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Abstract

This thesis unravels some aspects the complex relationship between anthropogenic activ-

ities inducing environmental externalities and human health under an economic perspec-

tive.

The first chapter analyses the causal impact of manure spreading on fine particulate

matter concentrations, as well as respiratory and cardiovascular hospitalisations, mortal-

ity rate at discharge, and treatment costs using air quality and hospital discharge data

from the Lombardy region in Italy. Exogenous variation in spreading prohibitions is used

to design a repeated event-study framework. It is estimated an increase of in PM2.5

concentrations in the five days following a ban lift, paired with a spike in urgent hospi-

talisations, and higher hospital mortality rate during spreading events, which impose a

financial burden of 30.9 to 67.7 million euros per year.

The second chapter investigates deeper the linkage between livestock farming and

atmospheric pollution by studying the impact of bovine and swine farming on the con-

centration levels of ammonia (NH3) and coarse particulate matter (PM10) in Lombardy’s

atmosphere. Our econometric model of cattle and swine variation and simulations indi-

cate that bovine bovine and swine farming could account for up to 25% of local pollution

exposure, emphasizing the need for targeted mitigation strategies.

The third chapter studies how soil aridity impacts child wellbeing in Sub-Saharan

Africa. Among the numerous implications of climate change, water access for people

worldwide remains a key concern. we find that infants born in arid areas are comparatively

more likely to die under the age of 5 and be systematically underweight at birth. In

addition, we show how aridity reduces the effect of rainfall on child wellbeing and drives

substantial heterogeneity in the estimated response to increasing precipitation.
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Abstract

Manure application is a widespread soil fertilization practice in agriculture which may

constitute an environmental and public health hazard. Using air quality and hospital

discharge data from the Lombardy region in Italy, in this paper I estimate the causal

effect of manure spreading on fine particulate matter concentrations, and study how

short-term spikes in air pollution affect respiratory and cardiovascular hospitalisations,

mortality rate at discharge, and medical treatment costs. To isolate the impact of ma-

nure application, I exploit exogenous variation in spreading prohibitions as a repeated

event-study design. I estimate an increase of around 27% in PM2.5 concentrations in

the five days following a ban lift, paired with an increase in urgent hospitalisations

by a factor of 1.04 to 1.145, and higher hospital mortality rate (0.7 to 1 percentage

points) during spreading events. Conversely, it is found no significant difference in the

cost per hospitalisation. I estimate the financial burden limited to this health threat

to range between 30.9 and 67.7 million euros per year. Finally, I simulate the impact

of including particulate matter targets in the current regulatory framework and find

that, despite reductions in concentrations could be achieved, refined policy may not

be sufficient to curb air pollution.
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ronmental Health and Safety
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1 Introduction

Manure application is a common practice in agriculture to fertilize and condition the

soil. Although a potentially valuable source of plant nutrients, the disposal of animal

organic waste may pose important environmental concerns, some of which seem notably

overlooked. In particular, the contribution of manure application to coarse (PM10) and

fine (PM2.5) particulate matter concentrations is still one of the most poorly characterized

sources of air pollution and, as such, often poorly addressed in most regulatory frameworks

worldwide (Cambra-López et al. 2010). PM emissions from farming activities are primarily

the result of secondary inorganic aerosol (SIA) in the atmosphere from its precursors:

ammonia (NH3), nitrogen oxides (NOx), and sulfur dioxide (SO2) among the most relevant.

NOx and SO2 originate mostly from combustion of coal, oil, and fossil fuels, whereas

the vast majority of ammonia emissions are produced by agriculture. More specifically,

NH3 almost entirely originates from soil application and disposal of livestock waste and

fertilizers.

Research has shown that the agricultural industry can be a key source of directly emit-

ted PM (primary emissions), mostly from storage and handling of agricultural products,

agricultural waste burning, land preparation and harvesting (Garg et al. 2023, He et al.

2020, Nian 2023). As such, emissions from agriculture are associated with thousands of

annual deaths (Domingo et al. 2021, Lelieveld et al. 2015). Much less is known about the

potential harm induced by secondary PM formation and manure management. First, it

is often challenging to isolate the contribution of farming activities from other sources of

airborne pollution in aggregate settings. Second, even isolating and quantifying PM mass

from livestock activities may not fully characterize the hazard posed by animal breeding.

Indeed, toxicological studies have questioned the existence of a specific association between

SIA particles and risk to health at ambient concentrations, despite the information being

still limited (Cassee et al. 2013). Lack of fully conclusive evidence has led the WHO to

maintain a cautious stand, assuming equal toxicity of all chemical particles contribution

to PM mass, including SIA (WHO 2021).

In this paper, I investigate the environmental and health risks posed by manure spread-

ing activities in the Lombardy region in Italy. I use the unique features of Italy’s regulation

in matter of manure spreading prohibitions as a quasi-natural experimental framework to

estimate the short-term causal effect of manure spreading on PM concentrations, hos-

pital access, and patient’s conditions for respiratory and cardiovascular acute episodes.

To this aim, I collect geolocated patient-level data from hospital discharge forms for the

years 2016 through 2019, matched with high-frequency data on pollutants’ concentration

and weather conditions at municipal level. To capture the true causal effect of manure

spreading, I build a repeated event-study framework, where each event is determined by

the conditionally exogenous opening of a “spreading window”, i.e. a period of consecutive

days of spreading ban followed by consecutive days of lifted prohibitions. This allows me

to estimate the portion of PM mass originating from manure management activities as

well as overcome endogeneity concerns that arise from selective exposure of individuals to
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air pollution based on unobservable characteristics correlated with individual health. My

identifying assumptions rely on the absence of systematic differences between hospitals and

patients around the window cutoff, and the absence of endogenous selection of patients

on either side of the threshold. I argue that, conditional on observables, the short time

interval considered and the limited knowledge of farming regulation of individuals allow

to pinpoint causality between spreading of manure, air pollution, and subsequent health

externalities. Defining symmetric short-term windows around a spreading event also helps

to cope with staggered treatment concerns (De Chaisemartin & d’Haultfoeuille 2020, Sun

& Abraham 2021, Callaway & Sant’Anna 2021), as municipalities receive treatment at

the same time within each window. To complement my preferred specification, I show the

persistence of the results to a difference-in-difference strategy that exploits geographical

discrepancies in prohibitions across the region.

I estimate that spreading windows induce a spike in PM2.5 concentrations, roughly 27%

increase, peaking at more than 40% at the third consecutive day of lifted prohibitions. The

effect is stronger in areas more with higher concentration of farming animals, stressing the

key role of husbandry activities as a driver to the observed spike in PM. Municipalities in

the highest two deciles of the distribution in terms of farming animal stock experience an

increase in PM2.5 7% to 10% higher than those in the three lowest deciles. The results are

robust to different combinations of weather controls and fixed effects, and corroborated

by both a placebo test using rainfall alone as a discriminant for window opening, and

by detecting no comparable trends in pollutants that are not directly caused by livestock

emissions, such as Ozone and SO2. I then analyse the evolution hospital admissions, mor-

tality at discharge, and treatment costs of inpatients with respiratory and cardiovascular

diseases (R&CD) during spreading-induced PM peaks. I find that spreading events are

associated with one additional daily urgent admission every 25 patients: this effect is

stronger when excluding days close to the cutoff days and peaks around the fourth day

of prohibitions lift, up to a maximum of one every 7 patients, suggesting partial lag in

the response to PM spikes. Moreover, I find that individuals admitted during a spreading

event experience between 0.7% and 1% higher rate of mortality at discharge. Finally, it

is found no premium in the cost per hospitalisation during PM peaks: patients do not

appear to stay longer in hospital and do not require more expensive procedures compared

to the baseline, although the effect could be confounded by limitations in the cost measure

available and the endogenous response from medical facilities. I find no effect on the same

indicators in inpatients hospitalized for treatment more remotely related to air quality,

such as digestive, genitourinary, and musculoskeletal system diseases.

I use these results to estimate the financial burden implied by the observed health

externalities associated with spreading activities. I simulate the incremental admissions

due to manure application and calculate the monetary equivalent total years of life lost

due to the increase in hospital mortality assuming a value of statistical life year (VSLY)

of e158,488 (Cots et al. 2011). I obtain a total cost from increased usage of health

care facilities between 16.7 and 48.1 million euros, in addition to a total VSLY quantified

between 13.8 to 19.5 million euros. These figures likely represent a lower bound to the true
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impact of manure application, as they abstracts from potential morbidity and co-morbidity

effects, as well as long-term implications to PM exposure.

Finally, I simulate the gains of incorporating targets related to PM concentrations in

the region. Hence, I assume a regulator who aims at minimizing the days for which PM

levels exceed the threshold considered unhealthy for sensitive groups (set at 35 µg/m−3),

leaving other restrictions to spreading activities in the current regulation unaltered, and

deducing counterfactual PM concentrations considering manure application as an additive

increase. I design a constrained finite recursive optimization problem under uncertainty

to define a new allocation of spreading days, and benchmark the results with the best

allocation achievable under perfect forecasting (i.e. retrospective information on PM levels

and weather conditions). The results show the limitations of introducing PM targets

in manure management regulation without any complementary policy to sustain such

targets. With a potential maximum reduction in days of hazard concentrations around

10% estimated under perfect forecasting, introducing uncertainty cuts the estimated gain

to less than 1%, due to low precision in PM and weather predictions.

This paper contributes to the current literature in environmental and health economics

that estimates the causal effects of air pollution on human health. There exist many

examples of studies that investigate the impact of air quality, many of which focus on

one specific health issues such as adult and infant mortality (Chay et al. 2003, Chay &

Greenstone 2003, Currie & Neidell 2005, Jayachandran 2009, Currie & Walker 2011, Chen

et al. 2013), infant health (Friedman et al. 2001, Neidell 2004, Knittel et al. 2016), mental

health (Chen, Oliva & Zhang 2018). Only a subset of them focus specifically on particulate

matter, even less so on PM2.5 (Pope III et al. 1999, Schwartz et al. 2017, Deryugina et al.

2019). Importantly, only few papers are able to quantify healthcare costs and to look

in detail at medical procedures and cost per admission, thus separating the effect on the

extensive and intensive margin. Schlenker & Walker (2016) estimate hospitalization rates

and costs in California, but focus on carbon monoxide exposure. A paper by Deryugina

et al. (2019) uses elderly Medicare recipients data to estimate the effect of PM2.5 exposure

on elderly mortality, health care use, and medical costs. However, the authors provide an

estimate for overall inpatient spending, without assessing whether the effect may originate

from patients requiring more cost-intensive treatment during periods of high PM exposure.

There are instead fewer examples of quantification of healthcare costs outside the US

setting are found in the literature, given scarce data availability (Xia et al. 2022). In this

paper, I look closely at different cost components in a novel setting.

Furthermore, this study is, to the best of the author’s knowledge, the first attempt to

estimate the causal impact of manure management in particular on air pollution, health,

and healthcare spending. Some studies have tried to impute air-quality related deaths to

agricultural activities, including manure management (Jerrett 2015, Lelieveld et al. 2015,

Giannakis et al. 2019, Domingo et al. 2021), but they have not yet fully established a

direct causal link to pinpoint the share of PM concentrations and the health concerns for

which manure management is responsible. I believe this is the first paper that uses winter

spreading prohibitions as conditionally exogenous local variation to study the effect of
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manure management on air pollution levels and respiratory and cardiovascular diseases.

This constitutes a novel approach to directly identify the implications of manure applica-

tion activities on a large scale. Amid lack of reliable data on PM decomposition and, as

such, the impossibility to observe specifically SIA particles, by isolating livestock as pri-

mary emission source, the paper indirectly adds to the current knowledge on the hazard to

human health posed by different airborne particles (Kelly & Fussell 2016, 2020). Finally,

this paper contributes to the regulatory debate around the most suitable policy response

to reduce emissions from manure application and increase welfare.

The remainder of this paper is organized as follows. Section 2 provides background

information about the current legislation on manure spreading activities in Lombardy, that

justifies my strategy. Section 3 presents the empirical strategy employed, and Section 4

describes the data. Section 5 presents main results and assesses their robustness. Section

6 simulates the healthcare spending costs of manure spreading, and Section 7 describes a

counterfactual scenario of fully-flexible spreading prohibitions and estimates its benefit in

terms of pollution reduction. Finally, Section 8 concludes.

2 Background: Spreading Policies in Lombardy and Worldwide

2.1 The environmental concerns of manure application

Manure application provides nutrients that improve soil quality and increase crop produc-

tion, but carries consistent environmental risk and, consequently, serious potential harm

to human health (Bouwman et al. 2013).

First, manure management and farming activities contribute significantly to emissions

of greenhouse gases (GHGs)1, which are the main responsible of rising temperature and

climate change. The phases of storage, treatment and spreading of manure have all been

associated to GHG emissions (Chadwick et al. 2011), and manure management alone is

estimated to contribute between 1.6% and 13.6% of total GHGs emissions across Europe2.

This is particularly true for Lombardy as well, where GHGs concentrations, particularly

with regards to N2O and CH4, spatially correlate with farming intensity (see Figure E.1

in Appendix). While GHGs can potentially pose direct risk to human health, this occurs

primarily at very high concentrations and in constrained environments. High concentra-

tions of ambient CO2 (at 20,000 ppm) have been found to induce physiological responses

in blood pressure, hearth and respiratory rate (Maniscalco et al. 2022), while lower atmo-

spheric concentrations (< 5,000 ppm) are thought to represent a direct health risk only

through chronic exposure (Jacobson et al. 2019) and long-term modifications of global

climate.

Second, the large quantities of nitrogen (N) released into the soil by slurry redeposit-

ing can enter groundwater, and later be transported into freshwater, through infiltration

and surface runoff (Ongley 1996). This, in turn, poses several environmental concerns

1Most notably, farming activities are associated to higher concentrations of N2O (nitrous oxide), CH4

(methane), and CO2 (carbon dioxide).
2Source: EEA - Approximated greenhouse gas inventories.
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such as eutrophication, algal blooms, loss of biodiversity, and fish stock depletion, in ad-

dition to direct threats to human health through the consumption of contaminated water.

Evidence of water-linked diseases has been retrieved especially interesting the digestive

and endocrine system (Majumdar & Gupta 2000, Azizullah et al. 2011). There is in-

stead no consistent evidence that links exposure to polluted water and respiratory and

cardiovascular conditions, which could however be linked to manure application through

a different channel. Indeed, organic droppings from livestock are a primary source of am-

monia emissions (NH3), which is a key component for SIA formation of fine particulate

matter (PM2.5)
3. Despite the reaction time of precursors forming PM2.5 is difficult to de-

termine with precision, recent studies suggest that, while part of the reaction may happen

locally within few minutes, second stages of the reaction may continue overnight and in

the following days after ammonia is released (Kim et al. 2022). In Italy, roughly 95.7%

of ammonia emissions between 2008 and 2019 are associated to fertilizers and livestock,

which is marginally below the EU average (96.4%)4. Exposure to PM2.5, in turn, has

been largely associated in the literature with serious health concerns. Importantly, even

short-term exposure to polluted air (Wong et al. 2008, Larrieu et al. 2007) and high PM2.5

concentrations (Guaita et al. 2011) have been found to induce respiratory-, natural-, and

cardiovascular-cause mortality. If the effects of PM have been largely studied, much less

is known about the exact toxicity of particles with different chemical compositions. Find-

ing refined guidelines on the potentially heterogeneous hazard level of airborne particles

has been in the agenda for almost 20 years (Council et al. 2004), but the results are still

far from conclusive. Toxicological research has found little to no proof of a biological

association with ammonium nitrates and sulphates and human health, but strong epi-

demiological association leaves open the possibility of alternative underlying mechanisms,

such as cations associated with these compounds and absorbed components (Schlesinger &

Cassee 2003, Reiss et al. 2007, Cassee et al. 2013). Recent lab evidence suggests increased

airflow obstruction and respiratory following chronic exposure to SIA in mice (Zhang et al.

2022, 2021). According to the guidelines of the WHO, all chemical particles constituting

PM mass are to be considered having equal toxicity (WHO 2021), but it is yet to be

determined with precision whether a peak in fine PM concentrations induced by organics

waste from livestock should have health consequences on individuals and, if so, to what

extent. Scarce empirical evidence on the topic is potentially one of the reasons why PM

emissions emerge a second-order concern in the regulation of manure application.

2.2 Manure Application Policies in Lombardy

After a first attempt to legislate the utilization of fertilizers in 1984, following the new

wave of European legislation on environmental protection, Italy has firstly introduced

3Secondary PM formation takes place through the chemical reactions between ammonia and gaseous
precursors such as sulfates (SOx) and nitrates (NOx), forming crystalline solid compounds (ammonium
nitrates and ammonium sulphates) that take part in the composition of PM2.5 (Squizzato et al. 2013).

4Source: Eurostat, Air emissions accounts by NACE Rev. 2 activity.
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comprehensive regulation about manure management and usage of fertilizers in 20065.

The new regulatory framework introduced spatial and temporal prohibitions to the ground

application of droppings, in the interest of maintaining proper sanitary conditions of urban

and extra-urban areas and, most importantly, preventing pollution of groundwater bodies,

which are particularly threatened by nitrates originating from fertilizers (Galloway et al.

2008, Sebilo et al. 2013). Among the restrictions imposed, which vary on the basis of

soil composition, average slope, and distance from metropolitan areas, limitations in the

timing of sludge application are of particular interest to this paper. Indeed, the law

established a minimum ban of 90 days6 during the winter season, identified as “typically

elapsing between 1st November and 28th February”. This regulatory action was justified

with winter posing the highest risk of frozen ground and, consequently, nitrates runoff

and pollution of surface waters during snowmelt (Young & Mutchler 1976). For similar

reasons, the law prohibited manure spreading during a rainy day, and the day immediately

after. Regional entities were then responsible to introduce further legislation to regulate

how exact dates for the constrained period were defined. In Lombardy, these have been

regulated by a series of action plans (Piano d’Azione Nitrati, henceforth PdA), updated

every three years. Starting and ending dates of the ban period have been variable from one

year to the other and communicated during spring for the upcoming winter by regional

decree.

As manure storage is often a costly activity, especially due to capacity constraints of

farmers, to promote cost reduction and prevent overload, in 2016 Italy increased regulation

flexibility. While maintaining a 90-days prohibition, the fixed ban period was shortened

to 62 days (between 1st December and 31st January), while the remaining 28 out of 58

days were once again set by regional governments. In Lombardy, spreading prohibitions

and permits started to be regulated through bulletins (Bollettini Nitrati) issued every

two to five days throughout the period subjected to the authority’s discretionality. The

bulletin reports the manure spreading potential (either “allowed” or “not allowed”) of six

different climate zones within the region (Zone pedoclimatiche) for the upcoming days.

Restrictions are imposed at the climate zone level: discrepancies between zones may occur

in case of significantly different weather conditions across the region. 7 Bulletins are

easily accessible through a dedicated app as well as regularly posted online in a dedicated

webpage8. Failure to comply with the restrictions can result in an administrative fee

up to 5.000 euros, which is substantial given that the economic size class of more than

70% of farms in Lombardy does not exceed 50.000 euros 910, and even a criminal liability

5MD 7 Apr 2006. A summary of the most salient regulatory advancements in Italy is reported in
Appendix (Section C).

6The limitation was extended to 120 days for specific categories of poultry manure.
7Climate zone areas are: Alps (provinces: SO); Central plain (provinces: BG, BS, CR); West plain

(provinces: LO, MI, PV); East plain (provinces: MN); West Prealps (provinces: BG, CO, LC, MB); East
Prealps (provinces: BG, BS). See Figure E.2 in Appendix.

8Figure E.4 in Appendix shows the content of the app and online documents available to farmers to
gather information about day-to-day restrictions to manure application.

9Economic size classes are defined at EU level (Commission Regulation No 1242/2008).
10Source: Agricultural Census (ISTAT). See Figure in Appendix.
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depending on the degree of environmental damage. Figure 1 summarizes the regulatory

framework, which remained in place between 2016 and the beginning of 2021.

From the farmers’ perspective, there is a strong incentive to apply manure when winter

restrictions are temporarily lifted, given uncertainty about future spreading opportuni-

ties. Indeed, initial investment and maintenance of storage containment structures, such

as tanks or pits, is a remarkable cost for farmers which, in turn, tend to have limited

resources to stock manure during long periods of prohibition and face the risk of store-

house overcapacity. Moreover, while application is not necessarily tied to an individual’s

farmland (farmers who exhausted storing capacity can rent parts of land from other farms

to apply the excess manure), rental fees and high transportation costs lower the incentive

to dispose of manure far from the farmstead. Data from 2010 ISTAT Agricultural Census

(Figure 2) indicate that more than 50% of farms apply more than 75% of their manure

production to their own land. Additionally, considering cattle- and pigs-specialized enti-

ties, there exist a negative correlation between farm size and amount of manure disposed

outside, meaning that comparatively smaller producers tend to rely on rental farmland,

reducing geographical discrepancy between a farm’s location and where the manure pro-

duced is applied.

Despite the regulatory framework defined a broad set of rules to ensure transparency

and control over manure application activities, it did not include any consideration about

air pollution in determining spreading prohibitions prior to 2021, which justifies the re-

search design employed in this paper. In fact, only with PdA 2020-2023, a first attempt

to bring PM concentrations into the picture was made, in the form of an additional crite-

rion to spreading. Specifically, manure application was forbidden in municipalities where

containment measures to reduce air pollution (e.g. traffic stops) are in place.11

subsectionOther Examples of Manure Application Regulation Italy and the Lombardy

region are not an isolated example of the attempt to cope with the environmental chal-

lenges posed by manure management. Other European countries, following the guidelines

outlined in the Nitrates Directive (91/676/EEC), have imposed similar restrictions, includ-

ing prohibitions to manure application during winter months. For example, in Germany

spreading is not allowed between 1 November and 31 January on arable land and between

15 November and 31 January on grassland12. In the Netherlands, prohibitions span be-

tween 1 September to 31 January13, while the longest period of restrictions in the UK,

depending on soil type and land use, can be as long as 7 months, from 1 August to the

end of February14. Possibly the regulation closer to the Italian case is observed France,

11Pollution control measures can be applied in Lombardy between October 1st and March 31st. They
are triggered by PM10 concentrations exceeding 50µ/m3 for at least four consecutive days, and stay in
place until favorable weather conditions to the reduction of airborne pollutants (e.g. rain) or at least
two consecutive days below 50µ/m3 PM10 concentrations. Temporary measures include restrictions on
bonfires, manure application (since 2021), indoor temperatures (i.e. heating systems control), and traffic.
They are implemented at province level, with the exception of traffic limitations, which are applied at
municipal level and only for municipalities with more than 30,000 inhabitants.

12Fertilizer Act; Ordinance on Fertilizer Application (Düngeverordnung. Latest amendment 2007)
13Decision Using Fertilisers (Besluit gebruik meststoffen), 1997.
14The Reduction and Prevention of Agricultural Diffuse Pollution (England) Regulations 2018.
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where a manure application calendar is in force in winter months. This similarly imposes

flexible ban periods depending on soil vulnerability and land use, plus some (less stringent

compared to Italy) weather-based restrictions.15

Outside Europe, the regulation on manure spreading is relatively laxer: (Liu et al.

2018, (Fig. 2)) provide a summary of existing restrictions. For instance, in countries

like Canada, Australia, and the US, where the regulation is applied at sub-national level,

with the exception of some Canadian provinces where winter prohibitions are in place,

the policy action ranges from application of partial weather restrictions, to submission by

farmers of voluntary manure management plans, to even complete absence of guidelines.

To the best of the author’s knowledge, there exist no similar regulation in large Asian

countries, such as India and China, as well as in developing economies.

The attention, amid considerable heterogeneity, to manure management governance

reinforce the relevance of the findings presented in this paper outside of the Italian context,

as well as the broad scope of its policy implications. Furthermore, while Lombardy displays

high concentration of farming activities, making it potentially more susceptible to the

environmental and health threats of manure application (Lombardy is in the 96th percentile

for animals total headcounts in the EU)16, it is not an isolated case. For example, other

regions in countries like Spain, France, Germany, and the UK rely heavily on farming

industry, displaying comparable figures in terms of livestock presence, as well as similar

weather and geographical characteristics.17

3 Methodology

3.1 Sample definition

To estimate the relationship between manure application, PM concentrations, and health

outcomes, I exploit the variation induced by the spreading prohibition framework in Lom-

bardy. To cope with unobservable confounders that may drive the level of pollutants in

parallel with manure spreading, I restrict the sample to periods of “spreading windows”

(W ), i.e. consecutive days of spreading ban (W−) followed or preceded by consecutive

days in which spreading is allowed (W+). A window is considered closed whenever prohi-

bitions are in place, open otherwise. This implies that windows that are in temporal order

either open-closed or closed-open will be considered the same event. The choice of closing

and opening intervals lies on two major considerations. First, under the assumption that

spreading happens relatively close to the cut-off day18, the window should be as such so to

allow most of the chemical reaction of gaseous precursors to take place and, in turn, the

formation of PM due to the release of ammonia. Second, a window should be short enough

15Interministerial decree 19 December 2011, 23 October 2013, 11 October 2016.
16Source: Eurostat. Animal Production Statistics.
17See Figure E.7 in Appendix.
18As previously argued, farmers have the incentive to apply manure when a spreading ban is about to

be imposed (in order to maximize storing capacity in face of restrictions) and or when this is lifted (to free
up storage space).
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to ensure as much comparability as possible, conditional on observables, between days be-

fore and after the opening/closing cut-off. As such, the choice of the threshold needs to

balance the need to let spreading and SIA particles formation occur in the days without

prohibitions, as well as to minimize the possibility of confounders, ensuring comparability

before and after. I set the windows to be open and close for five consecutive days each,

obtaining windows of 10-day duration in total. This number, which serves both goals

of particles formation and short time span, is obtained using a data-driven bandwidth

selection approach implemented through a regression-discontinuity (RD) design proposed

by Calonico et al. (2017). Using data on prohibitions over the entire winter period in my

sample years, the RD estimator provides a strategy for bandwith selection obtained by

investigating in the data the persistence of a perturbation induced by a change in treat-

ment status, i.e. relieved spreading prohibitions. Details on the RD estimation and the

bandwith selection method can be found in Appendix A.1.

I consider positive exposure (i.e. open window) as the treatment received by a munic-

ipality. Panel [A] in Figure 3 plots the calendar distribution of window days. Spreading

windows usually take place around the start (October-November) and the end (February-

March) of the regulated winter period. One window exceptionally occurs in December:

due to pressure of farmers and impossibility to allocate enough spreading days in the pre-

vious months, in 2019 the regulator agreed to a temporary suspension of bans to allow

farmers to get rid of accumulated waste19. During bulletin-regulated periods, prohibitions

may be relieved or imposed heterogeneously across climate zones. For instance, manure

application can be delayed in some areas of a few days compared to the rest of the re-

gion because of unfavorable weather conditions. As such, in the same 10-day span, some

climate zones may exhibit a window with two balanced periods of prohibition and per-

mission, while others may experience longer or shorter periods of window closures (e.g.,

imagine a climate zone where manure application is restricted for seven consecutive days,

and allowed for three ). To avoid imperfect compliance with the treatment status of al-

lowed manure application in my estimates, After identifying the days in which windows

take place, in my preferred specification I restrict the sample to climate zones where the

window is fully realized (Figure 3, Panel [B]). In most cases (seven out of nine windows),

this implies excluding a maximum of two climate zones. The geographical discontinuities

in the realization of spreading windows is then used to test the robustness of the results.

After identifying days in which spreading windows took place, using information avail-

able through hospital discharge forms, I then select all patients whose hospitalisation oc-

curred on one spreading window day. I focus on patients that have been diagnosed with a

respiratory and/or cardiovascular disease. Exposure to high concentrations of particulate

matter is associated with additional medical conditions such as skin diseases, psycholog-

ical disorders, and depression (Kim et al. 2016, Braithwaite et al. 2019). Yet, R&CDs

are the two major and more extensively analyzed effects in the literature, in addition to

being comparatively more likely to prompt urgent hospital admissions in case of acute

symptoms.

19Source: Bollettini Nitrati, December 2019.
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3.2 Empirical strategy

My objective is to estimate the effect of short-run exposure to manure spreading events

PM concentrations, hospital admissions, hospital mortality, health care use and spending,

net of potentially confounding factors. I propose an event-study model summarized by

the following equation:

Model 1:

Yihmt =
∑

k ̸=−1 ∈ g

ηk1{Hmt = k}+X ′
ihmtΓ + αd + αmm̃ + αm̃y + αw + εihmt (1)

where Hmt = t − Em indicates the period relative, to time t, to the event of manure

application being allowed in municipality m (Em). Periods relative to the spreading event

are limited to set g =
[
k : k ∈ [−T, T − 1]

]
, where T = card(W )

2 equal to five days. ηk
coefficients are estimated pooling together all window events in the sample, with k < 0

characterizing pre-trend coefficients and k ≥ 0 capturing treatment at k days from the

window opening.

Yihmt is the outcome observed in municipality m at time t. In the case of healthcare

measures, these are also defined at the individual i and the hospital h level. X represent a

matrix of of controls, which varies depending on the outcome studied. It always includes six

weather controls: temperature, rainfall, humidity, radiance, wind direction (16 indicators),

wind speed, average boundary layer height, measured up to the third lag, and interacted

amongst each other in current and lagged periods. For health outcomes, when the variable

is identified at the individual level (e.g. mortality at discharge, cost of admission), I

control for a patient’s age class, gender, citizenship, and type of disease (respiratory or

cardiovascular) and admission (surgical or medical). αd, αmm̃, αm̃y, αw, respectively

identify day-level controls (day-of-the-week and holiday fixed effects), province-by-month,

month-by-year, and window fixed effects.

Restricting the sample to climate zones that fully experience a spreading window im-

plies that my framework does not include never-treated unit. Thus, the causal identifi-

cation of the impact of manure application relies crucially on the full comparability of

patients, municipalities and hospitals to the left and to the right of the spreading window.

In other words short time intervals around spreading windows entails that a municipality’s

counterfactual is given by the municipality itself few days before. This is true under the

assumption of existence of parallel trends in the baseline outcome, conditionally on observ-

ables20. The assumption rests on multiple considerations. First, spreading limitations are

independent from air quality in the regulatory framework, since no PM control objective

20Formally, let Y ∞
m,t be the potential outcome of municipality m which never receives the treatment.

Parallel trends require that:

E
[
Y ∞
m,t − Y ∞

m,s|Em = k,Xmt, α
]
= ν̄, ∀ s ̸= t and ∀ k ∈ supp(Em)

, where in my framework the absence of never-treated unit is represented by ∞ /∈ supp (Em)
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exist in the regulator’s agenda. Even more so, manure application is independent from

the level and severity of hospital admissions in the region in the eyes of the policymaker.

Second, windows are driven by the combination of exogenous events, such as the structure

of temporal winter prohibitions (exogenous cut-off days, 90-day fixed prohibition period)

and weather conditions (i.e. temperature, rainfall) in the region. Restricting the atten-

tion to a short time-span around the cut-off also reduces importantly the probability of

capturing underlying trends induced by events correlated with manure application.

Moreover, causal identification of the impact of manure spreading implies no pre-

treatment anticipatory behaviour able to affect outcome in absence of treatment21. For

what concerns PM concentrations, once again the assumption is reinforced by the nature

of the spreading control policy implemented in the region, seemingly unrelated to air pollu-

tion. Furthermore, manure spreading prohibitions are quite far from the knowledge of the

general public and health management structures, and receive minimal news coverageYet,

being correlated with spikes in airborne pollutants, individuals may have knowledge of

high levels of PM in the region potentially induced by manure spreading even without

knowing its exact source. In turn, they may take preventive action to avoid exposure:

other studies have found that individuals can exhibit shielding behaviour when air quality

decreases (Zivin & Neidell 2009, Moretti & Neidell 2011, Neidell 2009). Even under this

assumption, however, observing a negative impact on the health of individuals would im-

ply that the real effect of manure management activities could be even higher in absence

of prevention from citizens.22

Using closed spreading windows as suitable counterfactual is my preferred choice to

capture the true impact of manure application. However, the existence of discrepancies

in spreading restrictions across climate zones may lead to consider municipalities where

spreading is still prohibited compared to the rest of the region as effectively non-treated

units, representing a more robust counterfactual and allowing for a difference-in-difference

(DiD) kind of estimator. There are two major limitations to this alternative strategy.

First, manure application is a source of secondary PM2.5 generating through the reaction

of gaseous precursors. Due to air transportation of pollutants, spillovers, in the form of

SIA particles reaching areas where spreading is still restricted, are to be expected and quite

complex to quantify. As such, a DiD estimator would likely be biased downward. Second,

discrepancies between climate zones are often short-lived: given the 30-day prohibitions

lift period universally applying to all climate zones, the regulator has incentive to avoid

differences in terms of cumulative restriction days imposed growing large across the region.

