cast the FV-DDP into a hidden Markov model
framework. A hidden Markov model is a double sequence {(F;,, Xt,),n > 0} where P, is an
unobserved Markov chain, called hidden or latent signal, and X}, are conditionally independent
observations given the signal. The signal can be thought of as the discrete-time sampling of a
continuous time process, and is assumed to completely specify the distributions of the observa-
tions, called emission distributions. While the literature on hidden Markov models has mainly
focused on finite-dimensional signals, infinite-dimensional cases have been previously considered
in [Beal et al.| (2001); |[Van Gael et al.| (2008)); Stepleton et al.| (2009); Yau et al.| (2011); Zhang
et al.| (2014); Papaspiliopoulos et al.| (2016]).

Here we take P;, to be a FV-DDP as in Definition [I} evaluated at p times 0 =ty < --- <
tp—1 = T. The sampling model is thus

$p,., P ~FV-DDP(a). (2.7)

X, | P,
It follows that any two variables Xtin ) Xgm are conditionally independent given P;, and F;  , with
product distribution P, X P, .

In addition, similarly to mixing a DP with respect to its parameter measure as in |[Antoniak
(1974), one could also consider randomizing the parameter « in (2.7), e.g. by letting o = o,
and v ~ 7 on an appropriate space.

We will sometimes refer to Xg.7 as the past values, since the inferential interest will be
set at time T+ ¢t. We will also denote by (z7,...,z7%) the K distinct values in X.7, where
K < ZzT:O n;. In this framework, Papaspiliopoulos et al. (2016 showed that the conditional
distribution of the RPM Prp, given Xg.7, can be written as

K
E(PT‘X();T) = Z WmDP (Oé + ijéx;) . (2.8)
j=1

meM

The weights wm, can be computed recursively as detailed in [Papaspiliopoulos et al.| (2016). In
particular, M is a finite convex set of vector multiplicities m = (mq,...,mg) € Zf determined
by Xg.7, which identify the mixture components in with strictly positive weight. We will
call M the set of currently active indices. In particular, M is given by the points that lie between
the counts of (z7,...,2%) in X, which is the bottom node, and the counts of (z7,...,z}) in
Xo:7, which is the top node. For example, if 7' = 1 suppose we observe Xy = (z}, z%) for some
values z] # ¥ and X; = Xy, hence K = 2. Then the top node is (2, 2) since in Xy:; there are 2
of each of (z7],x3) and the bottom node is (1, 1) which is the counts of (27, z3) in X;. Cf. Figure
Note that observations with K = 3 distinct values would generate a 3-dimensional graph,
with the origin (0, 0,0) linked to 3 level-1 nodes (1,0,0), (0, 1,0), (0,0, 1), and so on. In general,
each upper level node is obtained by adding 1 to one of the lower node coordinates.

We note here that the presence of d,,(t) in (2.6) makes the computations with FV processes
in principle intractable, yielding in general infinite mixtures difficult to simulate from (cf. Jenkins
and Spano| (2017)). It is then remarkable that conditioning on past data one is able to obtain
conditional distribution for the signal given by finite mixtures as in (2.8).
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Figure 2.1: Red indices in the graph identify active mixture components at time 7', i.e. the set M in (2.8)), corresponding
to points m € Zf with positive weight. In this example K = 2, and the graph refers to M at time 7" = 1 if we observe
Xo = (z7,23) = X1.

2.2.3 Predictive inference
Predictive distribution

In the above framework, we are now interested in predictive inference, which requires obtaining
the predictive distribution of X% FIPPO ,X% +¢/Xo:7, that is the marginal distribution of a k-
sized sample drawn at time T + ¢, given data collected up to time 71", when the random measures
involved are integrated out. See Figure Note that by virtue of the stationarity of the
FV process, if Py ~ DP(«), then P(X; € A) = Qo(A) for any ¢t > 0. Note also that if one
mixes model by randomizing the parameter measure o = «, as mentioned above, the
evaluation the predictive distributions is of paramount importance for posterior computation.
Indeed, one needs the distribution of |Xq.7, and if for example 7 has discrete support on Z
with probabilities {p;,j € Z}, then

P(y = j[Xo1) o piP(Xor[j) o piP(Xolj)P(X1[Xo, 5) - - - P(Xr[Xor-1, 7).

Denote for brevity X:}:_’ﬁt = (X21F+tv ... ,X%_H) the k values drawn at time T+ ¢t. For m € ZX,
let {n € Z¥ : n < m} be the set of nonnegative vectors such that n; < m; for all i. Define also
In| := Zszl n;, and

LM):={ne€Zf :n<m,me M} (2.9)
to be all the points in Z_If lying below the top node of M. E.g., if M is given by the red nodes
in Figure then L(M) is given by all nodes shown in the figure.

Proposition 2. Assume , and let the law of Pp given data Xo.r be as in (2.8]), where the
weights wy, have been computed recursively. Then, for any Borel set A of X, the first observation
at time T +t has distribution

0 n
P (Xrye € Al Xor) = g(jM) pe(M, n) (9 AR J’r ”n’Pn(A)> (2.10)
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Figure 2.2: The predictive problem depicted as a graphical model. The upper yellow nodes are nonobserved states of
the infinite-dimensional signal, the lower green nodes are conditionally independent observed data whose distribution is
determined by the signal, the light gray node is the object of interest.

and the (k + 1)st observation at time T +t, given the first k, has distribution

: k
P (X5} € Al Xor, X3%,) = eg(:M) ¥ (M, n)

(2.11)
X LQ (A) + LP (A) + LP (A)
0+ n|+&°° O+ |n[+& " O+ |n[+k "

where

1 & 1

Py =— Oz Py = - ] .

uEnen neife, o

and (x7,...,x%) are the distinct values in Xo.r.

Before discussing the details of the above statement, a heuristic read of is that the first
observation at time 71"+ t is either a draw from the baseline distribution )y, or a draw from a
random subset of the past data points Xq.7, identified by the latent variable n € L(M). Given
how L(M) is defined, X7 can therefore be thought of as being drawn from a mixture of Pdlya
urns, each conditional on a different subset of the data, ranging from the full dataset to the empty
set. Indeed, recall that the top node of M, hence of L(M) in , is the vector of multiplicities
of the distinct values (z7, ..., ¥y} ) contained in the entire dataset Xo.7. The probability weights
associated to each lower node n € L(M) are determined by a death process on L(M), that
differs from Dy in . In particular this is a Markov process that jumps from node m to node
m — e; after an Exponential amount of time with parameter m;(6 4+ |m| — 1)/2, with e; being
the canonical vector in the ith direction. The weight associated with node n € L(M) is then
given by the probability that such death process is in n after time t, if started from any node
in M. For example, if M is as in Figure than the weight of the node (0,2) is given by the
probability that the death process is in (0, 2) after time ¢ if started from any other node of M.
Being a non increasing process, the admissible starting nodes are (2,2) and (1,2). Figure
highlights these two admissible paths of the death process which land at node (0, 2).

The transition probabilities of this death process are

Pmn(t) = Pm|,n|(t)HG(m — n;m, [m — nJ), 0<n<m, (2.13)



2.2. TIME SERIES MODELLING WITH THE FLEMING-VIOT PROCESS 33

Figure 2.3: The weight associated to an index n € L(M) at time T + ¢ is determined by the probability that the death
process reaches n from any active index m € M at time 7. For M as in Figure the weight of the mixture component
with index n = (0,2), i.e., no atoms z} and 2 atoms z3, is the sum of the probabilities of reaching node (0, 2) via the path
starting from (1,2) (left) and from (2,2) (right).

where HG(i; m, |i|) is the multivariate hypergeometric probability function evaluated at i, namely
(%) (8
m|
()
with dim(m) denoting the dimension of vector m, while p|s| | (t) is the probability of descending

from level |m| to |n| (see Lemma (7| in the Supplementary Material). Hence, in general, the
probability of reaching node n € L(M) from any node in M is

HG(i;m, |i]) = , 1 =dim(m)

pt(M7 n) = Z 'wmpm,n(t)- (2.14)

meM,m>n

In conclusion, with probability p,(M, n) the first draw at time 7'+ ¢ will be either from @, with
probability 6/(0+ |n|), or a uniform sample from the subset of data identified by the multiplicity
vector n.

Concerning the general case for the (k+1)st observation at time 7' +¢, trivial manipulations
of (2.11)) provide different interpretative angles. Rearranging the term in brackets one obtains

On
On + Kk

Qon + Py, (2.15)

On + K
which bears a clear structural resemblance to the predictive distribution of the DP. Here

4 n|
Qo+ g m ™

9 — 0 n P =
n +| ’7 0,n 0 + |Il’
play the role of concentration parameter and baseline probability measure (i.e, the initial urn
configuration), respectively. Thus ([2.11]) can be seen as a mixture of Pdlya urns where the base
measure has a randomised discrete component P,. Unlike the exchangeable case, observations
not drawn from empirical measure P, of the current sample can therefore be drawn either from
Qo or from the empirical measure P,, where past observations are assigned multiplicities n with
e (K)
probability p;"’ (M, n).
An alternative interpretation is obtained by developing the sum in (2.11)) to obtain a single
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generalised Pélya urn, written in compact form as

P(X75h € - | Xor, XHE,) = AQo(: +Zc@k6 )+ BuPi() (2.16)

where A is a Borel set of X. In this case, the first observation is either from )y or a copy of a
past value Xg.7, namely

Qo w.p. 4y

Xt~
1
55,;: w.p. Cio,

while the (k + 1)st can also be a copy of one of the first k current observations XT V', namely

Qo w.p. Ag

k
XTill ~ {0 wp. Cig
Pk W.p. Bk

The pool of values to be copied is therefore given by past values X7 and current, already
sampled observations X%_’f_t.

After each draw, the weights associated to each node need to be updated according to the
likelihood that the observation was generated by the associated mixture component, similarly
to what is done for mixtures of Dirichlet processes. Specifically,

k+1 k
pF (M, m) o pP (M, n)p(aht) | 255, n) (2.17)
where
a0 () + I b (D) + 08,5 (o))
p(afy | el m) == (2.18)

0+ |n|+k

is the predictive distribution of the (k 4 1)st observation given the previous k and conditional
on n, and qq is the density of )y with respect to the Lebsegue or the counting measure.

As a byproduct of Proposition 2] we can evaluate the correlation between observations at
different time points.

Proposition 3. Fort,s > 0, let Xy, X¢1s be from (2.7). Then

Corr( Xy, X, = =
o , = —.
( bt S) 0+1

Unsurprisingly, the correlation decays to 0 as the lag s goes to infinity. Moreover,

1
COI‘I‘(Xt,XtJrS) — m, as s —> 0

which is the correlation of two observations from a DP as in (2.1)).

Sampling from the predictive distribution

In order to make Proposition [2| useful in practice, we provide an explicit algorithm to sample
from the predictive distribution (2.11]), which can be useful per se or for approximating posterior
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quantities of interest. Exploiting (2.15)) and the fact that (2.11)) can be seen as a mixture of
Pélya urns, we can see n € Zf as a latent variable whereby, given n, sampling proceeds very
similarly to a usual Pélya urn.

Recalling that |n| = ZJK:1 n;, a simple algorithm for the (k+1)st observation would therefore
be:

e sample n € L(M) w.p. pgk) (M, n);
e sample from Qq, P, or Py with probabilities proportional to 6, |n|, k respectively;
e update weights pgk) (M, n) to p§k+1) (M, n) for each n € L(M).

A detailed pseudo-code description is provided in Algorithm

Algorithm 1 Exact sampling from (2.11)

" Input: - active nodes at time 7: M
- precision parameter: 6
- last mixture weights pgk)(M, n), n € L(M)
- past unique observations: z7,..., 2}
- current observations: w% TP ,:U’% 1t

Sample n w.p. p,(fk) (M,n), n € L(M)
|n| k

Sample X from Qq, P, or P, w.p. 9+\fl|+k’ oTIn[Tk’ 050
k+1
Set xTJj_t =X
Update parameters:
for n € L(M) and p(a;ﬁ'_lt | 24¥,) as in (2.18) do
k+1 k k :
pi" Y (M.m) = " (M, m)p(ef) | 2fh)
Normalize pgkﬂ) (M, n)

% respectively

A possible downside of the above sampling strategy is that when the set L (M) is large,
updating all weights may be computationally demanding. Indeed, the size of the set L(M)
is |[L(M)| = ]K:l(l + my;), where m; is the multiplicity of 7 in the data, which can grow
considerably with the number of observations (cf. also Proposition 2.5 in |[Papaspiliopoulos and
Ruggiero (2014))). It is however to be noted that, due to the properties of the death process that
ultimately governs the time-dependent mixture weights, typically only a small portion of these
will be significantly different from zero. Figure illustrates this point by showing the nodes
in {0, ...,50} with weight larger than 0.05 at different times, if at time 0 there is a unit mass at
the node 50, when 6§ = 1. A deeper investigation of these aspects in a similar, but parametric,
framework, can be found in |[Kon Kam King et al.| (2021]).

Hence an approximate version of the above algorithm can be particularly useful to exploit this
aspect. We can therefore target a set M C L (M) such that [M|]|L(M)| and 3 .z 2t (M, n) ~ 1
by inserting a Monte Carlo step in the algorithm and simulate the death process with a large
number of particles. The empirical frequencies of the particles landing nodes will then provide an
estimate of the weights p;(M, n) in . Furthermore, the simulation of the multidimensional
death process can be factorised into simulating a one-dimensional death process, which simply
tracks the number of steps down the graph, and hypergeometric sampling for choosing the
landing node within the reached level. A simple algorithm for simulating the death process is
as follows: fori=1,..., N,
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Figure 2.4: Nodes in {0,...,50} (black dots) with probability of being reached by the death process bigger than .05 after
lags .01, .1, .2, .5 and 1 (horizontal axis). Starting with mass 1 at the point 50, only a handful of nodes have significant
mass after these lags.

e draw m with probability wy, and set m = |m|;
e run a one-dimensional death process from m, and let n be the landing point after time ¢;
e draw n® ~ HG(n,m/|m)|);

and return {n(i),i =1,...,N}. Note, in turn, that the simulation of the death process trajecto-
ries does not require to evaluate its transition probabilities , which are prone to numerical
instability, and can instead be straightforwardly set up in terms of successive exponential draws
by repeating the following cycle: for ¢ > 1,

o draw Z; ~ Exp(m(60 +m —1)/2)

o if >3, Zj <tset m=m—1elsereturn n =m —i+1 and exit cycle.

Algorithm 2 outlines the pseudocode for sampling approximately from (2.11) according to this
strategy.
Asymptotics

We investigate two asymptotic regimes for (2.11). The following Proposition shows that when
t — oo, the FV-DDP predictive distribution converges to the usual Pélya urn.

Proposition 4. Under the hypotheses of Proposition[d, we have

0 k
79+kQ0+79+kPk’ a.s.,as t — 0o,

in total variation distance, with Py as in (2.12)).

£(XFH | Xor, XFE,) —

Here the statement is almost sure with respect to the probability measure induced by the
FV model on the space of measure-valued temporal trajectories. A heuristic interpretation of
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Algorithm 2 Approximate sampling from ([2.11))

" Input: - active nodes at time 7: M
- time to propagate: t
- precision parameter: 0
- mixture weights at time T": wy,
- past unique observations: z7,...,x%
- number of Monte Carlo iterates: N

2: M = @; w=10

3: foriel: N do

4: Sample m w.p. wy,, m € M

5: n=ml|;s=t

6: for j > 1do

7: Sample Z from Exp(n(f +n—1)/2) and set s=s— Z
8: if s > 0 and n > 0 then

9: Setn=n-1

10: else

11: Return n and exit cycle.

12: Sample n ~ HG(n,m/|m|)

13: if n ¢ M then

14: Add n to M and add 1 to w

15: else

16: Add 1 to the corresponding element of w

17: Normalize w.
18: Apply algorithm |1 with M = M and p;(M,n) = w

the above result is that, when the lag between the last and the current data collection point
diverges, the information given by past observations Xg.7 becomes obsolete, and sampling from
approximates sampling from the prior Polya urn. This should be intuitive, as very old
information, relative to the current inferential goals, should have a negligible effect.

The following proposition shows that when £ — oo in , we recover the law of Ppryy
given Xg.7 as de Finetti measure.

Proposition 5. Under the hypotheses of Proposition[d, we have

E(X%iﬂXo;T,X%f_t) — P*, a.s.,as k — oo,

weakly, where P* ~ L(Pr.y| Xo.7).

Here P* is a random measure with the same distribution as the FV-DDP at time T + ¢ given
only the past information Xg.7. Recall for comparison that the same type of limit for the
exchangeable case yields

L(Xpi1Vh,..., Xg) — P*,  P*~Tl,, ask— oo,

where DP(«) is the de Finetti measure of the sequence and P* is sometimes called the directing
random measure.
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2.2.4 Illustration

We illustrate predictive inference using FV-DDPs, based on Proposition Besides the usual
prior specification regarding models based on the Dirichlet process, that concern the choice of
the total mass 6 and of the baseline distribution Py, here we can also introduce a parameter
o > 0 that controls the speed of the DDP. This acts as a time rescaling, whereby the data
collection times t; are rescaled to ot;. This additional parameter provides extra flexibility for
estimation, as it can be used to adapt the prior to the correct time scale of the underlying data
generating process.

Synthetic data

We consider data generated by the model

1 1
Xy~ 5Po(; 1, 0) + 5Po(y, 1, 5),

Mt = pi—1 + ¢, ¢ ~ Exp(1),
v =vi_1+n, e~ Exp(l),n 1L &

where Po(\, b) denotes a b-translated Poisson distribution with parameter A (i.e. if Y ~ Po(\, b)
then Y — b ~ Po(\)), and where ,ugl = V(;l =5, fort =0,1,2,.... We collect 15 observations
at each t € {0,...,15} and consider one-step-ahead predictions based on the first 5 and 15 data
collection times.

We fit the data by using a FV-DDP model as specified in , with the following prior
specification. We consider two choices for Py, a Negative Binomial with parameters (2,0.5)
and a Binomial with parameters (99,0.3), which respectively concentrate most of their mass
around small values and around the value 30. We consider a uniform prior on 6 concentrated
on the points {.5,1,1.5,...,15}. A continuous prior could also be envisaged, at the cost of
adding a Metropolis—Hastings step in the posterior simulation, which we avoid here for the
sake of computational efficiency. Similarly, for ¢ we consider a uniform prior on the values
{0.01,0.1,0.3,0.5,0.7,0.9,1.5}. The estimates are obtained by means of 500 replicates of
of 1000 observations each, using the approximate method outlined in Algorithm [2] with 10000
Monte Carlo iterates. We also compare the FV-DDP estimate with that obtained using the
DDP proposed in Mena and Ruggiero (2016|). This is constructed from the stick-breaking

representation (2.3)) by letting
Vi(ty) ~ cdyr + (1 = ¢)y4, 1y, V' ~ Beta(l,0).

in (2.3) and keeping the locations fixed. We let the resulting DDP be the mixing measure in a
time-dependent mixture of Poisson kernels, which provides additional flexibility to this model
with respect to our proposal. Furthermore, we give the competitor model a considerable advan-
tage by training it also with the data points collected at times 6 and 7, which provide information
on the prediction targets, and by centering it on the Negative Binomial with parameters (2,0.5),
rather than on the above mentioned mixture, which puts mass closer to where most mass of the
true pmf lies.

Figure shows the results on one-step-ahead prediction with 15 collection times: the point-
wise credible intervals, computed with the empirical quantiles, are also plotted. The posterior of
o (not shown) concentrates most of the mass on points 0.7 and 0.9, which leads to learning the
correct time scale for prediction, resulting in an accurate estimate of the true pmf. The credible
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intervals are quite wide, and a better precision may be achieved by increasing the number of
time points at which the data are recorded.
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Figure 2.5: One-step-ahead prediction and 95% pointwise credible intervals, based on 15 data collection times.

We compare the previous results with those obtained by choosing ¢ via out-of-sample val-
idation. This is done here using times 0 to 4 as training and time 5 as test, whereby for each
o € {.0001,.001,.01,.1,0.5,1,1.5} we compute the sum of absolute errors (SAE) between the
FV-DDP posterior predictive mean and the true pmf. These are shown in Table leading to
choose 0 = .01.

o .0001 .001 .01 1 D 1 1.5
SAE .1410 .1345 .1064 .1301 .1261 .1595 .1847

Table 2.1: Sum of the absolute error between predicted and true pmf at time 5 for different values of o.

Table [3.2] shows the posterior weights of relevant values of § among those with positive prior
mass, for the above mentioned choices of Qg and using the chosen value of 0. The model correctly
assigns all posterior probability to the Negative Binomial centering (Binomial not reported in
the table), which moves mass towards smaller values as time increases.

6 1 1.5 2 3
NegBinom .5644 .001694 .04702 0.3868

Table 2.2: Relevant posterior weights of 6

Figure [2.6] shows the results in this case for the one- and two-step-ahead predictions given
only 5 data collection times. The true pmf is correctly predicted by the FV-DDP estimate even in
this short horizon scenario, and the associated 95% pointwise credible intervals are significantly
sharper if compared to Figure obtained with a longer horizon. The prediction based on the
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alternative DDP mixture does not infer correctly the target, leading to an associated normalised
£ distance from the true pmf of 12.72% and 12.84%, compared to 4.95% and 4.90% for the FV-
DDP prediction.
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Figure 2.6: One- (left) and two-step-ahead prediction (right) based on 5 data collection times, with 95% pointwise
credible intervals.

Karnofsky score data

We consider the dataset hodg used in Klein and Moeschberger (2003), which contains records
on the time to death or relapse and the Karnofsky score for 43 patients with a lymphoma
disease. The Karnofsky score (KS) is an index attributed to individual patients, with higher
values indicating a better prognosis.

In the framework of model , we take the times of death or relapse as collection times and
let the KS of the survivors at each time be the data. We aim at predicting the future distribution
of the KS among the patients who are still in the experiment at that time, which would be an
indirect assessment of the effectiveness of the score in describing the patients’ prognosis. We
also include censored observations (patients leaving the experiment for reasons different from
death or relapse), without having them trigger a collection time. The FV-DDP appears as the
ideal modeling tool in this framework since it includes a probabilistic mechanism that accounts
for the reduced number of observations through different time points.

We train the model up to 42, 108 and 406 days after the start of the experiment, and we
make predictions 28, 112 and 144 days ahead, respectively. As regards the prior, we put a
uniform distribution on the observed scores (note that new score values cannot appear along the
experiment) and we uniformly randomize 6 over {.5,1,1.5,...,15}, analogously to Sectionm
Given the results of the previous subsection for different approaches to selecting o, here, after
transforming the lags in annual, we proceed by selecting o for each value of # by maximizing
the probability that the death process makes the right number of transitions in the desired laps
of time. Some of the selected values for o1, 09, o3 for the three different trainings, depending on
0, are shown in Table

Figure shows the three predictions of the scores distribution. Coherently with the in-
tuition, as the experiment goes by, individuals with higher KS become predominant: from 70
to 230 days the predicted weight associated to a score of 90 increases of more than 10%, and
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o1 0.4947 0.4913 0.4885
o2 0.6059 0.6014 0.5696
o3 0.6149 0.6150 0.5789

0.3235 0.3266 0.3228
0.3684 0.3130 0.3361
0.3063 0.3018 0.2901

Table 2.3: Choice of o for some values of 6 for the three trainings.
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Figure 2.7: From top left: pmf prediction at 70, 230 and 550 days after the experiment. Bottom right: Kaplan-Meyer
estimate of the survival times up to time 550.

similarly for 100. However the distribution of the scores remains pretty stable, apart from the
lowest values, meaning that the highest scoring patients actually had much better prognoses, as

showed by the third prediction.

These findings are consistent with the Kaplan-Meyer estimate (Kaplan and Meier, [1958) of

the survival function, shown in the bottom right panel, which decreases rapidly between 70 and
230 and flattens after that point, implying that the FV-DDP prediction adapted to the periods
of quick change in the underlying distribution and periods of relative steady behaviour.
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2.2.5 Smoothing distribution

In this Section we are interested in determining the so-called smoothing distributions of the
marginal states P, of an unobserved Markov process, often called the hidden or latent signal,
evaluated at time ¢; given samples X,,..., Xt _, from the observation model, which is param-
eterised by the signal state, collected before and after ¢;. Here 0 = tg < --- < t,—1 = T and
0 <7 < p—1. These conditional distributions are typically used to improve previous estimates
obtained at a certain time once additional observations become available at later times, often
resulting in a smoother estimated trajectory for the unobserved signal, and they also constitute
the starting point for performing Bayesian inference on the model parameters (see, e.g., Kon
Kam King et al.| (2021)).

In particular we characterize the laws of the marginal states of FV model , given sam-
ples from the respective underlying populations collected before and after the state temporal
index, thus solving the smoothing problem. We show that these distributions can be written as
finite mixtures of laws of Dirichlet random measures respectively, whose time-dependent mixture
weights are fully described and can account for different time intervals between data collection
times. As a byproduct of the above results, we describe the predictive distribution for further
samples from the population given the entire dataset, which are shown to be mixtures of gener-
alized Pélya urns. Our results prove that computable smoothing and conditional sampling from
the population are feasible with signals given by the FV process, bringing forward this model
as possible canonical choice in a nonparametric framework for hidden Markov models.

Some operators on measures

To obtain the smoothing distributions we are going to exploit the projective properties of the
FV process. To this end, we need to set a few tools that ease notation and computation for the
respective finite-dimensional counterparts.

Consider a Markov process P on RX, K < oo, with transition function @Q; and initial
distribution v. We assume (@), is reversible with reversible measure 1. In this section we regard
P as generic, but as anticipated above this setting will be used to model finite-dimensional
projections of the measure-valued diffusion P;. The dimension K can therefore be thought of as
representing the number of cells in which types in the population have been grouped or binned.
Accordingly, iid observations collected at time ¢ given P; = p; generate multiplicities associated
to the K groups which can be encoded into a vector n € Zf , whose associated density is p(n|p;).
We can then define the following operators acting on measures &:

e Update:
t(€)(ap) i= PEIPER) ) o [ pmip)ép). (2.19)
pe(n)

This provides the conditional measure £ given observations with associated multiplicities
n. It is analogous to Bayes’ Theorem with p acting as the random parameter and £ as its
prior: hence, Uy(&) yields the posterior, whereas the denominator pe¢(n) is the marginal
likelihood of n obtained by integrating out the random parameter x. Here the multiplicities
n are observed at the same time p refers to, as in .

e Forward propagation:

FUO(AP) = £Qi(dp) = [ £(dp)Qu(p.dp). (2.20)
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This yields the unconditional measure of Psy; if £ is that of Ps, once the initial state is
integrated out.

e Backward propagation:

B(€)(dp') 1= £QU(dp') = [ £(dx)Qu(x,dx). (221)

It is the forward propagation obtained by using the transition function of the time reversal
of the signal, denoted here Q.

With a slight abuse of notation, when ¢ is dominated by a sigma-finite measure p on RX,
we specialize the previous operators as acting on densities, e.g., if {(dp) = f(p)u(dp), then
Un(f)(P) == p(n|p)f(p)/ps(n) and ps(n) := [p(n|p)f(p)u(dp), and similarly for and
. Note that the specific form of the backward transition is not necessary for our treatment,
as we will leverage on Bayes’ Theorem. See, e.g., Lemma [3| below.

Remark 1. Exzpanding on the above, and assuming all probability distributions of interest are
dominated by w, one could define a smoothing operator acting on two densities fs, fu, indexed
by s < u, by letting

Sl fs fu)(P) = C Fos(fs) (%) Bu—t(fu) (P) Un(fo) () / fo(P)?, (2.22)

for every p such that fo(p) > 0, where s < t < w, fo is the density of vy with respect to
p and C is a normalising constant that makes the left hand side a density. This yields the
distribution of Py, given observations at time t, if Py ~ fs and Py ~ f,, obtained by jointly
propagating Ps forward of a t—s interval, P, backward of a u—t interval, and then conditioning
on observations collected at time t. The rationale of this operator can be outlined by considering
that, for to < t1 <ta, if x4 |pt, ~ p(z1,|Pr,), we have

P(Pt1|Ptos Tty > Pta) X D(Pty [Pt )P(Tt, [Pty Peo)P(Pta| Pty s Pros Tty )
= p(Pt, [Pto) (71, [Pty )P (Pt [P1y )

where we have used the fact that conditionally on p:,, Yy, is independent on everything else,
together with the Markov property. By virtue of Bayes’ Theorem, we now have p(p,|py) =
P(Pe)p(Pes [P) /D(Prs) and p(iy |71,) = p(D1, )P [Py )/ (w1, ) whereby the previous expression
is proportional to p(py, |Pty)P(Pt, [Pty )P(Pt, |71, ) /P(Pr, )2 This operator will not be essential for
our calculations of the next sections, but it can provide a unified treatment of the previous
operators applied at stationarity. In fact, we have the following special cases:

Sg,t,u(fs: fO) = ft—s(f8)7 Sg,t,u(f07 fu) = Bu—t(fu)a S;t,a(f(); fO) = un(fO)

Appropriate compositions of the above operators allow to represent all quantities of interest
in this framework. For example p(py,[n;—1,ni,ni41) = Sp' | 4. . (Un, , (fo),Un,, (fo)) identifies
the distribution of Py, given observations at times ¢;_1,%;,t;41, obtained by first updating the
stationary measure at times t;_1,%;+1 given observations with multiplicities n;_1,n¢,,, respec-
tively, then propagating both distributions to the intermediate time ¢;, and finally updating the
output of the last operation given the multiplicities observed at time ¢;.
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Preliminary results on projections

A projection of the Dirichlet process law onto a measurable partition (A, ..., Ax) of the sam-
pling space X yields a Dirichlet distribution with parameters («(A1),...,a(Ak)), whose density
with respect to the Lebesgue measure on the (K — 1)-dimensional simplex, denoted 7q(x),
a = (a(Ay),...,a(Ak)), is proportional to p*~! := p(f(Al)fl . p?;(AK)*l. With a little abuse
of notation, we will use the symbol 7, to denote both the Dirichlet density and the corresponding
measure. Similarly, a projection of a FV process with transition onto the same partition
yields a Wright—Fisher diffusion, denoted WF,, with transition function

o0

Qi(p,dp’) = > dnm(t) > p™ (:) Ta+m(dp’), (2:23)
m=0

mEZf: |m|=m

and d,,,(t) as in (2.6), which has reversible distribution 7. We will denote by ¢/(-|p) the
corresponding density function. In this scenario, (2.7)) reduces to

X/|P,=P Y Categorical(p), P ~ WF,, (2.24)
whereby for each i, X} = j with probability pj, for j =1,..., K, and the update operator (2.19)

yields the familiar Bayesian update for Dirichlet distributions Uy (7)) = Tatn. It is useful to
note for later reference that in (2.19)) the marginal likelihood is

B(o+n) IS ()
m(n) = pg (n) = ———= Bla) = 22—~ (2.25)
B(c) I'(e)
often called Dirichlet-Categorical distribution. Define now
B
h(p,n) := p(nlp) = (@) p", ne Zf, (2.26)

m(n)  B(a+n)

where p(n|p) is the categorical likelihood in (2.24]) expressed in terms of multiplicities of types.
It will also be useful to note that for n,m € Zf , we have

h(p,n)h(p,m) = c¢(n,m)h(p,n + m) (2.27)
where

m(n + m) _ B(a)B(a+m + n)
m(n)m(m) B(a+n)B(a+m)

¢(n,m) = (2.28)

Recall now that the WF diffusion is known to have moment-dual given by Kingman’s typed
coalescent. More specifically, let M be a death process on ZE with rates Ay = m;(0+|m|—1)/2
from m to m — e;, where e; is the canonical vector in direction j. Then the following duality
identity

E[h(P¢, m)[Po = p] = E[h(p, M;)|Py = m] (2.29)

holds with % as in (2.26). We will denote by pn m(t) the transition probabilities of M, (cf. Pa-
paspiliopoulos et al.| (2016), Section 4.2). The above duality is used to prove the following
Lemma, needed later.
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Lemma 2. Let n; 1 be the multiplicities observed at time t;11. Then

pmip1|py,) = m(it1) Y Poiym(tivn — t)h(pr,, m). (2.30)
0<m<n;41

The next lemma formalizes the fact that a backward propagation, after a change of measure
with respect to the stationary distribution, yields an analogous distributional result to a for-
ward propagation, somehow carrying over the reversibility of F'V processes to their conditional
versions. In the following statement, the forward and backward operators JF;, B; are applied to

laws of FV states by extension of (2.20)-(2.21)), with Q; as in ({2.6]).

Lemma 3. Assume (2.7} , letx7, ..., x% be distinct values andn € Zf. Then Fi(DP (a + ZJK:1 njéx;f>) =
B.(DP (a + Z —1 M0y )), with Fi, By as in (2.20))-(2.21), and in particular

Bt(DP (a+§:njéx;)) > pnk(t)DP (a—l—Zk 0 ) (2.31)

j=1 0<k<n

Thanks to this equivalence between backward and forward propagation, we have that the same
result of Lemma [2] holds with n;;; replaced by n;_i, i.e., referred to time t;_i, leading to the
expression obtained by replacing ¢;+1 — t; with ¢; — ¢;_1 in the right hand side of ({2.30)).

Main result

Using the results of the previous section, the characterization of the smoothing distribution
for conditional FV processes will be provided in three steps. First, in Theorem [0 we show
that conditioning on observations collected at adjacent times yields a finite mixture of laws of
Dirichlet random measures; then, in Proposition [6 we give a full description of the mixture
weights for different choices of the offspring distribution Qq; finally, in Proposition 7] we show
how the general expression can be obtained by recursive computation based on the previous
results.

We denote by X;_1,X;, X;41 vectors of observations collected as in at times t;_1, t;,
ti+1 respectively, with associated multiplicities n;_1,n;, n;;; for the distinct values (z7,...,z}%)
observed overall.

Theorem 9. Under model (2.7), let X;_1, X;, Xi+1 be as above. Then there exist weights
summing up to one, denoted wy, | n, k., (Di, Dit1), for ki1 <mn;_1,kip1 <ngy, such that

L(Py; | Xi—1, Xi, Xig1) =
- Z Z Wi, g kigq (Dis Aiy1)DP (ak 1+nz+kz+1) ’ (2.32)

0<k;1<n;_1 0<k;1<n;q

where A; = t; — t;—1, Njy1 = tip1 — t;, and

O (Ki-15 + nij + Kit1,5)007- (2.33)

_.l_
11~

Remark 2. In the previous result, we have used notation k;_1 and k;11 for the integrating
variables, whose indices should help the intuition by indicating the time point they refer to.
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Note however that in principle these quantities are determined at time t;, being the number
of lineages in a time-reversed genealogy. Instead of using generic integrating variables i,j, we
choose to adopt this notational convention here and later for the sake of readability.

The previous result provides an explicit representation of the conditional law of a FV state
given observations at adjacent times, but does not investigate in full detail the mixture weights,
denoted generically in the Theorem statement, which we do next. To pursue this task, by looking
at the proof of Theorem [0 we need to compute

lim m(n)(ki—l +1n; + ki)
n—00 nm(n) (kl_l)m(”) (nz)m(n) (ki—i-l) ’

(2.34)

where m(™ denotes the marginal distribution in (2.25) relative to the model induced by the
partition B,, and C), is the normalizing constant. In the setting of Theorem [9 denote now by

Di1={je{l,...,K} : nj_1; >0 and either n; ; > 0 or nj;1; >0},
Diy1 = {] € {1, ... ,K} N1, > 0 and either Ngj > 0 or Ni—1,5 > 0},

the set of distinct values in X;_; shared with X; or X; 1, and those in X;1; shared with X;_;
or X;, respectively. Then

D = {(k, k/) < (ni_l,ni_,_l) : ]fj > 0, k;/ > O,V] € D;_1 and j/ S Di+1}

is the set of multiplicities (k, k') not greater than (n;_1,n;;1) such that the frequency of distinct
values shared between different collection times is strictly positive. For example, if t; is the
current time index, suppose we have n;_; = (1,3,0), n; = (0,0,1) and n;; = (0,2, 1), whereby
of the three types observed overall, at time t;_1 we observed multiplicities 1 and 3 for the first
two, at time ¢; an instance of a third type, and so on. Then

D = {(ivj) : ig (1)3)0)5j S (07271)7 i? > Oan > 07j3 > 0}

is given by vectors of multiplicities not greater than (n;_1,n;41), with positive entries for type
two, which is shared by times ¢;_1,%;+1, and for type three, limited to the second coordinate,
since it is shared by time t;11 and the current time. In other words, multiplicities not greater
than those observed, with positive entries for types: (i) observed at both times different from
the current, or (ii) observed at the current time and at least another time. Notice that D = ()
corresponds to the case in which no values are shared between the three collection times t;_1, ¢;
and t;41, which holds, for example, when all the observations are distinct.

Before stating the result, note that when @ is supported by a countably infinite set, m(n)
can be defined by extension of ([2.25)), where all but a finite number of terms simplify in the
ratio. Let also a®® = a(a+1)...(a+b— 1) denote the Pochhammer symbol.

Proposition 6. In the setting of Theorem[9, let p = pn,_, 1,y (Ai)Pny iy ki (Qit1). Then

A. if Qq is discrete,

m(ki1+mn; + ki)

m(kifl)m(ni)m(kpﬂ)’ (235)

n;_1,M;41 AL ~
wki—l,ni,ki+1 (A“ AZ'H) xp
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B. if Qo is nonatomic and D = (),

g(ki—1]) g([kit1])

n; 1,041 DAL ~ .
w (Az, Az-i-l) xXp (0 T ’ni‘)(|ki—1‘+|ki+1|)’

ki—1,n;,kit1

C. if Qo is nonatomic and D # (),

n;—1,N541 . . ~
wki—lyni,ki+1 <A“ Az"'l) xp

§(Iki—1Dg(Iki 1) ﬁ (ki1 +mij + kit — 1)!
(O + |ng|)Peimalllenl) 25 (kio1j = DV (nay — D (ki — 1)
if (ki—1,kit1) € D, and zero otherwise.

We now have a full description of , which is a finite mixture of laws of Dirichlet random
measures whose parameter measure o + ZjK:l(ki_Lj + n;j + kiy1,5)0,+ contains, besides the
unnormalised offspring measure «, the current observations X; and a subset of the observations
(Xi—1,X;+1) collected at adjacent times. The mixture weights are in turn determined by the
following two elements. The first is given by the transition probabilities of the death process
associated to the typed coalescent, which determines the probability that past and future data
are atoms in the respective random measures as a function of the distance between time t;
and the adjacent times. As the lags A; and A;y; grow, the number of survived lineages is
lower with higher probability and the random measures in the mixture will carry, on average,
less information in terms of types observed at different times. The second element is the joint
marginal likelihood of past, present and future data. For instance, when the offspring distribution
is discrete, the ratio in is higher when m(k;—1 + n; + k;j+1) > m(k;—1)m(n;)m(kit1),
i.e. when sampling jointly k; 1, n; and k;;; has high probability relative to sampling them
separately: this provides a smoothing effect by favouring the nodes (k;_1,1n;,k;1) with the
same types collected at different times. Such mechanism comes to an extreme when the offspring
distribution is nonatomic. In this case, the weights of the mixture components that do not carry
atoms observed at multiple times, in the sense of the set D, vanish in the limit.

The above results do not include the case of o having both a continuous and discrete com-
ponent. The same tools used for proving Proposition [f] can in principle be used to deal with this
case as well, where we expect parts A, B and C of the statement to hold for the respective parts
of the parameters measure. In essence, values drawn by the discrete part of « are subjected to
the probability that lineages survive as controlled by the term p (hence ultimately by the death
process), whereas values drawn from the continuous part of « are also, in addition, subjected to
whether they are shared across collection times. A full description of such results would require
a cumbersome notation and would not add further valuable insight, hence, we will not pursue
this task here.

Let now Xg.7 be the entire dataset sampled in model , and let K be the number of
distinct values in Xy.7. Denoting by <1’_1i_1 the total multiplicities of the vector Xy, ,, we know
there exist weights {v1 m} such that

K
LP Xt ) = Y v DP[a+) kioide | (2.36)

— —
ki-1<n;_; j=1

This can be obtained recursively starting from P, ~ DP(«a), where the reversible measure
DP(«) acts as prior (or unconditional distribution) for the marginal state of the signal. Upon
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observing X;,, the update yields L(P;,|Xy,) = DP (a + ZJ 1710,j02* ) where ng is the vector
of multiplicities of the Ky distinct values in X;,. Propagating forward the previous through F3,
one obtains

Ko
Ptl |Xt() Z Pny, ko - tO)DP o+ Z ko,j(sm; )
ko<np j=1

which can then be updated once data in ¢; become available by observing that (2.19)) satisfies

o) — wipg, (n) ,
(Z @) ;Eh 1 whéh(m) Unl)

Proceeding in this way, alternating updates and forward propagations, leads to (2.36)); see Pa-

paspiliopoulos et al.| (2016]), Section 3.1, for further details. Denoting now by n;i; the total
multiplicities of the vector X; by virtue of Lemma [3[ and of the linearity of (2.21)), there
exist weights {va n} such that

i+1:T)

K
‘C(Pti‘XtiJrl:T) = Z UZkH_lDP o+ Z ki+17j5;t;f . (2.37)

— i—
kit1<n; j=1

This can also be obtained by working backwards from Pr ~ DP(«), then updating given the mul-
tiplicities ny,_ of the K,_; distinct values in X7, which yields L(Pr|Xr) = DP (a + E]K:pf ! np_Ljéx;),
then, using Lemma [3| propagating backwards to get

Kp1
LPPrIXr) = > Puyrig (o1 = tp2) DP [+ D7 kp1j0.: |,
kp—lgnp—l le

and so on. The following proposition connects the two above distributions to yield the general
representation.

Proposition 7. Assume (2.36)) and (2.37)) hold, and let n; be the vector of multiplicities of Xy,
relative to the K distinct values in the whole dataset Xo.7. Then

£(Pti|X01T) - Z Z pki—1,ni,ki+1DP (aki—1+ni+ki+l) ) (2'38)

— —
ki-1<ni_1 kit1<ni
where Qy; | 4n4+k;,, 15 s in (2.33) and the weights

hl <— —
Pki_imikisy = Z Z VILWU2IW | nok, s Kicl SPio1, Kipn S,
h<7m; 1:h>k; ISZ¢+12 1>kt

(2.39)

with wk as in Proposition @ sum up to one.

—1,n4,ki41
The proof of Proposition [7] clarifies that the smoothing mixture is computed in two steps:
first L(Py,_, | X4y,_,) and L(P,,|X¢,,.y) are computed through backward and forward filtering
respectively, then the smoothing operator is applied as in Theorem Ol The first step leads to
two mixtures whose number of components is [T_, (1 + i - ny; k) and e, (1+ Zé\f:iﬂ n; k)
respectively, as shown in Section 4 of |[Kon Kam King et al. (2021) Recall that here K is the
number of distinct values observed in the entire dataset, which is considered as given. Since
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each distinct element of the smoothing distribution is now given by a distinct choice of k;_; and
ki1, the total number of components in the smoothing distribution is therefore

ﬁ (1 + Sntj,k> (1 + i\[: ntj,k>- (2.40)
=0

k=1 j=i+1

As expected, smoothing comes at a greater nominal computational cost than filtering, since,
roughly speaking, it combines information from both past and future. However, the actual cost of
smoothing is expected to be much lower than the nominal, due to two factors. The first, specific
to the current modelling assumptions, is that in the scenario of Statement C in Proposition [6]
with a continuous baseline distribution, the number of components is automatically pruned by
the smoothing operator, which discards values that are not shared across times. Hence
represents a crude upper bound. The second factor is that some mixture component weights
are typically negligible. This aspect, which had already been noted in |Chaleyat-Maurel and
Genon-Catalot| (2006) and was investigated in detail for Wright—Fisher and Cox—Ingersoll-Ross
models in |[Kon Kam King et al.| (2021)), suggests various possible pruning strategies that allow to
approximate the smoothing distribution, lowering the actual computational cost by some order
of magnitudes while keeping a high precision in the approximation.

Predictive distributions

As a corollary to Proposition [7] we can derive the predictive distribution of further samples
collected at time ¢;, given the original data set Xg.7. This extends Proposition

Corollary 2. In the setting of Proposition@ let (2.38)) be the conditional law of Py, given Xo.r.
Then the law of the (k 4 1)th further sample X*1 from P, is

]P)( Xk+1 c A‘XQ;T,Xl:k) —

= Z Z p Ok;_1+n;+k;1 (A) + 2?21 6Yj (A) (2'41)
ki—1ni ki1 g + |ki—1| + 0| + [kit1| + &

— —
ki 1<n;_1kit1<n;p1

for every Borel set A of X, with cue; | yn, 4k, 5 as in (2.33) and px, | n, k., as in Proposition
(7.

Here for brevity we have used the notation X**! for the additional (k+1)-st sample instead of the
correct notation X Mil+*+1 given the original dataset already contains |n;| observations sampled
at t;. Recall that the predictive distribution for observations sampled from a Dirichlet random
measure is described by the Blackwell-MacQueen Pélya urn scheme, whereby for o = 6Q,

XlNQOa Xk+1|X1,"'7Xk‘N 0+k’

It is then clear that (2.41]) is a finite mixture of generalized Pdlya urn schemes, whose sampling
mechanism can be described as follows. For each k > 1, given we already observed the further
sample Y1,

e choose a pair (k;—1,k;11) with probability px, | n; k.,
e draw a categorical random variable J € {1, 2,3} with probabilities proportional to 6, |k;_1|+

In;| + |k;+1]| and k respectively
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e given X% draw

Qo, if J=1,

K
kL ZFl(ki—l,j+ni,j+kz’+1,]’)5z;

(ki1 [+ ma[+ ki 41| ’ itJ=2,
1 <k ; —
Ezjzl 6X], lf:]— 3,
where (z7,...,2}) in the second expression are the distinct values in Xg.7.

We conclude the section with the observation that ([2.38) is the de Finetti measure of the sequence
{XrilHE B> 1) e,

P(X AL X, o xRy _ope

weakly as k — oo and P* is the law in (2.38)). This can be proved along the same lines of
Proposition

2.3 Clustering consistency with Dirichlet process mixtures

2.3.1 Introduction

As we discussed in the last chapter, Bayesian nonparametric methods have experienced a huge
development in the last two decades, often standing out for their flexibility and coherent proba-
bilistic foundations; see the monographs by |[Miller et al.| (2017)) and |Ghosal and Van Der Vaart
(2017) for recent stimulating accounts. The success of the Dirichlet process in actual implemen-
tations of the Bayesian approach to nonparametric problems is mostly due to its mathematical
tractability, which is highlighted by conjugacy and flexibility, assessed in terms of its large
topological support.

Let P ~ DP(a, Q) be random probability measure, where now « > 0 denotes the concen-
tration parameter: in this Section 6 will be used to denote parameters of the likelihood. Since
P is almost surely discrete, if one wishes to model continuous data one may convolve it with a
density kernel k parametrized by a latent variable 6 that is drawn from a Dirichlet process. This
yields the popular Dirichlet process mixture (Lol |1984), which exhibits appealing asymptotic
properties in the context of density estimation: in several relevant cases, the posterior distri-
bution concentrates at the true data-generating density at the minimax-optimal rate, up to a
logarithmic factor, as the sample size increases (Ghosal et al., [1999; |Ghosal and Van der Vaart|,
2007). Such a model and many of its variants are widely used across scientific areas, thanks also
to the availability of a wide variety of efficient computational methods to perform inference, see
for instance Escobar and West| (1995, |1998); MacEachern and Miiller| (1998); Neal (2000); Blei
and Jordan (2006]).

Since they are draws from the Dirichlet process, which is almost surely discrete, the latent
parameters 6;’s exhibit ties with positive probability. Hence, the Dirichlet process mixture model
is also routinely used to perform clustering since it partitions observations into groups based
on whether their corresponding latent parameters 6; coincide or not. The ubiquitous use of
Dirichlet process mixtures for clustering motivates the interest in the asymptotic behaviour of
the posterior distribution of the underlying partition, and in particular in the inferred number
of clusters (i.e. subpopulations), as the number of observations increases. |[Nguyen| (2013) showed
posterior consistency of the mixing distribution P under general conditions. However, this does
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not imply consistency for the number of clusters, due to the use of the Wasserstein distance.
Indeed, Miller and Harrison (2013) proved that Dirichlet process mixtures are not consistent
for the number of components when data are generated from a mixture with a single standard
normal component. See also Miller and Harrison| (2014) for extensions. These results, however,
are derived under the assumption that the concentration parameter « is known and fixed. This
is crucial because the clustering behaviour of Dirichlet process mixtures is governed by the choice
of a. Indeed, under the Dirichlet process mixture model, the prior probability of observing ties
is a function solely of «, since P(§; = 0;) = 1/(a+1).

In order to have a more flexible distribution on the clustering of the data, in most implemen-
tations of the Dirichlet process mixture a prior 7 for « is specified, leading to a mixing measure
that is itself a mixture in the sense of |Antoniak (1974). Here we show that introducing such a
prior has a major impact on the asymptotic behaviour of the number of clusters, as Dirichlet
process mixtures can be consistent for the number of clusters.

We provide consistency results under fairly general conditions on 7 and for a moderately
large class of kernels k, including uniform and truncated normal distributions. Following Miller
and Harrison| (2013), we focus on data-generating mixtures with a single component. Our
results also extend to the more general case of finite mixtures with multiple components, when
a suitable separation assumption between the elements of the mixtures is fulfilled. Crucially, we
prove consistency for cases where using a non-random « yields inconsistency, thus suggesting
that a hyperprior may be beneficial even beyond the cases considered here. We stress that the
framework we study is arguably closer to the way Dirichlet process mixtures are used in practice,
compared to holding « fixed.

Studying an asymptotic regime where the data-generating truth is a mixture with a finite
and fixed number of components entails some degree of model misspecification. Indeed, Dirichlet
process mixtures are nonparametric models with an infinite number of components or, in other
words, a number of clusters growing with the size of the dataset. Thus, our results can be
interpreted as a form of robustness of the prior: if the number of components of the data-
generating is finite, it can still be recovered by adapting appropriately the value of «, despite the
prior is concentrated on mixtures with infinitely many components. In particular we show that,
under the data generation mechanisms we consider, the posterior distribution of a converges to
a point mass at 0 at a specific rate, which is crucial to ensure consistency.

2.3.2 Dirichlet process mixtures and random partitions

Henceforth, we will be focusing on Dirichlet process mixture models with a prior on the concen-
tration parameter, namely

X0, " k(-16:), 60;| PP, P|a~DP(a,Qy), a~m, (2.42)
where k(- |0) is some density function, for every 6. Since we are interested in the distribution of
the number of clusters, it is reasonable to rewrite ([2.42)) in terms of the distribution on partitions,
related to the so-called Chinese restaurant process. For every pair of natural numbers (n,s)
such that s < n, denote with 74(n) the set of partitions of {1,...,n} into s non empty subsets.
Conditionally on «, the sequence (6;);>1 induces a prior distribution on the space of partitions
of N that, for every n > 2, is characterized by

P(A|a) = aa(—; H(aj -1, (A={A1,...,As} €75(n),s <n), (2.43)

J=1
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where o™ = - -+ (a+n — 1) is the ascending factorial and a; = |A;| stands for the cardinality
of set A;. Conditionally on the partition A, the probability distributions of the data Xy, =
(X1,...,X,) and of the cluster-specific parameters 61.; = (01, ...,0) are

P( X1 | 01, A) = [ I (X0 16;), Plbris | Aja) = P01 | A) = qu (2.44)

j=1i€A,

where qq is the density of Qg with respect to the Lebsegue or the counting measure. The number
of clusters in a sample of size n is denoted by K,, and under its distribution is given by
P(Ky = 8) = [ X aer,(n) P(A | @)m(de). Since we are concerned with the large sample properties
of P(K,, = s | X1.n), we focus on the joint distribution of the vector (Xj.,, K,) which, for every
Z1m = (21,...,2,) € X", is given by

P(Xip =210, Kn=3)= Y PA H T4,), (2.45)

AETs(n) Jj=1

where P(A) = [ pr(A|a) 7(da) and m(za;) = [ [lica, k(zi | 0)qo(0)d8 is the marginal likelihood
for the subset of observations identified by A;, given that they are clustered together. We study
the asymptotic behaviour of the posterior induced by model when the observations are
independent and identically distributed samples from a finite mixture, that is we assume the
following data generation mechanism

xX; ¥ p, = ij o (i=1,2,...), (2.46)

where, for every t > 1, the R;’s are distinct probability measures on X and the p;’s are probability
weights, i.e. p; € (0,1) for every j and 3°;p; = 1. We will let R,Sn) and P*(OO) be the product

probability measures induced on X" and X*° respectively, and denote by Xi:00 ~ P*(OO).
In the following, we will consider each R; to be dominated by a suitable measure and denote
the resulting density by f;(-) := f(- | 9;‘) We say that model in is well-specified for P, if
k(-|0) = f(- | ), that is if the data-generating distribution is a mixture of kernels belonging to
the same parametric family that defines .

We say that posterior consistency for the number of clusters holds if P(K,, =t | X1.,) — 1 as
n — o0 in ngoo)—probability. The conditional probability P(K,, =t | X1.,) is defined with respect
to the model in , while the convergence in probability is with respect to the data-generating
process X100 ~ P*(OO

2.3.3 Main consistency results

The investigation of the asymptotics of the number of clusters K,,, induced by the model in
(2.42), will rely on the following assumptions on the prior 7 of «

Al. Absolute continuity: m is absolutely continuous with respect to the Lebesgue measure and
its density is still denoted as ;

A2. Polynomial behaviour around the origin: Je, §, § such that Va € (0,¢€) it holds %aﬁ <
m(a) < daf;
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A3. Subfactorial moments: 3D, v,p > 0 such that [a*m(a)da < Dp~°T'(v + s+ 1) for every
s> 1.

The first two assumptions are sufficient to study the posterior moments of «, conditional to
the number of groups K, as will be clarified in Proposition Assumption A3, instead, will
be useful specifically for consistency purposes: the minimum value of p required to achieve
consistency depends on the problem at hand, that is on the specific choice of P in and k
in , as will be stated in Theorems |[11|and Assumptions A1-A3 are satisfied by common

families of distributions, as displayed in the next lemma.
Lemma 4. The following choices of m satisfy assumptions Al, A2 and A3 (for a fixred p > 0)

(1) every distribution with bounded support that satisfies assumptions Al and A2, such as the
uniform distribution over (0,c), with ¢ > 0;

1

o \P
(2) The Generalized Gamma distribution with density proportional to o~ 67(5) , provided

that p > 1;
(3) The Gamma distribution with shape v and rate p.
The rate parameter of the Gamma distribution corresponds to the quantity p in assumption
A3.
2.3.4 General consistency result for location families with bounded support

For our general result we consider kernels of the form
k(x]0)=g(x—0) (x€R), (2.47)

where 6 € R is a location parameter. Here g is a density function on the real line satisfying the
following assumptions

B1. g is strictly positive on some interval [a,b] and 0 elsewhere;
B2. g is differentiable with bounded derivative in (a, b);

B3. The base measure () is absolutely continuous with respect to the Lebesgue measure, and
its density qg is bounded.

The above assumptions essentially require that the kernel is a location-family distribution with
positive density on a bounded support. The class is fairly general and it includes, as relevant
special cases, the uniform distribution and the truncated Gaussian distribution, among others.

When considering a mixture of the kernels in as data generation mechanism satisfying
B1-B3, with true parameters 6* = (07,...,0;), we say that 6" is completely separated if |07 —
07| > b—a, for every j # k. This assumption is somewhat restrictive, but sufficient to prove that
the addition of a prior on a may solve the inconsistency issue. Indeed, we have the following
general consistency result.

Theorem 10. Suppose k and qo satisfy assumptions B1-B3. If w satisfies assumptions A1-A3
with p high enough then, for every Py as in (2.46) witht € {1,2,...}, f;j = k(-|07), 0" completely
separated and 07 belonging to the interior support of Qo for every j, we have

P(K, =t | X)) — 1
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asn — oo in P*(OO)—probability. On the contrary, if m(a) = do= (), with o* > 0, then
limsupP(K, =t | X1.n) < 1

asmn— 0o in P*(OO)—probability.

As discussed above, the minimum value of p needed depends on the specific function ¢ and
prior distribution Q9. Therefore, a prior on the concentration parameter yields consistency when
the true data generating distribution meets a condition of complete separability, that informally
amounts to having cluster locations sufficiently distinct. This condition is automatically satisfied
when ¢t = 1. We additionally show that, even under such an assumption, the Dirichlet process
mixture model with fixed « still fails to be consistent at the number of clusters. Hence, a prior
on « is crucial to overcome issues with learning the true number of clusters as the sample size
increases.

Moreover, the posterior mass on a smaller number of clusters than the truth vanishes under
mild conditions, as explained in the next proposition.

Proposition 8. Let P, be as in (2.46|), with true parameters 65,...,0;. Let 0% belong to the
support of Qo for every j = 1,...,t and let k satisfy assumptions B1-B3 above or H1-H4 in
the supplementary material. Then

P(K, <t| X)) —0 (2.48)
mn P*(OO)-probabz'lity as n — oo.

Consistency on specific examples

Theorem [I0]requires p in assumption A3 to be high enough, depending on the specific formulation
of the model. In order to provide an example, we focus on the case of uniform kernel and t = 1,
that is

f=Unif(0* —c,0" +¢), k(:|6) = Unif(0 —c,0+c¢c), qo= Unif(6* —c, 6" + ¢), (2.49)
where 6* € R is a fixed location parameter and ¢ > 0.

Theorem 11. Consider f, k and qo as in (2.49), and assume 7 satisfies A1-A3 (with p > 38).
Then
P(K,=1|X1n) — 1

asn — 0o in Pfoo)—pmbability.

As a second example, we move beyond bounded kernels and consider a simple, yet interesting,
case. More precisely, we specialize model (2.42) to Gaussian kernels and assume constant data,
equal to some fixed real number 6*, setting

f=0p, k(|0) =N(0,1), go=N(0,1). (2.50)

Unlike the other examples, this case is not well-specified, as k(-|f) # f(-) for every 6. This
makes the definition of true or data-generating number of clusters more delicate. Nonetheless,
being an example with constant data, one would hope the posterior of the number of clusters to
concentrate on one cluster. However, even in such a limiting case, Miller and Harrison| (2013)
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show that under (2.42)) with fixed concentration parameter P(K, = 1|Xj.,) does not converge
to 1 as n diverges.

Theorem 12. Consider (f,k,qo) as in (2.50) and assume 7 satisfies A1-A3 (with p > 16).
Then
P(K, =1| X1m) — 1

P*(OO)-almost surely as n — oo.

