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This paper investigates pooling strategies for tail index and extreme quantile estimation from heavy-tailed data.
To fully exploit the information contained in several samples, we present general weighted pooled Hill estimators
of the tail index and weighted pooled Weissman estimators of extreme quantiles calculated through a nonstandard
geometric averaging scheme. We develop their large-sample asymptotic theory across a fixed number of sam-
ples, covering the general framework of heterogeneous sample sizes with different and asymptotically dependent
distributions. Our results include optimal choices of pooling weights based on asymptotic variance and MSE min-
imization. In the important application of distributed inference, we prove that the variance-optimal distributed
estimators are asymptotically equivalent to the benchmark Hill and Weissman estimators based on the unfeasi-
ble combination of subsamples, while the AMSE-optimal distributed estimators enjoy a smaller AMSE than the
benchmarks in the case of large bias. We consider additional scenarios where the number of subsamples grows
with the total sample size and effective subsample sizes can be low. We extend our methodology to handle serial
dependence and the presence of covariates. Simulations confirm the statistical inferential theory of our pooled
estimators. Two applications to real weather and insurance data are showcased.
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1. Introduction

The question of how to accurately model extreme events arises in many fields of statistical applications,
such as insurance and environmental science, where the former is concerned with very large claims
detrimental to a company’s solvability, and the latter focuses on extreme events that affect the Earth’s
natural processes. Studying these events typically involves analyzing a well-chosen random variable 𝑌 ,
such as claim amounts in insurance or rainfall levels in environmental science. In applications of this
nature, the data is often collected at different locations in a geographical region: insurance companies
compile portfolios divided across states, regions, or cities, and weather agencies collect data from
several weather stations. An important and contemporary problem in extreme value analysis is then to
find a statistically efficient way to combine estimates calculated separately from different data samples.

In this article we focus on the question of inference in this multi-sample context for the tail index and
extreme quantiles of heavy-tailed data. Our approach is based on the use of a general terminology and
theory of pooling applied to different samples whose distributions have a common target parameter,
given in our setup by the tail index or an extreme quantile. Instead of naively averaging the subsample
estimators, it is of interest, both from a theoretical and a practical perspective, to construct a general
class of weighted pooled estimators and to establish a fully data-driven inferential procedure integrating
the optimal choice of weights. In particular, we develop the asymptotic theory of the optimally pooled
tail index and extreme quantile estimators, under weak technical conditions, covering both scenarios
where the number of available subsamples is bounded or growing with the total sample size, as well
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as the general situation where the observed data can be dependent within and/or across subsamples.
Pooling has a rich history dating back to [4] for the estimation of the common mean of several samples.
The idea of combining pooling and extreme value techniques has, as far as we know, originally been
suggested by [14] in climate science problems.

The first contribution of this paper is a joint asymptotic normality result for Hill estimators [13]
calculated from a fixed number 𝑚 of samples of heavy-tailed data. In particular, we allow for different
sample sizes, effective sample sizes, marginal distributions, and for dependence across samples. We
apply this general result to design optimal pooling strategies of subsample Hill estimators for tail index
estimation. We consider optimal weights that minimize either the asymptotic variance or the Asymp-
totic Mean Squared Error (AMSE) of the pooled estimator. These developments rely on a very general
theory that we derive for a generic weighted pooled estimator built from 𝑚 subsample estimators for a
common unknown parameter. This theory comes into play when the subsample estimators are jointly
asymptotically normal, and can be biased and correlated. To the best of our knowledge, no such unre-
stricted approach has been fully investigated. We also construct bias-reduced versions of the proposed
pooled tail index estimators. Then we discuss the fundamental extreme value problem of estimating
extreme quantiles either locally for each sample in the tail homogeneous setting of equal marginal
tail indices, where tail quantiles are possibly only asymptotically proportional across subsamples, or
globally by pooling subsample extreme quantile Weissman estimators [22] in the more restrictive tail
homoskedastic setting of asymptotically equivalent marginal tail quantiles. Our approach relies on a
specific weighted geometric pooling scheme, particularly relevant for extreme quantiles, as opposed
to arithmetic averaging naturally used for pooling ordinary quantiles [15]. Moreover, we explore infer-
ential aspects of pooling for extreme values by constructing likelihood ratio-type tests for either tail
homogeneity or tail homoskedasticity, as well as Gaussian asymptotic confidence intervals for the tail
index and extreme quantiles. Taking into account the dependence existing between samples is especially
crucial for environmental applications, in which dependence across sites, representing spatial depen-
dence, should be properly handled. Moreover, our proposed inferential methodology avoids having to
resort to bootstrap, whose calibration can be difficult in heavy-tailed settings.

We also consider distributed inference as an important application of our general theory. In this case,
due to computational costs or privacy restrictions, the data in sample number 𝑗 can only be processed by
the 𝑗 th machine having collected the data, with very restricted or no communication allowed between
the 𝑚 machines, before an end user operating from a central machine conducts distributed inference
from limited information transmitted by each machine. Under this setup, we examine and compare the
asymptotic theory of the distributed tail index and extreme quantile estimators to the behavior of their
respective benchmark Hill and Weissman estimators based on the unfeasible direct combination of
subsamples. We extend this theory further by considering first the case when effective sample sizes are
highly unbalanced among machines, and then the case of a growing number of machines 𝑚 =𝑚(𝑛) →
∞ with the total sample size 𝑛. Finally, we tackle the problem of serial dependence within the data in
the presence of covariates, showing how appropriately filtering the observations allows to recover the
asymptotic theory from independent observations. This is highly relevant to inference in environmental
and financial applications, in which the individual data samples are typically time series.

The paper is organized as follows. Section 2 develops our general pooling theory for tail index and
extreme quantile estimation, while Section 3 focuses on the special framework of distributed inference.
Section 4 extends our methodology to handle serial dependence and the presence of covariates through
filtering. Section 5 illustrates the usefulness of the proposed methods through a simulation study and
applications to insurance and weather data. Section 6 concludes. The supplement to this article con-
tains additional theoretical results and all the proofs, with further details on our simulation study. Our
methods and data have been incorporated into the open-source R package ExtremeRisks.
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2. Pooling extreme value estimators

2.1. Pooled Hill estimators of the tail index

Let 𝑿 = (𝑋1, . . . , 𝑋𝑚)⊤ denote an 𝑚−dimensional random vector, and 𝑿𝑖 = (𝑋𝑖,1, . . . , 𝑋𝑖,𝑚)⊤ (𝑖 ≥ 1)
denote independent copies of 𝑿. We assume that the available data consists of the 𝑋𝑖, 𝑗 , for 1 ≤ 𝑗 ≤ 𝑚
and 1 ≤ 𝑖 ≤ 𝑛 𝑗 = 𝑛 𝑗 (𝑛) → ∞ as 𝑛→ ∞, with 𝑛 =

∑𝑚
𝑗=1 𝑛 𝑗 being the total number of univariate data

points available across all samples. This setup allows for the very frequent situation where subsample
sizes are not equal and/or the data points at each site have not been recorded over the same time
period. We focus on the general framework where the components 𝑋 𝑗 of the random vector 𝑿 have
continuous, right heavy-tailed distribution functions 𝐹𝑗 , with associated survival functions 𝐹 𝑗 = 1−𝐹𝑗

and tail quantile functions𝑈 𝑗 : 𝑡 ↦→ inf{𝑥 ∈ R | 1/𝐹 𝑗 (𝑥) ≥ 𝑡} that satisfy

C2 (𝜸, 𝝆, 𝑨) For any 𝑗 ∈ {1, . . . , 𝑚}, the function𝑈 𝑗 satisfies the second-order condition:

C2 (𝛾 𝑗 , 𝜌 𝑗 , 𝐴 𝑗 ) 𝑈 𝑗 is second-order regularly varying in a neighborhood of +∞ with index 𝛾 𝑗 > 0,
second-order parameter 𝜌 𝑗 ≤ 0 and an auxiliary function 𝐴 𝑗 having constant sign and converging to 0
at infinity, that is,

∀𝑥 > 0, lim
𝑡→∞

1
𝐴 𝑗 (𝑡)

[
𝑈 𝑗 (𝑡𝑥)
𝑈 𝑗 (𝑡)

− 𝑥𝛾 𝑗

]
=


𝑥𝛾 𝑗

𝑥𝜌 𝑗 − 1
𝜌 𝑗

if 𝜌 𝑗 < 0,

𝑥𝛾 𝑗 log 𝑥 if 𝜌 𝑗 = 0.

In this condition |𝐴 𝑗 | is regularly varying with index 𝜌 𝑗 [by Theorems 2.3.3 and 2.3.9 in 5], meaning
that the larger |𝜌 𝑗 | is, the smaller the gap between the right tail of𝑈 𝑗 and a purely Pareto tail. All usual
heavy-tailed distributions satisfy these conditions, see Table 2.1 on p.59 of [1] for a list of examples.

To incorporate the dependence between samples into the inference procedure, we assume an appro-
priate pairwise tail dependence structure based on the functions 𝐶 𝑗 ,ℓ (𝑢, 𝑣) = P(𝐹 𝑗 (𝑋 𝑗 ) ≤ 𝑢, 𝐹ℓ (𝑋ℓ ) ≤
𝑣) (𝑢, 𝑣 ∈ [0,1]) that are essentially the bivariate survival copulae of 𝑿, namely:

J (𝑹) For any ( 𝑗 , ℓ) with 𝑗 ≠ ℓ, there is a function 𝑅 𝑗 ,ℓ such that lim𝑠→∞ 𝑠𝐶 𝑗 ,ℓ (𝑥 𝑗/𝑠, 𝑥ℓ/𝑠) =
𝑅 𝑗 ,ℓ (𝑥 𝑗 , 𝑥ℓ ) for any (𝑥 𝑗 , 𝑥ℓ ) ∈ [0,∞]2 \ {(∞,∞)}.
This condition imposes the existence of a limiting dependence structure in the joint right tail of 𝑋 𝑗 and
𝑋ℓ , given by the tail copula 𝑅 𝑗 ,ℓ (see [18]). It can be viewed as a minimal assumption when it comes
to assessing the dependence structure between extreme value estimators.

After ordering the data in the 𝑗 th sample as 𝑋1:𝑛 𝑗 , 𝑗 ≤ 𝑋2:𝑛 𝑗 , 𝑗 ≤ · · · ≤ 𝑋𝑛 𝑗 :𝑛 𝑗 , 𝑗 , we introduce the

marginal Hill estimators 𝛾̂ 𝑗 (𝑘 𝑗 ) = 𝑘−1
𝑗

∑𝑘 𝑗

𝑖=1 log(𝑋𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗/𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) which involve the top (𝑘 𝑗 +
1) highest order statistics in each sample, for 𝑘 𝑗 = 𝑘 𝑗 (𝑛) ≥ 1. The integer 𝑘 𝑗 is the effective sample size
in sample 𝑗 , and we set 𝑘 =

∑𝑚
𝑗=1 𝑘 𝑗 to be the total effective sample size in the vector of estimators 𝜸̂𝑛 =

𝜸̂𝑛 (𝑘1, . . . , 𝑘𝑚) = (𝛾̂1 (𝑘1), . . . , 𝛾̂𝑚 (𝑘𝑚))⊤. Our ultimate interest is in the case 𝜸 = 𝛾1 where the 𝛾 𝑗 are
equal to a common 𝛾 estimated by 𝛾̂𝑛 (𝝎) = 𝛾̂𝑛 (𝜔1, . . . , 𝜔𝑚) =

∑𝑚
𝑗=1𝜔 𝑗 𝛾̂ 𝑗 (𝑘 𝑗 ) =𝝎⊤𝜸̂𝑛, with 𝝎⊤1 = 1.

The asymptotic distribution of any element within this class of estimators is stated in the following
theorem, along with the joint asymptotic normality of 𝛾̂ 𝑗 (𝑘 𝑗 ), for 𝑗 ∈ {1, . . . , 𝑚}. Here and throughout

the article the symbols
𝑑−→ and

P−→ respectively stand for convergence in distribution and in probability,
and all convergences of sequences should naturally be understood as holding when 𝑛→∞.

Theorem 1. Assume that conditions C2 (𝜸, 𝝆, 𝑨) and J (𝑹) hold. Suppose that 𝑘 𝑗 = 𝑘 𝑗 (𝑛) →∞ with
𝑘 𝑗/𝑛 𝑗 → 0, 𝑛1/𝑛 𝑗 → 𝑏 𝑗 ∈ (0,∞), 𝑘1/𝑘 𝑗 → 𝑐 𝑗 ∈ (0,∞) (with 𝑏1 = 𝑐1 = 1) and

√︁
𝑘 𝑗𝐴 𝑗 (𝑛 𝑗/𝑘 𝑗 ) → 𝜆 𝑗 ∈
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R for any 𝑗 ∈ {1, . . . , 𝑚}. Let the weight vector 𝝎 = (𝜔1, . . . , 𝜔𝑚)⊤ be such that 𝝎⊤1 = 1 and define a
vector 𝑩 and symmetric matrix V by

𝑩 =

(
𝜆1

1 − 𝜌1
, . . . ,

𝜆𝑚

1 − 𝜌𝑚

)⊤
and V 𝑗 ,ℓ =


𝛾2
𝑗 if 𝑗 = ℓ,

𝛾 𝑗𝛾ℓ
𝑅 𝑗 ,ℓ (𝑏 𝑗𝑐ℓ , 𝑏ℓ𝑐 𝑗 )

max(𝑏 𝑗 , 𝑏ℓ )
√
𝑐 𝑗
√
𝑐ℓ

if 𝑗 < ℓ.

Then (
√
𝑘1 (𝛾̂1 (𝑘1) − 𝛾1), . . . ,

√
𝑘𝑚 (𝛾̂𝑚 (𝑘𝑚) − 𝛾𝑚))⊤

𝑑−→ N(𝑩,V). In particular, if 𝜸 = 𝛾1, then
√
𝑘 (𝛾̂𝑛 (𝝎) − 𝛾) 𝑑−→N(𝝎⊤𝑩𝒄 ,𝝎

⊤V𝒄𝝎), with

𝑩𝒄 =

√√
𝑚∑︁
𝑖=1

𝑐−1
𝑖

(
√
𝑐1

𝜆1

1 − 𝜌1
, . . . ,

√
𝑐𝑚

𝜆𝑚

1 − 𝜌𝑚

)⊤

and [V𝒄] 𝑗 ,ℓ =
(
𝑚∑︁
𝑖=1

𝑐−1
𝑖

) 
𝛾2𝑐 𝑗 if 𝑗 = ℓ,

𝛾2 𝑅 𝑗 ,ℓ (𝑏 𝑗𝑐ℓ , 𝑏ℓ𝑐 𝑗 )
max(𝑏 𝑗 , 𝑏ℓ )

= 𝛾2 𝑏 𝑗𝑐 𝑗

max(𝑏 𝑗 , 𝑏ℓ )
𝑅 𝑗 ,ℓ (𝑐ℓ/𝑐 𝑗 , 𝑏ℓ/𝑏 𝑗 ) if 𝑗 < ℓ.

The matrix V is positive definite if and only if V𝒄 is so, and hence we have the following results on
optimal weight choices:

1. (Variance-optimal weights) There is a unique solution to the minimization problem of 𝝎⊤V𝒄𝝎 sub-
ject to the constraint 𝝎⊤1 = 1, which is

𝝎 (Var) =
V−1
𝒄 1

1⊤V−1
𝒄 1

, and then
√
𝑘 (𝛾̂𝑛 (𝝎 (Var) ) − 𝛾) 𝑑−→N

(
1⊤V−1

𝒄 𝑩𝒄

1⊤V−1
𝒄 1

,
1

1⊤V−1
𝒄 1

)
.