21Formally, this entails:

E
[
Y k
m,k+l − Y ∞

m,k+l|Em = k,Xmt, α
]
= 0 ∀k ∈ supp(Em) and l < 0

22It is important to notice that the treatment such defined does not suffer from staggered adoption the
canonical sense (De Chaisemartin & d’Haultfoeuille 2020, Sun & Abraham 2021, Callaway & Sant’Anna
2021). Indeed, within each window, units enter and exit the window period at the same time, while
receiving treatment homogeneously in the same time period. Demeaning by a window identifier allows to
cope with window-specific differences in the effect of spreading.
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As such, municipalities stay untreated for rather short time, which makes it cumbersome

to isolate the effect of manure application. In addition, my main strategy allows to capture

causality while preserving a larger number of data points, implying higher statistical power

to estimate an impact of manure application rather small in magnitude, as it is expected

in particular for health outcomes. These constraints drive the choice to adopt Model ?? as

preferred specification. Using a refined sample definition, I still investigate the robustness

of the results to a DiD strategy that considers municipalities where prohibitions are still

to be relieved as control group. I detail the empirical model in Appendix, Section A.2.

In the spirit of Borusyak & Jaravel (2017), I refer to Equation 1 as semi-dynamic. In

addition, I estimate the same model in static form, i.e.:

Model 2:

Yihmt = η0Dmt +X ′
ihmtΓ + αd + αmm̃ + αm̃y + αw + εihmt (2)

where Dmt = 1{t ≥ Em}. I use the static model to explore spatial treatment hetero-

geneity based on livestock concentration. I interact Dmt with a set of indicators obtained

by binning the number of livestock units at municipal level:

Model 2b:

Yihmt =η0Dmt +

9∑
b=1

γ0bLb0mt +

9∑
b=1

ρb [Emt × Lbmt] +

+X ′
ihmtΓ + αd + αmm̃ + αm̃y + αw + εihmt

(3)

Finally, when my dependent variable has a count nature, such as for daily hospital

admissions, I account for non-negative and discrete nature of hospital admissions data

with possibly many zeros through a pseudo-Poisson regression model with high dimensional

fixed effects (Correia et al. 2020):

Model 3:

E [Yihmt|Dmt, Xihmt, α] = α exp
[
η0Dmt +X ′

ihmtΓ
]

(4)

The model thus specified allows the coefficient to differ all across the dimensions ac-

counted by the fixed effects.
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4 Data Description

4.1 Air Quality and Weather

I access high frequency data on major air pollutants between 2016 and early 2020 from

ARPA Lombardia.23 Hourly concentrations of four pollutants, PM2.5, PM10, ozone, and

sulphur dioxide (SO2), are recorded through a grid of monitoring stations (Figure E.5,

Panel [A]). Data on NO2 are also collected, but not employed in the analysis. ARPA also

provides daily estimates of corresponding municipality-level values are calculated by model

interpolation24, and they are used to compute daily average concentrations. ARPA is also

responsible for collecting data on principal weather variables: humidity, radiance, rainfall,

temperature, wind direction and speed. These measures, all potentially correlated with

PM levels25, are provided uniquely at station level: to match the dimension of air quality

measures, municipality-level daily conditions (average temperature, wind direction and

speed, humidity, radiance, total rain) are derived taking the value registered at the closest

station, as the grid of weather stations provides extensive coverage over the region (Fig-

ure E.5, Panel [B]). Alongside weather data, I collect information on Planetary Boundary

Layer Height (PBLH) through the ERA5 Reanalysis provided by ECMWF. PBLH is the

height above the surface of the ground of the lowest part of the atmosphere, and it is im-

portant in affecting weather patterns and the rate of exchange of particulate matter (PM)

between the boundary layer and the free atmosphere above it, thus influencing concentra-

tions at ground level (Seidel et al. 2010). The measure is computed on a 0.25◦ × 0.25◦

grid, hence its value derived at municipal level is imputed using the corresponding value

at higher geospatial level. Each of these variables directly impacts airborne pollutants

concentrations.

The initial sample of winter days (November to March) comprises 2046920 day- munic-

ipality observations. Subsequent restriction to windows of spreading discontinuity reduces

the sample size 111050 data points. Table 1 describes the dataset, including summary

statistics for the full sample, winter months and spreading windows days only. Looking at

levels of pollutants (Panel [A]), they all exhibit consistent variation both across municipal-

ities and across time. Focusing on levels of particulate matter, as predictable given colder

23Regional Agency for Environmental Protection.
24Data on concentration of air pollutants are calculated by a private ARPA contractor (AriaNet) using

a specific Chemical Transport Model (CTM) called Eulerian FARM-type (Flexible Air Quality Regional
Model) (Silibello et al. 2008). FARM-type models account for the transport, chemical conversion and
deposition of atmospheric pollutants. Detailed information about this modelling approach is described in
Calori et al. (2008). AriaNet also provides an extensive description of the model. See Arianet R2016.12 -
FARM (Flexible Air quality Regional Model) formulation and user’s Manual (Version 4.11).

25Warmer temperatures are usually associated with lower concentrations, given higher thermal disper-
sion. Positively correlated with temperature, PBLH constitutes an even more cogent measure for vertical
dispersion: higher PBL implies increased dispersion capacity and is associated with lower pollutants con-
centrations. Similarly, increased level of rainfall reduces PM concentrations through “wet deposition”. As
previously noted, wind speed and direction can affect the presence of pollutants in an area by dispersing
pollution plums. With increased humidity, moisture particles grow in size to the point of “dry deposition”,
reducing PM10 concentrations. Finally, radiance can impact PM levels especially through photochemical
reactions.
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temperatures and thermal inversion taking place at much lower height,winter months and

spreading windows days display consistently higher levels of both PM10 and PM2.5. Inter-

estingly, the table highlights the extremely poor air quality of Lombardy which, in turn,

is matched by a more tolerant policy about warning levels and concentration targets. In-

deed, Italy sets the targets for annual average levels for PM10 and PM2.5 at 40 µ/m3 and

25 µ/m3 respectively26, while the WHO recommendations for the same parameters are

respectively 15 µ/m3 and 5 µ/m3 (Organization & for Environment 2021). Despite more

permissive limitations, warning levels are exceeded frequently, especially during the winter

season. Between November and February, the probability of exceeding annual averages

is 57% for PM10 and 48% for PM2.5. Moreover surpassing of control levels happens with

similar probability in days when spreading is prohibited against days when it is allowed27.

Looking at other pollutants, it is important to underline the relatively higher presence of

precursors (here only limited to SO2 and NO2) to secondary aerosol formation.

Turning to weather variables (Panel [B]), the table shows comparable climate condi-

tions between winter months and window days (temperature, radiance, humidity, wind

speed and direction tend to display similar averages and standard deviations). Rainfall

levels differ instead between winder and spreading windows, with the latter taking place

during relatively drier periods. Assessing the correlation between rainfall and spreading

window days by regressing rainfall level on a set of dummies for each t ∈ W , controlling

for fixed effects and other weather conditions (Figure E.8 in Appendix), I notice that

there is indeed negative correlation when t ∈ W+, (per regulation, barring spillovers and

unexpected weather conditions, spreading is prohibited during rainy days). Yet, the same

is true for days right before the opening threshold, and with the size of the coefficients

being particularly low, manure application does not strike as a simple proxy for absence

of rainfall.

4.2 Livestock concentration and land use

Data on livestock concentrations are accessed through the national zootechnics registry

(Anagrafe Nazionale Zootecnica) database. The database contains information about

number of livestock units and farms for four main breeding animals (chicken, cattle, sheep

and goats, swine), calculated at municipal level through a census repeated twice a year

(June and December). Summary statistics are reported in Table 2. The table highlights

chicken and pig rearing tends to be more concentrated in the region, with a much higher

number of animals per farm compared to cow and beef rearing, which is instead more

dispersed. The same is true for sheep and goat husbandry, which is however generally

carried out in smaller numbers.

Figure 4 shows the presence of farming animals in the region, with the South-West

end of the Po Valley emerging as the area with the highest concentrations. As stocks of

farming animals are rather stable through time, the number of livestock units is used as a

26Legislative Decree 155/2010
27Figure E.6 shows the cumulative distribution of daily average concentrations of PM under presence

and absence of manure application prohibitions.
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cross-sectional proxy for intensity of farming activities in a municipality. I apply two main

transformations to the data. First, the livestock units in a municipality are recomputed as

the average number of livestock within a 5km-radius buffer. This is motivated as census

data may account for large farms by assigning all animals to a single municipality. Yet, in

this case animals will not be accounted for in neighbouring municipalities which, however,

would be similarly exposed to livestock presence due to geographic proximity. Figure

E.9 in Appendix show the result of the buffering process.28 Secondly, to account for

differences among farming animals in terms of organic waste impact, the number of units

is recalculated using weights given by relative manure daily production, obtained from

Hillel & Hatfield (2005). Weights used are reported in Table 2. Weighting does not induce

dramatic changes in the computation of animal stocks, thus it affects only marginally the

results and does not influence the main conclusions of the analysis. All additional data on

the farming industry in the region, i.e. economic class size of firms in the farming industry,

disposal outside of farm territory, are computed as time-invariant measures and provided

by the 2010 ISTAT Agricultural Census.

4.3 Hospital admissions and treatment outcomes

Data on hospital admission, prognosis, and discharge are obtained from the National

Hospital Discharges database. Access to the full dataset is protected, and was authorized

by the Ministry of Health, Planning Department. Data is avaialable between 2016 and

the end of 2019. The dataset contains main patient-level characteristics, including gender,

age, nationality, marital status. Each record also contains detailed information about

the urgency of the hospital admission (i.e. either scheduled or unscheduled), date of

admission and discharge, municipality of residence and hospital location. For the purpose

of this study, I focus on patients resident and hospitalised in Lombardy. A patient is

assigned a principal diagnosis and up to five secondary diagnoses that identify co-existing

medical conditions. Similarly, the treatment received by each individual is divided into

main procedure and up to five secondary procedures performed during the stay. Moreover,

it is included the patient’s condition at discharge (death, transfer to another structure,

regular discharge).

The dataset does not include a cost measure of the hospitalisation. Medical costs

of hospital admissions are usually obtained through billing data, but often patients who

benefit from NHS coverage do not sustain the true cost of the treatment received thanks

to subsidized healthcare provided by the mostly publicly financed NHS. Indeed, the Ital-

ian NHS is a decentralized potential payment system (PPS), where regions developed a

regional DRG fee-schedule to classify admissions and to identify DRG tariffs, which are

designed to cover most of hospital costs (Fattore & Torbica 2006). The Lombardy region

provides a detailed tariff scheme that lists monetary values of different DRG points, with

further distinction among multiple categories of hospital services (e.g. ordinary admis-

sions, long-term hospital care etc.). I compensate for the lack of a direct cost measure

28Results are comparable using 2km and 10km buffering radius. See the replication material.
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using regional tariffs as a proxy for the actual cost of the hospital stay of an individual.

The cost calculation depends on the length of the hospital stay and the treatment received

by the individual. A detailed explanation of how the measure is computed using infor-

mation available is included in Section B. Fee-schedule tariffs are likely less sensitive at

the margin, as hospitalisations are assigned a fixed reimbursement whenever the duration

of the stay does not exceed the DRG-specific threshold, after which the reimbursement

is quantified daily. That is, as long as patients are not hospitalised for longer than the

threshold assigned to their diagnosis group, hospitalisations of different duration will be

compensated with the same amount, which may not reflect precisely the marginal cost

faced by the health facility. Yet, the measure still proxies for the true financial burden of

the admission on the public system.

I use the information available to define the following variables. First, I compute an

aggregate measure at municipality level which contains the number of hospital admissions

of patients from the given municipality on each day. Second, I define a set of admission-

specific variables. I include an indicator for the hospitalisation terminating with a patient’s

demise versus regular discharge, and calculate the length of a hospital stay in days. I also

compute the cost of hospitalisation using DRG tariffs according to Equation A2, and

calculate the ratio between admission cost and number of medical procedures executed on

a patient. Procedures count alone importantly abstracts from the complexity of treatment

received and is not fully representative of the burden sustained by the healthcare facility.

Conversely, the ratio defined aims to capture a monetary form of complexity associated

with the hospitalisation: patients exhibiting higher cost per procedure are assumed to

require more cost-intensive treatment. For brevity, I refer to this measure as “cost-to-

procedure”. Finally, I use another proxy for severity derived from a measure provided

by the SDO database to gauge the complexity of the hospitalisation. This measure is

expressed by a relative weight assigned to DRG codes, relating the average costs of treating

patients within one DRG to the average costs of treating all patients included in the DRG

system in Italy (Cots et al. 2011).29 The variable takes value one when the score exactly

coincides with the national average. Relative weights of 2 and above are considered serious

instances.

To study the impact of manure application through secondary PM emissions, I fo-

cus on patients hospitalized for respiratory and cardiovascular medical conditions. The

SDO database is organized according to the International Classification of Diseases, Ninth

Revision, Clinical Modification (ICD-9-CM) 2007. I select all patients which display as

either primary or secondary diagnosis a disease of the respiratory system (ICD 460-519),

a disease of the circulatory system (ICD 390-459), or a malignant neoplasm of respiratory

and intrathoracic organs (ICD 160-165). This includes 173,405 patients between 2016 and

2019, 83,675 of which are hospitalised during spreading windows. I differentiate between

urgent and non-urgent (regular) patients. Despite regular admissions being scheduled in

advance, usually in accordance with patient’s and practitioner’s needs, the health facility

maintains the right to reschedule an hospitalisation in order to prevent overcrowding. As

29The relative score assigned to DRG categories in Italy is listed in the Ministerial Decree 18/12/2008.
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such, fluctuations in the number of urgent admissions required could reflect in variability

of regular hospitalisations, and vice-versa.

Table 3 summarizes the main characteristics of the healthcare data. R&CD admissions

during spreading windows constitute slightly more than 10% of the total in winter months,

and around 3.7% of all admissions in the years considered. Spreading window days show

negligible aggregate differences in terms of patients average age, sex, and hospital mortality

rate. Also financial variables show little difference between the selected sample and the

overall population of patients. An average weight of 1.3 shows how the average cost of

R&CDs, calculated between 16.5 and 17 thousands euros, is generally higher than the

average over all DRG codes. Figure 5 shows instead the distribution of hospitalisations

across healthcare facilities in the region. Each bubble pinpoints a facility, with size being

proportional to the number of patients admitted for R&CD, and blue shade indicating

generally larger hospitals in terms of treated patients. With few exceptions, the map

shows possibly unsurprising positive correlation between overall capacity of the facility

and hospitalisations for respiratory and cardiovascular conditions. Furthermore, while

the largest number of admissions is once again registered in the Milan area, several large

facilities also exist in the area with higher livestock concentration.

5 Results

5.1 Manure Spreading on Air Quality

Panel [A] of Figure 7 reports the estimated pre- and post-treatment coefficients from

Equation 1, with the natural logarithm of PM2.5 concentrations as outcome of interest.

Coefficients for days before the window opening period are reported to visually inspect

the absence of clear pre-trends. Even after conditioning for weather conditions and their

interaction up to the third lag, a clear jump in PM2.5 levels emerges when spreading

windows are opened. Pre-trend coefficients are considerably lower in magnitude, and lose

significance when standard errors are clustered at station level. I perform an F-test in the

spirit of Borusyak & Jaravel (2017), who suggest to drop any two pre-trend terms (usually,

the omitted categories as far apart as possible, in my case four and one day before the

event) and perform an F-test on the remaining ones. The p-value for the test (reported

in Panel [A]) barely rejects absence overall significance at 5% level, and fails to reject at

1% level. Conversely, coefficients for the first 3 days remain strongly significant even after

conservative clustering and the addition of municipality monthly trends.

The magnitude of the effect of manure application in days of relaxed prohibitions is

estimated under the assumption of absence of pre-trends, setting the coefficients for days

prior to the opening window day to zero. I report the estimates of static (Columns 1 to

3) and semi-dynamic models (Columns 4 to 6) in Table 4. Static model estimates show

an increase between roughly 26.9% and 27.4% in PM2.5 concentrations, extremely stable

across specifications. This correspond to around 7.24 to 7.30 µg/m3.30 Semi-dynamic

30Results for the same models estimated without log transformation of PM2.5 concentrations are reported
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estimates highlight a monotonic increase in the impact of manure application on PM

up to the third day after a window opens, with a peak at more than 40% after three

consecutive spreading days. The impact also appears to fade out quickly, decreasing to

roughly a 8.2% increase on day five, with once again relative stability across specifications.

Panel [B] in Figure 7 reports the estimates for the interaction terms in Model 2b.

The estimated coefficients follow an increasing path, with the the effect of a manure

application expected to be larger for municipalities where livestock is more concentrated.

When a spreading window is open, a municipality in the highest decile of the distribution

of livestock units, PM2.5 concentrations is expected to experience an increase between

7% and almost 10% higher than a municipality in the lowest decile. The effect is also

substantially stable to weighting livestock units by animal-specific manure production.

The results of estimating the same models using log concentrations of pollutants other

than PM2.5 as outcome are listed in Appendix. PM10 exhibits a similar trend (Figure

E.10), possibly unsurprising thinking that this measure also includes PM2.5 particles.

Pre-trend coefficients tend to oscillate more, but this could be due by the concurrence

of a higher number of sources in the formation of PM10 compared to fine particulate

matter. Conversely, it is found no impact of spreading windows on the levels of pollutants

likely unrelated to farming activities, such as ozone and sulphur dioxide (Figure E.12).

The coefficients of interest follow no specific patterns, with scattered significance: positive

peaks both to the right and to the left of the opening window period. The increasing

pattern of the interactions with livestock concentration indicators also disappears.

As the correlation with rainy events and temperatures implied by the regulatory frame-

work on manure application, despite extensive controls, may pose some concerns regarding

the presence of omitted confounders, I further assess the robustness of the results using a

placebo test which looks at rain events disregarding manure spreading prohibitions. The

regulation imposes no spreading during rainy days, and the day immediately after. As-

suming that rainfall is the primary driver of the effect on PM concentrations, one may

expect to observe a similar increment every time rainfall follows the same pattern under-

lying the presence of spreading windows. Hence, I restrict the sample to what I define

as “rain windows”, rainy days followed by seven days without precipitations. These, per

regulation, are viable over which a spreading window as defined in my sample may take

place. To make sure that rain windows are not perfectly overlapping with spreading win-

dows, which would nullify the scope of this exercise, I focus on the months not regulated

by bulletins (October, December, January and March), where spreading windows are less

likely to occur. I then newly estimate Equation 1, where the discontinuity is now set two

days away from the rainy event. The results reported in Appendix (Figure E.11) show

no similar pattern to the one observed for spreading windows, as coefficients appear not

significant, fluctuating in magnitude.

in Table D.2 in Appendix. Log transformation does not impact significantly the magnitude and sign of
the estimates.
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5.2 Manure Spreading on Health Outcomes

I explore three sets of results that highlight how of spreading-induced air pollution spikes

constitute an active threat to individuals. Table 5 reports the estimated coefficients of

the static model, where the outcome investigated is now the number of urgent hospital

admissions. The estimation comes with the challenge of municipalities (i.e. patients

resident in a municipality) recording zero admissions in several periods, with the fitting

zero-inflated models through linear regression often results in unreasonable fit (Greene

1994). To overcome this concern, I first estimate a linear model using day-municipality

observations with strictly positive hospital admissions (Columns 1 to 3). Second, I compare

these results to the same coefficients estimated on the overall sample through the Poisson

model in Equation 4 (Columns 5 to 8). The Poisson model requires minimal assumptions

on the data distribution, and can account for the many zeros entries in the number of

hospitalisations at day-municipality level. Controls and fixed effects are the unchanged

from previous regressions. Columns 1 and 2 show how daily admissions during positive PM

spikes are expected to be higher by roughly 0.04 units, around 2% increase with respect

to the average number of daily admissions. Since PM concentrations are found to peak

around the third consecutive day of manure application, the effect of the spike may be

stronger towards the end of opening period. To explore this possibility, in Columns 3 and

4 I restrict the sample to observations that are at least two days apart from the cutoff

date.31. The effect of manure application is even stronger comparing days further apart,

since daily admissions now increase by around 0.1 units, with the coefficient significant.

The existence of a partial lag in the response of R&CD admissions is also confirmed by

estimating the semi-dynamic model (Figure 8). Despite reduced statistical power induced

by adding more indicators to the regression, the highest impact is observed on the fourth

days into a spreading event, with the coefficient peaking at around 1.08 (Panel A). The

same trend is not observed for non-urgent hospitalisations, which are not expected to react

to the spike, with coefficients oscillating around zero, never meeting significance at 5% level

(Panel B). The pseudo-Poisson estimates show comparable results: lifted prohibitions are

associated with an increase in daily urgent hospitalisations by a factor of around 1.046 for

the entire sample, and between 1.132 and 1.145 then restricting to days away from the

cutoff.

Table 6 illustrates the second set of results concerning mortality at discharge. Model 2

is estimated using the probability of hospital mortality as outcome measure. To enhance

interpretability of the coefficients, I use a linear probability model, which also allows

to control for a more comprehensive set of fixed effects more easily32. Columns 1 to 3

show a 0.7% to 1% increase in the probability of hospital mortality for patients admitted

31The reason for excluding days close to the threshold symmetrically must be traced in the definition of
spreading window. By considering a spreading event as the five days preceding or following the start of a
prohibition period, a lag in the impact of PM spike could confound the effect both in days preceding and
following the observed cutoff.

32The estimated effect is comparable in magnitude to the one obtained at the mean of all continuous
controls in a fixed-effects logit model employing the estimation routine on the pseudo demeaning algorithm
developed by Stammann et al. (2016).
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during spreading events. This could be the result of the increased number of urgent

patients hospitalised as spreading windows open, that is a change in the composition

of hospitalisations toward patients in more severe conditions. Still, focusing on urgent

patients only in Columns 4 to 6 leads to comparable coefficients, with slightly reduced

statistical significance due to losing roughly half of the observations. Hence, even urgent

hospitalisations appear more likely to result in a patient’s demise when the individual is

admitted during a PM spike.

Third, Table 7 shows the estimated impact of manure application on treatment costs

and severity. I again separate between the entire sample of patients (Panel A) and urgent

admissions only (Panel B)33. First, I investigate the effect on the duration of hospital

stay in days (Columns 1 and 2). While the negative sign may arise from the highlighted

increased mortality rate during hospitalisation, the coefficient for the threshold indicator

is never significant and rapidly decreases in magnitude when a more extensive structure of

fixed effects is imposed. A comparable patterns is observed for urgent patients. Looking

at the ”cost-to-procedure” indicator in Columns 3 and 4, there seem to be no significant

difference in the average pricing per procedure between patients hospitalised before and

after spreading events, although the effect estimated for urgent patients is now stronger

in magnitude. Similar considerations apply for the total cost of hospitalisation: the coef-

ficients, while mostly positive and higher for urgent patients, are never significant at 5%

level (Column 5 and 6). Lastly, in line with the previous results, the relative financial

weight calculated displays positive but non-significant coefficients (Column 7 and 8). The

absence of evidence for differential estimated treatment costs per patient during spreading

events may have multiple explanations. Firstly, the use of tariffs as an approximation of

the cost faced by the healthcare facility may not capture relatively small fluctuations at

the margin. Indeed, in a scenario in which the impact of spikes in PM concentrations

following manure spreading is not substantial enough to increase the duration of hospital

admissions over the DRG-specific threshold, heterogeneous resource utilization spurring

from difference in health conditions of inpatients will not result in an increased compensa-

tion for the hospital. Moreover, again under the assumptions that higher concentrations

of airborne pollutants may not induce severe complications in the majority of patients,

healthcare facilities may discharge patients in non-critical conditions also on the basis of

budgetary decisions, and the data at hand would not capture general health status at

discharge. Being specific to a DRG code and not a single patients, even relative weights

may fail to capture any effect on healthcare expenditure per patient, especially under the

assumption that increasing PM concentrations will not shift hospital admissions towards

diseases with more expensive estimated cost of treatment. While not able to dispel any

doubt, these results point towards the existence of no detectable difference in the cost per

hospital admissions between outside and during spreading events.

To further ensure my strategy is not capturing underlying trends in hospital activity

potentially correlated with winter spreading activities, I propose a placebo test that repeats

33The results are mostly unchanged when excluding hospitalisations terminated with the patient’s de-
cease.
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the same estimation using diseases that are not directly associated with fine particulate

matter. I include digestive system diseases (ICD 520-579), genitourinary diseases (ICD

580-629), and musculoskeletal diseases (ICD 710-740). Whereas these pathologies could

still be tangentially correlated to fine PM concentrations,34 their sensitivity is expected to

be much lower, and a comparable effect would rather indicate the presence of underlying

omitted factors. The results are condensed in Table D.1. Most of the coefficients are

not significant and tend to oscillate between positive and negative. The only recognizable

pattern is an observed decrease in hospital admissions, which is however considerably

lower in magnitude compared to the effect estimated for R&CD. This may be due to the

endogenous response of medical facilities, which may choose to delay or relocate admissions

in other departments due to resource constraints (e.g. medical staff, operating rooms, etc.)

and limited capacity, although this result is not robust. No upward trend in admissions,

as well as no increased mortality from patients in other departments is detected, which

reinforces the belief that PM spikes are indeed responsible for the deterioration in R&CD

patients’ conditions.

6 Medical Costs Associated with Manure Application

The results have shown the role of manure application in indirectly influencing the hospital

activity and patients’ wellbeing through PM emissions. This, in turn, implies a cost for the

Italian NHS. I propose a simple back-of-the-envelope calculation to quantify the monetary

implications short-term impact of winter spreading activities. This analysis does not

encompass the entire cost of manure application borne by Lombardy’s population, as

it does not account for the potential long-term impact of PM exposure, as well as the

presence of symptoms and morbidity not captured by my data as not severe enough to

require hospital assistance. As such, this is to be considered an attempt to identify a lower

bound to the overall economic cost of manure application in the region. Further research

may expand this result with additional evidence on the health concerns of livestock-related

emissions other than hospitalisation.

I proceed in two steps. First, the estimates obtained suggest that daily urgent R&CD

hospital admissions at the municipal level increase by a factor of 1.04 to 1.145 in response

to spreading events. In the 4-year period considered, Lombardy has recorded 355,611

urgent admissions during winter months. Given that spreading activities are allowed 30

out of 120 days, i.e. 25% of winter days, I estimate the average yearly R&CD hospi-

talisations induced by manure spreading through a simple linear calculation. I find that

spreading is responsible for 977.4 to 2814.6 yearly R&CD hospitalisations. This approach

rests on the assumption that the effect obtained using a 5-day cutoff is unchanged for

windows of different temporal durations. Under the hypothesis that PM may have a more

severe and non-linear impact on individuals as exposure to high concentrations is pro-

longed through time, the impact may vary depending on how prolonged and/or isolated

34It is argued in the literature that PM could have an immunosuppression function and create systemic
inflammation (Maŕın-Palma et al. 2023).
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manure application opportunities are. Yet, given the tendency of the regulator to lift

spreading prohibitions for consecutive days, taking advantage of favorable weather condi-

tions observed in the data, this assumption is deemed suitable for the purpose of my cost

analysis. As my estimates show no sign of systematic cost differences of hospitalisations

during spreading events, I calculate the additional healthcare expenditure resulting from

increased hospital activity using the average cost per urgent R&CD admission, set at 17.1

thousand euros. This leads to a 16.7 to 48.1 million euros expenditure increase per year.

Second, I provide a monetary value to the increase in hospital mortality induced by

spreading activities. Given the impossibility of following patients after their discharge in

the data, pinpointing with precision the average life expectancy of an individual previ-

ously hospitalized for a R&CD disease requires some assumptions. INdeed, I rely on life

expectancy at birth, set at 78.9 years for men and 83.9 years for women35, as a counter-

factual to estimate the total of years of life lost in my sample due to spreading activities.

Between 2016 and 2019, a total of 20,096 male and 17,633 female casualties upon R&CD

hospitalisation took place in winter months, averaging respectively 5024 and 4408 per year.

Using the estimated effect in Table 6 and assuming a mortality rate increase by 0.7% to

1% for 30 out of 120 days per year, I calculate a total of 8.8 to 12.6 male and 7.7 to 11

female yearly casualties imputable to manure application. These numbers alone, however,

cannot inform on the actual loss in terms of years of life. To derive a total of years of

life lost (YLL), I use the gender-specific probability of death upon R&CD hospitalisation

for one-year population age groups, computed as the ratio between casualties per age

group over total hospital mortality in winter months36. I then calculate years of life lost

according to the following expression:

YLLg =
1

4

90∑
k=0

min
[
Expg − k, 0

]
·Dthg ·

Dthg,k∑90
k=0Dthg,k

(5)

where Dthg,k is the number of casualties in age group k of patients of gender g and Dthg
the average yearly casualties in R&CD departments. The number of inferred casualties in

each age group is multiplied by the corresponding expected life span, given life expectancy

at birth (Expg).
37

The calculation of years of life lost leads to a yearly total between 86.3 and 123.3. I

multiply this number by the value of a statistical life year (VSLY). Conventionally assumed

in the literature at 100,000 US dollars (Cutler 2005), a more recent review of European

35Source: ISTAT, Statistical survey of ”Deaths of resident population” (Istat/P.5)
36The weights distribution can be found in Figure 9.
37Using life expectancy at birth of the general population may overestimate the years of life lost im-

puted to young cohorts, under the assumption that history of R&CD hospitalisation may shorten the life
expectancy of individuals. Conversely, this strategy necessarily underestimates the years of life lost of
cohorts older than the life expectancy threshold, as these individuals will be mechanically imputed a loss
of zero. In the absence of any post-discharge information, and given the heterogeneous set of diseases con-
sidered, this calculation can still constitute a reasonable approximation, also considering that the inverted
U-shaped relationship with age exhibited by the value of statistical life (VSL) in the literature (Aldy &
Viscusi 2008).

23



studies by Schlander et al. (2017) sets this number at 158,448 euros for continental Europe.

I thus obtain an estimated cost of 13.8 to 19.5 million.

Altogether, the back-of-the-envelope calculation performed in this section shows an

immediate burden on Lombardy’s healthcare system spurring from short-term exposure

to high PM concentrations, ranging between 30.9 and 67.7 million euros, which sets around

0.8% to 1.8% of the yearly gross value added by the agriculture industry in the region.38

7 Counterfactual Simulation: Air Pollution with PM targets

7.1 Theoretical Framework

The evidence presented in this paper highlights the importance of combining water quality

preservation with curbing the impact particulate of matter emissions generated by manure

management activities. In 2021, the regional regulator partially acknowledged this concern

by adding manure spreading among the prohibited economic activities when temporary

measures of air pollution control are in place. As argued throughout the paper, while

recognizing spreading as an additional source of air pollution, this policy does not elevate

PM concentrations as a driver of manure management activities, but rather as an addi-

tional and hardly stringent constraint. However, it is not obvious if, and how, different air

pollution targets for farmers should be introduced and what could be the potential gains

of bringing PM concentrations into the picture without neither limiting farming activities

or improving the current technology for livestock waste disposal.

In this Section, I propose and test the performance of an alternative prohibition scheme

that combines the objectives of water- and air-quality preservation, aiming to improve the

externalities of management of manure spreading without limiting farmers’ activity. The

objective of this simple exercise is to minimize the number of days exceeding levels of

PM2.5 unhealthy for sensitive groups, set at 35 µg/m3.39 The key idea behind this pro-

cedure is that a more flexible and comprehensive decision rule of spreading prohibitions

could optimally target days of foreseen higher PM concentrations, relieving restrictions

when pollutants’ levels are expected to be low, conditional on suitable weather conditions.

As such, the problem entails a decision rule under constraints, amid imperfect predictabil-

ity of PM levels in future weather conditions. To this aim, the winter prohibition scheme

implemented in the Lombardy region, and in other countries in a similar fashion, appears

unnecessarily rigid. The long two-month prohibition interval between December and Jan-

uary reduces flexibility and limits the ability of authorities to allocate spreading windows

according to multiple types of goals. I abstract from this constraint in my simulated

exercise.

I approach the problem in two steps. First, I evaluate the reduction in days character-

38Total value added calculated at chain linked prices (reference year 2015). Source: ISTAT - National
Accounts regional main aggregates

39This value is defined according to the standards for the Air Quality Index (AQI) set by the US
Environmental Protection Agency (EPA). The threshold was adopted after the revision of the Clean Air
Act in 2006. See 71 FR 61144 Oct 17, 2006.
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ized by hazardous levels of PM (henceforth, HL days) using a decision rule under perfect

forecasting. That is, I use data on pollutant concentration, rainfall, and temperature over

my sample period under retrospective allocation of prohibitions days by the regulator.

This exercise is an abstraction from the true decision-making process of the regulator,

which inevitably can only have a reasonable guess on what will be weather conditions

and PM levels in the future. Yet, the strategy is useful to define the maximum reduction

achievable through redistribution: the optimum achieved under imperfect forecasting can

only approach (but likely never reach) the optimum determined under perfect forecasting.

In turn, this helps determine the gains to be expected as precision in forecasting increases.