Finally, the previous consistency results are related to another property of general interest,
namely the posterior distribution of the concentration parameter converges to a point mass at
0, if posterior consistency for the number of clusters holds.

Proposition 9. Let the data be generated as in (2.46) with t € N and assume m satisfies Al
and A2. Then if P(K,, =t | X1.n,) = 1 we have

7T(Oé | Xl:n) — (50
00)

weakly, as n — 00, in RS -probability.

This is not surprising since the Dirichlet process mixture model is concentrated on mixtures
with infinitely many components and one way to achieve consistency is to let «a tend to zero,
which entails that the prior is swamped by the data.

2.3.5 Methodology and proof technique
The role of the prior on the concentration parameter

Our proofs of consistency in Theorems and [I2) rely on the following lemma.

(c0)

Lemma 5. The convergence P(K,, =t | X1.,) = 1 as n — oo in Py’ -probability holds true if

and only if one has, in P*(OO) -probability,

PKn:S Xl:n
> ( | Xi:n)

0 . 2.51
P(ant\X1;n)—> as n — 0o ( )

s#t

Working with the ratios of conditional probabilities in is beneficial, as the marginal
distribution of X1., involved in the definition of P(K,, =t ] X1 n) cancels Also, it is convenient
to write such ratios of probabilities as follows: first, recall from and - ) that

IF>(AX1:'n:l‘l:n;I(n:S):/ dOé Z H —1 ‘m xA )

AeTts(n) j=1
for every s > 1, which implies that
O a)d
]P)(Kn =S | Xl:n) . f alm) ( ) @ ZAGTS (n) H] 1( )' HS m(XAj) (2 52)
P(Kn =t ’ Xl:”) f af ( ) ZBETt(n H (b - 1) =1 m(XBj)
\ﬂ,—/ R(n’tvs)

C(n7t7s)
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The decomposition of into the factors C'(n,t, s) and R(n,t, s) is useful to understand the
role of the prior distribution over «, and to compare our results with the one of [Miller and
Harrison| (2013, 2014)). In particular, the term R(n,t,s) does not depend on « and, hence, on
the choice of 7. This is indeed the key term studied in Miller and Harrison| (2014), where it is

shown that, under some assumptions, liminf R(n,t,s) > 0 as n — oo in P*(OO)—probability, for
t < s. On the contrary, C(n,t,s) incorporates information about « and its prior distribution.
In the fixed « case, which can be thought of as having a degenerate prior m = J, for some
a > 0, the term C(n,t,s) boils down to a®*~! which is constant with respect to n. This is
sufficient for Miller and Harrison| (2014) to deduce lack of consistency for fixed «, which means
that limsup P(K, =t | X1, @) <1 asn — oo in P*(OO)—probability for every a > 0.

However, once a non-degenerate prior 7 is employed, C(n,t,s) depends on n and, as we
show in the next section, converges to 0 as n — oo under mild assumptions on 7. Thus,
liminf R(n,t,s) > 0 is not anymore sufficient to establish whether consistency holds true or not.
Instead, one needs to compare the rate at which C(n,t,s) converges to 0 with the behaviour
of R(n,t,s), as done in the following sections. Further lower bounds for R(n,t,s) for general
values of s are given in Miller and Harrison (2014); Yang et al. (2019). However, once combined
with C(n,t,s), these are too loose to deduce either consistency or lack thereof. Therefore, we
need to exploit different techniques to determine the rate of R(n,t,s). Since P(K,, =t | Xi.) =
JP(K, =t | X1, a)m(a | Xi:)dey, we deduce limsup P(K, = t | Xi.p,a) < 1 for every
a > 0. This, however, does not imply that limsuppr(K, =t | Xi.,) < 1, as one first needs
to ascertain whether limit and integral can be interchanged. The main reason is that, in the
asymptotic regime we are considering, the posterior distribution 7(« | X7.,) concentrates around
0 as n — 00, see Proposition [9] above.

Asymptotic behaviour of the concentration parameter

We are now concerned with studying C(n,t,s) in (2.52)). We prove that for priors = satisfy-
ing assumptions A1-A3 C(n,t,s) converges to 0 at a logarithmic rate in n. The asymptotic
behaviour of C(n,t,s) is not specific to some kernel k and data generating distribution f and
thus can be useful to prove consistency, or lack thereof, for arbitrary Dirichlet process mix-
ture models with random concentration parameter. In order to facilitate the intuition, the
term C(n,t,s) can be interpreted as a moment of «, conditional on the n observations be-
ing clustered in ¢ groups. Indeed, under it holds (v | K, = t) a‘?‘—;w(a) and thus
C(n,t,t + s) = [a’n(a | K, = t)da = E(a® | K,, = t). The next proposition shows its
asymptotic behaviour.

Proposition 10. Suppose 7 satisfies A1-A2. Then there exist F,G > 0 such that for every
0<s<n-—t

{t + s+ B, elog(n)} . o) < G8 g t+s—1y 71t + 5+ B, elog(n)}
Togn) 713 = Gttt s) s Bl A oy

where y(x,y) is the lower incomplete Gamma function and E[o®] = [ o*m(a) da.

F

Thus, for a fixed s that does not depend on n, C(n,t,t + s) decreases logarithmically as a
function of n since v(z,y) < v(z) for every z and y. Thus, by looking at the ratios in (2.52),
the addition of a prior favours a smaller number of clusters when n — oo, with s fixed.

The consistency results of the previous section are established by combining Proposition [10]
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with suitable upper bounds on R(n,t, s) to prove the convergence in (2.51)), so that

n—t n—t
pr(K, =t+s| Xi.n) 1
E E < E h
= pr(Kn=t]X1:) ~ logn o (s),

where h(s) is a function that depends on the specific kernel k and is such that limsup Y0 h(s) <
oo for every s. The following lemma shows how the problem simplifies in this case, when t = 1.

Lemma 6. Assume (X1, Xo,...) is an exchangeable sequence. Then for every n

o 5 Do) Lim(Xae)
Wy - ) | T e ST | w6

where the sum runs over Fs(n) = {a € {1,...,n}* : 375 a; = n} and A® is an arbitrary

partition in 7s(n) such that |A}| = a; for j=1,...,s.

2.3.6 Discussion

There are many avenues to extend our results and some of the tools we introduced here may
prove useful to accomplish such tasks. First of all, the separability assumption given in Theorem
could be relaxed to prove consistency in the setting with a general number of components.
The main issue is that R(n,t,s) in is harder to study, since it becomes the ratio of sums
over the space of partitions: in particular Lemma [6] is not easy to generalize and this explains
why the case ¢ = 1 is simpler to address. Different mixture kernels present similar difficulties.
Summarising, the impact of the prior is fully understood, by Proposition but a more general
positive result would require finer bounds on the likelihood component.

Another interesting question is whether consistency can also be attained by estimating the
concentration parameter through maximization of the marginal likelihood, in an empirical Bayes
fashion (Liu, [1996; McAuliffe et al., |2006|). In this paper we preferred to focus on the fully
Bayesian approach because it is arguably the one most commonly employed by practitioners.
Moreover, the empirical Bayes estimator of o may not be well defined on (0, 00), thus raising
theoretical and practical issues.

It is also worth noticing that our consistency results require the kernel to be perfectly spec-
ified: even a small amount of misspecification will probably lead the number of clusters to
diverge. Indeed, recovering the true density will require an increasing number of components.
This phenomenon has been formally studied in |Cai et al. (2021)) for finite mixture models, when
a prior on the number of components is placed.

The asymptotic analysis of the posterior distribution of the number of clusters for Dirichlet
process mixtures has recently attracted considerable theoretical interest (Yang et al., 2019; |Ohn
and Lin, 2023; (Cai et al., |2021)), and has motivated various methodological developments (Miller
and Harrison, 2018; |Zeng and Duan| [2020). |Ohn and Lin| (2023) showed that, if « is sent
deterministically to 0 at appropriate rates as n — oo, the posterior distribution of the number
of clusters concentrates on finite values when data are generated from a finite mixture, which
is a necessary condition for consistency. Such results are similar in spirit to ours, although
our setting is arguably more natural in a Bayesian framework. Moreover, another interesting
extension would be the the case with a growing number of components, rather than fixed: indeed,
in this setting a Dirichlet-based model would be a natural choice. We do not pursue this task
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here, but see |Ohn and Lin| (2023)) for a discussion on asymptotic properties of Bayesian models
for mixtures of this type.
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A1 Proofs of Section 2.2

Lemma 7. The transition probabilities pjm| |n)(t) in (2.13) equal e Ami* when n = m and

jm—n|-1 |m—n]|

Ajmi—n | (1)l
hl;[O jm k,;o [o<n<m-n|hzk(Am|—& = Ajm|—n)

e_A\m\fkt

)

when 0 <n < m, where \, =n(0+n—1)/2.

Proof. See [Papaspiliopoulos et al.|(2016), Lemma 4.1. O

Proof of Proposition

Proof. In this proof we use the same notation of Barrientos et al.| (2012)) and denote by G(t) the
FV-DDP, i.e. G(t) = X;. We also emphasise the elementary event w € Q by writing G(¢,w). By
Eq. 3 in Barrientos et al.| (2012), it suffices to show that for e > 0, N € N and (¢1,...,tn) € Rf
we have

P{weQ: [G(ti,w)(A),..., Gt w)(AR)] € Blsi,, €),i =1,...,N} >0. (53)

Here:
e Ag,...,Ar is a partition of X, with A; a measurable set with FPy-null boundary;

o B(sy,€) = {(wo,...,wi) € Ap t wy, ) — € < wj < wy, jy+ 67 =0,...,k}, with Ap =
{(wo, ..., wg): w; >0,i=0,.. .,k,ZfZO w; = 1} the k-simplex.

® St = (w(ti,O)a ceey w(ti,k‘)) = (Qtl (AO)a ceey Qti (Ak)) € Ak
e Q,,1=1,...,N is a probability measure absolutely continuous with respect to Q.

As is well known, projecting a Dirichlet process DP(«a) on a partition Ay,..., Ay yields a k-
dimensional Dirichlet density To with parameters (a(Ao), ...,
a(Ay)). Similarly, projecting a FV process yields a a k-dimensional Wright-Fisher (WF) diffu-
sion, which is reversible and stationary with respect to m,. Consistently with , the transition
density of the WF is given by:

m

P(x,dx) = Y dn(t) Y (m> XM T4 m (X)) .
m=0

k+1.
IIIEZ;L Jlm|=m

Then we can rewrite as:
/ / Ta(X1)Pry—t, (x1,%2) ... Pyt (xXn_1,xN) dx; ... dxp
B(Stl,é) B(StN,E)

Since B(sy,, €) has strictly positive Lebsegue measure, we just need to show that the integrand
is strictly bigger than 0 for any (xi,...,Xn) € B(st,,€) X -+ X B(sty,€). Clearly mo(x1) > 0
for any x; € B(s¢,,€). For what concerns 1 < j < N, we have:

Pt]._tj_l(xj_l,xj) > do(tj — tj_l)ﬂ'a(Xj) > 0, VX]‘ c B(st].,e),
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which completes the proof. O

Proof of Proposition

Conditioning on the random measure Pry; at time T + ¢ yields
P Xk-‘rl cA ’ X Xl:k’
T+t 0:Ty AT+t

=E P(Xéiﬁ €Al PT—&-taXO:TaXTl“:—’f-t) | Xoor, X5,

—E P(Xgiﬁ € A| Prit) | Xor, X5%,

—E|Pri(A) | Xor, X5E,

where the second equality follows from the conditional independence of the observations given
the signal; cf. (2.7). From (2.8)), eq. (3.7) in Papaspiliopoulos et al. (2016) implies that Pry; |
Xo, ..., X7 is the mixture of Dirichlet processes

neL(M) i=1

K
Z pt(Man)DP (OZ—FZTM(S;C:)

By linearity of the expectation and the predictive of the Dirichlet process, when k& = 0 the RHS

of reads
K
> pe(Mn)E [DP [a+) nid: | (A)| =

neL(M) i=1

:Zpt

K
———Qo (A) + |n|| Zm&:; (A)]

neL(M 9+| | 0+|nz 1
4 n|
= ) pt )+ > el ——— Py,
neL(M R neL(M) "o

which is (2.10) with & = 0. When k& > 0, by the conjugacy property of mixture of Dirichlet
processes the RHS of reads
)

Z pt M n [ a+25(:1 nl5zr +Zj:1 6Ij]

neL(M)

|: Z ptMn a+2f:1"i6ﬁ

neL(m)

yielding (2.11)).
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Proof of Proposition

Proof. Denote:
EoX] = / £ Qo(dz)
Eo[X?] = / 22 Qo(d)
Then we want to compute:

Cov(Xy, Xpvs) _ E[XiXpys] — EF[X]
X X s = =
Corr(Xe: Xows) = B R0 "E2IX] ~ Eol[X2] — EXX]

The only object left to compute is

EX:Xs] = /xtl’t+s Q(day, driys)

Note that from Proposition [2| we can write the joint distribution using the chain rule::

[’] [’]
fe™2° e 2°
Q(dxy,dxiys) = Qo(day) {(1 —e 2 ) Qo(dziys) + m@o(dl‘ws) + m(szt (dziys)
so we get:
0 He_gs 2 6_58 2
E[X:Xiis| =1 —e2° Ef[X EolX

X0Xins] = | 1= e84 T | BRIXT + 5Bl

Consequently:
9
Cov(Xy, Xops) = S (Bo[X?] — B3[X])
ty At+s 6 + 1 0 0

from which the result follows. O

Proof of Proposition

Proof. Denote by Py}, the predictive distribution of the Dirichlet process. We have to prove
that

P(Xb € A Xorr, XEL) — Pos(4)] - 0 (55)

as t — oo. Using the triangle inequality the LHS of is smaller than:

z:p 0 B L. B S0 S TGV 0 S . B

ne T 0+! | + & ne D) 9+|ny+k

Note now that the time-dependence of is ultimately due to p|m|,‘n|(t) in . These are
the transition probabilities of a one-dimensional death process on Z, which jumps from m to
m — 1 at infinitesimal rate \,, = m(6 +m — 1)/2. It can be easily verified that, as ¢ — oo, we
have pim|o(t) — 1 for any m and pjm| | (t) — 0 for any 0 < n < m, and similar statement holds
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for (3.6). Then, denoting By, By the two sums in the previous display respectively, we have

0|

2 0
0+ |n|l+k

0 <max{By, B} < Y. p(Mn)
neL(M)

which implies , as desired. O

Proof of Proposition

Proof. By de Finetti’s Representation Theorem P, — P* as k — oo, with P* being the de

Finetti measure of the sequence (X{,? +t) . Moreover, recalling that L(M) is a finite set, we

k>1
have: .
lim Z ptk) _— Z ptk) M,n)=1
k—o0 neL(M) (9 + |Il’ + k k—>oo neL(M)

As regards the other two components of (2.11)) we have

1 1
0< lim > M) < lim Y =0
neL(M) 9+|n|+k ko0 EL(ND9+|n|+l<;

and we have the result. O

A2 Proofs of Section 2.2.5

Proof of Lemma
Proof. Using , we have
p(nit1|py;) = /p(ﬂiﬂ\Pti+1)Qti+1—ti(Pti+1\Pti)dptm
:m(ni+1)/h(ptiﬂani+1)‘]ti+17ti(pti+1|pti)dpti+1
=m(ni11)E[h(Pt,,,,ni11) [Py, = Py,

where the integral is over the (K — 1)-dimensional simplex, from which (2.29)) leads to the
result. O

Proof of Lemma

Proof. Denote by n;_; and n;;; the multiplicities of types for observations sampled at times
t;—1 and t;y; respectively in the setting of (2.24]). Then Papaspiliopoulos and Ruggiero| (2014)
showed that

‘Fti_ti—l(ﬂa+ni—1)(pti) = Z pni_1,k(ti+1 - ti)ﬂ'a—i-k(pti)' (56)
0<k<n; 1
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Furthermore, using (2.19) first and then Lemma [2 we have

(P, ) p(nig1|Py;)

Bt¢+1*ti (7Ta+ni+1)(pti) = p(pti|nz’+1) =

m(ngy1)
:p(pti) Z pni+17k(ti+1 - ti)h(pti’ k)
0<k<n;;
= Z pni+1,k(ti+1 - tl)h(ptz’ k)p(ptz)
0<k<n;i1
= > pogk(tisn — t)Tagk(pr,)
0<k<n;i1

where the last identity follows from from (2.26) and (2.19). By equating n;_; with n;y; and
t; —t;—1 with t;11 —t;, one can now see that B¢(ma+n) = Ft(Ta+n), with B; as in . The fact
that F;(DP (a + E]K:l njéxj*)) equals the right hand side of now follows from Theorem
3.1 in Papaspiliopoulos et al.| (2016)), and the same proof can be used to show , by seeing
Bi(Ta+n) as the projection of B;(DP (a + Z}K:l njéx;)) onto an arbitrary partition, from which

the first statement also follows. O

Proof of Theorem |§|

Proof. Without loss of generality, let ¢ = 1 and denote P; = P;,. Given a measurable partition
A= (Ay,...,Ap) of X, let Pi(A) := (Pi(A1),...,Pi1(Ay)) and denote by X(A) the list of
labels derived from binning X into A, i.e., whose i-th element is j if X; € A;. Further, let
{Bn,n > 1} = {(B},...,B}'),n > 1} be a sequence of increasingly finer partitions of X such
that B, is finer than A, for every n, and such that max; diam(B}) — 0 as n diverges. Since
B,, is increasingly finer, we have that (E [f(P1(A)|Xo(Br), X1(B), X2 (Bn)}) is a martingale
for every bounded and continuous function f (see Proposition V.2.7 in Cinlar (2011)). Thus,
by the martingale convergence theorem we have that P;(A)|Xo(B,), X1(By), X2(B,,) converges
weakly to P;(A)|Xo,X1,Xs as n — oo. The left hand side of the previous expression can
be characterized, by virtue of de Finetti’s Theorem, in terms of the predictive distributions
of X{*(A)|Xo(B,),X1(B,),Xo(B,) for arbitrary k, where X{*(A) denotes k& samples from
Pi(A). Without loss of generality, let now n be large enough that different observations lie
in different sets of B, and write, for brevity, P;, = Pi(B,) and X;, = X;(B,). Let also
(2% X0, X1.n, X2,,) be the density of the vector X{¥(A) evaluated at 1%, conditional on
the binned observation Xg ,,, X1 5, X2,. Then we have

P X 0, Xty X ) 0 (&, X, Xty Xon) = B [p(a"™*, Xo , X, Xo | P

. (57)
= E [p(a"*P1n)p(Xon P )p(X | Prn)p (Xl P
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where in the last identity we have used the conditional independence of the observations given
the signal state (cf. (2.7))). By Lemma [2[ and the subsequent comment we get

PXow|Prn) X Y. Pni ki P(Prn, kic1)

0<k; 1<n;_

p(X27n’P17n) X Z p;’li+1,ki+1h(P1,n7 k2+1)
0<k;+1<n;41

P(X1 0| Prn) < h( Py, 1)

where pn; |k, = Pn; 1 ki, (Ai) and p;i+17ki+1 '= Pyt kipr (Air1). By linearity and by (2.27),
is thus proportional to

Z Z N o 7)n(n)(ki1( —;— n; + i(z;rl)
0<k;—1<n;—1 0<k;1+1<n;41 ’ m{™ (ki—y)m{" (nz)m ! (ki—H)

x K {p(ﬂfl:kfpl,n)h(f’l,n, ki1 +mn; + ki+1)] ,

where m(® denotes the marginal distribution in (2.25) relative to the model induced by the
partition B,. Moreover, using (2.26) and (2.19) it can be seen that

m(n,n’)

E[pn o). )] = [ p001) T p(p)ip = ) — (o),

with muy(n’) := p(n’|n), hence we can write
1:k _ 1:k
E |:p(m ’-Pl,n)h(Plﬂu kl—l + n’L + kl+1)] - mki_1+ni+ki+1 (‘T )

Note that the above identity holds since B,, is finer than 4. Hence the left hand side of

equals
/
Z Z Pni_1ki—1Pnig ki

0<k; 1<n; 1 0<k;11<n;q
(n) (k; 1k,
m i—1 +1n; + z+1) ’
X G () (g () e ()

where C,, is a normalizing constant and n’ is the vector of multiplicities associated to z'*¥.

Since My, 4n, 4k, (M) is the distribution induced by the Pélya Urn scheme of the Dirichlet—
multinomial model, it follows that the law of X{*(A)|Xo.n, X1, Xa, is exchangeable. Note
in particular that this marginal distribution does not depend on the partition 5, since A is
a coarser partition. Given the arbitrariness of k, we can appeal to de Finetti’s Theorem to
conclude that the law of P (A)|Xo n, X1,n, X2,y is given by

Z Z pni—laki—lpi’li+1,ki+1

0<k; 1<n; 1 0<k;11<n;11
" m™ (k;_1 +n; + kit1)
Crm™ (ki—1)m™ (n;)m™ (k; 1)

DP (a(A) + ki—1(A) + n;(A) + kit1(A))

(58)
where a(A) = (a(41),...,a(Ap)) and ki—1(A),n;(A),ki+1(A) denote the multiplicities pro-
jected onto A. The limit as n — oo can now be computed by virtue of the martingale conver-
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gence theorem. The proof is completed by observing that the limiting weights do not depend
on the partition B, and the previous display coincides with the projection onto the partition A
of a finite mixture of laws of Dirichlet processes. O

Proof of Proposition @

Proof. Statement A follows from the fact that ultimately the limit partition sets with positive
multiplicities will be those coinciding with the support points of Q.

Assume now, without loss of generality, that the partition I, is such that the first observation
lies in BT, the second in By and so on. The density of a vector k of multiplicities is in this case
determined by the Blackwell-MacQueen Pélya urn scheme to be

kj—1 n
KILS (9Qo(By) + 1)
o(Ik[) ’

m™ (k) =

with the convention that [, L, = 1. Denoting my(n’) := p(n’|n), as in the proof of Theorem @,
it follows that

m™ (k1 +n; + ki) _ mﬁ? (ki—1 + kit1)
m™ (ki1 )m™ (n;)m™ (k1) m (ki_1)m™ (ki)
plkiiDg(kia) K ITizg” ™70 (0Qo(BY) + iy + )

(O i) R T (600 (BY) + h) T (6Qo(By) + b))

If D = (), since no values are shared across times, we have that, for every j, at most one between
ki—1; and kit1,; is non zero, and in such case we have n; ; = 0. Then, if k;_;; > 0 we have
k‘i+17]’ =0 and ’I’Li’j = 0, SO
i— kz )
[Tkt (9@0( T‘)+ni,j+h)
i 1,1 i1 —1
Mhze” ™ (6Qo(B)) + k) TT2a” " (9Qo(By) + 1)

=1,

and the same happens when k;1; > 0, k;_1; = 0 and n; ; = 0. This leads to statement B.

If D # 0, since some values are shared across times, there exists a j such that one of the
following is true: (i) n;; > 0 and k;—q1; > 0; (ii) n;; > 0 and kiyq,; > 0; (ii) kj—1; > 0 and
kit1,; > 0. In case (i)

H ki 1 Gtkiv1,—1 (9@0(3?) +n;; + h)
kiq,;—1 n Kit1,—1 n oo
i (er(Bj )+ h) Ite” ™" (0Qo(By) + 1)

as n — oo, since Qo(B}) — 0 and the denominator vanishes. Case (ii) is obtained similarly. In
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case (iii), rewrite the weights as

th 1,jFkit1,;—1 (9@0( ”) +ni; + h)
(e S a7

- f;—ol’j‘l (6Qo(BY) +ni +h) o T (0Qo(BY) + mag + h) )
CILS T (0Qe(BY) + 1) e’ (6Qu(By) + 1) '

Here the left factor is such that
kioqi— "
kil (9@0(Bj)+ni,j +h) .
Mo’ (6Qo(Bp) +h)

and the right factor can be written

) (9Q0< ")+ nij + h) sy’ (9Q0(Bn) ki +nig+ h)
I (9Qu(By) + h) [T0" " (0Qu(By) + h)

Therefore, the left hand side of is greater than or equal to

z:ol’j_l (9@0(3”) + ki—l,j +mn;;+ h)
th+l j_l (GQO(B;L) + h)

which diverges to infinity as n — oo as well. Thus, nodes with shared observations have divergent
unnormalized weights. Let S = D;_1 U D;;1 be the set of shared values and let (k;_1,k;y1) € D.
Then, we can write the associated weight as
g(ki-1]) g(Iki+1])
0+ ’n~’)(|ki—l|+|ki+1|)
H th 1,5 +nN4, J+k1+1 ]71 (HQO(BTL) + h)
X
71— n U n 7 1 n
= s~ (0Qo(BY) + k) T (0Qo(By) + k) TT” ™ (6Qo(BY) + 1)
gUki-1]) g(Ikiy1l)
- 0+ ‘ni|)(|ki71‘+|ki+l‘)

ki1 j4ni+kipr,;—1 (9@0(37}) + h)

h=1
ngs I~ (0Qo(By) + k) T (0Qo(By) + k) 11~ (0Q(By) + 1)

1
[jes Qu(BH T ' Qo(BY)

Here the third factor on the right hand side is common to each node and is cancelled upon
normalizing, while the second factor converges to the product in statement C, proving the
result. O

X
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Proof of Proposition

Proof. The first statement follows as in the proof of Theorem [J] by noting that conditioning on

Xi—1, Xi11 in (2.32) is qualitatively analogous to conditioning to Xy, ;, Xy,  in (2.36)-(2.37),
since the main argument is based on the factorization of the likelihoods of the data collected
prior, concurrently and after the signal state. The second statement follows by the linearity of

the expected value in and by readjusting the weights. O

Proof of Corollary

Proof. The statement can be easily proved by noting that
P(X; € AXo.r) =E [P(X; € A|P;, Xo.1)|Xo.r] = E [P;(A)|Xo.7]

and using (2.38)), after recalling that if W ~ DP(«) then E(W) = a/a(X). O

A3 Proofs of Section 2.3

Proof of Lemma

Proof. The result immediately follows upon noting that

-1
n—5|X1n)
P(K,=t]| X1.,,) =41 .
( | X1 { +SZ# n—t|X1n)}
] ]

Proof of Proposition

By assumptions A1 and A2 there exist ¢, 6, 3 > 0 such that

t+s+B € atts € qttstB
62 L € ozt(Jrzi < 06 ;t) (@) <4 - e St(+;a : (60)
N oy da I T (o) de I “y da

Notice that, if assumption A2 holds for € > 1, it holds also for ¢ < 1. Thus, without loss of
generality, we will assume € < 1 and the main object of interest will be

€
E,[o’] = / a’pp(a)da,
0
where FE,, denotes the expected value with respect to the probability distribution with density

fn (a) pttB8

pn(a) = W? fn(z) = ) IL(o,e)(x)a (61)

where 1 4 stands for the indicator function of set A. We now provide three lemmas that will be
useful to prove Proposition

Lemma 8. Let f and g be two pdf’s on R such that g(z)/f(x) is non-decreasing in x. Then
[ h(x)f(x)dx < [h(x)g(x)dx for every non-decreasing h : R — R.
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Proof. Let X ~ f and Y ~ g. Since g(z)/f(x) is non-decreasing we have g(zg)f(z1) <
g(x1) f(xo) for every xy < x1. Thus we have

1 1

Fe(e)f@) = [ gla)fende < [ glenf(@o)dro = Fx(a)ga)

and
(1= Fx(ao)}gla) = [ gla)fen)dar < [ gla)f(ao)der = {1 = Fy(w0)}(zo).
It follows
Fy(x) _ g(n) 1 Fy(a)
Fx(@) = f(z) = 1- Fx(a)’

for every € R, which implies

Fy(x) _  Fx(@)
1 —Fy(:L‘) - 1—Fx(x) '

Thus, Y stochastically dominates X, i.e. the corresponding cdf’s satisfy Fy(z) < Fx(z) for
every x € R, which implies that E[h(X)] < E[h(Y)] for every non-decreasing h. O

Lemma 9. Under assumptions Al and A2, for everyn —t > s > 1 it holds

ot + s+ B edlos(n) + 1}] 5 fe‘;??) (@) da _ §2y{t+ s+ B, elog(n)} og(n —s
I3 1 B, c{log(n) 1+ 1] OB S S%W@daé A bgt] s/ (e},

where y(x,y) is the lower incomplete Gamma function and we recall that €,0,3 > 0 are such
that for every o € (0,€) it holds 30” < w(a) < da”.

Proof. By it suffices to find suitable bounds of E,[a®]. For the upper inequality we apply
Lemma ﬁ with f = pp, g(a) x (cn)_aa“rﬁ_l]l(ae[o q) with ¢ = (1 +¢€)7! and h(a) = a®. To

verify that g(a)/pn(a) is non-decreasing for a € (0, €] we compute

s {pgn((aa))}:_log<1+e) 1a

- 1o <n—|—e>
- 1+e€ — 0

where the last inequality follows from

k-1 1

ko1
dr <
/1 T +e ;i—ke
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for every k > 1. Thus, since h(a) = o® is non-decreasing in « it follows by Lemma |8 that

g [ s] <f0€ at+5+’3_1(cn)_o‘da {log(cn)}_s foélog(fm) SstB—lo—zq,
n|0”| <= — - =
_ {log(cn)} *~{t + s + B, elog(cn)}

v{t + B, elog(cn)}

The lower bound again follows from Lemma E with f(a) (en)*aat+5*1ﬂ(a€[0 d) g(@) = pp(a)

and h(a) = o®. To verify that p,(«)/f(«) is non-decreasing for « € (0, €] we compute

d pn(@) . g
dalOg{ o) } =— ij%og(n)%—l

i=1
n—1 1
> — — >
> Z ; +log(n) +1>0,
=1
where the last inequality follows from
b1
Z - <log(k) +1
i=1 "

for every k > 1. Thus, since h(a) = o is non-decreasing in «, we have

Jg attsth1(en)~2da _ {log(en)}—* foelog(en) PitstB-le—24,

E, o] > =
[CV ] = fO at—i—ﬂ—l(en)—a da foelog(en) AHB—le—2 dy
_ {log(en)}*~{t + s + B, elog(en)}
7{t + B, elog(en)} ‘
The proof is completed by combining the bounds with . O O

Lemma 10. For every € > 0, there exists M > 0 such that, for every n > 1, it holds
t

€ t 00
M/ a—ﬂ(a)daz/ a—ﬂ(a)da.
0 alm e a

f:o atr(a)da
ff atn(a) da

e ot o Al € ot et
/ S () da — / a (o) da :/ S (o) da — /2 pa— m(a) da
0 a(") € a(n) 0 a(n) 0 6(”)

e 4 et
2/2 a—ﬂ(a)da—/Qpa—w(a)da.
0 Oé(n) 0 f(n)
(m)

-1
o which is always possible because {e(m)} <§>(m) — 0 as

Proof. Define p = Then

NGO
Choose m such that (§> <
m — 0o. Thus

€ t 0o t
/%ﬂ(a)daZ/ %7[’(04)(3104, n>m
o a\” e a\?
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and it suffices to set M = max(P, 1) with

t
P = max J aoéi) m(a)da
1<ism | f5 5 (o) da

O O

Proof of Proposition[10. We first prove the upper bound. We have

t+s t+s t+s t+s
o Swmm(@)da  ffem(a)da  [§ Srym(a)da [ Shrm(a) da

t - t t t+ *
Oeaa(‘n)w( a) da Oeacfn) 7(a) da Oeof(“n)w(a)da 63 cm(a) da

(n)

C(n,t,t+s) <

Moreover, it holds

feoo at(:; ( )da f€oo OzH_S_lﬂ'(a) dov - 6f€oo at+s—17r(a) da < 5E( s 1)t +s+p
fO ozf(:;ﬂ,( )da — f(]ﬁ at+8*1ﬂ-(a) da — fOE attst8-1da — ettstB8

where the first inequality follows since o™ > (™) for o € (€,00) and a™ < €™ for a € (0, ¢),
while the second one follows from assumption A2. Moreover, E stands for the expected value
with respect to w. Thus from Lemma [13]it holds

{14 Blatt>~1) B8 by {t + s + B, elog(n)}
v{t + B, elog(n)}

C(n,t,t+s) < {log(n)/(1+¢€)}°.

Then choose G = Wg,dogm to obtain the upper bound. For the lower bound, apply Lemma

[[3] and Lemma [I0] to get

Jo &rrm(e)da 1 oft+s+ B e{log(n) + 1}
M+1 f5-a o r(a)da M +1 829[t+ B, e{log(n) + 1}]

C(n,t,t+s) > {log(n) +1}°.

_ 1
Then choose F' = m O O

The following corollary of Proposition [L0] will be useful.

Corollary 3. Suppose 7 satisfies assumptions Al and A2. Then G > 0 as in Proposition[1( is
such that for every 0 < s <mn andn > 4 it holds

GL(t+ B +1)2%s

€

C(n,t,t+s) < E[at“*l] log{n/(1+ e)}*l

Proof. By Proposition [10| we have

Gs s fy{t—}—S—F/B,elOg( )}
C(n,t,t—i—S)SETE[ i log{n/(1+¢€)}s

Note that

elog(n)
it s fclogm) = [T 2 e < ¢ log(m) M+ B+ 1),
0
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that implies

s—1
log{n/(1+¢)}~!

eslog®{n/(1+¢€)} log{n/( 1—i—e

vt +s+ B clog(n)} _ T t+/a’+ [ log(n
}

Moreover, since € < 1, we have log{n/(1 + €) 3log(n) for every n > 4. Combining the

>
inequalities above we obtain the desired result. [J O

Proof of Lemma |§|

Proof. We need to study R(n,1,s) as in (2.52). Taking the expectation with respect to the data
generating distribution we have

*y(a;— 1! [Ty m(Xa,)
E[R(n,1,s)] = Z =1 E |- :
Arin) (n—1)! m(X1:n)
5 ( " )n;mj—mE 5 m(Xe)
acFo(m) \01" "4 sl(n —1)! m(X1:n)
0 S m(Xag)
- Z ST Q.E[ ]m(X~) ]
acFs(n) ° Hi=1% Lin
O O
Proof of Lemma

Proof. Assumptions A1 and A2 are immediately satisfied in all three cases discussed in the
statement of the lemma. We thus focus on proving that A3 is satisfied, considering each of the
three cases separately. Suppose first that the support of the density 7 is contained in [0, ¢] with
¢ > 0. Then

/ a’m(a)da < .
0

Thus in this case assumption A3 is satisfied for every p > 0 because ¢® < Dp~*I'(s + 1) with

— (cp)®
D = aXTG+D)
distribution, so that

for every p > 0. Suppose now the prior is given by a Generalized Gamma

/ o’r(a) da = L/ atts1e=(3)" da.
0 0

()

The condition p > 1 implies that, for every fixed p > 0 and a > 0, there exists £ > 0 such that
pa < (%)p for every a > k. Thus

o0 a\P k a\P o0
/ ad“_le*(i) daﬁ/ a5+d_167(3) da+/ astd=le=ra qq
0 0 k

S ks-l—d—le—(%)p —|—p_d_SF(s—|—d).
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Also,

- O
/0 a’m(a) da Sadrka)I‘(s +d) {lm + p—d—S} <

< Dp°I'(s +d),

k
e selt p( ) {ksﬂl Fl(i Si;L) + p_d}, so that also in this case assumption A3 is satis-
seN gdr

fied for every p > 0. Finally, in the case of Gamma distribution we get

o0 F'v+s) _
S d — S
/0 a’m(a) da T0) p
and assumption A3 holds. O
Proof of Theorem
Through a linear rescaling, we may assume [a, b] = [—c, ¢] without loss of generality. We rewrite

the assumptions on g and )y as
T1. 3m, M such that 0 <m < g(z) < M < oo for every z € [—c,c];

T2. g is differentiable on (—¢,c) and 3 R such that |g

(=¢0);

T3. 3U > 0 such that h(y) = qo(y) + qo(—y) < U for every y € [0, 2¢;

T4. 3L > 0 such that go(9) > L for every ¢ in a neighborhood of 07, for every j.

Denote with f(z) = 221 pjk(z | 07) the density of the data generating P = 2321 p;Rj, with
teN, p;je(0,1) and 25:1 pj = 1. Since 6* = (67,...,0;) is completely separated and

X ~ P*(OO), each point z has non-null density for at most one component of the mixture, i.e.
€l0i +a,07 +b] = [f(x)=pik(x|0}) = pigx —07).
Therefore we can define
Ci={ie{l,....,n} : m € 0] +a,0;+b]}, n;=1Cy

Notice that C; N C; = 0 for every i # j and {1,...,n} = U§:1 Cj, so that Z§:1 n; = n.
Moreover, defining

C™ = {n; > 0 for every j},
for every 1., € C™ it holds

S

Z H(aj—l)!Hm(:nAj):O for every s < t,

Aéro(n )jzl =1
t t t (62)
Z H (b — 1)! Hm(a:Bj):H(nj—l)!Hm(xcj).
Beti(n) j=1 J=1 J=1 J=1
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Since p; > 0 for every j = 1,...,s, we have Pﬁn)(C(”)) — 1 as n — 0o. We need a technical
lemma.

Lemma 11. Let Q,, be a sequence of sets depending on Xi.,, and let Z, be random variables
on the same probability space such that P(™)(Q,) — 1 and

ZnﬂQn — 0

(c0)

n P*(OO)—probability as n — o0o. Then Z, — 0 in Py’ -probability as n — oo.

Proof. By assumption P*(OO) (Lo, Zn > €) — 0 as n — oo. Thus, we have
PP (Zy > ) < P {(Zy > )Ny} + P (Q8) - 0

asn —oo. [ O

Thus by Lemma [T1] it suffices to study

af

]P)( n_S‘Xln) fa(” ( )daZAGTsn HS 1( T~ )'HS ( )
PR =t M) 0 0 Ty~ DT m(Xs e @
am) @

By , we have
P(Kn =S | Xl:n)

Lo

P(K, =t | X1.n) ¢

for every s < t. Let us now consider the case s > t. Again by complete separability, A € 75(n)
yields positive marginal density only if A is a refinement of the partition {C1,...,C;}, i.e. if

=0

Aefin)={Aers(n) : Vi=1,...,s there exists j € {1,...,¢} such that 4; C C;}.

Therefore, if A € 74(n), we write the j-the element as A; = (A{, LA
that

S

S -0 [ -ST % H DU mix ),

A€ (n) j=1 j=1 s€S j=1 A;€ry, (nj) k= k=1

1,) with a}, = |A}], so

where S = {(51,...,st) 01 <s; <nj, Vj, and 23:1 5 = s}. By the above and we can
rewrite as

IP( n=—S5 ‘ X1 n) ZAE?S(n) H] 1( )'H] 1m(XA )

P(K, =t | X1m) Lom = C(n,t,s) 1—[;:1( n; — 1)! Hj:l m(XCj) Lo
t 55 (al — 1) Tl m(X ) (64)
=Cmta 2 11 2 Hk(:v;j(cﬁc 1) | kml(Ac.)Ak foe

s j=1 AJETS]' (nj)

where

)= [ T K% 1) Qotasy) = [ TT 9(X: —65) Qlaey)

1€C 1€C
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and

Xyi) / 1T B(Xi | 6n) Qo(dbr) = / IT 9(Xi = 6n) Qo(d6y),

ZEAJ ’LEA]

with A =1,...,s;. We divide and multiply by

[[ ~ 1 1T vk X|9*=ri[1f[ KX 1 60),

Jj=1ieC;

;-u

so that the sum on the right hand side of becomes

. - 8j - _9(Xi—0k)
sy Hinited - ol el 5ot Qo)

1) X;—0;)
s j=lAjers;(ny) (n; — 1! Jr zGQWQO(dQ)

ﬂc(n), for s > t. (65)

We start with the denominator. The next lemma specifies the behaviour of the maximum for
each group, where Xgr) denotes the r-th order statistic of X¢;.

Lemma 12. For every j =1,...,t it holds

Y] = min {Lnj(log(”))i{cﬂL 05 — X(jnj)}] —1

n

mn P,Soo)—probability as n — oo.

Proof. First, notice that n; — oo R,Soo)—almost surely as n — oo. By definition Y,{j <1, so we
have to prove that Ve > 0
() (1 v
P (1-Y] >€) =0

as nj — oo. Without loss of generality assume 67 = 0. Thus, by definition we have

P =Y, > ) = PO [y logm) (e = X7} < 1= = PO S 2o oy
f n (log(n)
=1- 1—/ . g(z)dx
‘ n; (log(m)) 2

Thus, by T'1 we have that [T 1. g(z)dz <

= 1
n]_(log(n))% nj(log(n))2t

)

n _ M(176>1 +TL]O< 1 . )
P -Y] s a<1-1- M= Ly ez emen®) g
’ n;(log(n))2r

as n — 0o, by the Taylor expansion of the logarithmic function. O
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Lemma 13. For every j =1,...,t it holds

g xl j — * *
nJ

1€C

eyt

with R defined in T2 and x{T) denotes the r-th order statistic of z¢; .

Proof. Without loss of generality assume 67 = 0. Define p(z) := log g(x), with = € [~¢, ], so
that p/(z) = gg/((;)). By T2 and the Fundamental Theorem of Integral Calculus

P (t) dt‘ < /:

g'(t)

Ip(y) — p(z)| = )

’dt§R|y—az|, —c<zr<y<e.

Thus, we have

9@ =05) _ pa—0)-pe) — o~(p(@)-pa—0,)} > o~FIOs|

T € [—c, cl.
e e
Finally, we get
9( xl — Y e~ im0 . . —Rnl6;] ) . . A
zg ) - J l[x(n )‘C’xflﬁc}(%) =e 1[0’%](‘03Dl[”ivg)‘cﬂ“il)*c}(9])
e_R]l[o,#}(m )1 [w _C$ +c](0 )
n; .) (1)
O O

Lemma 14. For every j = 1,...,t there exists K > 0 and Nj € N such that for all n; > Nj it

holds -
L1 9N =0) 9y ag; > —
. ) dty > ————,
iec, g(X —0 ) A

with Y] defined in Lemma .

Proof. Without loss of generality assume 67 = 0. Notice that, by T'4, there exists N; € N such

that go(6) > L for every 0 € {—%, O]. Thus, applying Lemma (13| and considering n; > N;, we
J
get

g —9 _
[T w(0;)40; = e [ 10111001

1€C; J )

’ 1

-k - ) . —-R__: j

=e /_ 1 H{an]_)éejJrc} qo(0;) d; > Le™ " min {nj X(nj)}
n;

+C](6 ) qo(6;) db;

with L defined in T'4. Thus, multiplying both the numerator and the denominator by n;(log(n)) % ,
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with n > N, we have

9(X; —0)) R o) ]
/ eI_IC (Hj)dﬁj >2Le R onin {nj,c— Xgnj)}
1 . 1
_ Komin [Lnj(log(m) e~ Xw}] K,
B n;j(log(n)) nj(log(n))z’
with K = (2Le 1)L, O

Define the event

Q, = {for every j = 1,....t it holds: n; > N;, ¥ € [1/2,1]}, (66)

such that P*(H)(Qn) — 1 thanks to Lemma and Lemma Thus, an upper bound of
with €, in place of C(" is given by

7). QWZH 3 njn,;_l(aHﬁ/ HMQO(deh)ﬂgn, (67)

s j=1A;€ry; (n)) (njil)! Rie g(Xl*Hj)

for s > t. Now we apply the expected value with respect to the values of each group, as shown
in the next lemma.

Lemma 15. Under Xy., ~ P*(n), for every j=1,...,t, s; > 1 and (6,... ,Qsj) € R% , we have

=\, Hg wionan) < (2) 11!

9
05) he1 0 +1

with m and U defined in T1 and T'3.

(n)

Proof. Without loss of generality assume 67 = 0. Taking the expectation under Py’ we have

/RhH1 H 9(Xi — 1) q0(0r) Ao :/R/ H I1 9(xi — 6n)ao(6r) das A6y, (68)

h 1 GA]
By the change of variables z = x — 0}, we have
c c—0p
| =01, cora@da= [ g1 g2z
—c —c—0y,
If 0, > 0, then
C—9h C_Gh
/ 0 g(z)]l[fc,c](z) dz = ]1[0,20](9]1)/ g(Z) dz
—c—0,, —c

= 10,2¢(0n) (1 - /:0 9(2) dZ) < T2 (10n]) (1 —m|B4]) -



A3. PROOFS OF SECTION 77

Similarly, if 8, < 0 we get
(&

c—0p,
[ e eq()de = g0 [ gz

—c—0;, —c—0y,

—C

—c—0p
= 1—2¢,0)(0n) (1 - / 9(2) dz) < Tjo2q (|0n]) (1 — m|04]) -

Thus

c

9(x = O)Ljg, —c0,+d () dz < Lo (10n]) (1 —=m|On]), h=1,....s;

—C
which implies
Sj c

11 11 / 9(x = 01) g, —c0,+a(@) dz < ] Lio2q(10n]) (1 — m|6]) .
hel

h=1,;,43 7 ¢
zeAiL

Considering h defined as in T3, we have

2c
/anc](why) (1 — m|0h]) qo(0n) A6y, = /0 (1= m|0n)) h(0n) 0, h=1,....s,.
Combining the above with we get

/]R H H g qo0(6r) Aoy, /RJ/[— H H g(zi — 0r)qo(0) dz; dby,

h= 1 h 1 GA] (69)
< H/ (1 — m|0n]) h(6y) Aby.
With U defined as in T3, we have
2c j 2c j
| a=myinydy <0 [0 - my)hay.
0 0

Now consider the change of variables ©u = 1 — my and compute

2¢ ) 1 1 . 1—(1-2 al +1 1
/ (1= my)® dy = — uh du = ( . me) < A .
0 m J1—2me m(a% + 1) m(afl -+ 1)

Finally, through , we have

/thnl H 9Xi = 0n) o) do| < H/ (1 — m|0n]) h(61) Ay

Sj S5
< (Y 11 L
m) o an+1

as desired. ]
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We have the next two technical lemmas.

Lemma 16. Let p* = minjeqy, 4y pj € (0,1). It holds

Z - Z (sl,.(.s.,s) <)

L g
s =1 5!

where S = {(31,...,st) 155 <nj and Z;Zl sj = 3},

Proof. The result follows immediately from

Z <81,-E-S-,St> = (p*)*sz <51 S st> Hp;j

seS seS j=1
t
_ S . _
RS ( ) 15 = ).
SER, S1y...,5St j=1

where R; = {(51, AR 23:1 55 = s}, since the sum on the right-hand side is the sum of
the probabilities over all the possible values of a multinomial distribution with parameters
(57p15"'7pt)- t

Lemma 17. For every p > 1 and for every integers s > 2 and n > s it holds
n p
> (i) <o
acFs(n) j=1%j
where Fs(n) = {a e{l,...,n}*: 3% ja; = n} and G, = 2P((p), with {(p) = 32°, L < 0.

a=1 aP

Proof. We prove the result by induction. Consider the base case s = 2. By the strict convexity
of z — aP for p > 1 we have

n P n—1 n p n—1 11 1 1 P n—ll
s ) S} G < Ea e

ala
a€Fa(n) N 172 a=1 a=1 a=1

for every n > 2. For the induction step, assume that for some s > 3 we have

2
n s—2
Z s—1 < Cp
a€F._1(n) (Hj:l “J')
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for all n > s — 1. Then

slEe) 5 5 ()

a 1 Q
acFs(n) J=1%7 as=1 (a1,..,as_1)EFs_1 J=1"7

n—s+1 n P n—ua p
- Z { } Z -1 .
as=1 (n o as)as (a1,...,as—1)EFs—1(n—as) j=1 a;
271784’1 n p .
<GT L { T } <G

aa=1 n—ag

and thus the thesis follows by induction. [ O

In the following we will drop the subscript in C}, when the value of p is clear from the context,
thus denoting C = C),.

Lemma 18. Consider the setting of (2.42) with (f,k,qo) as in Theorem . Moreover, assume
() satisfies assumptions Al, A2, and A3. Then, under Xi.co ~ P*(OO) we have

E

n—t
P(K,=t Ximn
1o,y “Un =t s X 1%0

2T P(K, =t X1n)

as n — 0o, with 0, as in .
Proof. Applying Lemma [15| we can upper bound the expected value of T in as follows

E [7™ 2t \/log ( ) ”jv A
{ } zs:]r[lA erzs:(n ) (nj —1)! szzl(a?f +1)

2 (Yl s ()

s j 1 j a]e]-'s (n]) Hk:lak

where the last inequality follows from Lemma [6] Moreover, from Lemma [I7] we have

2

Tl' .

> (@) <o
aj€Fs, ( [T, @i

with constant C < 7. Thus

i [7)] < 2o (UC)Z . (70)

m s j=1 Sj.

Moreover, from Corollary [3]and A3 we have

Clntit+s) < SEIEDE oty tog a1+ 0y (71)

< DOTUABHV2S avo0p(, 41 4 5)logln/(1 + )}, n>4.

€
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By , combined with Lemma, and we finally have

n—t n—t
P(Kn =S th‘Xl:n)
E|lo, = t,t+ s)E[L £t
o P(Kn:ﬂXln) ;C(ﬂ” ’ +8) [ QnR(n’ ’ +S)]

s=1

2'p! 1 (U/m)' DGT (t + 8 + 1)/log(n) = s(2CUp* /m)*p~*T'(v + t + 5)
= Kelog{n/(1+¢€)} SZ_:I (s+1)! -0

<oo

as n — 0o, where finiteness follows by taking p sufficiently large. O
Proof of Theorem[I0 First of all, assume 7(-) satisfies A1 — A3. By Lemma [1§]it holds

IP(K,=t+s|X1m)

1
Q"; IP)( n—t|X1:n)

in R,g )fprobablhty as n — o0o. The desired result then follows from Lemma with Z, =
P(Kn=t+s| X1:n .
P f P Kinif)'( 1)) and €2, as in ,
Assume instead 7(a) = 04+ () with o* > 0. By (64) we have

P(Kp =t 41| Xi) % (ad — 1) Il m(X )
P(Kn =1 ] X1m) ZH 2 T m(Ag,)

s€S j=1 A;€rs, (n;)

Notice that, with n high enough, n; > 1 almost surely. Then, denoting ¢ € C'1, we consider the
special case

=(2,1,...,1), Ay ={i}, 43 = A, \{i},
and A; = {Ac,} for every j > 2. Thus we can write

Py = 041 Xi) | ogn LMD (X))
]P)(Kn:t|X1n) o ieCy nl—l m(XC]>

By T'1 we have

/ T 9(X; — 0)q0(6) o

jECl

<M/ IT 9(X; —0)a0(8)db = Mm (Xey,).
]GCl\z

Moreover, by T4 there exists € > 0 such that

07 +e
m(X;) = / 9(Xi —0)qo(0)dd >m [ qo(0)d0 > 2mLe.
R 07 —¢
Therefore, becomes
P(K,=t+1]| X1:n) - 20*mLe Z I 2a'mLe m
P(Kn:t’Xlzn) ieclnl—l_ M nl—l’
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and
=S ‘ Xln) . . P(Kn:t—l-l ‘ Xl:n) a*mLe
1 f Kn >1 f > 0.
lmnlﬂooz ( — | Xim) B TP(Ky = [ Xim) M
Then .
=s|X
lim sup P(K, =t | Xi,,) =lim sup ¢ 1+ Z Ko =5 | X1n)
n—o00 n—o0 s;ét n—t|X1n)
1
> 0,
1 + liminfy, o0 Doz P(I]&%}m
which completes the proof. O
Proof of Proposition

We adapt the proof of Theorem 2.1 in |Cai et al.[ (2021). Denote by
U ={k(-10):0 €0 CR}

the family of kernels, dominated by u, either Lebesgue or counting measure, and with common
domain X C R?. Denote with B, (€) the closed ball of center z € X and radius € > 0. Let © be
the closure of ©® and define the set

= {9 €0\0 : hm{supk(w | 0)} = oo} :
0—0 T
Let Gs be the set of mixtures of exactly s elements in ¥, that is
J€G, & [f= Z ij(

=1

with g; > 0 for every j, 32°_;¢; = 1 and 0; # 0}, for every i # h. Let P(G) be the set of
probability measures on a generic space G; with a slight abuse of notation we will say f € P(G)
when f is the density of a probability measure P € P(G). Therefore, given P € Gy, with weights

{p;}t j=1 and parameters {67 1t =1, we define the Kullback-Leibler neighborhoods of P as

KL(P):= {heP /1 { j=1Pi ()x@* }P(dx)<e}, (73)

for € > 0. We make the following assumptions:

H1. For every 6 € ©\B, for y-almost every z € X there exists A := A(f,z) C ©\B neighbor-
hood of 6 so that the mapping 6 € A — k(z | §) is continuous. Moreover B is closed,;

H2. Let {0;}32; C ©. If [|64]| — oo as i — oo, then for every compact set K C X,
Jic k(x| 6;) p(dz) — 0, as ¢ — oo. If §; — 6 € B, then there exists * € X such that
k(- | 0;) — 04+ () weakly as i — oo;

H3. If f € Gy, then there exist no f’ € Gy, with s < ¢, such that f(z) = f'(x) p-almost surely;

H4. For every P € Gy, t > 1, with 67,...,0; belonging to the support of ()y, we have
pr(h € K.(P)) > 0 for every € > 0, where h follows the prior distribution in (2.42)).
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Assumption H2 says that, when 6 diverges or converges to elements in B, the kernel k degen-
erates: it is satisfied for instance when the elements of 6 are location or scale parameters. H3
instead implies that the clustering problem is not ill-posed, in the sense that different numbers
of components always lead to different distribution. H4 finally requires that the finite mixtures
of the kernel k(- | ) belongs to the Kullback-Leibler support of the prior. They are all weak
requirements, satisfied by the most common kernels. Next Lemma shows that they are satisfied
under assumptions B1 — B3.

Lemma 19. Suppose the kernel k(z | 0) satisfies assumptions Bl — B3. Then H1 — H4 are
fulfilled.

Proof. Assumption H3 can be easily deduced from B1 and (2.47). As regards H1, since
SUPgeco zex k(7 | #) < oo, we have B = (). Moreover, fix § € R. If 2 > 6 + b, choose

A@ﬂg:<é—$§ﬁ§+x§b>,

so that z > 6 + b that implies k(z | 8) = 0 for every 0 € A(0,z). Similarly, if z < 6 + a, choose

Awﬂg=<9—9+;_?9+9+;_x>.

Finally, if z € (6 + a,0 + b), denoting d = min{f + b — z,z —  — a}, choose
_ 4. d
Al =0—=,04+=].
(0,z) ( 5 +2>

Then k(z | 0) = g(x —0) for every 6 € A(f,x) and g is continuous on (a, b), by B2. Thus we can
find the required neighborhood A(0, x) for every x & {6 + a, 6 + b}, that is for p-almost every z,
since p is the Lebesgue measure. Therefore H1 is satisfied.

H?2 follows since 6 is a location parameter and © = ©. We are left to show that H4 is
satisfied: we prove the case t = 1 and the general setting follows similarly.

Recall that assumptions B1— B3 can be rewritten as T'1 —T'4 in the proof of Theorem [10|and
let f(x) = k(x| 8*) be the density function of P. Fix § > 0, € > 0 and denote r = 1 — exp(e/4).
Define the set

F(o,r) = {p(x) = quk(aﬁ 1 0;) :q1 € [1—r,1],¢q2 € [r/2,1],
=1 (74)
0§9*—91§6,0§92—9*§5}.

We denote [aj,b;] := [a + 0;,b+ 6;], with j > 1, and similarly [a*,b*] := [a + 6*,b + 6*]. Then
we can choose ¢ small enough such that

la1,b1] U [ag, ba] D [a*,b7],
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for every 61 and 6, as in (74)). Moreover, for every = € S := [a1, b1] N [a*, b*] we have

gla—67) | _ g(z —0") g(z —6")
log{)} = —log(q1) +log{M} < e/4+log{M}

< e/4+ R|0" — 0]

with R > 0 as in T'2. Therefore we can choose § small enough so that

g(z —0") €
logq ————~ 7 < = 75
g{ng(ﬂf—@ﬁ} 2 (75)
for every x € S;. Similarly, we can choose § small enough so that for every z € Sy := [a*,b*] \
[a1,b1] we have
/ (x— 0 1ogd LE=0) Ly, € (76)
x— - —.
s’ # eg(@ — 62) 2
Indeed, since g(x — 0*) < M and m < g(z — 62) for every x in Sy, with m and M as in T'1, we
have
x—0%)]og ——— % < Mlog{2M/(mr)},
oo 0" g { ST < arnoggon )

and So has arbitrarily small length with § small enough. For every p € F(4,r), by applying
and , we have

b* _ 9*)
a* gle — 67 log { S qg@—6,) [

— 1o g(x—@*) T 7 — 6% 1o g(:l:_g*) T
. ot e)lg{ ;°1qjg<x—ej>}d + [, o a”g{ ;?%qjg(x—ej)}d :
/g(az@*)log{M}der g(x@*)log{M}dee‘.

S1 ) Sa )

qg(x — b6, @29(z — 02

Thus, F(0,7) C K¢(P) for 6 small enough. Moreover, since 8* belongs to the support of Qp and
the Dirichlet process prior has full weak support on the space of probability weights {q¢;};, we
have that

pr{h € K(P)} > pr{h € F(4,7)} > 0,

as desired. [ O

The proof of Proposition [§] will rely on the following Lemma.

Lemma 20. Let assumption H4 be satisfied and let P € Gy with parameters 07, ..., 0; belonging
to the support of Q. Assume there exists U weak neighborhood of P such that U N Gs = O for
every s <t. Then

pr(K, <t|Xi,) =0,

in P _probability as n — .

Proof. By assumption H4, the posterior distribution is consistent at P under the weak topology,
in virtue of Schwartz theorem (see e.g.Theorem 6.16 and Example 6.20 in |Ghosal and Van Der
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Vaart| (2017))), so that
pr(h € U | X1.) — 0, (77)
in P(°)_probability as n — co. Moreover, we have
pr(h € U | X1:) > pr(h € US| Xy, K < t)pr (K, <] Xi:m) -

Notice that, conditional on K, < t, the domain of the posterior distribution is a subset of
Us<tGs. Thus we have pr(h € U¢ | X1, K,y < t) =1 and

pr(h € US| X1n) 2 pr (Kn <t ] X1n) .

The result follows from . O

We need two technical Lemmas.

Lemma 21. Assume a sequence {f;}32; C Us«tGs is such that f; — f € P(X) weakly as i — oc.
Then there exist s' <t and a sequence {f!}32, C Gy such that f| — f weakly as i — oc.