2. (AMSE-optimal weights) There is a unique solution to the minimization problem of AMSE(𝝎) =
𝑘−1 [(𝝎⊤𝑩𝒄)2 +𝝎⊤V𝒄𝝎] subject to the constraint 𝝎⊤1 = 1, which is

𝝎 (AMSE) =
(1 + 𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄)V−1

𝒄 1 − (1⊤V−1
𝒄 𝑩𝒄)V−1

𝒄 𝑩𝒄

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
.

The optimal value of AMSE(𝝎) is

AMSE(𝝎 (AMSE) ) = 1
𝑘
×

1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
.

Finally, if 𝝎̂⊤
𝑛1 = 1 with 𝝎̂𝑛

P−→𝝎, then the composite estimator 𝛾̂𝑛 (𝝎̂𝑛) is
√
𝑘−asymptotically equiv-

alent to 𝛾̂𝑛 (𝝎) in the sense that
√
𝑘 (𝛾̂𝑛 (𝝎̂𝑛) − 𝛾̂𝑛 (𝝎)) = oP (1).

The proof requires applying a very general pooling result (Theorem A.1, that we state and prove
in Section A of the Supplementary Material document) in conjunction with the assumption that the
sample sizes 𝑛 𝑗 are asymptotically proportional (possibly unbalanced) and so are the effective sample
sizes 𝑘 𝑗 . This ensures that none of the 𝛾̂ 𝑗 (𝑘 𝑗 ) imposes its limiting distribution to the others. Section A
of the Supplementary Material document provides further interpretation and properties of weighted
pooled estimators, including the connection between asymptotic variance-optimal weights and pseudo-
maximum likelihood estimation, a connection between AMSE-optimal weights and the regularization
of bias-optimal weights, sensitivity to uncertainty in weight estimation, and gains in asymptotic vari-
ance compared to naive pooling (i.e. when 𝜔 𝑗 = 1/𝑚 for 1 ≤ 𝑗 ≤ 𝑚).
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2.2. Optimal choices of weights

Since the optimal values of weights in Theorem 1 depend on the asymptotic bias and variance compo-
nents, these should be estimated first. It is then convenient to assume that 𝜌 𝑗 < 0 and 𝐴 𝑗 (𝑡) = 𝛾𝛽 𝑗 𝑡𝜌 𝑗

for some constant 𝛽 𝑗 . Under this mild assumption (see Table 1 in [12] for a list of examples), consistent
estimators 𝛽 𝑗 and 𝜌̂ 𝑗 of 𝛽 𝑗 and 𝜌 𝑗 are available and implemented, for example, in the R function mop
from the package evt0 (see Section C.1 of the Supplementary Material document for further details).
This yields an estimator of 𝜆 𝑗 = lim𝑛→∞

√︁
𝑘 𝑗𝐴 𝑗 (𝑛 𝑗/𝑘 𝑗 ) as 𝜆 𝑗 =

√︁
𝑘 𝑗 × 𝛾̂𝑛 (𝝎)𝛽 𝑗 (𝑛 𝑗/𝑘 𝑗 )𝜌 𝑗 . Here the

choice of 𝝎 is arbitrary; without any prior knowledge of the asymptotic dependence structure between
the 𝑋 𝑗 , the use of naive weights 𝝎 = (1/𝑚, . . . ,1/𝑚)⊤ seems sensible.

To estimate the covariance matrix, let 𝑛 𝑗 ,ℓ = min(𝑛 𝑗 , 𝑛ℓ ) and 𝑘 𝑗 ,ℓ = 𝑘 𝑗 if 𝑛 𝑗 < 𝑛ℓ and 𝑘ℓ otherwise,
and consider the estimator of the tail copula function 𝑅 𝑗 ,ℓ defined as

𝑅 𝑗 ,ℓ (𝑢, 𝑣) = 𝑅 𝑗 ,ℓ (𝑢, 𝑣; 𝑘 𝑗 ,ℓ ) =
1
𝑘 𝑗 ,ℓ

𝑛 𝑗,ℓ∑︁
𝑖=1

1

{
𝑛 𝑗 ,ℓ + 1 − 𝑟𝑛 𝑗,ℓ ,𝑖, 𝑗

𝑘 𝑗 ,ℓ (𝑛 𝑗 ,ℓ + 1)/𝑛 𝑗 ,ℓ
≤ 𝑢,

𝑛 𝑗 ,ℓ + 1 − 𝑟𝑛 𝑗,ℓ ,𝑖,ℓ

𝑘 𝑗 ,ℓ (𝑛 𝑗 ,ℓ + 1)/𝑛 𝑗 ,ℓ
≤ 𝑣

}
.

[Here 𝑟𝑛 𝑗,ℓ ,𝑖, 𝑗 (resp. 𝑟𝑛 𝑗,ℓ ,𝑖,ℓ ) stands for the rank of 𝑋𝑖, 𝑗 (resp. 𝑋𝑖,ℓ ) among the observations
𝑋1, 𝑗 , 𝑋2, 𝑗 , . . . , 𝑋𝑛 𝑗,ℓ , 𝑗 (resp. 𝑋1,ℓ , 𝑋2,ℓ , . . . , 𝑋𝑛 𝑗,ℓ ,ℓ ), namely, the first 𝑛 𝑗 ,ℓ observations in sample 𝑗

(resp. ℓ).] Other options include estimating 𝑅 𝑗 ,ℓ by fitting extreme value copulae and using a relation-
ship between tail copulae and Pickands dependence functions, see Section 3.1 of [14]. We shall show
in Section 5.1 that our proposed approach, which has the advantage of simplicity, performs well in a
wide range of models. Adapting Lemma 7 from [19] shows that the estimator 𝑅 𝑗 ,ℓ above is a locally
uniformly consistent estimator of 𝑅 𝑗 ,ℓ on (0,∞)2 under our conditions. This leads to the estimators

𝑩̂𝒄 =
√
𝑘

(
𝜆1/

√
𝑘1

1 − 𝜌̂1
,
𝜆2/

√
𝑘2

1 − 𝜌̂2
, . . . ,

𝜆𝑚/
√
𝑘𝑚

1 − 𝜌̂𝑚

)⊤

and [V̂𝒄] 𝑗 ,ℓ = 𝑘 𝛾̂2
𝑛 (𝝎)


1
𝑘 𝑗

if 𝑗 = ℓ,

1
𝑘 𝑗

×
𝑅 𝑗 ,ℓ (𝑘 𝑗/𝑘ℓ , 𝑛 𝑗/𝑛ℓ )

max(1, 𝑛 𝑗/𝑛ℓ )
if 𝑗 ≠ ℓ.

Plugging in these estimators in place of 𝑩𝒄 and V𝒄 in the expressions of 𝝎 (Var) and 𝝎 (AMSE) results in
estimators 𝝎̂ (Var)

𝑛 and 𝝎̂ (AMSE)
𝑛 of these optimal weights. Next, we provide the asymptotic properties

of the composite pooled estimators based on these estimated weights.

Corollary 1. Work under the conditions of Theorem 1 with 𝜸 = 𝛾1, 𝜌 𝑗 < 0, and 𝐴 𝑗 (𝑡) = 𝛾𝛽 𝑗 𝑡𝜌 𝑗 for all
𝑗 . Assume that the matrix V is positive definite (hence V𝒄 is). Assume further that, for all 𝑗 ∈ {1, . . . , 𝑚},
𝛽 𝑗 is a consistent estimator of 𝛽 𝑗 and ( 𝜌̂ 𝑗 − 𝜌 𝑗 ) log𝑛 𝑗 = oP (1). Then

√
𝑘 (𝛾̂𝑛 (𝝎̂ (Var)

𝑛 ) − 𝛾) 𝑑−→N
(

1⊤V−1
𝒄 𝑩𝒄

1⊤V−1
𝒄 1

,
1

1⊤V−1
𝒄 1

)
, and

√
𝑘 (𝛾̂𝑛 (𝝎̂ (AMSE)

𝑛 ) − 𝛾) 𝑑−→N
(
(𝝎 (AMSE) )⊤𝑩𝒄 , (𝝎 (AMSE) )⊤V𝒄𝝎

(AMSE)
)
, where

((𝝎 (AMSE) )⊤𝑩𝒄)2 + (𝝎 (AMSE) )⊤V𝒄𝝎
(AMSE) =

1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
.



6 A. Daouia et al.

Remark 1 (On the variance-optimal choice). The variance-optimal weights 𝝎 (Var) were suggested
by [14], but their analog of Theorem 1 requires stronger regularity conditions about the 𝐹𝑗 and an
assumption akin to a second-order condition on the survival copulae 𝐶 𝑗 ,ℓ . Besides, the use of their
estimator for 𝝎 (Var) lacks a theoretical justification similar to Corollary 1. A variance-optimal convex
combination is advocated in [6] under the same conditions as in [14]. In fact, at least when 𝑚 ≤ 3
and 𝑐2 = 𝑐3 = 1, the variance-optimal set of weights we propose is a convex combination, and thus
provides a simple closed form to the constrained variance minimization problem in [6]. For 𝑚 = 2, this
is more generally true for arbitrary 𝑐2 > 0, and follows from a direct calculation; when 𝑐2 = 1, one
finds 𝝎 (Var) = (1/2,1/2)⊤ irrespective of V1 = V, corresponding to the naive average. For 𝑚 = 3, the
discussion is more complex and involves the identification of tail correlation matrices with a convex
polytope that is a proper subset of the elliptope, a Riemannian quotient manifold representing the
set of standard correlation matrices (see Section C.2 of the Supplementary Material document for
more details). As a consequence, pooling together 𝑚 ≤ 3 Hill estimators with equal effective sample
fractions 𝑘 𝑗/𝑛 𝑗 can never outperform, in terms of asymptotic variance, a Hill estimator built from the
top 𝑘 =

∑𝑚
𝑗=1 𝑘 𝑗 observations coming from a pooled sample of independent data of size 𝑛 =

∑𝑚
𝑗=1 𝑛 𝑗 .

Perhaps surprisingly, this conclusion is not reached in general pooling problems, e.g., for positively
correlated sample means, because the variance-optimal pooled estimator may then not be a convex
combination. What can happen in the case 𝑚 > 3 remains an open question.

Remark 2 (On the AMSE-optimal choice). To the best of our knowledge, the AMSE-optimal weights
𝝎 (AMSE) have not been considered before in the literature. They should be favored in practice in the
case of highly different sample fractions 𝑘 𝑗/𝑛 𝑗 , as demonstrated below in Section 3.2 in the distributed
inference framework. Their construction is made possible in our setting because Theorem 1 gives a
precise quantification of the asymptotic bias of the pooled tail index estimator, unlike the results of [6]
and [14] which assume that this bias is negligible.

Remark 3 (On optimal choices of the 𝑘 𝑗 in pooled estimators). Contrary to the AMSE-optimal
choice of weights, it seems hard to find an AMSE-optimal choice of the 𝑘 𝑗 for the pooled tail index
estimator. We give an explanation here in the simple situation when 𝑚 = 2 and 𝑅1,2 = 0 (i.e. 𝑋1 and
𝑋2 are asymptotically independent). The AMSE of each individual estimator 𝛾̂ 𝑗 (𝑘 𝑗 ) is AMSE 𝑗 (𝑘 𝑗 ) =
𝛾2 (𝑏2

𝑗
(𝑛 𝑗/𝑘 𝑗 )2𝜌 𝑗 /(1− 𝜌 𝑗 )2 +1/𝑘 𝑗 ), minimal at 𝑘★

𝑗
= (−(1− 𝜌 𝑗 )2𝑛

2𝜌 𝑗

𝑗
/(2𝜌 𝑗𝑏

2
𝑗
))1/(1−2𝜌 𝑗 ) . Meanwhile,

the AMSE of the pooled estimator with weights (𝜔,1 −𝜔) is

AMSE(𝜔, 𝑘1, 𝑘2) = 𝜔2AMSE1 (𝑘1) + (1−𝜔)2AMSE2 (𝑘2) +2𝜔(1−𝜔) 𝛾2𝑏1𝑏2

(1 − 𝜌1) (1 − 𝜌2)

(
𝑛1

𝑘1

)𝜌1
(
𝑛2

𝑘2

)𝜌2

due to the asymptotic independence assumption. Then clearly, in the nontrivial case where 𝜔 ∉ {0,1},

𝜕AMSE
𝜕𝑘1

(𝜔, 𝑘★1 , 𝑘
★
2 ) ≠ 0 and

𝜕AMSE
𝜕𝑘2

(𝜔, 𝑘★1 , 𝑘
★
2 ) ≠ 0.

This means that the optimal choices of 𝑘1 and 𝑘2 in each individual sample will not constitute a pair of
optimal choices for the pooled estimators. A simple closed form for the latter seems very difficult (if not
impossible) to obtain in general, because canceling the partial derivatives of AMSE(𝜔, 𝑘1, 𝑘2) involves
finding roots of pairs of polynomials in (𝑘1, 𝑘2) which are not merely linear or quadratic functions.

We conclude this section by discussing bias-reduced versions of the variance-optimal and AMSE-
optimal pooled estimators, defined as 𝛾𝑛 (𝝎̂

(Var)
𝑛 ) = 𝛾̂𝑛 (𝝎̂ (Var)

𝑛 ) − (𝝎̂ (Var)
𝑛 )⊤ 𝑩̂𝒄/

√
𝑘 and 𝛾𝑛 (𝝎̂

(AMSE)
𝑛 ) =

𝛾̂𝑛 (𝝎̂ (AMSE)
𝑛 ) − (𝝎̂ (AMSE)

𝑛 )⊤ 𝑩̂𝒄/
√
𝑘 .
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Corollary 2. Under the conditions of Corollary 1,
√
𝑘 (𝛾𝑛 (𝝎̂

(Var)
𝑛 ) − 𝛾) 𝑑−→N(0,1/(1⊤V−1

𝒄 1)) and

√
𝑘 (𝛾𝑛 (𝝎̂

(AMSE)
𝑛 ) − 𝛾) 𝑑−→N

(
0,

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄)2 (1⊤V−1
𝒄 1) − (2 + 𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄) (1⊤V−1

𝒄 𝑩𝒄)2

[(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2]2

)
.

If the marginal distributions are equal across samples, then one can improve the estimation of the
weights by also pooling the second-order parameter estimators, see Section 3.2 below.

2.3. Weighted geometric pooling of extreme quantile estimators

Consider a very small exceedance probability 𝑝 = 𝑝(𝑛) → 0 as 𝑛→∞. In each sample, the quantile
𝑞 𝑗 (1 − 𝑝) at level 1 − 𝑝 can be estimated by the extrapolated Weissman estimator of [22]:

𝑞★𝑗 (1 − 𝑝 |𝑘 𝑗 ) =
(
𝑘 𝑗

𝑛 𝑗 𝑝

)𝛾 𝑗 (𝑘 𝑗 )
𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ,

where 𝑘 𝑗 satisfies 𝑘 𝑗/(𝑛 𝑗 𝑝) → ∞. The typical case of interest is when 𝑛𝑝 is bounded, in which case
only a few or no observations exceeding 𝑞 𝑗 (1 − 𝑝) are available. When the samples are believed or
known to have the same tail index 𝛾, it is natural to substitute the weighted estimator 𝛾̂𝑛 (𝝎) in place of
the individual estimator 𝛾̂ 𝑗 (𝑘 𝑗 ), to get 𝑞★

𝑗
(1− 𝑝 |𝑘 𝑗 ,𝝎) = (𝑘 𝑗/(𝑛 𝑗 𝑝))𝛾𝑛 (𝝎)𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 . Going one step

further, the marginal quantile estimators themselves can be pooled when the datasets have the same
extreme quantiles, or equivalently, if one assumes that

(H) For any 𝑗 , ℓ ∈ {1, . . . , 𝑚} with 𝑗 ≠ ℓ, we have𝑈 𝑗 (𝑡)/𝑈ℓ (𝑡) → 1 as 𝑡→∞.