The allocation problem can be solved through a standard linear programming allocation

algorithm, regulated by the following set of equations:

min
D

T∑
i

f(Di) =

T∑
i

(L1i + L2i ·Di) (6a)

s.t.
∑
i

Di =
T

4
= W, (6b)

Di <= (1− 1 (Ri > 0))− ε, (6c)

Di <= (1− 1 (Ri−1 > 0)) + ε, (6d)

Di <= 1 (Ti > 0) · ε+ 1 (6e)

where Di is our decision binary variable taking value one when spreading is allowed,

zero otherwise. L1i is an indicator taking value one whenever PM levels exceed hazardous

levels in the absence of spreading. This entails calculating counterfactual concentrations

in days when spreading is observed in the sample. Formally, L1i on day i is calculated as

follows:

L1i = 1
{
PMi − η̂0PMi ·Di > κ̄

}
Conversely, L2i is an indicator taking value one whenever spreading induces PM concen-

trations to exceed HL under our counterfactual scenario. Formally:

L2i = 1
{
PMi + η̂0PMi ·Di > κ̄ > PMi − η̂0PMi ·Di

}
1 (Ri > 0) and 1 (Ti > 0) are two indicators taking value one when respectively positive

rainfall and average daily temperature below 0◦C are observed on day i. Given ε ∈ R+
0 such

that ε → 0, conditions 6c to 6e ensure that spreading cannot be allocated in rainy days

and the day immediately after, and in days when the air temperature entails the risk of

frozen ground. Condition 6b are integrates in the problem the 90-days winter prohibition

period already imposed by the regulator. Finally, β̂ represents the counterfactual average

effect of spreading activities on PM levels, which is retrieved through the estimation of

Equation 2, at 7.8 µg/m3.40

40The estimated η̂0 value is reported in Table D.2 in Appendix.
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In the day-to-day reality of spreading management, counterfactual PM concentra-

tions cannot be possibly measured retrospectively. A more realistic representation of

the decision-making process faced by the regulator implies introducing uncertainty in the

model. Specifically, to represent the allocation problem of a forward-looking policymaker,

the model needs to incorporate forecasts about future levels of PM. There exist multiple

examples of predictive models for PM levels in the literature, each presenting a series of

advantages and drawbacks (Gianquintieri et al. 2024). In this paper, I employ a class of

Bayesian spatio-temporal models, which exploit the geographically referenced and tem-

porally correlated nature of pollution data, allowing for a minimal set of context-specific

assumptions in terms of regional geography (Banerjee et al. 2003, Sahu 2022). Bayesian

modeling assumes PM concentrations in site si and time t to depend linearly on a set

of regressors, accommodating for time-varying coefficients, as well as a random process

(ω(si, t)) and a pure error term (ϵ(si, t)) independent across time and space.

PM(si, t) = X′(si, t)β(si, t) + ω(si, t) + ϵ(si, t), i = 1, . . . , n t = 1, . . . , T (7)

Given a moderately large number of locations (i.e. municipalities) in my data, model fit-

ting involves large dimensional matrices. As such, I estimate the model using a Gaussian

Predictive Process (GPP) proposed by Sahu & Bakar (2012), which defines an autore-

gressive structure of the random effects at a smaller number of locations (knots), and

then predicts those random effects at the data and prediction locations via interpolation

(Kriging method). Methodological details on the GPP model choice and the forecasting

methodology can be found in Appendix (Section D.1).

As observable regressors, the model employs the same set of weather covariates used

in other specifications. To forecast PM levels, it is assumed that expectations of weather

conditions coincide with their true value up to three days in the future. This assumption

simplifies the reality of weather forecasting, which is usually estimated with partial error41.

Yet, given the absence of systematic bias in weather forecasts, the prediction error on

weather variables is considered a zero-mean random variable, i.e.

T̃i+1 =Ti+1 + ui+1

E
[
T̃i+1

]
=E [Ti+1 + ui+1]

=Ti+1 + E [ui+1] = Ti+1

(8)

This assumption allows to importantly simplify the algorithm by taking the observed

future values of weather regressors as a proxy for forecast values. On the other hand, it

necessarily abstracts from inaccuracies in weather forecasts, with implications that will be

discussed in the next paragraph.

41The Italian Air Force Meteorological Service estimates that temperatures are normally predictable
through weather forecasts within a confidence interval of 4 degrees Celsius up to 72 hours in the future.
Wind speed and the probability of rainfall are estimated respectively with a 5 m/s confidence interval and
an accuracy of 90%. See https://www.meteoam.it/it/rmsc---general-information.
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The forecasting of PM levels comes with considerable error.This is related to the id-

iosyncratic shocks affecting air quality that are not captured by simple weather conditions.

As such, my spatio-temporal model does not possess enough precision to simply apply the

static algorithm in Equations 6a to 6e substituting actual with predicted values. Instead,

I propose a refined dynamic optimization algorithm that compares the predicted daily

levels of PM with a reasonable benchmark, identified with the monthly average of the

previous year. The rationale behind this approach is to recognize days in which weather

conditions are more favorable to limit emissions from spreading and prioritize allocation

to those days. Formally, let a location s0, and let the forecast level of PM at time i + k

given by

P̂Mi+k = Φ
(
X′

i+k(sj ̸=i), ωi+k(sj ̸=i)
)

(9)

In addition, let PMi be the corresponding monthly average PM concentrations at time i in

the previous year. Allocation is determined by solving the following dynamic optimization

problem:

min
D

V (Di) =

T∑
i

g(Di) =

T∑
i

(Di + wi) exp
[
PMi − P̂Mi

]
(10a)

s.t.
T∑
i

Di =
T

4
= W, (10b)

Di <=
(
1− 1

(
E
[
R̃i

]
> 0

))
− ε, (10c)

Di <= (1− 1
(
E
[
R̃i−1

]
> 0

)
) + ε, (10d)

Di <= 1
(
E
[
T̃i

]
> 0

)
· ε+ 1 (10e)

where wi is a time-varying penalty score that depends on the number of days allocated up

to period i, i.e.:

wi =

−1 if T − i ≤ W −
∑

iDi

1− T/W(
∑

i W−Di)
T+1−i−(

∑
i W−Di)

if T − i > W −
∑

iDi

(11)

Despite adding complexity to the problem, this formulation of wi ensures that the payoff of

allowing a spreading day increases when the number of days still to be allocated increases

relative to the days remaining till the end of the period, up to the point of forcing allocation

regardless of predicted levels of PM when the end period is approaching and constraint

10b has yet to be met42.

The algorithm is solved via dynamic programming. The three-day assumption on

forecast precision of weather covariates conveniently mimics the frequency of bulletins

issued by the authority (between 3 and 4 days). As such, the problem is solved iteratively

in intervals of three days. After solving the algorithm, I then compare the number of HL

42Penalty weights are plotted in Section D.
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days obtained under the optimized allocation with the actual number between 2016 and

2020.

7.2 Simulation Results

The results of the allocation algorithms under perfect forecasting and prediction uncer-

tainty are summarized in Table 8. Supplemental material and additional results of the

simulations are detailed in Appendix (Section D). The exercise is repeated separately for

each winter excluding 2019-20, year in which the number of actual prohibition days was

reduced since spreading was exceptionally allowed in December as an emergency response

to farmers exceeding storage capacity. In turn, this complicates the comparison with the

simulation algorithm. The Table reports the number of days exceeding hazard levels (HL)

and days allocated to spreading (Spread) by climate zone under the current scenario and

compares them to the new allocation under perfect and imperfect forecasting. The number

of days allocated using the algorithm is higher in both simulations. In the case of perfect

information, the discrepancy originates from imperfect compliance with actual regulation

in the sample, i.e. prohibitions being extended over 90 days. With imperfect information,

this is also due to the tendency of the algorithm to overshoot by one to two days, which

is related to the discrete nature of recurring intervals over which optimization is achieved,

and the strong penalty assigned to missing out on the allocation of at least 30 days.43 In

those instances where the algorithm allows more spreading days, I reconcile the number

of HL days to be expected with fewer prohibitions involved by using the average yearly

probability of a spreading day exceeding hazard levels. For the current allocation, the

table also reports violations (Column 4), that is days where the weather constraints are

not met (either rainfall during the current day or the day before or temperature below

the zero mark), but manure application was allowed. I exclude from the calculation mu-

nicipalities where PM levels never exceed hazard levels throughout the year. Moreover,

I exclude municipalities where weather conditions are such that the restrictions imposed

on temperature and rainfall impose more than 90 days of prohibitions regardless of air

pollution levels.

First, looking at the results for the allocation under perfect forecasting (Columns 4 to

7), it emerges how targeting PM concentrations alongside other regulatory objectives could

potentially reduce HL days in the region by around 10.1 to 14.1 percentage points every

year. This only represents an upper bound to the maximum abatement achievable and does

not inform on how a prohibitions redistribution scheme may perform without the luxury

of knowing PM concentrations in advance. In fact, the results under imperfect forecasting

(Columns 8 to 11) are far less stunning in terms of HL days reduction. The percentage

variation after accounting for partial overshooting (Column 11) oscillates between positive

and negative across climate zones. A modest net gain (i.e. a reduction in HL days) is

achieved in winter 2016 and 2018 (around 0.8% in both years), whereas in the winter

43For instance, if the number of days allocated by the last 3-days forecast window is still 29, the algorithm
will consider all possible remaining days as suitable for spreading, allowing up to 32 days. See Appendix
for more details.
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season of 2017 the algorithm even induces an increase in the HL days, although this is

partially justified by that winter having significantly more violations, induced by a wetter

and colder season.

Overall, it seems that the refined spreading scheme is not particularly more suitable

for keeping PM concentrations within safe levels through simple redistribution, despite the

theoretical existence of at least some more room for reduction demonstrated by the static

minimization results. This, in turn, gives rise to two considerations. First, the discrepancy

between perfect forecasting and allocation of prohibitions under uncertainty implies some

room for further improvement in the design of environmental policies regulating manure

application. To bridge the gap between the two algorithms, more sophisticated models

could be considered to predict PM levels with increased precision. Second, there is only

so much that including PM targets can do without any complementary policy action in

the farming industry. A perfectly informed management of spreading prohibitions could

reduce HL days by around 10%, and even in this scenario, one out of four days would

still exceed the danger threshold set for PM concentrations. Alternative measures exist

for policymakers to address the concern of secondary emission from manure application,

including subsidizing the adoption of best available technologies (e.g. manure injector

units) and other mitigation practices (e.g. feeding formulation adjustment) that encompass

not only the application phase, but also production and storage (Yan et al. 2024).

8 Discussion and Conclusion

Understanding the implications of manure management activities for air quality is essential

for crafting adequate environmental conservation policies and protecting the population

from unsafe exposure to pollutants. Yet, it is difficult to perform a residual analysis able

to isolate the impact of animal waste disposal, given the presence of multiple confounders

and simultaneous sources of airborne pollution. Moreover, uncertainty surrounding the

toxicity of different PM chemical species makes it even more cumbersome to infer the

hazard imposed by organic fertilizers on human health.

My study exploits the unique regulatory framework of the Lombardy region in Italy to

isolate the causal effect of manure spreading on PM concentrations. I find a substantial

effect on PM levels, stronger in areas where farming animals are densely concentrated. I

also find spreading activities negatively affect health, increasing by a small yet relevant

amount of urgent respiratory- and cardiovascular-disease-related hospitalisations and on

the mortality rate of patients at discharge. I calculate this effect to account for an imme-

diate financial burden on health care facilities and individual of as much as 37.14 million

euros per year. This effect does not take into account the economic cost of long-term re-

peated exposure to PM spikes, in addition to potentially submerged costs from individual

morbidity and sickness not resulting in hospital admission. In this regard, the findings

in this paper are in line with the evidence of epidemiological studies showing association

between inorganic aerosol particles, respiratory and cardiovascular diseases and mortality

(Dockery & Pope 1994, Lippmann & Thurston 1996, Chen, Xu, He, Wang, Du, Du, Qian,
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Ji & Li 2018, Joshi et al. 2022).

I conclude my analysis by investigating the potential gains of a more flexible spreading

scheme, which incorporates the minimization of winter days with PM2.5 concentration

exceeding the hazard levels into the utility function of a recursively optimizing regulator.

Under the assumption of perfect forecasting, the algorithm achieves an average reduction

in hazardous days by around 10%. However, using value function iteration by forecasting

future weather conditions and PM levels, the new spreading scheme achieves only negligible

reductions in days when PM is in dangerous concentrations.

The paper highlights an important, yet rather specific type of externality implied by

manure management. Future research should focus on quantifying other aspects of air-

borne pollution from farming, such as milder forms of individual sickness. Simulating the

impact of a more flexible regulation including PM targets in the objective function of the

policymaker calls for more research expanding the results and improving formulas to reg-

ulate spreading and reduce environmental concerns. Finally, the paper did not consider

how different policies may influence farmers’ perception and productivity. Hence, under-

standing the shape and determinants of the demand curve for environmental regulation

in the farming sector constitutes a possible avenue for future research.

30



References

Aldy, J. E. & Viscusi, W. K. (2008), ‘Adjusting the value of a statistical life for age and

cohort effects’, The Review of Economics and Statistics 90(3), 573–581.

Azizullah, A., Khattak, M. N. K., Richter, P. & Häder, D.-P. (2011), ‘Water pollution
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Tables

Table 1: Summary statistics - Pollutants and Weather Measures

Full year November - March Spreading windows

Overall Within Between Overall Within Between Overall Within Between

Panel A - Pollutants

PM10 22.61 30.49 34.02

(µg/m3) (16.10) (14.57) (6.85) (18.89) (16.10) (9.88) (21.70) (19.19) (10.27)

[0.2; 205.8] [-9.3; 200.1] [4.7; 36.1] [0.2; 201.3] [-16.2; 187.6] [3.7 ; 53.5] [0.7; 198.0] [-11.2; 187.8] [4.9; 54.7]

PM2.5 18.41 25.75 24.34

(µg/m3) (13.34) (12.42) (4.87) (15.50) (13.40) (7.79) (14.75) (13.27) (6.61)

[0.2; 167.3] [-8.9; 161.9] [4.2; 30.3] [0.2 ; 167.3] [-16.9; 158.8] [3.3; 50.4] [0.4; 137.9] [-9.5; 134.7] [3.9; 45.1]

NO2 23.21 33.06 40.11

(µg/m3) (16.59) (13.30) (9.92) (17.19) (11.98) (12.34) (21.71) (17.54) (12.95)

[0.0; 174.5] [-19.5; 157.7] [1.1; 56.4] [0.0; 148.3] [-16.9; 119.6] [1.8; 68.8] [0.0; 157.6] [-14.5; 139.7] [7.3; 76.7]

Ozone 98.38 61.08 57.57

(µg/m3) (43.87) (43.56) (5.21) (28.84) (27.11) (9.84) (18.92) (16.22) (9.80)

[1.9; 370.8] [-3.0; 376.0] [79.2 ; 112.8] [1.9; 359.5] [-6.2; 359.2] [38.7; 90.5] [6. ; 263.3] [3.2; 252.1] [34.9; 86.8]

SO2
∗ 2.51 2.90 2.86

(µg/m3) (2.34) (2.10) (1.03) (2.54) (2.33) (1.01) (2.45) (2.17) (1.14)

[0.0; 204.5] [-3.0; 201.7] [1.4; 5.6] [0.0; 204.5] [-2.8; 201.8] [1.8 ; 5.7] [0.0; 64.3] [-3.2; 61.1] [1.4; 6.0]

Panel B - Weather

Temperature 13.15 5.35 7.13

(◦ C) (8.32) (8.04) (2.16) (4.25) (3.90) (1.70) (4.05) (3.77) (1.53)

[-18.7 ; 37.3] [-13.3 ; 42.0] [0.5 ; 15.9] [-18.7 ; 21.3] [-14.6 ; 20.9] [-6.2 ; 8.3] [-16.5 ; 23.3] [-6.7 ; 23.0] [-3.3 ; 9.8]

Rainfall 0.15 0.12 0.05

(mm) (11.29) (11.28) (0.27) (11.00) (10.99) (0.43) (0.74) (0.74) (0.08)

[0.0; 3,250.8] [-2.1; 3,248.7] [0.0; 2.3] [0.0; 2,812.8] [-4.5 ; 2,808.3] [0.0; 4.7] [0.0; 255.5] [-2.5; 253.1] [0.0; 2.5]

Wind Speed 2.25 2.13 1.96

(m/s) (1.34) (1.12) (0.73) (1.51) (1.28) (0.80) (1.43) (1.26) (0.68)

[0.0; 26.3] [-3.7; 26.7] [1.0; 6.5] [0.0; 26.3] [-4.5 ; 26.5] [0.8; 7.1] [0.0; 20.5] [-2.8 ; 19.2] [0.7; 6.2]

Wind Direction 178.87 189.17 187.97

(Degree (◦)) (108.81) (103.42) (33.95) (110.65) (102.94) (40.63) (110.89) (105.63) (33.80)

[0.0; 360.0] [-86.5; 484.9] [53.9; 266.4] [0.0; 360.0] [-101.5; 506.7] [42.2; 292.6] [0.0; 360.0] [-96.4; 473.1] [73.3; 298.0]

Radiance 158.96 80.63 71.90

(W/m2) (103.09) (102.74) (8.39) (59.85) (59.54) (6.09) (44.90) (44.46) (6.33)

[0.0; 1,156.7] [-22.8; 1,147.4] [115.4; 181.7] [0.0; 545.9] [-19.3; 544.6] [40.3; 102.4] [0.0; 321.8] [-22.4; 317.3] [32.9; 94.5]

Humidity 73.90 80.47 81.90

(%) (16.62) (16.00) (4.50) (18.60) (16.79) (8.02) (16.43) (15.20) (6.28)

[0; 100] [-8; 111] [63; 82] [0; 100] [-12; 123] [56; 93] [0; 100] [-6; 122] [57; 91]

PBLH 1.65 0.38 0.41

(km) (1.44) (1.44) (0.11) (0.35) (0.34) (0.07) (0.38) (0.37) (0.09)

[0.0; 5.7] [-0.2; 5.8] [1.3; 1.8] [0.0; 3.1] [-0.1; 3.2] [0.2; 0.5] [0.0; 3.1] [-0.1; 3.0] [0.2 ; 0.6]

Notes: summary statistics report mean values, standard deviation (in parentheses), minimum
and maximum value (in brackets). Statistics are reporting including all municipality-day
observations from 2016 to 2019 (2046920 obs.), months from November till March (848808
obs.), and only spreading window days (111050 obs.).
∗ Data on SO2 are only provided by ARPA at station level. Municipality-level estimates have
been computed through interpolation, i.e. distance-weighted average of 4 closest stations.

37



Table 2: Summary statistics - Livestock

Animal Livestock Units Farms Weight

Chicken 45,985.8 1.6 0.34

(116,685.7) (2.5)

[0;3,616,334] [0;21]

Cow and Beef 1,040.2 13.4 74.77

(2,402.3) (16.4)

[0;31,517] [0;225]

Sheep and Goat 134.3 10.3 40

(347.0) (13.8)

[0;6,267] [0;192]

Pigs 2,916.5 1.9 76.73

(8,953.3) (3.9)

[0;94,935] [0;46]

Notes: summary statistics report mean values, standard deviation (in parentheses), minimum
and maximum value (in brackets). Column 3 reports statistics for the number of farms per
municipality .
∗ Weights are computed using relative manure daily production in kg, obtained from Hillel &
Hatfield (2005).
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Table 3: Summary statistics - Hospital Admissions

Full year (2016-19) Nov - Feb (2016-19) Spreading windows (2016-19)

R&CD Urgent R&CD R&CD Urgent R&CD R&CD Urgent R&CD

N. admissions 1,831,792 968,667 641,880 355,611 67,979 37,315

Admissions by 2,026.00 1,294.67 714.35 478.85 77.90 54.07

hospital∗ (1,507.95) (821.63) (519.27) (292.73) (57.83) (36.14)

Admissions by 3,302.49 1,918.51 1,143.87 682.68 116.91 62.63

municipality∗ (7,457.50) (4,184.33) (2,588.08) (1,498.93) (257.81) (137.29)

Age 66.08 68.64 65.37 67.07 65.87 68.15

(24.68) (23.72) (27.16) (25.91) (25.15) (24.71)

Female (%) 0.43 0.45 0.43 0.46 0.43 0.45

Italian (%) 0.96 0.95 0.95 0.95 0.96 0.95

Mortality rate∗∗

0-10 3.56 3.63 2.96 2.71 2.83 3.34

10-20 5.72 12.28 5.90 11.68 2.58 6.79

20-30 7.10 22.14 7.52 22.73 9.51 32.93

30-40 10.54 28.43 10.74 28.19 9.49 21.85

40-50 16.51 37.20 16.91 38.75 16.18 37.88

50-60 24.43 49.65 25.20 49.82 25.88 52.96

60-70 32.26 62.90 34.87 64.68 34.10 64.17

70-80 48.78 83.59 54.11 90.02 47.86 81.27

80+ 105.31 137.59 115.35 147.27 105.66 136.73

Total 54.84 89.54

Length 10.82 10.86 10.77 10.77 10.50 10.78

(days) (13.26) (10.39) (13.19) (10.17) (12.16) (9.80)

N. Procedures 3.35 3.55 3.34 3.52 3.32 3.54

(1.72) (1.65) (1.72) (1.65) (1.72) (1.64)

Cost 17.12 17.29 16.81 16.85 16.55 17.13

(thousands euros) (122.82) (139.46) (121.25) (137.15) (108.48) (125.98)

Cost-to-procedure 1.35 0.99 1.32 0.97 1.38 1.08

(thousands euros) (2.20) (2.09) (2.18) (2.07) (2.95) (2.12)

Severity 1.36 1.38 1.35 1.35 1.33 1.37

(weight) (1.30) (1.30) (1.29) (1.29) (1.21) (1.24)

Notes: summary statistics report mean values, standard deviation (in parentheses), minimum
and maximum value (in brackets) for all four years (2016-19), winter months and days of spread-
ing windows only, including respiratory and cardiovascular diseases (R&CD).
∗ Admissions per million of inhabitants.
∗∗ Number of casualties per 1000 admissions.
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Table 4: Effect of spreading windows on PM2.5

Static Model Semi-dynamic model

log(PM2.5) (1) (2) (3) (4) (5) (6)

Window 0.269∗∗∗ 0.274∗∗∗ 0.274∗∗∗

(0.004) (0.004) (0.014)

Day 1 0.221∗∗∗ 0.225∗∗∗ 0.225∗∗∗

(0.006) (0.006) (0.020)

Day 2 0.352∗∗∗ 0.358∗∗∗ 0.358∗∗∗

(0.004) (0.004) (0.014)

Day 3 0.399∗∗∗ 0.406∗∗∗ 0.406∗∗∗

(0.003) (0.003) (0.015)

Day 4 0.137∗∗∗ 0.134∗∗∗ 0.134∗∗∗

(0.002) (0.002) (0.008)

Day 5 0.079∗∗∗ 0.057∗∗∗ 0.057∗∗∗

(0.003) (0.003) (0.017)

Obs 112213 112207 112207 112213 112207 112207

Adj. R2 0.768216 0.802428 0.799565 0.774324 0.809452 0.806691

Weather (extended)

Municipality FE

Municipality-by-month FE

Month-by-year FE

DoW & Holiday FE

Standard errors Rob Rob Clust Rob Rob Clust

Notes: the table reports the estimated η0 from Equation 2 (Columns 1 to 3) and the estimated
ηk coefficients from Equation 1, where pre-trend coefficients are set to zero. Weather con-
trols include temperature, wind direction, wind speed, rainfall, radiance, humidity, and average
planetary boundary layer height, interacted with each other up to three lags. Robust (Columns
1-2 and 4-5) and clustered at sensor level (Columns 3 and 6) standard errors, are reported in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Effect of spreading windows on hospital admissions

Linear model Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Window 0.040∗∗ 0.041∗ 0.046∗∗ 0.048∗∗

(0.020) (0.021) (0.021) (0.021)

Window† 0.104∗∗ 0.102∗∗ 0.132∗∗∗ 0.145∗∗∗

(0.051) (0.052) (0.041) (0.041)

Obs 19,689 19,689 11,587 11,587 80225 80225 46210 46210

Adj. R2 0.94 0.94 0.94 0.95

Dep. Var mean 0.42 0.42 0.42 0.42

Dep. Var mean (>0) 1.81 1.81 1.81 1.81

Weather Contr.

Distant Days

Month-by-year FE

Municipality FE

DoW & Holiday FE

Month-by-prov FE

Window FE

Notes: the table reports the estimated impact of a spreading window on daily urgent R&CD
hospital admissions registered in the five days before and five days after an opening event.
Weather controls include temperature, wind direction, wind speed, rainfall, radiance and
humidity, interacted with each other at up to the third lag. Columns 1 to 4 include only
strictly positive observations for hospital admissions, and are estimated through a linear
model. Columns 5 and 8 include observations with no admissions, and are estimated through
pseudo-Poisson ML fixed effects model.
†: only days at least two days away from the cutoff date are considered to account for
potential lag in the effect of PM spikes.
Standard errors, clustered at municipal level, are reported in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
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Table 6: Effect of spreading windows on hospital mortality

All patients Urgent patients

(1) (2) (3) (4) (5) (6)

Window 0.010∗∗∗ 0.008∗∗∗ 0.007∗∗∗ 0.009∗∗ 0.011∗∗ 0.011∗∗

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

Dep. Var mean 0.063 0.063 0.063 0.108 0.108 0.108

Obs 57902 57900 57844 30090 30090 30038

Adj. R2 0.002 0.063 0.069 0.002 0.057 0.060

Pseudo R2

Weather contr.

Indiv. contr.

Municipality FE

Month-by-year FE

Month-by-prov FE

Hospital FE

Window FE

Notes: The table reports the estimated impact of a spreading window on hospital mortality.
Weather controls include temperature, wind direction, wind speed, rainfall, radiance, humidity,
and average planetary boundary layer height, interacted with each other at time t. Individ-
ual controls include sex, age class, disease. Standard errors, clustered at municipal level, are
reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Effect of spreading windows on length and complexity of stays

Length Cost-to-procedure Total cost Severity (weight)

(1) (2) (3) (4) (5) (6) (7) (8)

All patients

Window -0.148 -0.040 0.011 0.022 -0.417 0.123 0.018 0.006

(0.113) (0.105) (0.288) (0.276) (1.022) (0.991) (0.013) (0.011)

Dep. Var mean 10.061 10.061 4.255 4.255 13.989 13.989 1.335 1.335

Obs 66,771 66,706 55,955 55,900 66,684 66,619 66,772 66,707

R2 0.03 0.23 0.02 0.04 0.01 0.03 0.02 0.28

Urgent patients

Window -0.141 -0.088 0.371 0.513 0.673 1.426 0.015 0.020

(0.125) (0.143) (0.547) (0.580) (1.764) (1.907) (0.017) (0.015)

Dep. Var mean 10.458 10.458 4.482 4.482 14.084 14.084 1.356 1.356

Obs 36,175 36,117 30,058 30,007 36,167 36,109 36,175 36,117

R2 0.05 0.14 0.04 0.07 0.03 0.06 0.04 0.39

Weather contr.

Indiv. contr.

Municipality FE

Month-by-year FE

Month-by-prov FE

Hospital FE

Window FE

DoW & Holiday FE

Notes: The table estimates the impact of a spreading window on indicators of healthcare utilization
and expenditure. Weather controls include temperature, wind direction, wind speed, rainfall,
radiance, humidity, and average planetary boundary layer height, interacted with each other at
time t. Individual controls include sex, age class, disease. Cost-to-procedure and total cost of
hospitalisation are derived from average pricing and reimbursement tables determined at regional
level.
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Table 8: Optimized spreading scheme - summary

Climate zone Current allocation Perfect information Imperfect information

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

HL Spread Violations HL HL* Spread % change HL HL* Spread % change

2016-2017

Alps 972 1050 10 854 854 1050 -12.14 1016 1002 1072 3.09

Central plain 16704 8250 0 15129 15129 8250 -9.43 16722 16630 8396 -0.44

West plain 17134 9780 4 15039 15039 9780 -12.23 16955 16833 9974 -1.76

East plain 2672 1410 0 2450 2450 1410 -8.31 2750 2732 1439 2.25

West Prealps 17693 9750 8 16197 16197 9750 -8.46 17708 17616 9897 -0.44

East Prealps 9297 5880 4 8226 8226 5880 -11.52 9197 9130 5986 -1.8

Total 64472 36120 26 57895 57895 36120 -10.2 64348 63943 36764 -0.82

2017-2018

Alps 818 1440 23 778 778 1440 -4.89 931 927 1449 13.33

Central plain 9914 6168 76 8974 8247 7674 -16.81 10651 9831 7868 -0.84

West plain 10314 10260 16 9119 9119 10260 -11.59 11022 10952 10406 6.19

East plain 2085 1296 0 1911 1758 1614 -15.68 2284 2133 1609 2.3

West Prealps 13111 9750 273 11719 11719 9750 -10.62 13124 13058 9886 -0.4

East Prealps 6168 5886 449 5647 5481 6231 -11.14 6430 6067 6639 -1.64

Total 42410 34800 837 38148 37102 36969 -12.52 44442 42967 37857 1.31

2018-2019

Alps 303 630 8 302 302 630 -0.33 411 406 640 26.28

Central plain 10899 8400 0 9670 9670 8400 -11.28 10448 10414 8468 -4.32

West plain 13428 11280 0 12220 12220 11280 -9 13263 13193 11417 -1.24

East plain 1902 1530 0 1729 1729 1530 -9.1 1848 1834 1560 -2.92

West Prealps 7691 9850 19 6925 6925 9850 -9.96 7932 7797 10116 3.04

East Prealps 4154 5310 9 3790 3790 5310 -8.76 4148 4099 5414 -0.14

Total 38377 37000 36 34636 34636 37000 -9.75 38050 37742 37615 -0.86

Notes: The table shows the variation in days exceeding hazard levels of PM by climate zone, to-
gether with the number of spreading days allocated. The penalty scheme induces the algorithm to
prioritize allocating more rather than less days than the imposed target of 30. Winter 2019-20 is
excluded due to imperfect compliance with the fixed prohibition period by the regulator (spreading
allowed in mid-December), which makes comparison more cumbersome.
* Days exceeding hazard levels are recalculated accounting for fewer prohibitions than what im-
posed by the algorithm, using the average yearly probability of a spreading day exceeding hazard
levels.
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Figures

Figure 1: Prohibition periods structure in Lombardy

Spreading

allowed

Spreading

allowed

Bulletin

regulation

Bulletin

regulation

Forbidden

period

Nov 1 Dec 1 Jan 31 Feb 28

Calendar time

Notes: the figure summarizes the periods in which spreading is conditionally or entirely
forbidden. This prohibition scheme has been in force in Lombardy between 2016 and 2021.
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Figure 2: Frequency of manure disposal outside farm and firm size

Notes: to the left, the figure shows the average cumulative share at municipal level of manure
and slurry disposed outside of the farm, divided in 4 categories. To the right, the figure plots
the relationship between disposal outside the farm and average farm dimension at municipality
level. The variable on the Y-axis is calculated at municipal level as the mean of outside disposal
categories 1 (<25) to 4 (76-100) of each farm within the municipality weighted by the relative
concentration of animals of the farm. The same weights are applied to the X-axis variables,
which is calculated at municipal level as the weighted mean of dimension categories 1 (1-2) to
15 (50000 +) of each farm within the municipality. Coefficient, robust p-values and number
of observations of the fitted regression line are reported. Data is not available for goats and
sheeps. Source: 2010 Agricultural Census, ISTAT.
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Figure 3: Window days calendar distribution and included climate zones

[A] Window days distribution

[B] Treated municipalities

Notes: Panel [A] shows the calendar distribution of window days since 2016. One window
is located during the yearly fixed prohibition period (December 2019) due to the result of
extraordinary amend to regulation (Source: Bollettini Nitrati).
Panel [B] presents the climate zones included in the sample for each window. Municipalities
are aggregated according to six climate zones, as per current regulation on spreading bans,
see Figure E.2. Four out of nine windows set equal restrictions for all climate zones, with
seven windows set equal restrictions for more than 50% of the sample municipalities.
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Figure 4: Livestock concentration in the Lombardy region

Notes: the figure shows the concentration of farming animals (chicken, cow and beef, sheep
and goat, pigs) in the Lombardy region. In computing the total headcount, each animal is
weighted by their expected daily production of manure. Weights are obtained from Hillel &
Hatfield (2005) and are reported in Table 2.
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Figure 5: Admissions by Hospital

Notes: each buffered geopoint represents a hospital. The buffer radius is proportional to
the yearly average number of daily hospital admissions across all departments: geopoints of
similar size indicate hospitals of comparable overall capacity. The color heatmap represents
the yearly average number of daily hospital admissions limited to R&CD: geopoints of similar
color indicate hospitals with comparable reception capacity of R&CD patients.

