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modeling in Bayesian statistics
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Abstract. There is currently a renewed interest in the Bayesian predictive ap-
proach to statistics. This paper offers a review on foundational concepts and
focuses on ‘predictive modeling’, which by directly reasoning on prediction,
bypasses inferential models or may characterize them. We detail predictive
characterizations in exchangeable and partially exchangeable settings, for
a large variety of data structures, and hint at new directions. The underly-
ing concept is that Bayesian predictive rules are probabilistic learning rules,
formalizing through conditional probability how we learn on future events
given the available information. This concept has implications in any statis-
tical problem and in inference, from classic contexts to less explored chal-
lenges, such as providing Bayesian uncertainty quantification to predictive
algorithms in data science, as we show in the last part of the paper. The pa-
per gives a historical overview, but also includes a few new results, presents
some recent developments and poses some open questions.

Key words and phrases: Bayesian foundations, Predictive characterizations,
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1. INTRODUCTION

There is currently a renewed interest in the Bayesian
predictive approach to statistics. The approach is just
Bayesian, but the additional adjective ‘predictive’ under-
lines conceptual emphasis on predictive tasks; while the
more common ‘inferential approach’ is centered on infer-
ence on parameters, here one focuses on observable quan-
tities and prediction, evaluates models and priors based on
their implications on prediction, and even deduce models
and parameters from the predictive rule (the long list of
references includes [34], [62], [63], [24]). With the major
focus on prediction in data science and machine learning
([18], [116]), this approach appears natural and is adopted
in novel research directions ([66], [56], [50], [129] [12],
[90]). In fact, the predictive approach has a long tradition
in Bayesian statistics and is rooted in its same foundations
(de Finetti [29], [30], [23], Savage [114], [45], and Dia-
conis [35], [36], Regazzini [109], [52], Dawid [27] and
more; see the book by Bernardo and Smith [10]).
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The first aim of this paper is to offer a review, starting
from foundations and going through methods for predic-
tive constructions in a variety of contexts, with focus on
exchangeable structures, which play a basic role. Thus we
also review, from a predictive perspective, the use of ex-
changeability and of forms of partial exchangeability in
Bayesian statistics.

A second aim of the paper is to show how a Bayesian
predictive approach can be usefully adopted in less ex-
plored situations, beyond exchangeability; in particular,
(a) to obtain computationally tractable approximations of
(exchangeable) Bayesian inferences and (b) to provide
Bayesian uncertainty quantification of some classes of al-
gorithms (a novel example we provide is online gradient
descent), without the need of an explicit likelihood and
prior law. This is developed in the last part of the paper
and relies on the foundational principles that we discuss
in the first part.

Along our review, we include a few novel results and
open problems. We hope that the paper may be of some
interest, especially to young researchers, as both a re-
minder of the foundations and of some remarkable results,
and as an inspiration for new work.

1.1 Basic concepts and paper overview

In Bayesian statistics, prediction is expressed through
the predictive distribution of future observations given
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the available information. In the simplest setting (and
with an abuse of notation, in this introduction identify-
ing distributions through their arguments) one has a sam-
ple from a sequence of random variables (r.v.’s) (Xn)n≥1,
has specified a conditional model (X1, . . . ,Xn) | θ̃ ∼
p(x1, . . . , xn | θ̃), n ≥ 1 and a prior distribution π on
θ̃, and computes the predictive density of Xn+1 given
x1:n≡(X1 = x1, . . . ,Xn = xn) as

(1.1) p(xn+1 | x1:n) =
∫
Θ
p(xn+1 | x1:n, θ)dπ(θ | x1:n),

where π(· | x1:n) is the posterior distribution of θ̃ (we
use the notation θ̃ to underline that it is a r.v.). Sum-
maries of the predictive distribution naturally include
point prediction and predictive credible intervals. Thus,
while standard frequentist prediction would move from
a model (X1, . . . ,Xn) ∼ pθ(x1, . . . , xn) and deal with
parameters’ uncertainty by plugging their estimates into
pθ(xn+1 | x1:n), in the Bayesian approach uncertainty is
taken into account by ‘averaging’ the possible models
p(xn+1 | x1:n, θ) with respect to the posterior distribution
of θ̃.

We already see distinctive features of Bayesian predic-
tion; but this all may sound as ‘the usual Bayesian story’.
Actually, Bayesian statistics is often described as consist-
ing of assigning a prior on θ̃ and using Bayes rule to com-
pute the posterior distribution. Obtaining the predictive
distribution as in (1.1) is then just a matter of computa-
tions. Of course, Bayesian statistics is deeper than that;
and a first basic concept we should recall for this paper is
the interpretation of the Bayesian predictive distribution.

Bayesian statistics is about acting under uncertainty, or
incomplete information. This can be information from the
data, from domain knowledge, etc; the point is to for-
malize that information, and probability is the prescribed
formal language for this. If probability describes (incom-
plete) information, then the evolution of information, or
learning, is expressed through conditional probabilities.
In particular, learning on the next observation based on
the observed x1:n is expressed through the conditional
distribution p(xn+1 | x1:n). This leads us to the interpreta-
tion of the Bayesian predictive distribution: it is a learning
rule that formalizes, through conditional probability, how
we learn about future events given the available informa-
tion ([54]. Thus, it is not meant as the ‘physical mecha-
nism’ generating Xn+1 given the past – in the classic set-
ting, that might be the interpretation of pθ0(xn+1 | x1:n)
for a true θ0).

This principle is the basis of our discussion in the pa-
per, and we return on it in a rather novel way in Sec-
tion 5. Here, to see a first implication, let us consider
the basic case, random sampling. In the Bayesian ap-
proach, one does not assume independence, as it would
give p(xn+1 | x1:n) = p(xn+1), expressing no learning.

One would rather elicit a joint probability p(x1, . . . , xn)
that expresses dependence: not because the Xi are ‘physi-
cally’ dependent, but because each Xi brings information
about the others. The Xi are dependent in our probabil-
ity assessment formalizing the learning process. In ran-
dom sampling, the natural assessment is that the order of
the observations does not bring any information: the Xi

are exchangeable. Then they are only conditionally inde-
pendent. We devote substantial space in the paper to ex-
changeability; simply because it is the natural predictive
requirement in random sampling, and random sampling is
the basic setting. The fundamental concepts are treated in
Section 2.

In practice, we usually specify the joint distribution
p(x1, . . . , xn), for any n, with the help of models and pa-
rameters

(1.2) p(x1, . . . , xn) =

∫
p(x1, . . . , xn | θ)dπ(θ);

and compute the predictive distribution as in (1.1). But,
especially if interest is in prediction, we could in principle
bypass the inferential model and directly specify the pre-
dictive distributions - typically, the one-step-ahead pre-
dictions, which give, for any n,
(1.3)

p(x1, . . . , xn) = p(x1)p(x2 | x1) · · ·p(xn | x1:n−1).

In this predictive approach, that we refer to as “predic-
tive modeling", one reasons on the observable quantities,
for example on symmetry properties as in the case of ex-
changeability, and on what information from the sample
is relevant for prediction. This is well rooted in Bayesian
foundations and is particularly attractive in complex set-
tings where models and parameters tend to lose inter-
pretability. Still, predictive modeling may seem quite im-
practicable; it has in fact a long tradition, however the
available literature is rather fragmented. Thus in Section 3
our effort is to trace concepts and methods that may pro-
vide a methodological basis to predictive constructions.
We mostly refer to exchangeable settings, but a predictive
approach can be taken for any kind of data structures (see
e.g. [12]).

Prediction and inference. Predictive modeling is also
intriguing as a form of “Bayesian learning without the
prior". In fact, an inferential model and a prior law may
be implicitly subintended, and unveiling them is impor-
tant both practically and conceptually. This is typically
obtained through representation theorems; roughly speak-
ing, one can move from the predictive specification (1.3)
of the joint distribution p(x1, . . . , xn), for any n≥ 1, and
might represent it in a form as (1.2); see Section 2.1. Al-
though an inferential model is not needed in a purely pre-
dictive approach, representation theorems significantly
provide the link from prediction to inference. The cele-
brated de Finetti’s representation theorem has a central
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role in Bayesian statistics as it leads from foundations,
where probability is expressed on observable events (see
Section 2), to inference. From an assumption on the ob-
servable Xi (exchangeability), the representation theorem
gives the theoretical justification of the basic Bayesian in-
ferential scheme where the parameter θ̃ is random and the
Xi are conditionally i.i.d. given θ̃, as an implication of
exchangeability. Moreover, it shows how the inferential
model is related to frequencies. In Section 2.2, we will
underline how prediction is related to frequencies, thus
to the inferential model, and in particular we give a re-
sult (Section 2.4) showing how the uncertainty expressed
in the posterior distribution is determined by the way the
predictive distribution learns from the data.

Representation theorems have been extended in numer-
ous directions (Sect 2.3 of [23] includes extensive refer-
ences) and predictive constructions are applied well be-
yond simple random sampling. In Section 4 we consider
more structured data for which it is natural to express a
predictive judgment of partial exchangeability; we pro-
vide predictive characterizations of some forms of par-
tial exchangeability (Theorems 2.3, 4.4 and 4.7), and re-
view de Finetti-like representation theorems, which give
the predictive-theoretical basis in many problems includ-
ing stochastic design regression (as reducible to random
sampling), fixed design regression and multiple experi-
ments (Section 4.1), Markov chains (potentially, models
for temporal data based on Markov chains) (Section 4.3)
and arrays and networks data (Section 4.4). There are au-
thoritative and comprehensive references on the theory of
exchangeability, see Kingman [80], Aldous [2], Kallen-
berg [78], to which we refer interested readers. The more
specific aim of our - necessarily brief - review is to point
out some main aspects that we believe are relevant in
Bayesian statistics from a predictive perspective.

Open directions. Although the above discussion shows
that the predictive approach is theoretically sound and
that predictive modeling can be applied in many contexts,
we acknowledge that proceeding solely through predic-
tive constructions may not be easy, especially if one wants
to satisfy exchangeability constraints. On the other hand
– and this is a further point we want to make in this pa-
per – there are many predictive algorithms in data science
that lack clean uncertainty quantification, or there are, in
fields such as economics, subjective predictions implicitly
guided by the agent’s explanation of the phenomena, that
would be interesting to reveal (see e.g. [5]). A Bayesian
predictive approach can be usefully employed. In particu-
lar, we show that some classes of recursive predictive al-
gorithms can in fact be read as Bayesian predictive learn-
ing rules, that assume exchangeability only asymptoti-
cally. The relevance of this approach is not merely theo-
retical, but allows to understand the underlying modeling
assumptions and to provide formal uncertainty quantifica-
tion, and can lead to principled extensions. This is treated

in Section 5. Brief final remarks conclude the paper. All
the proofs are collected in the Supplement [58].