Under assumption (H), it is tempting to take again a weighted sum of the 𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 ), as 𝑞★𝑛 (1 −

𝑝 |𝝎) =∑𝑚
𝑗=1𝜔 𝑗𝑞

★
𝑗
(1− 𝑝 |𝑘 𝑗 ). This would be sensible if one were estimating central quantiles, see [15],

but it is no longer the best solution when it comes to pooling the Weissman estimators, because the
use of geometric weighted sums better suits their multiplicative and power structure (see Section 5.1.1,
and Section D.1 of the Supplementary Material document, for numerical evidence). The crucial point
to note here is that the log-Weissman quantile estimator can be rewritten as

log 𝑞★𝑗 (1 − 𝑝 |𝑘 𝑗 ) = log
(
𝑘

𝑛𝑝

)
𝛾̂ 𝑗 (𝑘 𝑗 ) +

[
log

(
𝑘 𝑗

𝑘

)
− log

(𝑛 𝑗
𝑛

)]
𝛾̂ 𝑗 (𝑘 𝑗 ) + log 𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 .

In the first term, the 𝛾 estimator appears on the standard scale. This suggests the use of the estimator
defined as log 𝑞★𝑛 (1 − 𝑝 |𝝎) = ∑𝑚

𝑗=1𝜔 𝑗 log 𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 ). This estimator is a weighted geometric mean

of the 𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 ). We now derive the asymptotic normality of 𝑞★

𝑗
(1 − 𝑝 |𝑘 𝑗 ,𝝎) and 𝑞★𝑛 (1 − 𝑝 |𝝎).

Theorem 2. Work under the conditions and with the notation of Theorem 1 with 𝜸 = 𝛾1 and 𝜌 𝑗 < 0 for
all 𝑗 ∈ {1, . . . , 𝑚}. Pick 𝑝 = 𝑝(𝑛) → 0 such that 𝑘/(𝑛𝑝) → ∞ and

√
𝑘/log(𝑘/(𝑛𝑝)) → ∞. Let 𝝎, 𝝎̂𝑛

be such that 𝝎̂⊤
𝑛1 = 1 and 𝝎̂𝑛

P−→𝝎. Then, for any 𝑗 ,
√
𝑘

log(𝑘/(𝑛𝑝))

(
𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 , 𝝎̂𝑛)
𝑞 𝑗 (1 − 𝑝) − 1

)
=
√
𝑘 (𝛾̂𝑛 (𝝎) − 𝛾) + oP (1)

𝑑−→N
(
𝝎⊤𝑩𝒄 ,𝝎

⊤V𝒄𝝎
)
.

If moreover assumption (H) holds then, for any 𝑗 ,
√
𝑘

log(𝑘/(𝑛𝑝))

(
𝑞★𝑛 (1 − 𝑝 |𝝎̂𝑛)
𝑞 𝑗 (1 − 𝑝) − 1

)
=
√
𝑘 (𝛾̂𝑛 (𝝎) − 𝛾) + oP (1)

𝑑−→N
(
𝝎⊤𝑩𝒄 ,𝝎

⊤V𝒄𝝎
)
.
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An analog of Corollary 1 is feasible for optimally-pooled extreme quantile estimation where 𝝎̂𝑛 ∈
{𝝎̂ (Var)

𝑛 , 𝝎̂ (AMSE)
𝑛 }, since the asymptotic distribution of 𝑞★𝑛 (1 − 𝑝 |𝝎̂𝑛) is governed by that of 𝛾̂𝑛 (𝝎).

Similar results based on the bias-reduced versions 𝛾𝑛 (𝝎̂
(Var)
𝑛 ) and 𝛾𝑛 (𝝎̂

(AMSE)
𝑛 ) are omitted.

2.4. Inference using pooled extreme value estimators

Equality of tail indices or extreme quantiles is of course a modelling assumption. We briefly present
here an approach to testing this assumption, motivated by testing for nested models. Suppose that 𝒁
is an 𝑚−dimensional Gaussian random vector with mean 𝝁 and known positive definite covariance
matrix 𝑽, and consider the testing problem of 𝑀0 : 𝜇1 = · · · = 𝜇𝑚 = 𝜇 versus 𝑀1 : ∃( 𝑗 , ℓ) with 𝑗 ≠
ℓ such that 𝜇 𝑗 ≠ 𝜇ℓ . The log-likelihood ratio deviance statistic for testing the validity of model 𝑀0
based on 𝒁 is Λ = (𝒁 − 𝜇1)⊤V−1 (𝒁 − 𝜇1), with 𝜇 = (1⊤V−1𝒁)/(1⊤V−11). In model 𝑀0, the statistic
Λ has a chi-square distribution with 𝑚 − 1 degrees of freedom. In our context, under the assumptions
of Theorem 1 and if all the 𝜆 𝑗 are 0 (see Remark 6 below for a discussion of this assumption), one has
√
𝑘 (𝜸̂𝑛 − 𝜸) = (

√
𝑘 (𝛾̂1 (𝑘1) − 𝛾1), . . . ,

√
𝑘 (𝛾̂𝑚 (𝑘𝑚) − 𝛾𝑚))⊤

𝑑−→N(0,V𝒄) with

[V𝒄] 𝑗 ,ℓ =
(
𝑚∑︁
𝑖=1

𝑐−1
𝑖

) 
𝛾2
𝑗𝑐 𝑗 if 𝑗 = ℓ,

𝛾 𝑗𝛾ℓ𝑏 𝑗𝑐 𝑗𝑅 𝑗 ,ℓ (𝑐ℓ/𝑐 𝑗 , 𝑏ℓ/𝑏 𝑗 )/max(𝑏 𝑗 , 𝑏ℓ ) if 𝑗 < ℓ.

In other words, the distribution of 𝜸̂𝑛 is approximately N(𝜸, 𝑘−1V𝒄). Plugging in 𝛾̂ 𝑗 (𝑘 𝑗 ) and
𝑅 𝑗 ,𝑙 (𝑘 𝑗/𝑘ℓ , 𝑛 𝑗/𝑛ℓ ) in place of 𝛾 𝑗 and 𝑅 𝑗 ,ℓ (𝑐ℓ/𝑐 𝑗 , 𝑏ℓ/𝑏 𝑗 ), respectively, one obtains an estimator V𝒄 of
V𝒄 and hence a deviance statistic for testing 𝐻0 : 𝜸 = 𝛾1 versus 𝐻1 : 𝜸 ≠ 𝛾1 as

Λ𝑛 = 𝑘 (𝜸̂𝑛 − 𝜇𝑛1)⊤V
−1
𝒄 (𝜸̂𝑛 − 𝜇𝑛1), with 𝜇𝑛 =

1⊤V
−1
𝒄 𝜸̂𝑛

1⊤V
−1
𝒄 1

= (𝝎 (Var)
𝑛 )⊤𝜸̂𝑛 = 𝛾̂𝑛 (𝝎

(Var)
𝑛 ).

The (squared Mahalanobis distance) test statistic Λ𝑛 compares the vector 𝜸̂𝑛 with an estimate of the
variance-optimal pooled estimator on a scale adapted to the extremal pairwise dependence in the com-
ponents of 𝑿. A somewhat different proposal is outlined in [14]. We explain the main differences in
Section C.3 of the Supplementary Material document. Our proposed testing procedure, of asymptotic
significance level 𝛼, is to reject 𝐻0 if Λ𝑛 > 𝜒

2
𝑚−1,1−𝛼, where 𝜒2

𝑚−1,1−𝛼 is the (1 − 𝛼)th quantile of the
chi-square distribution with 𝑚 − 1 degrees of freedom. Next, we establish the consistency of this test
and give a symmetric asymptotic confidence interval for the common tail index 𝛾 under 𝐻0.

Corollary 3. Under the conditions of Theorem 1 and if 𝜆 𝑗 = 0 for all 𝑗 , we have P(Λ𝑛 > 𝜒
2
𝑚−1,1−𝛼) →

𝛼 under 𝐻0, and Λ𝑛
P−→+∞ under 𝐻1. Moreover, under 𝐻0, if 𝝎̂⊤

𝑛1 = 1 with 𝝎̂𝑛
P−→𝝎, then

∀𝛼 ∈ (0,1), lim
𝑛→∞

P

(
𝛾 ∈

[
𝛾̂𝑛 (𝝎̂𝑛) ± 𝑧1−𝛼/2

√︃
(𝝎̂⊤

𝑛 V̂𝒄𝝎̂𝑛)/𝑘
] )

= 1 − 𝛼

where 𝑧1−𝛼/2 is the (1 − 𝛼/2)th quantile of the standard Gaussian distribution. [In this asymptotic
confidence interval, V̂𝒄 is calculated as described in Section 2.2.]

Remark 4 (Identification of tail homogeneous subgroups). When 𝐻0 is rejected, it is of interest to
identify tail homogeneous subgroups. A simple yet effective method, employed in the real data appli-
cation in Section 5.2.2, is to list the estimated tail indices and manually (or automatically, using an
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unsupervised clustering algorithm such as 𝑘−means) construct subgroups in which these estimates are
similar. An alternative procedure, only tractable when 𝑚 is low but having the advantage of being
statistically principled and exhaustive over all possible choices of subgroups, is to calculate the set of
log-likelihoods of 𝜸̂𝑛 = (𝛾̂1 (𝑘1), . . . , 𝛾̂𝑚 (𝑘𝑚)) under the multivariate Gaussian model and all possible
equality constraints on 𝜸: for example, when𝑚 = 3, one can have pairwise different (i.e. unconstrained)
𝛾 𝑗 , or exactly two equal 𝛾 𝑗 (three possibilities), or equal 𝛾 𝑗 . Associated to each of these submodels will
be Akaike’s Information Criterion, with the minimal AIC value suggesting the most likely subgroups.

Remark 5 (With asymptotic independence across subsamples). An important subcase is when pairs
of data points taken from two different subsamples are asymptotically independent. In this case, all tail
copulae 𝑅 𝑗 ,ℓ are identically zero, so one can estimate V𝒄 with 𝑘 diag(𝛾̂2

1 (𝑘1)/𝑘1, . . . , 𝛾̂
2
𝑚 (𝑘𝑚)/𝑘𝑚).

The test statistic Λ𝑛 becomes Λ𝑛 =
∑𝑚

𝑗=1 𝑘 𝑗 (𝛾̂ 𝑗 (𝑘 𝑗 ) − 𝛾̂𝑛 (𝝎 (Var)
𝑛 ))2/𝛾̂2

𝑗
(𝑘 𝑗 ). This has the familiar look

of a Pearson goodness-of-fit statistic, with the weight 𝑘 𝑗 adjusting for the different rates of convergence
of the 𝛾̂ 𝑗 (𝑘 𝑗 ). If all the 𝑘 𝑗 are equal, then Λ𝑛 = 𝑘

𝑚

∑𝑚
𝑗=1 (𝛾̂𝑛 (𝝎

(Var)
𝑛 )/𝛾̂ 𝑗 (𝑘 𝑗 ) − 1)2. Our proposed

statistic Λ𝑛 then bears some similarity with a test statistic of [10] for the validity of a multivariate
regular variation model that assumes equality of tail indices across marginal distributions.

Remark 6 (Inference and bias correction). Typically, assuming 𝜆 𝑗 = 0 to omit the asymptotic bias
terms is sensible as long as the second-order parameters 𝜌 𝑗 remain reasonably far away from 0. Based
on finite-sample experiments with a total sample size 𝑛 = 1,000, marginal Burr distributions and 2 ≤
𝑚 ≤ 5 with both balanced and unbalanced samples, the confidence interval provided in Corollary 3
seems to perform very well at least when |𝜌 𝑗 | > 3/4. Estimating the bias terms in such a situation
is in fact detrimental, because of increased variability of the resulting interval estimator that is not
accounted for in the estimated variance of the Gaussian limiting distribution.

Remark 7 (Tail homogeneity and tail homoskedasticity). When all the parameters 𝜌 𝑗 are nega-
tive, as in Corollary 3, one has 𝑡−𝛾 𝑗𝑈 𝑗 (𝑡) → 𝐶 𝑗 ∈ (0,∞) as 𝑡 → ∞, see the equation below Equa-
tion (2.3.23) in [5]. Testing 𝐻0 : 𝜸 = 𝛾1 versus 𝐻1 : 𝜸 ≠ 𝛾1 is then equivalent to testing

𝐻 ′
0 : ∀ 𝑗 , ℓ ∈ {1, . . . , 𝑚}, lim𝜏↑1 𝑞 𝑗 (𝜏)/𝑞ℓ (𝜏) ∈ (0,∞),

versus 𝐻 ′
1 : ∃ 𝑗 , ℓ ∈ {1, . . . , 𝑚} with 𝑗 ≠ ℓ and lim𝜏↑1 𝑞 𝑗 (𝜏)/𝑞ℓ (𝜏) ∈ {0,∞}.

The testing procedure based on the statistic Λ𝑛 is therefore, under very mild conditions, exactly a
test for asymptotic proportionality of marginal extreme quantiles. It can thus be used to detect tail
homogeneity (equal tail indices and therefore asymptotically proportional tail quantiles) as opposed to
tail heterogeneity (one marginal distribution having a heavier tail than the others). We discuss below
the testing of the stronger property when all limits are equal to 1 in 𝐻 ′

0, corresponding to the asymptotic
equivalence of extreme quantiles (H), and referred to as tail homoskedasticity.

Testing for tail homoskedasticity can be done directly using the individual Weissman estimators
𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 ). Set 𝒁𝑛 (𝑝) = log 𝒒̂★𝑛 (1 − 𝑝) = (log 𝑞★1 (1 − 𝑝 |𝑘1), . . . , log 𝑞★𝑚 (1 − 𝑝 |𝑘𝑚)) and

𝐿𝑛 (𝑝) =
𝑘

log2 (𝑘/(𝑛𝑝))

(
𝒁𝑛 (𝑝) −

1⊤V
−1
𝒄 𝒁𝑛 (𝑝)

1⊤V
−1
𝒄 1

1

)⊤
V
−1
𝒄

(
𝒁𝑛 (𝑝) −

1⊤V
−1
𝒄 𝒁𝑛 (𝑝)

1⊤V
−1
𝒄 1

1

)
.

A testing procedure of asymptotic significance level 𝛼 of (H) versus (H ′) : ∃ 𝑗 , ℓ ∈ {1, . . . , 𝑚} with
𝑗 ≠ ℓ and lim𝜏↑1 𝑞 𝑗 (𝜏)/𝑞ℓ (𝜏) ≠ 1 is to reject (H) if 𝐿𝑛 (𝑝) > 𝜒2

𝑚−1,1−𝛼. This is established below.
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Corollary 4. Under the conditions of Corollary 3 and 𝜌 𝑗 < 0 for all 𝑗 , if 𝑝 = 𝑝(𝑛) → 0 is such that
𝑘/(𝑛𝑝) → ∞ and

√
𝑘/log(𝑘/(𝑛𝑝)) → ∞, then we have P(𝐿𝑛 (𝑝) > 𝜒2

𝑚−1,1−𝛼) → 𝛼 under (H), and

𝐿𝑛 (𝑝)
P−→+∞ under (H ′). Moreover, under (H), if 𝝎̂⊤

𝑛1 = 1 with 𝝎̂𝑛
P−→𝝎 then, for all 𝑗 ,

∀𝛼 ∈ (0,1), lim
𝑛→∞

P
©­«𝑞 𝑗 (1 − 𝑝) ∈

𝑞★𝑛 (1 − 𝑝 |𝝎̂𝑛) exp ©­«±𝑧1−𝛼/2 log
[
𝑘

𝑛𝑝

] √︄
𝝎̂⊤

𝑛 V̂𝒄𝝎̂𝑛

𝑘

ª®¬
ª®¬ = 1 − 𝛼.