49



Figure 6: PM2.5 concentrations around spreading windows

Panel [A]

[I] t ∈ W− PM2.5 concentrations (avg) [II] t ∈ W+ PM2.5 concentrations (avg)

Panel [B]

[C] t ∈ W− residuals (avg) [D] t ∈ W+ residuals (avg)

Notes: the figure depicts air quality conditions around spreading windows (W ). In Panel
[A], average PM2.5 concentrations for days before (t ∈ W−) and after (t ∈ W+) the window
allowing spreading opening are plotted at municipality level. When spreading is allowed,
systematically higher levels of PM2.5 appear in the Po Valley area, where the majority of
farming activities is concentrated. In Panel [B], PM2.5 levels in days before and after the win-
dow opening are regressed on a set of environmental covariates: humidity, radiance, rainfall,
temperature, wind speed, wind direction, included singularly and interacted with each up to
the third lag. Predicted residuals are then plotted at municipality level. When spreading is
allowed, systematically higher residual variation appears in the Po Valley.
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Figure 7: Effect of manure spreading on PM2.5 concentrations (baseline)

[A] Model 1 Estimates
[B] Model 2b Estimates

Notes: Panel [A] plots the effect of manure spreading windows opening on log PM2.5 concen-
trations, depicting the estimates for ηk coefficients in Equation 1. Controls include weather
conditions up to the third lag and interacted in each period, and FEs include municipality,
month-by-year, day of the week, holiday. Bootstrapped standard errors are sampled with 100
iterations. Coefficients on last prohibition day (day 0) are set to zero. Confidence intervals
are plotted at 95% level.
Panel [B] provides the estimates of the ρb coefficients in the static model 2b. Weighted live-
stock units at municipality level are computed using the weights in Table 2.
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Figure 8: Effect of manure spreading on PM2.5 concentrations (baseline)

[A] Urgent admissions [B] Non-urgent admissions

Notes: the figure shows the effect of manure spreading windows opening on hospital admis-
sions, plotting the estimates for ηk coefficients in Equation 1, where k is restricted to obser-
vations at least two days apart from the window opening cutoff. Controls include weather
conditions up to the third lag and interacted in each period, and FEs include municipality,
month-by-year, day of the week, holiday, month-by-province and window. Standard errors
are plotted at municipality level. Confidence intervals plotted at 95% level.
Coefficients in Panel [A] and [B] refer to urgent and non-urgent R&CD hospital admissions
respectively.

Figure 9: Computing total VSLY lost to manure spreading - Age group weights distribution

Notes: the figure reports the distribution of weights assigned to one-year age groups in the
computation of total VSLY lost in response to manure spreading activities. The weights are
calculated as the share of deaths at discharge per age group over the total during the sample
period. Weights are employed to redistribute the estimated number total casualties across age
groups, and derive a counterfactual simulation of years of life lost by individuals in Lombardy.
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Online Appendix

A Supplementary Models

A.1 Regression-Discontinuity Design

In a typical RD design, it is observed an outcome Yi = Yi(0) × (1 − Ti) + Yi(1) × Ti,

where Yi(0), Yi(1) represent the outcome in the absence and in the presence of treatment

respectively, and Ti is a determinant of treatment status. Treatment is determined by a

running variable Xi influencing the treatment status whenever Xi exceeds a cutoff c, such

that Ti = 1 (Xi ≥ x̄). My setting can be considered a regression discontinuity in time

(Hausman & Rapson 2018), so the unit is considered treated (spreading allowed) past the

date of prohibition lift (ti > c). The parameter of interest is identified at the cutoff as:

τ = τ(c) = E [Yi(1)− Yi(0)|ti = c,Zi]

where Zi is a set of covariates. For the derivation of the RD estimator τ̃ , I refer to Calonico

et al. (2017).

In this framework, estimating the effect of manure spreading using an RD design could

pose several challenges, given the volatile and repeated nature of prohibitions, which give

rise to multiple discontinuities within a short time span. Yet, the process of neighbor

selection implied in the RD estimation can provide a useful benchmark to capture the

persistence of the effect of a spreading event through time. For bandwidth selection, it

is employed a mean squared error (MSE) optimal criterion, obtained by fitting a curve

over a sub-portion of the support of the data, subsequently minimizing errors (Imbens &

Kalyanaraman 2011). Let h be the bandwidth such that τ̃ is estimated within the interval

ti ∈ [c− h, c+ h], it can be shown that the typical asymptotic MSE expansion is such

that:

MSE (τ̃(h)) ≈ h2p+2B +
1

nh
V

where B and V denote the squared bias and the variance of τ̃ , and p is the polynomial

order of fit. As such, optimal bandwidth choice can be derived as

hmse =
{

V̂j/n

2(1+p)B̂j

} 1
3+2p

an alternative version of this estimate allows for the bandwidth to vary at the right (hmse,r)

and at the left (hmse,l) of the cutoff, allowing for side-specific B̂ and V̂ estimated param-

eters.

By defining a running variable as a time counter resetting every time a window is

opened (or closed), bandwidth selection can be employed to investigate in the data the

persistency of a perturbation induced by a prolonged policy change, in the form of lifted

(or reintroduced) spreading prohibitions. I estimate the quantities hmse,r and hmse,l using

the package rdrobust in Stata version 18.0. I consider a first-order polynomial (p = 1)
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and control for the same structure of fixed effects explained in Section 3.2, as well as

weather covariates. I focus only on observations between November and March, to align

with the period of spreading restrictions.

Figure A.1: Spreading-induced discontinuity in PM levels

Notes: the figure plots binned sample means for outcome variable log(PM2.5) conditional on a
running variable computed as relative distance to the day of spreading restrictions being lifted
(set to 1), weather controls and fixed effects. Bins including two days around the threshold.
The domain is limited to 12 days around the cutoff for visualization convenience. Solid lines
represent the conditional mean functions computed with a polynomial of degree 1.

Table A.1: Estimated RD treatment effect and bandwidth span

(1) (2) (3) (4)

log(PM2.5) log(PM2.5) log(PM2.5) log(PM2.5)

RD Estimate 0.0779*** 0.0580*** 0.0836*** 0.0538***

(0.0146) (0.0183) (0.0179) (0.0144)

Observations 1,225,279 1,156,051 1,084,346 1,002,643

Weather controls N N Y Y

Fixed effects Y Y Y Y

Bandwidth (L) 5.174 4.262 5.132 4.173

Bandwidth (R) 5.174 4.643 5.132 4.9879

BW bias (L) 12.19 12.23 12.02 12.56

BW bias (R) 12.19 12.86 12.02 12.99

BW selector One Two One Two

Notes: the table reports the estimated RD coefficient τ̃ , together with left- and right-
side bandwidth, and bias estimator. In Columns (1) and (3), one common MSE-optimal
bandwidth selector for the RD treatment effect estimator is allowed, whereas two separate
selectors are specified in Column (2) and (4). Weather controls include temperature, wind
direction, wind speed, rainfall, radiance, humidity, and average planetary boundary layer
height, up to three lags. Fixed effects include municipality, month-by-year, day of the week,
and holiday. Standard errors clustered at PM sensor level in parentheses. ∗∗∗ p<0.01, ∗∗

p<0.05, ∗ p<0.1
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As previously noted, the RD estimator implies a lower effect of spreading on PM2.5

concentrations at the cutoff (roughly 25% of the effect estimated through Equation 2).

This is explained by considering that in this framework, it is relaxed the requirement

of windows exhibiting consecutive days of prohibitions alternated to consecutive days of

ban lift. This, in turn, casts part of the effect on either side of the threshold, resulting

in a much lower point estimate. Importantly, the estimated bandwidth for discontinuity

around the cutoff oscillates between a value of 5.17 and 4.26, which drives my choice of

adopting T = card(W )
2 = 5 in Equation 1.

A.2 Difference-in-Difference Estimator

I propose here an alternative specification that exploits short-lived discrepancies in spread-

ing prohibitions across climate zones. Differently from Models 1 and 2, the goal is to

maintain a set of never-treated observations to construct a more classic double-difference

estimator. To obtain a reasonable counterfactual to PM concentrations in the absence of

spreading, I focus again on short time windows, this time of five days in total. Compared

with my preferred strategy, the reduced length is mostly forced by data availability. In-

stances where spreading is allowed in only part of the region are relatively rare and often

involve only a few days of fragmented prohibitions. I consider as a control group munici-

palities where spreading is not allowed throughout all five days. I then define three levels

of spreading-induced treatment, depending on whether spreading is allowed on the fifth

day only (level one), on the fourth and fifth day (level two), or starting from the third day

onward (level three).† Table A.2 lists the days suitable for this strategy and identifies the

treated climate zones.

Table A.2: Inclusion of climate zones in DiD strategy

Day-municipality observations

Level three Level two Level one

Control Treat Control Treat Control Treat Control Treat Control Treat

Alps 385 0 0 385 0 385 0 385 0 385

Central plain 1485 0 0 1485 1485 0 1485 0 1485 0

West plain 0 1900 1900 0 0 1900 0 0 0 1900

East plain 320 0 0 0 320 0 320 0 320 0

West Prealps 0 2135 2135 0 0 2135 0 0 0 2135

East Prealps 1315 0 0 1315 1315 0 0 1315 1315 0

Start date 5-Nov-16 8-Feb-17 31-Jan-18 6-Nov-16 30-Jan-18

Notes: the table reports the number of day-municipality observations identified as treatment
and control sample in each event, by climate zone. It is reported start date of the five-day
period over which the DiD model is estimated.

I then estimate the following difference-in-difference (DiD) model:

†Differently from my main specification, I do not allow a window to be defined backward in time. This
prevents confusion in the definition of pre-treatment periods and allows for an easier interpretation of time
relative to the relaxation of prohibitions.
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Model 1b:

Ymt =λ0Treatm +
k=3∑

k=−2,k ̸=−1

λ1k1{Hmt = k}+
k=3∑

k=−2,k ̸=−1

λ2k1{Hmt = k} × Treatm+

+X ′
mtΓ + αm + αw + αwm + εmt

(A1)

where indices i and h are omitted for conciseness as the model is used uniquely to

study concentrations of pollutants. The variable Treat indicates whether spreading is

either partially or fully allowed in the municipality starting from the third day. Other

variables are defined as in Models 1 and 2, with the exception of fixed effects, for which

the reduced number of days considered imposes a different structure to avoid perfect

separation. I include municipality, window (when more than one event is present), and

municipality-by-window. The DiD coefficients of interest λ2k capture the difference in

PM concentrations in climate zones where spreading is allowed compared to the rest of

the region. Importantly, one must notice the possibility of treatment spillover induced

by the transportation of pollutants. Especially in municipalities bordering climate zones,

the effect of spreading in a neighboring area is expected to impact the concentrations of

airborne pollutants, albeit to a reduced extent. As such, looking only at DiD coefficients is

likely underestimating the true impact of spreading on air quality. Yet, by re-introducing

never-treated units in the framework, this strategy reinforces the conclusions presented in

the paper.

In the sample I construct, for some municipalities, it is possible to define multiple levels

of treatment, depending on whether the start of the observation period is set on a day or

the day immediately after. To avoid overlapping definitions of the treatment, I estimate

separately Equation A1 for each level of treatment. I then combine the estimated values

for λ2k into the same graph (Figure A.2).
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Figure A.2: Effect of manure application on PM2.5 concentrations - DiD estimation

Notes: the figure plots the estimated for λ2k coefficients in Equation A1. Controls include
weather conditions up to the third lag and interacted in each period, and FEs include mu-
nicipality, event (when applicable), municipality-by-event (when applicable). Standard errors
are clustered at sensor level. Coefficients on last prohibition day (day -1) are set to zero.
Confidence intervals are plotted at 95% level. It is reported for each day the coefficient of
three levels of treatment: restrictions lifted on day five (level one), restrictions lifted on day
four (level two), restrictions fully lifted (level three).

The results exhibit dynamics similar to what already obtained through the main spec-

ification in Section 5. Focusing first on level three treatment, it is estimated a sizeable

increase in PM2.5 concentrations in municipalities with early lift in spreading prohibitions

starting from the second day. The maximum is observed on day three, with estimated PM

concentrations around 20% higher in treated municipalities. As previously argued, the ef-

fect is lower than the one reported in Figure 7, likely due to the presence of spillover in the

form of circulation of pollutants emitted in treated climate zones being air transported to

control zones. The results for municipalities with other degrees of treatment point toward

a similar scenario. For treatment of level two, the effect of spreading emerges, even though

with a smaller magnitude, on the last day of the selected time window, when spreading

prohibitions have been lifted for two consecutive days in treated municipalities. Since the

spike in PM concentrations is expected to emerge with a one-day lag, for treatment of level

one it is estimated no increase in treated municipalities, with even a slight decrease on the

last day of the window. By considering a different combination of days and municipalities

compared to the sample included in the estimation of Model 1, these results, paired with

the rest of the evidence presented in this paper, strongly support the presence of a true

effect of spreading on PM2.5 pollution.
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B Variables Description

B.1 Procedure Reimbursement and Cost of Hospitalisation

Similarly to other countries, the Italian National Healthcare System is a prospective pay-

ment system (PPSs). Reimbursement for each hospitalisation is based on predetermined,

fixed amounts, based on Diagnosis Related Group (DRG) Codes. Being the Italian system

subject to considerable decentralisation, tariff lists are determined at regional level. In the

case of Lombardy, these were lastly updated in 2015. The table exemplifies the nature of

tariff lists.

DRG MDC Description OrdTariff DHTariff Threshold OverTariff

078 04 Pulmonary Embolism 4,466 214 33 155

where columns left to right report DRG code and description, Major Diagnostic Cat-

egory (MDC), the corresponding daily tariffs for respectively an ordinary hospitalisation

lasting more than one day, and a day-hospital regime. In addition, it is set a threshold

value for each hospitalisation, after which a second tariff regime (usually with reduced

amounts) is applied. In addition to threshold value specific to each DRG, an hospital

admission is considered long-term care after 60 days, to which it is applied a fixed reim-

bursement of 154 euros per day.

As my dataset allows to retrieve the length of the hospital stay and the DRG codes of

all procedures undergone by a patient, my measure of cost of hospital stay is calculated

according to the following formula:

Cost =1{t = 1} ×DHTariff +1{t ∈ (1,Threshold]} ×OrdTariff+

1{t ∈ (Threshold, 60]} × (t− Threshold)×OverTariff+

1{t > 60} × (t− 60)× 154

(A2)

C Manure Spreading Regulation in Italy

Following the Council Directive 91/676/EEC of 1991 concerning the protection of waters

against pollution caused by nitrates from agricultural sources, Italy has started regulating

the application and storage of manure and slurry. In 2006, the regulatory authority was

decentralized from the central to the regional governments (Ministerial Decree 7 April

2006), de facto initiating the stream of reforms in the governance of pollutants from

farming activities. The table below summarizes the evolution of the regulatory framework

in Lombardy since then.

Period Length prohibitions Start End Scheme Bullettin PM attention

2007-2011 90 days 1st Dec (fixed) 28th Feb Continuous No No

2012-2015 90 days to 120* 1st Nov (variable) 28th Feb Continuous No No

2016-2020 90 days (62 continuous) 1st Nov (1st Dec) 28th Feb (31st Jan) Mixed Yes No

2021-Present 90 days (32 continuous) 1st Nov (15th Dec) 28th Feb (15th Jan) Mixed Yes Yes**
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∗ Restrictions varied depending on the animal source (e.g. poultry) and nature of animal waste (e.g. liquid
slurry).
∗∗ Attention to PM is limited to additional restrictions at municipal level, imposed when PM control
measures (e.g traffic restrictions) are implemented by a municipality.

D Flexible Spreading Scheme Simulation: Dynamic Optimization

I hereby present in detail the underlying theory and the most salient results of the inter-

mediate steps involved in the dynamic optimization process.

D.1 Spatio-temporal models of PM concentrations

Spatio-temporal models have been systematically employed in environmental studies re-

lated to airborne pollutants, given the geographically referenced and temporally correlated

nature of pollution data. In this paper, I focus on the class known as Bayesian spatio-

temporal models†. Bayesian modeling firstly assumes the independent variable to be

described as

Y (si, t) = µ(si, t) + e(si, t), i = 1, . . . , n t = 1, . . . , T

where si and t identify site and time, µ(si, t) is a space-time process modelled as a regres-

sion model of the form

µ(si, t) = X′(si, t)β(si, t)

and e(si, t) is a zero-mean space-time process. The model is flexible in accommodating

spatio-temporally varying regression coefficients (β(si, t)). It is common to model this

overall error term as the some of two independent zero-mean process, a random process

ω(si, t) and a pure error term ϵ(si, t), assumed to be independent for all spatial locations

at all time points, i.e.

Y (si, t) = X′(si, t)β(si, t) + ω(si, t) + ϵ(si, t), i = 1, . . . , n t = 1, . . . , T

Starting from this general formulation, I test the performance of multiple model spec-

ifications. Firstly, I consider a model which assumes a temporally independent GP for

ω(si, t) and time independent and spatially varying regression coefficients such that

X′(si, t)β(si, t) =

p∑
j=1

xj(si, t)βj(si, t) (Dynamic GP)

and

βj(si, t) = βj0 + βj(si)

where each βj(s) is assumed to follow an independent GP.

Secondly, I consider an autoregressive model (AR) that reintroduces times series de-

pendence. The model specifies autoregression on a centered random effect Ot instead of

†Banerjee et al. (2003) and Sahu (2022) explain thoroughly the nature and properties of this class of
models.
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directly on the data, and limits autoregression to a single period. The model can be

formulated as

Y (si, t) =O(si, t) + ϵ(si, t)

O(si, t) =ρO(si, t− 1) +X′(si, t)β + ω(si, t)
(AR)

Part of the reason for imposing independence of one process is the dimensionality implied

in fitting the model, especially when the number of locations increases. As a third model,

I implement a model of Gaussian Predictive Process (GPP) proposed by Sahu & Bakar

(2012), which defines random effects at a smaller number of locations (knots), and assumes

an AR model only for the random effects at the knot locations. The model is specified as

follows:

Yt =Xtβ +AOt + ϵt

Ot =ρOt−1 +wt

(GPP)

where

A = CS−1
ω∗

with C the cross-correlation matrix between random effects at locations (s1, . . . , sn) and

knots (s∗1, . . . , s
∗
m) and Sω∗ the correlation matrix of the random effects ot, depending on

the distance between sites.

I fit the models separately for each province and use them to forecast PM levels at

municipal level and winter months between 2016 and the beginning of 2020. I use as co-

variates all weather conditions available (temperature, rainfall, radiance, humidity, wind

direction and wind speed). All models are implemented spTimer in R. I report here the

results for the Lodi province as an example. Results for other provinces and values of PM

predicted concentrations can be found in the replication code of this paper. To compare

the models, I look in Table A.3 primarily the Posterior Predictive Model Choice Criteria

(PMCC), which is the sum of a model’s goodness-of-fit (GOF) and penalty terms. Ac-

cording to PMCC, the best model must balance goodness-of-fit and predictive penalty,

minimizing the sum of the two. I compare all models with a simple linear alternative as

benchmark. In this case, AR strikes as the most suitable model, but all three performs

much better than the linear model. Secondly, I compare statistics of model validation

through out of sampling predictions. This is done by randomly selecting three munici-

palities and using half of the observations as a training set to predict the remaining half

through the estimated parameters of the models. The results are illustrated in Figure

A.3. Visually, all models display very high predictive power. To confirm this intuition, I

report commonly used validation criteria, which indeed show little discrepancy between

the three models. Given that models score comparatively in validation tests, I opt for the

GPP which also minimizes computational burden having to operate with large matrices.
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Table A.3: Selection criteria and validations statistics for PM spatio-temporal models

Model GOF Penalty PMCC RMSE MAE CRPS CVG

Linear 1445979 1453800 2899779 14.7435 11.0604 7.862227 94.44

GPP 1930.16 19820.52 21750.68 7.090132 5.315292 18.50795 100

AR 1928.81 7396.39 9325.2 7.067555 5.200269 7.903886 100

Dyn GP 1727.86 8506.37 10234.23 7.299482 5.519052 8.722338 100

The table reports model selection and validation criteria for three different spatio-temporal models
(Gaussian Predictive Process, Autoregressive, Dynamic Gaussian Process) compared to a simple
linear alternative. For selection, it is reported the Posterior Predictive Model Choice Criteria
(PMCC), obtained as the sum between goodness-of-fit (GOF) and penalty. For validation, Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), Continuous Ranked Probability Score
(CRPS), and coverage (CVG) are reported. Best-fitting models are expected to minimize all
selection and validation criteria while maximizing coverage.

Figure A.3: Validation of spatio-temporal models at three random locations

The figure plots observation predictions and 95% intervals for three municipalities (top-left corner)
and three spatio-temporal models (GPP, AR, Dynamic GP). Fitted values are plotted with a
solid line. The (true) observations in the training set are plotted as open circles and the (true)
observations set aside for validation are plotted as filled circles.

Note that Figure A.3 does not inform on the ability of spatio-temporal models to
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forecast PM concentrations, which constitutes a far more demanding task. This validation

technique considers concentrations in neighbouring municipalities as known quantities, and

thus exploits tight geospatial correlation in PM distribution to achieve close-to-perfect fit.

However, this does not reflect the decision-making process of a regulator who needs to lift

spreading prohibitions using incomplete information about future PM levels. Hence, I use

the GPP model to forecast PM concentrations three days into the future.

Forecasting implies estimating random effects for each location into the future. Let

an unobserved location s0. The k-steps ahead forecasting at such location is performed

by assuming independently normally distributed errors (ωt ∼ N(0, σωSω∗)) and random

effects (O0 ∼ N(0, σ2
wS0)) where S0 is a correlation matrix obtained via the exponential

correlation function with a decay parameter ϕ0. The predictive distribution of Y (s0, T+k)

is obtained by simply advancing the top-level model equation by k periods:

Y (s0, T + k) = x′ (s0, T + k)β + a′0S
−1
ω∗OT+k + ϵ(s0, T + k)

where a′0 is a vector of covariance functions that depend on the distance between s0 and site

sj . The forecast value for Y (s0, T + k) is iteratively drawn from the obtained distribution

via Markov chain Monte Carlo sampling. The approach can be then generalized for each

sn. The forecasting is performed iteratively: the model is estimated using the 30 days prior

to the starting date of forecasting. Then, PM levels are observed and the true values are

added to the training set before the model is estimated again and forecasts are computed

for the following three days. The results for the same three validation municipalities are

reported in Figure A.4.
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Figure A.4: Forecast PM levels at three random locations

D.2 Dynamic Optimization Simulation: Additional Results

Figure A.5: Dynamic optimization algorithm - weighting
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Notes: the figure plots the weighting function ω under the assumption of having still to allocate
30 days over the entire length T . The discontinuity is set such that, as the algorithm reaches
30 days left till the end of T with still 30 days to allocate, a strong penalty is imposed for
not selecting the following days In turn, this forces the algorithm to allocate all the following
days to spreading as long as weather constraints are met.

Figure A.6: Dynamic optimization algorithm - distribution of allocated days

Notes: the figure plots the distribution of spreading days allocated by the dynamic algorithm
for each municipality-season combination.
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D Appendix Tables

Table D.1: Placebo test - Effect of spreading prohibitions on other diseases

Pooled Digestive Genitourinary Muscoskeletal

All patients Urgent All patients Urgent All patients Urgent All patients Urgent

Admission 0.184 -0.187 0.178 -0.180∗ -0.280 -0.162 -0.391 -0.280

(linear) (0.461) (0.140) (0.531) (0.105) (0.236) (0.159) (0.259) (0.190)

Obs 69982 47144 29115 20699 25278 18917 21081 11723

R2 0.93 0.97 0.92 0.97 0.92 0.97 0.94 0.97

Admissions -0.012 -0.016∗∗ -0.009 -0.012 -0.011 -0.017∗∗ -0.016∗ -0.024∗

(Poisson) (0.009) (0.008) (0.009) (0.007) (0.012) (0.008) (0.009) (0.013)

Obs 69982 69733 29115 28859 25278 25131 21081 19686

R2

Mortality -0.001 0.000 0.002 0.010 0.007 0.019 0.001 0.088

(0.003) (0.009) (0.006) (0.018) (0.005) (0.011) (0.003) (0.120)

Obs 25928 8298 10835 3816 9975 4646 6770 339

R2 0.12 0.20 0.20 0.32 0.18 0.27 0.28 0.96

Length -0.151 0.137 0.087 0.883∗ -0.111 0.167 0.059 -2.777

(0.123) (0.295) (0.232) (0.479) (0.251) (0.437) (0.199) (1.758)

Obs 28239 8787 11303 4121 10204 4779 8619 506

R2 0.33 0.27 0.40 0.39 0.30 0.34 0.58 0.87

Cost-to-procedure -284.311∗ 225.257 120.116 1,759.920 -621.581∗∗ -458.110 -198.179 763.017

(168.007) (584.765) (369.545) (1,392.755) (289.127) (623.723) (154.683) (1,526.433)

Obs 25820 7472 10183 3417 9276 4107 7840 374

R2 0.08 0.22 0.15 0.32 0.19 0.32 0.26 0.93

Total cost -605.278 1,668.843 707.800 6,653.459 -1,634.978 206.293 -333.029 -3,412.881

(784.199) (2,751.575) (1,852.196) (6,658.251) (1,076.116) (2,145.908) (448.733) (5,401.949)

Obs 28193 8782 11264 4119 10189 4779 8591 503

R2 0.07 0.17 0.14 0.29 0.18 0.30 0.33 0.85

Severity (weight) -0.011 0.018 0.014 0.113∗∗∗ -0.040 -0.029 0.012 -0.144

(0.014) (0.036) (0.020) (0.043) (0.029) (0.054) (0.020) (0.155)

Obs 28242 8787 11305 4121 10205 4779 8619 506

R2 0.19 0.34 0.26 0.47 0.23 0.39 0.47 0.89

Notes: the table reports the estimated impact of a spreading window on daily urgent admissions,
mortality, length of stay, cost-to-procedure, total cost of stay, and relative severity weight in three
class of diseases (digestive, genitourinary, muskoskeletal) observed in the five days before and after
an opening event. Weather controls include temperature, wind direction, wind speed, rainfall,
radiance and humidity, interacted with each other at up to the third lag. When estimated through a
linear model, only strictly positive observations for hospital admissions are included. Observations
with no admissions when the model is estimated through fixed-effects pseudo-Poisson ML.
Standard errors, clustered at municipal level, are reported in parentheses. *** p<0.01, ** p<0.05,
* p<0.1.
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Table D.2: Effect of spreading windows on PM2.5 concentrations (untransformed)

Static Model Semi-dynamic model

PM2.5 (1) (2) (3) (6) (7) (8)

Window 7.297∗∗∗ 7.299∗∗∗ 7.243∗∗∗

(0.095) (0.091) (0.416)

Day 1 6.422∗∗∗ 6.411∗∗∗ 6.417∗∗∗

(0.131) (0.122) (0.436)

Day 2 10.030∗∗∗ 10.088∗∗∗ 10.013∗∗∗

(0.078) (0.075) (0.421)

Day 3 10.487∗∗∗ 10.378∗∗∗ 10.264∗∗∗

(0.063) (0.061) (0.372)

Day 4 3.898∗∗∗ 3.589∗∗∗ 3.473∗∗∗

(0.042) (0.040) (0.314)

Day 5 0.865∗∗∗ 0.205∗∗∗ 0.137

(0.062) (0.057) (0.084)

Obs 112213 112207 105932 112213 112207 105932

Adj. R2 0.739401289 0.778952049 0.775829476 0.749539 0.790209 0.787153

Weather (extended)

Municipality FE

Municipality-by-month FE

Month-by-year FE

DoW & Holiday FE

Standard errors Rob Rob Clust Rob Rob Clust

Notes: the table reports the estimates η0 from Equation 2 (Columns 1 to 3) and the estimates
ηk coefficients from Equation 1, where pre-trend coefficients are set to zero. Weather con-
trols include temperature, wind direction, wind speed, rainfall, radiance, humidity, and average
planetary boundary layer height, interacted with each other up to three lags. Robust (Columns
1-2 and 4-5) and clustered at sensor level (Columns 3 and 6) standard errors, are reported in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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E Supplementary Figures

Figure E.1: Spatial correlation betwwn livestock presence and GHGs concentrations in
Lombardy

[A] Livestock Units (weighted) [B] NO2 concentrations

[C] CH4 concentrations [D] CO2 concentrations

Notes: the figure shows high correlation between NO2 and CH4 concentrations and livestock
presence in the region. Livestock units represent the weighted average number of units between
2016 and 2019; weighting follows the strategy explained in Section 4. Concentrations of
pollutants are expressed as the yearly average (tons) in year 2017 (Source: INEMAR).
Livestock units Spearman indeces: 0.8541 (NO2); 0.5538 (CH4); 0.0261 (CO2).
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Figure E.2: Lombardy region divided into manure application climate zones

Notes: the figure shows climate zones borders for the purpose of manure application prohibi-
tions. Climate zone areas are: Alps (provinces: SO); Central plain (provinces: BG, BS, CR);
West plain (provinces: LO, MI, PV); East plain (provinces: MN); West Prealps (provinces:
BG, CO, LC, MB); East Prealps (provinces: BG, BS).

Figure E.3: European economic size class of farms in Lombardy

Notes: The figure plots the share of farms in Lombardy over economic size class. The measure
of economic size is defined at European level (Commission Regulation (EC) No 1242/2008).
Source: 2010 Agricultural Census, ISTAT.
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Figure E.4: Spreading bullettins layout

Panel [A] - App version

Panel [B] - PDF version

Notes: the figure shows the App and PDF document layout of the bulletins available to
farmers to learn the status of prohibitions between November and March. Provider: ERSAF
Lombardia. App: Nitrati.
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Figure E.5: Stations Geolocations

Panel [A]

Stations count

Ozone 25

PM10 39

PM2.5 41

SO2 36

Panel [B]

Stations count

Humidity 94

Radiance 82

Rainfall 154

Temperature 154

Wind Direction 112

Wind Speed 112

Notes: The figure reports geolocation and counting of stations for pollutants concentrations
(Panel A) and weather factors (Panel B) in the Lombardy region. Only stations active con-
tinually between 2016 and 2019 are considered.
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Figure E.6: Daily average distributions (November to February) - PM2.5 and PM10

[A] PM2.5

[B] PM10

Notes: the figure plots the cumulative distribution of daily average concentrations of PM2.5

(Panel [A]) and PM10 (Panel [B]), when spreading prohibitions are enforced (left) and when
they are lifted (right). Vertical lines mark Italy’s target values for yearly average concentra-
tions. For PM2.5, levels unhealthy for sensitive groups (35 µg/m−3) and generally unhealthy
(55 µg/m−3) are reported. Reference values are defined according the standards for the Air
Quality Index (AQI) set by the US Environmental Protection Agency (EPA).
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Figure E.7: Farming animals concentration - EU NUTS-2 level (2010-2021 average)

Notes: the figure shows the average total headcount of four livestock animals (bovine, sheeps,
goats, suine) between 2010 and 2021. Data is aggregated at NUTS-2 Eurostat classification
level (Germany and UK data is only available at NUTS-1 level).
EU average (SD): 1300.8 (1817.715); EU max: 11267.27; Lombardy average: 5714.293.
Source: Eurostat: Animal Production Statistics.

Figure E.8: Rainfall and window days correlation

Notes: the figure plots the coefficient of a regression of rainfall levels on a set of indicators
for relative time from the window opening, weather controls and FEs. Weather controls
include temperature, humidity, radiance, wind speed and direction, average PBLH, up to a
third lag and interacted within each other. FEs comprise day-of-the-week-by-year, holiday,
municipality-by-month, month-by-year, and window. Clustering of standard errors happens
at rainfall station level.
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Figure E.9: Rainfall and window days correlation

[I] Unbuffered [II] 5km-radius buffering

Notes: the figure exemplifies a visual representation of how livestock concentration is calcu-
lated using buffering. The stock of animals at municipal levels is recomputed as the average
of animal stocks in neighbouring municipalities within a 5km radius. Using 2km and 10km
radius leads to comparable results.

Figure E.10: Effect of manure spreading on PM10 concentrations (baseline)

[A] Model 1 Estimates
[B] Model 2b Estimates

Notes: Panel [A] plots the effect of manure spreading windows opening on log PM10 as in
Figure 7. Controls include weather conditions up to the third lag and interacted in each period,
and FEs include municipality, month-by-year, day of the week, holiday, window. Bootstrapped
standard errors are sampled with 100 iterations. Coefficients on last prohibition day (day 0)
are set to zero. Confidence level plotted at 95% level.
Panel [B] provides the estimates of the ρb coefficients in the static model 2b.
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Figure E.11: Placebo test - effect of rain windows on PM2.5 concentrations

[A] Model 1 Estimates
[B] Model 2b Estimates

Notes: Panel [A] plots the effect of placebo rain windows opening on log PM2.5 concentrations.
Controls include weather conditions up to the third lag and interacted in each period, and
FEs include municipality, month-by-year, day of the week, holiday, window. Bootstrapped
standard errors are sampled with 100 iterations. Coefficients two days after the rainy event
(day 0) are set to zero. Confidence level plotted at 95% level.
Panel [B] provides the estimates of the ρb coefficients in the static model 2b, with placebo
rain window opening. Weighted livestock units at municipality level are computed using the
weights in Table 2.
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Figure E.12: Effect of manure spreading on O3 and SO2 concentrations

Panel [I - Ozone]

[A] Model 1 Estimates

[B] Model 2b Estimates

Panel [II - SO2]

[A] Model 1 Estimates
[B] Model 2b Estimates
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Notes: the figure plots the effect of manure spreading windows opening on log concentrations
of other pollutants, plotting the estimates for ηk [A] and ρb [B] coefficients from Equation 1
and 2 where the outcome variable is log(SO2) and log(O3) concentrations. Controls include
weather conditions up to the third lag and interacted in each period, and FEs include mu-
nicipality, month-by-year, day of the week, holiday, window. Bootstrapped standard errors
are sampled with 100 iterations. Coefficients on last prohibition day (day 0) are set to zero.
Confidence level plotted at 95% level. Weighted livestock units at municipality level are com-
puted using the weights in Table 2. Panel [I] reports the coefficients for O3, Panel [II] those
for SO2.
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Exploring the Impact of Livestock on Air Quality: 

A Deep Dive into Ammonia and Particulate 

Matter in Lombardy 

 

 
Abstract 

The linkage between agricultural activities, particularly livestock farming, and 

atmospheric pollution is broadly acknowledged, and its magnitude is widely analyzed. 