1.2 Preliminaries and notation

In this paper, all the random variables take values in a
Polish space X, endowed with its Borel sigma-algebra X .
The topology on spaces of probability measures is implic-
itly assumed as the topology of weak convergence. Hence,
for any Pn and P , Pn → P means weak convergence.

The underlying probability space (Ω,F ,P) for a ran-
dom sequence (Xn)n≥1 is implicitly assumed to be the
canonical space (X∞,X∞,P), where P is the probability
law of the sequence, denoted as (Xn)n≥1 ∼ P. We write
P-a.s. for “with P-probability one”. We use the short no-
tation x1:n for (X1 = x1, . . . ,Xn = xn). All conditional
distributions must be understood as regular versions. For
random variables taking values in Euclidean spaces, we
denote with the same symbol a probability measure and
the corresponding distribution function. Sequences are
denoted as (Zn)n≥1 and arrays as [Zi,j ]i∈I,j∈J .

2. EXCHANGEABILITY AND PREDICTION

Let us begin by recalling in some more detail the foun-
dational role of prediction in Bayesian statistics and the
notion of exchangeability as a basic predictive judgment.

Bayesian statistics has decision-theoretic roots in the
work of the 1920s in mathematical logic aimed at found-
ing a normative theory of rational decisions under risk
(Ramsey [108], and later, Savage [114], [45]; two book
references are [10] and [98]). In this perspective, prob-
ability arises as the prescribed rational (coherent; see
[23]) formalization of the agent’s information on uncer-
tain events, as advocated in the foundations of modern
Bayesian statistics by Bruno de Finetti; see e.g. [30] and
[33]. de Finetti emphasises that probability is expressed
on observable events (we do not discuss, here, issues on
the notions of observability or of imprecise probability;
see e.g. [128]). In this perspective, unobservable param-
eters are not assigned a probability per se, but simply as
an intermediate step for ultimately expressing the prob-
ability of observable events. They are just a tool in the
learning process that goes from past observable events to
prediction of future events. Of course, parameters may be
interpretable and inference is a core problem, but it is pre-
diction that has a foundational role.

The focus on probability of observable events is well
demonstrated in de Finetti’s notion and use of exchange-
ability. As mentioned in the Introduction, in the context of
homogeneous replicates of an experiment (random sam-
pling) the researcher would judge that the labels of the Xi

“do not matter". This is formalized through a joint prob-
ability law that is invariant under permutations of the la-
bels:

(X1, . . . ,Xn)
d
= (Xσ(1), . . . ,Xσ(n))



4

for each permutation σ of (1, . . . , n), where d
= means

equal in distribution. An infinite sequence (Xn)n≥1 is ex-
changeable if it is invariant to each finite permutation of
{1,2, . . .}, i.e. each permutation that only switches a finite
set of indexes. Exchangeability is an elegant probabilistic
structure and exchangeable processes arise in many fields.
In de Finetti’s work on Bayesian foundations, however,
exchangeability is not meant as a physical property of the
sequence (Xn)n≥1, but as an expression of the agent’s in-
formation.

EXAMPLE 2.1. Consider random sampling from a
two-color urn, and let Xi = 1 if the color of the ball
picked on the i-th draw is white, and zero otherwise. The
agent judges that the order of the draws is not informative
and the sequence (Xn)n≥1 is exchangeable. By the rep-
resentation theorem (Section 2.1), (Xn)n≥1 has the same
probability law of a sequence arising from an experiment
where the urn composition is picked from a ‘prior’ dis-
tribution and balls are then sampled at random with re-
placement. The physical experiment is not as such: the urn
composition is not sampled, it is given although unknown.
Here, exchangeability is not referring to the mechanism
generating the data, but to the way we use information. □

We should keep in mind this use of exchangeability in
what follows. See also [57], and the discussion in [123]
for the more general setting of stationary sequences.

Although exchangeability is a predictive requirement,
it has an immediate inferential implication, established by
the celebrated de Finetti’s representation theorem.

THEOREM 2.2 (Law of large numbers and representa-
tion theorem for infinite exchangeable sequences). Let
(Xn)n≥1 be an infinite exchangeable sequence and de-
note by P its probability law. Then:

i) With P-probability one, the sequence of the em-
pirical distributions F̂n = 1

n

∑n
i=1 δXi

converges
weakly as n→∞ to a random distribution F̃ ,

F̂n → F̃ ;

ii) For all n≥ 1 and measurable sets A1, . . . ,An,

(2.1) P(X1∈A1, . . . ,Xn∈An)=

∫ n∏
i=1

F (Ai)dπ(F ),

where π is the probability law of F̃ .

See Aldous [2], who refers to F̃ as the directing random
measure of the exchangeable sequence (Xn)n≥1. The re-

presentation 2.1 is often phrased as “Xi | F̃ = F
i.i.d.∼ F ,

with F̃ ∼ π”; a subtle difference is that this latter formu-
lation may (in principle, misleadingly) suggest the exis-
tence of a true F . In Bayesian inference, F̃ plays the role

of the statistical model, and its probability law is the prior.
The prior law is unique, and is a probability measure on
the class of all the possible distributions on the sample
space. The representation theorem is a high-level result:
the probability law P characterizes the random F̃ ; in other
words, it shapes it (the model) through its implied distri-
bution (the prior). In applications, one has to choose a
specific law P. In particular, further information may re-
strict the support of the prior to a parametric class, so that
Xi | θ̃

i.i.d.∼ p(· | θ̃) (see Section 3.2). In this paper we will
mostly keep the general framework (2.1).

Remark. Note that F̃ in Theorem 2.2 is random; as
the limit of the empirical distributions, it depends on
(X1,X2, . . .). Given a sample path ω = (x1, x2, . . .), we
have a realization of the random F̃ , that we denote by
F̃ (·)(ω). For i.i.d. observations from a distribution F , the
limit of the empirical distribution is F ; the fact that the
limit is random for exchangeable sequences may sound
surprising. Formally, this is because exchangeable se-
quences are mixtures of i.i.d. sequences; let us give some
intuition. By the representation theorem, an exchangeable
sequence (Xn)n≥1 can be obtained by first picking a dis-
tribution F from the prior law, then sampling the Xi at
random from F . If we pick F and restrict ourselves to the
set of the sample paths ω = (x1, x2, ...) that may be ob-
tained by sampling at random from it, we have the usual
properties of the i.i.d. case; in particular, for almost all
these ω, the empirical distribution converges to F , which
is not random. However, when we observe a finite sam-
ple (x1, . . . , xn), we do not know what F was chosen,
hence the limit of the empirical distribution may still be
any distribution we could have picked from the prior. We
would know which one if we could observe the entire
ω = (x1, x2, . . .), and thus see the limit, that is the real-
ization F̃ (·)(ω) of the random F̃ .

2.1 Predictive characterization of exchangeability

The representation theorem allows us to specify an ex-
changeable probability law through the usual inferential
scheme. In a predictive approach, however, we would
avoid models and priors and directly specify it through
the predictive rule. This is the core of predictive model-
ing, beyond exchangeability.

For any probability law P for the sequence (Xn)n≥1,
define the predictive rule as the sequence of predictive
distributions P0(·)≡ P(X1 ∈ ·) and, for n≥ 1,

(2.2) Pn(·)≡ P(Xn+1 ∈ · |X1, . . . ,Xn),

and let us denote by Pn(· | x1:n) its realization for
x1:n. In particular, if P is exchangeable, the predic-
tive rule is obtained as P0(·) = E(F̃ (·)) and Pn(·) =
E(F̃ (·)|X1, . . . ,Xn) for n≥ 1.

In predictive modeling, one moves from the predic-
tive rule to specify the probability law of the process
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(Xn)n≥1. More formally, one can assign a sequence
(Pn)n≥0 of probability kernels (or a strategy, [45], [12]).
Then by Ionescu-Tulcea theorem (see [77] Theorem 5.17
and Corollary 5.18) there exists a unique probability law
P for a process (Xn)n≥1 such that X1 ∼ P0 and for every
n ≥ 1, Pn is the conditional distribution of Xn+1 given
(X1, . . . ,Xn). (Given this equivalence, we will use the
notation (Pn)n≥0 to represent both the sequence of the
predictive distributions from a given P, and a strategy).

Thus, the probability law P of a process (Xn)n≥1 is
uniquely defined (characterized) by the sequence of pre-
dictive distributions (Pn)n≥0. A natural question is under
what conditions on the Pn one obtains an exchangeable
law P. This problem has been addressed in [52].

THEOREM 2.3 ([52], Proposition 3.2 and Theorem 3.1).
Let (Xn)n≥1 ∼ P be an infinite sequence of r.v.’s, with
predictive rule (Pn)n≥0. Then (Xn)n≥1 is exchangeable
if and only if, for every n ≥ 0, the following conditions
hold, with P0(· | x1:0) meant as P0(·),

i) For every A, Pn(A | x1:n) is a symmetric function
of x1, . . . , xn;

ii) The set function
(A,B)→

∫
APn+1(B | x1:n+1)dPn(xn+1 | x1:n)

is symmetric in A and B.

Condition i) requires that, for every n ≥ 1, the predic-
tive distribution of Xn+1 is a function of the empirical dis-
tribution of (x1, . . . , xn); which is a necessary condition
for exchangeability. As well, given x1:n, the predictive
distribution of (Xn+1, . . . ,Xn+k) should be invariant un-
der permutations of the k future observations, since under
exchangeability the joint distribution of (X1, . . . ,Xn+k)
is symmetric. Condition ii) only asks that the next k = 2
observations can be permuted.

2.2 Prediction, frequency, models

Although there are no formal constraints in assigning
a predictive rule (Pn)n≥0, we aim for our predictions to
be consistent with facts. For exchangeable sequences, the
following property relates prediction to frequency.

PROPOSITION 2.4. Let (Xn)n≥1 ∼ P be an exchange-
able sequence, with predictive rule (Pn)n≥0. Then, with
probability one, for n → ∞ the sequence of predictive
distributions converges, and its limit coincides with the
limit of the empirical distributions:

(2.3) Pn → F̃ , P-a.s.,

with F̃ as in Theorem 2.2.

A proof is given in [2], Lemma 8.2 page 61. In fact,
the result remains valid under the less restrictive condition
that (Pn(A))n≥0 is a martingale for every A, without the
need for (Xn)n≥1 to be exchangeable [15]. We return on
this point in more details in Section 2.3.