Unlike the tail homoskedasticity test suggested in Section 3.3 of [16], the present test does not require
integrability assumptions on the 𝑋 𝑗 . The use of the log-scale is equivalent in theory to the relative
scale employed in Theorem 2, but it tends to provide more accurate asymptotic confidence intervals
for extreme quantiles, as indicated for instance by [8]. Of course, one may also consider inference
procedures based on AMSE-optimal weights, but as we shall show in our finite-sample experiments in
Section 5.1, these would in general not perform better than those based on variance-optimal weights.

3. The framework of distributed inference

In the framework of distributed inference, very restricted or no communication is allowed between
the 𝑚 machines in which individual subsamples are stored. In particular, the end user operating from
a central machine only has access to limited information, such as the subsample estimates and asso-
ciated 𝑛 𝑗 and 𝑘 𝑗 , which is not sufficient for estimating pairwise tail dependence structures. We thus
assume that the data points within and across machines are independent, that is, the 𝑋𝑖, 𝑗 are i.i.d. for
1 ≤ 𝑖 ≤ 𝑛 𝑗 and 1 ≤ 𝑗 ≤ 𝑚, with a distribution satisfying the second-order condition C2 (𝛾, 𝜌, 𝐴).

3.1. Distributed estimation of the tail index

With i.i.d. data, a benchmark for the distributed estimator 𝛾̂𝑛 (𝝎) is the Hill estimator based on the
unfeasible combination of subsamples {𝑋𝑖 ,1 ≤ 𝑖 ≤ 𝑛} = {𝑋𝑖, 𝑗 ,1 ≤ 𝑗 ≤ 𝑚,1 ≤ 𝑖 ≤ 𝑛 𝑗 } with effective
sample size 𝑘 =

∑𝑚
𝑗=1 𝑘 𝑗 , that is, 𝛾̂ (Hill)

𝑛 (𝑘) = 𝑘−1 ∑𝑘
𝑖=1 log(𝑋𝑛−𝑖+1:𝑛/𝑋𝑛−𝑘:𝑛) where 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤

· · · ≤ 𝑋𝑛:𝑛 are the order statistics of 𝑋1, . . . , 𝑋𝑛. Assume that the 𝑛 𝑗 and the 𝑘 𝑗 are asymptotically
proportional but possibly unbalanced, i.e. 𝑛1/𝑛 𝑗 → 𝑏 𝑗 ∈ (0,∞) and 𝑘1/𝑘 𝑗 → 𝑐 𝑗 ∈ (0,∞). Since 𝐴
is regularly varying with index 𝜌, the existence of 𝜆 𝑗 = lim𝑛→∞

√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 ) is equivalent to that

of 𝜆 = lim𝑛→∞
√
𝑘𝐴(𝑛/𝑘), and then 𝜆 𝑗 = 𝑐

𝜌−1/2
𝑗

𝑏
−𝜌
𝑗
𝜆1 = 𝑐

𝜌−1/2
𝑗

𝑏
−𝜌
𝑗
(∑𝑚

𝑗=1 𝑐
−1
𝑗
)𝜌−1/2 (∑𝑚

𝑗=1 𝑏
−1
𝑗
)−𝜌𝜆.

Hence, we have the following corollary of Theorem 1.

Corollary 5. Assume that condition C2 (𝛾, 𝜌, 𝐴) holds. Suppose that 𝑛1/𝑛 𝑗 → 𝑏 𝑗 ∈ (0,∞) and
𝑘1/𝑘 𝑗 → 𝑐 𝑗 ∈ (0,∞) (with then 𝑏1 = 𝑐1 = 1) for any 𝑗 ∈ {1, . . . , 𝑚}, and then that 𝑘→∞ with 𝑘/𝑛→ 0
and

√
𝑘𝐴(𝑛/𝑘) → 𝜆 ∈ R. Let 𝝎 = (𝜔1, . . . , 𝜔𝑚)⊤ be such that 𝝎⊤1 = 1. Then

√
𝑘 (𝛾̂𝑛 (𝝎) − 𝛾) 𝑑−→N ©­« 𝜆

1 − 𝜌

𝑚∑︁
𝑗=1

𝑑
𝜌

𝑗
𝜔 𝑗 , 𝛾

2
𝑚∑︁
𝑗=1

1
𝑐 𝑗

𝑚∑︁
𝑗=1

𝑐 𝑗𝜔
2
𝑗

ª®¬
where 𝑑 𝑗 = (𝑐 𝑗

∑𝑚
𝑖=1 1/𝑐𝑖)/(𝑏 𝑗

∑𝑚
𝑖=1 1/𝑏𝑖). If 𝝎̂⊤

𝑛1 = 1 and 𝝎̂𝑛
P−→ 𝝎 then

√
𝑘 (𝛾̂𝑛 (𝝎̂𝑛) − 𝛾̂𝑛 (𝝎)) =

oP (1) and so the above convergence remains valid for 𝛾̂𝑛 (𝝎̂𝑛).
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We compare next the variance- and AMSE-optimal distributed estimators to the benchmark Hill

estimator, which satisfies
√
𝑘 (𝛾̂ (Hill)

𝑛 (𝑘) − 𝛾) 𝑑−→N(𝜆/(1 − 𝜌), 𝛾2) (see Theorem 3.2.5, p.74 in [5]).

3.2. Variance-optimal and AMSE-optimal combinations

The variance-optimal weights are 𝜔 (Var)
𝑗

= (∑𝑚
𝑖=1 𝑐

−1
𝑖
)−1𝑐−1

𝑗
for all 𝑗 . Estimating 1/𝑐𝑖 by 𝑘𝑖/𝑘1 leads to

the estimated version 𝝎̃ (Var)
𝑛 = (𝑘1/𝑘, . . . , 𝑘𝑚/𝑘). The variance-optimal distributed estimator therefore

has a much simpler expression than in the general setup of Section 2, and its computation only requires
reporting the 𝑘 𝑗 and 𝛾̂ 𝑗 (𝑘 𝑗 ) to the central machine. Being a nonrandom convex combination, this
estimator is immune to the instability issues possibly caused by estimation of weights (see Remark A.3
in the Supplementary Material document). The following result gives its asymptotic distribution.

Corollary 6. Under the conditions and with the notation of Corollary 5,

√
𝑘 (𝛾̂𝑛 (𝝎̃ (Var)

𝑛 ) − 𝛾) 𝑑−→N
©­­«

𝜆

1 − 𝜌
©­«

𝑚∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
−1 ©­«

𝑚∑︁
𝑗=1

𝑑
𝜌

𝑗

𝑐 𝑗

ª®¬ , 𝛾2ª®®¬ .
It follows immediately that the proportion of variance gained by using the variance-optimal estimator

instead of the naive estimator with constant weights 𝜔 𝑗 = 1/𝑚 (for 1 ≤ 𝑗 ≤ 𝑚) can be quantified as

variance(naive) − optimal variance
variance(naive)

=

1
𝑚

∑𝑚
𝑗=1

1
𝑐 𝑗

× 1
𝑚

∑𝑚
𝑗=1 𝑐 𝑗 − 1

1
𝑚

∑𝑚
𝑗=1

1
𝑐 𝑗

× 1
𝑚

∑𝑚
𝑗=1 𝑐 𝑗

= 1 − ©­« 1
𝑚

𝑚∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
−1 ©­« 1

𝑚

𝑚∑︁
𝑗=1

𝑐 𝑗
ª®¬
−1

.

This proportion is close to 1 when the vector (𝑐1, 𝑐2, . . . , 𝑐𝑚) = (1, 𝑐2, . . . , 𝑐𝑚) is far from (1, . . . ,1),
i.e. when there is a strong degree of unbalance between effective sample sizes.

Remark 8 (Asymptotic bias comparison). The unfeasible Hill estimator has asymptotic bias 𝜇 (Hill) =

𝜆/(1 − 𝜌). If 𝜆 ≠ 0 and 𝜇 (Var) denotes the asymptotic bias of 𝛾̂𝑛 (𝝎̃ (Var)
𝑛 ), then Corollary 5 leads to

𝜇 (Hill) = 𝜇 (Var) when 𝜌 = 0: the intuition is that, since |𝐴| is slowly varying when 𝜌 = 0, the asymptotic
bias of 𝛾̂𝑛 (𝝎) is

∑𝑚
𝑗=1𝜔 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 ) ≈ (∑𝑚

𝑗=1𝜔 𝑗 )𝐴(𝑛/𝑘) = 𝐴(𝑛/𝑘), which is nothing but the asymptotic
bias of the Hill estimator, regardless of the choice of weights 𝜔 𝑗 . Otherwise, the Hölder inequality for
the conjugate exponents 𝑝 = −(1 − 𝜌)/𝜌 and 𝑞 = 1 − 𝜌 provides 𝜇 (Hill)/𝜇 (Var) ≤ 1. Equality holds if
and only if 𝑏 𝑗/𝑐 𝑗 = 𝐾 , a constant independent of 𝑗 (see Section C.4 of the Supplementary Material
document for technical details), i.e. 𝑏 𝑗/𝑐 𝑗 = 𝑏1/𝑐1 = 1. In other words, |𝜇 (Hill) | ≤ |𝜇 (Var) | with equality
𝜇 (Hill) = 𝜇 (Var) if and only if either 𝜌 = 0 or 𝑘1/𝑛1 = (𝑘 𝑗/𝑛 𝑗 ) (1 + o(1)) for any 𝑗 , meaning that the
sample fraction in each machine should be (asymptotically) the same for asymptotic bias equality to
hold. In this situation, 𝑑 𝑗 = 1 for any 𝑗 and so, by Corollary 5, the variance- and AMSE-optimal weights
are actually identical.

Corollary 6 and Remark 8 motivate the following result in the case of equal sample fractions. The
proof of the second statement therein requires specific theoretical arguments.

Theorem 3. Under the conditions of Corollary 6 with 𝜆 ≠ 0,
√
𝑘 (𝛾̂𝑛 (𝝎̃ (Var)

𝑛 ) −𝛾) 𝑑−→N(𝜆/(1− 𝜌), 𝛾2)
if and only if 𝜌 = 0 or 𝑘 𝑗/𝑛 𝑗 = (𝑘/𝑛) (1 + o(1)) for any 𝑗 ∈ {1, . . . , 𝑚}. If moreover 𝑘 𝑗/𝑛 𝑗 = (𝑘/𝑛) (1 +
O(1/

√
𝑘)) for any 𝑗 , we have in fact

√
𝑘 (𝛾̂𝑛 (𝝎̃ (Var)

𝑛 ) − 𝛾̂ (Hill)
𝑛 (𝑘)) = oP (1).
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Adjusting the effective sample sizes 𝑘 𝑗 such that 𝑘 𝑗/𝑛 𝑗 is constant in 𝑗 thus produces a variance-
and AMSE-optimal estimator that is asymptotically equivalent to the unfeasible Hill estimator built
from the combined subsamples. This property is much stronger than only sharing the same asymptotic
distribution. It is, however, unlikely that such an adjustment can be performed in general, since each
machine will typically pick its own 𝑘 𝑗 following a selection rule based only on its subsample [6,14].

This motivates the focus on AMSE-optimal pooling in the case of unequal 𝑘 𝑗/𝑛 𝑗 . In this setting,
the estimator 𝛾̂ 𝑗 (𝑘 𝑗 ) with the lowest sample fraction will be the one carrying the smallest amount of
bias, which may be substantially lower than the bias of the Hill estimator calculated on the full sample
as the latter will typically use a larger sample fraction. As a consequence, giving the former estimator
a large weight can improve the AMSE overall. The following result makes this intuition rigorous by
comparing the AMSE-optimal distributed estimator with the benchmark Hill estimator.

Theorem 4. Under the conditions and notation of Corollary 5, set

AMSE(Hill) =
1
𝑘

(
𝜆2

(1 − 𝜌)2 + 𝛾2
)

and AMSE(𝝎) = 1
𝑘
((𝝎⊤𝑩𝒄)2 +𝝎⊤V𝒄𝝎)

with 𝑩𝒄 =
𝜆

1 − 𝜌

(
𝑑
𝜌

1 , . . . , 𝑑
𝜌
𝑚

)⊤
and V𝒄 = 𝛾

2

(
𝑚∑︁
𝑖=1

𝑐−1
𝑖

)
diag(𝑐1, . . . , 𝑐𝑚).

Assume that the 𝑏 𝑗/𝑐 𝑗 are not all equal to 1. Then AMSE(𝝎 (AMSE) ) ≥ AMSE(Hill) if and only if |𝜆 | ≤
𝜆0, with

𝜆0 = 𝛾(1 − 𝜌)

√√
𝑆2
𝜌 − 𝑆2

0

𝑆0𝑆2𝜌 − 𝑆2
𝜌

, and 𝑆𝛼 =

𝑚∑︁
𝑗=1

𝑑𝛼
𝑗

𝑐 𝑗
.

It should be noted that Theorem 4 does not violate the minimax optimality property of the (bench-
mark) Hill estimator proved in [7] since it only states that the AMSE-optimal pooled estimator has a
lower AMSE than the Hill estimator within a certain class of heavy-tailed distributions.

To estimate the AMSE-optimal weights in the current context, assume as in Section 2.2 that 𝐴(𝑡) =
𝛾𝛽𝑡𝜌 and note that 𝜆 = lim𝑛→∞

√
𝑘𝐴(𝑛/𝑘) = 𝛾𝛽 lim𝑛→∞

√
𝑘 (𝑛/𝑘)𝜌 and 𝑑 𝑗 = lim𝑛→∞ (𝑛 𝑗 𝑘)/(𝑛𝑘 𝑗 ). The

estimators 𝛽 𝑗 and 𝜌̂ 𝑗 , defined in Section 2.2, of 𝛽 ≡ 𝛽 𝑗 and 𝜌 ≡ 𝜌 𝑗 are restricted to each machine 𝑗 .
Here one may use instead the pooled versions 𝛽𝑛 (𝝎) = ∑𝑚

𝑗=1𝜔 𝑗 𝛽 𝑗 and 𝜌̂𝑛 (𝝎) = ∑𝑚
𝑗=1𝜔 𝑗 𝜌̂ 𝑗 , leading

to 𝜆 = 𝜆(𝝎̂𝛾 , 𝝎̂𝛽 , 𝝎̂𝜌) = 𝛾̂𝑛 (𝝎̂𝛾)𝛽𝑛 (𝝎̂𝛽) ×
√
𝑘 (𝑛/𝑘)𝜌𝑛 (𝝎𝜌) , where 𝝎̂𝛾 , 𝝎̂𝛽 and 𝝎̂𝜌 are three sets of

weights. An obvious choice is 𝜔 𝑗 = 1/𝑚 for all three estimators. A more refined choice is variance-
optimal weights 𝑘 𝑗/𝑘 for 𝝎̂𝛾 and 𝑛 𝑗/𝑛 for both 𝝎̂𝛽 and 𝝎̂𝜌 (recall that 𝛽 𝑗 and 𝜌̂ 𝑗 use almost all the
available observations in each machine; see Section C.1 of the Supplementary Material document). Set

𝑩̃𝒄 =

√√√ 𝑚∑︁
𝑗=1

𝑘 𝑗
𝛾̂𝑛 (𝝎̂𝛾)𝛽𝑛 (𝝎̂𝛽)

1 − 𝜌̂𝑛 (𝝎̂𝜌)

((
𝑛1

𝑘1

)𝜌𝑛 (𝝎𝜌)
, . . . ,

(
𝑛𝑚

𝑘𝑚

)𝜌𝑛 (𝝎𝜌)
)⊤

and Ṽ𝒄 =
©­«

𝑚∑︁
𝑗=1

𝑘 𝑗
ª®¬ 𝛾̂2

𝑛 (𝝎̂𝛾) diag(1/𝑘1, . . . ,1/𝑘𝑚),

and define 𝝎̃ (AMSE)
𝑛 by replacing 𝑩𝒄 and V𝒄 in 𝝎 (AMSE) with 𝑩̃𝒄 and Ṽ𝒄 . These estimators featuring

pooled second-order parameter estimates require, of course, communicating 𝑘 𝑗 , 𝑛 𝑗 , 𝛽 𝑗 , 𝜌̂ 𝑗 to the central
machine. We obtain the following result as an immediate consequence of Corollary 5.
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Corollary 7. Work under the conditions of Corollary 5 with 𝜌 < 0 and 𝐴(𝑡) = 𝛾𝛽𝑡𝜌. Assume that, for
all 𝑗 ∈ {1, . . . , 𝑚}, 𝛽 𝑗 is a consistent estimator of 𝛽 and ( 𝜌̂ 𝑗 − 𝜌) log𝑛 𝑗 = oP (1). Then

√
𝑘 (𝛾̂𝑛 (𝝎̃ (AMSE)

𝑛 ) − 𝛾) 𝑑−→N ©­« 𝜆

1 − 𝜌

𝑚∑︁
𝑗=1

𝑑
𝜌

𝑗
𝜔

(AMSE)
𝑗

, 𝛾2
𝑚∑︁
𝑗=1

1
𝑐 𝑗

𝑚∑︁
𝑗=1

𝑐 𝑗 (𝜔 (AMSE)
𝑗

)2ª®¬ .
Confidence intervals can then be constructed as in Section 2.4, and bias reduction and appropriate

theory can also be developed as in Section 2.2. We omit the details for the sake of brevity.