Lombardy, one of Europe’s most critical areas with regard to air pollution, has 

significantly large contributions from the farming industry. Although studies aimed 

at informing policy reflect uncertain and moderate pollution reduction even under 

simulated stringent policy scenarios, granular causal evidence at a sub-sector level 

remains insufficient to inform local and regional policies effectively. In this study, we 

employ a spatially and temporally indexed econometric model to investigate the 

specific impact of bovine and swine farming on the concentration levels of ammonia 

(NH3) and coarse particulate matter (PM10) in Lombardy’s atmosphere. Our findings 

indicate that an increase of 1000 units in livestock, equating to roughly a 1% and 0.3% 

rise in the average per-quadrant bovine and swine populations, respectively—triggers 

a corresponding daily increase in NH3 and PM10 concentrations. These increases are 

quantified as 0.26 [0.22; 0.33] and 0.29 [0.27; 0.41] µg/m3 for bovines (about 2% and 1% 

of the respective daily averages) and 0.01 [0.01; 0.05] and 0.04 [0.004; 0.16] µg/m3 for 

swine. Notably, these impacts are intensified under northerly upwind conditions, 

minimizing the potential for concurrent pollution sources and reinforcing the robustness 

of our estimated impacts. Finally, we employ our findings to extrapolate the potential 

environmental implications of reducing livestock emissions. Our analysis suggests that 

bovine and swine farming could account for up to 25% of local pollution exposure, 

emphasizing the need for targeted mitigation strategies. 
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1 Introduction 

Atmospheric particulate matter (PM) ranks as a major environmental health threat 

(Burnett, et al., 2018), and the fourth mortality risk factor worldwide: in 2019, 1 in 9 

death worldwide were caused by fine particulate matter (PM2.5) and ozone (O3) air 

pollution1, with the former contributing to such outcome by more than 94% (Murray, et al., 

2020). By threatening human welfare through poor air quality, PM also implies a large 

morbidity burden on individuals: exposure to high PM levels has been associated with 

increased incidence of respiratory and cardiovascular diseases, such as asthma, pneumonia, 

hyper- tension, and diabetes (Dominici, et al., 2006; Feng, et al., 2016; Mannucci, Harari, 

& Franchini, 2019). 

While there exists a large amount of literature focusing on the effects of industrial 

activities and motor-vehicle traffic on air pollution and health, the empirical evidence about 

the effects of farming on the concentration of human-threatening pollutants is relatively 

scarcer (Anenberg, et al., 2019; Gibson & Carnovale, 2015; He, Liu, & Salvo, 2019). Indeed, 

livestock farms are a key contributor to PM emissions (Pue et al., 2019). Animal husbandry 

operations are responsible for large releases of ammonia (NH3), a gaseous alkaline 

compound that serves as a precursor in secondary particle formation, from reactions with 

other compounds, such as sulfur oxides (SOx) and nitrogen oxides (NOx), ammonia 

contributes to a major part of the inorganic composition of PM2.5. This explains why air 

pollution from livestock farms is associated with airway obstruction diseases and severe 

pneumonia (Borlée, et al., 2017; Kalkowska, et al., 2018). 

In the case of Lombardy, farming constitutes almost the only source of ammonia 

releases: the emission inventory of the Lombardy environmental agency (INEMAR, consulted 

on 16/09/2020) estimates that as much as 97% of all its emissions originate from farming 

activities in the Italian Po-valley region. Since 2005, Italy has successfully reduced NOx 

and SO2 emissions from major sources (Marco, et al., 2019). NOx and SO2 emissions have 

decreased by 41% and 70% respectively, since 2005 and 2016, primarily thanks to policies 

 
1 Source: The Institute for Health Metrics and Evaluation (IHME) data. Available at: 
http://ghdx.healthdata.org/gbd-2019 

http://ghdx.healthdata.org/gbd-2019


81  

tackling emissions from road traffic, residential heating, and industry (Marco, et al., 2019). 

Conversely, ammonia decreased only by 10% and PM2.5 emissions show positive and 

negative variations from 2005 to 2016 resulting in a 7% reduction between 2005-2016. 

Thus, ammonia remains a concern, as actions in the agriculture sector have been less 

consistent, and PM levels remain high compared to the rest of Europe, especially in 

Lombardy. The detrimental role of livestock in the absence of efficient air pollution control 

practices is well recognized in the literature (McDuffie, et al., 2021). Yet, the marginal 

contribution of the different species of farming animals to ammonia and, in turn, PM 

concentrations is still poorly understood. The emission factor of a farming animal can vary 

considerably, depending, among others, on species, animal characteristics, facility type, and 

manure removal system. As such, different measurement methodologies and experimental 

settings have resulted in a vast range of possible emission factors attributable to a single 

unit. By reviewing multiple approaches and studies, Hristov et al. (2011) find emission 

factors from cows varying from 0.82 to 250 g ammonia per day. In a similar effort, Philippe 

et al. (2011) reported the same value for swine, which was between 0.38 and 27.2 g per day. 

However, there have been limited efforts to measure the impact of animals on ammonia and 

PM levels on a significant scale. Roman et al. (2021), which looked at particulate emissions 

from animal farming rather than concentrations, find higher values in rural areas compared 

to urban areas and that the contribution of animal farming to PM emissions varied 

significantly across different regions in Poland. Spencer and Van Heyst (2018) provide a 

review of the literature on PM emissions resulting from different sources in Canadian 

agricultural and rural areas. The study found that PM emissions from agricultural and rural 

sources, including animal farming, can contribute to elevated PM concentrations in these 

areas and negatively impact human health. Livestock intensity changes can be attributed to 

concentration, which has a direct impact on human exposure and health, unlike emissions-

specific factors. In this paper, we approach the problem of quantifying livestock-originating 

concentration from a broader perspective. 

A wide variety of source apportionment techniques are available (Thunis, et al., 2019). 

Some of these techniques employ bottom-up models that perturb source emissions (Thunis, 

et al., 2019), while others utilize inverse modeling (Carozzi, et al., 2013) or tagged 
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trajectories (Kranenburg, et al., 2013). Specifically, for PM, numerous methods rely on 

monitored chemical composition of particles to identify the sources contributing to the 

overall PM mass (Giardi, et al., 2022). Here we employ a fixed-effects model with spatially 

and temporally indexed data that builds on exogenous high-frequency variation in wind 

direction and detailed data on farming animals’ movements across the Lombardy region in 

Italy. We estimate the marginal impact of two animal kinds (cattle and swine) on ammonia 

and PM10 levels. Lombardy offers a particularly suitable setting for the analysis: in addition 

to providing publicly available high-frequency information on pollutants and weather 

conditions through a granular network of sensors, it is one of the most farming-intensive 

regions in Europe, with more than 1 million live cattle and 4 million live swine head (see 

Figure 1). This, in turn, results in frequent movements of animals in and out. We take 

advantage of this variation to accurately identify the impact of farming on the 

concentration of pollutants. We access daily observations from 12 ammonia monitoring 

stations and 75 PM10 measuring points. For three stations, we obtain PM chemical 

decomposition data that allows us to isolate the share of ammonium sulfates (AS) and 

ammonium nitrates (AN), two inorganic salts that are part of the secondary PM share 

and are directly associated with the NH3 precursor. 

We combine this information with daily weather conditions and monthly fluctuations 

in livestock units. We use variation in animal heads occurring in the upwind quadrant of 

a given sensor (the 90-degree portion of a circular area around the sensor) to estimate the 

marginal impact of farming animals on the levels of ammonia and PM10 recorded at the 

station level. Using variation in wind direction allows our specification to cope with 

potentially endogenous movements in livestock units induced by air pollutants. Indeed, 

conditional on observables and fixed effects, in order to identify the causal impact of farming 

animals on pollutant levels, our specification crucially rests on the assumption of 

orthogonality between livestock allocation decisions, weather conditions, and air quality 

considerations.  

Using our estimates, we then simulate average daily levels of PM10 under the 

counterfactual stylized scenario of removing all livestock units around a sensor. We find a 

simulated local percentage reduction in daily concentrations of up to 25%. While 



83  

negatively correlated with average daily levels of particulate matter, the drop in 

concentrations under our counterfactual simulation still emerges as a sizeable improvement 

in daily air quality for many densely populated areas. 

Our results differ in nature from those retrieved in micro-level studies. Our study aims 

to quantify the average relative contribution of livestock animals to station-level recorded 

concentrations of pollutants rather than pinpointing emissions in terms of mass and 

differentiating for animal characteristics. Previous studies on the impacts of livestock on air 

quality focus mainly on emissions (Hristov A. N., 2011; INEMAR, consulted on 16/09/2020; 

Kabelitz et al., 2020; Roman, Roman,  Roman, 2021), and those going beyond emissions used 

averaged emission factors derived from the emissions studies (Pue, Bral,  Buysse, 2019; 

Rao et al., 2017). At a later stage, the most completed ones would then use source-receptor 

models or chemical transport models to derive concentrations and, ultimately, exposure 

(Lelieveld et al. 2015; McDuffie et al. 2021). As such, this research adds to the existing 

literature by estimating the contribution of different animal species on the levels of harmful 

pollutants in a highly polluted and livestock-dense area of Europe, a topic often overlooked 

in comparison to the livestock contribution to greenhouse gas emissions (Kipling et al. 

2019a,b, Garnett 2009). The paper contributes by establishing a necessary step to evaluate 

the nature of the direct correlation between changes in livestock levels and the impact on 

human health due to air pollution. The use of causal inference methods is a novel approach 

to this type of analysis, and our findings are functional to policymakers’ informed decisions 

regarding farming practices and air pollution control measures. 

The remainder of the paper is organized as follows. Section 2 details the empirical 

strategy employed. Section 3 describes the data, and Section 4 reports the main estimation 

results. Section 5 explores effect heterogeneity, while Section 6 presents a counterfactual 

calculation of pollutant concentrations and policy considerations following the evidence at 

hand. Finally, Section 7 concludes. 

 

2 M ethods 

We calculate the incremental impact of a unit of animal, per species, on ammonia and 
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PM10 levels. It's important to understand that our calculation is based on the number of 

animals within a fixed area. As a result, the impact can be interpreted as a variation in 

animal density, since the area remains constant. For this reason, we refer to 'intensity' as 

the quantity of animals per unit area. To estimate the marginal contribution to ammonia 

and PM10 concentrations specific to each farming animal at the aggregate level, we estimate 

the following regression through OLS: 

 𝑌𝑠,𝑡 = 𝛽0 + ∑ ∑𝛽𝑎Δ𝐿𝑎,𝑗,𝑡 × 𝛀+ 𝐗𝑠,𝑡
′ 𝚪 + 𝛿𝑠,𝑞 + 𝛿𝑚 + 𝛿𝑦 + 𝜀𝑠,𝑡

𝑎∈𝐴𝑗∈ℬ∩𝒢

 (1) 

where 𝑌 represent the dependent variable of interest, ∆L is our main regressor, 𝛀 is a 

weighting matrix, X is a matrix of covariates with the respective coefficients (𝚪), and 𝛿s 

captures the fixed effects of our model. 𝛽𝑎 represents the main coefficient of our study. As 

our study focuses on pinpointing the causal effect of livestock on pollutant concentrations,  

OLS has the advantage, under our set of assumptions, to provide an unbiased and easily 

interpretable estimator for 𝛽.  

The outcomes of interest (𝑌) are ammonia concentrations (NH3), overall particulate 

matter (PM10), and mass concentration of ammonium sulfates and nitrate (PM10
ASN) 

measured daily by station s at time t. ∆L is the net sum of inflows and outflows for animal 

𝑎 (both within the region and from and to other regions and countries), births, and 

slaughters at the municipal level. The set ℬ characterises a municipality j as: 

{ 𝑗 ∈ ℬ: 𝑑𝑖,𝑗 < 𝑟̅ } 

hence containing municipalities within 𝑟̅ distance from municipality i. We alternatively 

consider 50km and 60km centroid-distance as the two values of 𝑟̅.2 The set 𝒢 is instead 

 
2 There exists no universal rule to assess the distance potentially traveled by pollutants, as this is closely 

dependent on the area’s morphology, wind conditions, and the nature of airborne particles. As such, we set 

the boundaries of circular areas around sensors employing a data-driven approach. In Figure A2.2 in the 

Appendix, we show the sensitivity of the estimated βa from Equation 1 to gradually expanding circular areas 

from a radius of 10km. For both animals and pollutants, the coefficient of interest converges to an asymptotic 
value between 40km and 60km, which leads us to exclude variations in livestock headcount taking place 
outside of this range. Furthermore, as the area radius increases, so does the probability of sensors 
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defined as: 

{ 𝑗 ∈ 𝒢: ∠𝑖𝑗𝑡 ∈ 𝑊𝐷𝑖,𝑡  }  

and includes all municipalities that are in the same quadrant of the direction from which 

wind originates as measured in municipality i at time t (WDi,t). We use the concept of 

geometric angle (∠) to indicate that municipalities are assigned to quadrants depending 

on the angle between the station and the municipality. We consider four quadrants: 

North (315 - 45), East (45 - 135), South (135 - 225), and West (225 - 315). Thus, for each 

station, we obtain a time-specific total variation in the number of livestock units (∆L), 

calculated as the sum of variations at the municipal level for all municipalities that are 

located in the quadrant of wind direction at time t and within distance  𝑟̅  from the station. 

To visualize the quadrant-wind direction variation strategy implemented, we provide a 

graphical illustration in Figure 2. 𝐴 is instead a set of two farming animals, bovine and 

swine, for which monthly variation in headcount is available. 

This variation in livestock units is only available at the monthly level, while ammonia 

levels and weather conditions are measured daily. Given the impossibility of exactly 

pinpointing the day of the variation in farming animals’ headcount, we test the robustness 

of the results by applying a set of analytic weights to magnify the weight of observations 

occurring toward the end of the month. By defining analytic weights as the probability of 

a given variation in animal headcount has realized (assuming a probability increasing 

linearly and monotonically), we want to impose that data points at the beginning of the 

month could be estimating the marginal effect captured by our 𝛽 less precisely. Analytic 

weights are equivalent to assuming observation 𝑗 belongs to a sub-population with variance 

𝜎2

𝑤𝑗
, where 𝜎2 is a common variance and 𝑤𝑗 is the weight of the observation 𝑗.3 This is 

justified by thinking that, during the last days of each month, the movements depicted 

 
relatively far from each other showing overlapping circular areas, which may induce noise in our estimates. 

The average intra-sensor distance is 75.4km and 74.5km for ammonia and PM10 sensors respectively. Hence, 
we deem the 60km threshold to be an adequate upper bound to consider variation in livestock units relevant 
to a given sensor. 

 
3 Weights are implemented in Stata. For further, refer to Stata Technical Bulletin, issue 20, July 1994. 
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with monthly frequency in the data are more likely to be fully realized. Specifically, 

observations on the first day of the month are assigned a weight of 1/30, while observations 

on the last day of each month are assigned a weight of 1, with other observations in 

between weighted with a monotonic linear increment of 1/30. 

𝛀 is a diagonal matrix of weights based on the distance between sensors and 

municipalities. This is motivated by assuming that the impact on ammonia levels of 

animals that are in closer proximity to the station will be stronger than that of animals 

further away, as dispersion of emissions during transportation will be less likely to occur. 

As such, 𝛀 partially discounts the variation happening further away from each station. 

Considering a total of 𝑀 municipalities around a given sensor, in our baseline specification, 

𝛀 is an identity matrix of size 𝑀 ×𝑀 (i.e., no discounting based on distance implied). We 

then test the robustness of our results by populating 𝛀 with linear and Gaussian distance 

weights4. To better understand how we compute variation in livestock units under different 

weighting schemes, a numerical example is reported in the Appendix (Section A3.1). 

X is a matrix of weather controls, including temperature, rainfall, radiance, wind speed, 

humidity, and boundary layer height, up to the third lag and interacted with each other, 

and 𝚪 is a matrix of coefficients. 𝛿𝑠,𝑞, 𝛿𝑚 , and 𝛿𝑦 represent a set of sensor-by-quadrant, 

month, and year-fixed effects5. Sensor-by-quadrant allows for different time-invariant 

intrinsic characteristics not only across sensors, but also around a sensor and, as such, it 

 
4 Linear weights are computed as in Equation 2: 

 𝑤𝑖𝑗 = 1 − 
𝑑𝑖𝑗

 𝑟̅
 (2) 

 
while Gaussian weights obey to Equation 3: 

 

𝑤𝑖𝑗 =

{
 
 

 
 

0 if 𝑑𝑖𝑗 ≥ 𝑟 ̅

exp(
1

2
(
𝑑𝑖𝑗

 𝑟̅
)

2

)

1 otherwise

 if 
𝑟̅

√2
ln (2𝜋−

1
2) < 𝑑𝑖𝑗 < 𝑟 ̅ (3) 

 

 
5 The use of lags and interactions, as well as the choice of fixed effects, follows the strategy adopted by 
Deryugina, et al (2019). The results are robust to less conservative structure of weather covariates, excluding 
lags and interaction terms. 
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is deemed as the most conservative approach.6 Our model estimates 66 weather control 

parameters and 62 fixed effects parameters overall, in addition to our coefficients of 

interest. Finally, 𝜀𝑠,𝑡 is an error term, assumed to be normally distributed. We allow for 

variance in error to be dependent on our regressors, estimating heteroskedasticity-robust 

standard errors7.   

The marginal effect of a livestock unit for animal 𝑎 is captured by our main coefficient 

of interest, 𝛽𝑎. To be able to identify, the variation in the number of animals at the 

municipal level should be independent of ammonia levels and PM levels. If farmers were 

to time their buying, selling, and slaughtering decisions based on air quality, this could 

induce a reverse causality bias in our estimates. Despite the absence, in the current 

regulatory framework of Lombardy, of policies aimed to curb livestock presence as a 

function of pollution levels, even assuming that part of farmers’ decision concerning animal 

net flows is indirectly correlated with air quality, the use of wind direction to mediate the 

source of variation in livestock units allows us to restore exogeneity. Indeed, in our 

specification, it is enough to assume non-adapting behavior from farmers to wind flows, 

i.e., animal stock decisions being independent of observed and expected wind flows. In 

addition, the presence of station-, quadrant-, and time-fixed effects allows differentiating 

part of the confounding variation that may be related to more polluted areas with relatively 

more frequent animal displacement8. 

Conditional on observables and fixed effects, we also argue against the likelihood ofour 

results being driven by the presence of omitted variable bias. While we can look separately 

at the fluctuations in the concentration of the two among the most important farming 

animals in terms of pollutant contribution, the absence of data available on the movements 

 
6 The results are mostly unchanged when only sensor fixed effects are included in the regression. 
7 The choice of heteroskedasticity-robust standard errors is motivated by our model using a relatively small 
number of sensors and a large number of temporal observations (days), hence likely inducing serial 
correlation in the error. We refrain from clustering standard errors at the sensor level given the limited 
number of clusters available, especially with regards to ammonia stations (Cameron & Miller, 2015: Abadie, 
et al., 2023). To assess the presence of residual correlation in the model, we plot model residuals against the 
fitted values in Figure A2.3. 
8 To this aim, it is also important how, with specific reference to ammonia, more than 95% of total emissions 

are ascribable to livestock. This importantly reduces the concern of unobservables spatially correlated with 
sensor proximity (e.g. other agricultural activities) inducing bias in the estimates. PM concentrations are 
more susceptible to confounding emission sources, which, however, are less likely to be spatially correlated 
with proximity to a measuring station, such as traffic or industrial activities. 
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of other animals, particularly poultry, may be especially concerning, being this the third 

major specie in terms of air pollutants contribution.9 This would be particularly concerning 

under the hypothesis that variations in our measure of animal headcount at the municipal 

level may co-vary with the unobservable variation in the number of other farming animals 

(especially in the case of multi-breed farms) whose effect, in turn, would be wrongly imputed 

to variation in cattle and swine units alone, biasing the estimator. 

However, we notice in Figure A2.4 that the share farms specializing in more than one 

animal are relatively small. Farms whose production includes at least two out of three 

species (cattle, chickens, and swine) are less than 1% of all breeders, with the share of 

farms breeding all three animals being less than 0.2%. This is partially confirmed by 

observing that variation in the number of cattle and swine units at the municipal level 

does not correlate10. Moreover, poultry farming appears to be more concentrated, with a 

relative density of more than 19,000 animals per farm, the same figure being 103 for cattle 

and 544 for swine. Thus, while it is not possible to fully rule out the possibility of noise 

induced by the absence of comprehensive data on all farming animals, the low likelihood of 

correlated shocks significantly reduces the concern of omitted variable bias, reinforcing our 

assumption. Finally, our model implies linearity in the effect of livestock change. This 

assumption simplifies the intricate process of PM formation through secondary aerosol via 

chemical reactions with ammonia, which can lead to non-linear effects at varying 

concentrations. Amid this simplifying assumption, our model serves as a valuable reference 

point, as it enables us to analyze the overall contribution of livestock under minimal 

computing and modeling requirements. 

 

3 Data description 

A flowchart describing the data used in this paper can be found in Figure 3. We access 

 
9 While the emission factor of hen is importantly lower than cattle and swine, data from INEMAR quantify 
poultry total particulate matter emissions in the Lombardy region at 438.9 tons, with the same number for 
cattle and swine being respectively 358.6 and 739.4 tons. The contribution of other animals (ovine, equine) is 
marginal. No disaggregated data on ammonia emissions are currently available. 
10 Pearson’s product-moment correlation coefficient: 0.02 
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publicly available daily data on NH3 and PM10 concentration levels and weather conditions 

in the Lombardy region from ARPA Lombardia11. We focus on the years between 2015 

and 2020 to match the frequency of livestock data. Some stations have been active for a 

short amount of time during those years (as the measurement activity ceased or started 

at the extremes of our sample period)12. As such, we restrict the sample to stations for 

which daily concentration data is available for at least 365 days between 2015 and 2020, 

obtaining 12 NH3 stations and 75 PM10 stations. For a subset of stations (Schivenoglia, 

Milano Pascal, Milano Senato), for a total of 3299 sensor-day combinations available, we 

obtain information on the mass concentration of ammonium nitrates and ammonium 

sulfates, two compounds that enter the composition of PM10 and require ammonia to form. 

In Lombardy, the share of ammonium salts on the total PM mass can be higher than 50% 

(Lanzani, et al., 2020). We obtain a final dataset of 16577 day-station-wind direction 

observations for NH3, 109663 observations for PM10, and 3299 observations for decomposed 

AS and AN. Summary statistics on pollutants are reported in Table 1, Panel A. Especially 

for PM concentrations, variation within the same sensor appears to be larger, given natural 

seasonal fluctuations. Yet, sizeable differences across stations can be observed, particularly 

in the case of ammonia concentrations. 

Each station is imputed weather conditions recorded at the respectively closest weather 

stations. We collect daily data on temperatures (°C), rainfall (mm), wind direction 

(degrees) and speed (m/s), humidity (%), and radiance (W/m2). In addition, we collect 

hourly data on Planetary Boundary Layer Height (PBLH) through the ERA5 Reanalysis 

provided by ECMWF13 and compute average daily values. Each of these variables directly 

impacts airborne pollutant concentrations. Warmer temperatures are usually associated with 

lower concentrations, given higher thermal dispersion. Positively correlated with 

temperature, PBLH constitutes an even more cogent measure for vertical dispersion: higher 

 
11 ARPA: Regional Agency for Environmental Protection. The agency collects hourly data on NH3 and PM10 
concentrations but disseminates the information as daily averages. 
12 For NH3 sensors, only two stations are not active throughout the entire period (Cremona Borghi, inactive 
since January 2017, and Piadena, inactive between March 2014 and June 2016). For PM10, 11 stations cease 
measurement only between 2017 and 2018.  
13 The measure is provided at 0.25◦ × 0.25◦ grid level. 
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PBL implies increased dispersion capacity and is associated with lower pollutant 

concentrations (Seidel, Ao, & Li, 2010). Similarly, increased level of rainfall reduces PM 

concentrations through “wet deposition”. 

As previously noted, wind speed and direction can affect the presence of pollutants in 

an area by dispersing pollution plums. With increased humidity, moisture particles grow in 

size to the point of “dry deposition”, reducing PM10 concentrations. Finally, radiance can 

impact PM levels, especially through photochemical reactions. These variables are 

summarized in Table 1, Panel B. 

To visualize the correlation between wind direction and pollutants in the region, we 

look at the polar plots reported in Figure 4. Lombardy’s morphological territory implies 

lower levels of pollutants are recorded when winds flow from the Alpine arch in the Northern 

part of the region. In general, wind in the Po Valley plays an important role in dispersing 

pollutants and leads to lower average concentrations than the winds that flow longitudinally 

within the region. However, the relative frequencies of wind flowing from each quadrant 

indicate significant variation across NH3 stations. For instance, South-East stations are 

more susceptible to West and North winds, while North-West areas receive more wind from 

the South. Similarly, PM stations show a prevalence of West winds in the region’s central 

plains, but South-East and South-West areas experience a higher probability of winds 

flowing respectively from the North and the East. Despite some patterns, considerable 

variability at the station level is observed. This is particularly relevant for our strategy: 

observing wind consistently blowing from the same direction throughout the month would 

imply that our fixed effects structure, which controls both for month and sensor-by-

quadrant time-invariant characteristics, would absorb most of the effect of the change in 

livestock units. In this case, our coefficients of interest would capture noisy residual 

variation. Significant variation in wind direction, both within the same sensor and across 

sensors, mitigates this concern. It is worth noting that the Po Valley, particularly 

Lombardy, is surrounded by mountains on three sides, which limits outward air circulation 

and can lead to very low winds and stable conditions, especially in winter. This condition 

creates the perfect environment for air pollution accumulation, making the region a 

pollution hotspot. 
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Data on livestock presence and movements are available through the National Zootechnics 

Registry (Anagrafe Nazionale Zootecnica, ANZ) database. The registry provides monthly 

municipal-level data on inflows and outflows of livestock (either transferred within 

municipalities or acquired from and sold abroad), animal slaughtering, and births. Given 

insufficient data on other farming species, our study focuses on two animals, cattle and 

swine.14 These two breeds are the primary contributors to ammonia emissions. Data on 

newborns for swine are incorporated into monthly inflow data, thus resulting indivisible 

from positive variation originating from other activities. Conversely, they can be computed 

separately for cattle.15 Our analysis is concentrated on Lombardy and its three adjacent 

regions, namely Piemonte, Veneto, and Emilia Romagna, which includes stations situated 

near the borders of Lombardy. This helps us consider the presence of animals in close 

proximity to a station while formally being located across the region’s borders. To 

supplement our data, we compute the stock of animals registered in each municipality, which 

is available twice a year. This measure enables us to differentiate between areas with high 

livestock density and those with relatively scarce farming activities. 

The municipalities surrounding Lombardy’s sensors exhibit the high prevalence of 

livestock animals typical of the Lombardy region, with an average of more than 1000 cattle 

units and 2,500 swine units per municipality. Both cattle and swine numbers appear to be 

decreasing, although the variation is still a relatively small share of the existing stock (Table 

2). Figure 5 shows instead how the majority of animal husbandry activities are 

concentrated in the South-East area of the Po Valley, both in terms of cattle and swine 

breeding. This is reflected both in average monthly outflows and inflows, which tend to be 

larger in numbers in areas more populated by farming animals (Figure A2.1) and in 

consistently higher concentrations of ammonia located within areas of high livestock density 

 
14 Cattle identifies all bovine farming species, including Italian Mediterranean buffalos. Data on swine is only 

available starting in 2016. 
15 As we are not able to separate between adult animals and calves for all species in the dataset, in the 

headcount, we assign to all animals a unit weight. This assumption neglects the difference in emission factors 
between adults and calves. We deem this strategy viable in our setting in light of the objective to quantify an 
aggregated impact of livestock movements on airborne pollutants in the region. In addition, given the 
existence of a positive correlation between adult animals and calves, this distinction is unlikely to induce 
bias in our estimates. 
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(Figure 6, Panel A). Conversely, due to the more heterogeneous composition of airborne 

particulate matter, the spatial correlation between farming animals’ presence and PM10 is 

instead blurred. Thus, we employ our empirical strategy to explore the existence and 

magnitude of a causal relationship between animal husbandry and air pollutants and present 

our findings in the next Section. 

 

4 Results 

 
The results of estimating Equation 1 are reported in Table 3. At the baseline, we look 

at variations in the number of animals not discounted by distance from the station. To 

enhance intuition, we present our estimates in two separate forms. 

In Panel A, coefficients have been re-scaled to capture a 1000 livestock units variation 

at the quadrant level, which is approximately a 1% change in bovines and 0.3% change in 

swine with respect to the overall average quadrant-level animal density. We report the 

results separately for the different pollutants considered: NH3 (Columns 1 to 3), PM10 

(Columns 4 to 6), and ammonium compounds share of PM (Columns 7 to 9). For each 

outcome variable, the first two columns show the estimates of βa, respectively, when 

including only the variation in cattle units and swine units. The third column includes the 

two variations as separate variables and estimates the marginal contributions when the 

two regressors are included together. In Panel B, we instead present standardized 

coefficients of the same estimated relationship. We center the variation around the mean 

and standard deviation of livestock units present in the neighboring quadrants. As such, 

one standard deviation increase represents a sizeable shock in animal heads, given the high 

concentration at the quadrant level. 

When looking at concentrations of ammonia, all coefficients are significant, at least at a 

5% level across different specifications. The inclusion of variations in both species in the 

equation has only a minor impact on the respective coefficients. A 1000-unit increase in the 

number of cattle upwind (Panel A) raises ammonia levels between 0.286 and 0.332 µg/m3, 

resulting in a 1.8% variation from the average ammonia concentrations during the sample 

period. The effect of a positive variation of 1000 units in swine headcount is more modest, 
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at around 0.04, or about 0.26% relative to the average concentrations. This can be 

attributed not only to lower emission factors of swine but also to the fact that swine are 

almost four times more prevalent in the region than cattle. The standardized coefficients 

reported in Panel B confirm the relatively sizeable impact of livestock variation for both 

species: one standard deviation increase in cattle in an upwind quadrant leads to a 1.63 to 

1.51 standard deviation spike in ammonia concentration. A similar increase in swine results 

in a 0.85 standard deviation spike. 

Looking at the same estimated effect for PM10, despite PM mass concentration being 

almost double in size compared to ammonia, the marginal impact estimated is comparable in 

magnitude to the one previously obtained. Indeed, upwind 1000-units increases in cattle and 

swine units are expected to increase PM concentrations by respectively 0.247 to 0.289 µg/m3 

and 0.01 to 0.04 µg/m3 (which are respectively around 0.8% and 0.03% deviations from mean 

concentrations). On the one hand, this evidence supports the validity of our empirical 

strategy: if our estimates had been affected by confounding factors, the impact on PM and 

ammonia concentrations would not necessarily be equal, as these are present in the 

atmosphere with varying levels of mass concentrations. On the other hand, similarity in 

the coefficients shows how positive variation in livestock units induces a comparable 

increase in NH3 and PM10 concentrations and, as such, supports the belief that PM mass 

concentrations observed when livestock increases are indeed the result of secondary aerosol 

formation through ammonia. 

While we would expect the observed increase in PM10 to be attributable to ammonium 

nitrates and ammonium sulfates particles spurring from ammonia gaseous emissions, the 

relatively different and not significant coefficients observed in Columns 7 to 9 can be 

explained by data on PM10
ASN being available only for three stations, which implies around 

3% of the entire station-day level sample for PM. Furthermore, two sensors are located in 

the Milan area, where pollutants from other sources are present in the highest concentration. 

Even when the assumptions of our empirical model are satisfied, a sizeable reduction in the 

sample size may violate the asymptotic properties of our estimator, implying less precise 

and potentially biased estimates. With these caveats in mind, it is still meaningful to notice 

that the main coefficients remain positive and deviate by a small amount, with respect to 
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sample average concentrations, when compared to their counterpart estimated for ammonia 

and overall PM concentrations. 