Proof. Define
as :=sup{i >1: f; € Gs}

with s < ¢t. By construction, there exists s’ such that ay = oo and {f/} is the subsequence of
elements of {f;} that belong to G. O

Lemma 22. Let {fZ = 2521 qj.ik(- | 6,)}21 C Gs be such that fi — f € P(X) weakly as
i — 00. Then there exist s' < s and a sequence {f]}52, C Gy such that f| — f weakly as
i — 0o and

lim iI}f qu >0

for every j=1,...,5.
Proof. If liminf; ¢j; = 0 for every j = 1,...,s, the statement is true by taking s := s’ and
fl = f; for every ¢ > 1. Then assume there exists [ such that liminf; g, = 0. Consider a

subsequence {ﬁ};’il, with weights {G;;}; and parameters {éj,i}i, such that lim; ;; = 0 and
define

j.i 5
file) =3 =2 —k(z | 6),
Gl Zr;ﬁl qT,Z

where >, 4 Gri — 1, by construction. Let A C X, then

=> <Zqﬂ~ - (?j,i) /A k(x| ) p(de)

Gl r#l qryi

+%/%m|%wmms§:(%i—@o+@f»a
A ]#l Z'r;él QT,i

as i — oo. Therefore, since A is arbitrary and {f;} converges to f, also {f!} converges weakly
to f and {f/}3°, € Gs_1. The result follows by applying recursively the above procedure for
every | satisfying liminf; ¢;; = 0. O

\Aﬁmwm—ﬂﬂwmm>
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Proof of Proposition[§ By Lemma[I9 we can assume H1 — H4 and by Lemma it suffices to
prove the existence of a weak neighborhood U of P such that YNNG = (), for every s < t. Assume
by contradiction that no such U exists. Then, there exists a sequence {f;} € Ns<;G; such that
fi — f weakly, as i — oo, where f is the density of P. By Lemmas [21] and [22| we can assume
without loss of generality that {f;} € G, with s < ¢, and liminf; g;; > 0 for every j =1,...,s
We will consider three scenarios, of which at least one must hold: (i) there exists [ € {1,...,s}
such that lim sup, ||0; ;|| = oo, (ii) the sequences {6;;}:2,, with j =1,...,s, belong to a compact
set C C ©\B for i large enough, (iii) the sequences {6;;}72,, with j = 1,...,s, belong to a
compact set C' C © and there exists [ € {1,..., s} such that liminf; infyep ||6;; — 6|| = 0.

First consider case (i) and assume there exists 1 <1 < s such that ||0; ;|| — 0o as i — oo
for a suitable subsequence r(i). Fix 0 < € < liminf; ¢ ; and choose K C X compact set such
that P(K) > 1 — ¢/4. By assumption H2 we have

/ frz d$)>QI7“ )/ k:1:|9lr( ) (dl’)

l\D\m

for i large enough, which contradicts the weak convergence of {f;}2; to f.
Second, assume to be in case (ii) and there exists a compact set C' C ©\B such that 6; ; € C
for every i > 1 and j = 1,...,s. Define the set

Dy := {V(de) = qu59j(d9) 1 0;,€C,q > O,qu‘ = 1} C P(©).
j=1

=1

Since C' is compact, we have that D, is tight. By Prokhorov’s Theorem Dy is also relatively
compact, so that there exists a subsequence r(i) such that

S
V(i) = D_ Giar(i)00,,) = v € P(O)
j=1
weakly as i — co. By Lemma 4.1 in |Cai et al.| (2021) we have v € Ds, so that v = 377 _4 (L(ng for
some g; € (0,1), >2%_; ¢; = 1 and éj eC,forj=1,...,s. By Hl and C C ©\B, for p-almost
every z € X, we can find C; := C} (x,éj), with 7 = 1,...,s, closed neighborhood of 67]-, so that
k(z | 8) is continuous as a function of 0, with 6 € C;. Define D := { i1 Cj } N C compact

set: notice that D # (), since 9~j € CNdCj, with j = 1,...,s. Moreover, by construction, the
mapping 0§ € D — k(x | 0) is continuous and therefore bounded, since D is compact. Since
vi — v weakly, as ¢ — oo, there exists I such that for every ¢ > I we have 0;,;) € D, for every
j=1,...,s. Thus, by definition of weak convergence we have

qu (21 0;,0)) /mw (d0) —>/kx|6 (d8) Zq] (@ | 6)).
as ¢ — oo. Since almost sure pointwise convergence of densities implies weak convergence, we
have \
fry = F=_ a@k(
j=1

weakly as i — co. By uniqueness of the weak limit, f(x) = f(z) for p-almost every z, that
contradicts H3.
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Third, consider case (iii). Since #;; € C' C © compact set, for every j =1,...,s and i > 1,
there exists a suitable subsequence (i) such that 6, ) = 6. Since B is closed by H1, we have
that € B. By definition of B, this is not possible if y is the counting measure, since k(z | ) < 1,
for every x € X and 6 € ©. Thus, let u be the Lebesgue measure. Then we can fix € > 0 such
that

P(B,. () < L
with * as in H2. Then by H2 we have
lim inf; q; ;
L P > g [ ke g )a(dn) > S
for i large enough, that again contradicts the weak convergence of {f;}22, to f. O

Proof of Theorem

The marginal distribution is available and given by the following lemma.

Lemma 23. Consider k and qo as in (2.49)). Then it holds

2¢ — {max(z1:p, 0*) — min(zy.,, 0%)} . . "
m(T1:p) = 2c) : (z1m € [0F — ¢, 0% + ]").

Proof. Note that z; € (0 —c,0 + ¢) for all i € {1,...,n} if and only if § € (max(z1.,) —
¢, min(x1.,) + ¢). Thus

1
m(xln = 2C)n+1/ HILO 09+c ]]-(0*709*+c)(9)d9

1
(20)” /@ ]l(max(xl;n)7c,min(:r1;n)+c) (6) ]1(9*70,9*+c) (9)d0

2¢ — {max(z1:p, 0*) — min(zy.,, 0%)}
(2C)n+1 )

O O

Define Range(X 4) = max;e4 (X;) — min;e 4 (X;). Lemma [23| has an important corollary, that is
stated after a technical lemma.

Lemma 24. Let A C {1,...,n} such that |A| = a, Then it holds:

2¢ — {max (X4, 6*) — min(X4,0")} < 2c — Range(X4)
(2c)+H1 = (2c)o+T

Proof. The result follows immediately from max(X 4, 6*) > max(X4) and min(X 4, 0*) < min(X4).
O

Corollary 4. In the setting of (2.42) with (f,k,qo) as in , define

={z € X : max(x1,,) > 0" and min(z1.,) < 6°}.
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Then

I35 m(Xa,) IT511{2¢ — Range(X4,)}
) e (Xe) S o e Range ()]

for every A € T541(n) .

Proof. As regards the numerator, apply firstly Lemma [23] and then Lemma [24] to get

2¢ — {max(X4,,0%) — min(Xa,,0%)} - 2c — Range(X4;,) 7
: < : o J=1..
(Qc)aJJrl (26)a7+1

m(XAj) =

Apply Lemma 23| to m(x1.,) for every z € Q,, to get

(X i) Ly, (X1ioo) = 2¢ — {maX(Xl:TE,Qi;)HF—l min(X1.,, 0%)} 1o (i)
_ 2c— {max(Xi.y) — min(X1.,)}

(26)n+1

]]-Qn (Xlzoo)u
as desired. ]

The lemma below shows that, in order to prove Theorem [T1] it is sufficient to show

n—1
pr(K, = s+ 1|X1.,)
1o (Xq:
Qn( 1.00) Z pl"(Kn — ]-|X1n)

s=1
in me)—probability.

Lemma 25. Consider f asin (2.49) and define Q,, = {z € X : max(z1.,) > 0* and min(z1.,) < 6*}.
Let {Y,,} be a sequence of positive random variables. Thus, Y, 1q, (X1:00) — 0 in P*(OO)—pmbability
implies Y, — 0 in wa)—probability.

Proof. First of all, by definition of f we have
max(Xi.,) = 0" +¢, min(Xiy,) -0 —c

almost surely with respect to P*(OO) as n — oo. Then RSOO)(Q,L) — 1, as n — 0o, by definition of

Q,. Thus, fix € > 0 and notice that
P (Y, > )= PPV > ) N} + P (Y > e)n Qe

The first term on the right-hand side goes to 0, since Y, 1q, (Xi:00) — 0 in P,Sm)—probability,
while the second vanishes because P(*)(Q¢) — 0, both as n — oo. O

Combining Corollary [f] and Lemma [25] we are ready to prove Theorem

Proof of Theorem[11]. For every s > 1 and A € 75(n), from Corollary 4] we have

| m(XAj) 8’:1{26 - Range(XA]‘)}
]m(Xl;n) ILQ“ (XLOO) = (26;571{26 — Range(XLn)} .
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Note that {2c — Range(Xa4;)}/(2c) ~ Beta(2,a; — 1) independently for j = 1,...,s. Moreover,
recall that if Z ~ Beta(a, 8) then for p > —a

Ia+p)T(a+pB)
Nla+p+B)I(a)

E[ZP] =
Thus, by Hoélder’s inequality with exponents 3 and 3/2 we get

E [Hjl m(XAj)

1/3
s ) s
m(X1in) =E Ll;[l m(XAj)?’] E {m(Xm) 3/2}

- {r(5) }8/3{r(1/2) }2/3{ []EC+a) }1/3{ T(1+n) }2/3
I'(2) I'(2) e I'(a; +4) I'(n—1/2)
By the recursive definition of the Gamma function and recalling that I'(1/2) = 7'/2, the upper
bound above becomes

[T m(Xa,) s 1+a)) " T(t+n)
R R Rk Ko R )

s ! V- 1/2ra s n) ¥
=24/3771/3{Ha]+3(aj+2)(aj+1)} { L(n+1/2) } |

Moreover, exploiting again the recursive definition of the Gamma function, Gautschi’s Inequality,

ie. % < (n+ 1Y% and (n+1)/(a; + 1) < n/a;, we have

E [H;:l m(XAj)

a3

7j=1%

<o PR JURSIE A
m(Xun) |7 T I15

1/3
) = 2U3BK
joi (@ +1)

Thus, applying Lemma [6| and Lemma [17] with p = 2 and C' = 4¢(2) < 7 we get

jl]

s! ’

245/3 n \>  CslogsBK
E[R(n,1,s)] < 5 <
[R(n.19) < =~ 3 (Hjl )

acFs(n)
where R(n, 1,s) is defined as in (2.52). From Corollary [3| we have
GT(2 + 8)2°s

€

C(n,1,s+1) < E(a®)log{n/(1+¢e)}7 ', n>4.

Thus, combining the inequalities above with (2.52) and assumption A3 we have

Kn _ 11X N n—1
s+ | L ) = ZC(n,1,8+1)E{]1Qn(Xloo)R(n7lvs+1)}
s=1

n—1
pr(
E ]lQn(Xl:oo)
; pr(Ky = 1[X1:n)

243DGKT(2+ ) &
elog{n/(1+¢€)} 4

1s(20243)s 5D (v + 5 4 1)
f (s+1)!

—0 as n — oo,

<oo
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where finiteness follows from p > 38 > 24'/3 x 2C. This implies that

”z‘:l P(K, = s+ 1|X1.)
= P(Ky = 1]X1:)

in L' and thus in Rk(oo)—probability as n — oo. Lemma with Y,, = 22;11 %
concludes the proof.

Proof of Theorem

We first need the following result.

Lemma 26. Let k and qo be as in (2.50) and ©1 = --- =z, = 0* for some 6* € R. Then

ioim(za;) _ na1 1/2 o 92 - n2 . i a? . n 1/2
m(z1:) izi(a; +1) 2 n+1 et 1 [[i=1a; ’

for every s = 1,...,n and every partition A = {A1,...,As} € 15(n).

Proof. Since the marginal likelihood can be rewritten as

1/2 : 6> af
m(za;) = (a; +1)"/“qo(6")" exp {Qaj 1 }7
the first equality is obtained. The inequality follows from
2 S 2 2 S 2 s
B n a; o n a; ) n B a; .
n+1 +Zaj+1 T +Z:<aj+1 a”) n+1 Z:ajJrl
j=1 j=1 j=1

= I\ n +1 a; + 1)~

and
n+1 < n
[li=i(a; +1) 7 Ilj=y a5’

which easily follows from a; < n, for every j =1,...,s. [ O

Proof of Theorem[I3. First, we study R(n,1,s) as defined in (2.52)). Since all the observations
are almost surely equal, we have

n H;:l m(XA;’)

m(X 1:n) ’

R(n,1,s) = Z

e ,
S -_ 1 Q
acFs(n) J=1%

where A? is an arbitrary partition in 75(n) such that [A%| = a; for j =1,...,s. By application
of Lemma |26/ and Lemma |17| with p = 3/2, it turns out that the constant C' = 2%C (%) < 8 is

such that

3/2 1
1 n (O

1 — .
R(n,1,s) < ' Z <H§:1 aj> <

5 a€Fs(n)
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From Corollary [3| we have
I'(2+ B)2°
GT'( )2%s

C(n,1,s4+1) <
€

(@) log{n/(1+e)}", n>4. (79)
Thus, combining the inequalities above with (2.52)) and assumption A3 we have

n-! pr(K, = s+ 1| X1.,) n-l

=>» C(n,1,s+1)R(n,1,s+1)
Sz::l pI’(Kn - 1‘X1:n) SZ:l

DGT'(2 + ) ”il $(2C) p~T(v + s+ 1)

~ elog{n/(1+¢)} (s+1)! =0 asm =00,

s=1

<o
(80)
where the finiteness follows from p > 16 > 2C. Then we conclude applying a variation of
Lemma [b| with equalities and limits in probability replaced by almost sure equalities and limits
(the proof of Lemma [5| extends trivially to that case). O

Proof of Proposition |§|
Proof. Under (2.42)), for every € > 0 we have

P(Oé <e ‘ Xl:n) :ZP(Q<€ ’ ans) P(Kn =S ’ XIIN) =
s=1
>Pla<e|K,=t) P(K,=t| X1:n).

By assumption, P(K,, =t | X1.,) — 1 in P*(oo)—probability as n — o0o. Moreover, by Proposition
[I0] with s = 1 we get

Ela | K, =t] =C(n,t,t +1) — 0,
as n — oo. It follows P(a < e | K,, =t) - 1 in P*(OO)—probability as n — 0o, as desired. O
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Chapter 3

Hierarchies beyond the Dirichlet
process

3.1 Introduction

As discussed in the first Chapter, the model induced by the law of a Dirichlet process suffers
from few limitations. First of all, the weights of the predictive distribution depend on the past
datapoints only through the number of observations: moreover the concentration parameter
0 is the only tunable parameter that affects the predictive and clustering behaviour. This
implies a quite rigid structure, where for example the growth of the number of clusters is always
logarithmic regardless of the specification. In this Chapter we explore some extensions which
deal with such limitations and their usage in hierarchical models.

In the next Section we employ models based on Completely Random measures (Kingman),
1967; Regazzini et al., 2003; Barrios et al., 2013) to study the different types of borrowing
of information which can be induced by Bayesian nonparametric models; in the last Section
instead we construct trees of random probability measures, based on the Pitman—Yor process
(Pitman and Yor, 1997; Pitman, |2006|), with applications to partially exchangeable data. The
two Sections are based on the works of Ascolani et al.| (2023a) and |Ascolani et al. (2023b]),
respectively.

3.2 Full range borrowing of information priors

3.2.1 Introduction

As discussed in the first Chapter, real phenomena often present a level of heterogeneity that
makes exchangeability unrealistic: collected data may refer to different features, populations,
or, in general, may be collected under different experimental conditions. Such situations entail
a significant level of heterogeneity and opportunities for borrowing information, that can be
exploited through the notion of partial exchangeability, which implies exchangeability within
each experimental condition, but not across. Two sequences of observations X = (X;);>1 and
Y = (Yj);>1, taking values in a space X, are partially exchangeable if and only if, for all sample
sizes (n,m) and all permutations (7, m2),

(X, V)7) = (K its (V) )-

95
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with < denoting equality in distribution. From an inferential point of view, partial exchange-
ability entails that the order of the observations within each sample is non-informative, while
the belonging to a specific sample is relevant and has to be taken into account. Moreover, by de
Finetti’s representation theorem (de Finetti, 1938) X and Y are partially exchangeable if and
only if there exist random probabilities (P;, P») such that for any i,j =1,...,n

Lid.
(X3,Y;) | P, Py '~ Py x Py (P, P2) ~Q (3.1)

with @ playing the role of the prior. The dependence induced by @ at the level of the ob-
servables defines the Bayesian learning mechanism and it connects to the notion of borrowing
of information. This term was first coined by John Tukey (Brillinger, 2002)) and popularized
with reference to Stein’s paradox and empirical Bayes techniques in [Efron and Morris| (1977)).
More generally, statisticians refer to borrowing of information when many samples contribute to
inference related to just one sample. Imagine to collect the samples (X;)i; and (Y;)7X;, while
being interested only in the parameter P; associated to X. The simplest approach could be to
disregard the second sample (YJ);"Zl, with the drawback of losing potentially useful information.
The typical borrowing instead consists in shrinking the estimates for different samples towards
each other: shrinkage is justified by the fact that distributions of different, but related, popu-
lations are expected to be similar in terms of shape and/or location. However, many contexts
may still require borrowing of information between (X;)i; and (Y;)72,, but without necessarily
resulting in shrinkage. Indeed, one’s available prior information may imply that the responses
in different groups have a negative association and, thus, tend to be dissimilar in location, which
makes shrinkage undesirable. Similarly, when there is no pre-experimental knowledge on the
dependence between X; and Y}, a flexible prior specification allowing also for negative associ-
ation would be more appropriate. A toy parametric example to further clarify that borrowing
does not necessary imply classic shrinkage is provided in Section Some applied scenarios of
borrowing of information not resulting in shrinkage are, for instance, the study of survival times
and abundances of competitive species (Lee et al.,|2020)), the incorporation of retrospective data
to study associations between biomarkers (Gong et al., |2021]), the association between dental
caries and dental fluorosis (Lorenz et al., 2018)), the analysis of stocks and bonds returns (see
Bhardwaj and Dunsby, [2013, and Section , and the clustering of multivariate responses
with missing entries (see Section . In this paper we introduce a class of nonparametric
priors that allows for a more general version of borrowing, which includes shrinkage as a special
case. These can be used as core building blocks for models tailored to specific applications.

Starting from the pioneering works of |Cifarelli and Regazzini (1978) and MacEachern| (1999,
2000), Bayesian nonparametric contributions for non—exchangeable data have grown substan-
tially, see Foti and Williamson (2013), Miller et al. (2015) and |Quintana et al. (2022) for
insightful reviews. The vast majority of nonparametric models for partially exchangeable data
entails that the random probabilities in are such that

P Yo Tk, iid iid
we O, "~ Qo, or ~ Qo (3.2)
Py = Zkzl Wk5¢>k

where the random weights ((jk), (Wk)) and the atoms ((0y), (¢x)) are independent and 6, L ¢y,
for k # h. In this paper we focus on this class of models and, for ease of exposition, take P; and
P> with the same marginal distribution.
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A first prominent strategy for defining ) is to explicitly assign the distribution of the
weights and the atoms in so to create dependence between P; and P»: this approach
led to dependent Dirichlet processes (MacEachern, {1999, 2000; |Quintana et al., |2022), depen-
dent stick-breaking processes, kernel stick-breaking processes (Dunson and Park, [2008]), probit
stick-breaking processes (Rodriguez and Dunson|, 2011)) and others. Despite their flexibility and
the availability of posterior sampling schemes, the derivation of analytical results is very difficult
for these models; it is often not clear how the dependence of the series reflects at the level of
the observables and therefore such methods may lack transparency.

A second popular strategy, analytically more tractable, relies on completely random measures
(CRMs) either working directly on the law of multi-dimensional vectors of CRMs (Epifani and
Lijoi, 2010; |Griffin and Leisen, 2017} Riva-Palacio and Leisen) 2021)) or combining conditionally
independent CRMs, using additive structures (Mtller et al. 2004; Griffin et al., 2013} Lijoi and
Nipoti, 2014; Lijoi et al} |2014ab)), nested structures (Rodriguez et al., 2008; Camerlenghi et al.,
2019al), or hierarchical structures (Teh et al., 2006; Camerlenghi et al.l 2019b). CRMs are then
suitably transformed to obtain the random probabilities in .

Dependent random probabilities clearly induce dependence across groups of observations.
The simplest and most intuitive way to quantify the dependence structure is through correla-
tions. Therefore, when considering correlations among observables, we will implicitly assume
real-valued X;’s and Y}’s, namely X = R. All other results and concepts are valid for general
spaces X. A first result in this direction shows that, regardless of the specific dependent model,
observations in different groups cannot be more correlated (in absolute sense) than the ones in
the same group.

Proposition 11. Suppose X and Y are partially exchangeable sequences, such that P; and P
n have the same marginal distribution. Then

—Corr(X;, X;r) < Corr(X;,Y;) < Corr(X;, Xi),
or any 1,7 and j.
Y J

Due to exchangeability within each group, the upper bound in Proposition is always
non—negative and it can be shown that, for all the models as in , the correlation between
observations in the same sample, Corr(X;, X;/), is determined by the probability of a tie. As
for the correlation across samples Corr(X;,Y;), we show that a similar result holds true, with
hyper-ties, the new notion we introduce, replacing ties.

Moreover, note that for known models based on CRMs, which allow for the computation of
the correlation, Corr(X;,Y;) turns out to be positive. This implies that the literature available
to date is focused on models that attain a limited range of possible values of the correlation,
when it can be evaluated. Here we aim to overcome this limitation and introduce a novel class
of priors which yield a wider range of correlation values among the observables, including those
with negative sign. The next result shows that the sign of the correlation is only determined by
the dependence structure between the atoms.

Proposition 12. Suppose X and Y are partially exchangeable sequences, such that the un-
derlying Py and Py are as in (3.2). Moreover, for any k and k', let Corr(6x, ) > 0. Then
Corr (X;,Y;) >0, for any i and j.

For instance, hierarchical processes (Teh et al., |2006; Camerlenghi et al., 2019b), which
represent one of the most popular dependent models, induce dependence by the sharing of atoms
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across groups. However, by Proposition this means that achieving negative correlation is
impossible. Hence, a flexible joint distribution for the sequence of atoms must be specified. This
task is accomplished by our proposal, termed normalized CRMs with Full-Range Borrowing of
Information (n-FuRBI), that allows to attain any possible value for the correlation specified
in Proposition Moreover, it encompasses many previous constructions as special cases.
We will show that it nicely combines the flexibility of the random series construction with the
analytical tractability featured by CRMs. Our proposal allows to consider any interesting choice
of borrowing of information: independence, classical shrinkage, but also repulsion of estimates
for different samples, generating what we term full-range borrowing of information. Note that
the repulsive behaviour of n-FuRBI is different from the one featured by the priors introduced
in Petralia et al.| (2012) and |Quinlan et al.| (2017)), that induce repulsion among the atoms of a
single random probability measure.

3.2.2 General results on dependent processes

The vast majority of dependent processes introduced in the literature are almost surely discrete
and therefore admit a series representation as in . A key preliminary step leading to the
definition of hyper-tie and n-FuRBI priors is the observation that the random probabilities in
(3.2)) can be embedded into

P = Zkzl J:’fé(@k,m)
B = Zkzl Wké(ek,m)

(0, 1) "X G, (3.3)

with G a probability distribution on X x X, whose marginals equal Qp. While P, and P, share
the same atoms, the weights and the atoms are independent and the pair of random probability
measures P; and P in are obtained as the projections over different coordinates of Pl and
Py, namely P;(-) = Pi(-xX) and Py(-) = Py(Xx ). The structure of popular models is recovered
by letting either Gy = Q2, which corresponds to independence, or Go(df, dg) = Qo(d0)dse1 (do),
that is 0 = ¢ for any k as happens for, e.g., hierarchical processes (see (Camerlenghi et al.,
2019b)). Almost sure discreteness implies that a sample from the random probability measure
Py (or P,) will display ties with positive probability. The probability of a tie, i.e. a coincidence
of any two observations ¢ and j in the same sample, is

B=P(X;=X;) =) E(Ji) =Y EW;)=P(Y;=Y)) (3.4)
E>1 k>1

with (Jg)g>1 and (Wg)g>1 equal in distribution since we are assuming, for simplicity, that P
and P» are equal in distribution. When considering jointly the two samples, the concept of tie
can be replaced by the one of hyper-tie, that is two observations in different samples coinciding
with components having the same label. According to , its probability is

V=) P(Xi =0k, Y =¢p) = Y E(JWh). (3.5)
k>1 k>1

Sampling from components with the same label is equivalent to sampling the same atom at the
level of the underlying (]51, pg) in . Clearly, when the atoms are shared between P; and Ps,
i.e. Go(df,d¢) = Qo(d0)dey(de), a hyper-tie corresponds to an actual tie between observations
in different samples.
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The next result shows the relationship between 8 and -, the probabilities of a tie and hyper-
tie, respectively: in particular, the probability of a tie is always larger and equality is attained
if and only if the probability weights of P, and P» are almost surely equal.

Proposition 13. Let (P, P) be as in (3.2) and 8,7 as in (3.4)) and (3.5), respectively. Then

0<~<B and B =r if and only if W, = J}, for any k.

Hyper-ties play a crucial role in determining the dependence between observables across groups,
as the ties do for the dependence between observables within groups, as shown by the next
proposition.

Proposition 14. Consider model with (Py, Py) as in (3.2). Then, for any i # i and any
j#i

Corr(X;, X;r) = Corr(Y;,Yj) = Corr(X;,Y;) = vpo
with po the correlation between two random variables jointly sampled from Gy.

Thus, while the correlation between observations in the same sample equals the probability of a
tie, the correlation between observations from different samples is determined by the probability
of a hyper-tie, corrected by the correlation between atoms. Clearly a suitable choice of the joint
distribution of the atoms makes the latter negative. Thus, by choosing Gy appropriately, for
instance as a bivariate normal, it is easy to tune the correlation according to the available prior
knowledge. The following Corollary shows the values that can be attained, once the marginal
law is specified.

Corollary 5. Consider model with (Py, Py) as in (3.2). If the marginal distribution of p;
and po is fized, then Corr(X;,Y;) € [—f, 8] and the extreme values are attained if and only if
the jumps are equal and pg = +1.

Interestingly, with equal weights and jumps, which corresponds to full exchangeability, one
achieves the extreme case of Corr(X;,Y;) = . Null correlation, instead, is attained when
atoms are uncorrelated or when the probability of hyper-ties is zero. Lastly, maximum negative
correlation Corr(X;,Y;) = —f is attained with equal weights and negatively correlated atoms
and can be thought of as the opposite case with respect to exchangeability, at least in terms of
correlation. Ties and hyper-ties play a similar role also in the predictive structure, as the next
result shows.

Proposition 15. Consider model with (Py, P2) as in (3.2]). Then

P(X; € A, Xs € B) = 8Qo(AN B) + (1 = ) Qo(A)Qo(B).

and
P (X1 € A Y1 € B) =7Go(A x B) + (1 =) Quo(A)Qo(B).

The result is indeed quite intuitive. If X; and Y7 form a hyper-tie (with probability ) they come
from the same pair of atoms and need to be sampled jointly; otherwise they refer to different
atoms and are sampled independently. The same happens inside each group, where X; and Xo
are equal with probability .

Example 1. The hierarchical Dirichlet process (Teh et al., [2006) is characterized by the hierar-
chical representation P; | Py g DP(0, Py), with Py ~ DP(0y, Qo), where Q) is a diffuse measure

and DP(«, H) denotes the law of a Dirichlet process with concentration parameter a > 0 and
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baseline distribution H. Since the P,’s share the atoms, an hyper-tie corresponds to an actual
tie between observations in different samples, so that with simple computations we get

06, 1

S R— = Corr(X;,Y;) = .
A+ro(1+6) Corr(X;,¥;) = 15

f = Corr(X;, X;) =1-—

Thus, the correlation among the observables is forced to be positive, with 6y tuning the depen-
dence; see Example 1 in |Camerlenghi et al.| (2019b)) for more details.

Given the above results and considerations, it should be clear that v defined in is crucial
for tuning the level of dependence. However, closed form expressions of v are available only for
a few cases and, in fact, we are facing a trade—off: on the one hand we have dependent processes
based on the stick-breaking representation, that allow for high flexibility while sacrificing the
availability of analytical results; on the other hand we have constructions based on CRMs, for
which an extensive theory has been developed, though they are not as effective for tuning the
dependence, since all the existing instances produce non-negative correlation across samples.
In the following we combine the best of both approaches through n-FuRBI: they are flexible
processes that can attain any value for the correlation between the observables, while at the
same time a posterior representation can be derived. Their construction is based on CRMs and
completely random vectors, reviewed in the next section.

3.2.3 Some basics on completely random measures

As shown in [Lijoi and Prunster (2010), many Bayesian nonparametric models can be obtained
as suitable transformations of CRMs; among others, these include the Dirichlet process, the
Pitman-Yor process and the neutral-to-the-right priors. The extension of CRMs to the bivariate
setting is provided by completely random vectors p = (1, p2), whose components take values in
the space of boundedly finite measures on X and are such that, for every collection of pairwise
disjoint sets (A;)i%,, the random vectors (ui(A1),p2(A1)), ..., (11(An), n2(Ay)) are mutually
independent. We focus on the case of no fixed atoms and no deterministic component, so that
the marginal CRMs p; and pg are almost surely discrete and can be written as sum of X—valued
random atoms with random weights, i.e.

py S il p2 =D Wiby,
i>1 i>1

In the following section it will be convenient to use the reparametrization k; = (6;, ¢;) € X = X; x
Xg. Such completely random vectors are characterized by the Lévy-Khintchine representation

E {e—ul(fl)—uz(h)} —exp |— / {1—e* Ji(z)—s2 f2(96)} v(dsy, dsy, dx) (3.6)
RixX

where p;(fi) = [x fi(z)pi(dz) for RT-valued f; and v(dsi,dsg,dz) is the joint Lévy intensity.
We shall focus on the homogeneous case, in which jumps (J;);>1 and locations (X;);>1 are
independent. In terms of Lévy intensity it reads v(dsy,ds2,dz) = p(dsy,ds2)a(dz) for some
finite measure o on X and measure p. Moreover, in the sequel we will also need the joint and
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marginal Laplace exponents given by

Up(A1, Ag) i= / (1 — e Ms172292) p(dsy dso)er(dz),  Ap >0, Ay > 0.
RixX

B(A) = / (1— e ™M)p(ds)a(de) A >0,

R+ xX

For an exhaustive account on CRMs, we refer to Kingman| (1967, [1993). Completely random
vectors and CRMs are often normalized to obtain random probability measures, as introduced
in Regazzini et al. (2003), i.e. P(-) = u(-)/u(X). Notice that in principle any random measure
p such that P(0 < p(X) < oo) = 1 can be normalized in order to define a random probabil-
ity measure. However, the strength of completely random vectors and measures lies in their
Lévy—Khintchine representations and unique correspondence with the associated Lévy intensity,
which allow a high degree of analytical tractability. CRMs and the corresponding normalized
probabilities have been extensively studied to model exchangeable data (see, for instance, |James
et al., |2006, 2009, 2010; |Lijoi and Prunster, 2010; Favaro et al., [2016; Camerlenghi et al., [2018).
Similarly, a completely random vector can be used to model dependence between two groups.
For more details on completely random vectors and an interesting account of their dependence
structure, we refer to |Catalano et al.| (2021, |2023). Since the two measures in the vector share
all the atoms, by virtue of Proposition [I2]the induced model yields non—negative correlation be-
tween samples. The issue is addressed in the next section, by means of a novel class of random
probability measures that leverage the dependence structure specifed for the atoms.

3.2.4 Full-range borrowing of information nonparametric prior

In this section we introduce n-FuRBI and for simplicity we still consider only the case of two
samples with the same a priori marginal distribution.

Definition 2. Consider a completely random vector (fi1, fi2) on X? with Lévy intensity v(ds1, dsg, dzy, dzs) =
p(ds1,ds2) a(dry,dzs), where a(dzy,drs) = 0Go(dw1,dxs), where § = a(X?) € (0,+00), and
Gy is a non-atomic probability measure on X? such that Go(- x X) = Go(X x -) = Qo(+). Then
w1 and ps defined as
pi(s) = (X x-)  pa() = fiz(- x X)

are CRMs with Full-Range Borrowing of Information (FuRBI CRMs) and underlying Lévy
intensity v. The normalized versions P;(-) = p;(-)/p;(X) for j = 1,2 are said normalized CRMs
with Full-Range Borrowing of Information (n-FuRBI).

Essentially, first a pair of random measures endowed with the same locations is constructed on
the product space X?; as a second step, the coordinates of each pair of atoms are split. Thus,
the n-FuRBI admit a representation as in (3.2]) and . In general FuRBI CRMs are not
completely random vectors, because the joint sampling of the atoms forbids the independence
of the vector evaluated on pairwise disjoint sets. However, the representation in terms of a
completely random vector in the product space is useful to characterize the joint law of the
FuRBI CRMs, as shown in the following proposition.

Proposition 16. Let (u1, p2) be a vector of FuRBI CRMs. Then

(i) w1 and pg are CRMs with intensity p(ds)0Qo(dx), where p(ds) = [, p(dsi,ds).
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(ii) For any A and B, the following equality holds

E[e—)\lm(A)—)\zm(B)} = exp{—Go(A x B)Y(\1) — Go(A® x B)p(\2)}
x exp{—Go(A x B)p(A1,\2)},

where 1 denotes the common marginal Laplace exponent and 1y, the joint Laplace exponent
of (p1, p2)-

(iii) The joint law of (u1, pe) is characterized by the joint Lévy intensity of (fi1, fi2).

The next proposition shows that the § and v associated to any couple of n-FuRBI can be
computed through their Laplace exponents.

Proposition 17. Consider (Py, Py) n-FuRBI. Then the probability of a tie and of a hyper-tie
are respectively

d2 0?2
— _ - »(u) — Py (u1,u2)
8= /+u{ u2w(u)}e du, ~= /i { ” u2¢b(u1,uQ)}e duidus.

Thus, the crucial value of v can be obtained by computing, analytically or numerically, a bivariate
integral. The two results above show a recurrent trait of our approach: interesting quantities
will be usually rewritten in terms of the original completely random vector, in order to exploit
its analytical tractability. We conclude this section with two examples of FuRBI CRMs, that
also show how some existing constructions can be obtained as special cases.

Example 2 (FuRBI CRMs with equal jumps). Let p(ds;)ds, (ds2) 8 Go(dz1,dzs) be the under-
lying Lévy intensity. The series representation of the corresponding FuRBI CRMs is

() =) Widg, pa() =) Widg, with (O, ¢x) Gy,

E>1 k>1

Therefore, v = 3, so that a tie and a hyper—tie are observed with the same probability.
Example 3 (Extended Compound FuRBI CRMs). Consider the Lévy intensity
v(dsi,dse, dzy,dze) = /zfzh(sl/z, s9/z)dsidsav*(dz) 0 Go(dxy, dzg),
where h is some density and v* is a Lévy intensity that satisfies
/ﬂ/mm{l, 151} A(51/2, $2/2) dsidsev*(dz) < oo, ||s|| = /s? + 53

The series representation of the corresponding FuRBI CRMs is

()= Z my ;W0 pa(-) = Z ma xWidg,
k>1 k>1

where (O, o) £ Go and (mqk, ma ) . When Gy is degenerate on the main diagonal, one

retrieves the class of compound random measures introduced by |Griffin and Leisen (2017).
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Correlation structure between n-FuRBI

In order to analyze the dependence between the marginal n-FuRBI priors P, and P, it is useful
to compute the correlation of the random probability measures evaluated on the same set A.
In all the existing CRM-based models such a correlation does not depend on the specific set
considered and, hence, it is often used as a global measure of dependence. The next proposition
provides the covariance structure between two n-FuRBI.

Proposition 18. Let Py and P» be n-FuRBI. Then for any A, B, such that 0 < Qo(A) <1 and
0 < Qo(B) <1, we have Cov(P1(A), P2(B)) = v [Go(A x B) — Qo(A)Qo(B)] and

_ Go(A X B) — Qo(A)Qo(B)
Bv/Qo(A)(1 - Qu(A))Qo(B)(1 — Qu(B))

By setting A = B, from the previous results one immediately deduces that Cov(P;(A), P2(A)) =
7 [Go(4 x 4) = Qo(4)?] and

Corr(P1(A), P,(B))

7 Go(A x A) - Qo(A)?
B Qo(A)(1—Qo(A))

Unlike what usually happens with existing models, here the correlation can be negative, when
A is such that Go(A x A) < Qo(A)?, that is when Gy exhibits a repulsive behaviour between
the coordinates in X2. Moreover, the correlation depends on the specific set on which the two
measures are evaluated and, therefore, it has to be interpreted as a local measure of dependence.
See Section for an illustration of this phenomenon on sets of the form (—oo,x). Note that
here and in the following we use the prefix S to indicate sections of the supplementary material.

Corr(P1(A), Py(A))

Example 4 (n-FuRBI with equal jumps). In this case, Proposz’tion entails § = ~. Therefore

— 2
Corr (P1(A), Py(4)) = Géiﬁi(i”_ Qf?i?f '

Moreover, still by virtue of Proposition[13, for a given Gy this is the highest possible correlation
in absolute value.

Proposition then provides the correlation between the observables, which is even more im-
portant from a modeling perspective.

Example 5 (Gamma n-FuRBI with equal jumps). If the common marginal is the law of a
Dirichlet process, then Corr(X;,Y;) = po/(1 + 0). Choosing appropriately po and 6 the entire
range (—1,1) becomes available.

Note that hyper-ties allow to perform a more general type of borrowing, compared to ties, even
when the correlation is positive. While ties are a useful construction to model multiple samples
that share certain values/latent parameters, hyper-ties can borrow information even when the
two samples have no common values/latent parameter. This aspect will play a crucial role in
the data-analyses of Sections and for these the assumption of common values would
be highly unrealistic.
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3.2.5 Inference
Posterior Characterization

Having provided an exhaustive description of the a priori properties of n-FuRBI, the following
key step is to provide a tractable posterior characterization. Conjugacy is out of question
here: even in the exchangeable context it is a property characterizing the Dirichlet process (see
James et al., 2006]). Nevertheless, conditional on a set of suitable latent variables, the posterior
distribution of the original completely random vector (p1, p2) turns out to be again a completely
random vector leading to a neat posterior characterization and viable methods for sampling.

Consider a sample of n observations (X;); from p; with unique values X7} = (X7,..., X})
and associated multiplicities (n1,...,n); analogously, consider m observations (Y;)7L; from po
with unique values Y7, = (Y7,...,Y) and multiplicities (my,...,m.). While it is immediate

to check for ties, hyper-ties cannot be identified deterministically from the data. To this end,
we define a latent random element p encoding the hyper-ties, such that p = {(i;,)},, where
(4,7), with 1 <4 < kand 1 < j < ¢, denotes a hyper-tie between X and Y. Moreover (i, 0),
with 1 <4 < k, denotes that X; does not form a hyper-tie with any value in Y7, and (0, j),
with 1 < j < ¢, denotes that Y;* does not form an hyper-tie with any value in X7.

Therefore, if (i,7) € p with i # 0 and j # 0, it means that X and Y;* come from the
same pair of atoms in representation . Instead, (7,0) € p implies that X is the only value
associated to a specific pair, and similarly for Y* if (0,7) € p. Since we are working with unique
values, it is clear that each X" and Y;" can form at most one hyper-tie, i.e. it is associated to a
unique member of p. This justifies the following formal definition.

Definition 3. We say that p = {(i;, )}, is a compatible hyper-ties structure for (X;)j-, and
(Y});":l if, firstly, for any 1 < i < k, there exists exactly one 4; such that i; = 4, thus each element
of X forms at most one hyper-tie; secondly, for any 1 < j < ¢, there exists exactly one j; such
that j; = j, thus each element of Y forms at most one hyper-tie; lastly, for any [, if 4, = 0 then
Ji # 0, thus at least one coordinate refers to an element of X or Y7 .

As a simple example, suppose that X,, and Y,,, contain respectively 2 and 1 unique values. Then
k =2, c=1 and the support of p is

P = {{(1, 1),(2,0)},{(1,0),(2,1)},{(1,0), (2,0), (0, 1)}}-

Once the latent structure p is identified, its elements can be conveniently partitioned into the
set A, = {(i,j) €p|i+#0and j+# 0}, which includes all the hyper-ties, and the sets Al =
{(i,j)ep|j=0} and AIQJ ={(i,j) €pli=0}. If X} and Y form a hyper-tie, it means that
(X}, Y]*) is an actual atom in representation . Instead, if X does not form a hyper-tie, we
have a partial knowledge of the original pair: the unknown second coordinate can be sampled
from PXZ‘(')’ that is the conditional distribution given X, induced by the joint measure Gy,
which will henceforth be assumed to be non—atomic. A similar argument applies if Y} does not
form a hyper-tie.

In order to simplify notation, we set g;; = go(X;,Y}"), gio = po(X]), and go; = qo(Y]"),
where gy and gy are the density functions of Gy and Q)¢ respectively, that we assume exist with
respect to suitable dominating measures. Finally, we consider the following integrals

Fam(w) = [ €IS p(dsy, dsa). = (),
+
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where often n and m will be equal to n; and m;, with 1 <7 < k and 1 < j < ¢. For consistency,
we set ng = mg = 0.

The key result of the section relies on a latent structure that is identified by random variables
whose conditional distributions, given (X;)i; and (Y;)L, are available. Indeed, these random
variables are given by p, whose probability mass function is proportional to

the vector (Uy,Us), whose density on Ri is proportional to u}tuf ! [L¢,j)ep Tnim, (w)e V(W)
the variables {Z7 };, whose distribution is Pxx(-), for any i = 1,...k, and {Z};, whose distribu-
tion is Pyj* (+), forany j = 1,...,c. We are now ready to state the key posterior characterization.

Theorem 13. Let(X;)i, and (Y;)72, be from model ([26), with Q being the law of a n-FuRBI.
Then, the distribution of (fu, fiz) conditional on (X;)iy, (Y;)7, and the set of latent variables
(p, Ur, U, {Z]}i, {2} }5) is

(o) + 3 i)+ 2 ot 2 Rz
(i,5)€Ap (i,5)€N, (i.5)€A]

where (fi1, fiz) is a completely random vector with intensity e~ V1517252 p(ds1, dse)Go(dx) and
Jij = (J}’j, Ji%j), with ¢ = 0,...,k ej = 0,...,¢c, are jumps with density proportional to
s?is;n'je_Ulsl_U252p(dsl,dSQ). Moreover (fi1, fi2) and J; ; are independent.

Conditional on the latent variables, the structure is quite intuitive: the posterior is the law of a
completely random vector with modified intensity and fixed locations, given by the pairs formed
by the hyper-ties. This is somehow reminiscent of the posterior structures of exchangeable
models (James et al., 2009; Lijoi and Priinster}, 2010), with the key novelty played by the new
notion of hyper-ties, in addition to the identification of a suitable latent structure.

The distribution of the latent variables admits a nice interpretation. For instance, the mass
function of the latent structure p is the product of two terms: the probability of observing the
number of hyper-ties identified by p times the likelihood that exactly those pairs are formed,
through the density function gg. Thus, thanks to the homogeneity of the original completely
random vector, we observe a separate effect for jumps and locations on this hidden clustering
structure. The next corollary shows how the posterior distribution of the normalized measures
can be deduced from Theorem The statement focuses on P, though an analogous represen-
tation holds also for P;.

Corollary 6. Under the same assumptions of Theorem conditional on (X;)iy, (Y;)jL, and

the latent variables (p, Uy, U2, {Z}}4, {Z]y}j), the random probability measure Py in (3.3) equals
in distribution

1
Ypeay Tiod(xr zz) 2eas 030 (z17)
+ wy

)

T Y (ig)e, i X igeas Tio Yigeaz Jo

where T1 = 11 (X x X)), while

1 1 1
wy < T,  wg x Z Jz‘,ja w3z X Z Ji,(]? Wy X Z Jo,j,
(Zvj)eAP (lzj)eAj]& (Z,])GA%
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with, the constraint 3+ w; = 1.

Predictive structure

Prediction of new observations arises naturally within the Bayesian framework, since it coincides
with the estimate of the distribution under a square loss function. Moreover, it has the merit of
providing intuition on how the model behaves and learns and it can be used to develop marginal
algorithms that avoid the direct sampling of P, and P,, which are infinite-dimensional objects.
In Proposition [15] we saw how to sample the first pair of observations. The next result tackles
the general case.

Theorem 14. Consider samples (X;)i—; and (Y;)7L, from model (26), with the same setting of
Theorem . Then there exist probability weights &, {&F} and {ij} such that

k c
P(Xnﬂ € C | (Xi)iy, (Yj)}ﬁﬂ) = &Py(C) + > &6x:(C) + z:lﬁjypxg* ().
iz

=1

Analogously, there exist probability weights no, {n?} and {77?} such that for any C € X

c k
P(Yini1 € C | (X, ()]1) = moRo(C) + Y n¥ov+(C) + > i Px; (C).
j=1 i=1

Explicit formulae for the weights are available in the proof of Theorem [I4] in Section [ATl In
specific cases they can be computed in closed form, conditional to the latent variables: see e.g.
example [I0] in Section [A2] for the Inverse Gaussian case with equal jumps.

Hence, the marginal predictive distributions have a quite intuitive form: they are linear
combinations of the centering distribution gy, a weighted version of the empirical distribution
and a last term that depends on the other sample. The crucial differences with respect to
prediction rules arising in the exchangeable case (Lijoi and Prinster, 2010; |De Blasi et al.,
2015) is the addition of the last term, which clearly shows how posterior inference changes when
incorporating heterogeneous information and performing borrowing of information.

Example 6 (n-FuRBI with equal atoms). If the joint distribution G is degenerate such that the
atoms are completely shared between Py and Ps, then Pyz(-) = dz(-). Therefore, the last term in
Theorem[1]] becomes a weighted version of the empirical distribution relative to the other sample.

Algorithms for posterior inference and prediction are derived in Section

3.2.6 Numerical Illustrations and Real Data Analyses
Bayesian mixture models

Discrete Bayesian models, as the one specified in , are usually not employed directly on
the data, but as a building block in hierarchical mixture models: in this setting X and Y are
hidden values that describes the clustering structure within the data. Such models have been
introduced by |Lo (1984) for the Dirichlet processes and gained popularity thanks also to the
availability of sampling methods for posterior inference (Escobar and West, |1995; [[shwaran and
James, 2001} Neal, |2000)). Suppose {f(- | ) : = € X} is a family of probability density kernels
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on a space W. Then the model can be formulated as

o ind
Wi X, S X)) VYR F(Y) (Py, Py) ~ n-FuRBI
N R .. ) 1, £2) ~ 1= ’
iid. i.i.d.
Xi| P~ P Yj| P~ Py

where (W;)iL; and (Vj)7L, are the observable samples and are assumed to be conditionally
independent, given (X;);-; and (Y;)72,. Integrating out the latent variables (X;)i; and (Y;)7L,,
the data are random draws from suitable countable mixtures, i.e.

Wil PR [T Puda), iR [ G L) Palay).

Example 7 (Gaussian mixtures). We assume f(- | ©) := N(- | z,02), with o positive known
constant, to be the normal density. Thus, the latent parameter is the mean, i.e. X = R. In this
case Cov(X;,Y;) = Cov(W;,V;), so that the joint behavior of the latent means is reflected on the
observations: this shows the importance of the correlation structure given by Proposition[1]] also
for hierarchical models. Alternatively, the latent parameters could specify both the mean and the
variance, with X =R x R,..

The goal is then to draw samples from the posterior distribution given (W;)iL; and (V;)jL;:
however this requires to integrate out all the possible partitions of the n + m latent variables.
As detailed in Section[A2], it is possible to devise a Gibbs sampler for drawing from the posterior
distribution of (X;)iL; and (Y;)7L;. Once a posterior sample (X;)i; and (Y;)7L, is generated,
relevant quantities of interest can be approximated by exploiting the conditional independence
of (W;)iz; and (V;)]L,, given the latent variables.

Simulation study for density estimation

We consider a simple application with simulated data, in order to understand how inference
changes when taking into account heterogeneous sources of information. Assume the follow-

ing generating mechanism: W; i N(- | 10,1), for i« = 1,...,20, and Vj - N(- | —10,1),
for j = 1,...,100. Supposing only the phenomenon associated to the first sample is of inter-

est, hierarchical mixtures are considered to make prediction on the unknown density of W;.
The kernel considered is the one specified in Example [7] with known 02 = 1 and latent mean
p. Four different approaches for modelling dependence between (W;);>1 and (V;);>1 are de-
vised: the exchangeable approach, according to which sequences W and V are supposed to
form one exchangeable sequence, inducing the highest positive correlation between W; and Vj;
the independent approach, according to which the sample (V;);>; is disregarded entirely, that
is (W;)i>1 and (V;);>1 are treated independently; the hierarchical approach, where we use a
hierarchical Dirichlet process (see Example [I|) that corresponds to a classical borrowing of in-
formation; the FuRBI approach, where the underlying random probability measures p; and ps
are n-FuRBI with equal weights and the distribution on the atoms is Go(- | po) = N2 (-] 0,1, po)
with pg ~ Unif([—1,1]), where Na(- | m, 03, po) denotes the bivariate normal distribution with
mean vector m, common variance 08 and correlation pg. It can be proven that under this spec-
ification Corr(Wj;, V;) = 0, so that a priori W and V are marginally uncorrelated. The prior
specification is purposely simple, especially regarding the base measure and the concentration
parameter, in order to single out the effect of the borrowing between the two groups as much as
possible.
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For the first two cases and the n-FuRBI, the marginal distribution is given by a Dirichlet
process with # = 1 and Qo(-) = N(- | 0, 1); instead for the hierarchical process the concentration
parameters are fixed in order to match the expected number of different clusters with the other
methods, for a fair comparison. As highlighted in Example [5] n-FuRBI with equal jumps lead to
the most general setting in terms of achievable correlation between samples; moreover, choosing
the marginal processes to derive from a Gamma process, we can achieve any value in the interval
(—1,1), tuning appropriately the concentration parameter 6.
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Figure 3.1: Left: mean posterior densities for the case with opposite true means. Right: mean
integrated error (computed on a grid and as the median over 50 different samples) for the four
estimates, varying the true mean of V.

The left panel of Figure [3.I] shows the performances of the four methods, after the application
of the blocked Gibbs sampler provided in the supporting material: the mean posterior density
(computed pointwise) is depicted. The exchangeable approach behaves very badly, as expected,
because the two samples have clearly a different distribution. The independent choice leads to
a reasonable estimate, even if it still overestimates the probability mass around the prior mean
(because of the small sample size of the first sample). The hierarchical estimate is quite good, but
our proposal, instead, fits almost perfectly the target density and seems to exploit the opposite
behaviour of the two phenomena: this is clearly highlighted by the posterior distribution of py,
whose approximated mean is close to —0.9.

One may wonder whether these superior performances follow from the precise specification
above, with opposite true means. Therefore, we repeated the experiment keeping the same gener-
ating mechanism for W, but with the true mean of V' ranging in the set {—16,—14,...,14,16}:
the mean integrated absolute error (computed on a grid and as the median over 50 different
samples) is depicted in the right panel of Figure It is apparent that the FuRBI approach
almost always yields the smallest error, regardless of the true value. Its performance is close to
the exchangeable case only when the two true means are equal, that is when exchangeability
actually holds; analogously, the n-FuRBI priors yield the highest error when the mean of V
corresponds to the prior mean, i.e., when the other group provides less additional information.
The hierarchical process captures the right dependence when the two means coincide, but can
be misled when they are close; finally, when the second sample is very far from the first one it
performs better than the independent model, probably thanks to the different inner clustering
structure. The results are also summarized in Table Thus, n-FuRBI seem to be always
capable of combining heterogeneous information in the right way; in particular, at least in this
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Figure 3.2: Posterior median of
the correlation (obtained through
100 simulation studies) between the
three unknown means. Black with
: triangular shapes: correlation be-
e tween the first and third component.
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Mean of the second component third component

Mean of V. Exch. Ind. FuRBI Hier.
-16 1.769 0.995 0.163 0.604

-10 1.769 0.995 0.189 0.592

0 1.737 0.995 0.489 0.587

10 0.205 0.995 0.338 0.397

16 1.666 0.995 0.435 0.592

Table 3.1: Mean integrated absolute error associated to the four methods for some values of the
mean of V. The values in bold are the smallest ones for each row.

example, they recognize the most useful type of borrowing of information. In Section S5.1 simi-
lar experiments are conducted, using different data generating distributions: they show that the
conclusions hold even when the data display significantly different features, as multimodality or
heavy tails.

Finally, we consider a similar application with three groups, in order to see whether n-
FuRBI are able to discern more complex types of dependence. We assume to observe W1 ; R
N(- | 10,1), Wa; "= N(- | ,1), and Ws,; "< N(- | =10,1), where i = 1,...,20 and z €
{-10,-9,...,10}. Then, for each value of = we apply the same n-FuRBI with the same weights

described above, but where the atoms are distributed according to

1 pi2 pi3
Go(-)=N3|-0,1,{p12 1 pa3||,
P13 p23 1

where N3(- | po, 02, ¥) denotes a multivariate normal distribution with mean pg, all the variances

equal to 0 and correlation matrix ¥ and p1a, p13, P23 Lig Unif([—1,1]). The posterior medians
of p12, p13 and pe3 are depicted in Figure for any value of . The results are in line with our
intuition: the correlation between the first and second component is always close to —1 (indeed
they have opposite behaviour relative to the prior), while pi3 and pa3 vary linearly with z, being
positive when the means have the same sign.

Predicting stocks and bonds returns
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We employ a Bayesian mixture model and assume that stock and bonds returns, denoted by
W; and Vj, respectively, are sampled from mixtures of normals where the mixing distributions
act on mean and variance of the kernel, i.e.,

w; | Py i'w'/N(-|x,afu)P1(dx,dai) V| P, ii'?"/N(-yy,ag)PQ(dy,dag).

Stocks and commodities exhibit correlation that largely varies over time ranging from positive
to negative values (see, for instance, Bhardwaj and Dunsby, 2013 and Figure . As conse-
quence, commodities returns contain useful information to make inference over the distribution
of stocks portfolios, and viceversa. Thus, borrowing of information represents a natural strat-
egy to improve inference. However, returns may differ even largely in value between the two
sets of financial instruments, especially in periods of negative correlation. For instance, in our
dataset, 53% of the observed stocks returns are negative, while only 16% of the bonds returns
have negative sign. As such, classical nonparametric borrowing, consisting in sharing of mixture
components, is not appropriate and, as shown in the following, possibly harmful. We instead
make use of n-FuRBI models as prior distribution, i.e.,

(P, P) | 0,2z,Gy ~ n-FuRBI(0, p, Gy)
0 ~ Gamma(q, 3)

The base measure G is chosen so that marginal distributions are given by normalized CRMs
with conjugate Normal-InverseGamma base measure, i.e.

Go(dy,dy,do2, do? | po) = No(dz,dy | m, 2(\1, A2, 02, 02p0))

x InvGamma(do? | oy, 81) x InvGamma(do? | ag, B2)

with
2
g O a
, Tlf P0 )\172 )\11/12
m = (my, m2) and Y= 1,72
Po 345 1% =
)\1/ )\2/ Ao

and we use the following joint underlying Lévy intensity v(dsy, dss, dz1, dzs) = {2 [p(ds1)do(ds2)+
p(ds2)dp(ds1)] + (1 — 2) p(ds1)ds, (ds2)} 0 Go(dz1,dxs), with z ~ Unif([0, 1]). We term the re-
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Figure 3.4: Posterior density estimates for stocks returns.

sulting n-FuRBI additive n-FuRBI, since the series representation of the corresponding FuRBI
CRMs is

Nl(’) B Z Wké@o,k + Z Jk691,k :U’?(’) B Z Wk5¢0,k + Z Vkéd&,k?

k>1 k>1 k>1 k>1

where (0o k, ¢o i) i Go, 01k £ Py and ¢, £ Py. When Gy is degenerate on the main
diagonal (i.e. pg = 1), one retrieves GM-dependent completely random measures (Lijoi et al.,
2014alb; [Lijoi and Nipoti, 2014)). In order to obtain two Dirichlet processes marginally we set
p(s) =s"te  sothat B=1/1+0and vy = (1—2)3F(0—02+2,1, 1; 0+2, 0+2; 1)8/(1 + )2,
where 3F5 is the generalized hypergeometric function.

The Bayesian paradigm requires the elicitation of a prior guess about the phenomenon, by
tuning the hyperparameters of the model. In particular, we set the a priori expectations m; and
mg in the two groups equal to the empirical averages of the two groups in December 2020, i.e., the
month preceding the data collection, leading to m1 = 5.8591 and mgy = 3.9731. In the following,
we say that a financial instrument is outperforming if its observed return is higher than its a
priori expected value. In order to assign pg, we use the results of Propositions [14] and The
elicited pg should reflect our prior opinion about the correlation, which means that it should
induce a learning mechanism agreeing with the following principle: under positive/negative
correlation, conditioning on the event of outperforming commodities, the prior probability of
outperforming/underperforming stocks should increase. Prior opinion about the correlation can
be formulated working with financial experts and, thanks to n-FuRBI, incorporated through
an informative prior on the parameter py. Here, we consider three scenarios: in the first and
second, we derive inferential results under a prior opinion of negative and positive correlation,
respectively, while in the third scenario we assume that no information on the correlation is
available. The three scenarios are obtained with, respectively, pg = 0.95, pg = —0.95, and using
a uniform prior on pg. After standardizing the data, we set the remaining hyperparameters in
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a weakly informative way, i.e. A\ = Ao =1, a1 = as = 2, and 51 = B3 = 4. Sensitivity analysis,
carried out in Section shows that results are robust with respect to different choices for A;,
a; and 3 for j = 1,2. We perform 50,000 iterations of the marginal algorithm (Section
and discard the first 10,000 as burn—in.

Finally, we compare our approach with three alternative models: the independent model
and the exchangeable model, described in the previous section, and the GM-dependent model
from |Lijoi et al| (2014b)),which performs classical borrowing based on ties and shares the same
addictive structure of additive n-FuRBI.