3.3. Extreme quantile estimation

We are now ready to compare the weighted geometric distributed estimator of an extreme quantile
𝑞(1 − 𝑝), as well as its variance- and AMSE-optimal versions, to the classical unfeasible Weissman
estimator obtained directly from the combined subsamples, each defined as

𝑞★𝑛 (1 − 𝑝 |𝝎) =
𝑚∏
𝑗=1

[(
𝑘 𝑗

𝑛 𝑗 𝑝

)𝛾 𝑗 (𝑘 𝑗 )
𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜔 𝑗

, 𝑞
★, (Hill)
𝑛 (1 − 𝑝 |𝑘) =

(
𝑘

𝑛𝑝

)𝛾 (Hill)
𝑛 (𝑘)

𝑋𝑛−𝑘:𝑛.

Corollary 8. Work under the conditions of Corollary 5 with 𝜌 < 0. Pick 𝑝 = 𝑝(𝑛) → 0 such that

𝑘/(𝑛𝑝) →∞ and
√
𝑘/log(𝑘/(𝑛𝑝)) →∞. Let 𝝎, 𝝎̂𝑛 be such that 𝝎̂⊤

𝑛1 = 1 and 𝝎̂𝑛
P−→𝝎. Then

√
𝑘

log(𝑘/(𝑛𝑝))

(
𝑞★𝑛 (1 − 𝑝 |𝝎̂𝑛)
𝑞(1 − 𝑝) − 1

)
𝑑−→N ©­« 𝜆

1 − 𝜌

𝑚∑︁
𝑗=1

𝑑
𝜌

𝑗
𝜔 𝑗 , 𝛾

2
𝑚∑︁
𝑗=1

1
𝑐 𝑗

𝑚∑︁
𝑗=1

𝑐 𝑗𝜔
2
𝑗

ª®¬ .
If also 𝑘 𝑗/𝑛 𝑗 = (𝑘/𝑛) (1+O(1/

√
𝑘)) for any 𝑗 ∈ {1, . . . , 𝑚}, then 𝑞★𝑛 (1− 𝑝 |𝝎̃

(Var)
𝑛 ) is

√
𝑘/log(𝑘/(𝑛𝑝))–

asymptotically equivalent to 𝑞★, (Hill)
𝑛 (1 − 𝑝 |𝑘). Finally, if the 𝑏 𝑗/𝑐 𝑗 are not all equal to 1, then under

the conditions of Corollary 7, 𝑞★𝑛 (1 − 𝑝 |𝝎̃ (AMSE)
𝑛 ) has a smaller AMSE than 𝑞★, (Hill)

𝑛 (1 − 𝑝 |𝑘) if and
only if |𝜆 | > 𝜆0, with the notation of Theorem 4.

3.4. Extension to the case of at least one, but not all, very low 𝒌 𝒋

It may happen that the ratio max1≤ 𝑗≤𝑚 𝑘 𝑗/min1≤ 𝑗≤𝑚 𝑘 𝑗 is quite large, owing to uncertainty in data-
driven selection rules. One may then want to discard the marginal estimates with a very low 𝑘 𝑗 from
the pooling procedure, but these estimates will have very low bias if all machines have comparable
sample sizes, and hence it is more sensible to incorporate them into the distributed estimators of the
tail index and extreme quantiles. From an asymptotic point of view, we obtain the following result for
the variance-optimal distributed estimators in this case of extremely unbalanced effective sample sizes.

Theorem 5. Assume that condition C2 (𝛾, 𝜌, 𝐴) holds. Suppose that there is ℓ ∈ {1, . . . , 𝑚 − 1} such
that on the one hand, for any 𝑗 ∈ {1, . . . , ℓ}, 𝑘 𝑗 → ∞ with 𝑘 𝑗/𝑛 𝑗 → 0, 𝑛1/𝑛 𝑗 → 𝑏 𝑗 ∈ (0,∞) and
𝑘1/𝑘 𝑗 → 𝑐 𝑗 ∈ (0,∞), and

√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 ) → 𝜆 𝑗 ∈ R; and on the other hand, for any 𝑗 ∈ {ℓ + 1, . . . , 𝑚},

𝑘 𝑗 = 𝑘 𝑗 (𝑛) is a nondecreasing sequence with 𝑘 𝑗/𝑛 𝑗 → 0, 𝑘1/𝑘 𝑗 →∞ and
√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 ) = O(1). Then,
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if 𝜆 = lim𝑛→∞
√
𝑘𝐴(∑ℓ

𝑖=1 𝑛𝑖/
∑ℓ

𝑖=1 𝑘𝑖) ∈ R and 𝑑 𝑗 = (𝑐 𝑗/𝑏 𝑗 ) × (∑ℓ
𝑖=1 𝑐

−1
𝑖
)/(∑ℓ

𝑖=1 𝑏
−1
𝑖
),

√
𝑘 (𝛾̂𝑛 (𝝎̃ (Var)

𝑛 ) − 𝛾) 𝑑−→N
©­­«

𝜆

1 − 𝜌
©­«

ℓ∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
−1 ©­«

ℓ∑︁
𝑗=1

𝑑
𝜌

𝑗

𝑐 𝑗

ª®¬ , 𝛾2ª®®¬ .
If moreover 𝜌 < 0 and 𝑝 = 𝑝(𝑛) → 0 is such that 𝑘/(𝑛𝑝) →∞ and

√
𝑘/log(𝑘/(𝑛𝑝)) →∞, as well as

max
1≤ 𝑗≤𝑚

√︁
𝑘 𝑗

√
𝑘

���� log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

����→ 0, (1)

then

√
𝑘

log(𝑘/(𝑛𝑝))

(
𝑞★𝑛 (1 − 𝑝 |𝝎̃ (Var)

𝑛 )
𝑞(1 − 𝑝) − 1

)
𝑑−→N

©­­«
𝜆

1 − 𝜌
©­«

ℓ∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
−1 ©­«

ℓ∑︁
𝑗=1

𝑑
𝜌

𝑗

𝑐 𝑗

ª®¬ , 𝛾2ª®®¬ .
The variance-optimal distributed estimators thus behave as if they were calculated without including

the machines using a very low 𝑘 𝑗 . This provides theoretical justification for their use regardless of
the lack of balance in effective sample sizes. Note that condition (1) always holds if for any 𝑗 ∈ {ℓ +
1, . . . , 𝑚}, 𝑛1/𝑛 𝑗 → 𝑏 𝑗 ∈ (0,∞). Remark also that, if at least one of the 𝑘 𝑗 is bounded then, unlike the
variance-optimal version, the naive distributed estimator is not even consistent.

3.5. The case of a large number of machines

Our results above do not consider the case when all the 𝑘 𝑗 are low, possibly even bounded. When all the
𝑘 𝑗 = 𝑘 𝑗 (𝑛) are bounded in 𝑛, consistency of the distributed estimators necessarily requires a growing
number of machines, i.e. 𝑚 = 𝑚(𝑛) → ∞, since otherwise the pooled estimators may contain only a
bounded number of summands. In this context, we require the following fundamental assumption.

(A) 𝑚 =𝑚(𝑛) →∞ and the 𝑛 𝑗 = 𝑛 𝑗 (𝑛) satisfy inf1≤ 𝑗≤𝑚 𝑛 𝑗/log𝑚→∞ as 𝑛→∞.

This condition means that the amount of data stored in each machine grows with 𝑛, although the
number of machines may grow much faster than the 𝑛 𝑗 ; in the balanced data setting, it reduces to
𝑚 =𝑚(𝑛) →∞ and𝑚 log(𝑚)/𝑛→ 0, which is for instance satisfied when𝑚 = 𝑛𝜃 for any 𝜃 ∈ (0,1). We
require condition (A) to establish a precise control of the statistical errors arising in each machine. The
proof is thus fundamentally different from the proofs of our theorems in the case of a fixed 𝑚. Another
important difference is that the weight vector 𝝎 ∈ R𝑚 now implicitly varies with 𝑛, so restrictions are
needed to define admissible weights. For example, the pooled estimator corresponding to the weight
(1,0,0, . . .) is simply 𝛾̂1 (𝑘1), which is not consistent when 𝑘1 is bounded. We thus introduce a balanced
allocation condition on 𝝎 =𝝎(𝑛).
(W) The weight vector 𝝎 =𝝎(𝑛) ∈ R𝑚 satisfies

∑𝑚
𝑗=1𝜔 𝑗 = 1 as well as

lim
𝑛→∞

𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
= 0 and ∃𝛿 > 0, lim

𝑛→∞

∑𝑚
𝑗=1 𝑘

−𝛿/2
𝑗

(𝜔2
𝑗
/𝑘 𝑗 )1+𝛿/2

(∑𝑚
𝑗=1𝜔

2
𝑗
/𝑘 𝑗 )1+𝛿/2

= 0.

When the 𝑘 𝑗 are all bounded, or equal and tend to infinity, the condition 𝑚(𝑛) sup1≤ 𝑗≤𝑚(𝑛) |𝜔 𝑗 (𝑛) | ≤
𝜔0 <∞, for all 𝑛, is sufficient for (W) to hold. This condition is satisfied by naive pooling, for which
𝜔 𝑗 = 1/𝑚 for 1 ≤ 𝑗 ≤ 𝑚. The distributed estimator 𝛾̂𝑛 (𝝎) has the following asymptotic properties.
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Theorem 6. Assume that conditions (A), (W) and C2 (𝛾, 𝜌, 𝐴) hold. If moreover sup1≤ 𝑗≤𝑚 𝑘 𝑗/𝑛 𝑗 →
0 and

∑𝑚
𝑗=1{

√︁
𝑘 𝑗 |𝐴(𝑛 𝑗/𝑘 𝑗 ) |}2 = O(1), then

©­«
𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗

ª®¬
−1/2 ©­«𝛾̂𝑛 (𝝎) − 𝛾 − 1

1 − 𝜌

𝑚∑︁
𝑗=1

𝜔 𝑗 𝑘
𝜌

𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

𝐴(𝑛 𝑗/𝑘 𝑗 )
ª®¬ 𝑑−→N(0, 𝛾2).

Here Γ denotes Euler’s Gamma function. In particular, if 𝑘
∑𝑚

𝑗=1𝜔
2
𝑗
/𝑘 𝑗 → 𝑣 ∈ [1,∞) (note that, in this

situation, necessarily 𝑣 ≥ 1 from the Cauchy-Schwarz inequality), one has

√
𝑘
©­«𝛾̂𝑛 (𝝎) − 𝛾 − 1

1 − 𝜌

𝑚∑︁
𝑗=1

𝜔 𝑗 𝑘
𝜌

𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

𝐴(𝑛 𝑗/𝑘 𝑗 )
ª®¬ 𝑑−→N(0, 𝑣𝛾2).

Remark 9 (Comparison with earlier results for fixed 𝑚). In Corollary 5, since 𝑐 𝑗 = lim𝑛→∞ 𝑘1/𝑘 𝑗 ,

𝑚∑︁
𝑗=1

1
𝑐 𝑗

𝑚∑︁
𝑗=1

𝑐 𝑗𝜔
2
𝑗 = lim

𝑛→∞

𝑚∑︁
𝑗=1

𝑘 𝑗

𝑘1

𝑚∑︁
𝑗=1

𝑘1

𝑘 𝑗
𝜔2

𝑗 = lim
𝑛→∞

𝑘

𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
.

In the case 𝑚 → ∞, the right-hand side is nothing but the quantity 𝑣 of Theorem 6: as a conse-
quence, the asymptotic variance in Theorem 6 matches the asymptotic variance obtained in Corol-
lary 5 for fixed 𝑚. By contrast, the asymptotic bias term is substantially different, with condition∑𝑚

𝑗=1{
√︁
𝑘 𝑗 |𝐴(𝑛 𝑗/𝑘 𝑗 ) |}2 = O(1) expressing that the sum of statistical errors arising in each machine

through the use of the individual Hill estimators 𝛾̂ 𝑗 (𝑘 𝑗 ) should stay bounded in a certain sense.

Remark 10 (Comparison with earlier results about tail index estimation). Tail index estimation
when 𝑚 → ∞ has been tackled in [3] using naive pooling. Under the weaker version (A) of their
Condition A, Theorem 6 generalizes their Theorems 1, 2 and 3 by dealing with weighted distributed
estimation, by unifying the cases of unbounded and bounded 𝑘 𝑗 and by allowing for unbalanced sample
sizes 𝑛 𝑗 . We also remark that the asymptotic variance 𝛾2 obtained in Theorem 2 of [3] for naive pooling
is unfortunately not correct. We prove that the asymptotic variance is in fact 𝑣𝛾2, where in general 𝑣 > 1.
See Section C.5 of the Supplementary Material document for further theoretical and numerical details.
As such, the distributed Hill estimator with 𝜔 𝑗 = 1/𝑚 typically does not achieve the so-called “oracle
property” claimed in [3] even if

√
𝑘 sup1≤ 𝑗≤𝑚 |𝐴(𝑛 𝑗/𝑘 𝑗 ) | → 0 or 𝜌 = 0. Finally, even though [17] is

not written with the distributed inference problem in mind, the estimator 𝛾̂𝑁 considered therein is in
fact our distributed estimator with equal sample sizes and equal fixed effective sample sizes; using the
relationship 𝑟−1 ∑𝑟

𝑗=1 Γ( 𝑗 − 𝜌)/( 𝑗 − 1)! = Γ(𝑟 + 1 − 𝜌)/((1 − 𝜌)𝑟!), following from a straightforward
proof by induction on 𝑟 , shows that our Theorem 6 generalizes Theorems 1 and 2 of [17] also.

Remark 10 motivates the following corollary for the variance-optimal weights 𝜔 𝑗 = 𝜔
(Var)
𝑗

= 𝑘 𝑗/𝑘
(for 1 ≤ 𝑗 ≤ 𝑚), which satisfy condition (W) regardless of the behavior of the sequences 𝑘 𝑗 = 𝑘 𝑗 (𝑛).