EXAMPLE 2.5. Consider an exchangeable sequence
(Xn)n≥1 with Xi ∈ {1, . . . , k}. Then the empirical distri-
bution is characterized by the vector of relative frequen-
cies nj/n, and any predictive distribution must be a func-
tion of (n1, . . . , nk), i.e. pn(j) ≡ P(Xn+1 = j | x1:n) =
P(Xn+1 = j | n1, . . . , nk), j = 1, . . . , k. For any j, with
probability one the relative frequency nj/n and the pre-
dictive probability pn(j) converge to the same random
limit p̃j . The statistical model is a discrete distribution on
{1, . . . , k} with masses (p̃1, . . . , p̃k) and the prior is the
probability law of the random limit (p̃1, . . . , p̃k). □

In Bayesian statistics, Proposition 2.4 ensures that, with
probability one, our predictions will adjust to frequen-
cies; in other words, the predictive distribution Pn and
the empirical distribution F̂n will be close. Several refine-
ments of this property are available, as well as quantitative
bounds ([43], and references therein; see also [38]).

Proposition 2.4 also shows that, for exchangeable se-
quences, the statistical model is the limit of the predictive
distribution; that is also the limit of the empirical distri-
bution. Hence, the uncertainty on the model at a finite n
is uncertainty on their common limit. It is this uncertainty
that is expressed by the posterior distribution of F̃ , as we
will illustrate in Section 2.4, expanding from [56]. This is
also the basic principle that underlines the interpretation
of uncertainty in terms of “missing observations" in [50].

Remark. de Finetti proved the convergence property
(2.3) for exchangeable binary sequences (Xn)n≥1, and
it is interesting to note that he used this result to give
an explanation in terms of prediction of the frequentist
viewpoint on probability [30]. He considers replicates
of an experiment with binary outcome where a frequen-
tist researcher assumes that P(Xn+k = 1 | x1:n) = p for
any k ≥ 1 and, for n large, estimates p with the relative
frequency p̂n =

∑n
i=1 xi/n. Exchangeability makes the

frequentist prediction, namely P(Xn+k = 1 | x1:n) ≃ p̂n,
“permissible", by the result (2.3); see [23], Sect 2.3.

2.3 Asymptotic exchangeability.

A natural question is whether there is a reverse implica-
tion of Proposition 2.4. Exchangeability of (Xn)n≥1 im-
plies that Pn → F̃ , P–a.s., but convergence of (Pn)n≥0 to
a random probability measure does not imply exchange-
ability. However, it does so asymptotically. A sequence
(Xn)n≥1 is asymptotically exchangeable with limit di-
recting random measure F̃ (shortly, F̃ -asymptotically ex-
changeable) if, for n→∞

(Xn+1,Xn+2, . . .)
d→ (Z1,Z2, . . .),

where the sequence (Zn)n≥1 is exchangeable and has di-
recting random measure F̃ . It can be proved that, if the
sequence of predictive distributions (Pn)n≥0 of (Xn)n≥1
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converges to a random probability measure F̃ , then
(Xn)n≥1 is F̃ -asymptotically exchangeable ([2], Lemma
8.2). Roughly speaking, for n large

Xn | F̃
iid
≈ F̃ ,

where F̃ has a prior law induced by the predictive rule.
Interestingly, convergence of the sequence (Pn)n≥0 to

a random probability measure, thus asymptotic exchange-
ability, holds if (Pn)n≥0 is a martingale, or, equivalently,
if the sequence (Xn)n≥1 is conditionally identically dis-
tributed (c.i.d.); that is, if it satisfies

(2.4) (X1, . . . ,Xn,Xn+1)
d
= (X1, . . . ,Xn,Xn+k),

for all integers k ≥ 1 and n ≥ 1; i.e., conditionally
on the past, all future observations are identically dis-
tributed. The property (2.4) was considered by Kallen-
berg as a weak invariance condition that, for station-
ary sequences, is equivalent to exchangeability ([75],
Proposition 2.1). He also noted that (2.4) is equivalent to
(X1, . . . ,Xn,Xn+1)

d
= (X1, . . . ,Xn,Xn+2) for all n≥ 1.

The term c.i.d. was introduced by Berti et al. [15], who
proved, among other results, that the c.i.d. property is
equivalent to (Pn)n≥0 being a measure-valued martin-
gale with respect to the natural filtration of (Xn)n≥1. The
martingale property means that the sequence of random
measures (Pn)n≥0 satisfies

E(Pn+1(A) |X1, . . . ,Xn) = Pn(A)

for every n≥ 0 and every measurable set A (see [71]).
For exchangeable sequences, it is straightforward to

show that the predictive rule is a martingale. But the mar-
tingale condition is weaker than exchangeability; still, re-
markably, it is sufficient to prove the convergence result
in Proposition 2.4: for a c.i.d. process (Xn)n≥1, the se-
quence of the empirical distributions converges P-a.s. to
a random probability distribution F̃ , and the sequence
of predictive distributions not only converges (being a
bounded martingale), but converges to the same limit F̃
([15], Theorem 2.5).

Thus, a c.i.d. sequence is asymptotically exchangeable.
However, it is not generally exchangeable. The property
that is broken is stationarity: the researcher is assuming a
temporal evolution in the process. It is however a specific
form of evolution: marginally, the r.v.’s are identically dis-
tributed, and the process converges to a stationary - thus,
together with the c.i.d. property, exchangeable - state (see
also [60] and [56]). For more developments, we refer to
[12]. We return to asymptotic exchangeability and c.i.d.
sequences in Section 5.

2.4 Predictive-based approximations of the posterior
distribution.

In the usual inferential setting, one computes the poste-
rior distribution and obtains the predictive distribution as
in expression (1.1). In predictive modeling, the order is re-
versed; here, from the predictive assumption of exchange-
ability of the Xi, we have obtained the implied inferential
scheme. Can we also revert the order in expression (1.1),
i.e. go from the predictive rule to the posterior distribu-
tion, and what would be the implications on inference? In
this section we address this question and show two impli-
cations; namely, two predictive-based approximations of
the posterior distribution.

For brevity, here we consider Xi ∈R. In the exchange-
able setting, with no parametric restrictions, we have Xi |
F̃

i.i.d.∼ F̃ and we are used to think of the prior and pos-
terior distributions on F̃ as expressing uncertainty on the
true distribution, say F0. In fact, as seen in Section 2.2,
what the prior and the posterior distributions are express-
ing is the uncertainty about the common limit F̃ of the
empirical and the predictive distributions. If we knew the
entire sample path ω = (x1, x2, . . .), we would know the
limit, namely F̃ (·)(ω), and there would be no uncertainty
left. Given a finite sample (x1, . . . , xn), we are still un-
certain about the limit, and this uncertainty is expressed
through the posterior distribution. The following approx-
imations of the posterior distribution are based on this
principle.

A predictive-based simulation scheme. First, leveraging
on Proposition 2.4, we can provide a predictive-based
sampling scheme ([56], [57]) to approximate the prior
and the posterior distribution of F̃ ; in practice we use
[F̃ (t1), ..., F̃ (tk)] for t1, ..., tk in a grid of values. Assume
that P0(·) = E(F̃ (·)) is continuous in t1, . . . , tk, which
implies that, P-a.s., F̃ is continuous at those points so that
limn F̂n(tj) = limnPn(tj) = F̃ (tj) for any tj , P-a.s.

In principle, given the predictive rule, one can generate
ω = (x1, x2, . . .) by sampling x1 from P0, then x2 from
P1(· | x1) and so on; and, having ω = (x1, x2, . . .), can
obtain F̃ (tj)(ω) for j = 1, . . . , k; which is a sample from
the prior law of [F̃ (t1), . . . , F̃ (tk)]. Repeating M times
gives a Monte Carlo sample of size M from the prior.

To simulate from the posterior law given (x1, . . . , xn),
one can proceed similarly by generating the missing ob-
servations (xn+1, xn+2, . . .) from the predictive rule to
complete ω, and repeat M times to obtain a sample of
size M from the posterior. Of course, in practice, one
would truncate ω to a finite sequence (x1, . . . , xN ) with
N large, and approximate F̃ (t)(ω) with PN (t | x1:N ), or
with F̂N (t), for each t in the grid.

A similar predictive principle is considered in the in-
teresting developments by Fong, Holmes and Walker [50]
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of the Bayesian bootstrap in a parametric setting: samples
from a martingale posterior distribution are obtained by
Doob theorem [44], after simulating future observations
from a sequence of predictive distributions (see also [67]).

A predictive-based asymptotic approximation of the pos-
terior distribution. One can also obtain a predictive-based
analytic approximation of the posterior distribution for
large n. By Proposition 2.4, |F̃ (t) − Pn(t)| → 0, P-a.s.,
for any continuity point t of F̃ , and because (Pn(t))n≥0

is a martingale, one could use martingale central limit
theorems to give asymptotic approximations of (F̃ (t) −
Pn(t)); yet, this would not inform on its behavior con-
ditionally on the data. The following result uses a cen-
tral limit theorem for martingales in terms of almost sure
convergence of conditional distributions [26]. This type
of convergence has been applied in probability for other
aims and was used in a novel way in Bayesian statistics
by [56] to inform on the asymptotic form of the poste-
rior distribution. Here, we provide an asymptotic Gaus-
sian approximation of the joint posterior distribution of
[F̃ (t1), . . . , F̃ (tk)], extending a result in [57]. Because
E(F̃ (t) |X1, . . .Xn) = Pn(t), the approximation is cen-
tered on Pn. Then we look at how the predictive rule
learns from the data, introducing the notion of predic-
tive updates. As a fresh observation becomes available,
the predictive distribution is updated by incorporating the
latest information, and for n≥ 1 and t ∈R we denote by

∆t,n = Pn(t)− Pn−1(t)

the n-th update of the predictive distribution function at
the point t as Xn becomes available. For a given t, the
predictive updates ∆t,n eventually converge to zero, since
Pn → F̃ , and the rate of convergence is generally of the
order 1/n, as discussed in [57]. The following proposi-
tion shows that the convergence of

√
n(F̃ (t)−Pn(t)) de-

pends on the asymptotic behaviour of (n∆t,n)n≥1. For a
grid of points t= (t1, . . . , tk) ∈Rk, we denote by ∆t,n =
[∆t1,n . . .∆tk,n]

T the column vector of the updates of
(Pn(t1), . . . , Pn(tk)). The proposition below holds for ex-
changeable sequences, but more generally for sequences
whose predictive rule is a martingale, i.e. for c.i.d. se-
quences.

PROPOSITION 2.6. Let (Xn)n≥1 ∼ P be a c.i.d. se-
quence of real-valued r.v.’s, with predictive rule (Pn)n≥0,
and take t= (t1, . . . , tk) such that P(X1 ∈ {t1, . . . , tk}) =
0. Suppose that the predictive updates satisfy

E(sup
n

√
n|∆ti,n|)<+∞ (i= 1, . . . , k),

∞∑
n=1

n2E(∆4
ti,n)<+∞ (i= 1, . . . , k),

E(n2∆t,n∆
T
t,n |X1, . . . ,Xn−1)→ Ut P-a.s.,

for a positive definite random matrix Ut. Define, for every
n≥ 1,

(2.5) Vn,t =
1

n

n∑
m=1

m2∆t,m∆T
t,m.