Figure displays the posterior den-

ALCPO MLCPO sity estimates for stocks returns. The
FuRBI py € [—1,1] -1.2347 -0.9627 analogous figure for bonds returns can be
FuRBI pp = —0.95 -1.2925  -1.0115 found in Section Models employing
FuRBI po = 0.95 -1.2896  -1.0149 additive n-FURBI produce density esti-
Exch 215024  -1.1521 mates that better resemble the empirical
GM-dep -1.4864  -1.1557 distribution. The best performance is at-
Ind -1.3495  -1.1017 tained with a non-informative prior over

the correlation pg: this is probably due to
Table 3.2: ALCPO and MLCPO under the three the fact that the intensity and direction
models. Best performance is highlighted in bold. of the borrowing of information concen-

trate on the optimal value for the dataset.
The FuRBI models with fixed py perform worse compared to full-borrowing; nonetheless, thanks
to their flexibility, they still produce better results than other competitors. The GM-dependent
and the exchangeable models yield the worst density estimates in terms of resemblance of the
histogram, as expected. Indeed, the type of borrowing they perform, based on ties, is not
appropriate for the specific problem. Lastly, we note that the independent model appears to
provide a reasonable density estimation, but presents significantly higher uncertainty. While
Figure provides insight on the model performance, an important caveat is in order: a too
close resemblance of the empirical distribution may indicate overfitting. Note moreover that,
given the low numerosity of the samples, the histogram is very much influenced by few obser-
vations unlike the density estimates: since this is due by the presence of a prior, a more refined
analysis should include different choices of the baseline measure in order to assess the impact
on the final estimate.

To evaluate the predictive performance, we resort to the conditional predictive ordinates
(CPOs) statistics (see, e.g. Gelfand et al., 1992; |Barrios et al., 2013]). Essentially, for each value
1, we train the model without the i-th observation and compute the predictive density at the
observed point. For the first sample it reads CPO}’ = f(w, | w™4v), for i = 1,...,n and
analogously for the second sample we have CPOj = f(vj | w,v7), for j = 1,...,m, where w
and v denote the vectors of observed returns for, respectively, stocks and commodities. Table[3.2]
displays the average logarithmic CPO (ALCPO) and the median logarithmic CPO (MLCPO) in
the overall sample. Higher values correspond to a better performance, and the n-FuRBI exhibits
the best performance.

Clustering of multivariate data with missing entries

We now show how to leverage on our methodology to perform borrowing of information and
clustering with multivariate data affected by missing entries. The n-FuRBI priors are very well
suited for this problem: indeed, incomplete observations can be interpreted as projections of
latent complete observations and, in particular, hyper-ties between incomplete observations can
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be thought of as actual ties between complete observations.

We consider a P-variate (P > 1) dataset with missing entries and divide the dataset into
distinct samples based on the missing entries: denote by (Egjl"”’jl),i =1,... 7”(j1,.-.,jz)) the
sample where [ outcomes with labels (jq,...,7;) are missing. The dimension of the vector
wgh’”"jl) is therefore P, . ; = P—I. Denote by gj, ... j, the corresponding unknown distribution,
ie.,

ng)|qmi'3<5j'qm fori=1,...,n, and x € I,

where [ is the index set of all the possible combinations of missing variables identifying different
samples, which are at most 20 — 1. Independent analyses for each sample should clearly be
avoided and classical nonparametric borrowing cannot even be specified because the support
spaces of different samples differ one from the other.

To perform clustering, we assume that each ¢, is a mixture of multivariate normal kernels
with diagonal covariance matrix and mixing measure p, on locations, i.e.

where g2 = (0%, e 0123), 0?2 is the restriction of o to all the elements besides z and Ng (- | p, 72)

denotes the K-variate normal distribution with mean vector pz and diagonal covariance matrix
given by 72. Independence of the kernel (implied by the diagon;l covariance matrix) is a common
assumption in clustering models for multivariate responses (see, for instance, (Gao et al., |2020;
[Franzolini et al., 2023): in this way we are forcing the clustering structure to encode all the
dependence across responses. The P, are distributed as

(P, z € I) ~ additive n-FuRBI,

described in the last Section. The atoms of (P,,z € I) are costrained so that an hyper-tie
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Figure 3.5: Simulated data: left panel shows true clusters locations, right panel shows complete
simulated data for n = 1000 before applying the missingness mechanisms.
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simul missing % of missing | n-FuRBI | n-FuRBI | n-FuRBI | mice + | mice +
number | mechanism entries z=0.2 z=20.5 z=0.8 | k-means | DPM
n.1 MCAR 16.1% 0.7883 0.7882 0.7881 0.7408 | 0.7734
n.2 MNAR 16.7% 0.7703 0.7704 0.7706 0.6323 | 0.7617
n.3 MCAR 35.9% 0.7292 0.7285 0.7283 0.6786 | 0.7165
n.4 MNAR 34% 0.7304 0.7301 0.7432 0.6391 0.7328

Table 3.3: Rand indexes for 5 competing methods: 3 n-FuRBI models with varying parameter
z, mice+k-means and mice+DPM. For n-FuRBI and mice+DPM the posterior expected value is
computed averaging over the Rand indexes of all clustering configurations visited by the MCMC

chain after burn-in.

simul missing % of missing | n-FuRBI | n-FuRBI | n-FuRBI | mice + | mice +
number | mechanism entries z=0.2 z=0.5 z=0.8 | k-means | DPM
n.l MCAR 16.1% 4.24 4.19 4.22 3 5.48
n.2 MNAR 16.7% 4.59 3.29 3.37 2 5.36
n.3 MCAR 35.9% 4.38 4.18 4.20 3 7.01
n.4 MNAR 34% 4.28 4.17 4.59 2 5.85

Table 3.4: Estimated number of clusters for 5 competing methods. The posterior mean is used
for n-FuRBI and mice+DPM, while the number of clusters is selected by maximizing the average
silhouette for mice+k-means. The true number of clusters is equal to 4.

can be interpreted as an actual tie between complete observations: moreover the choice of
dependent weights allows to recover group-specific features, if the missingness mechanism is
informative. Section provides a discussion of this and contains the details about the choice
of the hyperparameters.

First, we conduct a simulation study where data for n = 1,000 items, P = 3 responses, and
K = 4 clusters are simulated from a mixture of Gaussian distributions. Figure [3.5] shows the
locations of the true clusters and the complete simulated data before deleting entries. Then,
different missingness mechanisms are applied to determine the entries to be treated as miss-
ing. Missing completely at random (MCAR) scenarios are obtained by sampling missing entries
uniformly, while, in missing non at random (MNAR) scenarios the probability of being miss-
ing depends on the true cluster allocation. Different combinations of missing variables define
different samples: the number of samples ranges from 3 to 6 among simulation scenarios. The
detailed distributions of missing values are provided in Section[A2] Different values of the hyper-
parameter z of the Lévy intensity are considered. Our results are compared with those obtained
with two alternative approaches, called “mice + k-means" and “mice + DPM", which follow a
two-steps procedure: first one imputes missing data by chained equations as implemented in the
R package mice (van Buuren and Groothuis-Oudshoorn) 2011)), then, the clustering structure is
estimated with, respectively, k-means and a Dirichlet process mixture. Note that the number of
clusters for k-means is chosen to maximize the average silhouette. For each run of the n-FuRBI
model, we perform 25,000 iterations of the MCMC chain and discard the first half as burn-in.
Tables and summarize the performance of the models. The n-FuRBI priors outperform
the alternatives in all scenarios considered, in term of estimating both the number of clusters
and the clustering configuration, measured by Rand indexes between the estimated configura-
tion and the true clustering structure. Moreover, the posterior distribution of n-FuRBI models
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Figure 3.6: Scatter plots of the four scores (after standardization) for the brandsma dataset.
Coordinates of missing data are set equal to their respective posterior median. Different colors
and symbols denote the three estimated clusters obtained minimizing the variation of information
loss with respect to the posterior distribution.

reflects uncertainty both about the estimated clustering configuration and about the imputation
mechanism, which is instead ignored by two-steps procedures.

Finally, we apply the model also on the brandsma dataset (Snijders and Bosker| (2012))), which
refers to grade 8 students (age about 11 years) in elementary schools in the Netherlands (see,
Brandsma and Knuver} [1989)). The goal is to cluster n = 4,106 pupils, based on their IQ verbal
score (IQV), IQ performance score (IQP), language score (LRP), and arithmetic score (APR).
The number of subjects presenting missing entries is 339 out of 4,106 (i.e., 8.26%). As before,
different combinations of missing variables define different samples: the number of samples is 7
in the brandsma dataset. In this real data analysis, the final clustering configuration provides a
lower dimensional description of the data rather than an estimate of ideal true clusters. Data
are standardized before running the model, so that the sample means and variances are equal
to 0 and 1. Figure [3.6] shows the estimated clustering configuration obtained minimizing the
variation of information loss with respect to the posterior distribution. The model identifies three
clusters, which show as major tendency that groups of students performing above/below average
for one of the four scores tends to perform above/below average also for the other scores. In
particular, a first cluster includes 53% of the subjects, which have lower performances: indeed
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cluster averages of the standardized scores are IQV= —0.371, IQP= —0.398, LRP= —0.387,
and APR= —0.435. Instead the second cluster, including 44% of the subjects, retains the
best students: the cluster averages of the standardized scores are IQV= 0.609, IQP= 0.595,
LRP= 0.629, and APR= 0.642. Finally, the students with worst scores are allocated to a third
cluster whose averages are IQV= —2.01, IQP= —1.43, LRP= —1.90, and APR= —1.34.

3.2.7 Conclusion

We investigated the dependence induced across groups in a wide class of Bayesian nonparametric
models, introducing the notion of hyper-tie. We showed how hyper-ties play a crucial role in
driving the Bayesian learning mechanism and the borrowing of information across samples. We
noted that existing nonparametric priors either do not allow an explicit evaluation of the value
of the correlation or, when they do, they are able to induce only non-negative correlation. Thus
we designed n-FuRBI, a novel class of dependent nonparametric priors, which may induce either
positive or negative correlation between the random probabilities as well as across samples
introducing a novel and flexible idea of borrowing of strength. This allows to achieve high
flexibility as well as analytical tractability, while outperforming competing models in different
scenarios. Our class of priors is immediately applicable to model multi-sample data through
mixture models, as shown in the analysis of the financial dataset. Moreover, it allows also for a
variety of interesting extensions since it can be seen as an effective building block to model non
trivial dependencies in more complex data analyses as showcased in a clustering problem with
mutivariate data in presence of missing entries.

3.3 Trees of random probability measures

3.3.1 Introduction

In the nonparametric setting, a common choice for the prior distribution is the law of a Dirichlet
process (Ferguson| [1973)), or suitable generalizations such as Pitman-Yor process (Pitman and
Yor|, [1997; [Pitman) 2006) or processes derived from completely random measures (Kingman,
1967; James et al.l 2006] [2009). In a partially exchangeable setting, a common approach is to
combine distributions as above, in order to induce various types of dependence between groups:
this leads to additive structures (Lijoi et al., [2014a)), nested structures (Rodriguez et al., |2008)
and hierarchical structures.

The latter, that are the starting point of this Section, work by creating a hierarchy of random
measures that therefore turn out to be dependent. The graphical model is given by the left part
of Figure a common, latent random measure P, specifies the law of P;, i = 1,2, 3, that are
associated to three distinct groups. When the random measures are discrete, as in the case of
the hierarchical Dirichlet process (Teh et al., 2006) the induced clustering implies the presence of
ties both within and across groups, leading to a nice and interpretable borrowing of information.
This is particularly interesting for instance in topic modelling, where each document is described
with a multinomial kernel and each parameter corresponds a topic (i.e. a distribution over all
the possible words). Therefore, Py becomes a pool of common topics that are shared, with
different relevance, by distinct documents. In this context the hierarchical Dirichlet process is
the nonparametric extension of the well-known Latent Dirichlet Allocation (Blei et al. [2003),
that describes the documents as a mixture of latent topics. Even if it is endowed with great
analytical tractability, the Dirichlet process has well-known limitations, both in the exchangeable
and non-exchangeable case: consequently, Camerlenghi et al. (2019b) provided a general theory
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Figure 3.7: Graphical models of a hierarchical structure (left) and a tree structure (right)

for hierarchies of random measures, that allows the usage of various extensions of the Dirichlet
process.
Notice that, looking again at Figure [3.7] a hierarchical model can be seen as a very special tree,
where P is the root and the observations are collected at the leaves. However, this structure
is sometimes too simple to describe all the relevant features of the data. Still considering the
topic modelling framework, we may be interested in a corpus of documents that grows in time
(e.g. papers submitted each year to a specific conference): it is reasonable to believe that the
documents, and the latent topics, yield a temporal dependence that could be exploited. Indeed,
a graphical model as in the right part of Figure would be more accurate: Py plays again the
role of the common pool of topics, while the red nodes correspond to the distribution associated
to the years of interest, linked to the random measures describing the single documents, given
by the green nodes. Motivated by those applications, many models describing similar structures
have been introduced, both parametric (Blei and Lafferty, 2006) and nonparametric (Caron
et al., 2007,7; Teh, [2006; [Wang et al., 2017). Similar probabilistic structures, but in different
contexts, have been proposed in Gnedin and Iksanov| (2020); Nieto-Barajas| (2021). Such propos-
als focus mostly on temporal dependence and it is often not clear how to incorporate additional
information: for instance, in the example above, we may want to distinguish papers belonging to
different scientific fields. Moreover, documents may be seen as an ordered collection of chapters
and sections, which the usual hierarchical structure is not able to capture. The usefulness of
incorporating this order will be shown in Section [3.3.8

In this work we propose a methodology to construct a generic tree of random probability
measures, chosen to describe the underlying features of the dataset. In particular, to each node
is associated a random measure endowed with the law of a Pitman-Yor process (Pitman and
Yor}, 1997} [Pitman, 2006), and the edges are given by a hierarchical structure. The construction
allows to collect observations at any node (not necessarily the leaves) and to handle properly
missing data at every position of the tree. Moreover, thanks to the nice analytical properties of
Pitman-Yor process, and its characterization through o-stable processes, we are able to explicitly
assess the impact of the geometry of the tree on the clustering properties of the model. Indeed,
considering again the right part of Figure[3.7] it is reasonable that some topics at time 2 actually
come from time 1 and this should be reflected on the dependence between P; and P,. We show
that our construction implies this behaviour and that such dependence can be suitably tuned
using appropriate hyperparameters. Furthermore, the predictive distribution can be derived and
allows to perform posterior inference. To summarize, this paper has three goals: (i) provide a
general framework to encode various types of dependence through trees of random probability
measures; (ii) give explicit expressions for prior quantities of interest (e.g. correlation across
groups) and the predictive distribution; (iii) allow to collect data at different (possibly internal)
nodes and handle missing data without additional complications.
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Throughout the paper we will focus on topic modelling applications, mainly to show the
implications of our proposal. However, the construction is completely general and the tree
structure is appropriate beyond a corpus of documents. For instance in |An et al| (2008) a
similar structure, based on kernel stick breaking priors, is used for image analysis. Moreover,
similar models can be applied to microbiome data: each document corresponds to a biological
sample and each distinct term to a bacterial species. See Sankaran and Holmes (2019) for a
review. In this context, tree structures arise naturally to describe compositional data (see Wang
et al.| (2021) for an example using Pélya trees).

Trees of Pitman-Yor processes have already appeared in language models called sequence
memoizers (Wood and Teh, 2009; Teh, [2006). In this case the observations typically take values
in a finite space (e.g. words in a dictionary), so that the base measure at the root of the tree is
atomic. See also |Johnson et al.| (2006); [Wood et al. (2011) for more details. Our treatment is
different in the sense that the sampling space is completely general: moreover, the base measure
at the root is diffuse, which is crucial to derive the clustering properties and the predictive
distribution (see Theorem [15)).

3.3.2 Pitman-Yor process

As discussed extensively, in this document we focus on discrete nonparameteric priors: indeed,
considering structures as in Figure discreteness allows to make ties both within and across
groups, leading to a natural way of borrowing information. Therefore, we assume the realizations

of the prior law @ to be almost surely discrete, i.e. P 4 > ;>1 Widx;, where {W;}; are random
probability weights and X; independent random atoms sampled from a suitable probability
measure (g on the sampling space X. A popular choice for the distribution of the weights is
given by
i—1
Wi =Vi [[Q-V;), Vi~Beta(l—o0,0+i0), (3.7)
j=1
with o € [0,1) and 6 > 0. This representation, often called stick-breaking construction, leads to
the definition of the Pitman-Yor (PY) process (Pitman and Yor} [1997; Pitman) 2006). Notice
that the choice o = 0 corresponds to the well-known Dirichlet process (Ferguson, [1973).
Defining the process through the weights, as in , though often useful from a computa-
tional perspective, makes a theoretical analysis quite challenging. However, the PY process can
be also defined through the predictive distribution, which reads

0+ oK, 1 &

9+n Q + Z(TQ’-O’)(SXJ, (38)

X X1 ~
n—i—l‘ 1:n 0 9"‘7711:1

where K, is the number of distinct values (Xf, . ,X}‘}n) in the sample X1., = (X1,...,X,),

with multiplicities (n1,...,nk, ). Thus, the (n+ 1)-th observation can be either completely new
from the baseline ()¢ either copies one of the already observed datapoints: it is then clear that a
sample from model for exchangeable data with @) being the law of a PY process exhibits ties with
positive probability. A special role is played by the parameter o, which reinforces the probability
of observing new values according to the number of distinct species. The predictive distribution
is an example of the general class of Gibbs-type priors, which stand out for analytical
tractability: see De Blasi et al.| (2015)) for a recent review. A natural way to characterize such
priors is through the Exchangeable Partition Probability Function (EPPF), which describes the
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Figure 3.8: Graphical model of a generic tree structure.

induced law on the partitions of n elements (i.e. on the clustering): this representation will be
thoroughly discussed in Section .

Finally, it is possible to represent a Pitman-Yor process through Completely Random Mea-
sures (CRMs). The latter are random objects on the space of discrete finite measures, which are
endowed with nice analytical properties. Many Bayesian nonparametric priors can be described
through CRMs (see e.g. Regazzini et al.| (2003); James et al.| (2006, 2009))), allowing to explicitly
derive many posterior quantities of interest. In particular, the law of a PY process is given by
a suitable change of measure of the normalized o-stable process (Pitman and Yor} [1997). See
Section above or Section in the Appendix for more details. This is the characterization
we will use for the proofs of all the results in this document.

3.3.3 Building a tree

The graphical model of a tree is illustrated in Figure . The tree is divided in subsequent
levels, where level 0 always corresponds to the root py. All the other nodes are identified by
a vector of integers, say p, whose position is specified by its values and the level by its length,
denoted |p|. For instance in figure P 1 is the random measure associated to node p = (2, 1)
at level |p| = 2.

In a tree structure, nodes are connected by edges, that define a children-parent relationship
among the nodes. We denote with (p,i) the i-th child of p (counting from left to right) and
with p the father of p, that is the vector of length (|p| — 1) derived from p by truncating the
last component. Finally, considering p € T, we denote with C(p) C T the set of children of p.
In order to define a proper tree, each node different from the root must have a parent, so that
we can say that

> 0
TcU N¥ s a tree if and only if €7 ) (3.9)
P Vp €T, with [p| >2,3q€ T st. q=p

In other words, a tree must contain the root and each other node must have a single edge
connecting it to the lower level. Allowing to observe data at each node, the model reads
iid.
Xpi | Bp =" Py, {BpipeT}~Q,
where X, ; denotes the i-th observation collected at node p.
In order to define the law @, we need to specify the distribution of the nodes and how the
edges affect the dependence among them. In particular, we define the child-parent relation as

ii.d.
Pp ‘ PR ~ PY(UP76P7PE)7
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using the notation introduced in the previous Section. In other words, children are conditionally
independent given the father node, that plays the role of the baseline distribution, i.e. it provides
the pool of available atoms. Endowing the root with the law of a PY with a diffuse baseline
distribution )y, we can write the model in a recursive fashion as
iid. iid.

Xpi| Po =" Pp, PBp| B "~ PY(0p,0p,Bp), Fo~PY(o0,00,Q0) (3.10)
Therefore, each edge corresponds to the creation of a new hierarchy. This makes the depencence
between arbitrary nodes p and q far from trivial; indeed the strength of their relation will
depend on the path of hierarchies that leads from the root to p and q. This is the matter of
next Section.

3.3.4 Prior properties and dependence between the nodes

Considering two nodes p and q, we will call m € 7 the Most Recent Common Ancestor (MRCA)
of p and q, that is the the node on the lowest level that is a relative (e.g. connected through
a series of edges) of both p and q. More formally, if P(p) C T is the path of connected nodes
from the root to p, the MRCA is the element with the highest length belonging to the set
P(p) N P(a).

For future reference, from now on we will denote

_l-o0p
O+ 1

o (3.11)

As shown in the next two propositions, the set {7p}pe7 plays a crucial role in determining the
dependence structure induced by model (3.10). We start from the relation between random
measures located at arbitrary positions of the tree.

Proposition 19. Let T be a tree with model (3.10). Let p,q € T be such that m € T is their
MRCA. Then, for every set A we have

1- HlG’P(m)(l - M) .
\/1 —Iiepp) (1 — ’71)\/1 —Iiepg(1 =)

E[Pp(A)] = Qo(A), Corr(Pp(A), Py(A)) =

If moreover vy = vy, for every l € T, we have
1— (1 —q)lmit
\/1 —(1— ,Y)|p\+1\/1 —(1— 7)|ql+1.

Proposition [19] shows that the tree is centered around the baseline distribution of the root @,
in the sense that Qo(A) is the average of each node, for every A. Moreover, the correlation is
always positive and independent of the specific set considered: this is reminiscent of most of
the priors for partially exchangeable models (e.g. (Camerlenghi et al,| (2019b))). It is easy to see
that the correlation is an increasing function of P(m), in the sense that the longer the path
the stronger the dependence. The intuition is that a long path from the root to the common
ancestor leads to a large number of nodes (i.e. information) shared between p and q: in the
context of topic modelling it implies a larger number of topics shared by documents p and q,
as expected. In this sense, our proposal induces the relationships discussed in the Introduction:
as we go along the tree, nodes become more and more correlated.

Corr (Pp(A), Py(A))
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Alternatively, it is possible to measure dependence at the level of the observations, as the
next Propositions highlights.

Proposition 20. Let T be a tree with model (3.10). Let p, q € T be such that m € T s their
MRCA. Then for every i and j we have

P(Xp; € A) = Qo(A), Corr(Xpi, Xq;j) =P (Xp;i=Xgj)=1— H (1 — ).
leP(m)

If moreover vy = =y, for every L € T, we obtain
Corr (Xp, Xqj) =P (Xpi = Xgy) =1-(1 - )L

The intuition is analogous to Proposition dependence becomes stronger along the tree.
Interestingly, the correlation between observations at different nodes depends only on the path
to the MRCA: indeed the longer P(m) the higher the probability of a tie. Using the tools of
Proposition [20| we can derive the joint distribution of a pair (Xp;, Xq.;)-

Corollary 7. Let T be a tree with model (3.10). Let p,q € T be such that m € T is their
MRCA. Then for every indezxes i and j and sets A and B we have

P(Xpi€AXg;€B)=(1— J[ Q=) |QANB)+ | [[ @—)| Qu(A)Qu(B).
leP(m) leP(m)

The sampling mechanism yields a nice interpretation: with probability

1- Hlep(m)(l — ), that intuitively quantifies the informations shared between p and q, the
observations are sampled together, otherwise they are collected independently. The next example
shows how the above formulas simplify in the particular case of the Dirichlet process, i.e. when
op = 0.

Example 8. Consider model (3.10) with o, = 0 for every p € T. If m is the MRCA of nodes
p and q, it holds

1 0,
= d C Xpiy Xgi)=1-— .
Tp 110, an orr (Xp,i, Xq;) l€713’_([m) 1+ 6
Moreover, if 8, = 0 for every p € T we get
m|+1
0 |m|+1 1_($)| [+
Corr (Xp’i, thj) =1- m y Corr (Pp(A), Pq(A)) =

o \lPlH1 g \la+1
\/ 1= (i) y1- (i)

If & — oo the correlations vanish, since the law of the random measures Py, degenerate on the
deterministic distribution Qo; the opposite happens if 6 — 0, leading to the maximal correlation.

Therefore, thanks to the nice analytical tractability of the PY process, the prior dependence can
be suitably tuned by the researcher through simple formulas depending on {((cp,6p); P € T}
Moreover, using similar tools, it is possible to derive the full predictive structure of model ,
and therefore an algorithm for posterior sampling, as will be illustrated in the next Section.
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3.3.5 Random partitions and the predictive distribution

A common way to explain the clustering induced by the exchangeable model consists in using
a Chinese Reasturant metaphor: the clusters are thought as customers sitting at the same
table, where the unique value associated to the cluster is the common dish served. With a
hierarchical structure (see Camerlenghi et al. (2019b)), the metaphorical restaurant becomes
a franchise: considering again the left part of Figure the red nodes correspond to three
distinct restaurants, whose customers are again subdivided in tables. However, now the dishes
come from the same menu, that is given by the yellow node; since also P, is almost surely
discrete, different tables may have the same dish. This metaphor is not only amusing, but is
also useful to make explicit the dependence within and across nodes (i.e. restaurants): indeed,
if the clustering at the restaurant level (i.e. red nodes) is available, sampling a new observation
requires only to decide whether to open a new table (whose dish will be sampled from Py). This
is the key idea underlying the algorithms for posterior sampling with hierarchical structures (see
Teh et al.| (2006); Camerlenghi et al.| (2019b))).

Luckily, it is possible to extend the culinary metaphor to model associated to a tree
7. Indeed each node p corresponds to a restaurant, whose customers are subdivided in lpe
tables (the notation will be clear in the following). The dishes associated to the tables come
from the parent node p, that is itself a restaurant, so that they are clustered again. Proceeding
recursively, the actual dishes come from the root Py, that plays the role of the common menu
available to all the restaurants. Notice that at each node p there are the proper customers (i.e.
observations collected at p) and dishes coming from the children nodes.

More formally, let 7 be a tree with d levels with n;, j = 1,...,d, observations collected at
each level. Denote with £; C T the set of nodes in level j. Then the metaphor becomes as
follows

at level d, the ng customers are divided in [, = Zpe Ly lpe < 1y tables;

o at level d — 1, the ng—1 + lge customers are divided in lg—10 = > pep, , Ipe tables;

e at level 1, the ny + lye customers are divided in l14 = Zpeﬁl lpe tables;

e at level 0, the l1, customers are divided in k tables, whose dishes are sampled from Q.
Since Qg is diffuse, the dishes are almost surely different.

The dishes at level j become new customers at level j—1 and therefore observations are clustered
in coarser partitions, as we go from the leaves to the root. The latter is the common restaurant
that specifies the dishes available to all the customers, regardless of the position of the restaurant.
Notice that this latent clustering is not observed in a sample from model . Indeed we only
observe the k distinct dishes and which dish is associated to a customer: however, two customers
may share the same dish without seating at the same table, as we discussed. It turns out that
knowing the division in tables at each node greatly simplifies the computation, as will be shown
in Theorem [13] below.

In order to formalize this, we need to evaluate the partial Exchangeable Partition Probability
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Function (pEPPF) associated to model (3.10)), defined as

" (np; peT) = E/ H 11 Po™ (dz;)), (3.12)
*g 1peT
where n, = (np1,...,np k) is a vector of positive integers such that np = 2?21 np,; and

n =% n; with n; = >_per,; Np number of observations per level. Moreover, X* is the subset

of X¥ given by vectors with all distinct entries. Indeed, H,in) (np; p € T) is the probability of
observing exactly the partition {np; p € 7} when sampling np observations at node p. In this
context k is the number of distinct values in the overall sample and np the vector of associated
multiplicities observed at node p.

The pEPPF can be composed starting from the random partitions induced by an exchange-
able sequence, described by the Exchangeable Partition Probability Function (EPPF). In partic-

ular, for any p € {1,...,n} and any vector of positive integers (r1, ..., rp) such that Z?:l rj =mn,
we set »
0 +i0)
o0 (e, ) = iz _ 3.13
pm(rlv 7Tp> (9 + 1 n L H Tz 1 ( )

=1

This is the EPPF induced by a Pitman-Yor process with parameters (op, 0p, Qo), with Qo diffuse,
see De Blasi et al. (2015); Pitman| (2006). We are now able to evaluate the pEPPF (3.12)).

Theorem 15. Let T be a tree with d levels. Suppose the sequences {(Xp,j)j>1 :p€eT} are
partially exchangeable according to model (3.10). Then B

n l, Np+lptie
Hé)(np;PGT Zzll<> (1 (I1a,- .- llkHH E),zz,’:pﬂ (@p15- -5 Gp1e);

i=1peLl;
with .
1(n :HHHL Npj + lpt1
l q i1 L l dp,j,1s--->4p,jl,
i=1pel; j=1 ) 2Jaip,g
and where

p Np1-+lpr1, Ny kHp1k

1. Zl — 21:1 Zpecl le?’ whe/]ﬂe le — Zl;jll:lp“rl 1 e Zl pk 1p+1 and lp-‘,—l"j == Egecp lg7j7
with lp; € {1,...,np; + lpt1};

2. Y=Yl Yper > g, where @y = (dp1, - Gp) and @y ; is a vector of positive integers

l .
such that 32,7 qpjt = npj + lp+1,j;

3. lpe = Z§:1 lp; and ‘1’1(]2() is as in (3.13)).

Within the culinary metaphor, 1, ; is the number of tables in node p eating dish j, so that
lpe = Z;‘}:l lp,j is the total number of tables at node p, whose dishes are given by q,. In
particular, gp;; is the number of customers in restaurant p eating dish j at table ¢, with
t=1,...,lp . Notice that, given q and 1, the pEPPF reduces to the product

l1e +lpt1e)
( 1 ) ll NEXE ll N H H q)p”ll;. P qp,l? R qp,k)? (314)
i=1peL;
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which displays the random partitions associated to each node of the tree. The product form
above makes the predictive distribution very explicit: for instance the probability to a sample a
completely new value at node p, conditional on q and 1, becomes
rtlrt1e+1
H E'tllro‘f‘f—l )(qI‘J? ] qr,k7 1) 01‘ "l_ Urlr.

et 1o - ’
reP(p) (bi'yfl" o )(qr,17 L) qr,k) reP(p) Or +nr + lr+1.

that is exactly the probability of creating a new table in each node (i.e. restaurant) in the path
from p to the root.

Then it becomes natural to include the sampling of 1 and q in the algorithm for posterior
inference. Therefore, we introduce a set of latent variables T = {Tp; p € T}, that describes the
clustering structure. In terms of the Chinese restaurant metaphor, T}, ; is the label of the table of
customer (observation) j at restaurant (node) p. Consequently, a sample X = {(Xp;)/?, ; p €
T}, with ungiue values { X7, ..., X} and multiplicities np, will be endowed with latent variables
of the form

Tp = (Tp,lv s va,np+lp+1-) )

for every p € 7. In particular Ty ; is the label associated with observation Xp;, with i =
1,...,np, while T, ; with ¢ > ny + 1 refers to one of the tables of p’s children, whose common
Value we denote again with Xp, ;. Moreover we denote with 77 . the r-th unique label in T, i.e.
one of the tables in node p, associated to the value (dish) XT* Thus, 1 and g can be recovered
from T by

lp; = {number of unique values 7, such that Xy = j}

and
_ _Jnumber of labels T ; such that T, = T35, if X7z =
It T\ 0 i Xay, #

Therefore, it is possible to devise a Gibbs sampler on the augmented space {(X,T); p € T} to
perform posterior inference: more explicit details are given in the next Section. Moreover, the
pEPPF is not only useful to unveil the clustering structure and devise suitable algorithms for
posterior inference, but it also allows to derive interesting properties of model . In Section
we use it to derive the asymptotic behaviour of the number of clusters.

3.3.6 Posterior sampling

Assume to collect a set of observations X = {(Xp;);?, ; p € T} from model (3.10). In order
to perform statistical inference it is necessary to evaluate the distribution of {Pp;p € T}
conditional on the sample X. However the latter is not available in closed form, due to the
complexity arising by the hierarchical strcuture: thus we need to provide approximations through
MCMC methods. The algorithms presented in this Section can be easily extended to mixture
models.

A first approach is called conditional and consists in simulating trajectories of P, by its
posterior distribution. The latter is a difficult task, since P, is infinite-dimensional: clever
algorithms (Walker, [2007; Papaspiliopoulos and Roberts|, 2008) for exact sampling have been
proposed for the case of mixture models, but it is not immediate to extend them to the tree
structure. For example, the retrospective sampler introduced in |[Papaspiliopoulos and Roberts
(2008) requires a Metropolis-Hastings step for the allocation variables, whose generalization to
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the hierarchical structure seems challenging. An alternative would be to approximate P, by
truncating the series representation given by . This leads to an efficient sampler in the
exchangeable case (see e.g. Ishwaran and James| (2001)), but in our setting this would require
a truncation at each node: thus, the propagation of the associated error (and the consequent
choice of the trucncation threshold) becomes a significantly harder issue.

A second approach, termed marginal, is given by integrating out the random probability
measures Pp and sample directly new observations at each node. See Escobar and West| (1995)
for marginal algorithms in the exchangeable case. In our setting, for example, the distribution
of m new observations Xp n 41, -, Xpny+m 18 given by

(0 (Sommss € 4)) = [ TTRuta0@R | ), (3.15)

where Q(- | X) is the posterior distribution of {Pp; p € 7} induced by model (3.10]).

Direct evaluation and exact sampling of are infeasible, but the availability of the
pEPPF in Theorem [15|allows to explicitly derive the full conditionals of the set {(X,T); p € T},
using the notation of the previous Section. Therefore it is possible to devise a Gibbs sampler on
the augmented space to sample new observations at different nodes. Assume for simplicity that
we want to sample a single new observation at node q, that may be placed everywhere on the
tree: the algorithm can be straightforwardly extended to multiple new observations at different
nodes. In this case, the algorithm requires to sample node specific labels Tq ;, associated to some

observation X;, and the new pair (Tp7np+1,Xp7np+1). As regards the former, the conditional
distribution is given by

Oq + oql;f
Oq +1q +lgt1e — 1’

P (TqJ = new | X, T*") x

_1 (3.16)
Uq,x;,15, — %4

9q+”q+lq+1-*1’

P (Tqi=Tg, | X, T77)

where ¢q+ is the number of customers at table ¢ in node q, while the superscript (—i) refers
to quantities computed after the removal of the label Tg ;. Notice that if the sampling of Tq ;
results in a new label, i.e. creating a new table, this implies that /e is increased by one and a
new label at the parent node q must be sampled by its conditional distribution, as in with
q in place of q. This procedure must be performed recursively along P(q) until a label copies
one of the dishes at the same level (second line in or the the root is reached. Therefore,
sampling a label in q may lead to creating new labels in the path from the root to q, reflecting
the hierarchical structure of model . As regards sampling the pair (Tpvan,Xp’an),

similarly to (3.16) the label Tp n,+1 yields a conditional distribution

Op + oplpe
0p + Tlp + lp+1o '
qp7XT; r’t - Jp

Hp + np + lp+lo’

P (Tpnp+1 = new | X,T) o
(3.17)

P(Tpnps1 =T, | X,T)
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while for the value it holds

5Xq,Té7T if Tpnp+1 copied Ty ., with q € P(p) (3.18)

Xp,n +1 | Tp,n +1,X,T ~
i i Qo otherwise

Therefore the new value either copies one of the already existing observations either is sampled
by the base measure of the root, becoming a completely new value. The algorithm then reads:

1. Initialize T.
2. Foreveryt=1,...,T:

o For every q € T, sample T ; for every i =1,...,nq + lq+1e as in (3.16). Sample the
possibly new labels in the previous levels.

o Sample Tpn,+1 as in (3.17). Sample the possibly new labels in the previous levels.
e Sample X, 41 according to (3.18).

A nice byproduct of the above algorithm is that it provides the full clustering structure at each
iteration. By Theorem and especially , conditional on T the dependence among the
random measure greatly simplifies: in particular Py, will depend only on Py, with g € P(p)\{p}.
The latter fact makes posterior sampling of P, much simpler, by sampling sequentially at each
level starting from the root, so that a marginal algorithm can be also used if direct sampling of
the random measures is required.

3.3.7 Distribution of the number of clusters

When studying discrete priors, the number of clusters, i.e. the number of distinct values in
a sample of n observations, is often a crucial object. This happens either in species sampling
problems, when the data are given by frequencies, or in mixture models, when the clustering
structure is latent. In topic modelling it represents the number of topics used to describe all the
documents in the corpus.
Given a tree T with d levels and denoting with K, the number of clusters, with n = 3%, n;,

we say that K, behaves asymptotically as a deterministic sequence A(n) if

. K,

im — =
almost surely, where M is a positive and finite random variable. For simplicity we use the
notation K, ~ A\(n). Let

n’ ifo >0

Aa(n) = log(n) ifo=0 (3.19)

Notice that A\,(n) describes the asymptotic behaviour of K, arising from a single PY process
with parameter o, see |De Blasi et al. (2015) for more details. We consider the regime in which
n = np, with p € 7, so that all the observations are collected at a single node.

Theorem 16. Let T be a tree and p € T. If n = np we have

Ko~ | I Ao | (0)

q€P(p)
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almost surely as n — 00, where Agy Aoy (1) = Aoy (Aoy(R)).

The asymptotic behaviour of K, is given by combining the ones of the nodes forming a path
from the root to p; the asymptotic rate becomes lower as we go along the tree, as expected. If
the op’s are all strictly positive or all equal to 0 (i.e. the nodes have Dirichlet process law) the
behaviour becomes particularly simple, as shown in the next example.

Example 9. Assume 04 = 0 for every q € P(p). Thus, under the setting of Theorem we
have
K, ~log...logn,
%/_/
|p|+1 times

almost surely as n — oo. Assume instead o4 > 0 for every q € P(p), then
K, ~ an€P<p) Uq,
almost surely as n — oo.

This behaviour is reminiscent to the exchangeable case: K, diverges almost surely, with a rate
that depends on the position in the tree. We consider now an alternative regime, where m > 1
observations are collected at each level ¢ = 1,...,d, and the number of levels diverge. This is
somewhat complementary to the first case, in the sense that the sample is spread over the whole
tree.

Theorem 17. Let {Ty}q be a sequence of trees such that Ty has d levels and the restriction of
Taw1 to the first d levels is equal to Ty, for every d. Moreover, assume there exists @ and & < 1
such that 0, < 6 and op < 0, for every p € T. Then, if m > 1 observations are collected at each
level different from 0, we have

lim sup K, < o0

d—00

almost surely, where n = n(d) = md.

The intuition is that the observations become more and more correlated (see Proposition , SO
that in the limit with infinite-levels the probability of a completely new value (i.e. dish) becomes
negligible.

Theorems [16]and [[7]show that the geometry of the tree is crucial for the clustering properties
of the model and should be chosen wisely. Indeed, a change in the level for a specific node p
leads to a substantial change in its rate of divergence; moreover, each node separately would
yield an infinite number of clusters, so it is really the tree structure that leads to a finite amount
in the second regime. Notice that the techniques of Theorems and could be applied to
different regimes than the two considered, without additional difficulties.

In order to appreciate this variety, we consider as an example three different structures:

i) a single-node tree (i.e. exchangeable case), distributed as a Pitman Yor process wi
i ingl de t i h bl distributed Pit Yo PY) with
parameters o and 0;

(ii) a hierarchical process with a single group, in which the two nodes are distributed as PY
with parameters o and 6. All the observations are collected at the leaf and the model is
denoted with HPY;
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@ @ @B

Figure 3.9: Three different structures: single-node tree (left), hierarchical process (center) and
sequence of nodes (right).
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Figure 3.10: Proportion of new values for each subset of 10 elements out of 500, with m = 10
and averaging over 1000 samples, for PY, HPY and DHPY.

(iii) a sequence of nodes distributed as a Normalized Stable Process (NSP) with parameters o
and 0. It is a special tree with a single branch. At each node m = 10 observations are
collected and the model is denoted with DHPY.

The three specifications are shown in Figure [3.9] According to Theorems @and [I7] the number
of clusters in the first two settings should diverge with rates n? and n? respectively, with
o € (0,1), while in the third scenario a finite amount of clusters should be observed. Figure
shows the average proportion of new values for each batch of 10 observations: as expected, PY
and HPY have a similar decay, but with different rate (single-node tree has the highest number
of clusters), while for DHPY the proportion of new values drops close to zero after few batches.
Therefore, our proposal is able to encompass a large variety of prior clustering behaviours and
the structure of the tree should be chosen with care, that should be tuned according to the
problem at hand, as showed in the next Section.

3.3.8 Application

We consider a topic modelling application, in which model is convolved with a kernel.
Consider a vocabulary of V' words and let X to be the space of probability distributions over
{1,...,V}: therefore, each value (i.e. topic) sampled at node p, say Xp, is a vector of V'
elements, denoted with Xp(w), with w = 1,...,V. Each node p corresponds to a document,
whose words {Yp;}:?, are assumed to be exchangeable with multinomial kernel. In formula it
reads

P (Ypi =w|Xp) = Xp(w), (3.20)

with w = 1,...,V. The baseline distribution of the root, denoted with @), is a Dirichlet distri-
bution with V' elements and common parameter «: it means that a priori there is no preference
among the words.
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Specification implies that each document is a mixture of topics, that are shared within
the whole corpus with different relevance among the documents. See Blei et al. (2003)); [Teh et al.
(2006)) for more details.

The goal of the analysis may be either explorative, that is studying which topics arise in the
corpus and how they are distributed, or predictive, to sample new words associated to the corpus.
The work Blei and Lafferty| (2006)) is probably the most connected to our proposal in the context
of topic modelling, since it is a dynamic extension of the well known latent Dirichlet allocation
(Blei et al., |2003). However, being a parametric model, it requires to specify the number of
topics, that in our nonparametric framework is automatically chosen through the data. Instead
Caron et al.| (2007, 2017)) propose a time-varying model based on Pélya urns, whose invariant
distribution is given by the Dirichlet or the Pitman-Yor process, with an elegant formulation.
A weakness of the above constructions, shared with Wang et al.| (2017)), is that they are defined
to accomodate temporal dependence and it is not easy to introduce additional structures, e.g.
the field of the document. Within our framework, instead, the tree can be suitably defined
to describe appropriately any structure of the corpus. In the following we show how encoding
information about the corpus architecture may make inference and prediction more robust, in
particular with a high percentage of missing data.

Alice in Wonderland

A book can be considered as a sequence of chapters, that have a precise order. Moreover, it
is reasonable to assume that later chapters regard mostly topics from the previous part of the
books.

Considering the first three chapters of Alice in Wonderland (by Lewis Carroll) we show how
it is possible to model them with our proposal. As shown in the left part of Figure their
relationship can be described through a very specific tree, with a single branch: notice that
observations (i.e. words) are collected at all nodes apart from the root. For comparison we
consider also a hierarchical process, depicted in the left part of Figure the three chapters
are still dependent, through the common root Py, but the sequentiality of the chapters is not
included.

For both models each node is endowed with a Pitman-Yor distribution with node-specific
random parameters # and o, with Gamma and uniform priors respectively. Standard stop
words (e.g. conjuctions) have been eliminated and only the roots of the words are taken into
consideration, through a so-called stemming procedure (in particular the Porter algorithm, see
e.g. Jivani et al| (2011)). This leaves around 5000 distinct words, after eliminating the ones
appearing less than 4 times. The parameter a of the baseline distribution is set equal to 50/V/,
to avoid a negligible prior variance.

In order to compare the performances, we hold out an increasing portion of words in chap-
ter 2 and measure how well the two models replace the missing data. Figure depicts the
perplexity, that measures the discrepancy between the held-out words and the predictive distri-
butions (see Teh et al.| (2006)), for the two models: it is clear that the tree structure behaves
better and has a good reconstruction even with a high proportion of missing words. This shows
that incorporating the structures of the data in the model architecture may better predictive
performances.



130 HIERARCHIES BEYOND THE DIRICHLET PROCESS

Figure 3.11: Two structures to model the first three chapters of Alice in Wonderland: tree (left)
and hierarchical process (right).
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Figure 3.12: Perplexity associated to hierarchical and tree structures with an increasing pro-
portion of missing words from the second chapter of Alice in Wonderland. Results are averaged
over 20 runs.

A1l Proofs of Section 3.2

Proof of Proposition

Proof. Consider two partially exchangeable sequences X and Y whose elements take value in R.
By de Finetti’s representation theorem, there exist two random probability measures P, and P;
such that B

(X.,Y;) | P, P, "5 Py x Py
Note that Cov(X;,Y;) = E [Cov(X;,Yj | P, P2)] + Cov (E[X; | Pi],E[Y] | P»]), where the first
term equals 0, so that

Cov(X;,Y;) = Cov </:cPl(daz),/93P2(d$)> )
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and analogously
Cov(X;, Xy) = Cov </xP1(da:),/a:P1(de’)> = var (/azPl(dx)> .

Lastly assume that P; 4 P, where 2 indicates equality in distribution. By the Cauchy-Schwartz
inequality

—Var (/xPl(dx)) < Cov (/xPl(d:r),/xpz(d:U)> < Var (/fﬁpl(dm)) )

which, in terms of the observables, can be equivalently rewritten as

—COV(XZ',XZ'/) < COV(XZ',}/]‘) < COV(XZ',XZ'/).

Proof of Proposition

Proof. By definition of covariance we have
Cov(X;,Y;) = Cov (Z Ji0i, > qusk) =Y "> Cov (J;6;, Wi -
Jj=1 k>1 J21k>1
For arbitrary j and k we have
B [J;Wi0;ék[ = E[J;Wi]E[0;¢x] = E[J;Wi]E[6;]E[6x],
since Cov(0;, ¢r) > 0. Denoting ¢ = E[f;] = E[¢], we get
Cov (J;0;, Wior) > c*Cov(J;, Wy).
Finally, since P; and P» are random probability measures it holds
Cov(X;,Y;) > *Cov (Z Ji,> Wk) =0,
Jj=1 k>1

which completes the proof. O

Proof of Proposition
Proof. Recall that

8= E(R) =Y EWD) =Y E(Ji).
k>1 k>1 k>1

E(J:Wi) < E(JHEWE) = E(J})

it follows that v < 8. Moreover, the equality holds if and only if J, % aj, + Wy, for any k, with
ar € R. However the equality of marginal distributions implies a; = 0. O

Since
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Proof of Proposition
Proof. Recall that
Cov(X;,Y;) = Cov Z T30, Z Wion | = Z Cov (jkﬁk, Whgbh) .
k>1 h>1 k>1h>1
and for arbitrary k and h, we have

E[Jx W0k én] =E[JeWi]E[0r¢]
=E[J W} {E[ﬂm]ﬂ{k:h} + E[Qk]E[%]ﬂ{k;ﬁh}} 7

while B B
E[Jx0r] = E[J,]E[0k].
Thus, setting ¢ = E[0;] = E[¢n], we have
Cov(X, Y;) = B[ WilE[ror] - & > ELRE[W,] ++¢2 Y >~ Cov (Ji, W)
k>1 k>1 k>1 htk
where

Z Z Cov (jk, Wh) =Cov (Z ks Z Wh) — Z Cov (jka)

k>1 htk k>1 h>1 k>1

==Y E[JiWi] + > E[JL]E[W;]
k>1 k>1

Putting everything together we obtain

Cov(X;,Y;) = > E[JWi]Cov(by, o).
k>1

Moreover

Var(X;) = Var(Y;) = / / 2 Go(de, dy) = var(6y)

Thus, Corr(X;,Y;) =7 po proving the second statement in Proposition 4. Finally, applying the
same procedure marginally, we get

Cov(X;, X)) = > E[JF] Var(6;)
E>1

which proves the first statement in Proposition O

Proof of Corollary

Proof. The result immediately follows from Propositions [I3] and [T4} O
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Proof of Proposition
Proof. Let 8 be the probability of a tie. By definitionwe get

P(Xl €A Xy € B) :P(Xl €A, X, €B ‘ X1 :X2)6+
+P(X1€ A, Xe€ B| Xy # Xo)(1—0),

which, by independence of the atoms, equals

]P)(Xl €A X5 € B) :P(Xl cAe B)ﬁ‘i‘
FB(X) € AP(Xs € B)(1 - ).

Analogously, we have

P(X; € A Y€ B)=P(X; € A)Y; € B| X; and Y] form an hyper-tie )y+
+P(X; € A Y; € B| X; and Y] do not form an hyper-tie )(1 — ),

where v is the probability of a hyper-tie, which equals

P(X1 €AY, € B)=P((X1,Y1) € Ax B| X; and Y; form an hyper-tie )y+
+P(X; € A)P(Y1 € B)(1 —7).

Proof of Proposition

Proof. The first point follows from the Lévy-Khintchine representation of the Laplace functional
of a CRV. As for (ii), one has

E (exp{—A1p11(A) — Aapa(B)}) =E (exp{—A1/i1(A x X) — Aofia(X x B)})
= E(exp{-Aifun(A x BY) = Mfin(A x B)+
— Nojfia(A° X B) — Aojin(A x B)}).

By independence of evaluations on disjoint sets, ji1(C) and fi2(D) are independent if CND = (),
so that the right hand side reads

E(exp{—A1pu1(A) = Aopia(B)}) =E (exp{~Mifir (A x B)}) E (exp{—dafia(4° x B)}) x
x E (exp{—/\lﬂl(A X B) — )\2/12(14 X B)}) .

The result follows upon upon using the expressions of the marginal and joint Laplace exponents
of fiy and jfis. Since from the joint Lévy intensity it is possible to recover the joint Laplace
exponent, (iii) is also proved. O

Proof of Proposition

We want to show that

P(X € A,Y € B) = Qo(A)Qo(B) (1 — §) + Go(A x B)S,
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where

02
— _ —p(u1,uz)
0: /R2+ {amauzwb(ul,uz)} e duqdus.

is the probability of a pseudo-tie. We start with three Lemmas.

Lemma 27. If vy is the joint Laplace exponent of a CRV, then

0 0 — iy (ur,u
/R2+ {8%%(%,“2)} {%wwhuz)} e Ve(u1u2) Qo dyy = 1 — 6.

Proof. Integrating by parts

0o o 9
A {au wb(u17u2)} {%wb(uly uZ>} eidjb(ul,UQ) d'U,l
0o o o
= - _Y o —p(ur,u2)
/0 {8u %(m,w)} {8u1€ } duy
- - iw (u U ) e_wb(u“u) . +/Oo i (G (’LL U ) e_wb(uhuz)du
B aUQ bi%1, %2 0 aulaUQ p\u1, w2 1
0

0 0o 62
_ —p(0,u2) —p (u1,u2)
H By ¥y (0, uz)} e +/0 {8u18u2¢b(u1,u2)} e dull.

Note that [;* {ﬁwb(o, ug)} e~ (0u2) duy = 1, by the fundamental theorem of calculus. Thus
the result follows immediately. O

Lemma 28. We have

/R B (e )i lo® 5 (0)7in(C) ) durdus = Go(C)? (1= 8) + Go(C)d.
+

Proof. By independence of evaluations on disjoint sets it follows that

/R2 E (e—mﬁl(XXX)—uz[m(XXX)ﬂl(C)I[Q(C)) duydug
+

_ / E
R

_ / E
R

:/ E iie—mﬁl(c)—wﬂz(c) E<€—U1ﬂ1(cc)—U2ﬁ2(Cc)) duydus

8u1 8’&2

_ / ii |:E (eulﬂl(C)uzﬂz(C))} E (efmﬂl(CC)*uzﬂQ(CC)) duydus
R2

(e (@ maiz(Qmmn (O ~uafel ) iy (C) () ) dundug

e—ulul(C’ —uzuz(C)ul(O)ﬁz(C)} E (e—mﬂl(CC)—uzfm(Cc)) duidus

8U1 8UQ
— 9 9 —Go(C)p(ur,u2) | ,—Go(C)p(u1,u2)
= /R2 aiul@iuQ {6 b }6 b d’Lle’LLQ

= / i {_GO(C)a¢b(U1, u2)eGo(C)¢b(u1,u2)} e~ Go(C) iy (u1,u2) duq dus.
R 1 U2
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Performing the derivative with respect to uq, the latter expression can be written as follows

0 0 — ul,U - ¢ U1,
= /]R2 {GO(C)gaulwb(ul’u2)8u2wb(u1’u2)}e Go(C)p(ur,u2) o —=Go(C)p(u1,uz) duydug+
+

_|_/ —Go(C) 0 Up(ur, ug) e~ Go(O)ve(ur,u2) o=Go(C)p(ur,u2) gy Aoy
Rﬁ_ 8U18’LL2 ’

9 5,
= /Ri {G0(0)28m¢b(u1,u2)8w¢b(ul’UZ)} e~ ¥b(u1,uz) duy dus+

0
_ Uy (u1,u2)
+ - { Go(C) Ju, 0y ’l/]b(’lll,ug)} e duidus

By Lemma [27] we then obtain

/.
R

as desired. ]

E (e () —wi2Co®) 5y (C)in (C)) durdus = Go(C)? (1 = 6) + Go(C)3,

Lemma 29. Let C, D be such that CND = (. Then

/}R2 E (6—u1ﬁ1(XXX)—u2ﬂ2(XXX)ﬂ1(C)[LQ(D)) durdus = Go(C)Go(D) (1 — §)

+

Proof. Let Y = (C'U D)°. Since C and D are disjoint, by independence of evaluations on disjoint
sets it holds

/RQ E (e—ulﬁl(XXX)—U%&Q(XXX)ﬂl (C)[LQ(D)) duidus
E (e*ulﬂl(CUD)*UQﬂQ(CUD)ﬂl (C)ﬂg (D)} E {efulﬂl(Y)*uzlb(Y)) duidusg
E (e—ulﬂl(C)—uzﬂg(C)ﬂ1(0)> E (e—ulﬂl(D)_u2ﬂ2(D)la2(D)) X

< (e—mﬂl(y)—mlb(y)) duydus

9 {e=Go @)}

i {e—Go(D)#}b(ul,w)} e~ Go(Y)hp(u1,u2) duq dus
8u1

R Oug
0 0

= _— i —p (u1,u2)
Go(C)Go(D) /]R2+ {aul¢b(u1yu2)au21/)b(U1,UQ)} e duidus

The result follows by applying Lemma [27] O
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Proof of Proposition[I7. We have

pmA) p2(B) | _ o

11(X) p2(X)

=/ E (e—u1ﬂ1(XXX)—u2ﬂ2(XXX) ~ (A % X) X x B)) duyduy =
R

+

P(Xe€AYeB)=E

jin (AxX)/b(XxB)] _
i (X x X) fin(X x X) |
2

-/ E<e—mﬂ1<XXx>—U2ﬂ2<Xxx>{gl(A X B)fia(A x B) + i (A x B)fiz(A® x B)+
R

+ (A x Bjio(A x B) + fi1 (A x B%)jia( A x B)}) duydus

We compute each integral separately applying Lemmas 28] and [29] and obtain

P(X €AY € B) = Go(A x X)Go(X x B) (1 — ) + Go(A x B)S

= Qo(A4)Qo(B) (1 = 8) + Go(A x B)S, (21)

as desired. Then the probability of a tie in the product space is given exactly by §, denoted v in
the manuscript. The probability of a tie is given by the particular case ¥p(u1, u2) = ¥ (u1 + ug),
since

32
_ —bp (u14u2) —
/]Ri {8u1(‘)u2 Up(ur + ’LLQ)} e b 2) duydug = / / dv{a wa )} 28 du,

with the change of variables u = u; + us and v = u;. O

Proof of Proposition

Proof. Since
E(Pi(A)Py(B)) =P(X € AY € B),

by we have
E I:Pl(A)PQ(B)} = GO(A X X)Go(x X B) (1 — ’}/) + Go(A X B)’y.
Finally,

Cov (Py(A), P2(B)) = Go(A x X)Go(X x B) (1 — ) + Go(A x B)y — Go(A x X)Go(X x B)
=7 {Go(A X B) — Go(A X X)Go(X X B)} .

From this one also obtains

Var (P(A)) = Cov (Pi(A), Pi(A)) = 3 {Qo(A) - Qo(A)Z}
= BQo(A) {1 - Qo(A)},

and the desired result follows. O
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Proof of Theorem

Proof. We need to compute the conditional Laplace functional of (fi1, fi2), i.e

B (e @R~ fa a0 | oty () )

with h; : X2 — RT measurable functions. Define A; = A;. = {z € X|d(z, X}) < ¢} and
B;j = Bj. = {xeX\d(w,Y}*) <e}, with 1 <7 <k and 1< j <, such that 4;NA; =0 and
B; N B;j = for any ¢ # j. Moreover, denote
C
A1 = (U§:1Az‘) , Besr = (Uin1Bi)".

Thus our goal becomes to compute
B [ o b0 | (g ()

— limE {e S Ta@ ()= fy ha(@) Ralde) | v @ 5k 4 v € ><§=1Ba}
e—0

(22)
) E { fX2 hi(z) fi1 (dz) f o ha(z) fiz(dx) Hk Pl( ) H] 1 PQ(B ) }
TS0 [H] 1P1( ) H] 1P2(B ) }

We start to evaluate

E [Pl(Al)Tbl . P1(Ak)nkPQ(Bl)mlpg(Bc)mc} =
o [Nl(Al)nl - -M1(Ak)"kﬂ2(31)mlu2(3c)mc]

1 (X)™ g (X)™

o [ A (A x X)L (A X X)) g (XX By )™ fig (X X Be)™e
fir (X x X)"ip (X x X)™

=17.

By Netwon’s binomial

c+1
~ nhp
fir(Ap xX) = ) (,h >HM1 (A, x B,), h=1,...,k,
1,...,0_,’_1

1
ih h
L+ ZCLJ,-l_nh r=1

k+1
_ my j
g2(X x By) = E (,r )”,u2 (Ap x Byp), r=1,...,c.
jlv'~~7jk+1

gl = h=1
For ease of notation denote

n\fm ni NE+1
Z<z><3> = Z (2'1 il ) Z <z’k+1 k1 X
i Bl yg=m N1 ey Lo tetrd

+1 =Nk+41

mq ME+1
X Z (jl jl ) Z (jk+1 ]k"f‘l)
j%+...ji+1:m1 1> ' Jk+1 k+1 k41 1 ) yJEk+1

+oJp =Mk
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5 )

h "
T.. —F [T Iy /iy (An X Br)ji" (An X B) %
" i (X x X)n

Thus

with

Hh 1/ CH(Ah X Bey1) [Tr=1 ﬂ2k+ (Agy1 x By)
fiz (X x X)™

Letting i1 := f1(X x X) and fig := fi2(X x X), we have

1 1 n—1, m—1,—uifi1—uzfiz
= d
T TR T~ T e s

with u = (u1,u2). Thus, by Fubini’s Theorem

n—1, m—1 k c ) .
Tij = MEle“”““Q‘b {H TT A (An x B (A Br)} x
+

h=1r=1

XHchrlAhXBC_H H,uz Ak+1XB)1d =

r=1
n—1, m—1
Ul Uz
= ——=—p;i(w) du.