Corollary 9. Assume that conditions (A) and C2 (𝛾, 𝜌, 𝐴) hold. If moreover sup1≤ 𝑗≤𝑚 𝑘 𝑗/𝑛 𝑗 → 0 and∑𝑚
𝑗=1{

√︁
𝑘 𝑗 |𝐴(𝑛 𝑗/𝑘 𝑗 ) |}2 = O(1), then

√
𝑘
©­«𝛾̂𝑛 (𝝎̂ (Var)

𝑛 ) − 𝛾 − 1
1 − 𝜌

𝑚∑︁
𝑗=1

𝑘 𝑗

𝑘
× 𝑘𝜌

𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

𝐴(𝑛 𝑗/𝑘 𝑗 )
ª®¬ 𝑑−→N(0, 𝛾2).
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Therefore, as in the case of bounded 𝑚, the distributed estimator with 𝝎 = 𝝎̂ (Var)
𝑛 is asymptotically

variance-optimal. It is this weighted estimator which possesses the “oracle property” introduced in [3].
We now turn to the asymptotic behavior of the geometrically weighted extreme quantile estimator

𝑞★𝑛 (1 − 𝑝 |𝝎). Perhaps surprisingly, this estimator is generally not consistent when the 𝑘 𝑗 are bounded,
i.e. lim sup𝑛→∞ sup1≤ 𝑗≤𝑚(𝑛) 𝑘 𝑗 (𝑛) < ∞. The rationale is that, while the bias of the shape parameter
estimators 𝛾̂ 𝑗 (𝑘 𝑗 ) is small, and so averaging them out as 𝛾̂𝑛 (𝝎) creates a consistent estimator as the
number of machines increases, the scale parameter estimators 𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 are fundamentally biased
estimators of 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 ) when 𝑘 𝑗 is fixed, so the classical Weissman extrapolation of 𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

can no longer be correctly applied. However, when 𝑘 𝑗 →∞ with 𝑘 𝑗/𝑛 𝑗 → 0, the distributed extreme
quantile estimator may be consistent and asymptotically normal with essentially the same asymptotic
distribution as 𝛾̂𝑛 (𝝎) investigated in Theorem 6. These insights are summarized in the following result.

Theorem 7. Work under the conditions of Theorem 6, including the assumption 𝑘
∑𝑚

𝑗=1𝜔
2
𝑗
/𝑘 𝑗 → 𝑣 ∈

[1,∞), and suppose that 𝜌 < 0. Pick 𝑝 = 𝑝(𝑛) → 0 such that 𝑘/(𝑛𝑝) →∞ and
√
𝑘/log(𝑘/(𝑛𝑝)) →∞,

and assume that

sup
1≤ 𝑗≤𝑚

���� log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

����→ 0.

(i) If the 𝑘 𝑗 = 𝑘 𝑗 (𝑛) are bounded, i.e. lim sup𝑛→∞ sup1≤ 𝑗≤𝑚(𝑛) 𝑘 𝑗 (𝑛) <∞, and 𝜔 𝑗 ≥ 0 for any 𝑗 , then
𝑞★𝑛 (1 − 𝑝 |𝝎)/𝑞(1 − 𝑝) does not converge to 1 in probability.

(ii) If the 𝑘 𝑗 = 𝑘 𝑗 (𝑛) are such that inf1≤ 𝑗≤𝑚(𝑛) 𝑘 𝑗 (𝑛) → ∞, then 𝑞★𝑛 (1 − 𝑝 |𝝎)/𝑞(1 − 𝑝) P−→ 1. If
moreover

∑𝑚(𝑛)
𝑗=1 1/𝑘 𝑗 (𝑛) → 0, then

√
𝑘

log(𝑘/(𝑛𝑝))
©­«𝑞

★
𝑛 (1 − 𝑝 |𝝎)
𝑞(1 − 𝑝) − 1 − 1

1 − 𝜌

𝑚∑︁
𝑗=1

𝜔 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 )ª®¬ 𝑑−→N(0, 𝑣𝛾2).

To the best of our knowledge, only [2] have studied extreme quantile estimation when 𝑚→∞. They
do not use geometric weighted pooling and only allow for equal 𝑘 𝑗 and 𝑛 𝑗 . In that setting, a conse-
quence of their condition (C2) is that 𝑚 ≤ 𝑘1−𝛿

1 for some 𝛿 > 0, while our condition
∑𝑚

𝑗=1 1/𝑘 𝑗 → 0 is
just the weaker condition 𝑚/𝑘1 → 0. In general, our condition is satisfied as long as 𝑚/inf1≤ 𝑗≤𝑚 𝑘 𝑗 →
0. Our result, unlike theirs, also investigates the case when the 𝑘 𝑗 are bounded. The extra assumption
linking the 𝑘 𝑗 , 𝑛 𝑗 , 𝑘 , 𝑛 and 𝑝 ensures that the sample fractions 𝑘 𝑗/𝑛 𝑗 are not too dissimilar across ma-
chines. It is satisfied if 0 < lim inf𝑛→∞ (𝑛/𝑘) inf1≤ 𝑗≤𝑚 𝑘 𝑗/𝑛 𝑗 ≤ lim sup𝑛→∞ (𝑛/𝑘) sup1≤ 𝑗≤𝑚 𝑘 𝑗/𝑛 𝑗 <
∞. A weaker version of this condition already appears in Theorem 5 for finite 𝑚.

4. Filtering to handle serial dependence and covariates

In many applications, the data are recorded with relevant covariates, or are stationary but weakly de-
pendent in a way that can be modeled by a standard time series. Besides, when the 𝑋 𝑗 share the same
tail index, they typically have also asymptotically proportional extreme quantiles (see Remark 7). This
suggests that (𝑋1, . . . , 𝑋𝑚) can be modeled in many situations by a general location-scale model

𝑋 𝑗 = 𝑔 𝑗 (𝒁 𝑗 ) + 𝜎𝑗 (𝒁 𝑗 )𝜀 𝑗 , 1 ≤ 𝑗 ≤ 𝑚, (2)

where the unobserved noise vector 𝜺 = (𝜀1, . . . , 𝜀𝑚) has marginal tail quantile functions 𝑈 𝑗 satisfying
C2 (𝛾1, 𝝆, 𝑨) and bivariate survival copulae 𝐶 𝑗 ,ℓ satisfying J (𝑹). The 𝑔 𝑗 and 𝜎𝑗 > 0 are unknown
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measurable functions of 𝒁 𝑗 ∈ R𝑙 𝑗 , for some 𝑙 𝑗 ≥ 1. The covariates 𝒁 𝑗 can be fully observed (in tra-
ditional regression settings) or partially or not at all observed (in a time series model with past un-
observed innovations or volatility terms). The noise variable 𝜀 𝑗 is assumed to be independent of 𝒁 𝑗 .
In this model, the 𝑗 th tail index 𝛾 𝑗 is a constant function of 𝒁 𝑗 , which is a typical assumption in ex-
tremal regression based on heteroskedastic location-scale or quantile regression models [20,21], and
more generally a common assumption in the analysis of heteroskedastic extremes, see for instance [9].

In this setting, there are two main approaches to the extreme value analysis of the 𝑋 𝑗 . The first one
is the conditional extreme value analysis of high (1 − 𝑝)th quantiles of 𝑋 𝑗 given 𝒁 𝑗 = 𝒛 𝑗 , expressed as
𝑞𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗 (1 − 𝑝) = 𝑔 𝑗 (𝒛 𝑗 ) + 𝜎𝑗 (𝒛 𝑗 )𝑞 𝑗 (1 − 𝑝), where 𝑞 𝑗 is the quantile function of 𝜀 𝑗 . When the 𝒁 𝑗

consist in lagged values of the 𝑋 𝑗 , estimating these so-called dynamic quantiles is typically appropriate
for short-term risk management. In finance, for example, it is of interest to capture the key dynamic
properties of financial asset returns, such as volatility clustering, so as to give a better understanding
of the current riskiness of a portfolio. In environmental science, one may be interested in forecasting
extreme rainfall levels at a short time horizon given values of weather parameters today, or given
outputs from a climate model [20,21]. The second approach is the estimation of extreme parameters
of the stationary distribution of each 𝑋 𝑗 . In the context where (2) is a time series model, this will
be appropriate for long-term risk management, for instance when trying to estimate high quantiles or
return levels over hundreds or thousands of years. In this section we focus on the first approach.

Let then the pairs (𝑋𝑖, 𝑗 , 𝒁𝑖, 𝑗 ), 1 ≤ 𝑖 ≤ 𝑛 𝑗 , be part of a strictly stationary sequence such that 𝑋𝑖, 𝑗 =
𝑔 𝑗 (𝒁𝑖, 𝑗 ) + 𝜎𝑗 (𝒁𝑖, 𝑗 )𝜀𝑖, 𝑗 for 1 ≤ 𝑗 ≤ 𝑚 and 1 ≤ 𝑖 ≤ 𝑛 𝑗 . The 𝜺𝑖 = (𝜀𝑖,1, . . . , 𝜀𝑖,𝑚) are assumed to be
independent copies of 𝜺 as above. To estimate extreme conditional quantiles, we first estimate the
location and scale components 𝑔 𝑗 and 𝜎𝑗 of the model (under suitable identifiability and regularity

conditions), and then filter the 𝑋𝑖, 𝑗 to obtain residuals 𝜀̂ (𝑛 𝑗 )
𝑖, 𝑗

close to the unobserved errors 𝜀𝑖, 𝑗 . This

results in 𝑗 residual-based Hill estimators 𝛾̂ 𝑗 (𝑘 𝑗 ) = 𝑘−1
𝑗

∑𝑘 𝑗

𝑖=1 log(𝜀̂ (𝑛 𝑗 )
𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

/𝜀̂ (𝑛 𝑗 )
𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

). These can
be combined in a pooled version 𝛾̂𝑛 (𝝎) = ∑𝑚

𝑗=1𝜔 𝑗 𝛾̂ 𝑗 (𝑘 𝑗 ) whose asymptotic normality can be proved
under a high-level condition on the discrepancy between the errors and the corresponding residuals.

Theorem 8. Assume that 𝜺 satisfies C2 (𝛾1, 𝝆, 𝑨) and J (𝑹). Under the conditions of Theorem 1 on

𝑘 𝑗 , 𝑛 𝑗 and 𝝎, if max1≤ 𝑗≤𝑚
√︁
𝑘 𝑗 max1≤𝑖≤𝑛 𝑗

|𝜀̂ (𝑛 𝑗 )
𝑖, 𝑗

− 𝜀𝑖, 𝑗 |/(1 + |𝜀𝑖, 𝑗 |)
P−→ 0, then

√
𝑘 (𝛾̂𝑛 (𝝎) − 𝛾) 𝑑−→

N(𝝎⊤𝑩𝒄 ,𝝎
⊤V𝒄𝝎) with 𝑩𝒄 and V𝒄 defined as in Theorem 1. If 𝝎̂⊤

𝑛1 = 1 with 𝝎̂𝑛
P−→ 𝝎, then√

𝑘 (𝛾̂𝑛 (𝝎̂𝑛) − 𝛾̂𝑛 (𝝎)) = oP (1). In particular, 𝛾̂𝑛 (𝝎̂𝑛) has the same
√
𝑘−asymptotic behavior as 𝛾̂𝑛 (𝝎).

Remark 11 (Linking the regression and unconditional settings). In the unrealistic setting where
the 𝑔 𝑗 and 𝜎𝑗 were known, the residuals would be exactly the 𝜀𝑖, 𝑗 , which would yield the asymptotic

normality of the pooled estimator based on the 𝛾̃ 𝑗 (𝑘 𝑗 ) = 𝑘−1
𝑗

∑𝑘 𝑗

𝑖=1 log(𝜀𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗/𝜀𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ). This
means that Theorem 1 can be seen as a (statistically unnatural) consequence of Theorem 8.

Remark 12 (On pooling residuals). One might argue that pooling the residuals in a single sample
and using the Hill estimator is more efficient than pooling residual-based Hill estimators calculated in
individual subsamples. However, if the model is misspecified, heteroskedasticity could still remain in
the residuals, and those with the largest scale might swamp the other residuals in the pooled sample,
resulting thus in a large loss of estimation accuracy. Pooling the residual-based Hill estimates instead
provides more protection against departures from the assumed location-scale model.

The condition on the discrepancy between residuals and innovations in Theorem 8 is typically sat-
isfied as soon as the location and scale components 𝑔 𝑗 and 𝜎𝑗 are estimated at a faster rate than

√︁
𝑘 𝑗 .

This can be checked theoretically in a variety of regression models, see [11] for examples.
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Given consistent estimators 𝑔̂ 𝑗 (𝒛 𝑗 ) of 𝑔 𝑗 (𝒛 𝑗 ) and 𝜎̂𝑗 (𝒛 𝑗 ) of 𝜎𝑗 (𝒛 𝑗 ), and using the residual-based
Weissman estimator of 𝑞 𝑗 (1 − 𝑝), we estimate 𝑞𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗 (1 − 𝑝) by the location-scale estimator

𝑞★
𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗

(1 − 𝑝 |𝑘 𝑗 ,𝝎) = 𝑔̂ 𝑗 (𝒛 𝑗 ) + 𝜎̂𝑗 (𝒛 𝑗 )
(
𝑘 𝑗

𝑛 𝑗 𝑝

)𝛾𝑛 (𝝎)
𝜀̂
(𝑛 𝑗 )
𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

.

When 𝜺 satisfies the tail homoskedasticity condition (H) of Section 2.3, the quantiles 𝑞 𝑗 (1− 𝑝) can be
estimated by a geometrically pooled estimator, which leads to the estimator of 𝑞𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗 (1− 𝑝) below:

𝑞★
𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗

(1 − 𝑝 |𝝎) = 𝑔̂ 𝑗 (𝒛 𝑗 ) + 𝜎̂𝑗 (𝒛 𝑗 )
𝑚∏
𝑖=1

[(
𝑘𝑖

𝑛𝑖 𝑝

)𝛾𝑖 (𝑘𝑖)
𝜀̂
(𝑛𝑖)
𝑛𝑖−𝑘𝑖 :𝑛𝑖 ,𝑖

]𝜔𝑖

.

Our final weak convergence result establishes the asymptotic normality of these two estimators.

Theorem 9. Work under the conditions of Theorem 8 with 𝜌 𝑗 < 0 for all 𝑗 ∈ {1, . . . , 𝑚}. Pick 𝑝 =

𝑝(𝑛) → 0 such that 𝑘/(𝑛𝑝) → ∞ and
√
𝑘/log(𝑘/(𝑛𝑝)) → ∞. Let 𝝎, 𝝎̂𝑛 be such that 𝝎̂⊤

𝑛1 = 1 and

𝝎̂𝑛
P−→𝝎. Finally, assume that the estimators 𝑔̂ 𝑗 (𝒛 𝑗 ) and 𝜎̂𝑗 (𝒛 𝑗 ) satisfy 𝑔̂ 𝑗 (𝒛 𝑗 ) − 𝑔 𝑗 (𝒛 𝑗 ) = OP (1) and√︁

𝑘 𝑗 (𝜎̂𝑗 (𝒛 𝑗 ) − 𝜎𝑗 (𝒛 𝑗 )) = OP (1). Then, for any 𝑗 ,

√
𝑘

log(𝑘/(𝑛𝑝))

(
𝑞★
𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗

(1 − 𝑝 |𝑘 𝑗 , 𝝎̂𝑛)

𝑞𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗 (1 − 𝑝) − 1

)
=
√
𝑘 (𝛾̂𝑛 (𝝎) − 𝛾) + oP (1)

𝑑−→N(𝝎⊤𝑩𝒄 ,𝝎
⊤V𝒄𝝎).