We then proceed to explore the robustness of our results, addressing two main concerns 

with our empirical design. First, the variation in livestock units cannot be identified with 

daily frequency. As such, we repeat the estimations, placing more weight on the 

observations of air pollutant concentrations occurring towards the end of the month, where 

the shift in the animal count is more likely to be fully realized. The results obtained are 

comparable in magnitude and significance to our baseline estimates (Table A1.1 in 

Appendix). Second, as we argued that animals further away from the sensor location may 

contribute differently to pollutant measurement than those located in close proximity to it, 

we apply different specifications of 𝛀, i.e. varying the distance discounting weights to the 

variation in livestock units. In this case, coefficients are not directly comparable to the ones 

obtained before, as the weighting implies a rescaling of our main regressor (Δ𝐿) and, in 

other words, inevitably inflates the magnitude of 𝛽̂𝑎 by magnifying the relevance of a one-

unit increase. To compare our estimates, we iteratively simulate a 1000-unit increase in a 

quadrant and use the derived values of Δ𝐿 × 𝛀 in the given quadrant to rescale the 

estimated coefficients.16 We summarize the results in Figure 717. Each weighting method 

calculates a corresponding distribution of the estimated coefficient by multiplying the point 

estimates and the simulated 1000-unit variation distribution. The median result is then 

marked and compared to the point estimates of the non-weighted strategy. While linear 

discounting affects the estimated coefficients by a more sizeable amount with respect to 

Gaussian weighting, different specifications of 𝛀 lead to comparable results. The marginal 

effect of 1000 cattle units oscillates between 0.22 and 0.33 µg/m3 of NH3 and 0.27 and 0.41 

µg/m3 of PM10. The same variation in terms of swine units provides estimates fluctuating 

 
16 To clarify this aspect implied by our weighting strategy further, assume a 1000-units positive variation 
taking place around a station. Livestock units are located at a random distance 𝑑̃ from the sensor, where 𝑑̃ is 
drawn form a uniform distribution  𝑑̃ ∼ 𝑈(0, 𝑟̅). Each unit is then assigned a distance-based weight according 
to our different weighting strategies. It is then computed the corresponding ∆L (refer to the numerical example 
in Section A3.1). By randomly simulating the distance of each unit, we are actively randomizing the weight 
received by each unit. This, in turn, implies a different computed value of Δ𝐿 × 𝛀 depending on the outcome 
of the randomization. To show it, we iteratively simulate (10,000 iterations) a 1000-units positive variation 
around a station and apply the corresponding weighting to each unit. We then plot the corresponding value of 
Δ𝐿 × 𝛀 in Figure A2.5. 
17 Estimates of the weighted variation strategy are reported in Appendix, Tables A1.2, A1.3, A1.4. 
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between around 0.02 and 0.05 µg/m3 of NH3 and 0.004 and 0.16 µg/m3 of PM10. 

To get a better understanding of our results, we need to stress how the impact on 

concentrations is fundamentally different from that on emissions, which causes our results 

to be inherently separate from emission factors more commonly found in the literature18. 

Concentrations are influenced by the specific geographical, meteorological, and chemical 

conditions of the region where the emissions occur. This is why we can only draw a partial 

analogy between our estimated impact on ammonia concentrations and the ammonia 

emission factors from the regional emission inventory (INEMAR, consulted on 

16/09/2020), which would otherwise constitute a natural benchmark, at least in terms of 

geographic region. Comparing these, we observe a similar order of magnitude difference 

between cattle and swine emission factors as the one identified in our estimates, with cows 

showing emissions one order of magnitude higher. We cannot, however, make the same 

comparison with PM10 concentrations and the corresponding emission factors. In fact, the 

latter pertain to direct emissions, whereas our estimates also include secondary PM10 

concentrations.  

There, our results provide a robust and new perspective on the aggregate impact of 

animal husbandry on concentrations of air pollutants in a region with a high density of 

livestock, such as Lombardy. This evidence can help guide the cost-benefit analysis of 

expansions and reduction of livestock intensity from a policymaking perspective. To this 

aim, we explore heterogeneity in effect retrieved that may result in better-informed policy 

considerations. 

 

5 Heterogeneity and Sensitivity 

 
We test the sensitivity and heterogeneity of our results in two ways. First, we account for 

potential differential effects of livestock variation depending on the quadrant of the source. To 

this aim, we add a set of interactions to Equation 1, letting the marginal impact of farming 

 
18 For instance, Hristov et al. (2011) find an average ammonia emission factor 59 g per cow per day. Philippe 
et al. (2011) provide a summary of swine emission factors under different waste management systems, 
between 0.38 and 27.2 g/day. However, it is not straightforward to determine how this would translate into 
ammonia concentrations at aggregate level in the context of their studies. 
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animal variation vary through the source quadrant. Analytically, Equation 1 is expanded 

as follows: 

 𝑌𝑠,𝑡 = 𝛽0 + ∑ ∑𝛽𝑎Δ𝐿𝑎,𝑗,𝑡 + ∑ ∑∑𝜂𝑎Δ𝐿𝑎,𝑗,𝑡 × 𝐷𝑞
𝑞∈𝒬𝑎∈𝐴𝑗∈ℬ∩𝒢

+ 𝐗𝑠,𝑡
′ 𝚪 + 𝛿𝑠,𝑞 + 𝛿𝑚 + 𝛿𝑦 + 𝜀𝑠,𝑡

𝑎∈𝐴𝑗∈ℬ∩𝒢

 
(4) 

 

where, for simplicity, we consider the absence of weighting (𝛀=I), and Dq is an indicator 

assuming value 1 when variation originates from quadrant 𝑞 ∈ 𝒬 (the set including the 

four quadrants), zero otherwise. Note that our fixed effects structure naturally absorbs the 

differential intercept for each quadrant. The results are presented graphically in Figure 8. 

We take as reference group livestock headcount variation happening in Southern 

quadrants. The results highlight how movements in farming animals tend to have a larger 

impact on pollutant concentrations at the sensor level when they occur to the North of a 

station. This finding appears in line with the evidence presented in Figure 4: North winds 

are usually associated with lower levels of pollutants, which reduces the extent of confounding 

variation, particularly with respect to particulate matter, and makes fluctuations in the 

livestock units more crucial in driving up and down the concentrations of airborne 

pollutants. The effect appears instead to be homogeneous across other quadrants, with 

smaller and primarily non-significant coefficients associated with the interaction terms. 

Second, we investigate whether the effect retrieved is driven by using only a limited 

number of sensors. This is particularly of concern when considering ammonia concentrations 

measured on a relatively smaller network of stations. The presence of one or few sensors 

driving the results may cast doubt over the accuracy and generalizability of our results. 

To this aim, we iteratively repeat the estimation, dropping one sensor at each iteration. 

The new coefficients obtained for ammonia through this methodology are plotted in Figure 

9. On the horizontal axis is reported the name of the dropped station. Stations are sorted 

from left to right according to the number of animal units within the defined 𝑟̅ radius 

circular area. The coefficients remain relatively stable with some minor fluctuations, and 

most instances show significance at a 95% level. In Panel B, we also notice that only one 

sensor offers a noticeable fluctuation in the effect retrieved, which is located in the Corte 

de Cortesi municipal area. This can be attributed to the proximity of a large swine farm 
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near the station.19 This station was purposely placed next to a large-scale swine livestock 

facility in order to monitor emissions from swine husbandry. Similarly, the Bertonico station 

is located next to a large-scale cattle husbandry area to closely monitor concentrations in 

the farming area.20 In turn, local fluctuations in ammonia levels originating from daily 

farming activities of different natures may overcast the movements in animal units taking 

place further away from the station, hence inducing particular noise in the estimates retrieved 

through our empirical strategy.21 Nonetheless, while the coefficient decreases in magnitude 

when excluding the sensor from the sample, it remains positive and comparable in size. 

Since the sample available for PM10 includes a considerably larger number of sensors, 

dropping a single sensor has a more marginal impact on the overall sample. Hence, to 

assess the presence of sensors in critical areas driving the results, we repeat the above 

procedure but drop all stations in a province (Figure 10).22 The results again show minor 

fluctuations around the average estimated effect, proving the relative stability of the effect 

of farming animals across the region. 

 

6 Policy Considerations 

 
Assessing the agricultural sector’s impact on ammonia and particulate matter (PM) 

concentrations is crucial for policymaking in Lombardy. The region is susceptible to 

environmental and health threats due to its dense population, intense farming, and low wind 

conditions caused by its orographic features. To comprehend the implications of our findings, 

we propose a straightforward calculation to determine the toll that farming takes on air 

 
19 The sensor is located within 100 meters from the breeding facility. The exact location of the farm is excluded 

for data privacy. 
20 The sensor is located between two facilities placed within 1 and 1.5 km. The exact location of the 
farms is excluded for data privacy. 
21 For instance, ammonia levels can fluctuate due to manure management practices, such as storage and 
disposal, or even due to the application of nitrogen-based fertilizers, which can release ammonia gas into the 
air. This can lead to the release of ammonia into the air, affecting local air quality. The use of litter and 
manure management practices can also contribute to fluctuations in local ammonia levels in poultry farming 
operations. Finally, the handling of dairy waste, such as urine and manure, can also lead to local fluctuations 
in ammonia levels. 
22 The Lombardy region is divided into 12 provinces. In brackets, the number of PM10 sensors per province 
is reported: BG (9); BS (6); CO (3); CR (6); LC (5); LO (7); MB (4); MI (11); MN (8); PV (7); SO (4); VA 
(5). 
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quality and, consequently, public health. 

Our objective is to establish the impact of farming animals on air pollution levels in 

the area surrounding a station. Using data from ISTAT23, we calculate the resident population 

within a 50km radius of the station and couple it with information on the number of livestock 

units within each circular area. We then simulate a hypothetical scenario where we remove 

all farming animals from each circular area, all else equal (i.e., keeping all other observable 

and unobservable factors constant, including weather conditions), leveraging the coefficients 

we obtained from a 1000-unit variation analysis to estimate the corresponding reduction in 

concentrations of air pollutants.2425 This exercise does not aim to explore a viable policy 

action to improve air quality in the region (i.e., the complete dismantlement of the farming 

industry) but rather to provide an estimate of the contribution of livestock to daily 

pollutant concentrations. Given the linearity of our approach, the expected results of a less 

sizeable reduction in livestock units can be easily inferred from our analysis. Moreover, 

provided that adverse health effects are associated with PM rather than gaseous ammonia 

alone, which instead acts as a precursor to the particulate formation, in this part of the paper, 

we only focus on PM10 concentrations. 

Panel A in Figure 11 shows the results of this exercise by plotting the reduction in daily 

PM10 concentrations over twenty sensor bins, with the latter calculated conditioning on 

yearly average concentrations. Panel B plots the same reduction paired with the total 

resident population in each bin. Two main considerations are in place. First, it appears 

that the areas with lower average daily concentrations of PM10 are more severely affected 

by the threat to air quality posed by livestock (Panel A). The largest reduction 

(approximately 25%) observed in the simulation is in sensors with an average yearly 

 
23 Source: Resident Population on 1st January. 
24 This strategy once again simplifies by assuming the effect to be linear and unsusceptible to the number of 
livestock units already present in the area. While this may constitute a limitation to our approach, we still 
deem this procedure informative to approximate the true impact of the farming industry on air pollution in 
the region. 
25Population and livestock headcount data are available at the municipality level. To avoid double- counting, 

whenever a municipality lies within a 50km radius of multiple stations, its population is imputed to different 
circular areas in equal shares. The potential noise in the calculations induced by this strategy is tapered by 
counterfactual concentrations being computed as the mean across stations in the same decile of the 
distribution of yearly average concentrations. As stations in close proximity are likely to register similar yearly 
levels of pollutants, the population in the area is likely to be imputed the same counterfactual exposure levels 
regardless of whether individuals are assigned to one station or the other. 
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concentration of less than 30 µg/m3. This can be attributed to the fact that areas with 

more farming activity generally have a lower degree of urbanization and a reduced incidence 

of emission factors from other industries like transportation, construction, and 

manufacturing. However, this also means that less urbanized areas are disproportionately 

burdened by the presence of livestock and are unable to fully benefit from high air quality. 

Second, looking at Panel B, the areas touched more heavily by air pollution from 

livestock sources, despite lower urbanization, display considerably high population density: 

nearly 7 out of 14 million people reside within 50km of those stations that would benefit 

from a counterfactual level of PM10 concentrations below 30µg/m3 in our simulation. 

Furthermore, circular areas around stations that would experience the highest percentage 

reduction (more than 20%, peaking at roughly 25%) appear surrounded by almost 2 million 

inhabitants.26 These findings highlight how the estimated deterioration in air quality is likely 

to affect a significant proportion of the population rather than being limited to sparsely 

populated rural municipalities. 

Our simulations advocate for integrated policies in the agricultural sector, particularly 

in densely populated regions with high livestock density, like Lombardy, where the 

secondary formation of ammonium nitrates often reaches more than 50% of the total PM 

mass (Tao et al. 2016, Wu et al. 2020). It is particularly important to target concentration 

reduction that can effectively minimize the effects of agricultural activities. These may 

include the use of BATs (best available technologies, e.g., injector systems and genetic 

engineering) in agriculture and farming practices, improved integrated management of 

farming activities (such as improved animal diet, efficient disposal of slurry and manure, 

and efficiency in the production system), and livestock intensity (Ammann et al. 2022, 

OECD 2019). 

 

 

 

 
26 In this calculation, we do not factor in individuals residing outside the 60km circular areas used to obtain 

our estimates, as this would require a more comprehensive analysis of how pollutants are transported across 
the region, which is beyond the scope of this paper. 
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7 Conclusion 

 
This paper estimated the marginal impact of cattle and swine farming on the levels of 

ammonia and PM10 in the Lombardy region. We used daily observations from 12 ammonia 

monitoring stations and 75 PM10 measuring points and combined them with monthly 

fluctuations in livestock units and daily weather conditions. 

The results showed that an increase in upwind cattle and swine presence by 1000 units 

respectively raised ammonia levels by 0.332 µg/m3 (around 1.8% variation from mean 

concentrations) and 0.04 µg/m3 (around 0.26% with respect to mean concentrations), and 

PM10 levels by 0.289 µg/m3 and 0.04 µg/m3 respectively. The results are robust to different 

weighting schemes and provide information on the average relative contribution of livestock 

to station-level recorded concentrations of pollutants. Our simulation showed that livestock 

presence is expected to cause sensitive deterioration in air quality for a sizeable share of the 

region’s population. Hence, the study provides insights into the potential impact of changing 

livestock in the Lombardy region and highlights the need for further research to understand 

the role of livestock in air pollution. In particular, future research should focus on carefully 

evaluating the cost-benefit tradeoff involved by technology and organizational practices 

available in the industry to prevent harmful effects on individual health and guide the 

evolution of the industry onto a more sustainable path. 
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Tables 

 

Table 1: Descriptive statistics - Pollutants and Weather 

 
 Overall Within Between 

Panel A - Pollutants 
   

NH3 15.74   

(µg/m3) (19.97) (14.06) (12.84) 

 [0.0 ; 430.6] [-29.1 ; 429.2] [3.0 ; 45.4] 

PM10 30.61   

(µg/m3) (20.70) (19.99) (5.15) 

 [0.0 ; 264.0] [-10.0 ; 264.4] [13.0 ; 41.6] 

PM10 (AS + AN)∗ 10.95   

(µg/m3) (10.78) (10.77) (0.57) 

 [0.0 ; 58.3] [0.0 ; 58.7] [10.5 ; 11.7] 

Panel B - Weather 
   

Temperature 13.87   

(◦ C) (8.25) (8.12) (1.41) 

 [-11.3 ; 32.7] [-7.1 ; 31.4] [9.7 ; 15.3] 

Rainfall 0.05   

(mm) (2.19) (2.19) (0.04) 

 [0.0 ; 256.8] [-0.1 ; 256.8] [0.0 ; 0.1] 

Wind Speed 1.97   

(m/s) (0.95) (0.92) (0.30) 

 [0.0 ; 26.3] [-0.4 ; 26.4] [1.5 ; 2.6] 

Wind Direction 176.01   

(Degree) (97.61) (95.62) (21.82) 

 [0.1 ; 360.0] [-28.8 ; 404.2] [131.8 ; 205.0] 

Radiance 161.25   

(W/m2) (103.94) (103.64) (8.12) 

 [0.0 ; 517.6] [-18.4 ; 528.7] [150.2 ; 179.6] 

Humidity 73.22   

(%) (16.83) (16.17) (4.85) 

 [0.0 ; 100.0] [-2.1 ; 107.1] [65.5 ; 79.9] 

PBLH 1,654.82   

(m) (1,415.71) (1,412.01) (100.24) 

 [11.4 ; 5,553.5] [-127.5 ; 5,543.8] [1,439.3 ; 1,803.9] 

Notes: the table reports summary statistics for pollutants (A) and 

weather variables (B). Mean values are presented first, both within 

the same sensor across time and between the sensor and the overall 

mean. Parentheses include standard deviations. Brackets report 

minimum and maximum values. Within and between statistics are 

computed through the command xtsum in Stata. 

Source: ARPA Lombardia, ECMWF. 
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Table 2: Descriptive statistics - Livestock 

 
  Cattle    Swines  

Overall Within Between  Overall Within Between 

Inflow∗ 13.84 
   

456.75 
  

(monthly) (59.43) (57.55) (16.11)  (1,429.43) (1,348.00) (565.28) 

 [0.0 ; 1,663.0] [-37.0 ; 1,641.0] [0.8 ; 50.9]  [0.0 ; 23,932.0] [-967.8 ; 23,342.1] [1.9 ; 1,424.5] 

Births∗∗ 43.39 
   

- 
  

(monthly) (88.57) (80.46) (42.84)  - - - 

 [0.0 ; 1,379.0] [-74.4 ; 1,362.2] [8.9 ; 117.8]  - - - 

Outflow -6.61 
   

-450.06 
  

(monthly) (30.35) (29.91) (6.02)  (1,650.23) (1,583.29) (547.31) 

 [-1,201.0 ; 0.0] [-1,197.3 ; 10.2] [-16.8 ; -0.5]  [-20,431.0 ; 0.0] [-19,957.8 ; 994.5] [-1,444.6 ; -0.7] 

Slaughters -57.16 
   

-370.86 
  

(monthly) (190.71) (179.90) (74.50)  (1,044.20) (980.95) (412.65) 

 [-3,643.0 ; 0.0] [-3,511.9 ; 137.0] [-194.2 ; -5.2]  [-14,064.0 ; 0.0] [-13,575.4 ; 631.7] [-1,002.6 ; -1.5] 

Net variation -262.63 
   

-415.14 
  

(monthly) (4,719.15) (3,977.39) (3,035.25)  (433.52) (263.28) (384.11) 

 [-20,706.0 ; 9,072.0] [-16,007.1 ; 13,482.5] [-7,324.1 ; 2,386.3]  [-18,574.10 ; 10,742.0] [-14,710.72 ; 53,331.7] [-10,574.50 ; -11.2] 

Tot animals 137,984 
   

320,928 
  

(quadrant) (139,002) (91,009) (117,959)  (430,301) (320,167) (291,739) 

 [2,204.25 ; 497,245] [-170,965.74 ; 351,963] [13,925.67 ; 326,303]  [0.00 ; 1,642,738] [-552,364.85 ; 1,448,462] [1,117.73 ; 873,293] 

Tot animals 1,088 
   

2,533 
  

(municipality) (2,382) (197) (2,318)  (7,655) (1,102) (7,189) 

 [1.00 ; 35,915] [-5,255.98 ; 4,957] [1.00 ; 34,079]  [0.00 ; 94,944] [-16,040.20 ; 34,015] [0.00 ; 85,873] 

Notes: the table reports summary statistics for livestock variables. Mean values are presented first, both 

within the same sensor across time and between the sensor and the overall mean. Parentheses include 

standard deviations. Brackets report minimum and maximum values. 

∗ Inflow and outflow variables include animal movements taking place between facilities within and outside 
the region. 
∗∗ Data on newborns for swine are incorporated into the provided measure for monthly inflow by the data 
provider and cannot be accessed separately. 

Source: National Zootechnics Registry. 
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Table 3: Baseline Estimates 
 

 

  NH3    PM10    PM10
ASN  

(1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

Panel A] - ∆103-units            

 

∆ - Cattle 

 

0.332∗∗∗ 

 
 

0.286∗∗ 

 
 

0.247∗∗∗ 

 
 

0.289∗∗∗ 

 
 

0.118 

 
 

0.150 

 (0.106)  (0.112)  (0.052)  (0.052)  (0.13)  (0.14) 

∆ - Swine 
 

0.040∗∗ 0.0403∗∗∗ 
  

0.004 0.0099∗∗∗ 
  

0.014 0.0147 

  (0.016) (0.016)   (0.003) (0.003)   (0.02) (0.02) 

Panel B] 
           

 

∆ - Cattle 

 

1.63∗∗∗ 

 
 

1.51∗∗ 

 
 

1.38∗∗∗ 

 
 

1.62∗∗∗ 

 
 

1.01 

 
 

1.28 

 (0.66)  (0.69)  (0.29)  (0.29)  (1.12)  (1.18) 

∆ - Swine 
 

0.84∗∗ 0.85∗∗∗ 
  

0.08 0.2123∗∗∗ 
  

0.30 0.3230 

  (0.36) (0.36)   (0.06) (0.06)   (0.42) (0.41) 

Observations 16579 13919 13919 
 

109202 109650 109650 
 

3299 2790 2790 

Adj R2 0.5767 0.5694 0.5698  0.5144 0.5143 0.5146  0.5061 0.5109 0.5114 

Dep. Var. Mean 15.53 15.53 15.53  30.42 30.42 30.42  10.68 10.68 10.68 

Weather Controls Y Y Y  Y Y Y  Y Y Y 

Month FE Y Y Y  Y Y Y  Y Y Y 

Year FE Y Y Y  Y Y Y  Y Y Y 

Sensor-by-quadrant FE 
Y Y Y  Y Y Y  Y Y Y 

Notes: the table reports the estimates of βa from Equation 1, where 𝛀 is an identity matrix (absence of 

distance weighting). Weather controls include temperature, wind direction, wind speed, rainfall, radiance, 

humidity, and average PBLH, interacted with each other up to three lags. Robust standard errors are 

reported in parentheses. 

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 
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Figures 

 

Figure 1: Livestock presence - Eurostat NUTS2 level 

[A] - Cattle [B] - Swine 
 

 

Notes: the figure reports live cattle (Panel A) and swine animals (Panel B) across European NUTS2 

regions (the French Guiana region is relocated in the bottom left of the map). The Lombardy region 

(framed) is the 14th area in terms of absolute units of bovine in Europe, 8th in terms of swine absolute 

units. Units are reported to the most recent data point available (2020 for bovine, 2016 for swine). 

Grey areas have no data available on livestock presence.  

Source: Eurostat. 
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Figure 2: Station quadrants and wind direction 

[I] – Time t [II] – Time t+1 
 

 

Notes: the figure provides an example of quadrant-specific variation conditional on wind direction. 

Consider the stations A and B at time t (Panel I). The existing stock of swine and cattle within r 

kilometers from the sensor is divided across four quadrants, i.e., 90-degree portions oriented along main 

cardinal directions (North, East, South, West). Consider the variation in animal headcount from time 

t in time t+1. In our specification, this variation is expected to influence concentrations of pollutants 

only as long as it takes place upwind from the sensor. For instance, on days when West wind is blowing 

(red arrows), station A will be imputed a reduction in swine stock, while station B will exhibit no 

change in animal presence around the station. Conversely, on days of North wind, station A will be 

imputed a positive change in the stock of both swine and cattle, while in station B the increase will be 

observed only in swine headcount.  
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Figure 3: Data sources - flowchart 

 

 
 
 

Notes: the figure plots a flowchart of the data used in our study, specifying the geographic and temporal 

level of the information available and the corresponding sources.
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Figure 4: Frequency of wind directions - regional and sensor values 

[A] - NH3 Circular areas [B] - PM10 Circular areas 

 

 
Notes: the figure reports quadrant-specific wind frequency at the station level, calculated as the 

number of days recording wind flowing from a given quadrant over the entire sample period (2015-

2020). Triangles mark sensors that provide decomposed data on ammonium nitrates and ammonium 

sulfates. Panel A plots wind frequencies for ammonia stations, while Panel B plots the same statistics 

for PM10 stations. Polar plots are reported at the bottom to visualize the mean concentrations of each 

pollutant of each combination of wind direction and speed at the regional level. These plots are 

obtained using the function polarPlot in R. Computational details for calculating the concentration 

surface can be found in Carslaw et al. (2006) and Westmoreland et al. (2007). 
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Figure 5: Animals total headcount 

 

[A] - Cattle 

 

 

[B] - Swine 

 
 

Notes: the figure reports the time average total headcount of cattle (Panel A) and swine (Panel B) at the 

municipal level across four regions: Lombardy (borders in bold), Piedmont, Emilia-Romagna, and Veneto. 

The region’s area covers all municipalities located within a 60km radius of at least one NH3 or PM station. 
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Figure 6: Pollutants concentration - sensor sample average 

[A] NH3 [B] PM10 

 

 

Notes: the figure plots ammonia (Panel A) and PM stations in Lombardy. Sensor color is determined 

by average daily concentration (µg/m3) throughout the year at the sensor level. Max - Min values: [2.7; 

47.7] Panel A; [13.8; 39.9] Panel B. 
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Figure 7: Distributions of simulated weighted variation in livestock units (quadrant) 

 

[I] NH3 

[A] Cattle [B] Swine 
 

 

 

[I] PM10 

[A] Cattle [B] Swine 
 

 

Notes: the figure compares the marginal contribution of a 1000-unit positive variation estimated without 

distance discounting weighting with that obtained through different specifications of 𝛀. Estimates are 

presented separately by pollutant (Panels I and II) and farming animal (Panels A and B). Coefficients are 

estimated according to Equation 1, while 𝛀 weights are computed according to Equations 2 and 3. The 

resulting effect plotted in the graph is obtained by multiplying point estimates (See Appendix, Tables A1.1 

through A1.4) and the simulated 1000-unit variation distribution. 
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Figure 8: Effect heterogeneity - Wind direction 

 

Notes: The table reports the estimates of ηa coefficients from Equation 4. The control group is the variation 

in livestock units taking place in the quadrant South of each sensor. Weather controls (temperature, wind 

direction, wind speed, rainfall, radiance, humidity, average PBLH, interacted with each other up to three lags) 

and month, year, and station-by-quadrant fixed effects are included. Robust confidence intervals at 95% are 

plotted. 
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Figure 9: Effect heterogeneity - Dropping NH3 stations 

 
[A] – Cattle 

 
 

Station 
Cattle 

(Area avg.) 

Cremona 

Borghi 

1297819 

Piadena 1265482 

Cremona 

Fatebene 

1053679 

Corte de 

Cortesi 

1030262 

Bertonico 877854 

Schivenoglia 712969 

Milano Pascal 402840 

Monza Parco 395167 

Pavia Folperti 365971 

Moggio 203124 

 
[B] – Swine 

 
 

Station 
Swine 

(Area avg.) 

Corte de Cortesi 3954152 

Cremona 

Fatebene 

3779251 

Cremona Borghi 3690717 

Piadena 3633510 

Bertonico 2946117 

Schivenoglia 1967174 

Milano Pascal 989238 

Monza Parco 929888 

Pavia Folperti 828486 

Sannazzaro 433970 

 
Notes: The figure plots the estimates of βa from Equation 1, with 𝛀 = I, when observations from 

the sensor reported on the horizontal axis are excluded from the sample. Horizontal lines in Panel 

A and B correspond to the coefficients estimated in Table 3, Column 3. In the table, the sample 

average number of animals per station circular area is reported. 
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Figure 10: Effect heterogeneity - Dropping PM10 stations 

 
[A] – Cattle 

 
 

 

 

Station 

Cattle 

(Area avg.) 

MN 49498.51 

CR 38685.26 

LO 30789.42 

BS 27381.61 

BG 23418.84 

MI 12662.75 

PV 8613.302 

LC 4849.589 

MB 4355.362 

VA 4065.111 

 
[B] – Swine 

 
 

 

Station 

Swine  

(Area avg.) 

MN 181736.6 

CR 120776.5 

BS 109817.4 

LO 101199.3 

BG 80343.15 

MI 33902.45 

PV 20898.13 

MB 10134.75 

LC 8952.52 

VA 6564.874 

 

 

 

Notes: The figure plots the estimates of βa from Equation 1, with 𝛀 = I, where observations in 

the province reported on the horizontal axis are excluded from the sample. Horizontal lines in 

Panel A and B correspond to the coefficients estimated in Table 3, Column 3. In the table, the 

sample average number of animals per station circular area is reported. 



118  

Figure 11: Counterfactual PM levels and population exposure 

[A] Reduction in PM levels [B] Population affected 

 

Notes: the figure shows the counterfactual scenario simulating the absence of bovine and swine 

livestock units. For visual purposes, sensors are grouped into twenty bins, calculated conditioning 

on yearly average concentrations. Panel A shows the relationship between average daily concentration 

and the corresponding percentage daily average reduction in each bin in the absence of swine and 

cattle. Panel B relates reduction under the counterfactual scenario with the population residing within 

a 50km radius of a station. Marker’s size varies with the calculated percentage reduction in PM10 in 

the absence of livestock units. 
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Appendix 

A1.Appendix Tables 

Table A1.1: Estimates Robustness - Probability weighting 

 

  NH3 
 

  PM10   
 

PM10
ASN 

 

 
(1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

∆ - Cattle 
0.289∗∗  0.201  0.351∗∗∗  0.392∗∗  0.069  0.128 

 (0.126)  (0.133)  (0.060)  (0.060)  (0.144)  (0.150) 

∆ - Swine 
 0.060∗∗∗ 0.0596∗∗∗   0.002 0.0089∗∗∗   0.020 0.0218 

  (0.018) (0.018)   (0.003) (0.003)   (0.020) (0.020) 

Observations 16579 13919 13919 
 

109202 109650 109650 
 

3299 2790 2790 

Adj R2 0.5690 0.5656 0.5657  0.5215 0.5213 0.5217  0.5228 0.5367 0.5370 

Dep. Var. Mean 
15.53 15.53 15.53  30.42 30.42 30.42  10.68 10.68 10.68 

Weather Controls 
Y 

 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

Month FE Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

Year FE Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

Sensor-by-quadrant FE Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

Notes: the table reports the estimates of βa from Equation 1, where 𝛀 is an identity matrix (absence of 

distance weighting). Analytical weighting assigning greater importance to sensor-day observations toward 

the end of each month is applied. Weather controls include temperature, wind direction, wind speed, rainfall, 

radiance, humidity, and average PBLH, interacted with each other up to three lags. Robust standard errors 

are reported in parentheses. 

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 
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Table A1.2: Estimates Robustness - Linear Distance Weighting 
 

  NH3    PM10    PM10
ASN  

 
(1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

 

∆ - Cattle 

 

0.975∗∗∗ 

 
 

0.824∗∗ 

 
 

0.738∗∗∗ 

 
 

0.830∗∗∗ 

 
 

0.38 

 
 

0.345 

 (0.306)  (0.322)  (0.128)  (0.128)  (0.42)  (0.45) 

∆ - Swine 

 
0.062∗ 0.0667∗ 

  
0.062∗ 0.0212∗∗∗ 

  
0.062∗ 0.0290 

  (0.037) (0.037)   (0.037) (0.037)   (0.04) (0.04) 

Observations 16579 13919 13919 
 

109202 109650 109650 
 

3299 2790 2790 

Adj R2 0.5768 0.5693 0.5698  0.5145 0.5143 0.5146  0.5061 0.5109 0.5113 

Dep. Var. Mean 15.53 15.53 15.53  30.42 30.42 30.42  10.68 10.68 10.68 

Weather Controls 
Y 

 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

Month FE Y Y Y  Y Y Y  Y Y Y 

Year FE Y Y Y  Y Y Y  Y Y Y 

Sensor-by-quadrant FE Y Y Y  Y Y Y  Y Y Y 

Notes: the table reports the estimates of βa from Equation 1, where 𝛀 is populated using linear weights. 

Weather controls include temperature, wind direction, wind speed, rainfall, radiance, humidity, and average 

PBLH, interacted with each other up to three lags. Robust standard errors are reported in parentheses. 

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 
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Table A1.3: Estimates Robustness - Gaussian (<50) Distance Weighting 
 

  NH3    PM10    PM10
ASN  

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

 

∆ - Cattle 

 

0.418∗∗∗ 

 
 

0.355∗∗ 

 
 

0.328∗∗∗ 

 
 

0.380∗∗∗ 

 
 

0.15 

 
 

0.174 

 (0.137)  (0.144)  (0.066)  (0.066)  (0.17)  (0.18) 

 

∆ - Swine 

 
0.054∗∗∗ 0.0552∗∗∗ 

   

0.004 0.0118∗∗∗ 
   

0.018 

 

0.0188 

  (0.020) (0.020)   (0.003) (0.004)   (0.02) (0.02) 

Observations 16579 13919 13919 
 

109202 109650 13919 
 

3299 2790 13919 

Adj R2 0.5767 0.5694 0.5698  0.5145 0.5143 0.5146  0.5061 0.5110 0.5114 

Dep. Var. Mean 15.53 15.53 15.53  30.42 30.42 30.42  10.68 10.68 10.68 

Weather Controls 
Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

Month FE Y Y Y  Y Y Y  Y Y Y 

Year FE Y Y Y  Y Y Y  Y Y Y 

Sensor-by-quadrant FE Y Y Y  Y Y Y  Y Y Y 

Notes: the table reports the estimates of βa from Equation 1, where 𝛀 is populated using Gaussian weights, 

with maximum radius 50km. Weather controls include temperature, wind direction, wind speed, rainfall, 

radiance, humidity, and average PBLH, interacted with each other up to three lags. Robust standard errors 

are reported in parentheses. 