By independence of evaluations on disjoint sets we have

Pi,j(@) {H H —ulﬂl(AhXBr)_U2N2(Ah><Br) (Ah % B )M2 (Ah < B )}

h=1r=1

k
{H —u1fi1(ApXBey1)— u2,“2(Ah><Bc+1)/] ) (A x Bc+1)} %

C
x {H e~ i1 (A g XBT)_UQAU‘Q(AIC+1XBT‘)M k1 (Aps1 x B )}

r=1

This can be equivalently written as

ke "
H HE [e—mﬂl(AthT-)—ugfm(AhxBy-)ﬂlli (Ap % Br)/léh(Ah % Br):| >
h=1r=1

c+1) X

z?r

-h
_ ~ _ ~ )
E {e u1fi1(ApXBey1) u2“2(AhXBC“)MfH(Ah % B

>
Il

1

-

X E |:eu1ﬂ1(Ak+1 X Br)—us2fi2 (Apt1 XBr)ﬂgIZ+1(Ak+1 « Br)] '

1

g
Il
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Considering each element separately we have

E | vih (B muehiz(hoBo i (A, x B)i(Ap x B )]

R ] . _
—F (_1)1+]%efudﬂl(AhXBT)7U/2,U,2(A;L><BT)
oul o,
= (_1)i+jﬂE {e_ulﬂl(AhXBr)—UQﬂQ(AhXB,,-):|
oul oul,
I A e PP L S A
oul ol

Recall that we are interested in the limit as € — 0, so that

o {e— Jayxs, fR1<1—e“151“252>p(ds)Go<dx>} e, e G

ﬁu"iﬁug
al+j 1 —Uu181 252 d G d
X - - _ U181 —U28 ,
o oo ) plds)Go(d)

where we say f ~ ¢ if lim. o f(x)/g(x) = 1. By simple algebra we get

i+j — e U151 U2s i+j—1
0 e fAthr fRi(l ¢ ) p(ds)Go(d) _ ot T UIS1 U282 o
81}}1 au% 8u’1 18u2 Ap X By

= Jaynp, Jrz Qmerammr22)p (ds)Go(dx>}

(23)

x s1 p(ds)Go(dz)e

az+] 2 _ (17671‘1817“252 d8)Go (da
auz Qau {/A B /R e U1S1—u2s2 5% p(ds)GO (dl‘)e fAthr fRi ) p(ds)Go(dz)
1 2 h r

! </A g Je € s p(ds)Go(d)
h r +

)

2
) e S5, fRi (1—emv121712°2) p(ds)Go(dw) }

and

2
(fAth7. fRi e Ms1TU282 g4 P((is)Go(dx))
lim

= 0.
0 [a,xp, Jrz €71 m2s2s] p(ds) Go(de)
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By applying this argument repeatedly we obtain (23). Thus, letting p(u) = >=; ; (%) (7;’),0” (u),
by aggregating the terms we have

g () ()

i J
k (& 07, +]h
<11 / / e~ =122) () Gy (da) | X
h=1r=1 auTﬁujh Apx By
k i
CTILTSS [ [ e p(as)Go(an) | x
h=1 8U;C+1 AhXBC+1 Ra_
¢ e
x [ e p)Go(dn)
r=1 6U2k+1 A1XBr Ri

) (5) s

The following three Lemmas characterize the set of indices (¢, j) that are relevant once the limit
is taken.

uch that 0 < il il < np, withr >1 and 1 < h < k. Then 3(3,3)

Lemma 30. Consider (3,7) su

such that im0V (¢,73)/V (2,7) —

Proof. For ease of notation set 4" = (if,... i ;). Then
o Ifr=c+1,setsh=(f,....i0+il,...,0).

o If 57 =0,set i’ = (ik,....it +dl,...0,...).
o Ifjl =0, set s = (ih,...,0,... it +aP ).
o Ifji > 0and j; > 0,set j" = (47,...,0,..., 40, +4p) and & = (b, ... i +dt,...0,..).

For example in the last case we have

_ var(i, 5) Janxp, Jrz e w2l s p(ds)Go(dx)
lim —=%- = lim =0,

e—0var(i,j) =0 fAC+1><Br f]RQ e~ U151~ u2828';h+]c+1 p(ds)Go(dx)

as desired. ]

Thus, Lemma guarantees that " has exactly one element different from 0, that is equal to
ny,.

Lemma 31. Consider (i,j) such that i" = ny, and j7 = 0. Then there exists (1,j) such that
lime_yo V (4,5)/V (%,7) — 0.

Proof. Set (3,3) equal to (i,]), apart from i = 0 and i ; = ny,. O

Lemma 32. Consider (i,j) such that Z'QH = ny, and j; > 0. Then there exists (1,7) such that
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of Lemma S2.6. Set (2,7) equal to (i,7), apart from 32 =0 and 5,:“ =m,. O

The three lemmas imply that each relevant (¢, j) corresponds to an admissible latent structure,
ie.

8nz+mj
~ 1 n+m _—p(w) / / e ULS1— U252 ds)Go(d
o) ~ S0 T g [, e ) p(ds)Co(dr) ¢ x

pEP (izj)eAp

o™ e U1S1 U282
« { o /A y /R 2 ) p(ds)Go(dx)}x
(i) €Al et1

omi
X o, My 1 — e~ wS17U252) (418G (d ‘
' H {8%3 /AkJrlXBj /Ri( ‘ ),0( S) 0( l‘)}

(i,4)€AE

Evaluating the derivatives we have

~ —¢b(u) / / —u181 u282 TLZ d G d
u~ e {AxB . $Msh p(ds)Go(dx)

peP (4.7)€Ap
X [ L s plas)Gofar)
(i ,J)eAl AixBet1 JRZ
X e ULS1 U282 ¢ (ds)GO(dx)
(i,jl)_e[A% {‘/Ak+1 x B, /Ri—

Finally, we get

e Z/ 2 o {/AB /R R (ds)%(dﬂc)}

peP (1,J)€Ap
x { [ e p(as)Golda)
( )EAl A ><Bc+1 R
x —mn = M o (d5)Go(dw) ¢ du.

Evaluating the numerator of the same reasoning yields a formula asymptotic to

> / e n(a) / [, e i (ds)Go )
RQ A;x By R2
/ / ~(m(@run)si—(ha(@)Fuz)s2 mi 4 5) Gy (dar)
(J)GAl AixBer1 JRY
/.

il

e~ (h1(@)tu1)s1—(ha (H”Q)S?sm] (ds)Go(dx)} du.
(i,5)€AZ
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where 9 (u) = [x2 fRi (1 - e_(hl($)+“1)81_(h2(9”)+“2)52) p(ds)Go(dx). Note that
1 — e~ (m(@)+ur)si—(ha(x)+uz)sz _ —urs1—u2s: [ema—i—uzsz —141-— e—h1(m)s1—hz(m)sz}

— [1 _ e*U151*u252i| + {1 _ e*h1(x)s1fh2(x)s2}

)

so that I,
e_wh(g) _ 6_%(2)6_ fxz fRi[l_e 1(®)s1—hg 2]p(ds)G0(dm)
_ R [e— S b1(@) fir(do)— [, 5 ha () fio (dx)] ‘
Furthermore
A B,
GO(AhXBT):EMNGQh,M 1<i<e1<j<k,
€

and

G()(Ah X da:) ~ 5gh,c+1QX;: (d:lj'), Go(dx X BT) ~ EngrLTPyT* (dx)
Thus, evaluating the limit in we get

E [e fXZ hi(x) ﬂl(dw)ffXZ ha(z) fiz(dz) | (X%, (YJ)%l] =

« 3 /R E [e— Sz (@) fi (d2)= [ ha(@) ﬂz(dw)] “

peEP

2 7

X

ng J —uis1—u2s
% H e_hl(X*yifj*)Sl_}u(X?k7}/}*)32 817«82 e 1581 2 2p(d8)
. R2 Tnim(w)
(ZJ)EAP + DA

N ,—u181—u282
_ * _ * si'e ds
X |I //2 e~ h(XFw2)s1—ha (X} @2)s2 71 o )QX;*(d:L‘Q)x
(iJ)eAl X JRZ Tn;,0(u)

mj —U181—U282
X H / / €_h1(x17Y2*)51_h2(x11Y2*)52 52 € p(dS) PY* (dxl)x
X JRZ J

T .
(i,))€A2 0,m; ()

Jez w7 s T e 90,5 Tnm, (w)e ™0 du

n—1_m

X
Yqer Jrz ui” a5 i jyeq i Tim, (we™Wduy
a + (4:4)

X

u?_lugl_l H(z‘,j)ep Tnim; (@)6_%(2) du

fRi u?_lugn_l H(z’,j)Ep Tniamj (@)6_1%(@) dﬂ?

as desired. ]

Proof of Corollary @

Proof. We use the shorthand notation pq(f) = [x f(z)fi1(dz) for any measurable function
f + X — R such that (| f]) < co. Letting U be the set of latent variables of Theorem |13} i.e.
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U= (p,Uy,Us, Z%, ZY) for any y1,...,yn € (0,1) and Ay,..., A, € X? we get
P (Pu(A) S yrseoes Pr(An) Sy | U (X1, (V)7
=P (ir(1a, — 1) 0, ir(La, — va) <0 | U, (Xi)iy, (V)]
The result follows since the finite dimensional distributions of P given U, (X;),, and (Y57

coincide with the ones of the normalized posterior distribution of fi;, given U, (X;)I;, and
(YJ)T:1 ]

Proof of Theorem

Proof. Set H = (p, Uy, Us) with domain D. Then
P(Xnt1 € do | (Xi)i, (Y))7) = E[Pr(de) [ (Xi)isy, (Y5)74]

(
/D E[Py(dz) | H = b, (X;)y, (V)] F(dw),

where F'(-) is the posterior distribution of H, with h = (p,uj,u2). Recalling the notation in
Corollary [6] we have

i y JL 6y
E[Pi(dz) |[H = h, (Xi)iy, (V)] = E [ul(dzx X)] +E [ZW)GA& i s ] +

+E

Yigeas Jerdx; L | Zieas Tz | 24: ;
R R - — ks
where R =17 + Z(i,j)eAp Ji{j + Z(i,j)eA; Jz{c—i—l + Z(i,j)eAf, Jli—i—l,j'

Set S =3¢ )ea, Jz-l’j + Z(i,j)eA}, J&CH + Z(i,j)eAg Jl%—i—l,j and exploit the conditional indepen-

dence between Jilj and fi; to obtain
I = / E eS| E [y (dz x X)e™T] dv
Ry

Tng,m; (ul + v, UQ)

Tng,m; (uh u2)

= 0Py(dx) / T10(u1 + v, ug)e*wbi(”’o) dv,
B\ (ig)ep
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where 13°(A1, A2) is the Laplace exponent of (fi1, fi2) in Theorem Observing that 1;"(v, 0) +
Y(ui,u2) = ¥(us + v,u2) and denoting with L(-) the distribution of p, we obtain

@:Ahﬂ@)

= GQO(das)//R3 {u?lugn1 H Tngm; (U1 +v,ug) | T10(u1 + v, u2) X
+

(i,5)€p

% e—w(u1+v,u2) duldU2de(dp)}

0 dx _ —(u1,uw
- QO()//RQ Wud ™t | T Tem, (W, ug) | 7ro(us, up)e ™ 142) duydug L(dp)

" + (i,5)€p
= W/ u1T,0(ur, ug) F(du),
n D

where the second equality follows from the change of variables (w, z) = (u1 + v,u1). The proof
for the remaining weights follows along the same lines and leads to

55_1/ Tni+17mj(u17u2) Tni+1,0(u17u2) F(du)
n Jp Tngm; (U1, U2) Tng0(U1, u2)
and ( )
1 T1Lm; (UL, W
5?:*/ w2 ().
nJp " Tom;(u1,uz2)
The weights for Y,,4+1 can be computed in an analogous fashion. O

A2 Additional material for Section |3.2

A toy example of borrowing of information

Classical borrowing of information across samples is typically associated to positive correlation
across observations in different populations and, as a consequence, it induces shrinkage of the
predictions. Let us consider the toy situation in which observations coming from two different
populations have been collected and a normal model is assumed

o

Xi\uwi'L'N(uw, 1) fori=1,...,n

[oW

Yj|,uyi'i<J'N(uy, 1) forj=1,....m

To obtain a working model, one has to specify a certain prior over i, and p,. The main typical
strategies one may employ are the following:

o Modeling ji; and p, as independent, which ultimately means that we do not consider the
information coming from one population to be relevant for inference on the other.

e Modeling p, and p, as dependent, which induces borrowing of information. This typically
reflects the idea that, if the observed values of Yi,...,Y;, are on average higher than our
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prior guess on i, then we should upwards revise our belief on y, and our prediction for
Xi.

To clarify this last point, we compare a typical strategy used to perform borrowing of informa-
tion, which is provided by the following hierarchy

pa | po ~ N(po, 1)

thy | to ~ N(po, 1) (24)
Ho ~ N(Vv 1)

with the case of independent priors, namely

=~ N(v, 2 ~ N(v, 2
pe N2y~ N 2) )
pa L fry

where the variance is chosen to match the marginal distributions of the hierarchical specification.
We assume that only the sample (Y71, ...,Y},) has been observed and we discuss its impact on the
posterior distribution of i, and on the predictive distribution of X; under the two specifications.
Under independence in , one obviously has

ppa | (Y))je) = N(v, 2)

while under model the new distribution of u, is

Pl | (YVj)Ty) o /R D | 10) plao | (Y7)™r )dpio

( 1 2m v+y m+1 )
— N V+ 3 9
2m +1 2m+1 2 2m+1
where ¢y denotes the empirical average of Y1,...,Y,,, and
m _
By | (V)] = Elpia | ()] = v+ 5o (5 =)

Therefore, when y > v the borrowing results in an increase of the estimate for u, and of the
prediction for X1, while if ¥ < v the borrowing of information induces the opposite effect. The
shrinking behaviour is ultimately a consequence of the fact that the hierarchical prior in
induces positive correlation across X; and Y;. However, what we show in the main paper is that
classical shrinkage of the estimates is not the only way to borrow information within partially
exchangeable populations, neither necessarily the best one.

Example of correlation between FuRBI priors on Borel set

Consider a pair of n-FuRBI priors with equal jumps (see Example 4 in the main document),
where the baseline distribution G is given by a bivariate normal with zero mean, unit variances
and correlation p € {—0.99,—-0.5,0,0.5,0.99}. In Figure we depict the correlations on sets
of the form (—oo,z|, with = € [-5,5] and for each value of the correlation. Notice that such
correlation may be of particular interest in survival settings, where the distribution function is
often the main focus.

When p = 0, the correlation is equal to 0 as expected, since Go(A x A) = Qo(A)? and
the numerator of the formula in Proposition 8 vanishes. For values of p different from 0, the
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Figure 13: Correlation on Borel

A sets of the form (—oo,z], with = €
""""" [—5,5]. The four lines, from bot-

tom to top, correspond to p €

{-0.99,-0.5,0,0.5,0.99}.
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correlation is symmetric around 0, due to the symmetry of the Gaussian distribution, and
different signs indicate opposite behaviours: therefore, p < 0 implies negative correlation on
such Borel sets.

However, note that a different sign does not mean a completely specular behaviour: for
instance the correlation with p = 0.99 is higher in absolute value than the one with p = —0.99.
This is due to the fact that it is somewhat impossible to have strictly negative correlation on
all Borel sets. Intuitively, if the two priors have high negative correlation on (—o0, 0], it means
that one of them has much larger mass on (—o0,0] and the other on (0, +00): therefore, both
priors will have a high mass on (—o0, a], with a large positive number, so that the correlation
can not attain again large negative values.

Finally, if p — 1, then the correlation converges to the constant function 1, that is the value
obtained with equal atoms: indeed, the two priors will have equal jumps and linearly dependent
atoms (see Corollary 1).

Algorithms for posterior inference

In this section we address the issue of sampling from the posterior distribution. In discrete
nonparametric models, we need to distinguish whether the random probability measures are
directly applied to the data or rather convoluted with a suitable kernel (known as mizture
model, see Section .

Nevertheless, from a computational perspective, if the first problem is solved the second one
can be tackled in a similar way: it is indeed easy to propose a Gibbs sampler that alternates
sampling of suitable latent variables and the posterior distribution given data originated by the
random probability measure.

Therefore, in the following three sections, we assume to collect observations from

(X0, Y) | (P, Po) "5 Pux Py (P, Py) ~Q (26)

Marginal posterior samplers

The first approach is to directly simulate the trajectories of (Pi, Py) from its posterior, giving
rise to so—called conditional algorithms. See, e.g, Ishwaran and James| (2001); Walker| (2007));
Papaspiliopoulos and Roberts| (2008); |/Arbel and Prunster| (2017). Conditional samplers for the
n-FuRBI priors can be found in Sections S3.2-3 below.

Alternatively, and this is the route followed in this section, one can use marginal algorithms,
that integrate out the random measures and sample sequentially from the predictive distributions
(see, for instance, Neal, 2000).



A2. ADDITIONAL MATERIAL FOR SECTION 147

Given (X;)i; and (Y;)7L, and using the results in Theorem 2, we can sample iteratively

new observations from P; as follows
1. Compute weights o, {7} and {£/} from (X;); and (Y})7,.
2. Draw X, from m(dz) = &Qo(dx) + 3%, &l ox:(dw) + 325 f;’Pyj* (dx).

The algorithm is straightforward, but relies on the computation of the weights at point (a):
this is not optimal, since in general the explicit evaluation can be demanding. Nonetheless,
Theorem 1 and Corollary 2 show that, conditionally on a suitable set of latent variables, the
posterior representation simplifies greatly. Indeed, given ((X;)iy, (Y;)7, U, Uz,p), the predic-
tive distribution of the first sample is

m(dz) o 0710(U1, U2)Qo(dz) + > Togt1,m,; (U1 2)5X*(dx)
ihen, Tnim; (UL, U2)

oy Tl s
(1,5)eA} Tn“( L 2) (1,5)eA2

27
T1,m; (U1, Ua) 27)

Py« (dz
70,m; (U1, U2) v; (d).

Those new weights, whose derivation can be found in Section S1.4, are easier to compute, as the
next example shows.

Example 10 (Inverse Gaussian n-FuRBI with equal jumps). In this case
Tnom (U1, U2) = / sPme(Witu2)s h(qg) i= 1 (U + ug),
R

where p(ds) is the common marginal jump intensity. If the Lévy intensity is v(ds,dx) =
e=%/2)(s%2\/2m)ds a(dx) the resulting normalized CRM corresponds to the normalized inverse
Gaussian process (Lijoi et all, |2005). We obtain 7j(u) = 27T (j — 1/2)/(v/7(2u + 1)771/2),
where u = uy + uo. Thus, conditionally on the latent variables, we have

1
m(dz) o 0Qo(dx) + \/W ”)ZQA (nz +mj — 2) dxr(dz)

\/W 6A1< ~g) i)+ m(y)zw( 3) Py o)

where U = Uy + Us. Sampling from this mixture is straightforward.

Thus we can derive a second marginal algorithm.
1. Draw (Uy,Us, p) from their conditional distributions specified in Section 5.
2. Draw X, 41 from m(dz) in (27).

However, even the full conditional distribution of p may not always be available in closed form,
and it may be computationally intensive to evaluate, since it may have a very large support.
When this is the case, we may encode the latent clustering structure in a more convenient way
introducing two arrays of latent variables C; = (¢; 5)i>1 and Cy = (¢jy)j>1 such that ¢; , = ¢y,
denotes a tie between X; and Xy, ¢4 = cjr,, denotes a tie between Y; and Y/, while ¢; , = ¢;,
denotes a hyper-tie between X; and Y;. Moreover, we reorder the unique values in X7, and
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Y, so that X! = X, if and only if ¢;;, = c and Y = Yj if and only if ¢;, = c¢. Therefore,

L m»

P(Cn+1,x =cC ’ Cmcy?X:wX:n) is

P(Xpt1 =X31Cy,Cy, X5, Y 0), for c € Cy
/ P(Xos1 = 2 | Gy Y75) pys(2)de, for c € Cy\ Ca
/P(XnH = z) qo(x)dz, otherwise

Finally, the distribution of p, given C; and C,, is degenerate. Moreover, the posterior distribution
of (Uy,Us) given p is equal to the posterior distribution of (Ui, Us) given C, and C,. Therefore,
we may build a marginal algorithm sampling C, and C, instead of p, without modifying the full
conditional distribution for U; and Us. The final marginal algorithm boils down to

1. Draw (Uy,Usz) and cpi10

5X:n+l . (dl‘), if Cn+lz € Cs
2. Sample X411 from m(dz) = { Py (dz), if epy12 €Cy\ Cy

Cn+1l,x

Qo(dx), otherwise

The advantage of such approach is twofold. First, we do not need to sample directly the full
conditional distribution of p. Second, when the algorithm is applied to mixture models, as in
section 6, sampling the unique values, instead of single observations, improves the mixing of the
algorithm (cfr. Neal, 2000).

Conditional posterior sampler based on the law of the CRV

To develop a conditional algorithm, we can sample from the distribution of (u1, pe) and then
normalize each draw to get an approximate realization of the random probabilities. Here we
develop a general conditional sampler based on this approach that can be tailored to specific
choices of the intensity in the prior.

By Theorem we know that a posteriori ji = (fi1, fi2) is the sum of two components, that
we call pops and o and are such that

fobs = Ji,j(S(X:,Yj*)‘i‘ > Ji,c+15(X;7Zch)+ > Jk+1,j5(zjy7yj*)-
(i,5)€Ap (i,5)€A} (4,5)€AZ

where J; j = (J}, J?

ij»Jig), and

+oo “+o0
i = (Z Sfllé(VmWh)’ Z Sf?l(s(VmWh)>

h=1 h=1
is a CRV with Lévy intensity e~U1917U252p(dsy, dsy)Go(dz). Denote the marginal and joint tail
integrals of [ as

+00 400 +00 +00

Ni(s) = / /G_Ulsl_U2S2p(dU1,dUQ), NQ(S):/ /e_Ulsl_U282p(duladu2)

S 0 0 S
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and
400 +00

N(s1,s2) = / /e*U”l*UQSgp(dul,dug).

s1 82

Lastly, define the correspondent Lévy copula as F(x,y) = N(N;'(z), Ny '(y)). If F(z,y) is
continuous on [0, +0o]?, the iterative conditional sampler based on the Ferguson and Klass
algorithm (Ferguson and Klass| [1972)) reads

(a) Generate pgps as follows
(al) Generate (Uy,Us, p) from the distributions specified in Section 5;

(a2) Generate J; ; = (J}’j, Ji%j) from the distributions specified in Theorem

(a3) Generate Z7 and ij-” from the distributions specified in Section 5.

M M
(b) Generate an approximation of fi, given by <h21 S,llé(vh W) hg:l 5}215(%7, ,Wh)> as follows
(bl) Generate &7, ..., &}, from a Poisson Process with unit rate;

(b2) Generate &, ...,&3, from & ~ a%F(ac,g)

z=£j,

(b3) Determine (Si,S?) solving
& =Ni(Sp) €& = Na(S})
(b4) Generate (Vj,, W}) from Gj.

(c) Obtain a draw from P; as follows

M
h§1 Spov, + D(i.§)ED, Jz‘l,j5X;‘ + Z(z’,j)eA; Jz‘l,c+15X; + Z(i,j)eAg Jl%—}—l,de;’

Pl ~ i
P2 S+ Ligren, i+ Liigeat Jicnr + Diigeas Sy

An analogous approximation can be computed for po.

Conditional posterior sampler for gamma process with equal jumps

Alternatively, a second strategy for conditional algorithms is to sample approximate draws from
the posterior distribution of the random probabilities (P, P,). We provide an example for
gamma FuRBI CRMs with equal jumps.

In the case of a process with equal jumps, we know from the definition that the measures
in the product space are p; = po = p. Therefore, posterior inference can be conducted without
loss of generality on

=7 Wid(o, 4 With (6k,or) G,
k>1

where {W}}, are the weights of a Dirichlet process, which can defined through the popular
stick-breaking construction (Sethuraman) 1994). In this context, Ishwaran and James| (2001)
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developed a conditional algorithm for hierarchical mixture models, called blocked Gibbs sampler,
based on the approximation

N
PR Z Wké(gkm), for large N.
k=1

Exploiting the appealing analytical properties of the Dirichlet process, it is possible to devise
simple formulae for the posterior distribution of the N jumps and N locations: see Section 5 of
Ishwaran and James (2001]) for more details.

Sampling from mixture models using marginal algorithms

Consider the mixture model defined in Section Starting from the algorithms studied in
the previous paragraphs, we devise a Gibbs sampler for drawing from the posterior distribution
of (Xi)iL, and (V)7L

Denoting by X! = (X!,..., X!) and Y* = (Y{,...,Y}!) the vectors sampled at step ¢, the
algorithm reads

1. Initialize at random X and Y.
2. For any t > 1 do:
(b.1) Draw (U, Us, p) given X'~! and Y'~!, from the distributions specified in Theorem

1.
(b.2) Draw X, given (U, Uz, p) as follows: for any i sample X! from

q(dz | XL;) = qio(Ur,Ua) Po(dx) + > qij(Ur,Us)dx:
(ivj)eAP

+ > a4 (ULU)dx:(da) + Y a7 ;(Ur, Us) Py« (da),
(i,j)GA%, (ivj)EAP

where X!, = (X{, X Xf;ll, . Xffl), with unique values (X7,...,X}) and
multiplicities (n1,...,n;). Analogously, (Y7*,...,Y) denotes the unique values in
Y''~! with multiplicities (my,...,m.). The mixing proportions are given by

¢i,0(U1,Uz) 97’1,0(U1,U2)/Xf(Wi | ) Po(dx),

Tni+1,m; (U1, U2)
Tn;,m; (Ulv UQ)

Tni+1,0(U1, U2)
Tni’()(Ul, UQ)

T17mj(U1,U2) /
" W; | )Py (dz

i,j (U1, Uz) o fWi | X7),

q; ;(U1,Us) o fWi | X7),
q; ;(U1,Us) o

(c) Sample Y similarly to point (b).

Once a sample of (X;)iL; and (Y;)7.; is available, sampling new observations X,11 and Yy 41
proceeds as explained in Section S3.1.
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Additional simulation studies
Additional simulation scenarios

We consider the same setting of the numerical illustrations, with different data generating dis-
tributions. Formally we have

Wi p(- = 10), VR (-~ ),
where v € [—16, 16] and p(-) is a density function. In the main manuscript we let p(-) = N(- |
0, 1), while here we consider three different choices

pi(-) = Exp(- | 1), p2(-) = 0.5N(-|5,1) +0.5N(- | =5,1), ps(-) =t(-|3),

where t(- | ¢) denotes the density of a Student’s t distribution with g degrees of freedom. We let
1=1,...,20, 7 =1,...,100 and consider the same nonparametric models of Section 6.2, with
Gaussian kernel. Therefore, the prior specification is misspecified in the first and third case,
with different tail behaviours of the kernel with respect to the true data generating mechanism.
This implies a more complex behaviour of the latent clustering structure: indeed the posterior
distribution places positive mass to more than one clusters, in order to accommodate for the
misspecification. The mean integrated error for the three cases is depicted in Figure [I4] for
different values of v. The interpretation is similar to the one discussed in Section 6.2: the
FuRBI specification yields an advantage especially when v is far from 0, corresponding to the
prior mean, and from 10, when the means of the two groups coincide. Indeed, in the first case
the borrowing provides little information, while in the second one exchangeability holds.

The second setting, corresponding to the two-components mixture, apparently seems more
problematic for the FuRBI model, which yields a less distinct advantage. Clearly, when v is close
to zero the exchangeable and hierarchical models are favoured, since the two true distributions
share one of the modes. Moreover, the availability of only 20 observations for the first group
makes it more difficult to both detect the presence of two clusters and tune appropriately the
correlation. Indeed, the left part of figure [15]| depicts the error when 50 observations for the first
group are collected: as expected, the performances of the FuRBI approach significantly improve.

Finally, the right part of figure [15| shows the error when the two distributions are different:
the first group is endowed with a Student’s t density, while the second one is exponentially
distributed. Notice that the two groups are now very far in distributional sense, especially in
terms of tail behaviour. The plot indicates an interesting trade-off: when v is far from the
prior mean (i.e. 0) the FuRBI approach allows to alleviate the prior misspecification, otherwise
borrowing information from very different distributions may be detrimental.

Logit stick-breaking prior and borrowing of information

Figure |16| is based on the same data of Section See Rigon and Durante (2021) for the
model and the associated algorithm. Once again, including a flexible dependence on the atoms
allows to a better borrowing and thus density estimation.
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samples) for the four models, as the true mean of the second group varies. Rotating clockwise
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shifted Student’s t distributions.
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Figure 16: Left panel: density estimates for the logit stick-breaking model with only dependent
weights, and thus, pg = 1. Right panel: density estimates for the logit stick-breaking model with
dependent weights and atoms. Shaded areas denote 95% credible intervals. Data are simulated
according to Wj g N(-]10,1), for i =1,...,20 (for sample n.1), and V; Ligt N(-|—10,1), for
j=1,...,100 (for sample n.2).
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Figure 17: Density estimates for bonds returns.

Predicting stocks and bonds returns: additional results
Density estimation for bond returns
Sensitivity analysis

Figure [I7] shows the results obtained with different specifications of the hyperparameters, which
are

e Specification n.1: A\j = 0.1, oj = 3, and 3; =3, j = 1,2,
» Specification n.2: A\j = 0.1, oj = 1.5, and ; = 4.5, j = 1,2,

» Specification n.3: A\j =0.01, o;j = 0.1, and 8; = 0.2, j = 1,2.
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Clustering multivariate data with missing entries: additional details

Choosing the hyperparameters

Assume P = 3, as in the simulation study of Section 6.4: the general case follows accord-
ingly. In this case I = {0, (1), (2), (3),(1,2),(2,3),(1,3),(1,2,3)}. In order to specify the prior,
assumptions on the missing generating mechanism should be made. The missing completely
at random (MCAR) assumption implies that each observation Wi(m), for x € I, is the result
of randomly eliminating entries from an (unobserved) complete observation W;. For instance,

Wi(l) = (wo,,ws,;) is obtained from a latent W; = (w1, we;, w3;) after eliminating the first
entry. Under this assumption the latent complete observations W; are exchangeable, because

the original value of W; is independent from the mechanism that generates the missing values.

Thus, there exists g such that W; | ¢ - q and ¢, is the projection of ¢ onto coordinates different
than =, e.g. q)(-,-) % [¢(day,-,-). This implies that the weights of ¢, should be almost surely
the same for every z. Instead, if the missing mechanism is not completely at random, g, can not
be described as the projection of a unique q. Indeed the missing mechanism may be informative,
leading to sample-specific features. Therefore, the choice of an additive n-FuRBIs allows ¢, to
have sample-specific components when needed.

As for the baseline distribution Gy on fi, suppose that an hyper-tie is sampled between an
observation (ws,;, w3 ;) from sample “(1)” and one observation (w; ;,ws ;) from sample “(2)”, thus
assigning the two observations to the same cluster. G is then used to sample the corresponding
locations: (X3, X3) and (Y7",Y5"). Since we want to interpret the hyper-tie between incomplete
observations as a tie between complete observations, we must have X3 = Y5, while X5 and Y7
are sampled jointly with a certain correlation p;9 and depending on X3 through correlations
p1,3 and p2 3. Therefore, since coordinates corresponding to the same original variable should
be assigned the same value, G is actually degenerate on a P = 3 dimensional space. In
the simulation and real data application Gy is a 3-variate normal, whose correlation matrix
po depends on correlation parameters pio, p23, p13 on which a truncated uniform hyperprior
is used, where the truncation ensures that the matrix is almost-surely positive-definite. Since
the data are centered, the mean of Gy is instead fixed equal to a vector of all 0. Moreover,
an independent Gamma(3,3) prior is assigned to the three variances (¢7,03,03). Finally, the
concentration parameter 6 is set equal to 0.1 in order to favor sparsity, i.e., a lower number of
clusters.
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Simulating scenarios: missing data distribution
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Figure 18: Percentages of missing entries of each variable-cluster pair.

A3 Proofs of Section |3.3

Preliminary results on Pitman-Yor and o-stable processes

Let X the sampling space and denote with Mx the set of boundedly finite measures on (X, X);
we refer to Daley and Vere-Jones| (2007) for technical details. If Qg is a probability measure on
X and o € (0,1), we define a random variable y, that takes value in Mx as

E [e—uua(A)_

We say that p, is endowed with the law

S T} (28)

of a o-stable process, denoted with P,, which is an

example of Completely Random Measure

Kingman, |1967). The latter can be normalized under

suitable conditions Regazzini et al.| (2003

; James et al.| (2009) to obtain random probability

measures.
Consider the following model

iid.

Xi ’ P ~"P P~ PY(0793Q0)7 (29)

with ¢ € [0,1), § > 0 and Qo arbitrary probability measure on X. Let P,y be absolutely
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continuous with respect to P,, with Radon-Nikodym derivative

Py o ol'(0)

B, ("M = T %)

The resulting random measure ji, 6 can be shown (Pitman and Yor, 1997) to be such that

N4 NU,@(')
P( ) B MO’,Q(X)’ (30)

with P as in (29). Therefore, the PY process can be represented through a o-stable process,
with a suitable change of measure. For ease of notation, as the in main document, we denote

1—0
0+1°

v = (31)

We start with a well-known result, to show the mathematical techniques employed throught the
paper. The computations in this proof follow the ones in Section 2 of [James et al.| (2006).

Lemma 33. Consider model (29). Then it holds E[P(A)] = Qo(A) for every A € X.

Proof. By representation we write

E[P(A) = E lMU,G(A>] _ al(0) E[ 1o (A) ] ,

peo(X) | T(0/0) | ust*(X)

where i, is a o-stable CRM. Notice that

6'
- / - —uug(X) d
M}ﬁ@ e+ 1)

so that by Fubini Theorem we get

E[P(A)] = m /0 "B [pp(A)e )] du

_ 0 < 9 —upo(A) —upiq (A°)
= 9r /o) /0 uw’'E {MU(A)e }E {e } du,
by independence over evaluation on disjoint sets (which holds since p, is a completelt random
measure). By we have E [e*““U(AC)} = ¢~ @A) and

d

L [emme ] = Qp(A)ous e,

E [o(A)e™#e )] = ——

which implies

_ 02 oo 0+o0—1_—u®
EIP(A)] = Qo(A) s [ 7 7e™ aw

ol'(0/o+ 1)

0+0'71 7u"d
0T (0)0) / r9/0+1 ©

= Qo(A)
= QO(A)7
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as desired. ]

Now we give three preliminary lemmas.

Lemma 34. Consider model . If A € X then it holds
E [P2(4)] = (1-7)Q3(A) +¥Qo(4)

Proof. By representation , proceeding as in the proof of Lemma [33| we get
2 ol'(9) 115(A) ol'(9) /OO o+1m [, 2 —upiy (X)
— E = E A)e e d
E|P(4)] 0(0/o) " | u2x)| ~ DO+ 200/0) Jo e |

ol'(6 o gt i (A
:F(M)Qw/a) /0 WPHE [i2(A)e e W] B [emie (4] du

By applying again we have
d2

E [ME(A)e_“""(A)} = 73E [e‘““v(A)} = _JQO(A)d% {ua—le—Qo(A)u”}

= [0%23(14)1120_2 —o(o— I)QO(A)u”_ﬂ e_QO(A)“U,

which implies

T T
= QAT + QolA) T = (1= 7)QRA) +1Qo(A),
as desired. O

Lemma 35. Consider model . If A, B € X are disjoint, then it holds
E[P(A)P(B)] = (1 - 7)Qo(A)Qo(B).
Proof. By representation , proceeding as in the proof of Lemma |33| we get

al'(6) uo—(A)ua(B)]: al'(6)
T0/0)" | 2x) | T T+ 2r0/0)

— et o 1 e O] [ (BB  [emune (48] g

a3T(0) o0 ol —uo
= QAB) 55 T prae) /0 W21 g,
= (1 =7)Qo(A)Qou(B),

as desired. O

E [P(A)P(B)] = / W HE [ (Ao (B)e )] du

Lemma 36. Consider model . Then

E[P(A)P(B)] =7Qo(AN B) + (1 = 7)Qo(A)Qo(B),
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for every A,B € X.
Proof. By definition we have
E [P(A) =E |(P(ANB) + P(A\B)) (P(AN B) + P(B\A))]
=E[PX

PY(ANB)| + E[P(AN B)P(B\A)]
+E[P(AN B)P(A\B)] + E [P(A\B)P(B\A)] .

Applying Lemmas [34] and [35] we get

E [P(A)P(B)] =vQo(ANB)+ (1 —v)Qo(ANB [QO(A N B) + QO(B\A)]
+ (1 =7)Qo(A\B) [Qu(ANB) + Qo(B\A)]
=7Qo(AN B) + (1 —v)Qo(A)Qo(B),

as desired. ]

Proof of Propositions and and Corollary

We need three preliminary lemmas.

Lemma 37. Let T be a tree. For every p € T and q € P(p) it holds
E [Pp(A) | Py| = Py(A),

for every A € X.

Proof. For q = p the result holds by construction, while for q = p it holds by Lemma Thus
we prove the result by induction on the elements of P, assuming

E [Pp(A) ’ Pg} = Fg(4),
with g € P(p) and |g| < |p|. By the Double Expectation Theorem we have
E [Pp(A) | Pg| =E B [Pp(A) | Py] | Pg| =E [Pe(A) | Pg| = Py(A),
by Lemma [33] O
Lemma 38. Let T be a tree. Let p,q€ T with MRCA m. Then it holds:
E [Pp(A)Pq(B)] =E [Pm(A)Pm(B)] )
for every A, B € X.
Proof. By the Double Expectation Theorem and Lemma [37| we get immediately
E [Po(A)Pqy(B)] = E |E [Po(A)Py(B) | Pun]]
= E[E [Py(B) | Pm] E[Po(B) | Pm]| = E [Pm(4) Pm(B)]

since m € P(p) N P(q). O
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Lemma 39. Let T be a tree and p € T. Then it holds:

E [Ppy(A)Pp(B)] = J[ Q@ —7)Qo(A)Qu(B)+ [1— J] (1—) |Qu(ANB),

leP(p) leP(p)

for every A,B € X.

Proof. By the Double Expectation Theorem we have
E [Po(A)R(B)] = E [E [Pa(A)Po(B) | Py]|.
Since Py | Pp ~ PY (0p,0p, By ), we get
E [Pp(A)Py(B)] = 1E [Po(AN B)| + (1 - 7p)E [Py(A) Py (B))]

= 1Qu(AN B) + (1 - 7p)E | Pp(A) Pp(B))|

by Lemma [36] and the first point of Proposition [I9] Thus we need to solve the recursion

Rp = ’YpQO(A NB)+(1- 'Vp)Rga
Ry = Qo(A)Qo(B)

whose solution is given exactly by

Ro= [ (1-mQuA)Qu(B)+|[1— J[ @ —m)]|QuAnB).

1eP(p) 1eP(p)

Proof of Proposition[I9. As regards the first point, by the Double Expectation Theorem we have
E [Po(A)] =E[E[Py(A) | P = E [Po(A)] = Qo(A),
by Lemma As regards the second point, through Lemma we obtain

E[Po(A)Pp(A)] = J[ (1=m)Qu(A)Qu(B)+ |1— ] 1—m)|Qu(ANB),

1eP(p) leP(p)

E[Pq(A)Pq(A)] = J] Q@ —m)Qo(A)Qu(B)+ [1— J[ (1=m) |Qo(ANB).

1eP(q) leP(q)
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Instead, by Lemma [38 we have

E [Pp(A)Pq(A)] = E [P (A) Pra(A4)]
= I O-wQAWQB)+|1- [ 0-n)|QAnB).

Then it holds

and

Var (Py(A)) = E [Pp(A) Po(A)] = E? [Pp(A)] = | 1= ] (1= | [Qo(A4) = Qo(4)?],

Var (Py(A)) = E [Pq(A)Pa(A)] — B [Py(4)] = [ 1= T] (1= | [Qo(4) - Qo(4)?],

from which the result follows. O

Proof of Proposition [20 and Corollary[7. The first point of Proposition [20] follows immediately
by
P(Xpi € A) = E [Pp(4)] = Qo(4),

by Lemma [37] Similarly, Corollary 1 follows by noticing

P (Xpi € A Xq;j € B) = E [Fp(A)Py(B)] = E [Pm(A) Pm(B)]

= [T O-mQuA)QuB)+ [1- [ (1-m)|Q(ANB),

1eP(m) 1eP(m)

by Lemmas [38 and Thus the joint distribution of the vector (Xp;, Xq) is given by

pldrp,dyg) = [ (1—)Qo(dup)Qo(drg) + [ 1= [ (1 =) | Qo(dwp)dzg(zp).

1eP(m) 1eP(m)
from which the second point of Proposition 20] immediately follows. ]
Proof of Theorem

We start by reporting Lemma 1 in the supplementary material of |Camerlenghi et al. (2019b)
for the case of the o-stable process, that will be useful in the following.
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Lemma 40. Let o € (0,1). Define 14(u) = Jrlz(lq:aa)) u’~? and

|
ql.

£n,i=2.1< .7?'7qi>qu(u)...Tqi(u), (A1)

where the sum runs over all vectors q = (qi,...,q) of positive integers such that Z§:1 qj = n.
Then the following relation holds

(=)™ d—e cu? _ g—eu? Zc%n,iv (A2)

n
du i=1

for every ¢ > 0.

Then we prove a preliminary lemma.

Lemma 41. Let P ~ PY(0,0,Q), with Q probability measure on X. Consider a collection of
disjoint sets Ai,..., A and a vector (ni,...,ny) of positive integers such that Z?:l n; = n.

Then we have
Kk
1 o
Hll( . ’ . > (I)l(?)(qlvaqk)a
j=1 7 qj,l?"'?Q],lj

E ﬁ P (A;)
j=1

where
k
Loy =2m - Xy andle = 3051 s

2.3 = qu---qu, where q; = (qy,-..,q.) is a vector of positive integers such that
ngjﬂ gjt = n; and qu is as in (Al).

Proof. Let u, be a o-stable process with parameter . With the same reasoning of the proof of
Lemma B3] we have

i , H 1#0 7 (4;)
E P"i(A)| =E |~ 55—~
jl;ll ) { pet"(X)
O'P(a) [e'e] e i (X o (A n |
— F(Q/U)F(H—i—n)/o WOTIR {e po (X )} HE {e Ho(A;) )1 (AJ)} du,

J=1

where X_ = (A4; U--- U Ag). Moreover, by Lemma [40] we have

du"s
du™

— e Q(4j)u Z Ql gn” ).

B [eme ) (4))] =

E [(—1)”je—uua(Aj)} _ (1w
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Therefore, by definition (A1) of &, ;

- n; o ol'(0) 00 . LA
E j];[lp (A]) F(Q/J)F(0+n)/0 +6— 1 1;[ Z:: é'nj7 )
- ol'(0 o) e
- ; Ll_ll Q(A])l F(G/U)F((@)—l— n) /0 u" e jl_[lfnj,lj (u) du

kol ol(6)
[Hl 1! <q] 1. ,qjyl)] T@/o) (O +n)

J=

0o kol
X / yftn—le—u? H H Tait (u) du
0

j=1t=1

By definition of 74(u) we have

kol kol
1111 7. () Fl. - HH (g0 — oyu”™"

j=1t=1

and [ yftote—1p—u 34, — F(l'ig/‘j), which implies

l.
) [Turte 0Tl 1 8/0)T(6) 5 & Tgz0 — o)
n u® d — L)
TO/C0+n) Jo " ¢ ]HquTq“ YT T/ 0 1 n) jH”:l I(l1—o)
1 oD (le +0/0) & &
T (0+1),y 60(0/0) ]1;[ 1;[ ?)aji1
l;
T 1(0—i—w (n)
= =& ),
0+ 1) ]:1_[“1_[1 0)gj—1 = ¥, (ay qa)
as desired. ]

Proof of Theorem[15 Denoting np = (np1,...,np k), for any x; # ... # x; we evaluate

M(dxl, .. d.l‘k

H 11 HP"” dz;)

i=1pel; j=1

d k
=limE [H 1T 11 Pe™ (A

= ll_{%M(Ab S 7Ak)>
i=1 pel; j=1

where A; = Aj. = B(zj,¢€) is a ball of radius € around z;, with € > 0 small enough so that
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A; N Aj =0, for any i # j. By basic properties of conditional expectation, we get

M(Al,...,Ak):E HHHPnp] |Pg,g€Ld1
i i=1pel; j=1
=Eﬂnmw HHWJ\%%M4
_f peL; j=1 pELy j=1

Conditional to { Pg; g € L4—1}, the random measures Py, with p € Lg, are independent, so that

HP”"’ )| Pg; g€ Ly 1].
7=1

HHPan |Pgag€Ld1]:H

peLy j=1 pPELy

By Lemma (1] we have

k
HP"” )| Pgige Ly 1] =S5 I P (4)

lp 9p j=1

k
1 n
X H P <I>§n.pi)(qp,17 cee 7qp,k)‘
dp.j,15 - j P

j=1 Ip,j! <2 9p,jlp.j

By definition of I, 1 and readjusting the terms, thanks to the linearity of the expected value we
are left with computing

d—2 k k
[T I1 I1R ) T1 ILmm 4, -

i=1 peL; j=1 pELg—1j=1

_ k k
H [T A AE| TT TP (4) | Pes g € Las| |

=1 ELl‘] 1 pELd—l ]:1

therefore we apply repeatedly Lemma In the end we obtain

M(Ay,. .., Ay) :ZZKE)E
1 a ™

As € — 0, the non-atomicity of Q¢ implies

k
(H dxj ) )(ll 17---7l1,kz)-

+1
H H l(:z p+1le) qP,l’ - ,qp’k).

i=1p€eL;

k
Pl
};[1 0

k

H Pyt (A

Finally, the result follows by noticing

I’ (np; peT) = /Xk M(day, ..., day).
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O

Proof of Theorem

Proof. If |p| = 1, the result follows by Theorems 7 and 8 of (Camerlenghi et al. (2019b)). We
prove the main result by induction on the number of levels. Assume that for every q with
lg| = k — 1 it holds

Kan~ | JI Ao | () = Aq(n),
g€P(q)

where we use the notation K, to emphasize that the observations are collected at q. Assume
now that p has level k. By the same reasoning of Remark 1 or of the proof of Theorem 7 in
Camerlenghi et al. (2019b), it holds

a.s.
van = KB7K£),TL7

where K, ,, is the number of distinct values in T, = (Tp,1, ..., Tpm), With Tp; | Qp ~ Qp and
Qp ~ PY(ap, 0p,Q), Q being a diffuse measure. Therefore we can write

Kpn  as Bprp, Ko,

Ap(Aop () Kpo, (n) Ap(Aap (1))

The second product on the right hand side converges almost surely to a finite random variable,
by induction hypothesis, while

Koy, _ e (Kpn) Koy, /de (Kpn)

Kpaop@)  Ap Ay () Kprop )/ Ap Aoy (m)

By definition, K}, /A5, (n) converges almost surely to a finite random variable, so that by
induction hypothesis the same happens for the ratio on the left hand side. Thus, we conclude

EKpn 2 Ap(Aoy () = [ I Aoy | (),

q€P(p)

as desired. O

Proof of Theorem

Proof. Let d = |n/m| be the level at which the n-th observation is collected, where |a| is the
lowest integer bigger than a. Moreover, let mq be the number of observations collected at node
q. By Theorem conditional on the first n — 1 observations and the auxiliary variables T, the
probability that the n-th observation is completely new is given by

(nr+lr+1o+l)

H r7lr.+1 (qr71’ o 7qr’k7 H 61‘ + O'rlr.
r+lr [ )
rEP(p) (I)E::llr. i )(qnl, . ,an) I‘G’P 9 + my + lr+1.
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where p is the node at level d where the observation is collected. By hypothesis we have

6+ am(d—|r| + 1)

Or + Orlre < é + 5(mr + lr—i—lo)
0+m(d—|r|+1)

0r+mr+lr+1o - §+mr+lr+1.
- 6+am(d+1)
T 0+m(d+1)

<

Since the last bound does not depend on the data and T we can write

~ _ d+1
0 d+1
P(K,-K, 1=1)< _JFLH) ~ 5d+17
0+m(d+1)
as d — co. Therefore -
Y P(Kp—Kn1=1) <00
n=1
and the result follows by Borel-Cantelli Lemma. O
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Chapter 4

Gibbs samplers for parametric
hierarchical models

4.1 Introduction

Gibbs samplers |Casella and george| (1992) are a family of Markov Chain Monte Carlo (MCMC)
algorithms Brooks et al.| (2011) commonly used in various scientific fields. In the context of
Bayesian Statistics, they are routinely employed to draw samples from posterior distributions of
unknown parameters conditional to the observed data Green et al.| (2015); Martin et al.| (2023).
Like most MCMC methods, they are guaranteed to converge to the correct posterior distribution
as the number of iterations tends to infinity under mild assumptions (Roberts and Sahu, 1994).
However, understanding how quickly this convergence occurs, for example by quantifying the
so-called mixing time of the Markov chain generated by the algorithm, is in general a hard
task. In this paper we address this question for Gibbs samplers targeting certain classes of high-
dimensional Bayesian hierarchical models. Analysing convergence properties, such as mixing
times, is the key technical step needed to rigorously quantify the computational cost of MCMC
algorithms.

Hierarchical models

Our motivating example is given by classical Bayesian hierarchical models of the form

YilOj~f(-16;) 7=1,....J,

0; 1™ p(-|v) j=1,....J, (4.1)

Y ~po()-
Here the observed dataset Yi.; = (Yj);=1,..,s is divided into J groups, with data for each group
typically containing multiple observations, e.g. Y; = (Yj1,...,Yjn). Each group features some

local (i.e. group-specific) parameters 6; € R, while ¢p € RP are global (hyper)-parameters.
Above f(-]8), p(- | ) and po(-) denote some likelihood function, local prior and global prior,
respectively. See Section for the assumptions we require on each of those. Given model ,
posterior inferences are based on the conditional distribution of ¢ and @ = (61,...,0;) given
Y1.7, which we denote as £(d@,d|Y1.s). Hierarchical models such as are the workhorse
of Bayesian Statistics and are commonly employed in many applied contexts (see e.g. |(Gelman
and Hill (2007); |Gelman et al. (2013) and references therein). In this paper, we are mostly
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Figure 4.1: Integrated autocorrelation times (on log-scale) of Gibbs samplers targeting the posterior
distribution of model with specification (4.2). Quantiles refer to repetitions over datasets randomly
generated according to the model with true parameters p* = 7* = 1. Left: m = 3. Right: m = 5. See
Section |£5| for more details.

interested in the high-dimensional regime where J — oo, so that both the number of datapoints
and parameters, i.e. n = Jm and p = J¢ + D respectively, diverge.

One iteration of a Gibbs sampler targeting £(d@, dy|Y1.7) sequentially samples each param-
eter from its full-conditional distribution, i.e. it performs the updates 6; ~ £(d6,|Y1.s,%) for
j=1,...,J and ¥ ~ L(dy|Y7.s,0). Algorithms based on conditional updates are well-suited to
model , since they naturally exploit the underlying sparse dependence structure. In par-
ticular, the conditional independence of #1,...,0; given Y7.; and v implies that the sequence
of updates from the low-dimensional distributions £(d6;|Y7.s,%) for j = 1,...,J is equivalent
to an exact joint update from the high-dimensional distribution £(d@Y7.,). Also, since local
parameters interact only with local data conditional on v, i.e. £(d0;|Y1.;,v) = L£(d6;|Y;, ),
one iteration of the Gibbs sampler can typically be implemented with a computational cost
that scales linearly with J. For the sake of comparisons, a similar cost is required by a single
likelihood evaluation or a single posterior gradient evaluation for model . See also Remark
M3l in Section [4.4] for related discussion.

The key question to properly assess the effectiveness of Gibbs samplers targeting model
is how fast the resulting Markov chain converges to its stationary distribution £(d@, d|Y7.;). In-
terestingly, such chain often enjoys dimension-free convergence speed, meaning that the number
of iterations required to converge does not grow (or grows only logarithmically) with J. Figure
illustrates numerically this behaviour on a hierarchical logistic model, where the likelihood
and prior in are specified as

m 69
flw16) = (y) e PO19) = NO a6 = ) (+2)

with y € {0,...,m} and m being a positive integer. The prior for ¥ = (u,7) is set to pu | 7 ~
N (0, 103/7) and 7 ~ Gamma(0.1,0.1). Full details on the simulation set-up of Figure are
described in Section [£.5] The results suggest that the number of iterations required by the Gibbs
sampler to draw each sample from £(d@,dv|Y7.;) remains bounded as J grows and asymptotes
to a finite value as J — oco. Combined with cost per iteration, this implies a computational
complexity that grows linearly with J. Note that this complexity is smaller than the one of
popular gradient-based MCMC methods when applied to these models (see Section for more
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details), supporting the idea that Gibbs samplers can achieve state-of-the-art performances for
hierarchical models with sparse dependence structures.

In Section we provide rigorous support to the above empirical evidences. In particular,
we study the asymptotic behavior of mixing times of Gibbs samplers targeting model (4.1)).
There we prove that mixing times remain bounded as J — oo under mild assumptions on the
likelihood f and the global prior pg. We instead require stronger assumptions on the local priors
p(- | ©), which we assume to be in the exponential family. Our results (see e.g. Theorem are
average-case ones and hold with high probability with respect to the law of the data-generating
process. To do so we assume the observed data Y7.; to be randomly generated. This allows to
use tools of Bayesian asymptotics, such as Bernstein-von Mises type statements (see e.g. Chapter
10 of [Van der Vaart| (2000)), to characterize the asymptotic posterior behaviour as J — oo and
then extract information about the limiting behaviour of the associated sequence of MCMC
algorithms.

Related literature

The literature on performances of MCMC methods is very broad. The most well-studied classes
of algorithm are probably gradient-based ones, such as Langevin (Roberts and Tweedie| [1996)
and Hamiltonian (Neal, 2011) Monte Carlo, see e.g. Dalalyan| (2017)); Durmus and Moulines
(2017); Dwivedi et al. (2019) and related literature. Available results suggest that the number
of iterations (or target gradient evaluations) required by those algorithm to converge to station-
arity increases with dimensionality, e.g. growing as O(J%) with the dimensionality .J, for some
a > 0 that depends on the setup and type of algorithm (Roberts and Rosenthal, [1998; |Beskos
et al.l 2013; [Wu et al.l 2022). In the context of hierarchical models, given that each target
gradient evaluation has a linear cost in J, this leads to a computational cost to sample from
£(d@,dw|Y1. ) that scales super-linearly with J, e.g. as O(J'*®) with a > 0. Comparing these
results to the one we develop here for Gibbs samplers suggests that, while being state-of-the-art
black-box schemes to sample from generic high-dimensional distributions with appropriate regu-
larity conditions (e.g. log-concavity), default gradient-based MCMC schemes can be suboptimal
for high-dimensional hierarchical models. See also Papaspiliopoulos et al.| (2023) for related
numerical evidences.

Compared to gradient-based MCMC, results for Gibbs-type schemes are less abundant and
more model-dependent. Notable recent examples include [Yang and Rosenthal| (2022); |Jin and
Hobert| (2022); |Qin and Hobert| (2022), which provide convergence bounds for hierarchical mod-
els, similar to , with Gaussian and Poisson likelihoods. Another recent result is given by
Qin and Hobert| (2019), which provides dimension-free convergence bounds for Gibbs samplers
for high-dimensional probit regression models under appropriate regimes. Providing sharp non-
asymptotic analyses like the ones above requires proof techniques, such as drift-and-minorization
techniques (Rosenthal, 1995) and random mappings Qin and Hobert| (2019), that are usually
likelihood-specific and potentially hard to construct. For example, they may require to devise
and study a suitable Lyapunov function that depends on the specific choices of both likelihood
and priors in (see e.g. formulae (6) and (33) in Jin and Hobert| (2022) and [Yang and
Rosenthall (2022), respectively). On the other hand, these approaches provide non-asymptotic
bounds that apply to fixed sample size and dimensionality, thus being complimentary to the
high-dimensional asymptotic analysis we develop here.

Interestingly, there are relatively few papers combining the tools of Bayesian asymptotics
and MCMC theory in rigorous ways. The work in Belloni and Chernozhukov| (2009) uses
Bernstein-von Mises Theorem to provide polynomial bounds on the convergence of random walk
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Metropolis-Hastings schemes. After that, very recent papers use similar techniques to provide
complexity analysis of MCMC schemes, see e.g. |Nickl and Wang] (2022)); [Negrea et al. (2022);
Tang and Yang] (2022)) dealing with gradient-based methods, the first in the context of inverse
problems. A brief discussion about the use of asymptotic posterior characterisations to study
the convergence properties of Gibbs samplers is given in [Roberts and Sahu (2001). A more in-
depth use of Bayesian asymptotics to study data augmentation procedures is given in [Kamatani
(2014)), which also considers hierarchical models. See Remark [14]in Section for more details
on the results in|Kamatani (2014). Finally, an interesting exception is given by Bayesian variable
selection models, where multiple works have exploited the asymptotic behaviour of the posterior
distribution to characterize the computational performances of Bayesian methods [Yang et al.
(2016); |Atchadé (2021); [Zhou et al.| (2022]).