If moreover assumption (H) holds then, for any 𝑗 ,

√
𝑘

log(𝑘/(𝑛𝑝))

(
𝑞★
𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗

(1 − 𝑝 |𝝎̂𝑛)

𝑞𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗 (1 − 𝑝) − 1

)
=
√
𝑘 (𝛾̂𝑛 (𝝎) − 𝛾) + oP (1)

𝑑−→N(𝝎⊤𝑩𝒄 ,𝝎
⊤V𝒄𝝎).

5. Finite-sample study

5.1. Simulation experiments

We briefly describe the finite-sample performance of the pooling approach for extreme value estima-
tion and inference, in the general pooling framework (Section 2), the distributed inference framework
(Section 3) and after filtering in regression models (Section 4). A complete description of our setup
and numerical results can be found in Section D.1 of the Supplementary Material document.

5.1.1. General setup: Pooling for tail index and extreme quantile inference

Dimensions 𝑚 ∈ {2,3,4,5} are considered, with balanced and unbalanced sample sizes. We use ei-
ther unit Fréchet or absolute Student marginals (i.e. the absolute value of a Student) with 1 degree of
freedom (and therefore 𝛾 𝑗 = 1 for any 𝑗) with a dependence structure given by a Gaussian, Student,
Clayton or Gumbel copula. The Clayton and Gaussian copulae represent cases of asymptotic indepen-
dence, while the Gumbel and Student copulae are cases of asymptotic dependence.

For a total sample size of 𝑛 =
∑𝑚

𝑗=1 𝑛 𝑗 = 1,000 across all subsamples, we compare four pooled tail
index estimators (naive i.e. simple average, variance-optimal and AMSE-optimal as in Corollary 1, and
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AMSE-optimal with pooled second-order estimates as described below Corollary 2) with the bench-
mark Hill estimator. To illustrate Theorem 2, we compare the related four geometrically pooled extreme
quantile estimators 𝑞★𝑛 (1− 𝑝 |𝝎̂𝑛) at level 1− 𝑝 = 0.999 with the arithmetic mean of the Weissman esti-
mators 𝑞★

𝑗
(1− 𝑝 |𝑘 𝑗 ), i.e. 𝑞★𝑛 (1− 𝑝 |1/𝑚, . . . , 1/𝑚) with the notation of Section 2.3, and the benchmark

Weissman estimator for the pooled dataset. We compute Monte Carlo approximations of the Mean
Squared Error (MSE) and (to illustrate Corollaries 3 and 4) of the actual coverage probability for the
asymptotic confidence intervals with 95% nominal level arising from our asymptotic theory; for the
Hill (resp. Weissman) estimator, the asymptotic distribution is normal with mean 0 and variance 𝛾2/𝑘
(resp. 𝛾2 × log2 (𝑘/(𝑛𝑝))/𝑘), see Theorem 3.2.5, p.74 in [5] (resp. Theorem 4.3.8, p.138 therein). The
MSE, coverage probability, and average length of each confidence interval are reported in Figures D.2–
D.5 in the Supplementary Material document. We also illustrate the performance of the tail homogene-
ity test based on the test statistic Λ𝑛 with 5% nominal type I error level, outlined before Corollary 3,
in the same models but with the key difference that we let the tail index 𝛾1 of the first marginal vary
between 0.2 and 5. Representing the rejection rate of the test as a function of 𝛾1, see Figure D.6, makes
it possible to assess its power as the model under consideration gets away from tail homogeneity.

The variance-optimal and AMSE-optimal estimators outperform by far the naive pooled estimator
on the basis of the MSE, when there is strong unbalance between sample sizes. Differences in perfor-
mance get larger as the degree of unbalance increases. Confidence intervals based on variance-optimal
and AMSE-optimal estimators with pooled second-order estimates are typically substantially narrower
than with naive pooling and their coverage is close to nominal, while the finite-sample coverage of the
AMSE-optimal intervals without pooling in the second-order parameter estimates is sometimes less
satisfactory. This is due to the fact that second-order parameter estimators in each marginal distribution
may sometimes have poor performance; pooling them together substantially reduces the high variabil-
ity they suffer from. Most importantly, the 95% confidence intervals constructed using the benchmark
Hill estimator have actual coverage that can be as low as 75% when substantial asymptotic depen-
dence between subsamples is present. Conclusions about extreme quantile estimation are similar, with
the added value that geometrically pooled estimators outperform by far the naive mean of Weissman
estimators. The tail homogeneity test, meanwhile, has sensible power overall for a common effective
sample fraction 𝑘 𝑗/𝑛 𝑗 = 20% across subsamples, although power curves tend to be asymmetric and
with a minimum not necessarily located at 𝛾1 = 1 when sample sizes are highly unbalanced. The expla-
nation is that Λ𝑛 compares the marginal estimators 𝛾̂ 𝑗 (𝑘 𝑗 ) to the variance-optimal pooled estimator,
so that if one of the 𝛾̂ 𝑗 (𝑘 𝑗 ) behaves poorly, for example due to low size of the 𝑗 th subsample, then so
will Λ𝑛. Figure D.7 shows that, with the same models but with equal sample sizes, power curves are
indeed symmetric and more quickly reach very high values as 𝛾1 gets away from 1. Similar conclu-
sions were reached with the tail homoskedasticity test based on the test statistic 𝐿𝑛 (𝑝), outlined before
Corollary 4. Results for the lower total sample size 𝑛 = 400 are overall the same, even though in this
very difficult setting certain subsamples have size as low as 20: see Figures D.8–D.11.

5.1.2. Distributed inference of extreme values

In order to illustrate the results of Section 3, we assume that the 𝑋𝑖, 𝑗 are i.i.d. Fréchet, absolute Stu-
dent or Burr with tail index 𝛾 = 1. We consider dimensions 𝑚 ∈ {2,5,10,20} in balanced and highly
unbalanced setups, with the situation 𝑚 = 20 representing a case when 𝑚 can be considered large
(see [3]). We compare again the tail index estimators described in Section 5.1.1, as well as the listed
extreme quantile estimators plus the subsample Weissman estimator in the first marginal with the cor-
responding individual Hill estimator replaced by the variance-optimal pooled tail index estimator, that
is, 𝑞★1 (1 − 𝑝 |𝑘1, 𝝎̂𝑛) where 𝝎̂𝑛 is taken to be variance-optimal weights. The results, reported in Fig-
ures D.12–D.16 in the Supplementary Material document, indicate that, in accordance with Corollar-
ies 5, 6, 7 and 8 (see Figures D.12–D.13, for fixed 𝑚) and Theorem 6, Corollary 9 and Theorem 7 (see
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Figure D.14, for large 𝑚), our proposed variance-optimal and AMSE-optimal methods (with pooled
second-order estimates) perform comparably to the unfeasible Hill and Weissman estimators applied to
the pooled dataset and, as the unbalance between sample sizes increases, they outperform the naive
distributed estimators, with much shorter confidence intervals having correct coverage, and lower
MSE. Geometric pooling is clearly beneficial as far as extreme quantile estimation is concerned. Fig-
ures D.12–D.14 suggest that the variance-optimal estimator behaves well regardless of how unbalanced
effective sample sizes are, as stated in Theorem 5. Moreover, as expected following Remark 8 and The-
orem 3, the AMSE-optimal distributed estimator is very close to the variance-optimal estimator when
sample fractions are equal, and in that setting, the performance of the variance-optimal estimator is
virtually identical to that of the benchmark Hill estimator. By contrast, in accordance with Theorem 4,
AMSE-optimal pooling is overall the best solution when sample fractions are substantially different,
as Figure D.15 illustrates in the case 𝑚 = 2; in particular, when (𝑛1, 𝑛2) = (50,950) and 𝑘1 = 𝑘2 = 20,
the MSE of the AMSE-optimal distributed estimator (on the log-scale) is around 0.04, with the corre-
sponding MSE of the unfeasible Hill benchmark around 0.05, representing an improvement of about
20%. Finally, it follows from Figure D.16 that when 𝑛1/𝑛 decreases, the performance of the subsample
Weissman estimator 𝑞★1 (1− 𝑝 |𝑘1, 𝝎̂

(Var)
𝑛 ) substantially deteriorates relative to that of the geometrically

pooled extreme quantile estimator, with the difference in performance getting larger as 𝜌 gets closer
to 0. This illustrates the fact that when the tail homoskedasticity assumption holds, it is indeed valu-
able to pool not only the estimates of the tail index but also those of scale in the Pareto extrapolation
relationship, particularly when sample sizes are unbalanced.

5.1.3. Pooling in location-scale models using residual-based estimators

We conclude with an illustration of the results of Section 4. We consider four autoregressive models
with either 1 or 2 lags, in dimensions 𝑚 = 2 or 3, possibly misspecified and having Student innovations
with 1 degree of freedom. We first filter each univariate time series using an AR(1) filter and a Student
maximum likelihood estimator of the coefficient(s), thus yielding subsamples of univariate residuals
to which the tail index estimators of Section 4 are applied. Results are represented in Figures D.17-
D.20. The bias and variance of the pooled estimators are reasonably low and behave as expected, with
higher (resp. lower) sample fractions associated to larger bias (resp. higher variance). As suggested by
Theorem 8, MSE values are in line with those observed when the data is independent through time.

5.2. Data analysis

5.2.1. Distributed inference for car insurance data

The first dataset comprises total claim amounts for car insurance companies in the five US states of
Iowa (𝑛1 = 2,601), Kansas (𝑛2 = 798), Missouri (𝑛3 = 3,150), Nebraska (𝑛4 = 1,703) and Oklahoma
(𝑛5 = 882) between January and February 2011, for a total sample size of 𝑛 = 9,134 (see Figures D.21-
D.22 of the Supplementary Material document for an exploratory analysis). As in [3], we assume that
companies cannot share their data but each company is willing to share its statistical analysis to enhance
its appraisal of tail risk. Unlike [3], however, our distributed inference method can handle the different
subsample sizes 𝑛 𝑗 and hence the full dataset, and allows to estimate extreme quantiles. We therefore
compare our results using the full data with those obtained by exactly reproducing the approach of [3],
which consists in applying the naive pooled estimator after subsampling at random 700 observations
in each state, as described in their Supplement B. As a benchmark, we use the (unfeasible) Hill and
Weissman estimates, obtained from the combined 𝑛 data points. Results are given in Figure 1.

We first check the equality of tail indices by testing for tail homogeneity across the 5 states on
full data and the subsampled data in each state, using the theory developed in Section 2.4 under the
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constraint of independence between subsamples (see Remark 5). From the p-values corresponding to
our test statistic Λ𝑛 in Figure 1(A), we can comfortably conclude the equality of individual tail indices
at the three significance levels 0.10, 0.05 and 0.01. It is remarkable that the p-values plot remains
quite stable when moving from the full 5 samples of total size 9,134 to the subsamples of total size
5 × 700 = 3,500. This indicates that the asymptotic chi-square regime is attained reasonably quickly.

Figure 1(B) compares our variance-optimal distributed estimator 𝛾̂𝑛 (𝝎̂ (Var)
𝑛 ), based on the full data,

with the naive distributed estimator 𝛾̂𝑛 (1/𝑚, . . . ,1/𝑚) of [3], which relies on the subsampled data, and
with the benchmark Hill estimator 𝛾̂ (Hill)

𝑛 along with their respective asymptotic 95% confidence inter-
vals. In contrast to the naive estimates and their associated confidence intervals, our optimal weighted
estimates and their confidence intervals are, respectively, almost identical to the Hill estimates and their
corresponding confidence intervals, as is to be expected from Theorem 3. Our variance-optimal confi-
dence intervals are found to be around 40% shorter than those of [3]. We arrive at a similar conclusion,
in Figure 1(C), when restricting the analysis to the branches in Kansas and Missouri, whose subsam-
ple sizes 798 and 3,150 are strongly unbalanced, and using the full data from these states for both the
variance-optimal and naive distributed estimates. Here, the variance-optimal confidence intervals are
found to be roughly 20% shorter than those relative to the naive estimator.

The test of extreme quantile equivalence developed in Corollary 4 is implemented for the two ex-
treme quantile levels 1 − 𝑝 = 0.999 ≈ 1 − 1/max 𝑗 𝑛 𝑗 and 1 − 𝑝 = 0.9999 ≈ 1 − 1/𝑛, resulting in the
p-values from the test statistic 𝐿𝑛 (𝑝) displayed in Figure 1(D) for both full and subsampled data. The
test overall allows to accept the assumption of tail homoskedasticity across states, with p-values getting
higher as 𝑝 decreases. The rationale behind this behavior in this distributed setting is that, as extreme
quantile levels increase, the shape of the approximating Pareto distribution gets more important relative
to its scale. As such, because mere differences in scale can no longer be detected in the far tail as 𝑝 ↓ 0,
the test actually becomes less powerful against the sub-alternative of proportional quantiles. Finally,
the resulting variance-optimal distributed estimates and confidence intervals for extreme quantiles are
found to be virtually indistinguishable from the ideal Weissman analogs, whereas they appreciably
outperform the naive distributed competitors, as can be seen in Figure 1(E) and 1(F) for 𝑝 = 0.0001.

5.2.2. Pooling for regional inference on extreme rainfall

In the second dataset, rainfall measurements are collected daily by the Florida Automated Weather
Network at 49 gauge stations, over different periods between December 1997 and May 2021 (see https:
//fawn.ifas.ufl.edu/data/fawnpub/). We focus on the eight stations indicated with pin markers in the
map in Figure 2, whose aggregated monthly rainfall distributions exhibit heavy-tailed behavior; the
upper tail heaviness was ascertained in an exploratory analysis using moment and generalized Hill
estimators (see e.g. [1]). Individual sample sizes 𝑛 𝑗 are rather short, ranging from 221 to 281. Extreme
value inference at each site will thus be subject to large uncertainty. By contrast, the pooling approach
reduces uncertainty by borrowing tail information from stations having the same tail characteristics.

Our exploratory analysis shows first that the eight monthly time series are all stationary according
to the classical KPSS and ADF tests. A first distinctive property is that the data for each station in the
cluster of red pinned stations near the northern border of Florida are, in contrast to those in the green
cluster stretching along the east coast, not autocorrelated according to the Ljung-Box test. The time
series (𝑋𝑡 ) in the green cluster of stations can be fitted by simple seasonal ARMA models of the form
Φ12 (𝐵12)Φ(𝐵)𝑋𝑡 = 𝑐 + Θ12 (𝐵12)Θ(𝐵)𝜀𝑡 , where 𝜀𝑡 is a white noise process and 𝑐 is a constant, with
Φ(𝐵), Θ(𝐵), Φ12 (𝐵12) and Θ12 (𝐵12) being respectively polynomials of degree 𝑝, 𝑞 ∈ {0,1,2} in the
lag operator 𝐵 and 𝑝12, 𝑞12 ∈ {1,2} in 𝐵12. Following Section 4, the residuals (𝜀̂ (𝑛 𝑗 )

𝑡 , 𝑗
,1 ≤ 𝑡 ≤ 𝑛 𝑗 ), are

the basic tool for estimating the tail index in station 𝑗 . Figures D.23 and D.24 in the Supplementary
Material document show the histograms and Hill plots obtained for the eight stations. A second dis-
tinctive property is that the three stations in the red cluster have very similar Hill estimates, while the

https://fawn.ifas.ufl.edu/data/fawnpub/
https://fawn.ifas.ufl.edu/data/fawnpub/
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Figure 1: Car insurance data. In (A) and (D), Λ𝑛,SUB and 𝐿𝑛,SUB (𝑝) denote the test statistics Λ𝑛 and
𝐿𝑛 (𝑝) calculated from the subsampled data of total size 5 × 700 = 3,500. In (B) and (C), Pool-AVAR
and Pool-NAIVE respectively denote the variance-optimal pooled estimator and the naive pooled esti-
mator of the tail index. In (E) and (F), Pool-AVAR and Pool-NAIVE respectively denote the variance-
optimal pooled quantile estimator 𝑞★𝑛 (1 − 𝑝 |𝝎̂ (Var)

𝑛 ) and its unweighted analog. Pool-NAIVE-SUB
stands for these estimators calculated on the subsampled data. All estimates are represented as func-
tions of the sample fraction 𝑘 𝑗/𝑛 𝑗 , assumed to be identical for each 𝑗 .

five stations in the green cluster also have similar Hill estimates that are rather different from those in
the red cluster. Table D.1 summarizes extreme value information gathered from each station.