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 
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Table A1.4: Estimates Robustness - Gaussian (<60) Distance Weighting 
 

  NH3    PM10    PM10
ASN  

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

 

 

∆ - Cattle 

 

0.397∗∗∗ 

 
 

0.341∗∗ 

 
 

0.301∗∗∗ 

 
 

0.350∗∗∗ 

  

 

0.14 

  

 

0.171 

 (0.127)  (0.133)  (0.060)  (0.060)  (0.16)  (0.17) 

 

∆ - Swine 

 
0.046∗∗ 0.0464∗∗∗ 

   

0.004 0.0113∗∗∗ 
   

0.017 

 

0.0180 

  (0.019) (0.019)   (0.003) (0.003)   (0.02) (0.02) 

Observations 16579 13919 13919 
 

109202 109650 109650 
 

3299 2790 2790 

Adj R2 0.5767 0.5694 0.5699  0.5145 0.5143 0.5146  0.5061 0.5110 0.5114 

Dep. Var. Mean 15.53 15.53 15.53  30.42 30.42 30.42  10.68 10.68 10.68 

Weather Controls 
Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

 Y 
 

Y 
 

Y 
 

Month FE Y Y Y  Y Y Y  Y Y Y 

Year FE Y Y Y  Y Y Y  Y Y Y 

Sensor-by-quadrant FE Y Y Y  Y Y Y  Y Y Y 

Notes: the table reports the estimates of βa from Equation 1, where 𝛀 is populated using Gaussian weights, 

with maximum radius 60km. Weather controls include temperature, wind direction, wind speed, rainfall, 

radiance, humidity, and average PBLH, interacted with each other up to three lags. Robust standard errors 

are reported in parentheses. 

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 
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Figure A2.1: Livestock movements around stations - Sample averages (2015-2020) 

 

[I] Cattle 

[A] Inflow [B] Births 

 

 
 

[C] Outflow (alive) [D] Outflow (slaughter) 
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[II] Swine 

[A] Inflow 

 

 

[C] Outflow (alive) [D] Outflow (slaughter) 

 

  

 

Notes: the figure plots the average monthly inflows (A), births (B), outflows (C), and slaughtered units (D) of cattle [I] and swine [II] 

throughout the sample period. Birth data is not separable from the overall inflow of swine. Animals displaced for slaughtering purposes are 

considered as an immediate depletion of the municipality’s stock. Blue circles represent circular areas around sensors which includes 

municipalities within a 50km radius of each station. For brevity, the figure is only plotted for NH3 stations.  
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Figure A2.2: Estimates sensitivity to expanding circular areas 

 

[A] NH3 

 

 

[B] PM10 

 

Notes: the figure shows the estimates of βa from Equation 1, estimated using increasing values of  𝑟̅, at 

2km increment. Hence, only the variation in livestock units within 𝑟̅ distance from the sensor is used to 

explain variation in pollutant concentrations. Weather controls (temperature, wind direction, wind speed, 

rainfall, radiance, humidity, average PBLH, interacted with each other and up to three lags), month, year, 

and sensor-by-quadrant fixed effects are included. Robust standard errors are reported. 
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Figure A2.3: Model residuals and fitted values 

[I] – Ammonia [II] – PM10 

 

 

Notes: the figure plots the residuals of our model versus fitted values. Both variation in cattle ande 

swine units is included in absence of weighting (corresponding to columns 3 and 6 in Table 3), and the 

plot is reported for ammonia (Panel I) and PM10 (Panel II). The plots show a rather linear trend in 

residuals, with increased variance towards the right end of the fitted values distribution, supporting the 

correction for heteroskedasticity in our standard errors.  
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Figure A2.4: Multi-animal farming incidence 

 

Notes: the figure reports the share of farms in the Lombardy region specializing in each combi- 

nation of the most prevalent farming animals: cattle, pigs, and chicken. 

Source: ISTAT, 2010 Agricultural Census. 
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Figure A2.5: Distributions of simulated weighted variation in livestock units (quadrant) 

 

[A] [B] 

 

[C]  

 
 

Notes: the figure reports the resulting distribution of a 10,000 iterations simulation of Δ𝐿 × 𝛀, where Δ𝐿 

is a 1000-unit positive variation around a station. A unit is located at random distance 𝑑̃ ∼ 𝑈(0, 𝑟̅). It is 

then weighted through 𝛀 according to three different specifications: linear (A), Gaussian <50km (B), 

Gaussian <60km (C). The resulting headcount distribution, corresponding kernel density, and median 

outcome are plotted. 
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A3. Supplementary M aterial 

 
A3.1. Computing variation in livestock units: numerical example  

 

We present in this Section a numerical example aimed at clarifying how the variation in 

livestock units, in case of either distance or unit weighting, is computed in each period. 

Consider a simple example with only one station and 𝑄 = 2 quadrants (North and South). 

Let there be one animal of interest such that 𝐴 is a singleton and 𝛽𝑎 is a singleton matrix. 

In addition, assume that quadrants only contains two municipalities each, and for 

simplicity, assume a symmetric scenario in which municipalities respectively at 25km and 

10km from the sensor in each quadrant. Consider a maximum radius for the area 

surrounding a sensor of 𝑟 = 50 km.  

Let Δ𝐿 be a 𝑄 ×𝑀 matrix, where 𝑀 is the number of municipalities within distance 𝑟 

from the sensor, defined at time 𝑡 as follows:  

 

Δ𝐿 =  [
+3 −4 0 0
0 0 +1 −2

] 

 

where positive entries indicate an increase in the headcount of farming animals in 

municipality 𝑗 in quadrant 𝑖. First, consider the case of absence of distance weighting: 

variation in animals within distance 𝑟 from the sensor contributes equally to the 

concentrations of pollutants recorded at sensor level. In this case, the matrix  𝛀 will be 

an 𝑀 ×𝑀 identity matrix, which leaves Δ𝐿 unchanged. Second, consider linear weighting 

of variation in livestock units (the case of Gaussian weights is easily derived).  

 

𝑤𝑗 = 1 − 
𝑑𝑗

 𝑟̅
 

 

This implies weights of respectively .5 and .8 for municipalities 25 km and 10 km away 

from the sensor. In this case, 𝛀 is a diagonal matrix expressed as follows:  

  

𝛀 = [

. 5 0 0 0
0 . 8 0 0
0 0 . 5 0
0 0 0 . 8

] 

 

Which leads to a weighted variation matrix of the form: 
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Δ𝐿 ×  𝛀 =  [
+1.5 −3.2 0 0
0 0 +.5 −1.6

] 

 

Assume that time 𝑡 is characterized by North wind, such that the set ℬ only includes 

municipalities in the first row of Δ𝐿. It descends that the sensor will be imputed a 

variation in number of livestock units at time 𝑡 of: 

 

∑ Δ𝐿𝑗 ×  𝛀

𝑗∈ℬ∩𝒢

= +1.5 − 3.2 =  −1.7 

 

Starting from this example, it is possible to generalize for 𝑁 stations, 𝐴 animals, and 𝑄 

quadrants.  
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Abstract

While research has studied the effects of climate variations on child nutrition, how

soil aridification impacts child wellbeing is relatively understudied. Using climate and

infant health data combined with an original measure of soil aridity, we show that

infants born in arid areas are comparatively more likely to die under the age of 5 and

be systematically underweight at birth. We also find that aridification deteriorates

the positive association between rainfall and child health. Our findings emphasize

the importance of accounting for aridity alongside precipitations when assessing the

economic impact of climate.
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1 Introduction

The effects of climate change and global warming have been central issues in the recent

scientific and economic literature. Studies have found strong evidence of a close connection

between the evolution of weather factors and economic welfare, both at the micro and

macro level (Dell et al. 2008, 2012, Burke et al. 2015, Zhang et al. 2017, Peri & Sasahara

2019).

Among the numerous implications of climate change, water access for people worldwide

remains a key concern. A reliable water source is crucial for developing sustainable human

settlements and agricultural and economic systems, and water availability is strongly influ-

enced by precipitation and its intensity. According to current predictions, global rainfall

is expected to rise in the next few decades due to climate change. Panel [A] in Figure

1 illustrates the upcoming trend in rainfall using five of the most commonly used earth

system models (ESM) for the periods 2040–2079 and 2060–2099: all the models predict a

consistent increase in global precipitation levels, roughly between 5.7% and 12.2%.

Most of the economic literature has examined the effects of precipitation and temper-

atures as key determinants of the amount of water available to individuals in developing

countries. For instance, Maccini & Yang (2009) use early-life precipitations in Indonesia

to show how fluctuations in agricultural output have a long-lasting impact on women’s

health, schooling, and socio-economic status. Kudamatsu et al. (2012) used rainfall and

temperature to determine how a period of relative drought affects infant mortality in

Africa, finding that in-utero drought exposure increases babies’ risk of death. In both

studies, nutrition and malnutrition (experienced either by a mother or an infant during

early life) constitute the primary channel through which climate conditions affect individ-

uals. Conversely, Jayachandran (2006) used rainfall shocks in underdeveloped rural India

to explain the impact of productivity shocks to agriculture on wages, migration, and credit

constraints.

Thiede & Strube (2020) found that high temperatures and lower precipitation are

associated with reductions in child weight and an increase in the risk of wasting. Similar

results were obtained using the En Nino Southern Oscillations (Anttila-Hughes et al. 2021).

More recently, Blom et al. (2022) used hour-degree bins of temperature exposure to assess
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the effects of extreme heat on early child nutrition, finding that a 2◦C rise in temperature

increases the prevalence of stunting by more than seven percentage points.

Based on these findings, rainfall is viewed to have a positive impact on human devel-

opment in rural settings, primarily through its beneficial effect on the agricultural sector,

while temperature negatively impacts human health and development (McMahon & Gray

2021). Nonetheless, precipitation and temperature alone do not capture actual soil water

availability, which also depends on concurring factors, such as land quality, solar radia-

tion, and wind speed. A direct consequence of these interactions is that as climate change

accelerates and temperatures rise globally, the stability of the relationship between precip-

itations and water availability may change dramatically, with substantial effects on human

wellbeing. Young (2021) argues that water access and the actual water availability of the

soil are key for more effective food and nutrition policies in Africa.

In this paper, we aim to explore the capacity of the soil to retain water and its effect on

child health in Africa. To this end, we combine data on temperature and rainfall defined

on 0.5° latitude x 0.5° longitude grids (ca. 56 km x 56 km at the equator) with an original

measure of soil aridification, namely the potential evapotranspiration (henceforth PET)

index. PET considers the combination of two sources of soil water loss, namely the soil

surface evaporation (i.e., the process whereby liquid water is converted to water vapor and

removed from the evaporating surface) and reference crop transpiration (the vaporization

of liquid water contained in plant tissues and the vapor removal to the atmosphere; Allen

et al. 1998). Following environmental research on the topic, we consider the PET as an

indicator of the aridity of an area (Rind et al. 1990, Cherlet et al. 2018) and study the

impact of our measures on infant wellbeing in Africa (Figure 1, Panel [B]).

Consistent with previous literature, this study focuses on the core indicators of infant

health as a proxy for economic wellbeing (Aber et al. 1997, Benshaul-Tolonen 2018). We

use geolocalized data from four waves of the Demographic and Health Surveys (DHS) to

assemble information on women and children in 34 countries between 1992 and 2018, with

a primary focus on child mortality. Based on a sub-sample of individuals, the study also

documents the joint effect of rainfall and PET on body mass index (BMI) at the time of

the interviews and in terms of their size at birth in children under five.

We find that precipitation alone is associated with higher child health measures. How-
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ever, while this result is consistent with previous studies, our findings suggest that soil

aridification counteracts the beneficial effects of higher rainfall levels: children in more arid

regions are more likely to die before the age of five, tend to be smaller at birth, and have

systematically lower BMI values by the time the interviews were conducted. The results

are robust for redefining the primary outcome variables with comparable measures, such as

one-year mortality and weight-to-height ratios. Moreover, the positive effect of rainfall on

child health is shown to be susceptible to aridity and progressive land aridification: chil-

dren in dry climates and those living in areas that have experienced a stronger increase

in PET levels in the last decades benefit disproportionally less from years of abundant

rainfall.

Finally, we address the role of migration and assess the heterogenous impacts of soil

aridity in rural and urban communities. Those findings show that individuals living in

urban areas are still susceptible to negative effects of soil aridification.

Our research contributes to the debate on the relationship between precipitations and

human wellbeing, adding to the discussion on the effect of rainfall on health during child-

bearing and early life (Kudamatsu et al. 2012, Le & Nguyen 2021, Sivadasan & Xu 2021,

Ponnusamy 2022). Moreover, with rainfall being associated with a variety of socioeconomic

outcomes (Rose 1999, Barrios et al. 2010, Brückner & Ciccone 2011, Björkman-Nyqvist

2013, Rocha & Soares 2015), the paper offers a new perspective to the literature about

heterogeneity in the response to rainfall shocks (Sarsons 2015, Damania 2020, Mary 2022)

and, more in general, unexpected weather events (Burgess & Donaldson 2010, Dell et al.

2014).

The paper also contributes to the discussion about the present and future impact

of climate change on low-income countries, providing new evidence on the relationship

between climatic factors, soil aridity, and child health (Rabassa et al. 2014, Bharadwaj

et al. 2020, Emediegwu et al. 2022, Randell et al. 2021).

The remainder of the paper is organized as follows: Section 2 summarizes the debate

on the future of precipitations and presents the data. In Section 3, we propose a research

design to study the impact of weather conditions on child health. In Section 4, we discuss

our main findings, and in Section 5, we complement the evidence by testing for potential

urban-rural heterogeneity and assessing robustness to potentially endogenous migration.
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Finally, Section 6 concludes with a simple back-of-the-envelope calculation to quantify the

expected toll of aridification on children’s wellbeing.

2 Background and Data Description

2.1 Child Health and Soil Aridity

Climate change has emerged as a significant factor affecting both the economy and society,

as evidenced by recent studies (Lanfredi et al. 2022, Cattaneo & Foreman 2023). However,

it is children, particularly those living in low- and middle-income countries, who are among

the most vulnerable (Burke et al. 2015). Newborns are uniquely susceptible to the health

implications of climate change due to their weakened immune systems, higher metabolic

rates, and increased exposure to environmental hazards. Moreover, their survival and

well-being rely on their caregivers, who may be adversely affected by the disruptions and

stresses brought about by climate change (Chersich et al. 2018).

Among the many aspects of climate change, the issue of aridification is a substan-

tial challenge that the world faces today, as reported by the Intergovernmental Panel on

Climate Change (IPCC) in 2019. Soil aridification can affect food security and nutri-

tion through agriculture, pushing food prices and disrupting food distribution, leading to

chronic undernutrition and micronutrient deficiencies among children, which can impede

their growth, development, and cognitive abilities. In related literature, soil evapotran-

spiration has been shown to influence crop productivity and lead to a sensitive loss in

agricultural yield, depending on the characteristics of the cultivated land (Mendelsohn

& Dinar 2003, Mendelsohn 2009, Malpede & Percoco 2023). In the African continent,

where a comparatively high share of the population lives in rural areas, agriculture has

historically accounted for more than 50% of the gross domestic product (GDP) until the

beginning of the 1990s (Diao et al. 2007). Even in 2020, in 34 African countries, agri-

culture, forestry, and fishing accounted for an average of 21.4% of the GDP, with some

countries even exceeding 50%.1 As such, in an area where agriculture is vital, aridity could

affect human development by impacting agricultural productivity.

1Source: World Development Indicators, The World Bank Group: Agriculture, forestry, and fishing,
value added (% of GDP). Data for Comoros, Cote d’Ivoire, and Mozambique are available from 2019. Data
for Zimbabwe are available from 2018.
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Finally, aridification could indirectly impact the physical well-being of children. Pe-

riods of climatic fluctuation and global environmental change have been associated with

social phenomena such as conflict (Harari & Ferrara 2018) and migration (Black et al.

2011). Migratory flows, trauma, and violence resulting from climatic shocks can lead

to anxiety, depression, post-traumatic stress disorder, or other psychological disorders in

children and their caregivers (Crandon et al. 2022). Children may also experience reduced

access to education, social support, and recreational opportunities (Vergunst & Berry

2022).

The link between desertification and the well-being of children is intricate and multi-

faceted. This study aims to highlight the existence of a robust causal connection between

desertification and newborns’ health and to reconsider the role of rainfall vis-à-vis chang-

ing climate while developing the ground for further research on the specific mechanisms

through which these relationships unravel.

Furthermore, soil aridification can induce health concerns for individuals in Africa

to the extent that less humid conditions can reduce natural habitats for vectors and

their predators, altering the transmission patterns and geographic range of vector-borne

diseases such as malaria, dengue, and yellow fever, which are already endemic in many

parts of Africa. Soil aridification can also increase the incidence and severity of water-

borne diseases such as cholera, typhoid, and dysentery, which are linked to poor sanitation

and hygiene (Caminade et al. 2019).

2.2 Measures of Soil Aridity

The role of precipitation within the general pattern of climate change is still disputed.

It was initially posited that climate change could lead to a wet-get-wetter and dry-get-

drier pattern due to atmospheric moisture convergence and divergence (Held & Soden

2006). Nonetheless, due to a lack of consistent empirical evidence, this hypothesis has

seemingly been replaced by a contrasting view in which mean precipitations are expected

to increase at high- and mid-latitudes. Still, they will likely not decrease in subtropical

regions (Kirtman et al. 2013, Donat et al. 2016). In turn, average rainfall at the global

level is expected to increase in the coming years (Cherlet et al. 2018).

The evidence found in the existing literature suggests that higher precipitation levels
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could help prevent drought and boost agricultural productivity (Gornall et al. 2010).

As a result, it is possible that communities relying on agricultural output as a primary

source of income and food supply may potentially benefit from foreseen weather variations.

In this scenario, climate change could positively affect rural households in developing

countries in the upcoming decades. In this paper, we study the direct effect of rainfall

and soil evapotranspiration on a set of infant health measures. To perform this empirical

assessment, we use the CRU TS4.04 dataset, which contains time-series data on month-

by-month variations in climate over the period 1901–2019, provided on high-resolution

(0.5° longitude x 0.5° latitude) grids.2

We focus on an area covering almost 40% of the entire African continent. Moreover,

this paper focuses on weather conditions between 1951 and 2019 and considers three mea-

sures of climate variation: PET (mm/month), precipitations (mm/month), and monthly

mean temperature (°C). The PET represents the amount of water lost from a cropped ref-

erence surface that is not short of water (a hypothetical grass reference crop with specific

characteristics). As such, this measure estimates the evaporative demand of the atmo-

sphere independently of crop type, crop development, and management practices. The

PET estimates are calculated using a variant of the Penman-Monteith method, briefly

summarized in the Appendix.

We report the evolution of our environmental measures over the sample period in

Table 1. The yearly averages of each variable are included in time windows of 15 years

each. The predictions regarding increasing rainfall cannot be confirmed using historical

data and a limited sample period; however, the study’s series points in that direction.

Indeed, the level of average precipitations appears to follow a reverting trend, decreasing

at first and then rising again in the early 2000s. Conversely, average PET levels and

temperatures are on a stable, increasing path. Additionally, the process of aridification

and rising temperatures seem to have accelerated since the 1980s.

Table 1 also reports correlations between the climate variables used in this research.

To interpret cross-sectional variability across the grid, the average yearly precipitations

and PET levels throughout the sample period are plotted in Figure 2. While the PET

2As is usually the case for model-computed weather data, the decision to use the CRU database comes
with partial concerns regarding the quality of data. We justify the suitability of this dataset for our purpose
in Section A.1 in the Appendix.
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shows steady but little volatility over time, the sample retains substantial cross-sectional

variation, ranging from areas with almost no evapotranspiration to cells where this measure

exceeds the average precipitations.3

2.3 Measures of Infant Health

This study combines data on soil aridity with information on child health from the De-

mographic and Health Surveys (DHS). This program collects nationally representative

data on health and population in developing countries, compensating for the lack of high-

quality infant health statistics, particularly in Sub-Saharan Africa. In the present study,

we construct a dataset using survey waves conducted between 1992 and 2018 for 34 African

countries. The survey is stratified into clusters, localized with displacements of up to 2 km

for urban and 10 km for rural points. The geographical distribution of clusters available in

at least one wave is plotted in Figure 3. Data from the Individual Recode dataset and the

Child Recode dataset are utilized. The former contains data on every eligible woman, in-

cluding individual socio-economic characteristics, birth history, pregnancy, and postnatal

care; the latter comprises some core child health indicators for children under five years

old and their mothers. Here, we restricted the sample to women who experienced at least

one completed pregnancy.

Table 2 summarizes the descriptive statistics on mothers and infant mortality across the

sample period.4 We obtained information for 468,873 women aged 13 to 50, corresponding

to more than 2 million births between 1955 and 2019. However, wealth and education

characteristics and records on size at birth and BMI were only available for a sub-sample

of individuals, leaving us with a final sample of roughly 1.7 million births and over 400,000

children under five. Given the large number of countries and the variety of developing

settings considered, the women in the sample are heterogeneous in terms of education and

economic wealth scores. The average years of schooling are relatively low: the women in

our sample attended school for less than 4 years, with almost 50% declaring having received

no formal education. Moreover, roughly 70% to 75% of the sample comprises women living

3When the PET exceeds the actual precipitation, it indicates that the soil may eventually dry out unless
irrigation is used to offset the loss. However, the effective amount of water dispersed also depends on the
type of plants cultivated on the land.

4All the variables relevant to our study are described in Section A.1 in the Appendix.
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in rural households. As extensively highlighted in previous literature, fertility appears to

be high in the sample, with an average of more than five births per woman. These measures

tend to remain homogeneous across different survey waves.

The first outcome variable is child mortality, retrieved from a woman’s reported com-

pleted pregnancies. The variable is a binary indicator that takes a value of 1 if a woman

reports that the child died within 60 months of the date of birth. This methodology of

computing infant mortality has already been adopted in the literature employing DHS

data (Kudamatsu et al. 2012, Benshaul-Tolonen 2018). As Table 2 indicates, despite a

steady decrease, the average probability of a pregnancy resulting in a child’s death is still

very high, ranging from 8.9% to 12% across the survey waves. However, infant mortality

is highly volatile across the sample, with large standard deviations common to all the

rounds. Moreover, there seems to be only a negligible difference between the mortality

rates of male and female children in the sample.

In addition to child mortality, we consider other infant health indicators to provide

further evidence of the relationship discussed in this paper. Specifically, we consider the

Body Mass Index (BMI), calculated using the new Child Growth Standards (CGS) from

the World Health Organization (WHO) at the time of the interviews, and a categorical

variable indicating whether the child’s size at birth was below or above average.5 These

measures allow us to better understand whether aridity could also affect the health of

those who survive. The BMI is provided for all newborns and children under five years

old.

From Table 2, we notice that the infants in our sample consistently display below-

average weight/height ratios (the average child falls in the left tail of the weight/height

distribution, around the 40th percentile). At the same time, regarding BMI, this only

appears to occur towards the last waves of survey collection.

5We check the robustness of our findings using a slight variation in our outcome measures. We focus
on five-year mortality and the ratio of weight over height, expressed in standard deviations and again
calculated using the CGS method.
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3 Methodological Approach

We start with a linear fixed-effects panel data model, exploiting annual variations in

weather conditions across cells to identify the effects of rainfall and PET on the infant

health indicators. We assembled an unbalanced panel dataset using the DHS to compare

the impact of the PET and precipitations. The following equation is estimated:

Yi,m,q,c,t =
1∑

r=0

β1,rPRE
g
c,t∗−r +

1∑
r=0

β2,rPET
g
c,t∗−r + ρXi,m,c + σtrend + ϕq(t∗) + ϵi,m,q,c,t

(1)

where Yi,m,q,c,t∗ represents our measure of infant health for child i born from mother m in

cluster q in cell c. t ∈ {t∗, t̃} can represent either a child’s year of birth (t∗) or the year

of the interview (t̃). As the main regressand, we consider a measure of infant mortality

(mortality at five years), the BMI in standard deviations recorded at the time of the

interview, and the size at birth. We also assess the robustness of our results on a different

yet comparable set of outcome variables (mortality at one year and the weight/height

ratio).

PREc,t and PETc,t are, respectively, the levels of precipitations and potential evapo-

transpiration at a child’s year of birth (t∗) in cell c. In a variation of our specification,

precipitation and PET levels are measured only using growing season months6. One-year

lagged terms are included. Indeed, precipitation and PET levels may impact infant health

by impinging on a mother’s physical well-being or ability to take care of her child effec-

tively. Thus, the study controls for weather conditions one year before childbirth, which

more clearly isolates a potential effect on the mother that is not directly linked to the

child’s health.

In our baseline specification, the reference model for the binary outcome variable of

infant mortality is a linear probability model (LPM). Using a linear estimator eases the

interpretation of the coefficients and allows for immediate comparisons between the differ-

6Data on the growing season in each cell are available through the Global Agro-Ecological Zones (GAEZ)
v4 database, provided by the Food and Agriculture Organization (FAO). The growing season is calculated
using the beginning date of the earliest growing period and the total number of growing period days.
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ent specifications. Moreover, this choice is preferable given the ample set of fixed effects

included in the regression.7

Xi,m,c includes a set of covariates at the birth, woman, and grid level. We control for

characteristics that could be correlated to a child’s status at the time of the survey while

also being associated with PET. As such, we control for a woman’s education, the wealth

index of the household, the kid’s month of birth, and the main source of water declared

by the household8. We also control for cell temperature, to ensure that our measure

of PET is not simply a proxy for temperatures. This approach allows for seasonality

in precipitations and the PET to be smoothened out while accounting for infant health,

which may be influenced by exposure to weather conditions both in utero and immediately

after childbirth. Moreover, the study controls for a mother’s education and wealth index,

the household’s main source of water supply, and, again, for temperature in the grid at

time t for the same reason as above. In addition, ϕc(t) includes two sets of time and cluster

fixed effects.9 Lastly, the term σtrend captures country trends.

Based on previous findings and the existing literature, precipitation is expected to be

positively associated with child health. However, what happens when we include our soil

aridity measure is an empirical question. To explore this question, we focus on the effect

of precipitation vis-à-vis steadily increasing levels of soil water dispersion. To this end,

we estimate the following regression:

Yi,m,q,c,t =

1∑
r=0

10∑
k=1

γr,kPRE
g
c,t∗−r × 1 [∆PETdec = k]c + ρXi,m,c + σtrend + ϕq(t∗) + ϵi,m,q,c,t

(2)

where the term 1 [∆PETdec = k] indicates a binary indicator for the k-th decile in the

sample distribution of ∆PET. The latter is a cell-specific measure that aims to capture the

long-term variation in evapotranspiration. It is therefore calculated as the growth rate of

7While it is possible to estimate non-linear models through iterative algorithms, such as iteratively
reweighted least squares (IRLS), some theoretical challenges exist regarding the existence of a solution to
the algorithm or whether relevant parameters are identifiable.

8Controls are justified as follows. More educated and wealthier households may influence a child’s
wellbeing while also being present in areas with better soil conditions. Also, access to a water source may
be correlated with soil quality and potentially affect childcare. Lastly, children born in different months
may be susceptible to the effect of aridification in different phases of their early growth.

9Adding cluster FEs constitutes a more conservative approach than cell FEs, as a cell in our grid
contains at least one cluster.
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the 10-year average PET between 1950 and 1959 and 2010 and 2019. The grid distribution

of the long-term variation in the PET (Figure 4) shows how systematically arid cells do

not necessarily identify areas in which the increase in the PET has been relatively more

pronounced in the last decades, with the south-east regions, in particular, experiencing a

steep increase in soil aridity. As such, Equation 2 more precisely captures the role of soil

aridification, and not simply the overall soil quality, in driving a heterogeneous response

of individuals to rainfall.

4 Results

Table 3 reports the standardized estimates of the impacts of precipitations and the PET

from Equation 110. As in the previous sections, in Panel [A], the weather variables are

computed over the entire year of reference, while in Panel [B], they are calculated based on

the corresponding growing season. The PET and precipitation variables are standardized

to ease comparison. Column (1) in Panel [A] shows the effect of precipitations on infant

mortality within five years from birth. One standard deviation increase in yearly rainfall

levels reduces mortality by 0.48 percentage points. The same increase in the year before a

child’s birth is also expected to reduce the probability of child mortality by 0.33 percentage

points, suggesting that part of the effect may be realized during pregnancy. All the

coefficients are significant at the 99% level.

When adding the PET into the regression [Column (2)], the effect of precipitations

drops to 0.26% in the year of birth and 0.13% one year before, with the latter coeffi-

cient losing significance. Conversely, one standard deviation increase in the (lagged) PET

increases the expected mortality by (0.33%) 0.53%, hinting at a detrimental effect of in-

creased PET on child mortality, although this is never statistically significant. When only

focusing on the growing season months (Panel [B]), the coefficients estimated are similar

in magnitude, and the same dynamics in the impact of rainfall are detected. The effect of

the PET in the year of birth is now significant at the 95% level.

A similar tendency is found in the coefficients estimated for BMI, expressed in 100

standard deviations [Columns (4) and (5)]. When the precipitations alone are included,

10Unstandardized coefficients are reported in Table A.4.
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one standard deviation increase raises the BMI by 0.0746 standard deviations in the year

of birth and 0.0331 standard deviations in the previous year. However, when the PET

is brought into the regression, the combined effect of the two terms is almost halved.

Conversely, PET appears to reduce BMI: one standard deviation increase in PET decreases

BMI by 0.0961 standard deviations in the year of birth and by 0.1356 standard deviations

in the previous year. The effect in the growing season months is relatively lower for both

regressors, but signs and significance remain considerably stable. One standard deviation

increase in rainfall one year before and in the year of birth is estimated to boost the size

at birth (between a 0.0046 and 0.036 probability of scoring one category higher across

Panels [A] and [B]), while an increase in PET has an opposite effect, which in most cases

is stronger in magnitude11.

Second, we turn to the results of Equation 2. We plot the γr,k estimates in Figure 5.

Existing trends in the coefficients of our decile interactions can inform about the evolution

of rainfall’s effect when considering diverging land aridification levels. In Panel [A], we

notice how precipitations in the year of birth and one year before tend to reduce child

mortality, especially in areas where the PET has been stable in the last decades. In

contrast, the effect gets rapidly offset in cells with severe aridification. The downward

trend in interaction coefficients for BMI depicts a similar scenario: the positive effect

of precipitation on children’s body mass tends to dissipate in cells where the PET has

been rising more significantly in the last 60 years. The results for size at birth are less

transparent: while a similar initial drop is observed in the coefficients, these exhibit some

mild spikes toward the end of the PET distribution.

Overall, this evidence supports multiple considerations regarding the relationship be-

tween precipitation and the PET. First, the effects of the two climate factors often move in

opposite directions. Second, whenever the PET is introduced in the analysis, the explana-

tory power of rainfall systematically decreases, which may hint that the role of rainfall

may vary depending on the soil water retention ability. This is confirmed by noticing how

the beneficial effect of increased rainfall before a child’s birth dissipates significantly when

11In Table A.2, we show how the results observed for infant health are robust when substituting the
outcome variables adopted with similar measures of health and mortality. Indeed, repeating the estimation
with mortality within one year and the weight-to-height ratio in standard deviations returns remarkably
similar coefficients, both in terms of magnitude and significance.
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looking at areas that have experienced stronger aridification. Multiple mechanisms may

coexist in generating this effect, including agricultural yields and income deriving from

farming activities12, climate-induced migration, and direct effects of aridity on health.

We explore the presence of heterogeneity in our results based on some of these potential

mechanisms.

With the agricultural sector a candidate channel directly or indirectly connecting it to

individual wellbeing through climate, the adverse effects of soil aridification could be more

directly relevant to individuals whose first income and food resources lie in the primary

sector. As a result, the effect estimated with our empirical strategy could be strongly

heterogeneous concerning this aspect, with relevant implications for future social and

environmental policies. In fact, as individuals are expected to move away from rural areas

(Cohen 2006, Güneralp et al. 2020), strong differences in the impact of soil aridification in

urbanized cities could justify prioritizing measures of urban development over soil quality

conservation in the short term.

To explore this scenario, we use the information provided by the DHS dataset, which

classifies clusters as urban and rural. This classification is country-specific, and the assess-

ment can consider multiple criteria, such as the availability of electricity or piped water

and access to healthcare, schools, and transportation. We estimate Equation 1 separately

for urban and rural clusters.13 The results are reported in Table A.3. Despite the sample

being almost equally divided between rural (60%) and urban clusters (40%), the higher

number of children per woman in rural areas leads to more than 70% of births occurring

in rural households. Looking at the coefficients for precipitation alone in the two panels,

the effect of rainfall appears systematically stronger for individuals living in rural clusters.

Still, it persists in sizable magnitude in the urban sample, with the only exception of size

at birth.

In both the urban and rural clusters, soil aridification systematically counteracts the

beneficial effects of higher rainfall despite having reduced statistical significance. These

results reveal how individuals in urbanized areas are still susceptible to similar trends

12In a recent study, Malpede & Percoco (2023) show that the aridification process between 1990 and
2015 contributed to a decline in agricultural output of between 0.4 and 1.1 tons per hectare of cultivated
cropland in Africa. Amare & Balana (2023) found similar effects focusing on Nigeria.

13For this exercise, we focus only on yearly values of precipitation and the PET. Using growing season
definitions of our climate variables leads to comparable results.
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due to aridification and reinforce the importance of tapering future soil quality loss. In

rural regions, indeed, aridification can lead to reduced agricultural productivity due to

soil degradation and water scarcity, which in turn affects food security and livelihoods

(Vermeulen et al. 2012, Wheeler & Von Braun 2013). Urban areas, although they may

have more infrastructure to deal with water scarcity, still face challenges such as increased

demand for water resources and potential conflicts over these resources (Unfried et al.