Then, P-a.s., Vn,t converges to Ut and

√
n V

−1/2
n,t

 F̃ (t1)− Pn(t1)
. . .

F̃ (tk)− Pn(tk)

 |X1, . . . ,Xn
d→Nk(0, I)

as n → ∞, where Nk(0, I) denotes the k-dimensional
standard Gaussian distribution.

Informally, for n large, F̃ (t1)
...

F̃ (tk))

 | x1:n ≈Nk


 Pn(t1)

...
Pn(tk))

 ,
Vn,t

n


for P-almost all sample paths ω = (x1, x2, . . .).
Proposition 2.6 allows to compute asymptotic credible
sets. For example, a (1 − α) marginal asymptotic credi-
ble interval for F̃ (t) given x1:n is[

Pn(t)− z1−α/2

√
Vn,t

n
,Pn(t) + z1−α/2

√
Vn,t

n

]
with z1−α/2 denoting the 1−α/2 quantile of the standard
normal distribution and Vn,t =

1
n

∑n
m=1m

2∆2
t,m.

The proof of Proposition 2.6 is given in Section S2 of
the Supplement [58], and consists of two steps. First we
prove (Proposition S2.1) that, under the given conditions
on the predictive updates,

(2.6)
√
n

 F̃ (t1)− Pn(t1)
. . .

F̃ (tk)− Pn(tk)

 | x1:n
d→Nk(0,Ut(ω))

for P-almost all ω = (x1, x2, . . . ). Then we prove that the
asymptotic result remains valid if the matrix Ut, that de-
pends on the whole sequence (X1,X2, . . . ), is replaced by
its “estimate” Vn,t, that only depends on (X1, . . . ,Xn).

Proposition 2.6 gives sufficient conditions that could
possibly be relaxed; also, other choices of Vn,t can be en-
visaged. Note that the result is given under the law P, thus,
although having a similar flavor, it differs from Bernstein-
von Mises asymptotic Gaussian approximations, which
are stated with respect to a law P∞

F0
that assumes that the

Xi are i.i.d. from a true distribution F0. Moreover, here
the asymptotic variance is expressed in terms of the pre-
dictive updates.

As “P-probability one" results, our findings may rather
be regarded as a refinement of Doob’s theorem for in-
verse probabilities in the nonparametric case; see point
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(ii) in Section 4 of Doob [44] (for us limited to the finite-
dimensional distributions). For an exchangeable law P,
Doob’s theorem ensures that, with P-probability one i.e.
for P-almost all ω = (x1, x2, . . .), the posterior expecta-
tion E(F̃ (·) | x1:n) converges to F = F̃ (·)(ω) and the
posterior variance goes to zero, so that the posterior dis-
tribution of F̃ concentrates around F . Proposition 2.6 fur-
ther describes how the posterior distribution of F̃ concen-
trates around its conditional expectation: the asymptotic
distribution is Gaussian, and in particular, the rescaled
asymptotic variance depends on how the predictive dis-
tribution varies in response to new data, namely on the
predictive updates.

Discussion. Although ours are “probability one re-
sults", they give insights on frequentist properties of the
posterior distribution, from a novel perspective explicitly
related to the behavior of the predictive learning rule.
Roughly speaking, our results suggest that frequentist
consistency at F0, and frequentist coverage, can be read
as a problem of “efficiency" of the predictive distribution:
if the data are generated as i.i.d. from F0, the predictive
distribution, that is, the adopted learning rule, should be
able to ‘efficiently’ learn that. As discussed in [57], the
predictive updates should balance the convergence rate
with a proper “learning rate”: if Pn converges quickly,
with predictive updates that quickly decrease to zero, at
step n we would be rather sure about the limit F̃ of Pn,
reflected in small uncertainty (small variance Vn,t) in the
posterior distribution of F̃ and narrow credible intervals.
On the other hand, very small predictive updates could
reflect poor learning; the extreme case being a degenerate
predictive distribution Pn = P0 for any n, that converges
immediately but does not learn from the data. An open
problem we see is thus to explore conditions under which
the predictive rule efficiently balances convergence and
learning properties and provides asymptotic credible in-
tervals for F̃ (t) with good frequentist coverage.

3. METHODS FOR PREDICTIVE CONSTRUCTIONS

The reader may be fairly convinced that predictive
modeling is conceptually sound; but may still be con-
cerned that is it difficult to apply in practice. An in-
terpretable statistical model, when possible, incorporates
valuable information, and sounds more natural. Moreover,
while there is wide literature on prior elicitation, method-
ological guidance on “predictive elicitation" is quite frag-
mented. The aim of this section is to trace some available
methodology, and provide a few examples. The methods
include the notion of predictive sufficiency, that recon-
ciles predictive modeling to parametric models; and the
different notion of sufficientness, that generally leads to
nonparametric constructions - a point that seems over-
looked; and predictive constructions based on stochastic
processes with reinforcement. Most of the examples we

provide come from Bayesian nonparametric statistics and
machine learning, where the predictive approach allows to
overcome difficulties in assigning a prior law on infinite-
dimensional random objects and has indeed been the basis
of vigorous theoretical and applied developments.

3.1 Constraints on the form of point predictions

Basically all predictive constructions make some as-
sessment on the form of the predictive distribution. If
a parametric model has been already chosen, it may be
enough to restrict the class of point predictions E(Xn+1 |
x1:n). Diaconis and Ylvisaker’s [41] characterization of
conjugate priors for models in the natural exponential
family (NEF) is possibly the most classic example.

EXAMPLE 3.1. (Conjugate priors for the NEF.) Let
Xi | θ

i.i.d.∼ p(x | θ) = ex
T θ−M(θ), where p(· | θ) is a prob-

ability density function on Rk with respect to a dominat-
ing measure λ whose support contains an open interval of
Rk, and M(θ) = ln

∫
ex

T θdλ(x), for θ ∈ Θ = {s ∈ Rk :
M(s) <∞}. Because the model is given, the predictive
rule characterizes the prior distribution π of θ̃, which is
assumed to be non degenerate. Let µ̃=E(X1 | θ̃) denote
the mean vector parameter, which is also the point predic-
tion: E(X2 | X1) = E(µ̃ | X1). Diaconis and Ylvisaker
([41], Theorem 3) prove that if E(µ̃ | X1) = aX1 + b
with a ∈ R and b ∈ Rk, then a ̸= 0 and the prior den-
sity on the natural parameter θ̃ is the conjugate prior
π(θ) = c exp(a−1bT θ − a−1(1 − a)M(θ)). This result
does not apply to discrete distributions in the NEF, since
the support of the dominating measure does not include an
interval of Rk. For discrete univariate distributions they
give an analogous characterization under the assumption
Θ= (−∞, θ0) with θ0 <∞. The characterization for the
Poisson distributions was already known. □

EXAMPLE 3.2. (Conjugate prior for binary data). Let
Xi | p̃= p

i.i.d.∼ Bernoulli(p). Diaconis and Ylvisaker [41]
prove that, if E(p̃ | X1, . . . ,Xn) - that coincides with
E(Xn+1 |X1, . . .Xn) - is linear in Xn for every n, then
the prior on p̃ is the conjugate Beta distribution. The re-
sult extends to the characterization of the Dirichlet as the
unique family of distributions allowing linear posterior
expectation for multinomial observations. □

3.2 Predictive sufficient statistics and parametric
models

A natural tool for predictive elicitation is predictive suf-
ficiency. For exchangeable sequences (Xn)n≥1, the pre-
dictive distribution Pn is a function of the entire empirical
distribution F̂n. In other words, the empirical distribution
is a sufficient summary of (X1, . . . ,Xn) for prediction of
future observations, which is an immediate consequence
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of exchangeability. In many applications, it is natural to
think that a summary Tn = T (F̂n) of F̂n is sufficient, i.e.
that the predictive distribution is a function of Tn. The
statistic Tn is said to be sufficient for prediction or pre-
dictive sufficient.

Predictive sufficiency has been investigated by sev-
eral authors from the 1980’s; see the book by Bernardo
and Smith ([10], Sect 4.5) and Fortini et al. [52], which
includes extensive references. Related notions of suffi-
ciency have been studied by Lauritzen ([83], [84]) and
Diaconis and Freedman [37]; Schervish ([115], Sect 2.4)
gives a review. Several results, and relations with classical
and Bayesian sufficiency, are given in [52].

The assumption of a predictive sufficient statistic is
strictly connected with the assumption of a paramet-
ric model. Informally, if the predictive distribution de-
pends on the data through a predictive sufficient statistic
Tn = T (F̂n) - expressed, with an abuse of notation, as
P(Xn+1 ∈ · |X1, . . . ,Xn) = Pn(· | T (F̂n)) - then we can
expect that, under conditions on T ,

Tn ≡ T (F̂n)→ T (F̃ )≡ θ̃,

(because F̂n → F̃ ); and, under conditions on Pn as a func-
tion of Tn,

Pn(· | Tn)→ F (· | θ̃)

for a function F . That is, the statistical model, which is
the limit of Pn, has a parametric form F (· | θ̃) where the
parameter θ̃ = T (F̃ ) is the limit of the predictive suffi-
cient statistic. This is the content of next theorem. A more
general result, but technically more involved, is in [52],
Theorem 7.1.

THEOREM 3.3. Let (Xn)n≥1 ∼ P be an exchangeable
sequence with directing random measure F̃ . Assume that
there is a predictive sufficient statistic Tn = T (F̂n), where
T :M→ T ∈ B(Rk) is a continuous function defined on
a measurable set M of probability measures such that
P(F̃ ∈M) = 1. For every n≥ 1, let qn(·, t) = P(Xn+1 ∈
· | T (F̂n) = t), t ∈ T.
If, for every A with P0(∂A) = 0, the functions (qn(A, ·))n≥0

are continuous on T, uniformly in t and n, then there
exists a function F such that F̃ (·) = F (· | θ̃), where
θ̃ = T (F̃ ) is the P-a.s. limit of Tn.

The continuity assumptions in the theorem seem rea-
sonable as a ‘robustness’ requirement expressing the idea
that small changes in the value of the predictive sufficient
statistic Tn do not lead to abrupt changes in the predic-
tion. The proof is in Section S3 of the Supplement [58].

EXAMPLE 3.4. Consider a Gaussian model Xi |
µ

i.i.d.∼ N (µ,σ2), with µ̃ ∼ N (0,1) and known variance
σ2, for simplicity equal to one. Take M as the set of

probability measures with finite first moment, T=R and
T (m) =

∫
xdm(x), for m ∈M. The conditions of The-

orem 3.3 hold. First, E(
∫
|x|F̃ (dx)) =

∫
|x|dP0(x) <

+∞, which implies that F̃ ∈M, P-a.s. The function T is
continuous on M and, for every A, the evaluation on A of
qn(·, t) =N (n/(n+ 1)t, (2 + n)/(1 + n)) is continuous
in t, uniformly with respect to t and n. □

Theorem 3.3 gives sufficient conditions under which
the statistical model is parametric. Stronger conditions are
needed if we want to obtain a dominated model.