That the eight stations do not have the same tail index is confirmed by the tail homogeneity test in
Figure 2(A), where the plot of p-values from the test statistic Λ𝑛 becomes very stable below the three
significance levels 0.10, 0.05 and 0.01. By contrast, we can comfortably conclude the equality of tail
indices in both red and green clusters from the tail homogeneity tests in Figure 2(B) and 2(C). The
tail homoskedasticity test, implemented for the two extreme quantile levels 1 − 𝑝 ≈ 1 − 1/max 𝑗 𝑛 𝑗 and
1 − 𝑝 ≈ 1 − 1/𝑛, in fact allows to even accept the assumption of extreme quantile equivalence across
stations in each cluster, see Figure 2(D) and 2(E). Therefore, the Hill and Weissman estimators of the
common tail index and extreme quantiles could be directly calculated from the combined data in each
cluster. However, it should be clear that the key question of inference based on these ideal estimators
remains open in this particular application. Indeed, combining subsamples in each cluster of stations
results in a single sample of asymptotically dependent data for which the asymptotic theory of the
Hill and Weissman estimators is still unavailable in the extreme value literature. Our regional pooled
estimators provide a satisfactory solution, reducing substantially the huge uncertainty inherent to local
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inference at each site, as can be seen from Figure 2(F)-2(I). For the red cluster, Figure 2(F) shows that
both naive and variance-optimal pooled estimators of the tail index are very close to the benchmark
Hill estimator, while the asymptotic 95% variance-optimal confidence intervals are quite stable and
narrower relative to the Hill-based confidence intervals obtained individually from each subsample. We
arrive at the same conclusion for the green cluster in Figure 2(G), where both pooling-type confidence
intervals appear to be much tighter than the individual Hill-based confidence interval obtained from
the largest subsample. Likewise, when estimating the extreme quantile of order 1 − 𝑝 ≈ 1 − 1/𝑛, the
individual Weissman-based confidence interval obtained from the largest subsample in Figure 2(H)
and 2(I), for raw data in the red cluster and for residuals in the green cluster, tends to be unstable and
twice as wide as our pooling confidence intervals.

6. Discussion

We provide a wide-ranging treatment of weighted pooling strategies for inference about the tail index
and extreme quantiles of 𝑚 samples of heavy-tailed data, where 𝑚 can be fixed or increasing with
the total sample size. We allow for different sample sizes and effective sample sizes, heterogeneity in
marginal distributions, dependence across samples, heteroskedasticity and/or dependence across time
represented by location-scale dependence upon possibly unobserved covariates. Our weighted pooling
methods minimize either the asymptotic variance or the AMSE of the pooled estimator. This results
in an off-the-shelf device applicable by testing first the assumption of equal tail indices or extreme
quantiles through likelihood ratio-type tests, before using our weighted pooling inferential procedure
based on asymptotic Gaussian confidence intervals. Our experience indicates considerable reductions
in length (from 20% up to 40% in the insurance dataset) of the Gaussian confidence intervals when
using variance-optimal pooling instead of the naive version, all while staying very close to nominal
coverage. This means that the variance-optimal proposal substantially reduces finite-sample uncertainty
compared to naive pooling and standard extreme value inference in each individual subsample.

Another merit of the pooling approach, showcased through regional inference on extreme rainfall, is
its ability to handle serial dependence within the data in a seasonal autoregressive time series model.
Combining subsamples in each cluster of raingauge stations would result in a single sample of asymp-
totically dependent data for which the asymptotic theory of the Hill and Weissman estimators is still
unavailable in the extreme value literature, thus making statistical inference based on their asymptotics
unfeasible. By contrast, weighted pooling affords a remarkably simple solution that substantially re-
duces the huge uncertainty inherent to local inference at each site, and therefore represents significant
progress. To make the proposed technique even more flexible, it would be interesting to work out the
case of serially dependent errors in time series or regression models, which corresponds to the situa-
tion of model misspecification, and also to investigate the case when 𝑚→∞ in that setting, to handle
applications similar to our rainfall example when data is collected across a much larger geographical
region. Yet another important question, particularly with long-term risk management applications in
environmental science in mind, would be to extend our theory so as to allow for pooling-based infer-
ence about stationary (rather than dynamic) extreme value parameters of the 𝑋 𝑗 when the available
samples of data come from time series. Theoretical results along these lines are left for future research.
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Figure 2: Florida rainfall data. Map of Florida along with its gauge stations and inferential results
(notation as in Figure 1).
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Appendix A: General pooling theory

Theorem A.1.
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Remark A.3 (On the improvement in asymptotic variance and the sensitivity to uncertainty).

Appendix B: Results of the main paper and their proofs
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B.2. Main results

Proof of Theorem 1.
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Proof of Corollary 4.



Optimal weighted pooling for inference about the tail index and extreme quantiles 27

Proof of Corollary 5.

Proof of Corollary 6.
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Proof of Theorem 4.
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Proof of Theorem 5.

Proof of Theorem 6.

Proof of Theorem 7.

Proof of Theorem 8.

Appendix C: Further results, expanded remarks and related
calculations

C.1. About the 𝜷 𝒋 and 𝝆 𝒋 estimators used in the estimation of bias terms

C.2. About Remark 1

Proposition C.1.

Proof of Proposition C.1.

Proposition C.2.
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Figure C.1: Empirical distribution of the naive distributed Hill estimator in the simulation setup de-
scribed in Section C.5. Top left: 𝑚 = 200, top right: 𝑚 = 2,000, bottom left: 𝑚 = 20,000, bottom right:
𝑚 = 200,000. The red vertical line represents the mean of the distributed Hill estimates, and the dashed
(resp. solid) line represents the normal density curve with mean 𝛾 (i.e. the empirical mean of the dis-
tributed Hill estimates) and variance 1/𝑘 (resp. 49/(24𝑘)).
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Figure D.2: Simulation results, general pooling setting, Gaussian-Student model (a). Top row: tail index
estimation; bottom row: extreme quantile estimation at level 1 − 𝑝 = 0.999. Left panels: MSE of the
point estimators; middle panels: non-coverage probability of the asymptotic confidence intervals, where
the red horizontal dotted line represents the 5% nominal non-coverage probability; right panels: average
length of the 95% confidence intervals multiplied by

√
𝑘 . All results are represented as functions of the

sample fraction 𝑘 𝑗/𝑛 𝑗 (identical for each 𝑗). In the bottom left panels, the MSEs represented are the
relative MSEs of the quantile estimates put beforehand on the log-scale; in the bottom right panels, the
lengths reported are those of the confidence interval for log 𝑞(1 − 𝑝).
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Figure D.3: As in Figure D.2, in the Multivariate Student model (b).
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Figure D.4: As in Figure D.2, in the Clayton-Fréchet model (c).
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Figure D.5: As in Figure D.2, in the Gumbel-Fréchet model (d).
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Figure D.6: Simulation results, general pooling setting, rejection rate of the test of tail homogeneity
based on Λ𝑛 with nominal type I error equal to 5%. Top left panel: Gaussian-Student model (a’), top
right panel: Multivariate Student model (b’), bottom left panel: Clayton-Fréchet model (c’), bottom
right panel: Gumbel-Fréchet model (d’), where the value of the tail index 𝛾1 in the first marginal is
allowed to vary in the interval [0.2,5]. The red horizontal dashed line represents the 5% nominal
rejection rate under the null hypothesis, and the green vertical dashed line represents the value 𝛾1 = 1
under which the null hypothesis of tail homogeneity is satisfied. All results are represented as functions
of 1/𝛾1, with the common effective sample fraction 𝑘 𝑗/𝑛 𝑗 used in each marginal indicated with a color
code in the bottom right corner of each panel.
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Figure D.7: As in Figure D.6, with equal subsample sizes in each model, namely (𝑛1, 𝑛2) = (500,500)
in model (a’), (𝑛1, 𝑛2, 𝑛3) = (333,333,334) in model (b’), (𝑛1, 𝑛2, 𝑛3, 𝑛4) = (250,250,250,250) in
model (c’) and (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) = (200,200,200,200,200) in model (d’).
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Figure D.8: As in Figure D.2, in the Gaussian-Student model (a), with (𝑛1, 𝑛2) = (20,380).
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Figure D.9: As in Figure D.2, in the Multivariate Student model (b), with (𝑛1, 𝑛2, 𝑛3) = (20,180,200).



Optimal weighted pooling for inference about the tail index and extreme quantiles 37

0 10 20 30 40 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Clayton−Frechet− γn −MSE

Effective sample fraction x 100%

Benchmark Hill
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

0 10 20 30 40 50
0

20

40

60

80

100
Clayton−Frechet− γn Non−Cov. Prob.

Effective sample fraction x 100%

Benchmark Hill
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

0 10 20 30 40 50

4

6

8

10

12
Clayton−Frechet− γn CI length

Effective sample fraction x 100%

Benchmark Hill
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

0 10 20 30 40 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Clayton−Frechet− qn
*  (0.999) −MSE

Effective sample fraction x 100%

Benchmark Weissman
Pool−NAIVE
Pool−NAIVE−A
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

0 10 20 30 40 50
0

20

40

60

80

100
Clayton−Frechet− qn

*  (0.999) Non−Cov. Prob.

Effective sample fraction x 100%

Benchmark Weissman
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

0 10 20 30 40 50

10

20

30

40

50

60

70

Clayton−Frechet− qn
*  (0.999) CI length

Effective sample fraction x 100%

Benchmark Weissman
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

Figure D.10: As in Figure D.2, in the Clayton-Fréchet model (c), with (𝑛1, 𝑛2, 𝑛3, 𝑛4) =

(60,80,100,160).
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Figure D.11: As in Figure D.2, in the Gumbel-Fréchet model (d), with (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) =

(60,60,80,80,120).
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Figure D.12: Simulation results, distributed inference context, Burr model (e). Top row: tail index
estimation; bottom row: extreme quantile estimation at level 1 − 𝑝 = 0.999. Left panels: MSE of the
point estimators; middle panels: non-coverage probability of the asymptotic confidence intervals, where
the red horizontal dotted line represents the 5% nominal non-coverage probability; right panels: average
length of the 95% confidence intervals multiplied by

√
𝑘 . All results are represented as functions of the

sample fraction 𝑘 𝑗/𝑛 𝑗 (identical for each 𝑗). In the bottom left panels, the MSEs represented are the
relative MSEs of the quantile estimates put beforehand on the log-scale; in the bottom right panels, the
lengths reported are those of the confidence interval for log 𝑞(1 − 𝑝).
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Figure D.13: As in Figure D.12, in the Student model (f).
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Figure D.14: As in Figure D.12, in the Fréchet model (g).
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Figure D.15: Simulation results, distributed inference context, Burr model (h). Left panels: MSE of
the tail index point estimators, middle panels: non-coverage probability of the asymptotic confidence
intervals, right panels: average length of the 95% confidence intervals multiplied by

√
𝑘 . In the middle

panels, the red horizontal dotted line represents the 5% nominal non-coverage probability. Top row:
(𝑛1, 𝑛2) = (200,800), middle row: (𝑛1, 𝑛2) = (100,900), bottom row: (𝑛1, 𝑛2) = (50,950). All results
are represented as functions of the effective sample size 𝑘1 = 𝑘2.
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Figure D.16: Simulation results, distributed inference context, extreme quantile estimation at level
1− 𝑝 = 0.999 in the Burr models (Q-a), (Q-b), (Q-c). Top row, model (Q-a), from left to right: 𝑛1 = 900,
𝑛1 = 500, 𝑛1 = 100; middle row, model (Q-b), from left to right: 𝑛1 = 900, 𝑛1 = 500, 𝑛1 = 100; bottom
row, model (Q-c), from left to right: 𝑛1 = 800, 𝑛1 = 500, 𝑛1 = 100. All results are represented as func-
tions of the sample fraction 𝑘/𝑛 = 𝑘 𝑗/𝑛 𝑗 (identical for each 𝑗). In each panel, the MSEs represented
are the relative MSEs of the quantile estimates put beforehand on the log-scale.
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Figure D.17: Simulation results, pooled estimators using residuals, Gaussian-Student innovations model
(AR-1-a). All panels relate to tail index estimation. Left panels: squared bias, middle panels: variance,
right panels: MSE. All results are represented as functions of the sample fraction 𝑘 𝑗/𝑛 𝑗 (identical for
each 𝑗). Top row: (𝑛1, 𝑛2) = (250,750), bottom row: balanced sample sizes.
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Figure D.18: Simulation results, pooled estimators using residuals, Multivariate-Student innovations
model (AR-1-b). All panels relate to tail index estimation. Left panels: squared bias, middle panels:
variance, right panels: MSE. All results are represented as functions of the sample fraction 𝑘 𝑗/𝑛 𝑗
(identical for each 𝑗). Top row: (𝑛1, 𝑛2) = (200,400,400), bottom row: balanced sample sizes.
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Figure D.19: As in Figure D.17, in the Gaussian-Student innovations model (AR-2-a) with misspecified
AR(1) dynamics.
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Figure D.20: As in Figure D.18, in the Multivariate-Student innovations model (AR-2-b) with misspec-
ified AR(1) dynamics.
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Figure D.21: Car insurance data: Histograms of total claim amounts.

ID County Data type 𝑛 𝑗 𝑘 𝑗 𝛾̂ 𝑗 [95% CI]

110 Santa Rosa Raw 226 38 0.344 [0.234, 0.452]
140 Jackson Raw 225 33 0.330 [0.220, 0.449]
170 Suwanee Raw 225 31 0.329 [0.212, 0.442]
180 Baker Residuals 225 15 0.494 [0.244, 0.744]
240 Putnam Residuals 244 14 0.438 [0.209, 0.668]
290 Volusia Residuals 278 29 0.442 [0.281, 0.604]
302 Lake Residuals 281 15 0.514 [0.254, 0.774]
340 Osceola Residuals 221 14 0.518 [0.247, 0.789]

Table D.1. Florida rainfall data: Information gathered at each individual station. The estimates and confidence
intervals reported in the last column correspond to the selected 𝑘 𝑗 values indicated by the vertical blue lines in
Figure D.24.

D.2. Data analysis

D.2.1. Distributed inference for car insurance data

D.2.2. Pooling for regional inference on extreme rainfall
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Figure D.22: Car insurance data: Hill estimates 𝛾̂ 𝑗 (𝑘 𝑗 ) (left) and Weissman estimates 𝑞★
𝑗
(0.9999|𝑘 𝑗 )

(right) for each state, as functions of the sample fraction 𝑘 𝑗/𝑛 𝑗 , assumed to be identical in each sub-
sample.
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Figure D.23: Florida rainfall data: Histograms of the raw data for the three stations in the top panel (red
cluster), and for the residuals obtained from the fitted SARMA models of the five remaining stations
(green cluster).
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Figure D.24: Florida rainfall data: Individual tail index estimators. For each station 𝑗 , we represent the
Hill estimate 𝛾̂ 𝑗 (𝑘 𝑗 ) (solid blue) and its associated asymptotic 95% confidence interval (solid gray), as
functions of the effective sample size 𝑘 = 𝑘 𝑗 . The corresponding Hill point estimate is represented by
the horizontal dashed blue line.
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