Sketch of the main arguments and structure of the paper

The argument we employ to study Gibbs samplers targeting £(d@,d | Yi.7) can be decom-
posed in three main parts. First, if p(- | ¥) belongs to the exponential family, there exists a
set of sufficient statistics T = T'(0), whose dimensionality does not depend on J, such that
L(dy | 6,Y1.;) = L(dy | T(0),Y1.5). Lemma [44] in Section shows that, as a result, the
Gibbs sampler on £ (d6,dy | Yi.s) has the same mixing times as the one on £ (dT,dy | Y1.7).
This allows to focus on the latter distribution which, unlike the former, is intractable but fixed
dimensional. Note that this dimensionality reduction does not require the likelihood f to admit
sufficient statistics (see Remark and is a peculiar property of Gibbs samplers, since it exploits
the presence of exact updates. The second step consists in studying the asymptotic behaviour of
L (dT,dy | Y1.) as J increases. In particular, Proposition [23 shows that a suitable rescaling of
(T, ) converges to a multivariate Gaussian distribution in total variation distance. The proof
combines a classical Bernstein-von Mises Theorem for ¢ (Lemma with a less standard Cen-
tral Limit Theorem for T' conditional on ¢ (Lemma [46]). More details can be found in Section
4.4l The final and key point is then to connect the convergence of the target distributions, in
this case {£ (dT',dv | Y1.5) }s>1, to the convergence of the associated Gibbs sampler operators.
Theorem 18| proves that the limiting behaviour of a sequence of Gibbs samplers is equivalent to
the behaviour of the Gibbs sampler on the limiting distribution: this is shown in total variation
distance and under warm start assumption. The fundamental link is given by Proposition [21]
which provides an upper bound on the distance between Gibbs sampler operators in terms of the
one between the target distributions. Since those results are of independent interest and are not
specific to hierarchical models, we start by developing those in a general setup in Section
Then, Section [£.3] recalls the Bernstein-von Mises Theorem and illustrates the results of Section
to the fixed-dimensional setting. Section [£.4] develops the main results of the paper dealing
with general hierarchical models (see e.g. Theorem and Section verifies the general condi-
tions for some specific likelihood families, e.g. Gaussian, binomial and categorical, together with
providing numerical simulations and extension to different graphical model structures. Since a
warm start initialization for the sampler is assumed throughout, the availability of feasible starts
is discussed in Section [4.6] Finally, Section discusses extensions and future work.

4.2 Gibbs sampler and asymptotics

In this section, after recalling basic definitions about Gibbs kernels and mixing times, we connect
the convergence of a sequence of target distributions to the convergence of the associated Gibbs
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kernels. This leads to Theorem which characterizes the limiting behaviour of the Gibbs
samplers mixing times. Throughout this section, the target distributions are assumed to have
fixed dimensionality.

Setup and notation

Let (mp)n>1 = (Wn( ] Y(”))>n>1 be a sequence of probability distributions on a common product

space X = X X - - - X Xg, where each 7, is allowed to depend on some observed data Y e Y.
In our applications, 7, (- | Y(")) represents the posterior distribution of some unknown parameter
x € X conditioned on the data Y (™. For the sake of brevity, we will often omit the explicit
dependence on Y (™).

Let P, be the Markov transition kernel of the deterministic-scan Gibbs sampler targeting
m,, defined as the product of K kernels

P, = IR Pn,K- (4'3)

For each i € {1,...,K}, P,; is the transition kernel on X that updates the i-th coordinate
drawing it from its conditional distribution 7, (dz;[x(~=9), where x(=9 = (2);;, while leaving
the other components unchanged. Equivalently

Pn,i (Xa Sx,i,A) = /A7Tn (dyz | X(_i)) , AcCX, i=1,...,n,

with Sx;a={y € X : yj =x;Vj#iandy € A}. It is easy to show that P, ; is reversible with
respect to 7, for every i, so that m, is the invariant distribution of P, (Roberts and Rosenthal,
2004; Hobert, [2011} |Chlebicka et al., 2023]).

Given € € (0,1), define the e-total variation mixing time of P, with starting distribution
pn € P(X), where P(X) denotes the set of probability distribution on X, as

tg:;)m(e,un) = inf {t >0 : H,unPé - ﬂ-nHTV < 6} , (4.4)

where P! denotes the ¢-th power of P, u, PL(A) = [y PL(x, A)un(dx) for any A C X and || - ||y
denotes the total variation norm. By definition, mixing times quantify the number of Markov
chain’s iterations required to obtain a sample from the target distribution m,, up to error e. We
will focus on worst-case mixing times with respect to M-warm starts. The set of M-warm starts
relative to a distribution 7 is defined as

N(m,M)={peP(X): n(A) < Mr(A) for all A C X}, M>1mePX), (4.5)
and the associated worst-case mixing times for P, targeting =, are

£ (e, M) = sup ") (e ). (4.6)
MnEN(Wn,M)

Remark 3. While being common in the literature, see e.g. |Dalalyan (2017); \Dwivedi et al.
(2019); ' Tang and Yang (2022) for gradient-based methods, the warm start assumption can be
quite stringent and potentially unrealistic. In particular, assuming that the algorithm can be
initialised by sampling the starting configuration from a warm start with relatively small M (e.g.
one that does not grow exponentially fast with dimensionality) may be unrealistic. In Section
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.0 we show that in the specific case of hierarchical models as in (4.1)) a feasible start, i.e. a
starting distribution which can be implemented in practice and allows to control the value of M,
s available under some assumptions.

Assumptions on the sequence of target distributions

We consider settings where a rescaled version of the sequence (7, ),>1 converges to a well defined
limiting distribution as n — oco. This is often the case in a Bayesian context where some version
of the Bernstein von-Mises theorem holds (see e.g. Theorem below). The convergence of
(7n)n>1 occurs with high probability assuming the data Y (™ is randomly generated from some
distribution. In particular, we assume for the rest of this section that Y™ is random with
distribution Q™ € P (3)(”)). The following assumption specifies the convergence we require for

(Wn)nZIZ

(A1) There exists @ € P(X) and a sequence of transformations ¢, : X — X that act
coordinate-wise, i.e. where

¢n(x) = (an,l(l'l)a ce 7¢n,K($K)) 3 xeX (47)
with ¢, ; @ &; — A&} injective and measurable, such that

|7t — 7|l — 0 as n — 0o, (4.8)

in Q(-probability, i.e. such that lim, e QU (||7n — 7| py, > €) = 0 for every e € (0,1),
where 7, = 7, o ¢! is the law of X = ¢,,(x) under x ~ 7.

Remark 4. The necessity of rescaling x by some transformation ¢, in comes from the
typical behaviour of posterior distributions in Bayesian models. Indeed, without rescaling, m,
often converges to a random variable which is degenerate to a Dirac delta at a fized value (e.qg.
the underlying data-generating parameter). Thus, in order to have a non-trivial limit and total
variation convergence, which is essential for our purposes, a suitable rescaling is needed. In our
context the specific form of this transformation is dictated by the theory of Bayesian asymptotics,
see e.g. Theorem [19 below. Moreover, we assume ¢, to act coordinate-wise because this class
of transformations leaves Gibbs samplers invariant (see e.g. Lemma below), while general
one-to-one transformations can alter the Gibbs sampler dynamics and change its convergence
speed (Papaspiliopoulos et al., |2007b).

Remark 5. The results we develop below could be extended to more general versions of assump-
tion (A1), including ones where the co-domain of ¢y, is not equal to the domain, i.e. ¢, : X — Z
for some Z, and where the limiting distribution 7 is random, i.e. allowed to depend on the se-
quence (Y(”))n. Since (A1) is enough for our purposes and motivating applications, we do not
consider such extensions here to keep motation simple.

Let P and P, be the kernels of the Gibbs samplers targeting # and 7, respectively. The
following lemma shows that studying total variation convergence from M-warm starts for the

sequence of kernels (P,),>1 is equivalent to doing it for the sequence (P,,),>1 . The proof, which
can be found in Appendix C| relies on the coordinate-wise and bijective requirements of (Al).

Lemma 42. Under Assumption (A1) we have

S LR IR L

Lin €N (7n, M) TV i eN(fn,M
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Convergence of Gibbs samplers operators

Since by (A1) the stationary distribution of P,, the Gibbs samplers targeting 7,, converges to
the one of P, one may be tempted to translate such convergence at the level of the kernels,
e.g. ||Pu(x,-) — P(x,")||rv — 0 for (7-almost) every x € X. However this is not only false for
generic Markov operators, but even in the special class of Gibbs sampler operators: one can
have ||7, — 7y, — 0 as n — oo, while ||P,(x,-) — P(x,-)||7v ~ 0 for any x € X, see e.g.
Example A.1 in Appendix A. The reason is that convergence of the joint distribution 7, in total
variation distance does not imply convergence of the associated conditional distributions, that
are the building blocks of the Gibbs sampler operator. However, it turns out that a control on
the total variation distance between two target distributions is in general sufficient to control
the distance between the corresponding Gibbs sampler operators applied to warm starts. The
following Proposition makes the connection precise. Interestingly, no assumptions on the target
distribution and Gibbs samplers are required.

Proposition 21. Let Py and P» be the transition kernels of Gibbs samplers targeting m; € P(X)
and my € P(X), respectively. Then we have

[1PL = pPollpy < 2MK w1 — 7ol 7y (4.9)
for every p € N(m, M) UN (mo, M) and M > 1.

Proposition translates convergence of the stationary distributions, given by (A1), into
convergence of the Gibbs samplers operators when a warm start is considered. It is worth noting
that a bound of this form cannot hold for generic Markov transition kernels. Indeed, consider
transition kernels P; and P, with the same stationary distribution 7: by basic properties of
the total variation distance it holds ||uP1 — pPa||py < 2| — 7|4y, The latter bound cannot
be improved in general, meaning that it is possible to find ergodic kernels P; and P, that get
arbitrarily close to the above upper bound, see Example A.2 in Appendix A.

Proposition [21] is used in the proof of Theorem which shows that the limiting behaviour
of P,, in terms of distance to stationarity from M-warm starts, is completely characterized by
the behaviour of the limiting operator P. The proof of Theorem [18] also relies on the fact that
the total variation distance between 71 and 7o provides a control on the distance between the
two sets N (w1, M) and N (ma, M), as shown in the following Lemma.

Lemma 43. Let m,m € P(X). Then, for every uy € N(my, M), there exists us € N(mwa, M)
such that 1 — iallyy < M lImy — ol

Lemma implies that, under assumption (A1), for every g € N (7, M) there exists a
sequence { i, }, such that fi, € N (&,, M) and ||jin, — fil|py — 0 as n — oo in Q(™-probability.
We can now state Theorem

Theorem 18. Let assumption (A1) holds. Then for every t € N and M > 1 it holds

lim sup ‘u P —x = sup ‘ﬂpt -7 ,
n—oo /Lne./\/—(ﬂn,M) ‘ ntn nHTV ﬁEN(ﬁ,M) ‘ HTV
in QU -probability.

Remark 6. An alternative approach to derive convergence statements on the sequence of Gibbs
kernels would be to consider stronger forms of convergence for the sequence (7, )n>1 than the one
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in total variation distance in . However, we prefer to derive results under weaker conver-
gence requirements for (Tn)n>1 to allow for a more direct use of standard asymptotic results in
the Bayesian literature (e.g. common formulations of the Bernstein-von Mises theorem), which
are usually derived in terms of weaker metrics such as total variation one.

Implications for mixing times

Denote the mixing times of P as

iz (€, M) = ﬁeﬁ/’l(lflr)M) inf {t >1: Hﬂpt - ﬁ-HTV < e} .

The following corollary of Theorem [18{shows how to use t,: (€, M) to deduce statements on the
behaviour of the sequence of mixing times of interest, (t(n) (€, M))p>1-

mix
Corollary 8. Let assumption (A1) holds. If (M, €) € [1,00) x (0,1) is such that t,, (e, M) < oo,
then

Qm <t£:i)x(e, M) < fm(e,M)) —1 (4.10)

as n — 0o. Otherwise, if (M, ¢€) € [1,00) x (0,1) is such that tim(e, M) = oo, then it holds

miz

Q™ (t(") (e, M) < T) =0

as n — 00, for every e < € and’T > 0.

Remark 7 (Mixing times bounded in probability). When ty.(e, M) < oo, the statement in

(4.10) implies that ¢ (e, M) = Op(1) as n — oo, i.e. that the sequence of random variables

mix
(tggz-)m(e, M))n>1 is bounded in probability. The latter means that for every § > 0 there exist an

integer Ns and a real constant Bs < oo such that Q(”)(tgsi)x(e, M) < Bs) > 1 —0 for every
n > Ns, which holds by ([4.10)) taking Bs = tmiz(e, M).

By Corollary 8] establishing whether P is ergodic (in the sense of yielding finite mixing times)
or not is enough to discriminate between sequences of kernels (P,),>1 whose mixing times diverge
as n — 0o as opposed to ones that do not (see e.g. Figure in Section for an illustration).
Since ergodicity of Gibbs samplers can be established under very mild assumptions (Roberts and

Sahu, 1994)), in practice one can expect P to be ergodic and thus (tg:l?m(e, M))p>1 to be bounded
in probability whenever (A1) holds for a well-behaved, non-singular limiting distribution 7.
Sections [4.4] and [4.5] combine Corollary [§ with dimensionality reduction techniques to provide

results on Gibbs samplers targeting high-dimensional hierarchical models.

Remark 8 (Alternative metrics). It is natural to wonder whether the result of Corollary @
may hold for weaker metrics, like the one induced by the Wasserstein distance. However, it is
possible to find examples where the convergence of the stationary distributions (in Wasserstein
distance) does not imply convergence of the associated mixing times (neither the ones defined
based on the TV distance nor the ones defined based on the Wasserstein one). The intuition is
that the limiting distribution in weaker metrics (e.g. Wasserstein, weak convergence, etc) may
ignore features of the joint distribution, such as full conditionals behaviours, that have a relevant
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impact on Gibbs sampler dynamics. For example, a sequence of increasingly correlated random
variables (whose Gibbs samplers converge slower and slower) may converge to a single point
mass, for which independence and immediate convergence automatically holds. See Erample
A.3 in Appendix A.

Explicit limiting bounds

Corollary|8|can also be used to derive quantitative bounds on the limiting behaviour of the mixing

times (tgfm(e, M))p>1. In particular, if one is able to establish explicit bounds on . (e, M),

then implies a corresponding bound in high probability on tg;)w (e, M) for large n. While
deriving quantitative bounds on Gibbs samplers mixing times is in general hard, the limiting
distribution 7 is often more tractable than the original sequence (7,),>1, & common case being
the one where 7 is multivariate Gaussian while (m,),>1 is not. In those scenarios explicit
bounds on #,,;:(¢, M) can be derived using available results on the convergence properties of
Gibbs samplers targeting multivariate Gaussian distributions, see e.g. |Amit (1991)); [Khare and
Zhou (2009); Roberts and Sahul (1997). For example, Theorem 2 in Amit| (1991)) provides an
explicit bound for deterministic scan Gibbs samplers on Gaussian targets in L?-distance (and
therefore total variation Andrieu et al.| (2022)).

In Sections and we will apply this strategy mostly to cases where K = 2, meaning
that P is a two-block Gibbs sampler. In this situation, one can use spectral gaps to bound
Gibbs samplers mixing times, as shown in the Corollary 9] Given a 7-invariant kernel P with
7 € P(X) we define its spectral gap as

Gap(P) = Sz [f(y) = f(x)]? 7(dx) P(x, dy) } |

inf
f:7r(f2)<é<1>1, Var (£)>0 { 2Var.(f)

where f : X — Rare measurable functions, 7(f) = [ f(x)7(dx) and Var(f) = [, [f(x) — ﬂ(f)]27T(dX).
We refer to Rosenthal and Rosenthal| (2015) and the proof of Corollary |§| for discussion on why
spectral gaps, which are commonly used for 7-reversible chains, can be used to analyse two-block
Gibbs samplers, which are technically not reversible. We also note that Corollary [J is only one
possible approach to bound (e, M) and that any quantitative bound on the latter can be

combined with Corollary E to deduce limiting statements on (t%)x (6, M))p>1.
Corollary 9. Let K = 2, assumption (Al) be satisfied and Gap(P) > 0. Then, for every
(M,e) € [1,00) x (0,1) it holds

log(M/2) — logge)
—log(1 — Gap(P))

QM <t7(gi)x(e,M)§1+ >—>1 asmn — oo.

Given the result of Corollary [9] it is natural to ask whether the convergence proved in The-
orem [18] could be rephrased in terms of spectral gaps, i.e. Gap(P,) — Gap(P). However, once
again, convergence in total variation is too weak for this purpose: indeed it is not difficult to
find examples where (A1) holds and the associated Gibbs sampler spectral gaps do not con-
verge, even under the stronger condition requiring || P,(x, ) — P(x,-)||7y — 0 for any x € X,
see Example A.4 in Appendix A. Controlling directly the spectral gaps would require extremely
stringent conditions on the convergence of 7, to 7 that are rarely satisfied (e.g. uniform con-
vergence of the associated densities on the log-scale, i.e. supy¢y | log 7y (x) —log7(x)| — 0). An
alternative approach to the direct warm-start mixing time analysis that we perform here, would
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be to consider asymptotic behaviours of approximate spectral measures, such as approximate
spectral gaps, see e.g. |Atchadé (2021)); Tang and Yang (2022).

4.3 Illustrative example: fixed-dimensional parametric models

We first consider the fixed-dimensional case. While this is not our main interest or motivating
application, it allows to show the type of results we will derive and also introduce notation about
classical Bayesian asymptotic results that we will use. In this setting m,(dy)) = p(d | Y™) is
the posterior distribution of the Bayesian model defined as

Vil o & f(Y [4), ¢~ po(e), (4.11)

where ¢ = (Y1, ..., 1K), with X € RX, and Y = (Y1,...,Y,), with Y; € ¥, i = 1,...,n, so
that Y™ = Y™ Moreover, if Y; i Q for some Q € P(Y), we denote with Q™ and Q(>) the
associated product measures. We study the mixing times of the Gibbs sampler that updates one
coordinate of ¢ at the time as n grows. In order to apply the results of Theorem [18| we need a
suitable transformation of 1, that is given by the celebrated Bernstein-von Mises Theorem, which
we now recall. The version we provide here, which makes stronger than needed assumptions, can
be obtained combining Theorem 10.1 in [Van der Vaart| (2000), with other remarks in Chapter
10 therein, incuding Lemmas 10.4 and 10.6.

Theorem 19 (Bernstein-von Mises). Consider model and let the map v — f(- | )
be one-to-one. Let the map ¢ — +/f(y|v) be continously differentiable for every y € Y,
with non-singular and continuous Fisher Information Z(1)). Let the prior measure be absolutely
continuous in a neighborhood of ¥* € X with a continuous positive density at ¥*. Finally, let
W be a compact neighborhood of ¥* for which there exists a sequence of tests u,, such that

n

/ tn (- ym) T F(dyi | 07) =0,
y =1

n (4.12)
ZZE/MM (1 —un(y1,-- -, yn)] i:Hlf(dyi | ) =0, asn — oco.

Then, if Y; i Qu+ fori=1,2,... with Qu+ admitting density f(y | "), it holds

— 0, as n — oo
TV

e(619%) - (e )

in QU -probability, where § = /(v — ¥*) and Ap - = 7 Lita Vieg f(Y; | w)lww*'

Remark 9. Differentiability of \/f(y | ¥) and continuity of Z() imply that the model is differ-
entiable in quadratic mean, which allows to prove local asymptotic normality of the log-likelihood
function. See Theorem 7.2 and Lemma 7.6 in|Van der Vaart (2000).

Remark 10. A test is a measurable function v : Y™ — [0,1]. The integrals in (A.12)
represent probabilities of errors of first and second kind, respectively, when the null hypothesis
Hy : ¢ =" is rejected with probability u(yy, ..., yn).

Loosely speaking, Theorem [19| implies that, if the model is well-specified and ) is suitably
rescaled, the posterior distribution converges to a multivariate normal. The result holds under
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some identifiability requirements: first of all, the true parameter ¥* must belong to the support
of the prior; moreover, we must be able to separate ¥* from the complements of its neighborhood,
given infinitely many data. Such assumption is mild in most interesting cases and it is implied
by the existence of uniformly consistent estimators for ¢ (that is guaranteed if the support of
po is compact). See Chapter 10 in Van der Vaart| (2000) for more details. Finally, the Fisher
Information matrix must be non singular.

Remark 11. Notice that Theorem requires the model to be (perfectly) well-specified, which
rarely happens in practice. However there exist extended versions for the case of misspecified
likelihoods (Kleiyn and van der Vaart, |2012), where the limiting distribution is still Gaussian
with a different covariance matriz. Indeed, we expect the results of this and the following sections
to hold in a similar way under misspecification: of course the different limiting distribution will
have an impact on the final result, especially in the application of Corollary[9

We can now use Theorem [I8and Corollary [§to bound the mixing times of the Gibbs sampler
associated to model (4.11]) as n diverges.

Proposition 22. Let model (4.11)) satisfy the hypotheses of Theorem and let P, be the Gibbs
sampler kernel targeting m,(dip) = p(dip | Y ™) by updating one coordinate of ¥ = (41, . .., ¢K)
at a time. Then, for every (M,e) € [1,00) x (0,1) there exists T (¢Y*, e, M) < oo such that

Proposition 22] shows that, under the conditions of Theorem [I9 and starting from an M-
warm distribution, the number of iterations required to get e-close to the posterior distribution
does not grow as n — oco. An application to the normal model with unknown mean and precision
is given by Corollary C.7 in Section C.10 of Appendix C.

The main take-away of this Section is that, under relatively mild conditions, the Gibbs
sampler behaves well with models of fixed dimensionality and growing number of observations.
In the remaining of the paper we consider the more challenging setting of hierarchical models,
where the number of parameters grows with the number of observations: in particular we will
explore situations in which the number of required iterations remains fixed even with a growing
dimensionality of the problem.

4.4 Hierarchical models with exponential family priors

We consider a general class of hierarchical models, with data divided in J groups, each having
a set of group-specific parameters ¢;. The latter share a common prior with hyper-parameters
1. Recalling (4.1]), the model under consideration is

iid

Yil0j~f(16;), 6;1¢v~p(|v), ¢~pol) (4.13)

We assume that the prior for 6; € R’ belongs to the exponential family, that is

p(0|v) = exp{Zns Ti( —A(w)}, (4.14)

where ¢ € RP, h : R® — R, is a non-negative function and n,(v)), Ts(f) and A(¢)) are
known real-valued functions with domains R?, R? and RP respectively. We will always assume
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the family to be minimal, that is both (n1(¢),...,ns(¢)) and (T1(0),...,Ts(f)) are linearly
independent. On the other hand, we let f(y | #) be an arbitrary likelihood function with data
y € R™ and parameters § € R, dominated by a suitable o-finite measure (usually Lebesgue or
counting one).

Denoting 8 = (61,...,0,), Yi.; = (Y1,...,Ys) and 7;(d0,dy) = L£(dO,dy | Yi.5), we are
interested in studying the two-block Gibbs sampler targeting 7 ;(d@, dw)), i.e. the kernel defined

B Py <(0<t—1>,¢<t—1>) , (d0<t>,d¢<t>)) =y (400 | =) 7y (dp® | 60) . (4.15)

Throughout Section we denote by (G(t),w(t)>t>1 the Markov chain with operator Py, and

by tgl)m the associated mixing times, i.e.

tgi)w(eaﬂ) = inf {75 >0: H,UP3 - WJ”TV < 6} , tﬁ;;)x(e,M) = A?(up " tgr{i)x(e,u).
HEN (T,

Dimensionality reduction

In order to apply Corollary |8 to characterize tg;l]gx, we would need to study the asymptotic

distribution of w;y as J — oo. The latter is a distribution over ¢J 4+ D parameters, there-
fore its dimensionality grows with the size of the data. However, the next lemma shows
that the convergence properties of Py can be described through a Gibbs sampler on an in-
tractable, but fixed-dimensional target, namely #;(dT,dy) = £ (dT,dv | Yi.;) where T =

(/i T0)), - S Ts(6))), with T as in (1) Let (T<t>,zp<t>)t21 = (T(6©),p)

be the stochastic process obtained as a time-wise mapping of (O(t),w(t))t>1 under (0,1) —

(T'(0),v). The latter process contains all the information characterising the convergence of

t>1

(O(t),w(t))t>1, in the sense made precise in the following lemma. Below we denote by Pj the

kernel of the two-block Gibbs sampler targeting 7 ;.

Lemma 44. For each J > 1, the process <T(t), w(t))t>1 is a Markov chain, its transition kernel
o)) -

coincides with pj, and its mizing times t,,/  satisfy
J A(J
sup t ey = sup £ (e,v) (M, ) € [1,00) x (0,1).
HEN (7 g, M) vEN (7 1,M)

Remark 12 (Prior and likelihood assumptions). In order to reduce the dimensionality of the
Markov chain under consideration, Lemma[{]] requires the existence of sufficient statistics only
for the prior density of the group-specific parameters. It does mot require any condition on the
likelihood function in model (4.13)). In particular, we have L (di | 0,Y1.5) = L (dyp | T(), Y1.5),
while £ (dY1.y | 0,v¢) # L (dY1.5 | T(0),1) in general.

Lemma allows to focus the analysis on the convergence speed of (T(t),w(t)>t>1, which

is a chain whose dimensionality does not grow with the size of the data. Note that its target
distribution 7 is usually not available in closed form, and the corresponding two-block Gibbs
sampler P; cannot be implemented directly (unless by implementing the original algorithm Pj

and keeping track of (T(t),¢(t)>t>1). In this sense the latter chain is useful for convergence

analysis purposes but less so as an algorithmic shortcut.
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The result of Lemma[44]is a peculiar property of the Gibbs sampler, which naturally ignores
ancillary information about ¢ in 6. Indeed, the proof of Lemma crucially relies on the
fact that the algorithm is performing exact conditional updates and analogous reductions do
not occur for most other MCMC schemes (e.g. Metropolis-Hastings based schemes, including
gradient-based ones).

This dimensionality reduction trick can be applied beyond hierarchical models and has al-
ready been employed in similar settings, mainly with the idea of obtaining suitable drift functions
(Rosenthal, [1995): for example, in |Qin and Hobert| (2019) it is used to derive the convergence
complexity of a data augmentation algorithm for the Bayesian probit regression model, while
in Rajaratnam and Sparks| (2015)) a similar tecnique allows to study the geometric convergence
rate of a Gibbs sampler for high dimensional Bayesian linear regression.

Regularity assumptions and main result

In order to apply the techniques of Theorem [I8] we need to provide an asymptotic characteriza-
tion of 7 7. To do so we require the technical assumptions listed in this section. The assumptions
will be verified in specific examples in Section [4.5 and [4.5]

The approach we use to analyse 77, which is discussed after Theorem is based on the
decomposition 7 ;(dT, dy)) = & ;(dy)7;(dT | v). The first set of assumptions contains standard
regularity and identifiability conditions to study the marginal distribution 7 ;(d). In particular,
assumptions (B1) — (B3) allow the application of Theorem [19| to the posterior distribution of
1. Their applicability has been discussed in Section [£.3] We denote the marginal likelihood of
the model, obtained by integrating out the group specific parameter 6, as

o1 v)= [ £ 10p(6 %) a0, (116)

and its Fisher Information matrix as
[I(¢)]d,d’ = F |ﬁ8¢d logg(Y | 1/1)} {81/&1/ logg(Y | ¢)}‘| , d, d = 1,...,D.

We will assume the following:

(B1) There exists 1v* € R such that Y; id Qy+ for j = 1,2,..., where Q-+ admits density
g(y | ¥*). Moreover the map ¥» — g(- | ¢) is one-to-one and the map ¥ — /g(z | ¥)
is continuously differentiable for every x. Finally, the prior density pg is continuous and
strictly positive in a neighborhood of ¥*.

(B2) There exist a compact neighborhood ¥ of ¢* and a sequence of tests u; : R™ — [0,1]
such that [pms uj (y1,...,y7) H;-Izl 9(y; | ¥*)dyr.; — 0 and
supyey Jpms (1=t (g1, -, y0)] T2y 9(y; | ) dyr:s — 0, as J — oc.

(B3) The Fisher Information matrix Z(v) is non-singular and continuous w.r.t. .

The second set of regularity assumptions (B4)-(B6) are described and discussed in Appendix
B. They deal with smoothness and regularity of the conditional distribution # ;(T'|1)) and they
allow to derive a suitable conditional Central Limit Theorem in total variation for #;(T'|¢) as
J — o0.

We can now state the main result of this section. Below we denote the product measures
associated to Qu« by Q;{) and prof).
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Theorem 20. Consider model (4.13)) and the Gibbs sampler defined as in (4.15)), with mizing
times tgm)l,(e,M). Then, under assumptions (B1)-(B6), for every (M,e) € [1,00) x (0,1) there

exists T (¢Y*, e, M) < oo such that
QY (tf,{m(e,M) < T(¢*,e,M)> Y

as J — oo. It follows that tgi)x(e,M) =0p(1) as J — .

Remark 13. Theorem [20 provides a formal proof of the linear in J cost for Gibbs samplers on
hierarchical models. Indeed, it proves that a bounded (in J) number of iterations suffices to get a
good mizing: assuming that the cost of a single iteration scales linearly with J, which is typically
the case, this implies an overall computational cost of order Op(J). Note that a single evaluation
of the likelihood of (8,1), or the associated gradients, which is required at every iteration of usual
gradient-based methods, yields a cost of the same order.

Remark 14. The conclusions of Theorem are similar in spirit to those of (Kamatani, 2014,
Thm.1). Also there the convergence of Gibbs Samplers targeting two-level hierarchical models
1s studied using tools from Bayesian asymptotics. The results therein, which deal with conver-
gence of ergodic averages when the algorithm is started in stationarity, are quite different from
ours, which deal with mizing times. Nonetheless they also support the idea that Gibbs samplers
targeting two-level hierarchical models can exhibit Op(1) convergence as J — oc.

Posterior convergence lemmas for Theorem

The proof of Theorem [20] can be found in Appendix C. It relies on Lemma [44] which allows to
focus on the two-blocks Gibbs sampler targeting 7 ;(dT",dv), and on Lemmas [45(and |46/ below.
These two lemmas imply that #;(dT,dv) satisfies assumption (Al) as J — oo and that the
associated limiting kernel is ergodic, thus allowing to apply Corollary

In order to prove (Al) for #;(dT,dy) = £ (dT,dv | Yi.5), we need to identify a suitable

transformation of (T',), denoted by (T, 1[1) We define a one-to-one transformation of ¢ as

b=VI—PT) - Ay, Ar= = $*)Vilog g(Y; | ¥%). (4.17)

”M“

The asymptotic distribution of ¢ follows directly through Theorem as summarized in the
next lemma.

Lemma 45. Define 1 as in (&.17). Under assumptions (B1) — (B3) it holds

— 0,
TV

Had@ [ Yiy) = N (0,27 (47))

as J — oo, in Qfﬁ) -probability.

Let MO( | y) = (M£1><w|y>,...,M§”<wry>)eRSwth (b |y) = E[1.(6;) | Y} = 4.9)]

and

[CW)],q = By, |00, MM (01 Y)] . [V@)],, = By, [Cov (Tu(6)), Tu(6) | i, )|, (4.18)
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with s,s" =1,...S and d = 1,..., D. We use the notation Fy|-] for expectations with respect
to the law of Y; as defined in (B1). Then we define a one-to-one transformation of T" as

- 1 4 * *
T = ﬁg 7(0;) - MO (7| ;)| = CwMA, (4.19)

with C(¢*) defined in . The next lemma proves the required asymptotic normality of T,
conditional to 1 .

Lemma 46. Let T be as in ([(£.19). Under assumptions (B1)-(B6) for every 1) it holds

et 1Y, 5) - N ()b V)

— 0,
TV

as J — oo, for Ql(ff)—almost every (Y1,Ya,...).

Lemma C.18 in Section C.14 of Appendix C combines Lemmas A5 and [d6] to prove that
L(dT ;1) | Y1.5) converges in total variation to a multivariate Gaussian vector with non singular
covariance matrix, which allows to apply Corollary [§ as desired.

Remark 15. The definition of T and Lemma@ are an tmportant part of the proof of Theorem
. Lemma @ relies on the fact that, conditional to ¥ and Yi.;, T is a sum of independent
(but not identically distributed) terms. The proof of convergence in total variation requires more
than the usual tools from Lindeberg-Feller Central Limit Theorem, as discussed in Appendiz B
after assumptions (B5) and (B6).

Analysis of the limiting chain

As a byproduct of the proof of Theorem [20] it is possible to characterize the limiting distribution
of the rescaled vector (T, zﬂ), as the next proposition shows.

Proposition 23. Consider the same assumptions of Theorem[20. Then

|c(l,dj | vig) = N (0.2)] . o,
as J — o0, in ngof) -probability, where

V(@) +CWH I @N)CT () CN)I (YY)
5= (4.20)
I (")CT () ()

with C(¢*) and V (¢*) defined in (38).

The expression for the limiting covariance in (4.20])) can be used to investigate the convergence
properties of the limiting Gibbs sampler, since the spectral gap is explicitly computable from
that. We can then apply Corollary [9] and obtain the following result.
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Corollary 10. Under the assumptions of Theorem for every (M,e) € [1,00) x (0,1), we
have be{) <t(J) (e, M) < T(¢*,€,M)> — 1 as J — oo, with

log(M/2) —log(e)
—log (1 —~(¥*))’

v(¥*) = min { . _i N © A eigenvalue of V_l(w*)C(w*)I_l(w*)CT(z/z*)} :

T (%, e, M) =1+

Thus, once the limiting distribution is obtained, an upper bound on the mixing times can be
derived by computing the eigenvalues of a S x S matrix. As an application, the next corollary
provides the value of v when S = D = 1.

Corollary 11. Consider the same setting of Corollary[10, with S = D = 1. Then we have

Va f E T(9J>’w*7yj7
Y(Y*) = TYV(M([T(%)W) D. (4.21)

By the law of total variance, we have that v(1*) — 0 if and only if

Vary, (E[T(0)) | v*,Y;])
E [Vary, (T(6;) | 4%,7;)]

— 0,

i.e., loosely speaking, when the data Y; yield little information about 7'(¢;) and therefore about
1. This phenomenon arises since model is an example of centered parametrization, see
e.g. |Gelfand et al.| (1995); Papaspiliopoulos et al. (2003, [2007a). The formula in resembles
the definition of the so-called Bayesian fraction of missing information (Liul [1994), with the
notable difference of not involving an infimum over a set of test functions.

4.5 Examples

In this section various examples, which differ by the choice of likelihoods and priors, are dis-
cussed.

Hierarchical normal model
Consider the following hierarchical specification:
Yii |0~ N(05,75"), =1, m, j=1,...,J
0; | 1 % N, Y, j=1,...,J (4.22)
(Ma 7—1) ~ pO() .

where (i, 71) are unknown hyperparameters. In this section we assume 7y to be fixed and known,
see Section [A.5] for the case with 79 unknown. The prior py can be any distribution satisfying
the assumptions stated in Proposition [24] below. It can be seen that is a particular case
of model (13)), with f(Y; | 6;) = [T N(Yji | 05,79 "), p(- | 1 71) = N(p, 71 ). The marginal
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likelihood of Y; conditional to (y,71,70) is given by

gy | pw,m1,70) =N (y | [L,T(;1]+ 7'le> y € R™, (4.23)

where [ is the m x m identity matrix and H is the m X m matrix of ones.

We consider three Gibbs sampler specifications, which vary depending on which parameters
are unknown and treated as random and which blocking rules are used. First, when 7 is fixed, we
define P; as the transition kernel of the Gibbs sampler that targets £ (d6, du | Yi.7) by alternat-
ing updates from £ (d@ | p,Yi.s) and £ (dy | 0,Y7.5). If instead p and 7 are unknown, we define
P5 and Ps as the transition kernels of the two Gibbs samplers targeting £ (d6,dp, dr | Yi.5) by
alternating updates from £ (d0,du | 71,Y1.s) and £ (d7y | 0, p1, Y1.7) for Po; and £ (d€ | 71, Y1.7),
L(du|0,71,Y1.5), L(dr | 0,p,Y1.5) for Ps. In the following we will show that the asymptotic
behaviour of P, and Ps is essentially the same.

It is possible to prove that P; falls directly in the setting of Theorem with T'(6;) = 0;
for P;. Even if P, and P5 are not exactly particular cases of the general theorem, since different
update schemes are considered, it turns out that they can be studied with the same tools
introduced in the previous section, with 7'(6;) = (9]-, 0; — ,u*)Q).

The next proposition shows that the settings introduced above lead to well-behaved asymp-

totic regimes. Here tgi)x (€, M) denotes the mixing times of the Gibbs sampler defined by P,
with [ € {1,2,3}. ’
Proposition 24. Let Y; i Qu~, with Qu+ admitting density g(y | ¥*) as in (4.23), where
' = (¥, 7, 715), and consider model with 1o = 15. Consider the Gibbs sampler with
operator Py, with | € {1,2,3}, and let the prior density py be continuous and strictly positive in
a neighborhood of p* when | =1 and (p*, 1) when | € {2,3}. Finally, when | =1 let 11 = 7.
Then for every (M, e) € [1,00) x (0,1) there exists T; (¢*, ¢, M) < oo such that

Q) (tf;l]i)m(e,M) <T) (% e, M)) 1 as J =00, 1=1,2,3. (4.24)

Under model (4.22)), the matrices in Corollary [10| can be explicitly computed, leading to the
following result.

Corollary 12. Under the same assumptions and notation of Proposition for every (M,e) €

[1,00) x (0,1), holds with
log(M/2) — log(e

Tl(d}*,é,M):l—l—_log(l_%(w*)), 1=1,2,3,
where .
N@W*) = (1 + n:1*> and (%) = y3(¢*) = n(¥*)?. (4.25)
To

The expressions for the asymptotic gaps in are insightful in many ways. First, u* does
not appear in any of the spectral gaps, meaning that the limiting value of the mean parameter
seems not to play a role in the asymptotic behaviour of the Gibbs sampler. Moreover, the gaps
are a function of the ratio (mT{)")_le, that is the ratio of the prior and likelihood precisions,
respectively. In particular the gaps converge to 0, i.e. the upper bound on the mixing times

diverges, if and only if (m7l)~17f — 0o, which happens when the prior is increasingly more
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informative than the data. As discussed after Corollary such phenomenon arises since
all the three formulations are an example of centered parametrization (Gelfand et al. [1995;
Papaspiliopoulos et all [2003). On the contrary, the gaps converge to 1, i.e. asymptotically a
single iteration suffices, if and only if (m7f) =17 — 0.

When 7 is fixed and po(u) is Gaussian, then £ (d€,du | Yi.y) is a multivariate Gaussian and
Py is amenable to finite-sample analysis. In fact, the expression for 7, (¢*) appeared previously
in the literature, see e.g. [Papaspiliopoulos et al. (2003). The result in Corollary [12|is, however,
different since it is asymptotic and it applies also to general priors.

On the contrary, a finite-sample analysis of P; are Ps is hard even when py(u) is Gaussian (see
e.g. |Jin and Hobert| (2022)); Qin and Hobert| (2022); |Yang and Rosenthal| (2022))) and 72(1*) and
~v3(¢*) did not appear previously in the literature, to the best of our knowledge. It is interesting
that, regardless of the value of (m, u*, 7, 7¢), including the random precision parameter, when
moving from P; to either P» or P3, always slows down the sampler (asymptotically), since
v1(¥*) > 7;(*) for i = 2,3, and that the two blocking rules of P» and P3 are asymptotically
equivalent in terms of mixing times, since vy2(¢*) = v3(¢*).

Models with binary and categorical data

Let now f(y | 0) be a probability mass function, whose point masses are denoted by yo, . - ., Ym,
with m < oo, such that for every § € RX we have

m

S furl0) =1, f(y.16)>0, r=0,....,m. (4.26)

r=0

The assumption in is mild and holds for most likelihoods usually employed with categorical
data, e.g. multinomial logit and probit. We focus on hierarchical models with normal priors,
ie.

Yi 105~ f(¥5105), OO0 i m N0 (1,7) ~ pol-). (4.27)
m) ev?
y/ (14e9)m>
hierarchical model with Gaussian random effects. The prior pg can be any distribution satisfying
the assumptions stated in Proposition [25] below. We define P as the transition kernel of the
Gibbs sampler that targets £ (d6,du,dr | Y1.s) by alternating updates from £ (d | u, 7, Y1.7)
and £ (dp,dr | 0,Y1.7). This is a particular case of the setting of Theorem with ¢ = (u, 1)
and T'(0;) = (9]-,9]2). Notice that usually £ (d0 | u,7,Y1.s) is not known in closed form (with
the notable exception of the probit case, see Durante (2019)), but nonetheless exact sampling is
often feasible through adaptive rejection sampling (see e.g. (Gilks and Wild| (1992))) since each
0; is one dimensional. The marginal likelihood is given by

For example the case f(y | 0) = ( with y = 0,...,m, corresponds to the logistic

o1 v)= [ SO (0]n7) do. (4.28)
The next lemma shows that assumptions (B4)-(B6) follow directly from (4.27)).

Lemma 47. Consider model (4.27) and let Y i Qy+, with Qu+ admitting density g(y | ¥*) as
in (4.28), with ¢* = (u*, 7). Then assumptions (B4)-(B6) are satisfied.

Thus, in order to apply Theorem [20] it suffices to prove assumptions (B2) and (B3), i.e. that
the parameters ¢ are identifiable with non singular Fisher Information matrix. Therefore, as
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formalized in the next proposition, standard identifiability conditions (which are also necessary
to consistently estimate 1) are sufficient to prove boundedness of the mixing times.

Proposition 25. Consider model and let Y; g Q= , with Qu+ admitting density g(y | )
as in , where Y* = (u*, 7). Consider the Gibbs sampler with operator P and let py be
continuous and strictly positive in a neighborhood of 1*. Let the map b — g(- | 1) be one-to-one,
with non singular and continuous Z(v). Finally, assume tests as in (B2) exist. Then for every
(M,e€) € [1,00) x (0,1) there exists T (¢*, e, M) < oo such that

Ql(ﬁ{“) (tgi)m(e,M) §T(w*,e,M)> — 1 as J — 0.

Remark 16. In most cases m > 2 is required to avoid the pair (u,T) being not identifiable and
the associated Fisher Information matriz being singular. For example Lemma C.35 in Section
C.23 of Appendiz C shows that with the logit link Z(v) is singular if and only if m = 1.

As already discussed in the Section the results of Proposition [25] are illustrated on
simulated data in Figure Since mixing times are very hard to approximate numerically
in high-dimensions, we employ the Integrated Autocorrelation Times (IATs) as an empirical
measure of convergence time. The TAT associated to a 7r-invariant Markov chain X = {X®};5,
and a test function f € L?(r) is defined as

IAT(f) =1+ 2§:C0rr (F(x®), Fx®)) . (4.29)
t=2

Loosely speaking, TAT(f) is the number of MCMC samples that is equivalent to a single in-
dependent sample in terms of estimation of [ f(x)w(dx), thus the higher IAT the slower the
convergence. When dealing with hierarchical models as in , we compute the maximum
IAT over all the parameters (both global and group specific). We estimate the IAT with the
ratio of the number of iterations and the effective sample size, as described in |Gong and Flegal
(2015)), with the effective sample size computed with the R package memese (Flegal et al., 2021)).
For a review of different methods to estimate the IATs, see Thompson (2010). In Figure
we plot the quantiles of the IATs as a function of the number of groups for the Gibbs sampler,
implemented using adaptive rejection sampling (Gilks and Wild} 1992) for the exact updates
of local parameters with full conditionals £ (df; | u,7,Y7.7). As expected by Proposition
the TATs do not diverge as J increases for both values of m under consideration. Note that
variability decreases as J increases and the posterior gets closer to its asymptotic limit.

Corollary 13. Consider the same setting of Proposition [25 For every (M, e) € [1,00) x (0, 1)
define

log(M/2) — log(€)

—log (1 —y(¢%))’

T (Y e, M) =1+
for v(¥*) € (0,1) as in Corollary[1(} Then
QY (tﬁ{}z(e,M) <T (W e M)) 51 asJ o oo,
The study of the limiting spectral properties, i.e. of y(¢*), can be useful to predict under

which scenarios the Gibbs sampler will perform well or not for large J. We illustrate this by
considering model (4.27) with logit link and known 7 set to 1. In this setting, where p is
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Figure 4.2: Left: upper bounds on mixing times for model (4.27) with 7 known, where 7* = 1, u* €
(=3,3), m=1, M =2 and ¢ =0.2. A priori p ~ N (0, 103). Right: median TATs with J = 2000.

the only global parameter, the value of v(1*) can be computed as in through simple
one-dimensional numerical integration. In Figure we compare the resulting mixing time
upper bound, T (1)*, e, M), with the numerical estimates of IATs defined in , obtained by
running a long MCMC chain with a moderately large value of J. We compare such quantities
for different values of the true success probability induced by p*, i.e. [p f(1|0)N (6 | pn*, 1) d6.
Both theoretical and empirical measures of convergence highlight that the performances of the
Gibbs sampler deteriorate when the problem is not balanced: such conclusion is coherent with
the findings in |[Johndrow et al.| (2019), that considers an asymptotic regime with increasing
imbalancedness.

Different graphical models structure

In the previous subsections we have studied applications of Theorem [20] for some specification of
the hierarchical model in . These correspond to the graphical models in the leftmost panel
of Figure While this structure is very common in Bayesian modeling and it constitutes our
main motivating application, the techniques we developed - and in particular the dimensionality
reduction and posterior asymptotic approach - can be applied to different classes of models,
including other widely used ones. Here we provide two examples, the first is a relatively direct
extension of the model in with the addition of parameters in the likelihood, the second
is a more different setting of Gaussian Process regression where the latent parameters are not
independent. See respectively the center and rightmost panels in Figure for the resulting
graphical models. More generally, we expect our methodology to be potentially useful to analyse
samplers for models that feature a fixed set of hyperparameters v, conditional to which a growing
set of parameters or latent variables is tractable enough for posterior sampling.

Likelihood parameters

Consider again the hierarchical normal model
_ iid _
Y}',i | ejvTO ~ N (9]‘,’7'0 1) ) 9] | M, T1 ~ N(:uaTl 1)7 (,U, 7-177-0) ~ pO(')a (430)

with¢=1,...,mand j =1,...,J. The unknown parameters are now given by the triplet ¢ =
(p, 71,70). We denote with P the transition kernel of the Gibbs sampler targeting £ (d6, du,dr1,dro | Yi.7)
by alternating updates from £ (d@,du | 71,70, Y1:s) and £ (dr,d7o | 0, 41, Y3.5). This cannot be
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Figure 4.3: Graphical models of different hierarchical structures. Left: one level nested model as in
Theorem Center: hyperparameters specifying the likelihood. Right: dependent latent parameters.

seen as a specific case of Theoremwith ¥ = (u, 11, 70), since 7y is a parameter of the likelihood
f and therefore there is no conditional independence between Y; and 1, given ;. However, an
approach similar to the one of the previous section can be employed. In particular, a result

N2
analogous to Lemma [44] can be derived, with T'(6;) = <<9j - Y]) ,(0; — ,u)2) playing the role

of the sufficient statistics and Y; = % i1 Y;:. It is interesting to notice that 7" in this case
depends also on the data Y7.z, exactly because the group specific parameters 8 do not contain
all the information regarding . The next proposition shows that also this specification leads to
a well-behaved asymptotic regime.

Proposition 26. Consider model with m > 2 and let Y; i Qy=, with Qu~ admitting
density g(y | ¥*) as in , where * = (u*, 7, 75). Consider the Gibbs sampler with operator
P and let the prior density pg be a continuous and strictly positive in a neighborhood of ¥*. Then

for every (M, e) € [1,00) x (0,1) there exists T (v*, e, M) < oo such that
() [ +() *
Q (€, M) <T (%, e, M) ) — 1 as J — 00. (4.31)
An explicit value for T (¢*, €, M) can be found through Corollary |§|, as shown in the next

corollary.

Corollary 14. Consider the same setting of Proposition[26 Then, for every (M,e) € [1,00) x
(0,1), (4.31) holds with

log(M/2) — log(e)
—log (1 —~(¢*))

Y(*) = <1+ (1— T1*> +< Tl*> ) .
m—1 mr) mTg

Remark 17. The assumption m > 2 cannot be relaxed: indeed, if a single observation per group
is available, the pair (T1,79) is not identifiable and the Fisher Information matriz is singular.

T ()" e, M) =

where
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Figure 4.4: Quantiles of the integrated autocorrelations times (on log-scale) for model (4.30) with pu* = 4,
75 = 1 and 77 = 3. A priori (19, 71) i Gamma(1,1) and po(p) o< 1. Top left: m = 1 (last points not
plotted due to numerical instability). Center: m = 3. Top right: m = 5.

For an empirical illustration of the issues arising in this context, see the top left panel in Figure
or Section 6.2 of |Rajaratnam and Sparks (2015).

Unlike the case of Corollary in this setting the limiting gap does not depend on m only
through the ratio of prior and likelihood precisions, but also directly on its value. Loosely
speaking, a higher value of m allows to better recover the relation between 7y and 7.

The results of Proposition [26| and Corollary [14] are illustrated on simulated data in Figure
which depicts the Integrated Autocorrelations Times (IATs) as defined in (4.29). When
the model is not identifiable, i.e. m = 1 (top left panel), the IATs diverge with the number of
groups, while with m = 3 and m = 5 they stabilize as J increases. Differently from the binomial
setting of Figure [£.4] the IATs grow for small values of J before the asymptotic regime kicks in.

Gaussian processes

We now consider the popular setting where the groups are identified by a continuous covariate
(e.g. location) and group specific parameters are modeled through a Gaussian process. It
turns out that the main arguments of the paper, namely dimensionality reduction and impact
of posterior asymptotic characterization, can be applied also in this context. This section,
compared to the previous ones, aims to provide a proof of concept rather than a detailed analysis,
e.g. we directly assume limiting statements on the posterior distributions of interest. Nonetheless
we find it useful to show how widely our methodology could be applied and illustrate interesting
directions of ongoing work.

Assume to observe n data points Y'(s;) with ¢ = 1,...,n, at a set of locations (s1,...,sy),
together with input variables or covariates x(s;) € R. We consider Gaussian Process regression

models of the form
Y(si) | B~ f(-|B(si),z(s:)), i=1,...,n

B |4 ~ N(01,75'R™) (4.32)

¥~ po().
where 8 = (5(51),...,6(3”))—r is a Gaussian Process (GP) observed at (si,...,sy) and f is
a density function with respect to a suitable dominating measure. Here 1, = (1,...,1)7 is

an n-dimensional vector and R = (Rij) is a n x n correlation matrix, with R;; =

i=1,..n
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Corr (8(s;), B(s;)), defined through a suitable kernel function, that we assume to be fixed and
known. Typically, strength of correlation among coefficients at different locations depends on
their distance, with R;; defined e.g. through a kernel of the Matérn family (see e.g. Section
4.2.1 in Williams and Rasmussen| (2006))). In this Section we focus on a single real covariate
for notational convenience, but everything could be restated on a general p-dimensional space
with little effort: direct analogues of the next lemma and corollaries similarly follow. We first
consider cases where the likelihood function has no specific hyper-parameters, such as in the
common binary case where Y (s;) | 8 ~ Bernoulli(o(5(s;)z(s;))), with o logistic link function
and Y'(s;) € {0,1}.

Let P, be the kernel of the Gibbs sampler which targets ,,(d3, d6, drg) = £ (dﬁ, d6,drs | Y(”)) :
by sequentially performing updates from the full conditionals of 3, 6 and 7. Despite the dif-
ferent graphical model structure, the analysis of mixing times of P, as n — oo can be ap-
proached with the techniques we developed above, regardless of the specific likelihood used in
(4.32). The first step is to perform a dimensionality reduction analogous to the one in Section
. Define 1) = (A, 73) and T(8) = (TQ,TTB), where Ty = 1TR™'8, T,, = 8T R™'$, which
play the same role of global parameters and sufficient statistics in Lemma 4] Indeed it holds
E&/J | B, Y(") = £(dy | T(B), Y(”)) and we can provide an analogue of Lemma |44 for model
(14.32)

Lemma 48. Let 7, and P, be defined as above for model (4.32). Let Pn be the transition kernel
of Gibbs sampler targeting 7, (dT', d, drg) = L (dT, do, drg | Y(”)> which sequentially performs

updates from the full conditionals of T', § and 15. Let (T T®  do®) dT(t))t>1 be the stochastic pro-
cess obtained as a time-wise transformation of (8%, d§) dTé ))t>1 Then (T®), do®), dTﬂ(t))tzl

is a Markov chain, its transition kernel coincides with P,, and its mizing times ffgl)x satisfy
sup tg::i)m(e,u) = sup f,%)m(e,u) M>1.
HEN (70, M) vEN (7, M)

Also, provided a rescaled version of (T',6, 7g) converges to a suitable limit conditional on the
data, the mixing times are bounded with respect to the number of observations.

Corollary 15. Under model (4.32)), let #t,, satisfy assumption (A1) for a given data generat-
ing process YW ~ QU with limiting distribution 7. If (M,€) € [1,00) x (0,1) is such that
tmiz(€, M) < 0o, then it holds

Qm ( ") (e, M) < Tia(e, M)> asn — 0o (4.33)

mix

In some cases the likelihood contains some unknown parameters that are also included in the
Bayesian model. A common example is the likelihood precision 7. in normal linear models with
spatially varying regression coefficients (see e.g. |Gelfand et al.| (2003) or Section 2 in Williams
and Rasmussen| (2006)), where

Y(s:) | B~ N(B(si)z(s), L), i=1,...,n. (4.34)

Let P, be the Gibbs sampler kernel targeting m,(dg,d6, drg,dr.) = L (dﬁ, de, drg, dr | Y(”)),
by sequentially performing updates from the full conditionals of 3, 0, 75 and 7.. Analogously to
Section the results of Lemma {48 and Corollary |L5|extend to this context with ¢ = (6, 73, 7¢)
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and T defined as T = (T@,TTB,TTE), where T, = (Y(”) — Dﬂ)T (Y(”) — DB) and D is the

n x n diagonal matrix with values (z(s1),...,z(sy)). This is summarized in the next corollary.

Corollary 16. Under model (4.32)) with likelihood as in (4.34)), assume the conditions of Corol-
lary are satisfied with ¢ = (0,73, 7.) and T = (Tg,T T.. ). Then (4.33)) holds.

89

Similarly to the hierarchical normal case, studied in Section if the precisions (73, 7¢) are
fixed in specification , then the spectral gap of P, can be explicitly studied to deduce
limiting bounds on mixing times (see e.g. |Bass and Sahu (2016)); while if the precisions are
unknown, as it is mostly the case in applications, the performances of P,, have only been empir-
ically studied through simulations. The methodology we introduce here can be used to formally
analyze the behaviour of these samplers as n — oo.

To conclude this section, it is important to note that in this context the kernel P, may
or may not be directly implementable, depending on the specific model formulation. In the
commonly used linear case, the full conditional distribution 7,(d8 | v¥) is normal, so that
sampling becomes accessible and P, is directly the algorithm used to sample from 7,. See e.g.
Appendix 2 of Bass and Sahul (2016) for details on the implementation, including expressions for
the full conditionals. In other cases, e.g. for log-concave likelihoods such as the binary regression
ones, adaptive rejection sampling techniques (e.g. |Gilks and Wild (1992)) can be used in low
dimensions. In the more general case the exact update from 7,(dB | ¢) is commonly replaced
with a Metropolis update from 7, (d8 | ¥) (using e.g. a gradient-based kernel such as MALA
or HMC). In the latter case, the Gibbs kernel P,, we analyse here is an idealized version of the
practically used Metropolis-within-Gibbs kernel. Under suitable (mild) assumptions, we expect
the convergence properties of this idealized scheme to provide a lower bound to the Metropolis-
within-Gibbs schemes used in practice. Also, we expect the convergence of the two kernels to
be of the same order when the kernel used for the Metropolis updates on the full conditional
mixes fast. Providing quantitative results in this direction is an interesting area for future work,
which we are currently pursuing. This would extend the applicability of the proof techniques
developed in this work to broad classes of non conditionally-conjugate models, such as Gaussian
Processes with non-Gaussian likelihood discussed above. See Section for more details.

4.6 Feasible start

All the previous results are stated in terms of mixing times from worst case M-warm start,
as defined in (4.5]). Since starting from p € N(m;, M) with small M (e.g. not increasing
with J) may be in principle infeasible, it is of interest to provide an explicit example of a
starting distribution that can be implemented in practice, a so-called feasible start, where the
associated value of M can be controlled. In the setting of Theorem [20] the properties of the Gibbs
samplers combined with the probabilistic structure of hierarchical models allow to translate the
problem of feasible starts into the one of having a good initialisation for the hyper-parameters
1, as we now show. Indeed, assume that the maximum marginal likelihood estimator 1/3 J =

arg max H;le g(Y; | ¢), with g as in (4.16)), is well-defined. Let py € P (R”JFD) be given by

J
pa (B) = [ Onit (th1,¢/VT) (@) [T 05 | Y5, ) a0 B CRYHD (4.35)

J=1
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where ¢ > 0 is a fixed constant and Unif (¢, r) denotes the uniform distribution over the closed
ball of center v and radius r > 0. Therefore, the initial point is obtained by sampling from
the uniform distribution around the maximum likelihood estimator for ¢ and, conditional on
this value, from the posterior distribution of the groups specific parameters. The next theorem
shows that this choice leads to a good asymptotic behaviour of the mixing times.

Theorem 21. Consider the same setting of Theorem and let py € P (R”“‘D) as in (4.35)).
Then, for every e € (0,1) there exists T (1)*,¢€,¢) < oo such that

lim Jinf pr{) <t1(7‘{2x(e,uj) <T (1/1*,6,0)) —1 as J — 0o.
—00

The difference with Theorem [20]is in the specification of the starting distribution, that is now
made explicit. Note that whether or not u; is a feasible start in practice depends on whether
the maximum likelihood estimate zﬁ J can be computed, using e.g. an Expectation-Maximization
algorithm, up to a O(1/+/J) error.

Remark 18. By its definition in (4.3)), the Gibbs sampler does not depend on the starting point
of the first block. Therefore Theorem extends to any puy € P (R”“‘D) such that

wr (RY x A) = Unif ($5,¢/V7) (4) ACRP.

4.7 Future works

A first natural extension in this context would be the case where no fixed dimensional sufficient
statistic is available, i.e. p(- | ¢) in does not belong to the exponential family. Since the
above dimensionality reduction does not apply there, a possibility is to study the marginal chain
induced on 1; indeed the latter has the same properties of the Gibbs sampler on (6,1)), see e.g.
Roberts and Rosenthal (2001). Also, in this work we have focused on the case with well-specified
likelihoods but, as discussed after Theorem [I9] we expect the misspecified setting to behave in
qualitatively similar ways.