PROPOSITION 3.5. Under the assumptions of Theo-
rem 3.3, and

i) the predictive distributions Pn are absolutely con-
tinuous w.r.t. a dominating measure λ,

ii) with probability one, the sequence (Pn)n≥0 con-
verges to the directing random measure F̃ in total
variation,

then the statistical model is dominated, i.e. P-a.s., F̃ (·) =
F (· | θ̃), with F (· | θ) absolutely continuous with respect
to λ for every θ.

The proof follows from Theorem 1 in [16], which
shows that the conditions i) and ii) are necessary and suffi-
cient for the random directing measure F̃ to be absolutely
continuous w.r.t. λ. By Theorem 3.3, F̃ has parametric
form F (· | θ̃), and because the limit of Pn is unique al-
most everywhere, we have the conclusion.

3.3 Predictive “sufficientness”

A different concept is predictive “sufficientness” [133].
The term ‘sufficientness’ was used by Good [64] with ref-
erence to the work by W. E. Johnson [74]. Zabell [130]
notes that Good initially used ‘sufficiency’ but switched
to ‘sufficientness’ to avoid confusion with the usual no-
tion of sufficiency. Here, there is no predictive sufficient
statistic beyond the empirical distribution; however, for
every set A, the probability that a future observation takes
value in A is assumed to depend only on F̂n(A). In princi-
ple, only sufficientness assumptions of the kind above are
made; it is however assumed that (Xn)n≥1 is exchange-
able, which introduces constraints on the permissible an-
alytic form of Pn and may identify it.

Interestingly, since the entire empirical distribution is
needed for prediction of future observations, we expect
that, if no further restrictions are made beyond exchange-
ability and sufficientness, this type of predictive construc-
tions leads to a nonparametric model.

EXAMPLE 3.6. (Sufficientness characterization of the
Dirichlet conjugate prior for categorical data). Consider
an exchangeable sequence (Xn)n≥1 of categorical r.v.’s
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with values in {1, . . . , k} with k > 2, finite. With the no-
tation as in Example 2.5,

(3.1) Xi | (p̃1, . . . , p̃k)
i.i.d.∼

{
1, . . . , k
p̃1, . . . , p̃k.

No parametric form is imposed on the masses (p̃1, . . . , p̃k);
in this sense, this is a “nonparametric" setting. Since the
sequence (Xn)n≥1 is exchangeable, the predictive distri-
bution depends on the empirical frequencies (n1, . . . , nk),
i.e. P(Xn+1 = j | x1:n) = P(Xn+1 = j | n1, . . . , nk). The
sufficientness postulate states that the predictive probabil-
ity of Xn+1 = j only depends on nj ,

(3.2) P(Xn+1 = j | x1:n) = fn,j(nj), j = 1, . . . , k.

We stress that, to provide the predictive probabilities for
all j, the entire vector of empirical frequencies is needed.

Formally developing an argument by [74], Zabell
[130] proves that the sufficientness assumption (3.2),
together with P(X1 = x1, . . . ,Xn = xn) > 0 for every
(x1, . . . , xn), implies that fn,j(nj) is linear in nj , and
more specifically that, if the Xi are not independent, there
exist positive constants (α1, . . . , αk) such that

(3.3) P(Xn+1 = j | nj) =
αj + nj

α+ n
,

where α =
∑k

i=1αi. In turn, this allows to obtain the
expression of all the moments of the prior distribution,
which are shown to characterize the Dirichlet(α1, . . . , αk)
distribution as the prior for (p̃1, . . . , p̃n). [130] also in-
cludes results for finite exchangeable sequences. □

Johnson’s sufficientness postulate can be extended to
the case of r.v.’s taking values in a general Polish space X.
Consider (Xn)n≥1 exchangeable and assume that for any
n ≥ 1, the predictive rule states that for any measurable
set A

(3.4) Pn(A) = P(Xn+1 ∈A | F̂n(A)).

Since (Xn)n≥1 is exchangeable, there exists F̃ such that

Xi | F̃
i.i.d.∼ F̃ . Again, the entire empirical distribution is

needed to obtain the predictive distribution, thus we ex-
pect to characterize a nonparametric prior on the random
distribution F̃ . This is indeed the case.

PROPOSITION 3.7. Let (Xn)n≥1 be an exchangeable
sequence and assume that X1 ∼ P0 and, for any n ≥ 1,
the predictive distribution satisfies (3.4). If the Xi are not
independent, then the directing random measure F̃ has a
Dirichlet process distribution with parameters (α,P0) for
some α> 0, denoted F̃ ∼ DP(α,P0).

The proof of Proposition 3.7 is in Section S3 of the
Supplement [58]. This result seems new. Doksum ([42],
Corollary 2.1) proves that the Dirichlet process is the only

‘non trivial’ process such that the posterior distribution
of F̃ (A) given x1:n only depends on the number nA of
observations in A (and not on where they fall within or
outside A). This implies that the predictive distribution
of Xn+1 given x1:n only depends on nA; but the latter is
a weaker condition. The proposition above shows that it
still implies that F̃ is a Dirichlet process. Other charac-
terizations of the Dirichlet process through sufficientness
use the additional assumption that the predictive distribu-
tion has a specific linear form, as e.g. in [87], or, equiva-
lently, assume that the Xi are categorical r.v.’s. Actually,
the sufficientness postulate (3.4) is reasonable only for
categorical r.v.’s (for continuous data, for example, one
would not fully exploit the information in the sample).

A number of nonparametric priors are characterized by
forms of predictive sufficientness. Zabell [132] character-
izes the two parameter Dirichlet process from sufficient-
ness assumptions (see Example 3.11 in Section 3.5). Ex-
tensions to the class of Gibbs-type priors [28] and to hi-
erarchical generalizations are given by [7]. Muliere and
Walker [127] give a predictive characterization of Neutral
to the Right processes [42] based on an extension of John-
son’s sufficientness postulate. Sariev and Savov [113]
provide a sufficientness characterization of exchangeable
measure-valued Pólya urn sequences.

3.4 Stochastic processes with reinforcement

Stochastic processes with reinforcement, originated
from an idea by Diaconis and Coppersmith [25], are per-
haps the main tool used in Bayesian statistics for predic-
tive constructions. They express the idea that, if an event
occurs along time, the probability that it occurs again in
the next time increases (is reinforced). They are of interest
in probability and in many areas beyond Bayesian statis-
tics; applications include population dynamics, network
modeling (where they are often referred to as preferential
attachment rules), learning and evolutionary game theory,
self-organization in statistical physics and many more. A
beautiful review is given by Pemantle [99].

Urn schemes are basic building blocks for random pro-
cesses with reinforcement.

EXAMPLE 3.8. (Two-color Pólya urn) The simplest
example is the two color Pólya urn ([47], [107]). One
starts with an urn that contains α balls, of which α1 are
white and the others are black. At each step, a ball is
picked at random and returned in the urn along with an
additional ball of the same color. Denoting by Xn the in-
dicator of a white additional ball at step n, and by Zn,
n≥ 0, the proportion of white balls in the urn before the
(n+1)th draw, we have P(X1 = 1) = α1/α= Z0 and for
any n≥ 1

P(Xn+1 = 1 |X1, . . . ,Xn) =
α1 +

∑n
i=1Xi

α+ n
= Zn.
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The two color Pólya urn was proposed as a model for the
evolution of contagion. In Bayesian statistics, Pólya sam-
pling is not meant as describing a process that actually
evolves over time (such as the spread of contagion), but
describes the evolution of information; namely a learning
process where the probability that the next observation is
white is reinforced as more white balls are observed in the
sample. It is well known that the sequence (Xn)n≥1 so
generated is exchangeable, and that both the relative fre-
quency

∑n
i=1Xi/n and the proportion of white balls Zn

converge to a random limit θ̃ ∼ Beta(α1, α− α1). Thus,

from the predictive rule we get Xi | θ̃
i.i.d.∼ Bernoulli(θ̃)

with a conjugate Beta(α1, α− α1) prior. □

The celebrated extension to a countable number of col-
ors are Pólya sequences [17], see the following Exam-
ple 3.9. Many more exchangeable predictive construc-
tions are based on reinforced stochastic processes; we
provide a few notable examples in the next section.

3.5 Examples in Bayesian nonparametrics

EXAMPLE 3.9. (The Dirichlet process) In Sec-
tion 3.3, we have seen a characterization of the Dirichlet
process in terms of sufficientness. The predictive charac-
terization as an extension of Pólya sampling was given
by Blackwell and MacQueen [17]. For data in a Pol-
ish space X, Blackwell and MacQueen define Pólya se-
quences (Xn)n≥1 as characterized by the predictive rule
X1 ∼ P0 and for any n≥ 1,

(3.5) Xn+1 |X1, . . . ,Xn ∼ Pn =
α

α+ n
P0+

n

α+ n
F̂n,

where α > 0. They prove that a Pólya sequence is ex-
changeable and Pn converges P-a.s. to a discrete random
distribution F̃ ; moreover, F̃ ∼ DP(α,P0). It follows that

Xi | F̃
i.i.d.∼ F̃ , with a DP(α,P0) prior on F̃ .

Pólya sequences can be also described as reinforced urn
processes; the interest in such characterization is that it
enlightens the link with the theory of random partitions.
Indeed, the discrete nature of the Dirichlet process, that
follows from (3.5), implies that ties are observed in a ran-
dom sample (X1, . . . ,Xn) with positive probability. This
induces a random partition of {1, . . . , n}, with i and j in
the same group if Xi =Xj . The characterization as a re-
inforced urn model explicates its probability law.

Rather than an impractical urn with infinitely many
balls, a proper urn metaphor is the Hoppe’s urn scheme
([69], [70]), also popularly described as the Chinese
Restaurant Process [2]. Consider sampling from an urn
that initially only contains α > 0 black balls. At each
step, a ball is picked at random and, if colored, it is re-
turned in the urn together with an additional ball of the
same color; if black, the additional ball is of a new color.
Natural numbers are used to label the colors and they are

chosen sequentially as the need arises. The sampling gen-
erates a process (Ln)n≥1, where Ln denotes the label of
the additional ball returned after the nth draw. Clearly,
the sequence (Ln)n≥1 is not exchangeable. However, if
one ‘paints’ it, picking colors, when needed, from a color
distribution P0, then the resulting sequence of colors
(Xn)n≥1 has predictive rule (3.5), thus it is a Pólya se-
quence with parameters (α, P0). In terms of the Chinese
Restaurant metaphor, where customers enter sequentially
in the restaurant and are allocated either in a occupied ta-
ble, or in a new one, Ln = j denotes that the n customer
is seated at table j, and for any n≥ 1, the label’s config-
uration (L1, . . . ,Ln) gives the allocation of customers at
tables, representing the random partition; then tables are
painted at random from the color distribution P0.