2022). Furthermore, Masih et al. (2014) highlights how drought phenomena exacerbate

existing social and economic inequalities, particularly affecting subsistence farmers.

Changes in climate conditions, including aridity and rainfall, may also induce people to

move toward other regions based on some non-random characteristics. Migration, in turn,

may have mixed implications. Migratory flows may drive the relocation of those suffering

from a worse quality of life, creating selection of more resilient individuals into the sample

of long-settled households. This, in turn, would result in an observed improvement in

the levels of child health. The opposite might also be true: more dynamic and wealthy

individuals may find it easier to relocate as opposed to those living in poorer conditions,

inducing negative selection concerning the wellbeing of children from stayers households.

To explore the presence of climate-induced migration underlying the effect observed in our

estimates, we drop from the sample those women reporting with certainty having lived in

the same place of residence for less than 15 years at the time of the interviews (long-settled).

Observing significant discrepancies with the study’s baseline estimates would support the

hypothesis that individuals tend to react to climate change by relocating endogenously.

Estimates of Equation 1 are then repeated for the sub-sample of long-settled individuals,

who are assumed to be fully affected by the impact of aridification. The results reported

in the Appendix (Table A.2) seem to alleviate this concern. The reduction in sample size

translates into only a marginal loss of significance in the estimates, while the order of

magnitude and the direction of the effect appears to be roughly unchanged. This strategy

does not rule out the presence of climate-induced migration but rather suggests that more

factors are at play and selective migration alone does not strike as a main channel to the

health effects of aridity.
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5 Conclusion

In this paper, we have studied the combined effect of rainfall and of the capacity of the soil

to retain water on child health in Sub-Saharan Africa, finding that the evapotranspiration

of the soil negatively affects infant health, reducing the size of children at birth and their

BMIs. This result is particularly important when we consider that, since 1980, PET levels

in our sample have increased by an average of 0.928 mm per year. Furthermore, most

ESM projections foresee a peak in emissions, which will fuel aridification even further in

the upcoming years: different representative pathway scenarios (RCPs) depict an increase

in the yearly PET from a minimum of 30 mm/year to a maximum of over 300 mm/year.14

The results presented in this study call for policy actions to tackle soil aridification,

which may generate benefits not only in terms of land productivity but also in terms

of child health. New avenues for investigation may focus on detailing and thoroughly

analyzing the potential transmission mechanism between rainfall, soil quality, and human

development, which may help drive systematic and setting-specific interventions.

14Time series at 0.5° × 0.5° grid resolutions are available for five ESMs: GFDL-ESM2M, HadGEM2-
ES, IPSL-CM54-LR, MIROC-ESM-CHEM, and NorESM1-M. These are all part of the Coupled Model
Intercomparison Project Phase 5 (CMIP5). We report the average projections limited to our grid in Table
A.5. More information about the nature and specificities of these models can be found in Noce et al.
(2020).
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Tables

Table 1: Summary statistics – Climate variables

1951–1965 1966–1980 1981–1995 1996–2010 2010–2019 Avg growth

Prec 1064.9 1032.9 965.6 1006.1 1016.9 -0.3%

(545.99) (527.67) (523.01) (520.64) (516.55)

[1.67;3,194.77] [2.44;3,110.26] [2.09;3,107.39] [2.07;3,102.73] [0.89;2,959.36]

PET 1402.1 1396.6 1412.0 1431.9 1435.7 0.07%

(315.89) (314.28) (310.26) (318.03) (310.12)

[809.00;2,664.20] [811.60;2,680.00] [823.20;2,704.00] [822.20;2,794.80] [836.67;2,713.33]

Temp 23.231 23.243 23.555 23.905 23.993 0.07%

(3.58) (3.61) (3.58) (3.58) (3.56)

[8.76;29.68] [8.90;29.¡93] [9.35;30.15] [9.51;30.65] [9.99;30.68]

Correlations

Prec PET Prec PET Prec PET Prec PET Prec PET

PET -0.58 . -0.62 . -0.63 . -0.63 . -0.61 .

Tmp 0.21 0.39 0.13 0.41 0.13 0.41 0.13 0.42 0.13 0.40

Notes: summary statistics are shown for a sample of 4,052 grid cells. Precipitations and PET
show the total millimetres of rain and water lost by the soil in the year, averaged throughout
the indicated period, while temperature is a yearly average (◦C). Standard deviations are
reported in parentheses; minimum and maximum values are reported in brackets. The average
growth column is calculated as ∆ = 1/T

∑T
t (Xt+1 − Xt)/Xt, where T is the entire sample

period (68 years).
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Table 2: Summary statistics – Mothers and children

All Wave III Wave IV Wave V Wave VI Wave VII Min Max

sample

Sample characteristics∗

N. countries 32 3 14 13 28 12

N. clusters 36842 859 7885 6433 16010 5655

Mothers 468873 11277 120289 110359 186949 89867

Births 2358849 46343 511967 501581 979807 319151

Births u5 697710 12237 132073 149913 296656 106831

Mean (sd)

Mother’s characteristics

Age 35.254 35.630 36.041 35.083 35.061 34.796 15 50
(8.07) (8.02) (8.02) (8.15) (8.03) (8.05)

Education 3.451 2.469 2.852 3.806 3.558 3.669 0 27
(4.18) (3.99) (4.12) (4.00) (4.23) (4.29)

Wealth∗∗ 2.796 . 2.822 2.804 2.790 2.781 1 5
(1.40) . (1.42) (1.39) (1.40) (1.40)

Rural household 0.279 0.263 0.266 0.230 0.296 0.330 0 1
(0.45) (0.44) (0.44) (0.42) (0.46) (0.47)

Births 5.402 5.724 5.673 5.694 5.226 5.004 1 19
(2.75) (2.67) (2.78) (2.81) (2.70) (2.65)

Age at first birth 18.784 18.225 18.915 18.402 18.883 18.976 3 47
(3.64) (3.52) (3.57) (3.51) (3.72) (3.66)

Children under 5 1.550 1.694 1.386 1.546 1.623 1.576 0 24
(1.32) (1.39) (1.28) (1.22) (1.40) (1.26)

N. of living children 4.560 4.494 4.584 4.652 4.543 4.438 0 16
(2.24) (2.19) (2.24) (2.29) (2.22) (2.20)

Infant mortality

1 year 0.084 0.120 0.103 0.097 0.073 0.062 0 1
(0.28) (0.33) (0.30) (0.30) (0.26) (0.24)

5 years 0.120 0.172 0.144 0.140 0.105 0.089 0 1
(0.33) (0.38) (0.35) (0.35) (0.31) (0.28)

1 year – boys 0.090 0.126 0.110 0.104 0.079 0.068 0 1
(0.29) (0.33) (0.31) (0.30) (0.27) (0.25)

5 years – boys 0.127 0.177 0.151 0.148 0.111 0.096 0 1
(0.33) (0.38) (0.36) (0.35) (0.31) (0.30)

Infant nutrition–health

BMI (SD)∗∗∗ 0.57 . . 1.82 1.22 -2.72 -500 500
(142.94) . . (156.37) (144.29) (119.50)

Weight/Height (SD)∗∗∗ -12.38 . . -12.88 -11.83 -13.20 0 99.8
(140.44) (152.18) (140.38) (124.27)

Size at birth (cat) ∗∗∗∗ 2.22 2.45 2.08 2.32 2.23 2.25 0 4
(0.99) (0.99) (0.95) (0.98) (0.99) (1.00)

Notes: the DHS surveys employed were conducted between 1992 and 2019.
∗ The number of countries, clusters, mothers and generic births refers to the data available from the
Individual Recode DHS survey. The number of births under 5 refers to the data available from the Child
Recode DHS survey.
∗∗ Wealth is a categorical index ranging from 1 (very poor) to 5 (very rich).
∗∗∗ The measures are presented with two implied decimal places; the actual value is obtained by dividing
the variable by 100.
∗∗∗∗ Size at birth is a categorical variable ranging from 0 (very small) to 4 (very large).
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Table 3: Impact of precipitations and the PET on infant health

Mort (5y) BMI (SD) Size at birth
(1) (2) (3) (4) (5) (6)

[A] Yearly values

Prect -0.0048*** -0.0026*** 7.4652*** 5.1982*** 0.0363*** 0.0222***
(0.0009) (0.0010) (1.2166) (1.2941) (0.0064) (0.0067)

Prec(t−1) -0.0033*** -0.0013 3.3141*** 1.2999 0.0308*** 0.0172***

(0.0009) (0.0010) (1.1741) (1.2384) (0.0059) (0.0063)

PETt 0.0053 -9.6136* 0.0139
(0.0045) (5.1651) (0.0266)

PET(t−1) 0.0033 -1.3564 -0.0754***

(0.0044) (5.1662) (0.0266)

Temperaturet 0.0211 0.0161 -2.4049 -1.2553 0.0190 0.0174
(0.0244) (0.0253) (2.4183) (2.4610) (0.0129) (0.0132)

Temperature(t−1) -0.0130 -0.0204 -1.2065 -0.9917 -0.0239* -0.0148

(0.0244) (0.0254) (2.4268) (2.4632) (0.0129) (0.0131)

Observations 2,059,690 2,059,690 266,469 266,469 518,591 518,591
R2 0.0601 0.0601 0.1999 0.2000 0.1331 0.1332

[B] Growing season

Prec GS t -0.0027*** -0.0017* 3.4957*** 2.4391** 0.0173*** 0.0080
(0.0009) (0.0009) (1.0977) (1.1367) (0.0059) (0.0062)

Prec GS (t−1) -0.0034*** -0.0027*** 3.2944*** 2.2290** 0.0117** 0.0046

(0.0008) (0.0009) (1.0955) (1.1369) (0.0058) (0.0059)

PET GS t 0.0053** -4.5811* -0.0416***
(0.0025) (2.7278) (0.0147)

PET GS (t−1) 0.0006 -4.5907* -0.0137

(0.0024) (2.7214) (0.0146)

Temperature GSt 0.0014 0.0002 0.9829 1.6357 -0.0122* -0.0038
(0.0010) (0.0012) (1.5990) (1.7208) (0.0072) (0.0082)

Temperature GSt−1 -0.0001 -0.0001 -5.0490*** -3.9712** 0.0031 0.0055
(0.0010) (0.0012) (1.5980) (1.7220) (0.0072) (0.0082)

Observations 1,721,384 1,721,384 227,786 227,786 432,729 432,729
R2 0.0598 0.0598 0.1833 0.1835 0.1287 0.1289
Controls Long Long Long Long Long Long
Year FE Y Y Y Y Y Y
Cluster FE Y Y Y Y Y Y
Country Trends Y Y Y Y Y Y

Notes: the table presents the estimates of vectors β1 and β2. Long controls include the woman’s
education in single years, wealth index of the household, kid’s month of birth, main source of
water, and cell temperature at times t and t− 1. Columns (1) and (2) are based on a sample of 33
countries and 22,757 clusters. Columns (3) to (6) are based on a sample of 34 countries and 22,909
clusters. In Panel [A], precipitations and the PET are computed over the entire year; in Panel [B],
only the growing season months are considered. Robust standard errors are clustered at the DHS
cluster level, with significance levels at 10, 5, and 1 percent.
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Figures

Figure 1: Historical trend and future projections in yearly precipitation, 1901–2099

[A] Global Precipitations [B] African Precipitations

Notes: the figure depicts the trend in yearly precipitations (mm/year) starting form
1901. The series between 1901 and 2019 is computed from the CRU TS4.04 dataset.
Projections for two time horizons (2040–2079 and 2060–2099) are accessed from five
commonly employed earth system models (ESMs): GFDL-ESM2M, HadGEM2-ES,
IPSL-CM54-LR, MIROC-ESM-CHEM, and NorESM1-M. Bias-corrected projections
are plotted under the representative concentration pathway (RCP) 4.5, a greenhouse
gas concentration trajectory, which possibly constitutes the most probable baseline
scenario by taking into account the exhaustible character of non-renewable fuels. Panel
[A] plots average global precipitations levels; Panel [B] focuses on the African continent.
Source: CMCC-BioClimInd dataset.
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Figure 2: Geographical variation in precipitations and the PET (1951-2018)

[A] [B]

Notes: Panel [A] depicts precipitations (mm/year) over the sample grid. Panel [B]
shows the PET (mm/year) for the same cells. In Panel [A], lighter cells identify
areas of scarce precipitations. In Panel [B], darker cells identify arid regions.
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Figure 3: Sampled DHS clusters

Notes: the image reports all the clusters appearing at least once in
the sample. The sample includes up to 22,756 unique clusters, with
an average (standard deviation) number of mothers per cluster-survey
year of 53.3 (34.1). Geolocation displacement can be up to 2 km for
urban and 10 km for rural clusters.
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Figure 4: PET variation deciles–Cell distribution

Notes: the image plots the sample grid classified by deciles in the
distribution of PET long-term variation. Long-term variation is cal-
culated as the growth rate of the 10-year average PET in the decades
between 1950 and 1959 and 2010 and 2019. The legend reports the
average percentage variation in the PET per decile (in parentheses).
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Figure 5: Effect of rainfall by deciles of land aridification

[A]
∑

k γ0,k coefficients (PREt) [B]
∑

k γ1,k coefficients (PREt−1)

Notes: the image reports γr,k (with r ∈ {0, 1} and k ∈ N∩ [1, 10]) from Equation 2. Panel [A]
reports interaction terms with precipitation at time t. In Panel [B], the same decile indicators
are interacted with lagged precipitation. The sample distribution of ∆PET is found in Figure
4. 95% confidence intervals clustered at DHS cluster level are reported.
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A Online Appendix

A.1 Computation of the Potential Evapotranspiration

We access a measure for the potential evapotranspiration from the CRU TS.04 dataset. This is

calculated using a modeling scheme based on climate simulations developed by the Hadley Centre

(HadRM3H). A full description of the relevant regional climate models can be found in Ekström

et al. (2007). Here, we report a short summary explaining the computation of the PET.

The estimates for the PET are provided using a variant of the Penman-Monteith method, as

proposed by the FAO. This indicator is addressed as potential since it employs a grass reference

crop. 15 The PET is computed according to the following equation:

PET =
0.408∆ (Rn −G) + γ + 900

T+273.16U2 (ea − ed)

∆ + γ (1 + 0.34U2)
(3)

where Rn represents the net radiation at the crop surface (MJ m−2 per day), G is soil heat flux

(MJ m−2 per day), T is the mean temperature, U is wind speed (ms ), (ea − ed) and ∆ are the

vapour pressure deficit and the relative slope of the vapour pressure curve (kPa
◦C ) respectively, and

γ is a psychrometric constant. While wind speed and temperature are direct outputs from the

HadRM3H, the other constants in the formula are calculated using the model data.

As Equation 3 suggests, while the temperature is indeed relevant in the computation of the

PET, which justify an average positive correlation of around 40% between PET and temperature,

it is only part of the story. As such, by controlling for the yearly average temperature in our main

specifications, we are able to isolate the effect of soil water availability without capturing potential

noise coming from heat volatility.

A.2 Datasets and Variables Description

Precipitations (PRE): total, mm/year

Potential evapotranspiration (PET): total, mm/year. See Section A.1.2 for the computational

details

Temperature: ◦C, average monthly value at 2 m altitude.

Growing Season: growing season months are calculated using the start date of the earliest growing

period (day of year) for the time period 1981–2010 and the total number of growing period days.

15For the original contribution on this computation, see Allen et al. (1994).
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Both measures are accessed through the GAEZ v4 dataset, which employs the climate data source

HadGEM2-ES. More information can be found in Fischer et al. (2021).

Infant mortality (1–5 years): binary indicator computed using the mother-reported time of death

after birth (in months).

BMI (SD): Body mass index, defined as the weight in kilograms divided by the square of the height

in meters (W/H2), and then expressed in standard deviations.

Weight/height : Weight for height standard deviations from the reference median based on the

DHS reference standard.

Education: Highest year of education to give the years of education completed.

Wealth index : a composite measure of a household’s cumulative living standard, calculated using

easy-to-collect data on a household’s ownership of selected assets, such as televisions and bicycles

and materials used for housing construction. Generated by principal components analysis, the

index separates individual households into five wealth quintiles.

Source of drinking water : Main source of drinking water for members of the household (major

categories).

A.3 CRU TS.04 Choice and Comfront with Alternative Datasets

When it comes to environmental studies, researchers in need of high-frequency data on weather and

climate conditions have more than one alternative. Researchers have compared and highlighted

the peculiarities of these different sources. However, no rule of thumb exists to guide them through

the adoption of one particular dataset.

In their paper on weather shocks, malaria, and child mortality, Kudamatsu et al. (2012) access

observations on monthly rainfall through the 45-Year European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40) data archive. The authors justify their choice by

claiming its superiority over the more well-known CRU dataset. Their main argument relies on

the fact that rainfall gauge data in Africa lack the necessary quality and show bias in arid and

semi-arid areas, where departures from standard seasonal fluctuations are more pronounced. A

similar argument is provided by Harari & Ferrara (2018) to justify the adoption of the ERA-40.

Other authors have instead deemed gauge data suitable for the purpose of their studies, and have,
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thus, turned at the CRU dataset, usually in its previous versions (Vicente-Serrano et al. 2010,

Couttenier & Soubeyran 2014).

While the concerns about gauge data are surely legitimate, significant drawbacks are also

implied by the choice of reanalysis data. First, the ERA-40 dataset is provided at more than twice

the resolution of the CRU TS.04 one, at 1.25 × 1.25 degress (roughly 139 km × 139 km), which

is a significant loss in terms of spatial variation. As our sample is an unbalanced panel, variation

across grid cells is of great importance, and, as such, this could impinge on the detection of an

effect of precipitations and the PET on agricultural productivity and infant health. Aanother

alternative available to researchers is the ERA-5 dataset, in which near-surface meteorological

variables have been re-gridded to a half-degree resolution. Yet, in addition to using monthly-

scale bias corrections still based on CRU data, this dataset is only available from 1980. Second,

reanalysis relies on a variety of sources, including weather stations, ships, aircraft, and satellites. To

provide the corresponding weather measures, recorded data are analyzed through an atmospheric

circulation model (IFS CY23r4). Compared to gauge data, this augments the risk of measurement

error.

It is indeed true that CRU stations are partially dispersed in Sub-Saharan Africa, and, since

they cannot provide full direct coverage, the resulting data rely on interpolation. However, the

data on station location and resulting cover contained in Harris et al. (2020), in which stations are

included if they contribute at least 75% of observations in the decade, show that the problem of

loss of variability due to interpolation may be more of a concern in the areas of scarce coverage

(in this case, historical data would have a greater role in filling in for missing observations). In

Figure A.1, we plot the spatial distribution of the clusters available from the DHS together with

the spatial coverage of the CRU stations in the decades 1970-79 and 2000-09. Coverage in the CRU

dataset is defined as an area that experiences the direct measurement of at least 75% of all potential

observations in the decade. We notice that most of the clusters in the sample are actually within

the declared coverage, which provides reassurance, at least regarding the probability of errors

generated by the stations. As we use the area identified by the DHS cluster to run the analysis on

crop productivity, a similar reasoning applies to crop yield observations. This evidence ultimately

helps reduce the concern that our data may not properly capture the variability in precipitations

and PET. This, in turn, is essential to our research strategy and contributes to justifying the choice

of the CRU TS.04 dataset.
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A.4 Appendix Tables

Table A.1: Impact of precipitations and the PET on infant health – alternative measures

Mort (1y) W/H ratio (SD)
(1) (2) (3) (4)

[A] Yearly values
Prect -0.0025*** -0.0020** 7.9419*** 5.4943***

(0.0008) (0.0008) (1.1803) (1.2505)

Prec(t−1) -0.0010 -0.0005 3.1379*** 0.8670
(0.0008) (0.0008) (1.1443) (1.2045)

PETt 0.0022 -6.9669
(0.0039) (5.0209)

PET(t−1) -0.0001 -5.1389
(0.0038) (4.9873)

Temperaturet 0.0245 0.0218 -1.2422 -0.3121
(0.0212) (0.0220) (2.3459) (2.3840)

Temperature(t−1) -0.0209 -0.0212 -2.2272 -1.6508
(0.0213) (0.0220) (2.3541) (2.3837)

Observations 2,059,690 2,059,690 267,083 267,083
R2 0.0391 0.0391 0.1964 0.1966

[B] Growing season
Prec GS t -0.0014* -0.0012* 3.0697*** 1.9820*

(0.0007) (0.0007) (1.0663) (1.1028)

Prec GS (t−1) -0.0017** -0.0017** 2.9896*** 1.7785
(0.0007) (0.0007) (1.0694) (1.1072)

PET GS t 0.0014 -4.1160
(0.0021) (2.7023)

PET GS (t−1) -0.0005 -5.8206**
(0.0021) (2.6913)

Temperature GSt 0.0009 0.0005 0.2902 0.7620
(0.0009) (0.0010) (1.5493) (1.6715)

Temperature GS(t−1) -0.0003 -0.0001 -4.2276*** -2.8285*
(0.0009) (0.0010) (1.5515) (1.6744)

Observations 1,721,384 1,721,384 228,387 228,387
R2 0.0386 0.0386 0.1811 0.1812
Controls Long Long Long Long
Year FE Y Y Y Y
Cluster FE Y Y Y Y
Country Trends Y Y Y Y

Notes: the table presents the estimates of β1 and β2 for comparable outcome variables (infant
mortality and weight/height ratio). Long controls include the woman’s education in single years,
wealth index of the household, child’s month of birth, main source of water, and cell raw temper-
ature in t and t − 1. In Panel [A], precipitations and PET are computed over the entire year; in
Panel [B], only the growing season months are considered. Robust standard errors are clustered
at the DHS cluster level, with significance levels at 10, 5, and 1 percent.
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Table A.2: Impact of precipitations and the PET on infant health - long-settled sample

Mort (5y) BMI (SD) Size at birth
(1) (2) (3) (4) (5) (6)

[A] Yearly values
Prect -0.0047*** -0.0023** 7.3400*** 5.3897*** 0.0336*** 0.0169**

(0.0010) (0.0011) (1.4110) (1.5072) (0.0077) (0.0083)

Prec(t−1) -0.0037*** -0.0014 4.0424*** 2.2763 0.0321*** 0.0166**
(0.0010) (0.0011) (1.3594) (1.4348) (0.0071) (0.0076)

PETt 0.0050 -7.4546 0.0280
(0.0050) (6.0538) (0.0315)

PET(t−1) 0.0048 -2.4066 -0.0998***
(0.0050) (6.0461) (0.0315)

Temperaturet 0.0182 0.0111 -16.8108*** -15.6758*** 0.0280 0.0210
(0.0426) (0.0448) (5.3342) (5.4628) (0.0267) (0.0274)

Temperature(t−1) 0.0129 0.0135 13.3098** 12.0212** -0.0327 -0.0235
(0.0425) (0.0448) (5.3425) (5.4646) (0.0267) (0.0274)

Observations 1,673,718 1,673,718 199,674 199,674 378,859 378,859
R2 0.0647 0.0647 0.2291 0.2292 0.1527 0.1529

[B] Growing season
Prec GS t -0.0003 0.0007 3.8901*** 2.8326** 0.0159** 0.0061

(0.0009) (0.0009) (1.3120) (1.3546) (0.0074) (0.0077)

Prec GS (t−1) -0.0013 -0.0005 3.6749*** 2.7837** 0.0059 -0.0020
(0.0009) (0.0009) (1.2832) (1.3257) (0.0070) (0.0072)

PET GS t 0.0036 -5.3823* -0.0393**
(0.0027) (3.1412) (0.0172)

PET GS (t−1) 0.0021 -3.1989 -0.0229
(0.0027) (3.1077) (0.0172)

Temperature GSt 0.0008 -0.0013 0.8861 2.5824 -0.0080 0.0009
(0.0017) (0.0021) (3.2192) (3.6601) (0.0124) (0.0151)

Temperature GS(t−1) -0.0004 -0.0003 -3.8953 -3.8184 -0.0019 -0.0034
(0.0017) (0.0021) (3.1864) (3.6175) (0.0124) (0.0148)

Observations 1,384,393 1,384,393 166,138 166,138 311,944 311,944
R2 0.0386 0.0387 0.2100 0.2101 0.1465 0.1467
Controls Long Long Long Long Long Long
Year FE Y Y Y Y Y Y
Cluster FE Y Y Y Y Y Y
Country Trends Y Y Y Y Y Y

Notes: the table presents the estimates of β1 and β2 for the sample of women who have been living
in the same place of residence for at least 15 years. Long controls include the woman’s education
in single years, wealth index of the household, child’s month of birth, main source of water, and
cell temperature in t and t − 1. Columns (1) to (2) are based on a sample of 34 countries and
22,900 clusters. Columns (3) to (6) are based on a sample of 33 countries and 22,757 clusters. In
Panel [A], precipitations and PET are computer over the entire year; in Panel [B], only the growing
season months are considered. Robust standard errors are clustered at the DHS cluster level, with
significance levels at 10, 5, and 1 percent.

164



Table A.3: Impact of precipitations and the PET on infant health – Urban vs rural areas

Mort (5y) BMI (SD) Size at birth
(1) (2) (3) (4) (5) (6)

[A] Rural Sample

Prect -0.0043*** -0.0027** 9.1989*** 6.9904*** 0.0488*** 0.0319***
(0.0012) (0.0012) (1.6058) (1.6906) (0.0088) (0.0092)

Prec(t−1) -0.0021* -0.0006 2.9441* 0.9855 0.0408*** 0.0249***

(0.0012) (0.0012) (1.5243) (1.5885) (0.0080) (0.0083)

PETt 0.0016 -8.9526 0.0163
(0.0055) (6.3722) (0.0326)

PET(t−1) 0.0052 -3.4781 -0.0932***

(0.0055) (6.3143) (0.0322)

Temperaturet -0.0111 -0.0213 -2.3204 -0.8837 0.0364 0.0362
(0.0422) (0.0445) (4.7090) (4.8426) (0.0237) (0.0243)

Temperature(t−1) 0.0150 0.0120 -0.7348 -0.3710 -0.0475** -0.0412*

(0.0425) (0.0448) (4.7395) (4.8602) (0.0237) (0.0243)

Observations 1,477,984 1,477,984 186,831 186,831 367,939 367,939
R2 0.0634 0.0634 0.2093 0.2094 0.1408 0.1409

[B] Urban Sample

Prect -0.0030** -0.0014 6.9626*** 5.0379** 0.0052 -0.0029
(0.0015) (0.0016) (2.3029) (2.4781) (0.0107) (0.0116)

Prec(t−1) -0.0035** -0.0019 6.5940*** 4.8267** 0.0074 -0.0005

(0.0015) (0.0016) (2.3223) (2.4551) (0.0105) (0.0114)

PETt 0.0071 -9.9607 0.0082
(0.0078) (9.8640) (0.0493)

PET(t−1) 0.0012 -2.5634 -0.0508

(0.0079) (9.8445) (0.0495)

Temperaturet 0.0231 0.0229 -3.0286 -1.7841 0.0086 0.0073
(0.0302) (0.0312) (2.8960) (2.9471) (0.0156) (0.0160)

Temperature(t−1) -0.0141 -0.0240 -0.2935 0.0294 -0.0126 -0.0022

(0.0302) (0.0313) (2.9163) (2.9487) (0.0155) (0.0158)

Observations 581,679 581,679 79,505 79,505 150,620 150,620
R2 0.0602 0.0602 0.2276 0.2277 0.1563 0.1563
Controls Long Long Long Long Long Long
Country FE N N N N N N
Year FE Y Y Y Y Y Y
Cluster FE Y Y Y Y Y Y
Country Trends Y Y Y Y Y Y

Notes: the table presents the estimates of vectors β1 and β2 separately for rural (Panel [A]) and
urban (Panel [B]) clusters. Climate variables are measured using the entire years t and t − 1.
Long controls include the woman’s education in single years, wealth index of the household, child’s
month of birth, main source of water, and cell temperature at times t and t− 1. Columns (1) and
(2) are based on a sample of 16,319 rural and 11,292 urban clusters. Columns (3) to (6) are based
on a sample of 16,560 rural and 11,368 urban clusters. Robust standard errors are clustered at the
DHS cluster level, with significance levels at 10, 5, and 1 percent.
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Table A.4: Precipitations, the PET and child health – Unstandardized coefficients

Mort (5y) BMI (SD) Size at birth
(1) (2) (3) (4) (5) (6)

[A] Yearly values

Prect -0.0008*** -0.0004*** 1.2536*** 0.8729*** 0.0061*** 0.0037***
(0.0002) (0.0002) (0.2043) (0.2173) (0.0011) (0.0011)

Prec(t−1) -0.0006*** -0.0002 0.5567*** 0.2184 0.0052*** 0.0029***

(0.0002) (0.0002) (0.1972) (0.2080) (0.0010) (0.0011)

PETt 0.0017 -3.0913* 0.0045
(0.0014) (1.6609) (0.0086)

PET(t−1) 0.0010 -0.4352 -0.0242***

(0.0014) (1.6575) (0.0085)

Temperaturet 0.0211 0.0161 -2.4049 -1.2553 0.0190 0.0174
(0.0244) (0.0253) (2.4183) (2.4610) (0.0129) (0.0132)

Temperature(t−1) -0.0130 -0.0204 -1.2065 -0.9917 -0.0239* -0.0148

(0.0244) (0.0254) (2.4268) (2.4632) (0.0129) (0.0131)

Observations 2,059,690 2,059,690 266,469 266,469 518,591 518,591
R2 0.0601 0.0601 0.1999 0.2000 0.1331 0.1332

[B] Growing season

Prec GSt -0.0001*** -0.0000* 0.0700*** 0.0489** 0.0003*** 0.0002
(0.0000) (0.0000) (0.0220) (0.0228) (0.0001) (0.0001)

Prec GSt−1 -0.0001*** -0.0001*** 0.0658*** 0.0445** 0.0002** 0.0001
(0.0000) (0.0000) (0.0219) (0.0227) (0.0001) (0.0001)

PET GSt 0.0083** -7.2105* -0.0655***
(0.0038) (4.2934) (0.0231)

PET GS(t−1) 0.0010 -7.2090* -0.0216

(0.0038) (4.2735) (0.0230)

Temperature GSt 0.0014 0.0002 0.9829 1.6357 -0.0122* -0.0038
(0.0010) (0.0012) (1.5990) (1.7208) (0.0072) (0.0082)

Temperature GS(t−1) -0.0001 -0.0001 -5.0490*** -3.9712** 0.0031 0.0055

(0.0010) (0.0012) (1.5980) (1.7220) (0.0072) (0.0082)

Observations 1,721,384 1,721,384 227,786 227,786 432,729 432,729
R2 0.0598 0.0598 0.1833 0.1835 0.1287 0.1289
Controls Long Long Long Long Long Long
Year FE Y Y Y Y Y Y
Cluster FE Y Y Y Y Y Y
Country Trends Y Y Y Y Y Y

Notes: the table presents unstandardized estimates of β1 and β2. Rainfall and PET are rescaled to
represent a 100 mm/month variation. Long controls include the woman’s education in single years,
wealth index of the household, child’s month of birth, main source of water, and cell temperature
in t and t − 1. In Panel [A], precipitations and PET are computer over the entire year; in Panel
[B], only growing season months are considered. Robust standard errors are clustered at the DHS
cluster level, with significance levels at 10, 5, and 1 percent.
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Table A.5: Precipitations and the PET projections – Sample averages

RCP 4.5 RCP 8.5

Rainfall PET Rainfall PET

2040–2079 2060–2099 2040–2079 2060–2099 2040–2079 2060–2099 2040–2079 2060–2099

GFDL 1094.3 1098.4 1437.5 1458.7 1099.7 1105.2 1520.6 1600.6
HadGEM2 1117.4 1123.7 1524.2 1566.7 1116.7 1114.1 1627.9 1743.6
IPSL 1176.0 1189.0 1500.6 1533.6 1222.3 1255.6 1608.7 1730.0
MIROC 1150.9 1180.3 1458.6 1488.6 1183.7 1224.0 1547.1 1547.1
NorESM1 1107.0 1113.4 1419.4 1441.1 1111.9 1128.0 1496.6 1578.9

Sample 1021.1 1021.1 1412.9 1412.9 1021.1 1021.1 1412.9 1412.9

Notes: the table presents the projections for yearly precipitations and the PET (mm/year)
averaged over our sample grid from five ESMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM54-
LR, MIROC-ESM-CHEM, NorESM1-M) for the time intervals 2040–2079 and 2060–2099.
Data are displayed for two RCP scenarios: 4.5 (decreasing “intermediate” emission levels
by 2100) and 8.5 (non-decreasing “worst-case” emission levels by 2100). Source: CMCC-
BioClimInd dataset.
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A.5 Appendix Figures

Figure A.1: DHS clusters and CRU TS.04 sensor coverage

[1970–1979] [2000–2009]

Notes: green dots represent the spatial distribution of DHS clusters in our
sample. The purple-shaded area identifies the grid cell station coverage of the
CRU dataset in the decades 1970–2079 and 2000–2009.
Source: Harris et al. (2020).
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