Secondly, when dealing with Gibbs samplers, it is often the case that some of the conditional
updates cannot be performed exactly. A natural solution is to employ more general coordinate-
wise schemes, where exact sampling is replaced by Markov updates with stationary measure
given by the conditional distribution. For example in hierarchical models for categorical data
(see Section , while in principle exact conditional sampling is feasible, the parameters 0,
are often sampled in a Metropolis-within-Gibbs fashion, for reasons of computational efficiency
and easiness of implementation. While algorithmically convenient, the modification makes the-
oretical analysis significantly more involved: in particular Proposition [21] ceases to hold and the
dimensionality reduction given by Lemma [44]is not available without exact sampling. In ongo-
ing work we are considering a different strategy, by providing lower bounds on the approximate
conductance (Lovasz and Simonovits|, [1993): our preliminary results suggest that, provided the
conditional Markov updates have good spectral properties, general coordinate-wise schemes can
enjoy the same dimension-free convergence of the Gibbs sampler. Another interesting direc-
tion would be to derive results analogous to the ones in Section [4.2) for other MCMC kernels
(e.g. gradient-based ones) under appropriate regularity assumptions on the sequence of target
distribution, potentially exploiting tools from the recent work in (Caprio and Johansen! (2023)).
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Finally, we expect (at least parts of) our methodology to be applicable much beyond hierar-
chical models as in . For example, when fitting (finite or infinite) Bayesian mixture models,
it is customary to use a Gibbs sampler over a properly augmented space by introducing latent
allocation variables (see e.g. Diebolt and Robert| (1994)): this leads to a problem of increasing
dimensionality, since the number of latent variables grows linearly with n. An asymptotic anal-
ysis, as performed in this paper, seems accessible: indeed, posterior concentration results are
available (Nguyen, 2013)) and a dimensionality reduction similar to Lemma [44] can be exploited.
However there are still significant challenges to perform a rigorous analysis in this setting: for
example posterior contraction is often proved using Wasserstein distance, that is in general too
weak for our purposes. We leave the discussion of such issues to a future work.
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A1l Simple counter-examples for Section 4.2

Convergence of the stationary distribution does not imply pointwise conver-
gence of Gibbs operators

Let X = [0,1]? and define A, = “—:, “3:1}, where

rn:n—2k”, ln:2k”, kn = |loggn],

with |a| denoting the integer part of @ and n > 2. Therefore {4, },, is a collection of intervals
with decreasing length, such that z € A, infinitely often, for every x € [0,1]. We define a
sequence {mp}, C P (X) as

Liay(w1)dzy, @2 & Ay

’ n d = ]l d s
do(dz1), z2€ A, mn(dz2) = Ljg1j(22) dz2

TI'n(dl’l ‘ .IQ) = {

where 1 4(z)dx denotes the uniform measure on A. Define now
m(dxy,drs) = Ljg1)(z1)L)o,1)(z2)dz1dT2
and denote C' = {0} x A,,. For every B C X we have

|Tn(B) —m(B)| < |mp (BNC) =7 (BNC) |+ |m (BNC) —m (BNCY) |
=m,(BNC) <7, (C).

Therefore we conclude
|7 — 7T||TV <mn (C) =0,

as n — oo. However, if P, and P are the operators of the associated Gibbs samplers, for every
x € X it holds
| Pa(x,-) = P(x,-)|l7y = |Pu(x,C) — P(x,0),

so that, since x9 € A,, infinitely often, we get
1P (x,) = P(x, )|y = 1

infinitely often. Incidentally, it is not difficult to show that Gap(P,) = 0 for every n, while
Gap(P) = 1. Example 1.4 shows that this mismatch may hold under significantly less patholog-
ical scenarios.

Equality of the stationary distributions does not imply closeness of the tran-
sition operators

Let m; = mo = m, with 7 the standard Gaussian distribution. Moreover, let
Pi(z,)=erm(-)+ (1 —€)dz(-) and Pz, ) =en(-)+ (1 —€)d_x(-),

with € € [0,1). P; and P; are uniformly ergodic transition operators with invariant distribution
7. Let p be the truncation of m on the positive real numbers: it is easy to show that p € N (m,2).
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However
Py = pPallpy > (1 =€) [1((0,00)) = p((—00,0])] =1 —e.

Moreover, it holds that ||x — 7|, = 1/2, so that we conclude

21— allpy — € < 1Py = pPallpy <2l =l

Convergence of the stationary distribution in Wasserstein distance does not
imply convergence of the mixing times for Gibbs sampler operators

Let X = R? and 7,(dx) = N(z1 | 0,1/n)N (22 | 0,1/n)dz1dzs. Define 7, to be the truncation
of 7, on the set
A = {(=00,0] x (=00,0]} |J {[0, +00) x [0, +00)} .

Let f : X — R be a Lipschitz function with constant 1. Then it holds

/X[f(xl,xg)—f(O,O)] ﬂn(dx)g/)(\/x%+x%7rn(dx)—>0,

as n — 00, so that ||m, — ||y, — 0, where 7(dx) = d(9,0)(x) and [|-||;; denotes the Wasserstein
distance.

If P is the kernel of the Gibbs sampler targeting 7, then it is immediate to show that

sup [P — wlly =0
HEN (m,M)
for every M > 1, so that the mixing times in Wasserstein distance are equal to 1 for every e > 0.

Instead, denote with p, the truncation of m, on 4; = (—00,0] x (=00, 0]. It is easy to show

that p, € N (mp,2), but
1
pn P (A1) = 7 (A1) = 5

for every n and t, where P, is the kernel of the Gibbs sampler targeting m,. Since the Wasser-
stein distance is stronger than the weak one, there exists an absolute constant ¢ such that
H pn Pt — WHHW > ¢ for every n and t. Therefore, with € small enough and M > 2, the mixing
times of P,, in Wasserstein distance are equal to infinity for every n.

Convergence of the stationary distribution does not imply convergence of the
spectral gaps for Gibbs operators

Let X = R? and
m(dx) = N(z1 | 0,1)N(z2 | 0,1)dz dxs,

where N (z | i1, 0?) is the density function of a gaussian distribution with mean y and variance
o2. Define 7, to be the truncation of 7 on the set A,,, where

Ay, = {(—o00,n] x (—o0,n]} U {[n, +00) x [n,+0c0)} .
If P, and P are the operators of the associated Gibbs samplers, it is not difficult to show that

|70 = 7llpy — 0 and HPn(X7 ) — P(x, ‘)HTV —0
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as n — oo, for every x € X. However, if B,, = (—o0, n] x (—o0,n| we have

Tn(Bp) >0 and i P, (x, By) mp(dx) = 0,

so that Gap(P,,) = 0 for every n, while Gap(P) = 1.

A2 Regularity assumptions (B4)-(B6) for Theorem
Let

MP (W | y) = B[T26;) | Y; =y ¥] (36)
MB (W | y) = B [T20)T50) | Y = y,v] (37)

be the posterior moments of T’ given 1, denote M) (s | y) = <M1(p) (W|y),-... ,Mép) (¢ | y)) €
RS and
[CW)], 0= By, [00,MD @1 Y)], V@), = By, [Cov (T.(60;), T (8)) | Y, ¥)],  (38)

with 5,8’ =1,...S and d =1,...,D. Moreover we write Bs for the ball of center ¢* and radius
d, and denote expectations with respect to the law of Y; as defined in (B1) by Ey,[-].

(B4) The expectation M, s(p )(w | y) is well defined for every y and p = 1,...,6. Moreover, there
exist 04 > 0 and C finite constant such that for every ¢ € By, it holds Ey; U&pd Mm© (V] Y;)

| <

¢, By, '%d@wd/Msﬂ)(?ﬂ | Y))|| <C,
Ey, andMSJ/(w | Y;) ] < C and By, [% {Ms“)(w | V)MP (| Yj>} < Cfors,s =
1,...,Sand d,d =1,...,D. Finally, the matrix V(¢*) defined in (38) is non singular.

Assumption (B4) can be understood as a smoothness condition. The posterior distribution of
T should not change considerably, if we move from ¢* to a sufficiently close v: this is measured
in terms of the derivative of the posterior moments, that must be finite in average. Thanks
to (B4) we can prove a suitable conditional Central Limit Theorem to show convergence of a
rescaled version of T', conditional to ¥ and Y7.;.

We define the posterior characteristic function of T'(6;) = (T1(0;), ..., Ts(;)) and Z?Zl T(65),
given,as p (t | Yj,0) = F [eitTT(@j) | Yj,w} for t € RS, and ¥ (t | Y14, 1) = H?:l o (t]Y;,),

respectively. We will assume:

(B5) There exist k£ > 1 and d5 > 0 such that

2
Sup/ ‘so(k)(t\Yl;k,w)‘ dt < oo,
1Z)€B(55 RS

for almost every Yi,...,Yy id Q.
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(B6) There exist k¥’ > 1 and dg > 0 such that

sup sup [o*) (¢ | Yl:k’ﬂf’)’ < ¢(e),

VEBsg [t|>e

for almost every Yi,..., Yy i Qy+, with ¢(e) < 1 for every € > 0.

Assumptions (B5) and (B6) allow the convergence of T to hold for the total variation distance,
that is stronger than the weak one, proved through (B4). Loosely speaking, integrability of the
characteristic function and its strictly positive distance from 1 guarantee that the distribution
is far from being discrete: the latter is exactly the case where weak convergence does not
translate to stronger metrics. The problem of proving Central Limit theorems in total variation
distance has received considerable attention over the decades: it can be tackled with Fourier-
based techniques (Petrov, [1956; Smith, 1953)), as we do here, but also with Stein’s method (see
Ross| (2011)) for a survey), Malliavin calculus (e.g. Bally and Caramellino| (2015)) or through
bounds based on entropy (e.g. Bobkov et al.| (2014))). Conditions (B5) and (B6) are somewhat
reminiscent of the ones in Theorem 19.3 in [Bhattacharya and Rao| (2010)).

A3 Proofs

*

Statement and proof of Lemma [9]
Lemma 49. Let N C P(X) and m € P(X). Then

sup inf {t >1: H,uPt 77TH < 6} =inf{t>1: sup HuPt — 7TH <€p,
weEN TV LEN TV

for every Markov transition kernel P.

Proof. Let

+() — 5161}\)[ inf {t >1: HMPt — WHTV < 6}, t@) — inf {t >1: Slel/I\)/’ HuPt _T‘—HTV < e}.

Assume t(!) < co. Then H;LP“1> — 7THTV < e for every p € N. This implies

sup HuPt(l) -7
HEN

< €,
TV

i.e. 1 <t With a similar reasoning, if t?) < oo we have t(!) < (). Therefore t() = t(1) if
either () < 0o or t?) < .
Assume now t(!) = 0o and fix t* > 0. By definition of (1) there exists y € A such that

[ L

that implies

su pt— 7TH > €
Ne}\)f HM v =
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i.e. t? > ¢*. Since t* is arbitrary, we have t(?) = co. With a similar reasoning, if () = oo it
holds t™) = occ. O

*

Statement and proof of Lemma

Lemma 50. Let M > 1, 7 € P(X), u € N(n,M) and P be a m-invariant Markov transition
kernel. Then uP' € N (w, M), for every t € N.

Proof. Let A C X. Since p € N(w, M) and P is m-invariant, we have (uP)(A) < M(wP)(A) =
Mmn(A). Thus uP € N(m, M) and the result follows by induction on t. O

k

Proof of Lemma

Proof. Let P,=P,o #, ! be the push-forward operator of P, under ¢,, defined as
Pa(x, B) = Pu (6,1 (x), 6, (B)) (39)

for every x € ¢,(X) and B C X. Since ¢, is an injective transformation, B, is a well-defined
Markov transition kernel (see e.g. Lemma 1 in [Papaspiliopoulos et al.| (2020)). Moreover, since
¢n is coordinate-wise as in (4.7) we have P, = P, 1... P, i, where

Pri (%, Sxia) = Puji <¢El(x)a S¢;1(x),i,¢;}i(A)) = /71 Tn (dyi | ¢EI(X)(_i))

¢,,.:(A)
= [ A (dg 1x0), Ac
A
so that P, is exactly the operator of the Gibbs sampler targeting 7, i.e. P, = p,.

Therefore, since ¢, is an injective transformation, by Corollary 2 in [Roberts and Rosenthal
(2001)) we have

Pr= |y, = [limPr =
H“”” v Fntn "y

with fi, = pn o ¢;t. To conclude the proof, we show that fi, € N (7,, M) if and only if
pn, € N (7, M). Indeed, to prove the implication from right to left, by definition of push-
forward measure we have

fin(A) =pin (621(4)) = /¢ o j’;:oc) T(dx) < My (61 (A)) = Ma(A),

for every set A C X. Equivalently we obtain the other implication. O

Proof of Proposition

For any 7 € P(X) and Q Markov transition kernel with state space X', we define (71 ® Q) €
P (X x X) as

(r® Q) (B) = /B Q(x, dy)m(dx)

for every B C X x X.
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Lemma 51. Let w1, 7m0 € P(X) and Q be a Markov transition kernel with state space X. Then
[ ®Q —m @ Qv = [|m1 — m2l|rv.
Proof. By definition of total variation distance we have
71 ®Q —m® Qv

[ HyQedymid = [ fxy)Q(x. dy)a(dx)
XxX XxX
= sup

fXxXam/(/fxy Qx, dy)) 1(dx) = /(/ny Q(x, dy))@(dx)
/9 x) 7 (dx) /g Yo (dx)| =

Also, taking f(x,y) = g(x) for every (x,y) € X x X we have

/g x)m(dx) — / g(x)ma(dx)
< sup

[ HEyQedy)mid = [ fxy)Q(x.dy)a(dx)
fXXxX —[0,1]|/ XXX XX

=||m ®Q —m Q| TV .

= sup
frxxx—=[0,1]

< sup = [|m1 — ma2llTv.

g: X =01

|71 — 72|y = sup
g: X —10,1]

O
For j = 1,2, denote the kernel of the Gibbs sampler targeting m; as P; = Pj ... Pj i, where

with Sx;4 = {yeX : yj=x;Vj#iand y; € A} as in the main. By definition, P;(x,dy)
depends only on x(=%. Thus we can define <7r - ® Q) epP (X( i) x X) as

(*“" e p) (B /B Py (x9, dy) « (ax(=),

for every B ¢ X(=9 x X and similarly for
(7r<—1> ® P) ep (X(‘l) x X) and (H-“ o] Pj) eP (XH) x X) :
j>i
with ¢ =1 ..., K. Given this notation we have the following Lemmas.

Lemma 52. We have

Yor - Ver

|uP1 — pPs| 7y <

TV

for every € N(mwo, M) and M > 1.
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Proof. By definition of total variation distance

IIMPl—ulelTv=f Sup01 /f JuPr(dy) — /f )i Po dy)‘

Then, by definition of N (ma, M), it holds

|uwPr — pPs||Tv
f(y) / A=Y - -
=M su x Pi(x dy)ms (dx
f:X—>p[0,1] xk M Jxv dwé_l)( )Pi( ) 2( )
dp=b B B
- /X f](Wy) /;((4) du(—l) (X( 1))P2(X( 1),dY)7T2 (dx( 1))‘
4p)
<M sup / g(x(*l),y)Pl (X(*l),dy) - (dx(*l))
g: XD xx —[0,1][/ XY XX

P () (0)|

= Wé_l) XP1—7T§_1)®P2
TV
O
Lemma 53. We have
*)®HP1J —Wéfi) ®HP2,j <2|m = m2llpy
J>i j=>i TV
n Wg—(i-&-l)) ? H P - ﬂ_g—(i—l-l)) ® H Py
j>i+1 Jjzi+1 TV

(40)

foreveryi=1,...,K —1 and

Proof. We start by proving . Notice that, by definition of P;; and Ps;, we have

/X(—")xXg (x(_i)’y) I;I,Pl’j (X(—i)’ dy) Wg_i) (dx(—i))

. K
7T§ B P g — 7T§ ) ® PZ’KHTV = |1 — m2|lpy -

- A x X (=) ( - >]>111 Prj(x ( dy) ™ (dx)
and |
/X(—i)xx ( )Jl;[zpw ( =9 dY> - (dx(_’))

- A xx(=1) ( ) H PQJ( d}’)ﬂ'Q(dX)

j>i+1
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where g : X7 x X — R is any measurable function and h is the composition of g and the
function ¢ : X" x X — X x X9 that relocates the (K — 1+ i)-th element of a vector after
the (i — 1)-th element. Since there is a one-to-one relationship between functions g and h, we

have
7r§_z) ® H P — Wé_z) ® H P ; =|m® H P j—m® H P, ; (41)
i j>i v j>it1 j>i+1 v
Then by triangular inequality and Lemma [51| we have
me [[ Pyi-—me [[ Py <|me [[ Pj-—me [[ Py
i+l izt lpy j>it1 it |y
+ || & H P17j—7T2® H PQJ'
it it |y
<|lm—mellpy + |me J] Pyj-me [ Py
§>i+1 F>it1 TV
(42)

Notice that [];>;41 F1,; and [[;5;41 F,; do not depend on z;4+1 by construction, that implies

T & H P j—m® H P ;
J>it1 J>it1

TV

/X Ry I Py (x=0+D), dy ) s (dx)

jit1

_/Xx)(h(xvY) [T Pos (x“0 dy) m (dx)

j>i+1

= sup
h: XxX —[0,1]

)

so that we have

me [[ Pj-me [] Py
j>i+1 j>i+1

TV

= sup
h:XxX—[0,1]

j>i+1

- /X(—(m))m /Xm hixy)m (dwiﬂ | ngHM))) Il 2 (X(*(i“)),dY) i (dx(*(iﬂ)))

j>i+1

<

Trgf(z#l))@ H PLj_ﬂ_éf(iJrl))@ H PQ,]'
Jj=it+1 Jj>i+1

TV

: (=(i+1) (5 (=(+1) (=(+1))
/X<<i+1>>x2(/xi+1h(x7wm (dxzﬂ | x(— 0+ ) H Py (x +1 ,dy) T (dx +1 )
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Moreover, it is clear that

Wé*(i‘l’l))@ H Pljj_ﬂgf(z#l))@ H P2,j
j>i+1 j>i+l

< |m® H P j—m® H P, ;

j>i+1 i+l TV

TV

thus combining the two above inequalities we get

Wé_(i_‘—l)) ® H Pl,j _ﬂ_é—(i—i—l)) ® H P2,j
j>i+1 j>it1 v
(43)

m@ [[ Pij—me [[ Py
j>it1 j>it1

TV ‘

Combining ({41, and with the fact that

we finally obtain . When ¢ = K the result follows by noticing that

Wé_(i+1))® H Pl,j_ﬂ'é_(“_l))@ H P2,j
j=it+l j=i+1

<|lmy — w2y
TV

+ 7T§_(i+1))® H Pl,j—ﬂé_(i+l))® H P, ;

j>i+1 F>it1

TV

7T§7K) ® P g =m and w5

® Py g =
by definition. O

Proof of Proposition [21 Without loss of generality, let u € N (me, M). By Lemma [52] and the
triangle inequality we have

nPs =~ iPallry < M |5 0 P s Py

TV

<M |7y = mo|lpy + M ngl) ® P — ngl) R Py

TV

and the result follows by applying K times Lemma ]

Proof of Lemma

Proof. With an abuse of notation, let 71 (x), m2(z) and u1(z) be densities of 71, w2 and p; with
respect to a common dominating measure, such as 7 = m +m2. Let i be the measure on X with
density fi(z) = min {p1(z), Mm(x)} for € X. By construction j is a sub-probability since

i) = [ p@yr(de) < [ m(@yr(e) = 1
X X
Therefore, we can define a probability distribution uy € P(X') with density
pe(z) = p(x) + a max {Mma(z) — pa(x),0}, reX
where

) L= [ )7 (da)
Sy max {Mms(z) — pi1(z),0} 7(dx)

a € (0,1).
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Notice that ps(x) < Mma(x) for every z € X since

1o() = Mmo(x), if pi(x) > Mm(x),
(1 —a)ur(z) + aMmy(x), if pi(z) < Mmo(x).

Thus ps € N(me, M). By definition of total variation distance and of ji, we have
I = 2l = [ v (s () = a2, 0} 7(ka) = | max (s () — Mna(a), 0} (o)

<M /Xmax {mi(x) — mao(x),0} 7(da) = M ||m1 — w27y -

O
Proof of Theorem
Proof. By Lemma [2] the statement is equivalent to
lim sup fin Pl — 7 = sup apPt — 7 (44)
H nhnoon ‘TV AEN (7.M) H HTV

N0 G EN (o, M)

in Q(-probability, where P, is the kernel of the Gibbs sampler targeting 7.
Consider |jin Pt — 7|7y with fi, € N(&,, M). By Lemma there exists g € N (7, M)
such that
i = Allpy < M||Fn = 77y - (45)
By the triangular inequality we can decompose ||fi, P! — 7, ||7v as follows
Hﬂ”PfL B 7~r”HTV = H'a”Pﬁ B ’aP’tLHTV + Hﬂp’i B ﬂPtHTV + Hﬂpt B 7~TH

o Fn = Flpy - (46)

Combining with the monotonicity of the total variation distance with respect to the appli-
cation of transition kernels, we obtain

Hﬂnpﬁ - ﬂprtLHTV < i = Allpy < M |[7n = &gy - (47)
For the second term in , we want to prove that if i € N(7, M) we have
R M (48)

for every t > 1. Indeed, the case t = 1 holds by Proposition Assume now holds for
t — 1, with ¢ > 2. Then by the triangular inequality we have

Hﬂp’i _'aptHTV = Hﬂﬁ”t _'upt_lp”HTv + Hﬂpt _Mﬁt_IP"HTV

S A

TV

By induction hypothesis we have

|apit = pPt | < 2ME (= 1) o = Rl (49)
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Moreover, by Lemma |50| we have that [uf’f—l € N (7, M), so that from the case ¢ = 1 we obtain
HNPHP - MPt_anHTV <MK ||ty — 7y - (50)

Then follows by and . Combining , and , for every fi, € N (7p, M)
there exists g € N(7, M) such that

| Pl = |, < @MEE+ M +1) |7 = Fllpy + | 2P = 7|, -

Thus

mp | Pl = 7|, < @MEt+ M+ 1) ||fin = 7y +  sup

|77 -]
fin €N (Fon, M neN (7,M)

TV
It follows that, for any € > 0, we have

CRL O A ION L W

fin€N (Fn,M REN (7,M) (51)

< QW (fn — #llpy > @MKt+ M +1)7%¢) >0,

as n — oo by (A1) and (2MKt+ M +1)~te > 0.

We now prove the reverse inequality of to establish . Given i € N (7, M), by
Lemma there exists fi, € N (7, M) such that || — fin|lpy < M |7 — 7|7, Then we

proceed analogously to above, first decomposing H APt — 7 —

2l <[P~ 82 4[58 il 5Pl 1 2
and then applying Proposition 2] using an argument analogous to above to get

i =l < [5Pt= ], + @3 A =R
It follows

LBl 2 s P ] - QMK M4 D 1 - Ay

Fixing € > 0 arbitrary constant we have

Rl B T RN M R
<Q™ (Hﬁn = llpy = 2MKt—€|—M+ 1) — 0,

as n — 0o by (A1) and (2M Kt + M + 1)~te > 0. The result follows by combining and
53). 0
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Proof of Corollary
Proof. Thanks to Lemma 9] we can write

tg?i)x(e, M)=inf<t>1: sup H,unPﬁ — 7TnH <€
II'TLEN(W”7M) TV

and

tmiz(€, M) = inf {t >1: geﬁfl(lng) Hﬂﬁt _ 7~THTV < e} )

Assume (A1) and denote t* = fpiz(e, M) < oo for brevity. By definition of ¢* we have § =
SUPzeN (7,M) Hﬁpt* - 7~THTV < €. Thus

;Ufne-/\/—(ﬂ-nvM)

Q™ <t£§3x(e, M) < t*> = Q™ ( sup H“”Pﬁ* B 7T"HTV < 6)

=Qm (uneASfl(lfn,M) H“”PE - 7TnHTV - ﬁeﬁfl(lfIrD,M) Hﬂpt* - 7~T”TV = 6)

— 1,

as n — oo by Theorem [I§]
As regards the second part of the statement, let (A1) hold and fix 77 > 0. Denote § =

SUP e (7,M) H,&PT — 7~rHTV and notice that by assumption > ¢ > e. Thus

lim inf Q) (t%)z(e, M) < T) = lim inf Q™ ( sup HunPg - ﬂ'nHTV < e)

n—00 n—00 fin €N (710, M)
— i i (n) _ . T _ >S5 —
it 0 (5 s ot < 20
— 0,
as n — oo by Theorem [I§] O

Proof of Corollary |§|

We need a preliminary well known lemma, whose proof we include for self-containedness.

Lemma 54. Let P be a Gibbs sampler kernel with K = 2 and target m € P(X1 x Xy). Then

for every p € N(mw, M) and t > 1.
Proof. Let p € N(m, M) and ¢t > 1. By Corollary 1 in [Roberts and Rosenthal| (2001)) we have

P =y = P =] (54

Vv’
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where P is the Markov transition kernel on Xy defined as

p(.TQ,dyQ) = / w(dys | y1)m(dys | z2) To € Xy

X1

Note that P is 7(~D-reversible. Also, for every f € L*(x("Y), ie. f : X — R such that
113 = W(_l)(f2) is finite, we have

/XJ (w2) f (y2) P(x2, dyz)m(da)
:/2f($2)f(y2)/ m(dyz | y1)m(dyy | 22)m(das)
X3 M

-/ [/ f<y2>7r<dy2|yl>] [/ f(m)w(dxml)] r(dyn)
Xy X X
2
= [/ f<y2>w<dy2\y1>] w(dy) > 0.
X1 Xo

so that P is also positive semi-definite. Since P is reversible and positive semi-definite, we have
(see e.g. equation (5) in |Andrieu et al.| (2022))) that

1P| <1171l (1 - GanP))'. (55)

for every f such that w(f) = 0. Choosing f = % — 1 and using the reversibility of P (see

e.g. Section 2.1 in |[Khare and Zhou (2009)) we also have

1

e, <3

, (56)

“u(l)lﬁt(f)‘ )

where p("DPH(f) = [ f(xo)u"Y Pt(dxy). With the same choice of f, we have
2
2 dp=Y -1 2
HfHQ = / <d7r(—1) (w2) = 1) 7 *(dwo) <M
since pu(~1) € N (x(=1), M). Thus, combining with we obtain
M Y
t i _
H'UP 7THTV = 2 (1 Gap(P)) '
Finally, for every f : Xy — R with |\f|‘2 < o0 it holds

Jxz [f(42) = f(w2)] () P, dyo) S loly) — 9(x)]? 7(dx) P(x, dy)
2Varl—V(f) B 2Varx(f) 7

where g(x) = f(z2). Therefore Gap(P) > Gap(P) and we get

[uP =), <5 (- Gap(P))',
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as desired. ]

Proof of Corollary[9 By Lemma [54] we obtain

log(M/2) — log(e)

gmir(EaM) <1+ ~ N\
—log (1 - Gap(P))

and the result follows by the first part of Corollary [§ O

Proof of Proposition
Proof. By Theorem (19, assumption (A1) is satisfied with

On (1) = V() —9") = T (W) A ye,

and T = N (0, I‘l(w*)). Since 7 is the distribution of a multivariate normal with non singular

covariance matrix, then it is easy to show #,,;,(e, M) < oo for every (M, ¢€) € [1,00) x (0, 1), see
e.g. Theorem 2 in | Amit (1991). O]

Statement and proof of Corollary

We illustrate the result of Proposition on a simple example of model (4.11)) with normal
likelihood and unknown mean and precision, that is

flmr) =N (ylur"), (57)

where K = 2 and 1» = (u, 7). Notice that, even if a conjugate prior exists, it is common to
place independent priors on p and 7, for which the Gibbs sampler defined in (4.3)) becomes a
reasonable option.

Corollary 17. Consider model (4.11|) with likelihood as in . Let Y; i Qu, with Qy»

admitting density f(y | ¥*) and * = (u*,7*) € RxR4. Moreover let py be absolutely continuous
in a neighborhood of ¥* with a continuous positive density at *. Consider the Gibbs sampler
defined in (4.3)). Then, for every M > 1 and € > 0 we have

QL (tgggx@ M) < 1> Y
as n — oQ.

For the proof we need a preliminary Lemma, whose proof we include for self-containedness
and because it will be useful to refer to later on.

Lemma 55. Consider the same setting of Corollary . Then conditions (4.12) are satisfied.

Proof of Lemma[53 Define

U=U; xU¥y= [/L*—l,u*+1] X [;,2T*]
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compact neighborhood of * and

un(YI» ce Yn) =1- ]lg1(Y1;n)§01 HQQ(YI:n)SCQ’

where ¢; = 1/2, c3 = (27%)7! and

\
(]
=<

|

=
e
|

91(Yip) = ’f’ —

1
s and gQ(len) = |n

with Y = % .Y, Since Y; id N(p, 7Y, then ¢1(Y1.,) and g2(Y1.,) are equal in distribution,
respectively, to

1 11 2 1
h’Z'nya =|—F=Z 7*, hZ:n77 = |- ZZ*Z - x>
1(Z1ns 1, 7) |ﬁ tp—p 2(Z1m, 1, 7) Tn;( ) e

where Z; % N(0,1). By the Law of Large numbers we have
Z — 0, and lzn:(Z-—Z)2—>l
I n — (2
almost surely as n — oco. This implies
Jntneee ) T | 6%) <P (s (Zuno ', 7) > 1)
i=1
+ P (hQ(Zl;n, /L*,T*) > CQ) — 0,

as n — oo. Also, we have

sup / [1 - Un(yl, .- '7yn)] Hf(dyl ‘ w) < sup P (h2(Zl:mN77—) < 02)

g i—1 TEW2

+  sup P (hi(Zim,p,7) < 1)
ug¥y, 7e€Ws

Now notice that by the reverse triangle inequality we have

1
sup P (ho(Zim, 1, 7) < c2) = sup P | |—— Zi—7Z) ——|<c
Tﬂ% (2( Ly [y T) 2) qulf)g Tﬂ;(z ) - 2
1 n
< sup P| |- Zi—7) —1 >‘1—‘—CQT — 0,
7_%\1,2 n;(l )

by definition of Ws, as n — oo. Finally, again by reverse triangle inequality, we have

sup P (h(Zim,p,7) <c1) < sup P (\Z\ > VT (lp— 'l - Cl)) — 0,
pg¥1, TV, pg¥1, 7€V

as n — oo. O
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Proof of Corollary[17. In this case ¢ = (u, ) and

fy | ) = [ oo 30

By Lemma [55| conditions (4.12) are satisfied. Also, the map ¢ — f(y | ¥) is one-to-one, the
map ¥ — +/f(y | ©) is continuously differentiable, and the Fisher information matrix is

Z 0
I(¢) = [8 1] )
2T
which is non singular and continuous as a function of . Thus the conditions of Theorem
and Proposition [22] are satisfied. Finally, since we are considering a two-blocks Gibbs sampler,
by Corollary [9] we have
log(M/2) — log(e)

—log (1 — Gap(ﬁ)) 7
where P is the Gibbs sampler targeting a bivariate normal distribution with covariance matrix

given by Z-(y*). Since the latter is diagonal, the Gibbs sampler coincides with independent
sampling, so that Gap(P) = 1. O

T (Y e, M) =1+

Proof of Lemma

Proof. Denote by (O(t),¢(t))t>1 the Markov chain with kernel P; defined in (4.15). The Marko-
iani i hce (T p® ® ich i
vianity of the induced sequence (T P >t21 follows by the one of (w )tzl’ which is well
known (Diaconis et al., 2008; Roberts and Rosenthal, 2001). We now show that (T(t),¢(t))t>1
admits Py as kernel. The conditional distribution of (T(t), ¢(t)> given (T(tfl), Pt ) is given
by
L (dT(t),dw(t) | T(t—l)’ﬁ}(t—l)) —r (dT(t) ‘ T(t—l)’@b(t—l)) L (d@[}(t) | T(t)’¢(t—1)’T(t—1))

=7y (dT(t) | w(tfl)) L (d¢(t) | T®, w(tfl)) ,

where the last equality follows by (4.15) and the definition of #;. By the exponential family
assumption in (4.14]), T is a set of sufficient statistics for 1, so that

my(dy | 0) = L(dy | 6,Y1.y) = L (dy | T(6),Y1.s) = 7 (dy | T(H)). (58)
Combining and we have
r (d¢<t) | T<t>,¢<t71>) _ / . (dwm | 9) . (dg | T(t>,¢(t71>)

— /ﬁJ (d¢(t) | T(O)) 7rJ (d@ | T(t)’w(t71)> s (dw(t) | T(t)) (59)
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since T'(0) = T™ almost surely under 7 ; (d0 | T, 4pt=1) ) Thus we can conclude

L (dT(t),dz/J(t) ‘ T(tq)’ w(ffl)) =&y (dT(t) ’ zp(?ffl)) 7 (dw(t) | T(t))
_p, ((Tu—l)?w(t—l)) , (dT<t>,d¢<t>)> 7

as desired. From the above one can easily deduce that (H(t),w(t)) and (T(t),w(t)) are

t>1 t>1
co-deinitializing as in Roberts and Rosenthal| (2001) and thus, by Corollary 2 therein, for every

weP (RH X RD) we have
HMP} B WJHTV - Hyﬁj} B 7ATJHTV’ (60)

where v € P (RS x RP) s the push forward of 1 under (6,v) > (T'(8),v). Moreover, by (L3)
we have that v € NV (7, M) whenever i € N (m;, M). Tt follows that sup,en(r, ar) tf?ii)a:(€7 u) <
SUD, e A/ (7,,M) fgi)m(e, v). For the reverse inequality, fix v € N (77, M) and take p(d@,dy) =

[y (A6 | T,4) v(dT, dv). By ([(.5) we have u € N (m;, M) and thus (60). It follows SUD, e (4, M) fgi)m(e, v) <
()

SUD e A (M) Lz (€5 1) as desired. O
Proof of Lemma
Proof. The result follows immediately from Theorem whose assumptions are given exactly
by assumption (B1) — (B3), with likelihood g(y | ¥). O
Proof of Lemma

The proof is divided in two main steps: the result is firstly proved under the weak metric (Lemma
and it is then extended to the total variation distance.
First of all we need two technical lemmas, that we prove for completeness.

Lemma 56. Let S and p be two positive integers. Then there exists a constant C' = C(S,p)
such that

S

2

|zlP < 1+02x8p
s=1

for every x € RS,

Proof. Since (1 — |x|P)? > 0, we have |x|P < 1 + |x|*’. Moreover, by the Multinomial Theorem,

we get
s p » s
2 _ 2| _ 2ks
s () =X (, 7 ) T

keP

where P = {k: = (k1,...,ks) : ks positive integer, S

S=

1 ks = p}. Since

S 2p
Hl'gks < (msax|xs|> < Zx?’,

s=1 s=1
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the result follows by choosing C' = Y ;.cp (k1 P ks)' O

Lemma 57. Under assumption (B3), the random variables Ay = (Aja1,...,Ayp) defined in
(4.17) are such that for every 8 > 0 we have

1

ﬁAJ’d — 0,

Qt(ff)—almost surely as J — oo for everyd=1,...,D.
Proof. Recall that

AJd—IJZ[ ") Vlog g(Y; | v)| = ZX;d
7=1

and Z~1(y*)dy, log g(Y; | ¥*) has zero mean and finite variance, by (B3). Therefore, by Cheby-

chev inequality
Var ( X 1.d
)S (%1.4)

<J6Ajd 2 J1+26

for every e > 0. This implies

o Var (X
><Z E:;J<1+;ﬁd> < 00,

z<AJd

and the result follows by Borel-Cantelli Lemma. O

Weak convergence

In order to ease the following exposition, denote

W\;jAJ, J>1. (61)

The next lemma proves convergence of T' using the weak metric, denoted by |||y -

P =yt

Lemma 58. Define Y and T as in [@17) and (E19), respectively. Under assumptions (B1) —
(B4), for every ¢ € RP it holds

o | Vi) =¥ (cwnavwn)| =0, (62

Ql(pof)—almost surely as J — oo.

Proof. For ease of notation, denote

By definition of M§p ), we have

B [12(6;) | Y3, o] = MP ()] ¥;)
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Conditional on 1, the group specific statistics T (0;) are 1ndependent across j =1,...,J. Thus,
by Lyapunov version of Central Limit Theorem, in order to obtain it sufﬁces to show

1 J . .

> [MO (0 1%5) - MO @ )] - cwas 5w (63

1 —_
73 Cov (Tu(0). Tw(6) | V3.0 = ey (64)

j=1
1 . 3
5 2 By, [T - MO @ 1) 1] - o (65)
j=1

Ql(;f)—almost surely as J — oo, with s,s’ = 1,...,S5. We prove the three above results sequen-
tially below, which concludes the proof of . O

Proof of . For any s=1,...,5, by and the multivariate Taylor formula it holds

A
M (49 1%) - (0 1) = 32 B 2000, 10 07 )+ ),
d=1
where
D ) A b / A ' A
Ry(¥) = 3 (g + J,d)§¢d + J,d)/o (1~ )0y, M <¢ +t¢‘i\;jJ |Yj> dt
dd=1
Therefore
L SR [ 0) () (1) (o
\/jzl[Ms (1/1 !Yj)—MS (¥ \Yj)] =
iz
D B J (66)
S sy a0 )+ LS
d=1 g 1 j=1
where
L2
ST Ry(Y) =
\/jjz:l 2( J)

D ~ ~
(Va + Bga)(ba + Aya P+ A
Z : J‘f]1/4d Jd J5/4 Z/ a¢d6wd/ <w +1 \/j ? ’ YJ) dt. (67)

As regards , for every d,d’ = 1,..., D by Lemma [57]it holds

(Vi + Dja)Wa + Dya)  batbe | - Aja | AjaAjya
Ji/4 ~ g "H/)d J1/4 "Hz)d’ Ji/4 + J1/8 Ji/8
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fof)-almost surely as J — 0co. Moreover, with the change of variables x =¢/.J 1/4 we have

EERSNE D+ A,
LﬁﬂE:A( )&m%w Gb+t 7 \n)dt
=

J1/4
<
>

* 1/} —+ AJ
a¢'d8¢d/M(1 <¢ + J1/4 ‘ YVJ d

Ji/4 1 J (1
<
3 1)
where the last inequality follows from 12’;%’ < 1 for J high enough, thanks to Lemma

Moreover, ﬁ < 04 for J high enough, so that

D+ Ay
‘J5/4 Z/ 5wd3¢d/ (@D +1 VI ‘YJ dt

01 1
/ Z\%a%, ) x| V)| da

Oy MO (4" + 2| V)| da.

By the Law of Large Numbers and (B4) it holds

1 J/54
sz:l 64

04
— /5 E U&/)d&pd,Ms(l) (T/J* + x| YJ)H dx < 2C44. (69)
—04

oy MUY (4" 42|15 d

By combining and , we can conclude

L
\/jjleQ(Yj)

— 0,

Ql(pof)—almost surely as J — oco. As regards , by the Law of Large Numbers we have

ch‘m Y@1Yy = B0y, MY (67| Y5)] = Coaw),

that is finite thanks to (B4). Therefore, we can conclude that for any s = 1,...,S we have

)

1) (1/}(-]) |Y’]) 1) 1!} ’Y Z AJd — chd Tﬂd,
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Qfﬁof)-almost surely as J — oo and thus holds. O

Proof of . For every s,s' = 1,...,S by multivariate Taylor formula it holds

Cov (T4(6;), T (65) | Y5, o)) = Cov (T(6;), T (6;) | Y5, 4") + Rucon(15),

¢d+AJd ( . @E‘i‘AJ)
Ricoo(Y, }j 1)0,,Cov [ T,(6,), T (8;) | V0" +1 dt.
1 = / v V7

Notice that

1 D . A c A
3 uem () = TR [l ’fﬁ/@a’”dc‘”( O 0) Y+ U2

d=1 0

DatAgq
Jl/4

1 . N A
/0(1 J5/4Z%Cov< 4(8,), Tw (8;) | Yyt +t‘/’jjJ> a

SN
N AR

With the same arguments of before we have — 0 and

Cov (T4(6;), T (6) | Y;, 9" + )| da

Qfﬁof)-almost surely as J — oo. Notice that by (B4) we have

5 |0u,Cov (12(65), T 63) | Y3 + w)ﬂ

Ua’f’d s,s’ (dj +‘T|Y)

Oy, {Ms“) W+ | V) MY (0 + x| Yj)}‘

<2C,

for every x € (—d4,04) . Therefore, we can conclude

1 J
jZRl,cov()/}) — 0
j=1

Qz(ff) -almost surely as J — oo. Thus, by the Law of Large Numbers we have

J
5 Y Cov (6. Tu(®) | V%) = B [Cov(T(6,).T(6) | Vo)

Ql(pof)—almost surely as J — oo. O
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Proof of (65)). By Lemma |56 we have
L ¢ W (1 v )
S 2By, |65 = @ [ 15,00
=1

\F J3222M (w(J ) J3/2 ZZ{M(I) P ’Y)] :

s=1j=1 s=1j=1

By Jensen inequality [M(l) (™ | Y])} < M (@b* | Y;) and by the Law of Large Numbers

Sl

S J S
D MO (| — Y E[180;) | v*] < oo
s=1 : s=1

Qf;f)-almost surely as J — oo. Thus to prove (65 it suffices to show

S J
1 6 J
S S I
s=1j=1
Qf;f)-almost surely as J — oo. For every s = 1,...,S by multivariate Taylor formula it holds

M© (¢(J) | Yj) = MO (" | Y)) + Rig(Y;),

where L. ~
Ya + AJd o) [+, W TAs
Ri6(Y;) = (1—t)6 MO [ g* +¢ Y; | dt
dz::l 0 "/Jd \/j ’ J

Notice that

lzJ: ZM/(I—t)lzJ:a M) ¢*+t1[}+AJ|Y. dt

J 4 = =~ J1/4 0 J5/4 = pa s NG J
and with the same arguments of before we have wdjli‘]’d — 0 Qq(ff)—almost surely as J — oo and

‘i By, M RN Y,
/0( - J5/4Z Vq ¢ + \/j ‘

SN

_>/, “% O +fv\Y)” dz < 26,C,

MO " + 2] Y;)| do

by (B4). Therefore, we can conclude

1 J
5 > Rig(Y;)| =0
j=1
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Qfﬁof)-almost surely as J — 0o. Moreover, by the Law of Large Numbers we have

MO @ |y = E[MO (V)] = B[T806;) | v

1J
=1

J
J

by (B1) and the definition of conditional expectation. Therefore

VI

from which follows. O

1 e Yat+ A
WZM§6)<¢ + —==%1Y; | =0,
j=1

Total variation convergence

We extend the weak convergence to total variation using characteristic functions, in particular
exploiting the conditions in Lemma Here we first state some other technical lemmas that
will be required later on.

Lemma 59. Let X be a RS-valued random vector with zero mean and characteristic function
ox(u). Then for every u € R®

ox(u) =1 — 2B [ X)) + 0B T XP],

for some 6 = 6(u) € C such that |0] < 1.
Proof. Taylor formula for the complex exponential reads

2 1173

ile .Y iz
e + 1z 2+66,

where z € C is such that 0 < |z| < |z|. By z = u' X, we have
T2 LY
(ux)| + GE

ox(u) =1+1iE [uTX} —%E ‘uTX‘?’

)

with 0 = e%*, recalling that |e**| < 1 for any 2. The result follows from E [uTX } =0. O

Lemma 60. Let X € R® andY € RS be independent random vectors with the same distribution.

Then
px—y () = |px (u)]?.

Proof. By independence we can write
ex-y(u)=FE {eiuTX} E [e_iuTX] :

where
E [ei“TX} =F [cos uTX} +1iF {sin uTX} = a+ b,

for suitable a and b. Since cosz is even and sin z is odd, we can write

lox—y (u)| = [(a+1ib)(a —ib)| = a2+ = ‘cpx(u)lg
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Since X — Y has a symmetric density by construction |px_y(u)| = ¢px_y(u) and the result
follows. H

Corollary 18. Let X be a R%-valued random vector with characteristic function ¢x(u). Then

T 2Juf? s 6
|@X(u)|2 <e u' Var(X)u+=5 [1+Czs:1E[Xl]]’

for uw € RS, where C is a finite constant independent of u.

Proof. Let Y be an independent copy of X. By Lemma it holds

lox ()[* = ox_y (u),

where px_y(u) is a real function, since it is the characteristic function of a random variable
with symmetric density. Therefore, by Lemma [59] it holds

vt =1 (2] + 85 7 2r].

where Z = X — Y and 6 = 6(u) € R. Recalling that e* > 1+ z for every =z, we have

oy (u) < o~ HPI07 2P BT 2]

By Lemma 8.8 in Bhattacharya and Rao (2010)) it holds
E [(uTZ)2] =2F [(uTX)Q} = 2u' Var(X)u
and
E | 2] <4B | X)*] < 4ul’B [|XP].
Moreover by Lemma [56] we have
S
E|xP|<1+0> B[xf].
s=1
Therefore s
—uTVar(X)u+ 2420|1105 B[X6
ox_y(w)<e At [ O Bl ’ﬂ
and the result follows from 6| < 1. O

The following lemma is a minor variation of commonly used techniques to prove total vari-
ation Central Limit Theorems.

Lemma 61. Let (Xj)s>1 and X be RS -valued random variables with characteristic functions
(1) s>1 and @, respectively. Denote by L*(R®) the space of compler-valued integrable functions
with domain RS. If

(a) Xj converges weakly to X as J — oo
(b) ¢ belongs to L*(R), i.e. [ps|p (t)] dt < o0

(c) limAﬁoolimsupJ_)oof‘tleMpJ (t)] dt = 0.
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then X j converges to X in total variation as J — oo.

Proof. First we prove that limj_, ||¢7 — ¢||z1 = 0. By the triangle inequality, for every A > 0
we have

s —pllpr < /

[t|l<A

fostt) = o0l dt + |

eslde+ [ et (70)
1> A

1> A

Since weak convergence implies pointwise convergence of characteristic functions, assumption
(a) implies that ¢ s(t) — ¢(t) as J — oo for every t € R®. Thus by the Dominated Convergence
Theorem and |7 (t) —p(t)] < |@s(t)|+]|e(t)| =2, we have f|t‘<A lps(t)—(t)|dt - 0as J — oo
for every A > 0. It follows by that

0 < limsup g — ¢l < / [o(#)] dt + lim sup / o (b dt, (71)
J—00 [t|>A It|>A

J—o0

for every A > 0. By assumption (b) lima—cc Jiy> 4 [¢(t)] dt = 0. Combining with assumption (c),
taking the limit A — oo we obtain limsup;_, . || —¢llr1 < 0and thus lim . ||ps—¢|lz1 = 0.

Then, note that ¢ € L'(R®) and ||¢; — ¢||z1 — 0 as J — oo imply ¢ € L'(R®) eventually
as J — oo, since by the triangle inequality

lesller < lles =@l + el < oo

for J large enough. Thus, by the Inversion formula, for J large enough X ; and X admit density
functions w.r.t. the Lebesgue measure, which can be written as fx  (t) = ﬁ Jrs e_itTth(t) dt

and fx(t) = Gy Jps e~ tp(t) dt. Thus

1 —itTt 1 —itTt
DE /Rse ws(t)dt — DE /Rse p(t)dt

it
< [ e st = o)] dt < llos = ol =0

1fx, () = [x(®)] =

as J — oo for every t € RY. By Scheffé Theorem, total variation convergence is implied by
pointwise convergence of the densities. O

Proof of Lemma[f8 Fix ¢ € RP and denote p = C(4)*)y and Z = V(¢p*). We will prove
conditions (a), (b) and (c) of Lemma [61| to show that £(dT | Yi.;,7) A N (u, 2) for fof)—
almost every Y as J — oo.

Condition (a) is shown in Proposition[58 Regarding condition (b), the characteristic function
of the limiting distribution N (i, E) is ¢(t) = ein =gt St
definite by (B4).

We now turn to condition (c). Let

, which is integrable since = is positive

. T A
@(t|1/1:J77/}):E[62t T|§/1:Ja7/)} tERS

be the characteristic function of £ (dT | Y7. J,w). Using the definition of T in ([#.19), and the
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fact that T(6;) are conditionally independent given ¥, we can write P as

(t|Y1Jaw)_6_zt aJH¢<f|Y}7¢(J)>7

where ay = C(¢*)Ay + %Z}Ll MO | Yy, ¢ (t|Y;,0) = E [eitTT(gi) | Yj,¢] as in the
definition of (B5) and %) as in (6I). Since a; € RS we have le="@s| = 1 and thus

(IYW )‘ (72)

For every € > 0, by and the subadditivity of lim sup we have

|¢(t ‘ }/11]71/}

lim Tim sup / (t | m,z/?)\ dt <
[t|>A

A—00  J 0o
t ’y}’q’D(J) dt+limsup/ t ‘ y}.’q/,(f)
Vi J=oo Jitl>eVT |5 V'

Lemma shows that the second limsup in the last line is equal to 0 for every e¢ > 0, while
Lemma shows that the lim 4_,o, limsup;_,, term goes to 0 when € is chosen as in . Thus
condition (c) follows by taking € as in in the above inequality. O

lim lim sup

A= 00 /A<|t|<e\f

Lemma 62. Under the same setting and notation as in the proof of Lemma[{6, for every e >0

we have
1o 107)

Proof. Consider the change of variables = t/v/J. Then
H o (w1 Y5,0)| da

/ (\f\ dt = JS/2/|x|>E |

Let k and Bs, be as in (B5) and k' and By, be as in (B6). Take J high enough so that J > 2k
as well as (/) € B := Bs, N Bs,, so that

/ J
|z[>e€ j=1

=0

lim Sup/
J—o0 |t\>e\f

Q,(ﬁof) -almost surely.

mﬁ”)

I ¢l

j=2k+1

wal

de < sup/
YeB |w\>e .

For every a € R denote its integer part as |a]. By (B6), for every ¢ € B we have

[Te (x50

L

J Jon 2k+1+sk’
[T e@lviv)< [ As<o@lF !, with A, = [  e@lvw
j=2k+1 s=1 J=2k+1+(s—1)K
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almost surely, where we exploited the fact that each Ay is distributed as p* (t | Y1, %) in
(B6). Therefore

J—2k
/ H¢@wnmz)dxsw&k'mm/ H¢x|nw)
|z[>€ | veB Jlal>e |;
almost surely. By Holder Inequality and (B5), we have
c:sup/ Hcp:r] dx<sup/ goac\ dzr <
YeB |Z\>e .

2

/ sup / H p(z]Y; < o0,
weB j=k+1
almost surely. Therefore it holds
t J—2k
—|Y;, D) ar < J52 ¢\l
o () e
that goes to 0 as J — oo, since ¢(e) < 1 by (B6). O

Lemma 63. Under the same setting and notation as in the proof of Lemma let A >0 be
such that the matriz V (¢*) — X is positive definite. Such \ can be found, since V (v*) is positive
definite by (B4). Then, given

A
= 5 (73)
1+ O B [Ts(61)° | ¢¥]
we have
- ¢ )
lim limsu / — | Y, dt =0
A=o0 J—)oop A<|t|<eVT ]1;[1()0 <\/j R )
fof)—almost surely.
Proof. By Corollary [I§] we have
—u " Var(T Yi)u 2lul C Ts(0,)°)Y5,
o |yt < ¢ VT 2 O B el )]
for every u € R® and ¢ € RP. Therefore
J 2 T1 20¢3
e (t | Yj,w> <ot T Var(T(0;)]Y; )+ [1+C S s BT IYJ,w]] (74)
= \WVJ

Notice that in the proof of we have shown through (B4) that

*ZE[ Y, 0] = B [Tu(00)° | 7] (75)
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fof)-almost surely as J — oo, for every s = 1,...,5. Thus, combining and , for every

|t| < ev/J we have
2

Q‘tl |:1+C Z] 129 1 [ ‘Y}’w]] S eAtTt’ (76)
almost surely for J high enough. Finally by and
/ (\f | YMW) dt < ~/|t>A et EV gy (77)

with

[I]

=S (110 1 507) -

Since Z/) — V(¢*) — Al by , and V(¢*) — Al is positive definite by definition of A, by
Dominated Convergence Theorem
< ]a¢(J)>

lim sup /
J

Since the right hand side of is integrable the conclusion follows by taking A — oo. O

dt</ et (VE)=ADE gt (78)
T Je>A

Proof of Theorem

We first need a technical lemma.

Lemma 64. Let {Y(”)} be a sequence of random elements with state space Y@ such that
n

Y™ ~ QM with Q) e P (y<">). Let {mn}n be a sequence of Markov kernels from Yy o
X =X X Xy and let m € P(X). If

||7Tn,1(’) — 7T1(')||TV — 0 and ||7Tn( | z) —m(- | x)HTV — 0, for mi-almost every x € X1,

asm — 0o in Q(”) -probability, where m,1 and 71 are the marginal distributions on X1 of m, and
T respectively, then
170 () = 7|y = 0,

as n — oo in QU -probability

Proof. Let f : X — [0,1] be a measurable function. By the triangular inequality we have

|/ f(xl,xg)wn(dxl,dxg)—/ f(z1, xo)m(day,dze)| <
X X

’/ f(xl,xz)wn(dxg|x1)wn,1(dx1)—/ Flar, wo)mn(des | 21)m (dan)| +
X X

'/ f(z1, zo)my(dae | x1)m(day) —/ f(xy,xo)m(day | x1)m (dz)] .
X X
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Notice that

sup ’/ f(z1, z2)mp(dze | 21)mpn 1 (dey) —/ flxy,x9)mp(day | 21)m (dz)
o x X

< [lmna () = m )l — 0,

as n — oo in Q(™-probability, by assumption. Moreover we have

sup ‘/ f(x1, z2)mn(des | 21)mi(day) —/ f(z1, z2)m(das | 21)m(doy)| <
f X X

/ sup
X1 f

The integrand on the right hand side goes to 0 as n — oo in Q(”)—probability, by assumption.
Therefore, by Dominated Convergence Theorem, we have

7T1(d£€1).

| fanamdes o) - [ flana)n(de | o)
Xy Xy

sup ‘/ flxy,xe)mp(day | x1)m(dz) —/ f(z1,29)m(dxe | 21)m(dzy)| — 0,
f X X

as n — oo in Q(”)—probabﬂity, as desired. ]

Proof of Theorem [20, Lemma shows that ) converges to a Normal distribution with zero
mean and non-singular covariance matrix Z~!(*). Similarly, Lemma [46|shows that, conditional
to every ¢, T converges to a Normal distribution with mean and variance (denoted by Eu|[/]
and Vare(+) ) given by

Eo|T | §] = C(4*)0, Vare (T |§) = V(©).

Therefore, by Lemma we conclude that (T, @Z) converges in total variation to a (S + D)-
dimensional Gaussian distribution 7 with zero mean and covariance matrix > given by

~ T
Si¢ g

where X7 = I (y*) € RP*P and ©7 € R are the limiting variances of ¢ and T, while
Zq&T € RP*S is the limiting covariance. Thus, thanks to standard properties of the multivariate
Gaussian distribution, the determinant of > can be computed as

det(3) = det (3 ;)det <2T - zgfzilzﬁ) = det (S ;)det (Varoo (T w))
= det (71 (1")) det (V (1)),

which implies that ¥ is non singular. Indeed, det (I_l(d)*)) > 0 by (B3), while det (V(¢*)) >0
by (B4). Therefore, by Theorem 1 in Roberts and Sahul (1997), the Gibbs sampler on the limit
Gaussian target has a strictly positive spectral gap. Moreover, since the Gibbs sampler in
has two blocks, by Lemma [54] we have #,,,;. (¢, M) < oo for every M and e: thus the result follows
by Corollary [§] O
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Proof of Proposition

Proof. Using the notation Eu[-],Vare(-) and Cove(-,-) for the limiting mean, variance and
covariance, by Propositions [45] and [46] we have

Ex[f] = 0p, Vare($) =T~ (")
and o ) o
EwolT | 9] = C(")0, Vara (T|9) = V(1.
By standard properties of the multivariate Gaussian distribution we have

Ew|T] = 05, Covee (T,4) = C(u")Vara () = C(4")I ™ (¢7)

and
Varso(T) = Vara (T | ) + Covae (T, 3) Varz (i) Covl, (T, )
= V(") + CWI ' (%)CT ("),

as desired. O

Proof of Corollary

We need three preliminary lemmas. The first one is a special version of well-known results (e.g.
Roberts and Sahu| (1997)).

Lemma 65. The Gibbs sampler targeting the distribution in Proposition[23 can be written as
() T(t-1) U,
LW] 7 Lﬂ“‘” Tl

Osxs C (™)

where

and

Proof. By Proposition [46] we have
E [T(t) ‘ jﬂ(t—l)ﬂﬁ(t—l)} - C(w*)@(t—l).

Moreover, by Proposition 23] and standard properties of the multivariate Gaussian distribution,
we have

E[Q;t | T(H)@(H)}
— B [T W) {V) + O wHeT ) 0 |00, 30
=27 () {Ve) + C(q/;*)z—l(w*)cT(w*)}’l O™y,
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as desired. ]

Lemma 66. Let
Osxs A
M = ,
0D><S w

with A € RS*P and W € RP*P . Then M and W have the same non null eigenvalues.
Proof. Let u # 0 be an eigenvalue of M, with eigenvector z = [a:g, z}]". We have

KIS
HZTD

)

Mx=pux & [AxDl =

W.TD

so that u is an eigenvalue of W with eigenvector xp. Indeed, xp is different from the null vector,
since p # 0.
Let A # 0 be an eigenvalue of W with eigenvector zp. Then

Ax Ax
M| = Ao oy R
xp Wzxp zp |’

so that X is an eigenvalue of M, with eigenvector

Axp
A
zp |’

as desired. ]

Lemma 67. Let A € RP*S gnd B € RSP, Then the matrices AB and BA have the same
non-null eigenvalues.

Proof. Let X\ # 0 be an eigenvalue of AB, with eigenvector v € R”. Then
ABv = B(AB)v = (BA)Buv.

Since Bv # 0 we conclude that A is an eigenvalue of BA with eigenvector Buv. O

Proof of Corollary[I0, With B as in Lemma by Theorem 1 in Roberts and Sahu (1997)) the
spectral gap of the Gibbs sampler with operator P is given by

Gap(P) = min {1 — |\;| : \; eigenvalue of B}
Thus, by Lemma, [66] with M := B and
W =T w0 (%) V) + 0T (00T W)} o).
we have

Gap(P) = min {1 — il + A eigenvalue of Z71(y*)CT () {V (4*) + C(" T (¥)CT (")}



228 (GIBBS SAMPLERS FOR PARAMETRIC HIERARCHICAL MODELS

By Lemma [67] with

A=T' ("0 (¥"), B

Il
——
=
<
+
Q
<
5
<
Q
Py
<
Ny
Q
<

we deduce

. -1
Gap(P) = min {1 — [N\i| @ A; eigenvalue of {V(l/)*) + C(@D*)Zfl(w*)CT(w*)}

Notice that
* *\7—1/ /% Ty % -1 s\ T—1/ )% T/ %
v+ ezt W) @) eI )T (@)
=1 {V@) + O @CT W) V).
Since A is an eigenvalue of A if and only if 1 — A is an eigenvalue of I — A, it follows that

Gap(P) = min {1 — |1 = \j|; A\ eigenvalue of {V(”L/J*) + C(w*)l'*l(w*)CT(w*)}il V(w*)} .