For any n ≥ 1, let ρn = (A1, . . . ,Akn
) be the random

partition of {1,2, . . . , n} so generated (where i ∈ Aj if
Li = j, kn is the number of colors that have been cre-
ated, or of the occupied tables, and the Aj are in order of
appearance). The probability mass function, or partition
probability function, of ρn is easily computed from the
labels’ sampling scheme; if P0 is diffuse, we have

(3.6) P(ρn = (A1, . . . ,Akn
)) =

αkn

α[n]

kn∏
j=1

(nj − 1)!

where α[n] = α(α+1) · · · (α+n− 1) and nj is the num-
ber of elements of Aj , j = 1, . . . , kn. See [48], [4], [69].
□

The above characterization is an emblematic exam-
ple of the potential of predictive constructions - in this
case, explicating the link with random partitions theory.
In Bayesian statistics, the capacity of the Dirichlet process
of generating random partitions is leveraged for model-
based clustering in many applications; beyond Bayesian
statistics, random partitions, and in particular, exchange-
able random partitions, are of interest in a wide range of
fields such as combinatorics, genetics, population dynam-
ics. The construction in Example 3.9 extends more gen-
erally; let us recall a few basic notions that we use in the
following examples.

Given an exchangeable sequence (Xn)n≥1 one can de-
fine a random partition ρn of {1, . . . , n} by letting i and j
be in the same group if Xi =Xj . Then we have

P(ρn = (A1, . . . ,Akn
)) = p(n1, . . . , nkn

)(3.7)

for a symmetric function p of (n1, . . . , nkn
), where nj

is the number of elements in Aj . A partition probability
function p so generated is called the exchangeable par-
tition probability function (EPPF) derived from the se-
quence (Xn)n≥1. More formally, p is defined on the space
of sequences n = (n1, n2, . . .), identifying (n1, . . . , nkn

)



12

as n= (n1, . . . , nkn
,0,0, . . .). Let nj+ be defined from n

by incrementing nj by 1. Clearly an EPPF p must satisfy

p(1,0,0, . . . ) = 1 and p(n) =

kn+1∑
j=1

p(nj+).

In predictive modeling, the conditional probability that
the next observation Xn+1 is in group j, given x1:n, is

(3.8) pj(n) =
p(nj+)

p(n)
provided p(n)> 0,

for j = 1, . . . , kn + 1. The concept of EPPF has been in-
troduced in Pitman [103]. A fundamental result in the the-
ory of exchangeable random partitions is Kingman’s de
Finetti-like representation theorem for exchangeable ran-
dom partitions as mixtures of paint-box processes [82];
for extensive treatment, we refer to [81], [105], [133].

EXAMPLE 3.10. (Species sampling priors). Pitman
[104] defines a class of predictive rules, in the framework
of species sampling, that generalizes Blackwell and Mc-
Queen scheme (3.5). One underlines sequential sampling
from a discrete random distribution for categorical data -
in species sampling, sequential draws from a population
of species labeled in the order they are discovered with
tags X∗

j i.i.d. from a diffuse distributions P0. Here Xi rep-
resents the species of the ith individual sampled and takes
values in the set of tags. In a sample x1:n, one observes kn
distinct species, labeled x∗1, . . . , x

∗
kn

and the next observa-
tion Xn+1 will either be one of the species already discov-
ered in the sample, or a new one, formalized in the predic-
tive distribution Pn(· | x1:n) =

∑kn

j=1 pj,n(x1:n)δx∗
j
(·) +

pkn+1,n(x1:n)P0(·). In random sampling, the sequence
(Xn)n≥1 should be exchangeable, and a necessary condi-
tion is that pj,n depends on (x1, . . . , xn) only through the
sequence of counts n = (n1, n2, . . .) (terminating with a
string of zeroes) of the various species in the sample in
the order of appearance.

A sequence (Xn)n≥1 is a species sampling sequence if
it is exchangeable and has a predictive rule of the form

(3.9) Pn(·) =
kn∑
j=1

pj(n)δX∗
j
(·) + pkn+1(n)P0(·),

for n ≥ 1, for a diffuse distribution P0, which is also
the law of X1. Pitman ([104], Theorem 14) shows that
exchangeability holds if and only if there exists a non-
negative symmetric function p that drives the probabili-
ties pj(n) according to (3.8). Then the EPPF of (Xn)n≥1

is the unique non-negative symmetric function p such that
(3.8) holds and p(1) = 1.

From exchangeability, by Proposition 2.4 we have that,
with probability one, Pn converges to a random distri-
bution F̃ ; Pitman ([104], Proposition 11) proves that the

convergence is in total variation norm and F̃ has the form

(3.10) F̃ (·) =
k∞∑
j=1

p∗jδX∗
j
(·) + (1−

k∞∑
j=1

p∗j )P0(·),

where p∗j = limnj/n is the random limit of the rela-
tive frequency of the j-th species discovered, the X∗

j
are i.i.d. according to P0, independently of the p∗j and
k∞ = inf{k : p∗1 + · · ·+ p∗k = 1} is the number of distinct
values to appear in the infinite sequence (X1,X2, . . .).

The above results do not provide an explicit descrip-
tion of the distribution of the weights p∗j , which is how-
ever available in remarkable special cases, including the
Dirichlet process, that corresponds to pj(n) = nj/(α +
n), where α > 0 is a fixed number; the finite Dirichlet
process [72] that assumes pj(n) = (nj + α/K)/(α+ n)
for j ≤ kn ≤K , where α > 0 and K ∈ N are fixed num-
bers; and the two parameter Poisson-Dirichlet process. □

EXAMPLE 3.11. (Two parameter Poisson-Dirichlet
process) The two parameter Poisson-Dirichlet process, or
Pitman-Yor process, introduced in [100] and further stud-
ied in [103] and [106], can be viewed both as an extension
of the Dirichlet process and as the directing random mea-
sure of a species sampling sequence characterized by the
predictive rule (3.9) with

(3.11) pj(n) =
nj − θ

α+ n
and pkn+1(n) =

α+ knθ

α+ n
,

where α and θ are real parameters satisfying 0 ≤ θ < 1
and α > −θ. As it appears from (3.11), the Poisson-
Dirichlet process allows for a more flexible predictive
structure than the Dirichlet process (corresponding to θ =
0): the predictive probability of observing a new species
at time n depends on both n and the number kn of distinct
species sampled.

In analogy to Example 3.9, the sequence (Xn)n≥1 can
be described as a generalized Hoppe’s urn [132] if α> 0.
Initially, the urn only contains one black ball of weight
α, and balls are selected with probabilities proportional
to their weights; whenever a black ball is selected, it is re-
turned into the urn together with two new balls, one black,
having weight θ, and one of a new color, sampled from
P0, having weight 1− θ.

The two-parameter Poisson-Dirichlet process is also
characterized through sufficientness [132]; namely, by
postulating the sufficientness of nj and of kn in the pre-
dictive probabilities pj(n) and pkn+1(n), respectively.

For increasing n, the predictive distribution Pn con-
verges P-a.s. to a discrete random measure F̃ =

∑∞
j=1 p

∗
jδX∗

j
,

where the p∗j have the stick-breaking representation p∗j =∏j−1
i=1 (1 − Vi)Vj , with Vi

indep∼ Beta(α + iθ,1 − θ). The
predictive construction can be exploited to design compu-
tational strategies (see e.g. [8]). □
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In some examples, the predictive construction does not
characterize a novel prior, but explicates the predictive as-
sumptions that are made when adopting a certain (already
known) prior law – which is clearly important; and here is
an example of a purely predictive construction, whose de
Finetti-like representation and implied prior law was only
found afterwards.

EXAMPLE 3.12 (Indian Buffet Process). The Indian
Buffet process, introduced by Griffith and Ghahramani
[65], is a clever and popular predictive scheme for infi-
nite latent features problems. Here, exchangeable objects
or individuals are each described through a potentially in-
finite array of features, resulting in an underlying random
binary matrix with rows representing the individuals, and
with an unbounded number of columns, representing the
features. Specifically, a 1 in the [n,k] entry of the random
matrix indicates that the nth individual possesses the kth
feature. The predictive construction can be illustrated by
imagining customers sequentially entering an Indian Buf-
fet restaurant. In this metaphor, customers represent indi-
viduals, dishes symbolize features, and when a customer
selects a dish z, it means that the corresponding individ-
ual possesses feature z. Let θ be a fixed strictly positive
number. The first customer chooses a Poisson(θ) num-
ber of dishes from a non-atomic distribution F0. Then, for
n= 1,2, . . . , the (n+ 1)th customer decides, for each of
the kn dishes already served, whether to take it or not, ac-
cording to its popularity, namely she chooses dish z with
probability kz,n/(n+ 1), where kz,n is the number of cus-
tomers who have already chosen dish z, independently
for z = 1, . . . , kn. Then she chooses a Poisson(θ/(n+ 1))
number of new dishes, sampling them from F0.

This construction, which is purely predictive, charac-
terizes an exchangeable law for the individuals’ features,
represented as Xn =

∑∞
k=1 bn,kδZk

, where bn,k = 1 if
the nth individual possesses feature Zk, and zero other-
wise, and with the features (Zk)k≥1 independently sam-
pled from F0; and enables Bayesian learning without an
explicit prior law. Actually, the implied prior law was
later made explicit [122], and assumes that, condition-
ally on a sequence (pk)k≥1 of r.v.s taking values in (0,1),
the (bn,k)n,k≥1 are sampled independently, with bn,k ∼
Bernoulli(pk). In turn, the (pk)k≥1 are the points of a
Poisson random measure with mean intensity λ(s) =
θs−11(0,1)(s).

The Indian Buffet process has been extended for allow-
ing different distributions on (pk, bi,k)i,k≥1 (see [73], [19]
and references therein) or random weights [11]. □

EXAMPLE 3.13 (Predictive constructions for contin-
uous data). As already mentioned, the predictive rule
(3.5) of Pólya sequences is appropriate for categorical
data, but, as it appears from the underlying sufficient-
ness postulate (3.4), it is not efficient for continuous data,

failing to fully exploit the sample information. A simi-
lar remark holds for species sampling sequences. Indeed,
in Bayesian statistics, the Dirichlet process and generally
discrete prior laws are mostly used at the latent stage of
hierarchical models, where, as already noted by Antoniak
[4], their power in generating a random partition is an as-
set; see e.g. [121] and [96] for overviews. A popular ex-
ample are Dirichlet process mixture models where, con-
ditionally on a latent exchangeable sequence (θ̃n)n≥1, the
Xi are independent and the distribution of Xi only de-
pends on θ̃i, with a slight abuse of notation written as

Xi | θ̃i
indep∼ k(· | θ̃i),(3.12)

for a kernel density k, and

θ̃i | G̃
i.i.d.∼ G̃, with G̃∼DP (α,G0).(3.13)

This gives an exchangeable mixture model:

Xi | G̃
i.i.d.∼ fG̃(·) =

∫
k(· | θ)dG̃(θ).