Moreover the eigenvalues of the inverse are the inverse of the eigenvalues, so that the rate of
convergence is equal to

Gap(P) = min{l - ‘1 - )\i

. \; eigenvalue of V~1(y*) {V(W‘) + C(w*)I_1(¢*)CT(¢*)}} )
Since
V@) {V@") + CuNIT @O @M ) = T+ VT @I @O (),

we have

Gap(P) = min {1 - ’1 - 1—1—1>\ ; Ai eigenvalue of Vl(w*)C(w*)Il(w*)CT(w*)} ‘

Moreover both V=1(1*) and C(¢/*)Z~1(¢*)C'T (v*) are positive semi-definite, so that also their
product is positive semi-definite and has positive eigenvalues. Therefore we conclude

Gap(P) = min{ -3 Ai eigenvalue of V_l(w*)C(w*)I_1(¢*)CT(w*)}

b
14X
and the result follows by Corollary [0 O

Proof of Corollary

We need a preliminary lemma, that we prove for self-containedness.

Lemma 68. Let p(0 | 1) be as in (4.14]). Then it holds

02 OpA _
ET(0) | v) = Gt Var(T(0) ) = {aiA@,b) - W} [oum(w)] .

CwT W)}
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Proof. Differentiating the following equality

= [p0 1w, (79)

by the regularity properties of the exponential family we get

0= [ 00| 9)d0 = (W) EIT(6) | 4] + 0, A(w),

and the formula for the expected value follows. As regards the variance, differentiating
twice, we obtain

2 2 2
0= A3n()EIT(0) | ¢]-03 A(W)+[0un(w)]” BIT*(0) | v]-2 [oyn(w)]” BT () | ¥)+[0sA@)] -
Noticing that , )

[0un()] EAT(0) | 4] = [0sA()]

and rearranging, we get

OFAW) — O3n(w)EIT(6) | 4] = [0yn(w)] Var(T(6) | ¥),

from which the result follows. O

Proof of Corollary[11l By Corollary we have
o1 Ly O
D S N (D F ()
where
C(W) = By, [0, EIT(0;) | Yy, 4],
V(i) = Ey; [Var(T(6;) | Y;, ¥)],
I($) = — By, [0} log g(¥; | v)]
with g(y | ¥) as in (£.16). As regards C(1), notice that
JTO) (Y [6)0yp(6 | ¢)db
9(Y [ )
TS | 6)p(6 | ¥)d6] [[ £V | 0)9yp(8 | ) db]
g*(Y | 9)
=0un()E [T(0) | Y, 0] — 0yn(¥)E? [T(0) | V. ¢]
=0yn(y)Var (T'(0) | Y, 9).

(
(

O E[T(0) |V, 9] =

Therefore

() = [oyn(u)]” B3, [Var (1(6;) | ;. 47)] - (80)
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As regards Z (1)), notice that

0y logg(; | p) = LIV 10 O10)d0 _ 5

)fT(G)f(Y | 0)p(0 | ¥)do
g(Y [¢)

9(Y [¢)

— OpA(Y)

and

02 log g(Y; | ¥) = O2n(6)E [T(6) | Y] — BBAW) + D)L -] (’;(’ ;)%’(9 [¥)df

[ TO)F( | 0)p(6 | 4) 6] [[ £V | 6)dyp(6 | ) do]
GV | 9)
= Bn()E [T(0) | Y] — AW) + [0um(w)]” Var (T(6) | Y,0).

= Opn(¥)

Noticing that, by Lemma [68], we have

Pn()oyA
OFn(Y)E [T(0) | Y, 9] — 93 A(p) = {@%AW’) _ M}

Oyn(¥)
= [un(w)] Var (10) | ).
we get
T(6*) = [Dun(w)] Var (1(6) | ¥%) — [0yn(v")]” By, [Var (T6)) | V5, 9")]
= [oun(w)] Vary, (E[7(0;) | Y5,077).

by the Law of Total Variance. Combining and , it holds

(81)

B}, [Var (T(6;) | V;,0%)| By, [Var (T(6;) | v;,97)]

A= d = .
V(*)Vary, (E[T(0;) | Y;,0*])  Vary, (B [T(0)) | Y. v7])

The expression for v(1)*) follows by rearranging and applying the Law of Total Variance. O

Proof of Proposition

First of all notice that, by Bayes’ Theorem, we have
ind. _
01 Yo 1,1 " N (my, (mmo + 1)) (82)

where
mTo — T1

mj—

mro+ 711 0 + mro+ 1
Recall that by (B1) we have

Y; % gl 14 = N (i, () T + () 'H),
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so that

;i N ( . ﬂ)- (53)

1 mtg

Moreover we need some preliminary lemmas.

Lemma 69. Let X ~ N(v,02). Then

p
E[X?] = <>MP B[z,
i=0

(2

where Z ~ N(0,1) and

5/2 (57!2) if s is even

Bl7°] = {0 if s is odd

Proof. The result follows by noticing X = v+o0Z and applying Netwon’s Binomial Theorem. [

Lemma 70. Let A be m x m matriz such that A = al +bH, with a # b and a # (1—m)b. Then

det(A) = [a + mbla™ ! and A7 = 11— a(a+mb)H
Proof. We start by the determinant
c d - d 11 1
d ¢ - d d c d
det | . . | =le+ (m—1)d]det | .
d d c d d c
1 1 1
0 ¢c—d --- 0 L
—fe+(m-nd|. . | =le+m—1dc—dm,
0o 0 - c—d

where the first equality comes by adding to the first row all the others, while the second comes
by subtracting the first row (scaled by d) from all the others. In our case ¢ = a + b and d = b,
that is det(A) = [a + mbla™ !, as desired. With our assumptions we get that the determinant
is different from zero.

As regards the inverse we prove A~ = I + yH for suitable z and y. Indeed
(al + bH) (xI + yH) = axl + ayH + bxH + byH? = axI + (ay + bx + mby)H

Setting the above equal to I, we obtain x = 1/a and
b
ay+br+mby=0 = yla+mb)=— = y=-—
a

as desired. ]
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Lemma 71. Consider the marginal likelihood as in (4.23), with ¢* = (u*, 7, 75). Then we have

(") = 0 _omA()? _om (84)
- 2(r)2 (rf+m7g)? 2(7'1*—&—m7—6")*2 )
O m m—1 + Tl )
2(rf+mry)? 2(1g)? 2(18)2 (rf +m7g)?

Proof. The log-likelihood [(1)) = log g(y | ¢) is given by

1 1 | )
L, 70, 71) = _glog% -3 log (det(X)) — §(Y1 — u)'STN Y] — ),

with ¥ = 75T + 7y 'H. By Lemma with a = 75! and b = 7, * we have

2
-1 —17/—1ym—1 —1 7o
det(Z) = [7—0 + m7‘1 ](TO )m N by = TQI — m
Thus, the log—likelihood becomes
1 m—1 1 o Sy To 2
I(p, 70, 71) = — §log27T +— log T — 510g(70 +mm ) — 5 > (Vi —p)
i=1
2
70 t
————— (Y7 — pu)'H(Yy — pd).
2(7’1+m7'0)( 1 — pd)'H(Y1 — pl)
Rewriting the last expression we get
1 m—1 1 4 Sy TO 2
W, 10,71) = — 3 log 27 + 5 log 79 — 510g(70 +mr ) — 5} Z(le — )
i=1
8 U ’
0
+ Y1, — .
2(11 + m) ;( Li = )
The required derivatives are given by
2
*l _ mTom 872[ __m7(211 +mm) i i(y )
oz m+mrmy 0 2mi(mi+mm)?  (m+mmo)? = R I

2
9%l —1 2 2_9 2.2 [ m
m 7'1(7'1 + mT()) n (71 + mTO) mToTy — M7, Z(Yl,i _ 'u) ’

877'3 - 27’3 B 27‘3(7’1 + m70)2 (1 + mT0)3 =
9%l m 2mToT1 + M7 —
= Yii— - Yii— ),
oudry ;( 1= #) (11 + mm0)? ;( L= 1)
2
9%l Tg n 92l m ToT1 m
= Yi; — = — Yi; — )
oudry (11 +mm)? ;( i = 1), dt00m1  2(m1 +mm)2 (11 +m7p)? ;( 1i = 1)

The entries of the Fisher Information matrix reported in can then be computed from the
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above expressions by taking expectations with respect to Y7 and exploiting that

ElYi;—u] =0, E[(Yi;—p?|=Var(Vi;—pm=" + 7
T0T1
2
E (Z(Yl,i - M)) =Var (Z(Yl’i — ,LL)) =[,...,1Var(Y1)[1,..., 1]t
i=1 i=1

= [, 1) (g ) (10!

mTo + T1
=m|————].
T07T1

Thus we can compute the entries of the Fisher Information matrix as

8721 __m= 1 m (11 + 2m7) N m(m + mm)? — 2mProm — m37¢
org 278 278(11 + mmp)? 1071 (11 + MT0)?
. om—1 712
- 278 278 (11 + mmp)?’
E (9721 _ _mT0(2T1 + mmy) mTo _ m2rd
_(97'12 272(m1 +mm)2  Ti(m + m7p)? 272(11 + mmp)?’
[ 82 2]
oy P L
_8/1,87'0 6#67’1
- 921 B m m B m
_87'087'1 - 2(7’1 + mm)Q (7’1 + 777,7'0)2 o 2(7’1 + mT())z’
as desired. ]

Lemma 72. Let X ~ N(v,02). Then

_ﬁ (2ua+b)2
2 1+4a2o4

i(aX24+bX) e
‘E[e H = (1—1—4&204)1/4’

for every (a,b) € Ry.

Proof. By definition of expectation we have

2
. ‘ 2 —o3 -1 z2<i—2ia)—2z(i+ib)
E [ez(aX2+bX):| _ / 6z(azQ—i-bZ) 1 6_(2202) dz = ez /6 2|: o? o? dz
R R

Notice that
2
1 v 1 — 2iac? v+ ibo? v+ ibo? v+ ibo?
2 . . 2
— =2 -2z —=+ib) = —n— -2 - —
i (02 m) i (02 T ) ( 02 ) {z “1 = 2iac? + (1 — 2iao? 1 — 2iao?

1 — 2iac? vtio? \? (v ibo?)?
= S z — _
o2 1 — 2iac? o?(1 — 2iac?)’
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so that .
1 —% [32 (U%—Qia) —Qz(g%—i-ib) 6%
e dz = ————.
V2ro? /]R V1 — 2ia0?
Finally, we get
(l/+iba2)2
o2(1—2iac2
E [ei(aXQerX)] _ 6_21;722 e20%(1-2iac?) ‘ (85)
V1 — 2iao?

With simple computations we obtain

(v+ibo?)? (V2 + 2ivbo? — b20*)(1 + 2iac?)
202(1 — 2iac?) 20%(1 + 4a%c?)
_ v? + 2ivba? — b2o* + 2iv?ac?® — dvabo? — 2ic%ab?
202(1 + 4a?0?)
v? + 2i(vbo? + v?ac? — 0%ab?) — 4vabo* — o*b?
202(1 + 4a%0?) )

Thus, by we can write

(u+ibo‘2)2

. 2 2(7‘2(1—21'(10'2)
E |:6’L(aX2+bX):| = e 22 67’
V1 — 2iac?

that implies

74u2a2a;1+4uab2044+b2a4 _ﬁ (2ua+b)2
. 204 (14+4a40c%) 2 1+4a204
’E [ez(ax2+bX)H < ¢ . _ ¢ @ "1 -
V1 — 2iac?| (1 + 4a20?) /
as desired. ]

Define
J J
b= () and T=T(0) = (30,506 —u)?]. (36)
j=1  j=1
Next three lemmas show that assumptions (B1) — (B6) are satisfied for (T, ) as defined above.

Lemma 73. Consider the setting of Proposition . Then assumptions (B1) —(B3) are satisfied
for (T,v) as in .

Proof. Tt is easy to show that assumption (B1) is satisfied, with g(-) as in (4.23)). As regards
(B2), suitable tests can be defined analogously to Lemma
Finally, by Lemma [71] the Fisher Information is given by

mriTy
mry +7{
for [ =1 and by
mry Ty 0
mry+1]
0 m?2(7)? ’
2(r)2 (rf +m7g)?

for [ = 2,3. Therefore (B3) is satisfied for any ¢*. O
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Lemma 74. Consider the setting of Proposition . Then assumption (B4) is satisfied for
(T,v) as in .
Proof. Since T'(6;) = (0}, (0; — pu*)?) it holds

MP (7 | V) = B0 | pon], M3 | Y)) = E[0;0; — u*)? | ]

By Lemma |69 and , we obtain

E[0k| T}—Zk: k ( mn_ T >Z< 1 )““_i)/ZE[Zk—z‘]
51Tl _izo i mro + 11 J m7—0+7—1'u mTo + 71 .

It is a finite sum of infinitely times differentiable terms (with respect to x and 71). Moreover, for
every k > 1, thanks to Lemma and (83), Ey, [D?ﬂk | u,ﬁ} is uniformly bounded over (u,71)
belonging to a bounded set.

Therefore, choosing d4 < 77, it is easy to find C' < oo that satisfies assumption (B4). O

Lemma 75. Consider the setting of Proposition [2{ Then assumptions (B5) and (B6) are
satisfied for (T, 1) as in (86)).

Proof. Assume p* = 0, the general case follows by similar calculations. Recall that the posterior
distribution of 6; is given by N(m;, o?), with m; as in and

2 ].

mro+ 11
By Lemma [72] we have

o 2mjta+ty)?
e_ 1+41204
< (57)
(1 +4t304)

2
|E {J(tlgﬁtﬁ?) | Y5, i, TJ

Moreover, notice that
o (2mjto+tq)?

T T A _ | 2 4
/Re 2 dt; = 602\/1+4t20 )

for any ¢ > 0. Since 6; are independent, given p and 71, by Hélder inequality we write

2 3 2
) 3 3 )
/ E [ez(tl ijl 0j+t2 Zj:1 0%) ‘ Y, N:Tl} dtdts = / H E |:67/(t10j+t20j2') ‘ Y;, M,Tl} dt,dts
R2 2 j=1
3 6_ 2% 3 2(2V to+t1)?
/ 11 17z dtidts = / / H e M dn | db
B2 j=1 (1 + 4t3o 4) R (1 + 4tdo 4 R

1
e to+tq)2 /3

3 o ;
/R e 5ot gy dts

S/R(

3/2
1+ 4t304) 25

_ 7T/ 1 q
V302 R 1+ 4t20% 2
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1
ONARY 2dt<,/i/7dt
/chp (t :¢>‘ ~ V302 Jr 1+ 4t30* 2 < 00

where the right hand side does not depend on the data and it is a continuous function of y and
71. This implies (B5) is satisfied with k = 3.

As regards (B6), by Lemma [72|if t5 # 0 we have

Therefore

1

‘90(1)@ ’ ij?/J/le)’ S —1/47
(1 + 41304)

while if t9 = 0 then
02
oMt | Vi, pom)| < e TH.

Therefore

1 2.0
Ltl

T2
)1/476 Y

oM (| Yo py 1) < max § ———77
(1 + 4830

so that

1 022
Wy, b %
sup [\ (t | Y, p, 71)] < max N
11> ’ (1+ 24/

since at least one between t; and to must be larger than €/2. Notice that the right hand side
does not depend on Y; and is strictly smaller than 1 for every triplet (u,71,70). Since o is a
continuous function of p and 71, assumption (B6) is satisfied by choosing d¢ < 71 and ¥’ = 1.

O

Proof of Proposition[24 The result for P; follows directly by Theorem whose assumptions
are satisfied by Lemmas [73] [74] and [75] As regards P, and Ps, they are not particular cases
of Theorem since the two operators are different by the one in (4.15). However, the result
follows by very similar arguments, that we briefly summarize. Since by construction

L(dy | 0,Y1.y) = L (dy | T(8),Y1.s)

a direct analogue of Lemma [44] holds. Moreover, following the proof of Theorem 20, Lemmas

and hold for T in . Finally, Corollary proves that the limiting spectral gaps
associated to P, and P are strictly positive: by Lemma [54] this implies ;. (e, M) < oo for Py,

being a two-block Gibbs sampler. The same holds for Ps, since in the limit it can be reduced to
a two-block Gibbs sampler, as it will be clear by the proof of Corollary [12] O

Proof of Corollary

We split the proof in two different cases.
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Proof of Corollary for 1 ()

Proof. By Corollary [11], the spectral gap is equal to

Vary, (B [0 | 4,Y;])

By and we have
2
. mTo v _ mTo
VarYj (E [QJ HZJ’Y]]) N (m7’0+7'1> ’ Var< J) 7’1(7171704-71)7
and Var (6; | ¢) = 7 ', that leads to
o _ M7y
71(#1 )_ ng‘i‘Tik,
as desired. O

Proof of Corollary for o (v*) and ~3(¢*)

We need a technical Lemma.

Lemma 76. Consider the setting of Proposition |24 Then

T 0 % 0
®\ _ | mTi+TS x\ _ | mTy Ty
C(@b ) - 00 ! . T +2mTd ) V(d’ ) - 0 21 +4mTy 5
T (mri+77) i (m7i+77)?

with C(¢*) and V (¢*) as in (38).

Proof. Recall that, in the context of Proposition we define Ty (0;) = 6; and T2 (0;) = (0;—u*)?.
By we have

mTo — T1
EIT(0;) | Yj,¢) = mTo+7'1 it et
2
mTo — 1
E|T5(0;) | Y —ur) .
[2( ])| JMM mTy + T1 (mTo—{—ﬁ J m7_0+7_1,u M)
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Therefore we can compute C(1)*) as

7_*
Ey. [0, Mi(v* | Y;)] = —1—
. 27 mry o mry .
EYj [a”M2(¢ | YJ)] - EYj mry + 7] (mT{f —i—Tij B mr —i—ﬁ"u =0,

* %
mT ~ mT)
Y,

By, [0, M(s7 | Y;)] = By, [—( T +n*>2“*1 -

mr§ + 17 )?
1

By, [0, Ma(y™ | Y;)] = — WJF

mrs . mre mrs mre
By |2(-— 10y 4 (UR— 0y 0
Yi < (m7d + 17)? J (m7g —1—7'1*)2'u mry + 14 J mrg + T
1 (ng)Q ¥ 2
=— —2 By [(V; — u*
(mr§ + 75)? (mr§ + 71)3 e {( Iy }
B 1 mry
N (m§ + 7)? T (mtd + 77)%

by (83).

We now consider V (¢*). Given X ~ N(u,0?), we have

Cov(X, X?) = 2u0?, Var(X?) =20 +4p%0?,

which can be easily derived by computing the first four moments of X using Lemma which
are E[X] = p, E[X?] = u® + 0%, B[X3] = 3uc? + 3 and E[X?] = 30* + 6u%0? + u*. By

we have
Var(0; | Yj,¢7) !
ar(0: | Y - -
S mti + 17
Cov(8), (6; — u*)? | Y;,0%) = Cov(B; — u*, (6; — p*)* | Yy, 0%) = 2L H
32 \Uj j J 2 U j mrg 17
2 4 2
Var((0; — pn*)? | Y;,9*) = —
a'r(( J lu’) | ]71/]) (mTS-i-Tf)Z +m7_8<+7_ik (m] ,LL)
2
2 4 mryy -
— Y_ * * .
(m75‘+7f)2+m75‘+7f <m7'6‘+7'1*( i H )+M>

Therefore, we conclude
By, [Cov(0;,63 | ¥;.4")] = 0

)
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and
2 1 <\’
T, -
Ey. |Var(0? | Y;,¢v*)| = Fv | [0 ) oy~ )2
v, [Var(6 | .0 (g + 72 mrg Y [<m7'6*+7f> S
2 4m?(7g)? -
— Ex-. Y_ *\ 2
TrEE AT s
_ 2 dmry
(g +)? T (mrg )Y
as desired. 0

Lemma 77. Consider the same assumptions of Proposition[24). Then

|edd, dib | Yi) = N (0,2)] =0,

as J —> 00, in Q( -probability, where (T,z/;) are derived by with transformations (4.17))

and and where

[ T 42mTy TH(TF+2mTl) i
R e B T L
0 L 0 1
mT mr,
R TP (i) BN G At (88)
BT w2
1 mry+T15
0 mry 0 m;)'g‘rl*l

Proof. The result follows by an argument similar to the proof of Proposition where
V() +CnIH )0 (") CWHI (@)
WO (W) I (y")
The entries of ¥ can be computed through Lemmas [71] and [76] O

Y —

Proof of Corollary (12 for ~v2(¢¥*) and ~3(1*). Recall that Ps is the transition kernel of the Gibbs
sampler that alternates updates from £ (dy,d@ | 71,Y1.s) and £ (dm | 6, p,Y1.s). Through the
same reasoning of Lemmal[44] the mixing times of P are the same of the Gibbs sampler targeting
L (dp,dr,dT | Y1.7) by alternating updates from £ (dp,dT | 71,Y1.5) and £ (dm | p, T, Y1.7).
Indeed
,C (dT1 | H»B,YI:J) = £ (dTl | M,T(O),Yl;J) .

Therefore, by Corollary (9] v2(¢*) is the spectral gap of the Gibbs sampler alternating updates
from £ (dﬂ, dTy, dT, | 7*1% and £ (dﬁ | ft, T}, Tg), where £(-) is the law identified in Lemma

By inspection of the matrix , (/1, Tl) is independent from 7, and T according to L, so that

(/Z, Tl) is sampled independently from everything else at each iteration. Therefore by the same
arguments of the proof of Corollary [10| we have

2
Y2, mr
* pry 1 — fry
72(47) YooY mri + )
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Instead, recall that Pj5 is the transition kernel of the Gibbs sampler that alternates updates from
L(d0 | 7,Y1.y), L(dp | 0,71,Y1.5) and L (dr | 0, p,Yi.5). Reasoning as before, by Corollary

y3(1p*) is the spectral gap of the Gibbs sampler alternating updates from £ (dT \ ,EL,ﬁ),
L (dﬂ | 71, T) and L (dﬁ | &, T), where £(-) is the law identified in Lemma By inspection

of the matrix (88), the pair (fi,T1) is independent from (71, %), according to £. By standard
properties of the Gibbs samplers (e.g. Lemma 2 in |Papaspiliopoulos et al.| (2020)), the spectral
gap is given by the minimum of the spectral gaps of the Gibbs samplers associated to the two

pairs, i.e.
2
3 7 mrg
’73( ) 222244 211233 mr + T
Notice that the result of Lemma [54 holds even if P3 has three blocks: indeed, by inspection of
the matrix , i and 7; are independent according to L, so that the updates £ (d/l | %1,T)

and £ (dﬁ | 1, T) can be equivalently seen as a single one. O
Proof of Lemma

Since it will be useful in the following, we denote

c(p, 1) = e {%f,iffm}g(% | 7)),

with g(y, | p,7) defined in (4.28). Notice that by construction, see e.g. ([.26), we have 0 <
c(p, ) < 1. Also, g(y, | pt, 7) is continuous w.r.t. (i, 7) since it is defined in (4.28) as the integral
of a bounded function, 8 — f(y | §), with respect to the normal kernel which is continuous w.r.t.
(, 7). It follows that also c(u,7) is continuous, since it is the minimum of a finite number of
continuous functions. Define

c:= inf c¢(u,7) >0 89
Lt ) (59)

where B is the largest of the three balls — namely Bs,, Bs, and Bs, — centered at ¢* = (pu*, 7*)
defined in (B4), (B5) and (B6), respectively. The positivity of ¢ follows from the continuity of

¢(p, 7) and the compactness of B.
Recall that T'(0;) = (Hj, 9?) Thus we need three lemmas.
Lemma 78. Consider the setting of Lemma . Then assumption (B4) is satisfied.

Proof. First of all, consider V (¢*), as defined in . For every y =0, ..., m, we have that the
posterior distribution of #; admits a density with respect to the Lebesgue measure of the form

p(0; [y, 1, 7) o< fyr | 0;)N(0; | w1, 7),
which implies that
Var(6; | y,¢*) > 0, Var(9]2~ | y,0*) > 0, \Corr(Qj,QJQ- | y,v")| < 1.

Consequently V' (1*) is a sum of positive definite matrices and is therefore non singular.
Secondly, let s,p = 1,2. Then by Bayes’ Theorem it follows

(») oy Je 0TSy [O)N(O | p, 1) db
MP (y, | p,7) = IR}Rf(yT\H)N(G\u,T—l)de
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Therefore

Je 07f (yr [ 0)0uN (O | pr, 71) dO
Je fQyr [OIN(O | p,771) dO

(f]R 0P f(yr | O)N(6 | u,q——l)d0> (fRf(yT 19)9,N(6 | M’T—l)dg)
(fR flyr |OIN(O | p,771) d6)2

10, MP (yy | 1, 7)| < +

By definition of ¢ we have

1
0.M7 | 0.7 < [ 101 [0,N(0 | 7] do+

;(/wa(e | M,T—l)de) (/Rmp\a#zv(e )| de)
=T [ 16— oIV | ) do+

T — —
Z(L10-wopne urya0) ([ 1ore[ne) ] a).
The right hand side does not depend on the data, so that
T T
By, (104 (e | 17)I| < mZE(O; - 1081 | )+ m SE(6; ~ w0 | TP | 7]

By the specification of model , the prior absolute moments are all finite and continuous
function of p and 7: therefore the right hand side is uniformly bounded for every bounded
neighborhood of (u*,7*). Using a similar argument for all the other quantities involved, it is
easy to see that assumption (B4) holds for every d4 < 7*. O

Lemma 79. Consider the setting of Lemma . Then assumption (B5) is satisfied with k = 5.

Proof. Consider the random vector X = (X1, X2) = (E?Zl 65, Z?:l 07). First of all we prove
that X admits a density function with respect to the Lebesgue measure on R?, conditional to
(i, 7). By Lemma (72| and conditional independence of #; we have

_5o2 Quiatt)?
2 144t3ot

§>5/47

am 71} (1 e

’E |:€’L'(t1X1+t2X2

1

where we denote 02 = 771, so that we can write

[ lexttmriar= |
R2 R2
1 ( —5oy Gzl
</ R / e C R dty | d
= 5/4 90
% (14 48304) e (90)

2m / 1 dty <
Vo2 fo 7o, a2 <o
208 7 (14 at304)”

dt,dis

" {ei(hx% 2 v TJ




242 (GIBBS SAMPLERS FOR PARAMETRIC HIERARCHICAL MODELS

Therefore, by the Inversion Formula we have that X admits a density p(x | p, 7) with respect
to the Lebesgue measure on R?. Thus, by Bayes’ Theorem we can write

(Y1:5 | -7;7/%7—)1)(37 | U, T)
fRQ (Y1:5 | $aﬂ77)p($ | K, T) dx

px | Yis,p, 1) =

where f(Yi.5 | z,u,7) = f]_[?zl f(Y; | 0;)L(db1:5 | x,p,7). It is easy to see that f(Yi:5 |
x, 1, 7) < 1 and

5
|, fis s ople | =TTt )=
for every (u,7) € Bs,, with J5 to be fixed. We can therefore conclude that
p(x | p7)
(33 ‘ Y1157M7 ) S 05

We can now apply the Plancherel identity to get

2 1
/Rz\w(m(tlY,#,T)‘ dt:/RQPQ(xl,a:zIKu, 7)dz < Clo/R (a1, 22 | p,7) da.

Applying again the Plancherel identity we obtain

1 1
/RQ‘@(E‘)(HY,M, )‘ dt< o5 [, lex(l M dt < o5 o lex(t] p7)] dt < oo,

by for every 7 > 0. Therefore assumption (B5) follows with d5 < 7*. O

Lemma 80. Consider the setting of Lemma . Then assumption (B6) is satisfied with k' = 5.

Proof. As shown in the proof of Lemma (79| the vector (3°7_; 6;, Z 1 92) admits a density with
respect to the Lebesgue measure on R2 conditional to Y and (p*, T ) Therefore, by Lemma
4 in Chapter 15 of [Feller| (1970), o (t | Y, u*,7%)] < 1 for every t = (t1,t2). Moreover, by
Riemann-Lebesgue Lemma we have

POt | Y, ) =0,

as [t| — co. We conclude

Ol | v, p*, )| < 1.

sup ¢
[t]=e

Let 0 > 0 to be chosen later and (u,7) € Bs,. Then by Taylor formula we get

O 1Y) = 100 (| Y1 7)) P =)Dl o ©) (8 | Y, 1, 7) P47 7)), |<P(5)(t|YN,<)|)7
91
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where (1, 7) € Bs,. Notice that

2
5 5 5 -1
(5) 2 _ 0. 02 Y|0) (9j|/%7' ) dé;.
Y (/R (tz ity ) { T 0, [Ny | oD [ 4

2

. > > > ‘ 0; ) (6' | I T_l)
IEEN AR FO; 1 0;)N(0; | e, |
/R5 o (tl j=1 Vit h ; 9]> { fRf (Y; | V)N (¥ |, 771)dp; s |

Jj=1

which implies

j=1

‘6u|<)0(5)(t | Y,M,T)H <2 / cos tliej +t225:9]2 Oy ﬁ S 10N (G, | mTj) db1:5
o 2t 2 S POV [N (05 | o7 1)del;

1] -t 05 6N )

5 5
- | 2
w2/ [ sin (“ 2.0 HQZGJ) IV 307 T Ny T )d%} A0

/—/H

J=1
and therefore

5) 2 SO 10;)NO; | p,m1)
0ule P21 Y. ) ‘S“/Rs {H 70V, TNy | o Daw, (| 40

{ FOG 1 0)N0; | 7" }
G TN | g, 7= 1)de;

(92)

de;.

Moreover, for every r =0, ..., m, we have

5 { Sy |ON(O | p 77 }< { Sy | )9, N0 | 1, m") }
"Vl fr [OIN@ | o m= DAY [ | 7 | g flur |ON@ | g, 7 1)dep

+

Py 100N 0 | p 7™ (J flyr | 90N | 7~)dy)
(e £wr | IN (@ | 1))’

N | p,r 1 | 1 _ -
< ACLT I S80I ([ 1056 | law)

0 — u|N@O | p, 472 _ _
= o2 tOL D) g V@ o) ([ 10— N @ 7).

Therefore, by there exists C'(dg) < oo which does not depend on p and 7 such that

0— u|N(O| 1) do 0 — ulN(O 1140\ >
0l @ (¢ Y, 1,7 <407 3210 — 1 (C"“"T ) +8072<IR| l (Clu,r ) )

< C(d),

for every (u,7) € Bs, Notice that C'(ds) becomes smaller as dg decreases. Similarly holds for



244 (GIBBS SAMPLERS FOR PARAMETRIC HIERARCHICAL MODELS

3r|<,0(3) (t|Y,u,7)|?, so that by we have

PO | Vo, m)P < [0 (| Yo, 7) P + | = plC(86) + |7* — 7IC(J6)
<O | Ypur, 7% + 266C ().

Since sup |®) (¢ | Y, u*,7%)|? < 1, by choosing g small enough we have

[t]|>e

sup  sup | (t | Y, p,7)|? < sup | (t | Y, p*, 7)) + 206C(J6) < 1,
(7)€ Bs, [t>e ] >e

and (B6) is satisfied. O

Proof of Lemma[{7 Assumption (B4) is satisfied by Lemma[78] assumption (B5) by Lemma 79|
and assumption (B6) by Lemma O

Proof of Proposition

Proof. Requirements (B1) — (B3) of Theorem [20]are satisfied by assumption, while (B4) — (B6)
hold by Lemma [47] O

Proof of Corollary

Proof. The result is a direct consequence of Corollary 0

Statement and proof of Lemma
Let

m e¥?
0) = —_ 93
fly16) (y)meg)m, (93)
where y = 0,...,m. It means that for each group, conditional to #, m independent Bernoulli

trials are performed, with probability of success given by e?/(1 4 ¢?). The following Section is
devoted to the proof of the following lemma.

Lemma 81. Consider the setting of Pmposz'tz'on with likelihood . The Fisher Information
Matriz I(u, ) is non-singular if and only if m > 2, for every (u, 7).

First of all we need few preliminary results.

Lemma 82. Consider the setting of Proposition with likelithood and fix (u, 7). Let
h(y | p,7) =logg(y | u,7), with g(-) as in (4.28). Then it holds

or

2
(;ﬁh(Y ] ,u,7')> ] < 00.

0
EY [m&h(y | H?T)

= FEy [ah(Y | 1, 7')1 =0

and

Ey

2
(;ﬂh(Y | 1, 7')) ] < o0, PEy
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Moreover, for every y=0,...,m we have
o m eyg[y—i-yee—meﬂ T o2
7g(y |7,U’7 T) = / 0 7675( ) do
o y (14 ef)m+l 27

and

0 m\ 1 e’ [y + yee — mea} = . )
- _ _ —5(0—p)
5.9 | p7) <y>27 /(9 1) 5 Pyt Vo€ ® da.

Proof. Through Dominated Convergence Theorem it is easy to verify that

0 m ev? 0 T _z 2
= — = “ o5 0-p)
AR <y> / (Heg)maﬂ{,/zﬂe 2 }d@

0 m ev? 0 T _z 2
~ — = v L —50-w)
8Tg(y [ 1.7) (y) / (1+ef)mor { o’ } do,

that is integrals and derivatives can be exchanged. Therefore

and

1

) B 0 1 )
@h(ylaum)—E[G—uly,u,ﬂ, oWl = o §E[(9 w? [y,

and the statements on h(y | p, 7) easily follow. Moreover

0 m ev? T oz 2
9 — IR SR SUNPSEA ( 2N
aMg(y!/w) (y)/(1+69)m(9 P 5-e 2 do
0 0 .0
B <m>/ Plo+vd —mef] e~ 30-1° qp

y (1 + e&)erl 2T

integrating by parts. Similarly

Lemma 83. Consider the setting of Proposition with likelihood and lety,y' € {0,1,...

be such that y <y’ and m > 1. Then
E[0|y,mr] <E[0|y,p7]

for every (u,1).

245

O]

,m}
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Proof. Fix (u, 7). Consider the function

fe 1+e \/ 7re %(9 M)Q dg

| iy 20 o

r(x) =

with = € (0, m). Notice that

r(y)=E[0|y,pu 1] and T(y’)=E[9\y’,u,T}-

Notice that

o 2
d (z) = f92(1+ez) V27¢ ® 30" d0 Oy 1+e9 V 2r¢ —2"ag
—r(z - -
dz f(l—iez [ e 5017 a9 fﬁ [ e300 g
for every = € (0,m) by Jensen inequality. Therefore r(z) is strictly increasing and r(y) <
r(y'). O

Lemma 84. Consider the setting of Propositz'on with likelihood . Then the Fisher Infor-
mation Matriz I(p, ) is non-singular in (u,7) if and only if there exists & = a(p,7) # 0 such
that

>0

) B
%g(y\/m) ag- —9 | p7)

for everyy=0,...,m
Proof. Fix a pair (u, 7). By Lemma [82| the matrix I(u, 7) is well-defined. The determinant is

given by
2
(;Tmf | m) ((fﬂhaf | m) <§Th(Y [ >)] -

D) 2
(wh(Y | u#))

By Cauchy—Schwartz inequality, the above formula is always non-negative and it is equal to 0 if
and only if %h(Y | u, 7) and %h(Y | u, 7) are linearly dependent, that is

Ey Ey — E?

0 0

for every y € {0,1,...,m} and for constants o and . By Lemma |82 it is immediate to prove
B = 0. Moreover, by Lemma 83 we deduce that o # 0. Multiplying by g(y | x, 7) on both sides
of we get the final result. O

Proof of Lemma[81] Fix (u,7) and let m = 1. Define

2900 | p,7)
Zg(0 | p,7)

Notice that « is well defined, since 5-¢(0 | u,7) # 0 for every (u, 7). Then by construction

B )
@9(0\%7) am- =900 | p,7)
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and P P P P

— (1 - = —a— —q(1

a,ﬂ( | p, 7) aug(o\u, T) az-g g(0 | p,7) = aaTg( | s 7),

so that the Fisher Information matrix is singular by Lemma

Let m > 2 and fix (pu, 7). Assume by contradiction that I(u,7) is singular. By Lemma
we have that there exists a # 0 such that

) )
af gy | pw,7) = ocgg(y!/m)

for every y € {0,1,...,m}. By the second part of Lemma [82|for y = 0 and y = m it implies

) 0
_ € T —300-1)? g9 — 7/ (0 — € T o—50-0% 39
m/ 1+ efymt1\ 27 o . 1) (1 4 efym+1 onC °

em? T T 2 m emod T r 2
= e 50T g = — 7/ 0—1)—— | e300 gp.
m/(1+69)m+1 o " Yor ( 'u)(1+69)m+1 o’

Since a # 0, we conclude

™o T o5 (0—p)? ! T (0—pu)2
[0 — ) s/ e 200 0 — ) i e EO 0
emd — ef )
f(1+e9)m+1\r —2(0=1% qg IW‘/2 e~ 20-1) g9

El0[m,p, 7] =E0|1,p,7].

Since m > 1, the above equality directly contradicts Lemma [83] Therefore the Fisher Informa-
tion matrix is non singular. O

and

that means

Proof of Proposition

Define a one-to-one transformation of ¢ = (u, 71, 70) as

b=VJ(W-v) - Ay, Ar= = ")V log g(Y; | %), (95)

\\Mu

with g(-) as in (4.23) and Z(¢*) as in (84).
Lemma 85. Consider the assumptions of Proposition[26. Then it holds

— 0,
TV

“ﬁ(dz; [ Y1) = N (0,271 (")

as J — o0 in Qf;f) -probability, with Z(*) non singular matriz as in .

Proof. The result follows by Theorem Indeed, the map v — g(y | ¢) clearly satisfies
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identifiability and smoothness requirements. Moreover, by Lemma [71| we have

m3(m - 175
47 (r§ + m7g)3’

det (Z(*)) =

that is strictly positive for every ¥*, with m > 2. As regards the testing conditions, analogously
to Lemma [55] define

wzwlxngwgz[yh—Lu*+1]x[g,%flxlg,%é

compact neighborhood of ¢* and

uJ(Yl‘J) =1- ]191(Y1:J)§61 HQQ(YLJ)SCQ ]193(Y1:J)§C37

where (c1, c2, c3) are positive constants to be fixed and

(Vi) = |7 (V1)) 1S]:(Y~—Y)2—1— !
91\¥Y1:5) = g2(Y1.J Jj ‘ j = ng’
1 1
93(V1er) = |5 2 (Yia =) (Vi = ¥2) = =,
j=1 it
where
J 17
ij,z ;an
j=1 j=1

By definition of g(-) in - by the Law of Large numbers we have

J
/UJle H (dy; | ")
=1
S P (g1(Y1.7) > c1) + P (92(Y1.) > ¢2) + P (93(Y1.7) > ¢3) — 0,

as J — oo for every strictly positive constants (¢, c2, c3). Moreover, notice that

J

sup (11 = usyrn)) T otdu; | 0)
A j=1
< sup P(gs(Yrg) <es)+ sup  P(g(Yrg) <c2) + sup P (g1(Y1.5) > 1)
AP T1EV2, T V3 ugV, W3, 1€V

With the same reasoning of the proof of Lemma we can find (cp, ¢, ¢3) such that the three
suprema goes to 0 as J — oo. O

We need another technical Lemma.
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Lemma 86. Consider the setting of Proposition |26, Then we have

1 MT 2 _
)2 — 0 )2
B[00 | Vow] = o () (8w
2 1 71 2 5 2
B0, =V 1Y) = ot () ()
and , ) 22 . )
Var((ej_'u) |Y,¢>: (m70+71)2+4(m7'0+71)3 Yj_M) ’
_ 2 7'2 _
2 _ i 2
Var ((0] - Y]) | vab) - (m'T[) + 7_1)2 (ng + 7_1)3 Y] - /"L)
d
an 2 = \2 2 mToT1 =, 2
Coo (65 = w)? (0 = Vi | V) = (s = 4 (V= )

Proof. Notice that by we have

o ol o _ M7 -1
63 = 1) 1 Y3t~ N (22 (5 = 0, (4 70) )

and
_ T1 _ _1
(ej—YjHYjﬂ/)NN(W p—Yj), (mm + 71) )

Therefore we have

1 M 2 _
, 2 _ 0 : 2
E[(Gj 0 |Y,@ZJ}—mO 1+(m0 1) (Y; — )7,

and similarly for the other case. If X ~ N(u,0?), by Lemmawe have E[X?%] = 30* + 61202 +

14, In our case, considering o = (m7o + 71) /2 and p = et (Y — p), we have
3 m273 = mTo 1
E 9 _ 4 Y — 6 0 Y _ 2 () Y - 4
65— 1Y) = oy 4 6 D (G () (=)
and
1 m27e — mTo 4
E*|(0; — p)? | Y,¢| = 2 L (Y — p)? () Y, — ).
(6= 1V 9] = oy 2 s (G () (B )
Therefore
2.2

2 meTy

Var ((0; — ) | Y,0) = 7 (Y — 1),

and similarly for the other one. Finally, again by Lemma if Z ~ N(0,1) we have

(m7y + 71)2 (mm + 11)

El(0Z + m)?* (07 + p2)’] = 30™ + 0> (1} + dppa + p13) + 3.

In our case, considering o = (mmy + 7'1)_1/2, 1 = m:’gfn (Y; — p) and po = i (n—Y;), we
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have
-~ 3 m27é — T2
E|(0; —w)*0; —Y;)? | V| = O (Y; — p)? 1 — p)?
{( J 0] (0; ) | ﬂb} (mro + 71)2 + (mTO+T1)3( J w7~ + (m70+71)3( J 1)
2,22
mTOTl = 2 m TO Tl = 4
4 _ _
(mrmo +1)3" 7 2 (mTo + 7'1)4( i)
and
E|(0; - ) | Y| B[(0; - V) | V.| =
1 mQTg 3 2 7'12 3 2 m27'027'12 3 4
Y — —— (Y, — + ———(Y; —
(mmo+71)2  (mmo+71)3" 7 2 (mrg+71)3" 7 ") (mrg +71)4 2
Therefore
— 2 MToT1 —
0; — )% (0; —Y;)? | Y, o) = —4 Y; — p)?
Cov (( i —1)*, (0 i) | ,¢) (mro + 71)2 (m7-0+7_1)3( =),
as desired. ]
Define
1 2 mro(71) ! 2
C(ib) _ 0 (mTo+71)2 (m‘ro'n}#‘rl)2 V(¢) _ | (mmo+m1)? + 4(m20+17'1)2 " (mro+m1)2
0 L m__ 1’ _ +4T1(mfo)‘1
(mro+m)*  (m7o+m) (mTo+71)2 (mTo+71)2 (mTo+71)2
(96)
Now we define a linear rescaling of T' = ( 0, —Y)2 (6, — )2) as
j=1\Y; 3)7 22j=1\V5 — [
— 2 1 ,7_* 2 <_ )2
L1 LY e (m%’flﬂf) e
T=_—"_ — C(yp")Ay, 97
va: (V*)A, (97)

2 1 mr \? (5 2
=1 (03 —p)° - mri+r (m‘r&‘ﬁ‘rf) (Y3 — K )

with Ay as in . The next lemma shows the asymptotic distribution of T using the weak
topology.

Lemma 87. Define ¥ and T as in and , respectively. For every 1) € RP it holds
o | i) =¥ (cwna )| —o,
ngof)-almost surely as J — oo.

Proof. The result follows by arguments similar to the proof of Lemma First of all notice
that C'(¢) defined in is such that

EYJ aﬂE[(GJ - M)Q | Y]ﬂ/} EYJ aTlE[(gj - N)2 | Y’]?w EY] BTOE[(ej - :U’)2 ‘ Y]aw

Ey, H@E[(ej—ffj)?m,apﬂ By, H%E[(ej—fa)?nfj,w}} By, [[amE[wj—ia)?m,w}]
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since by Lemma [86] we have

By, [0,E((0; — ¥))* | Yy, 0] = By, [0,E[0; - w)?* | V;.9] =0,
_ m
Ey, |0nE((0; = V) | Vi, 0| = Ey, |0n,Bl(0; - ) | Y. = o+ 2
_ N 1
EYj [871E[(‘9j - Yj)2 ’ Yjﬂ/)} = EYj [871E[(0j —H )2 | Yjvw] = m~
By the same reasoning in the proofs of and we get
T * 1/; —+ AJ *\ 7.
and
‘2 * 1; —+ AJ 2 *
Cov (T | Yiog, " + 7 — Cov (T | Y., ) ~ 0,

Ql(;f)—almost surely as J — oo. Then by , Lemma and the Law of Large Numbers we
have

\/jjzl J J (m7d + 17)? (mtg +715)3 J = J
L2 (mr) g
(mrg+711)?  (m7g +77)?
and
Var ! XJ:(H w) | Y, 2 (mr)” 1 Z(i )’
e - 1 * * *\3 T -
Noi = (m7g + 1) (mrg +717)3J = !
L2 s (o)~
(m7g + 17)? (mrg + 77)
and
J J J
1 2 mToT1 1 —
— Y —4 — Y, —
(\/*Z ) JJZI ‘ 1J7¢) (mTQ+Tl)2 (mTO+Tl)3szl( J
2

prof)-almost surely as J — oo. Finally, by the Law of Large Numbers and calculations similar
to Lemma [B0], we have

B |(6; =)™ | Yr0] < oo B[O )™ | Yr.0] <o
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for every 1. Therefore, with the same arguments in the proof of we conclude that

1 +A 1 . D+ A
/Z 12| Q,Z) +w\/jj =0, /Z 12| ¢ +¢\/jJ 4)07

beof)—almost surely, as J — oco. The result then follows by Lyapunov version of Central Limit
Theorem. O

We need another technical Lemma.

Lemma 88. Consider the assumptions of Proposition[26. Then it holds

_ 42
252 [uj (t1+t2) —(t putta¥; )]
1+40d(t1+t9)2

e
<
¢] ‘ O [L+4(t + t2)204]1/4

‘E {eitl(ej—u)2+it2(9j—?j)2 Y,

with (tl,tQ) € Ry and

mTo 1 - 9 1

v; = W+ - =
T mrny 4+ mry+ 711 7

Proof. By simple computations we get

t1(9j — /L)Q + tg(ej — Y])Q = (t1 + tQ)QJQ- — 29j(t1u + tQYj) + tluz + tzisz.

' |

Therefore

’E {eitl(ajfﬂ)”itz(ef%)z} <

> [ei((t1+t2)9§29j(u+yj))

Then we can apply Lemma [72] with

mTo T1

Sl
I

a 112 (1M 2]) v m7'0+7'1'u+m70—|—7'1

Consistently with the previous Sections, we denote
o ~ T
p(t| Yy, ) = B [ OV O | v g gt | Vi, $) =B [T | Vi, 0]

for every ¢ and t = (t1,t2) € R% The next lemma proves the same convergence of Lemma
using the total variation distance.

Lemma 89. Define ¥ and T as in and , respectively. For every 1) € RP it holds

— 0,
TV

e ¥ 9) - N (Cw)d V()

ngof)-almost surely as J — oo.

Proof. Since the result holds under the weak metric by Lemma [87, with the same reasoning of
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Lemma [61] it suffices to prove

B(t| Vi, )| dt =0

lim lim limsup / .
A=00B=00 Jooo J((t1+t2)2<AH3<B)"

Qq(;f)-almost surely as J — 0o, where

(J) _ % n v+ Ay
ST
Analogously, denote also
) _ *+ﬂ+AJ,1 () _ s« n+Bs2 ) _ *+TO+AJ,3
H H \/j ) LB 1 \/j 9 ) 70 \/j
As in we have
- t
|@(t | Yi.g,9)| (\/j | Yj,¢> :
Therefore, with the change of variables u = t; 4+ t2 and v = t1, we have
/ B0 | Vi, ) e
((t1+t2)2§A,tf§B)
dudv

2 (v,u—v) )
o 11 c,o( 4y )

7j=1

Moreover it is easy to see that

{(u,v) | u? < A and v? < B}CC {(u,v) | u? >A}U{(u,v) | u? < A and v* > B},

so that
/ f[ @0 =)y )| dudo < Wu=v) g 4O
- = ) u v - = )
(u2<A v2<B j=1 \/j J u >A \F J
+/ I_][ (vu—v) 1Y, ) ]| dudv
(’U/QSA,’I)2>B) le SO \/j 7 '
For every 1, by Lemma [8§ with
- 1
v = mto [ + T1 Yj, 02 _
mTy + T1 mTy + 71 mTo + 71
we have
) R SO R
H ( 'U u — ) | w) 1440%u
i VI & [1+ 4du0] /4

253

dudv

(98)
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Notice that

& it V-

17
J ];1 7 Zj:1(# - 57])2

As regards the first element in , by integrating with respect to v we get

— — 2
2021 J I:u(Vj—Yj)—U(M(J)—Yj)}

JJ

fio ﬁ ( v) e A
| Y],d) > dudv < / =
2 /4
j=1 f u*>A {1 + 4u20ﬂ
J
L A LS -y 27{%21':1(”J7Y
l+4o‘4u2 J j=13\"J J % J (H(J)*Y )2
< us /‘X’ e
T\ 2055 i () = Y5)2 Ja 1+ 40204 e
where " "
1 mT, T —
2 o 0 () 1
o , Vvi= w4 Y;.
I mTO(J) + Tl(J) ’ mTéJ) + 7'1(‘]) mTé ) + T(J)
By the Law of Large Numbers we have
1< . 1< .
lim inf 7 Z(u(‘]) ~Y;)? = liminf i Z(,U,* ~Y;) =c1>0
j=1 j=1

Ql(pof)—almost surely and similarly

_ _ N2
A {%24<%4®<wfnﬁ

liminf { — vi—Y;)? —

JJX::l(.] ]) JZ ( J)_ ])2

by Cauchy-Schwartz inequality, ngof)-almost surely. Moreover, by Lemma

1 1 2

2mry + 71 mTy + 7]

=c9 >0,

du,
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Qfﬁof)-almost surely, for J high enough. Therefore

( LA pRIS )

2c2o'2 9

1+4o‘4u2u
du=20
A—>oo \/ 201c1/ 1+4 9 4}(1/4 1/2

fof)-almost surely. As regards the second addend in we get

(v,u —v) )
90<\/j 1Y), 9 )

2
202 " 4 Zj:l@j*?j)(u(hf‘?j)
TTredaz |V 7 .
o4 % ZJ:I(H<J)7YJ')2 dudov
)

lim lim limsup dudv

A—00 B0 J_soo

J

lim sup / H dudv
J—oo J(u2<Aw?2>B) j=1

< / e
(u2<Av2>B)

Ql(;f)—almost surely. Fix A > 0 and notice that for every u we have

5 J YO I
2041 ; |jJ w ijljl’j_yj)(l»" —-Y;)
. oo 1+o‘ A 1 ! (H(J)_Y/'>2
lim e 725 ’ dv = 0.
B—c JB

Moreover
JZJ L=V (=)

2
J ZFl e dudv < oo,

201

1+O'1A2
/2

so that, by Dominated Convergence Theorem we get

v—u

__2a? [_ 3 30T ) 5

140442 ( (J)_{/,)Q
lim e : J Z g ’ dudv = 0,
B—oo J(u2<Aw2>B)

for every A > 0 and the result follows. O

Proof of Proposition[26. The result follows by arguments similar to the proof of Theorem 20
that we briefly summarize. Since by construction

L(dY|6,Y1.5) = L(dY | T,Y1.;)

a direct analogue of Lemma [44] holds. Moreover, by Lemmas [85] and we can use Lemma
to prove that £ (dT, d1,Z~) | Y1.7), as in , converges to a Gaussian vector with non singular
covariance matrix. Finally, Lemma [54] holds for P, being a two-block Gibbs sampler. Therefore
the Gibbs sampler on the limit Gaussian target has a strictly positive spectral gap: thus the
result follows by Corollary [ O
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Proof of Corollary

Let ¢ = (71,70) and define

7’)’L2(’T6()2 m 1 m
I(gr) = MRS T | Ol = | )
2(rf+mrg)? 2(r5)? + 22 (r +mTg)? (mrg+7y)?  (mrg+7()?
and
2 +4m7'6‘(7'1) _ 2
V(¢*) _ (m7r+717)2 (mri+17)2 (mrg+717)2
2 2 + g (mTg)
(m7g+75)? (mrE+77)? (m7g+75)?

We have a preliminary Lemma.

Lemma 90. Consider the setting of Proposition |26, Then we have

y(*) = min{ ; \; eigenvalue of V™1 (¢¥) C(¢*)Il(¢*)CT(¢*)} .

1
Proof. With the same reasoning of Corollary ~v(1*) is the spectral gap on the limiting
Gaussian distribution of (15, T), given by by Lemmas [85( and By inspecting Z(9*) in
and C(¢*) in , we have that i is asymptotically independent from everything else, therefore

it suffices to study the Gibbs sampler that alternates updates of (71, 7y) and T. Then the result
follows by the same arguments of Corollary [10] O

Proof of Corollary[1j]. By Lemma [90] we have to study the eigenvalues of

Vfl (¢*) C((Z)*)Ifl((ﬁ*)CT((ﬁ*)- (99)
Notice that
mQ(TS)2 m
o 1 2(r7)2 2 ) = ! Lo
I(gb ) = m % (m—l)(m;(;*tg)Q-&-(Tf)z ’ C(d) )_ m L m
To
and
V(¢ . P _2
* - - 71 *
Rl IR Fykad
Notice that
k% [ Tf
. 2 o)1 mTy Ty 2+4m‘r* 2
1% = v ’ ;
((m’fo + 71) (¢ )) S(ng + 7.1*)2 ) 9 _‘_4"71_7;0
1
1 [ t2)? MG 7Y
Wmmg )2 | mm w4 2(mmg)?
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and
(m—1)(m7’(’;-l—7'f)2-1—(7'1")2
s w2y k) 2(r1)? e -m
A = 0 .
((mTO + Tl) <¢ )) mQ(m — 1)(m7—6k + Tf)2 —m (7("7;0)22
1
Therefore
m— mrE4r* 2 T 2 m3 T 2
m?(m — 1)(m7—6*+71*)40 AT () —m2 4+ =1 ((;;)21) +(77) (7(1*532) “m| 1 1
Z(Tf)2 (d) ) (¢ ) (¢ ) - me 4 (m—l)(mrg+7—f)2+(71*)2 ms(Tg)z ol Im m
(16)? (r7)2
(e, o, m D )+ @2\ 11
(11)? (15)? 11
_(mAg)t = 2mP () ()% + (m = () (mg + ) + () 11
(m5)2(r1)? 11
and

1 ey (e T ey m4(T5)4—2m2(75)2(7f)2+(m—1)(Tf)2(m73+7f)2+(7f)4>
[ 2mriTy + 2(1)? 2mrgT + 2(7{)22

2mriT + 2(m7'{)")2 2mrgTe + 2(mTg)

Notice that the matrix on the right hand side admits 0 as an eigenvalue, so that the highest
eigenvalue in absolute value is given by its trace, that is

dmriT + 2(71*)2 + Q(ng)2 =2(m7y + 7'1*)2,

so that the highest eigenvalue of is given by

m ()" — 2m?(75)*(r)* + (m — () *(m5 + 7)* + ()"
m?(m = 1)(5)*(m7g + 77)? '

The result follows by noticing
m(15)" = 2mA(7)2 () + ()" = [m2(7)? = (77)?]

= (m7g —71)*(m75 +77)°.

Proof of Lemma

Proof. The proof follows the same lines of Lemma [4] that we briefly summarize. Since

£ (do,drs | B,Y™) = £(d9,dry | T(B),Y™) (100)
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holds by definition of T', reasoning as in we can conclude
L <dT(t), d,g(t)’ dTét) |T(t—1)’ 9(1&—1)’ TB(tl))
= (T |00, 7) 1, (@00, a5 | 7O

which proves that the transition kernel of the induced chain (T(t), 0, Tﬁ(t)) coincides with
t>1

P,. The second part of the Lemma follows by the same reasoning used in . O

Proof of Corollary
Proof. By Lemma [48] we have

tggi)x(eﬁ M) = sup ffv?z):c(ev V)'
VEN (ftn,M)
The result then follows by Corollary [8] whose conditions hold by assumption. O

Proof of Corollary
Proof. 1t is easy to show that an analogue of Lemma holds, with ¢ = (6,73, 7.) and T =

(T 9, TTB,TTE). Thus the result follows with the same reasoning of Corollary O
Proof of Theorem

Denote with fi; the push-forward measure of p; according to transformations (4.17) and (4.19).
The next theorem shows that the rescaled version of p; is a warm start for the limiting distri-
bution in Proposition [23]

Lemma 91. Let uy € P (R”*D) be as in (4.35). Then under assumptions (B1) — (B3) there
exists a positive constant M = M (c) such that

QSJ,{)</1JGN(N(O,Z),M)> T

as J — oo, with ¥ as in Proposition [23

Proof. According to transformations (4.17)), we have
[L((]fl) = Unif (\/j (1;] — 1/1*) — Ay, c) :

Denote with B,(x) the closed ball of radius » > 0 and center x € RP. By Theorem 5.39 in
Van der Vaart (2000) it holds

pr{) ((\ﬁ @J - w*) - AJ) € 31(0)> - 1 (101)
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as J — 0o. Define now
Vol (BC+1(O))

m AT M w0
x€Bc+>1((0) N(X ‘ 0, ED)
where Vol(A) is the volume of set A and N(0,Xp) is the marginal distribution of N (0, ) over
the last D components. It is easy to see that M < oo and it does not depend on J. Therefore,

by (101)), we conclude

M = (102)

(1)
(- (J) djiy
/ N, %), M) ] < QY My <M
@y <“J€N( (0,%) )> @y (xeglff(m aN (0.5 )

<ol ((Vi(5-v)-a)emo) = 1
as J — oo. O

Proof of Theorem[21]. Let uy € P (RZJ+D) be as in (4.35). Thus, by Lemma the event
{fiy € N (7, M)} with M as in (102)) holds with probability converging to 1, with respect to the
law be{). Then, by Lemma there exists 7y € N (77, M) such that

175 = fisllpy < M |7y —7llpy -

Therefore, by the above facts, the triangle inequality and Lemma [44] we have
Py =i gy, = s P = 5
HMJ J =T\ RIEg =TT oy
< s = sP3| ., + 2P = 7
—H/” T VI |y TP = Ty
S
< [lfs VJ||Tv+HVJ J T v

< M7y = Flgy + sup )Hwﬁ}—mu

v EN (75, M v
:M”ﬁJ—ﬁH + sup VJP3—WJ .
vV vy N (n s, M) H HTV
Thus the result follows by Theorem O
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