The predictive rule of the Dirichlet process induces a
parametric model on the random partition of the θ̃i’s of
the form (3.6), and Xi and Xj are set in the same cluster
if θ̃i = θ̃j . This is a powerful and popular use of predictive
rules such as (3.5), which however would not be appro-
priate as predictive learning rules at the observation level
with continuous data.

An approach to address this difficulty is to smooth the
trajectories generated by discrete priors thus obtaining
novel prior laws that almost surely select absolutely con-
tinuous distributions; for example, a constructive smooth-
ing of the Dirichlet process through Bernstein polynomi-
als was proposed, from an idea of Diaconis, by [101] and
extended by [102], who obtained a general class of mix-
ture priors. However, in these constructions, and more
generally in Bayesian mixture models with a discrete
prior law on the mixing distribution, the predictive dis-
tribution is not analytically tractable, requiring to average
with respect to the posterior law on the huge space of par-
titions (see e.g. [125]).

A predictive approach may consist in directly smooth-
ing the empirical distribution in predictive rules such as
(3.5). Recent proposals are kernel-based Dirichlet se-
quences [13], that are defined as exchangeable sequences
whose predictive distributions spread the point mass δXi

in (3.5) through a probability kernel K , as

Pn(·) =
α

α+ n
P0(·) +

1

α+ n

n∑
i=1

K(· |Xi).

The exchangeability condition imposes that the kernel K
must satisfy K(· | x) = P0(· | G)(x) for a sigma-algebra
G on X ([13], [112]). In particular, in their perhaps most
natural specification, with K(· | x)≪ P0 for every x ∈X,
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the underlying F̃ is a mixture model with kernels hav-
ing known disjoint support (e.g. a histogram with known
bins), see [112], Theorem 3.13; which is clearly limited
for statistical applications.

This example hints that exchangeability constraints
may be quite restrictive if one wants to have both a
tractable predictive rule and some desired modeling fea-
tures. Here is a predictive construction that is analytically
simple, and gives another ‘smoothed version’ of (3.5). We
start from P0(·) =

∫
K(· | θ)dG0(θ)≡ FG0

(·) and recur-
sively update our prediction as

Pn(·) = (1− αn)Pn−1(·) + αnFGn−1
(· |Xn),

with FGn−1
(· | Xn) =

∫
K(· | θ)dGn−1(θ | Xn), where

Gn−1(· |Xn) denotes the posterior distribution obtained
from the prior Gn−1 and updated based on Xn, and
Gn(·) = (1 − αn)Gn−1(·) + αnGn−1(· | Xn); and the
αn are real numbers in (0,1) satisfying

∑∞
n=1αn =

+∞ and
∑∞

n=1α
2
n < +∞. (We may recognize ‘New-

ton’s algorithm’ [95], popularly used for fast computa-
tions in Dirichlet process mixture models). This predic-
tive rule does not characterize an exchangeable sequence
(Xn)n≥1; it is however a martingale and preserves ex-
changeability asymptotically. More specifically, it can be
shown ([53]) that Pn converges to a mixture model FG̃(·)
with a novel prior law on G̃, as we will expand in Section
5. □

Further examples, among many, include the class of
reinforced urn processes ([126], [91]; see Example 4.9),
and constructions aimed at addressing the rigidity of the
global clustering induced by the predictive rule (3.5) of
the Dirichlet process in the case of multivariate random
distributions; for example, [124] obtain a nested clus-
tering for multivariate data characterized by an enriched
Hoppe’s urn scheme. In the next section we present more
predictive constructions, based on the idea of reinforce-
ment, that characterize forms of partial exchangeability.

4. PARTIAL EXCHANGEABILITY FOR MORE
STRUCTURED DATA

As seen, exchangeability in Bayesian statistics is the
natural predictive requirement in homogeneous repeated
trials; but of course data may be much more complex.
Still, in many cases the data show forms of symmetry,
such that exchangeability assessments, judging that the
individuals’ labels in some data sub-structures do not
bring any information for prediction, are still natural. In
this section we review the concept of partial exchange-
ability, i.e. invariance under a group of permutations. For
the sake of space, we focus on the main concepts and on
de Finetti-like representation theorems that again justify
the Bayesian inferential model from predictive assump-
tions. The predictive characterization in Theorem 4.4 is

new. We start with the notion of partial exchangeability
in the sense of de Finetti and a point we will underline is
that other forms of partial exchangeability are ultimately
related to it.

4.1 de Finetti’s partial exchangeability

A first notion of partial exchangeability was introduced
by de Finetti in [31]. It is interesting to report some ex-
cerpt from this, perhaps less known, writing by de Finetti,
as it clearly shows what are the applied contexts that sug-
gest a partial exchangeability assessment. de Finetti [31]
refers to replicates of trials of different types, for which
“exchangeability can still be considered, but specifying
that the trials are divided into a certain number of types,
and what is judged exchangeable are the events of the
same type.”

As a simple example, he considers tossing two coins. If
the two coins look exactly alike, one may judge all tosses
as exchangeable; at the opposite extreme, if the coins are
completely different, one would consider the correspond-
ing tosses as two separate exchangeable sequences, com-
pletely independent of each other. However, if the coins
look almost alike, then

observations of the tosses of one coin will still
be capable of influencing, although in an less
direct manner, our probability judgment re-
garding the tosses of the other coin.

Again from [31]: “One can have any number of types of
trials”, for example different coins, or tosses of one coin
by two different people, or under different conditions of
temperature and atmospheric pressure.

If the types are in a countable or continuous
set, prediction would typically refer to a new
type; thus, information will exclusively be in-
direct.

(de Finetti’s note [31] includes several more examples,
e.g. in insurances and in treatments’ effects and debatable
causality). In the Bayesian literature, partial exchange-
ability in the sense of de Finetti is usually referred to
random sampling in (a finite number of) parallel exper-
iments; as we see, it may refer more generally to fixed-
design regression where the ‘types’ are induced by co-
variates. Although the experiments are run independently,
each of them brings information on the other ones, and
because information is described through probability (see
Section 1), the joint probability law will assume a form of
dependence across the experiment-specific samples, i.e.
of sharing information in prediction.

Formalizing, consider a family of sequences (Xn,j)n≥1

of r.v.’s where Xn,j describes the nth observation of
type j, j = 1, . . . ,M ; M can be finite or infinite, and
the types may be taken from a continuum of types.
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For more compact notation, we may arrange them in
an array [Xn,j ]n≥1,j=1,...,M . The family of sequences
[Xn,j ]n≥1,j=1,...,M is partially exchangeable in the sense
of de Finetti if its probability law is invariant under sepa-
rate finite permutations within each column; that is, if

[Xn,j ]n≥1,j=1,...,M
d
= [Xσj(n),j ]n≥1,j=1,...,M

for any finite permutation σj , j = 1, . . . ,M . Roughly
speaking, observations are exchangeable inside each ex-
periment, but not across experiments. Aldous ([2], page
23) refers to this symmetry property as exchangeability
over V . A sequence (Yn)n≥1 is exchangeable over V if

(V,Y1, Y2, . . .)
d
= (V,Yσ(1), Yσ(2), . . .) for any finite per-

mutation σ. Partial exchangeability corresponds to each
sequence (Xn,j)n≥1 being exchangeable over all the oth-
ers, collected as Vj .

The representation theorem extends to partially ex-
changeable families of sequences.

THEOREM 4.1 (Law of large numbers and de Finetti
representation theorem for partially exchangeable se-
quences ). Let [Xn,i]n≥1,i=1,...,M ∼ P be a partially ex-
changeable array in the sense of de Finetti. Then:

i) For n1, . . . , nM → ∞, the vector of the marginal
empirical distributions (F̂n1

, . . . , F̂nM
) converges

weakly to a vector of random distributions (F̃1, . . . , F̃M ),
P-a.s.;

ii) For any n≥ 1 and measurable sets Ai,j ,

P(∩M
j=1(X1,j ∈A1,j , . . . ,Xnj ,j ∈Anj ,j))

=

∫ ∏
j=1,...,M

∏
i=1,...,nj

Fj(Ai,j)dπ(F1, . . . , FM ),

where π is the joint probability law of (F̃1, . . . , F̃M ).

A proof is in [2], pp. 23-25. The representation ii) is
often phrased as: conditionally on (F̃1, . . . , F̃M ), the se-
quences (Xn,j)n≥1 are independent and, within sequence
j, the Xn,j are i.i.d. according to F̃j . That is, a de Finetti-
partially exchangeable array is obtained by first picking
(F1, . . . , FM ) from a joint prior distribution and then for

each j = 1, . . . ,M picking Xn,j
i.i.d.∼ Fj , independently

for different j.

EXAMPLE 4.2 (Hierarchical models). Consider ran-
dom samples (X1,j , . . . ,Xnj ,j), j = 1, . . . ,M , from M
independent parallel experiments, say of binary r.v.’s with
experiment specific means θj , and the classic problem of
estimating the mean vector (θ1, . . . , θM ). This problem is
also described (e.g. in [46]) as predicting Xnj+1,j in each
experiment. Bayesian hierarchical models are a powerful
tool for borrowing strength across experiments and for

shrinkage. In this example, a basic hierarchical model re-
gards the parameters as r.v.’s θ̃j , sampled from a latent
distribution, and assumes a hierarchical structure as fol-
lows

θ̃j | λ
i.i.d.∼ π(· | λ), with λ∼ h(·),

(X1,j , . . . ,Xnj ,j) | θ1, . . . , θM
i.i.d.∼ Bernoulli(θj),

independently across j (here π and h denote densities).
The theoretical justification of this model comes from the
assessment of partial exchangeability of the sequences
(Xn,j)n≥1, and of exchangeability of the experiments. By
partial exchangeability, the observations are exchange-
able inside each experiment, but not across them; and the
sequences (Xn,j)n≥1 are only conditionally independent
given (θ̃1, . . . , θ̃M ), which naturally implies sharing infor-
mation. The dependence across experiments is introduced
through the joint prior law of (θ̃1, . . . , θ̃M ) - here, the joint
density π(θ1, . . . , θM ) =

∫ ∏M
j=1 π(θj | λ)h(λ)dλ. □

EXAMPLE 4.3. In hierarchical models as above, the
prior law π expresses the judgement that the θ̃j - infor-
mally, the experiments - are exchangeable. But, more gen-
erally, the groups may be induced by covariates, or refer
to time or space, etc., and the prior would express other
forms of dependence. For example, consider clinical trials
where the outcome is binary (tumor shrank or not), run in
different hospitals, with patients receiving the same treat-
ment in all hospitals. Here one would judge that the hospi-
tals’ labels do not bring information, that is, the hospitals
(the corresponding model parameters θ̃j’s) are exchange-
able; as in the example above. Now suppose that different
treatments, say different dosages zj , are administrated in
different hospitals. Then the groups’ labels are relevant,
and the prior will not treat the θ̃j’s as exchangeable, but
will incorporate the effect of the covariate; for example,
express the idea that θ̃j and θ̃k are similar if the dosages
zj and zk are close.

With no replicates inside the groups and no random ef-
fects - i.e. in a basic fixed-design regression context where
the probability of success is θ̃j = g(zj ; β̃) for a known g

and unknown β̃ - partial exchangeability reduces to condi-
tional independence of the X1,j given β̃, with dependence
across j modeled through the regression function.□

Marginally, the result of Theorem 4.1 is not surpris-
ing, because each sequence (Xn,j)n≥1 is exchangeable
and one obtains the marginal directing random measure
F̃j (the statistical model and the prior for experiment j)
as seen in Section 2; in particular, from

(4.1) Pn,j(·)≡ P(Xn+1,j ∈ · |X1,j , . . . ,Xn,j)→ F̃j(·).

But this is not enough: the theorem characterizes the joint
distribution (the joint prior law) of (F̃1, . . . , F̃M ).
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It is this joint distribution that induces probabilistic de-
pendence across the individual sequences, i.e. borrow-
ing strength in prediction. As in Example 4.2, rather than
the marginal predictive distribution Pn,j in (4.1), a more
interesting predictive distribution refers to future results
in experiment j given past observations therein and ob-
servations in all the related experiments. Aldous’s no-
tion of exchangeability over V is particularly suited. Let
V = [(Xn,i)n≥1;i=1,...,M ;i ̸=j ] collect the observations in
all the experiments but the jth. Then, with P-probability
one,

lim
n

P(Xn+1,j ∈ · |X1,j , . . . ,Xn,j , V )(4.2)

= lim
n

P(Xn+1,j ∈ · |(Xk,i)k≤n,i=1,...,M )=F̃j(·).

For a proof, see [2]. Informally, V does not carry addi-
tional information only in the limit, when the experiments
become independent.

Note that the rows ([Xn,1, . . . ,Xn,M ])n≥1 of a de
Finetti partially exchangeable array are an exchangeable
sequence, with directing random measure F̃ on the prod-
uct space (X1× · · ·×XM ) that assumes independent
components, i.e. F̃ =×M

j=1F̃j . This implies that the rela-
tionship between variables in distinct columns of the ar-
ray [Xn,j ]n≥1,j=1,...,M is solely driven by the probabilis-
tic link between the marginal directing random measures.
Again, the sequences do not physically interact.

Also note that P(Xn+1,j ∈ · | (Xk,i)k≤n,i=1,...,M ) =

E(F̃j(·) | (Xk,i)k≤n,i=1,...,M ) and, as shown in equation
(4.2), approximates F̃j for n large. Since the sequence
(Xn,j)n≥1 is exchangeable, an alternative approximation
of F̃j is provided by the predictive distribution Pn,j(·) =
E(F̃j(·) | X1,j , . . . ,Xn,j), that is only based on the past
observations in experiment j. However, the latter uses less
information, resulting in a less efficient approximation:

E
((

F̃j(A)− P(Xn+1,j ∈A |X1,j , . . . ,Xn,j)
)2)

≥E
((
F̃j(A)−P(Xn+1,j ∈A |(Xk,i)k≤n,i=1,...,M

)2)
.

If the sequences (Xn,j)n≥1 are independent, both meth-
ods yield the same result; there is no gain of information
in considering the entire array.

The predictive characterization of exchangeability of
Theorem 2.3 can be extended to de Finetti partial ex-
changeability.

THEOREM 4.4. A family of sequences [Xn,j ]n≥1,j=1,...,M

is partially exchangeable in the sense of de Finetti if and
only if for every finite m ≤M and every n ≥ 0, the fol-
lowing conditions hold:

i) For every measurable sets A1, . . . ,Am and every
i= 1, . . . ,m

Pn(A1 × · · · ×Am | (xk,j)k≤n,j≤m)

is symmetric in (x1,i, . . . , xn,i);
ii) The set function that maps {Aj ,Bj : j ≤m} into∫

A1×···×Am

Pn+1(B1 × · · · ×Bm | (xk,j)k≤n+1,j≤m)

dPn((xn+1,1, . . . , xn+1,m) | (xk,j)k≤n,j≤m)

is symmetric in (Ai,Bi) for every i= 1, . . . , k,

where Pn is to the conditional distribution of (Xn+1,j)j≤m,
given (Xk,j)k≤n,j≤m and P0(· | (xk,j)k≤0,j≤m) is meant
as P0.

The proof is provided in Section S4 of the Supplement
[58]. The predictive characterization in Theorem 4.4 is
natural when at each time n, a new observation is made
for each type. In fact, de Finetti’s partial exchangeability
can be described as invariance of the law of a sequence
(X1,X2, . . . ) to the permutations acting separately on
M groups of random variables, forming a partition of
(Xn)n≥1. In this perspective, a predictive characterization
of partial exchangeability should account for the structure
of the partition into groups, likely in a nontrivial way.

Statistical applications of partial exchangeability are
broad; hierarchical models are one of the key strengths
of Bayesian statistics. Sharing information in prediction
is enabled through the prior law π, and the choice of π in
parametric models is a long studied problem. Defining a
nonparametric prior on the vector of random distributions
(F̃1, . . . , F̃M ) has posed challenges, yet a wealth of pro-
posals is nowadays available, many of which are defined
through, or benefit from, predictive characterizations.

EXAMPLE 4.5 (Hierarchical Dirichlet process). The
hierarchical Dirichlet process has been introduced in
[120] to model shared clusters among groups of data.
For example, consider the problem of modelling shared
topics in a corpus of M documents, where a “topic”
induces a multinomial distribution over the words of a
given dictionary, and a document j is defined as an un-
ordered - exchangeable - sequence of words (Xn,j)n≥1.
For each document j, we have a latent sequence of topics
(θ̃n,j)n≥1, and Xn,j | θ̃n,j ∼ k(· | θ̃n,j). The family of se-
quences (θ̃n,j)n≥1 for j = 1, . . . ,M is assumed to be par-
tially exchangeable, thus conditionally independent given
the vector (G̃1, . . . , G̃M ) of the random distributions of
topics in the documents.

A predictive construction that allows for document-
specific clustering into topics and shared topics across
documents is given in [120] as a hierarchical Chinese
Restaurant process, or Chinese franchise, which is rem-
iniscent of the hierarchical Hoppe’s urn proposed for in-
finite hidden Markov models by [9], as we here describe.
To each document j, let us associate a Hoppe’s urn Uj ,
that initially only includes αj > 0 black balls, then sam-
ple from each urn as described in Example 3.9; however,
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whenever a new color is needed, pick it from an “oracle
urn" which is another Hoppe’s urn, with initial number γ
of black balls and color distribution G0, for simplicity as-
sumed to be diffuse. The draws from the oracle Hoppe’s
urn represent the labels of the topics available for all
documents; when colored, they are an exchangeable se-
quence with directing random measure G̃∼DP (γ,G0).
Conditionally on all the draws from the oracle urn (thus
on G̃), the colored drawings from the document-specific
Hoppe’s urns Uj are independent exchangeable sequences
(θ̃n,j)n≥1, with

θ̃n,j | G̃j
i.i.d.∼ G̃j , n≥ 1,

G̃j | G̃
indep∼ DP (αj , G̃) , j = 1, . . . ,M,

independently across j, with G̃ ∼ DP (γ,G0). This de-
fines a Hierarchical Dirichlet Process prior for (G̃1, . . . , G̃M ),
with parameters (α1, . . . , αM , γ,G0).

This model is based on an exchangeable structure at
the latent stage, where (in line with the considerations in
Example 3.13), one envisages an actual random partition.
Differently from Example 3.9, here the draws from the
Hoppe’s urns are latent variables, since, at any time, an
“old" color could be picked from Uj or from the oracle
urn. This leads to computational challenges, as we discuss
in the next section.

Extensions of the hierarchical Dirichlet process include
the hierarchical Pitman-Yor process [119], and hierar-
chies of general discrete random measures leading to in-
teresting combinatorial structures; see Camerlenghi et al.
[20], and [22] and references therein. □

4.2 Asymptotic partial exchangeability

In the above example, and in fact more generally with
partially exchangeable data, the predictive and the poste-
rior distributions are not available in a “closed” (ideally,
conjugate) analytic form - with a sometimes significant
computational cost. To give some insight on the reasons
for this difficulty, suppose for brevity that one only has
two partially exchangeable sequences (Xn)n≥1, (Yn)n≥1

and aims for an analytically tractable predictive distri-
bution P(Xn+1 ∈ · | x1:n, y1:n, yn+1). Assuming Xn+1

⊥⊥ Yn+1 | X1, . . . ,Xn, Y1, . . . , Yn would help, but typ-
ically breaks partial exchangeability, except for trivial
cases. On another extreme, a functionally simple inclu-
sion of Yn+1 in the expression of the predictive distri-
bution above may create direct dependence between the
two sequences, and rather give interacting stochastic pro-
cesses (see e.g. [3] and references therein). In fact, in
partially exchangeable constructions one typically iden-
tifies a conditional independence structure of the kind
Xn+1 ⊥⊥ Yn+1 |X1, . . . ,Xn, Y1, . . . , Yn,U where U is a
latent random variable (in nonparametric settings with

discrete priors, U is an appropriate feature of the random
partition, see e.g. [20]). While this may allow approx-
imation schemes, for example through Gibbs sampling
([120], [85], [21]), integrating out the latent U to obtain
the predictive distribution P(Xn+1 ∈ · | x1:n, y1:n, yn+1)
is not, generally, analytically manageable.

Although there has been a sensible effort to find “closed
form” expressions for predictive distributions for partially
exchangeable models, the above considerations highlight
that it is not easy to have partial exchangeability and also
an analytically tractable predictive rule. This raises in-
terest for predictive structures that only preserve partial
exchangeability asymptotically, but are computationally
easier. [60] have proposed the notion of partially condi-
tionally identically distributed (partially c.i.d.) sequences,
which is equivalent to partial exchangeability for station-
ary data and preserves main properties of partially ex-
changeable sequences. In particular, partially c.i.d. pro-
cesses are asymptotically partially exchangeable. Nat-
ural extensions of reinforced stochastic processes turn
out to be partially c.i.d. For example, consider a family
of sequences [Xn,j ]n≥1,j=1,...,M such that P(X1,j ∈ ·) =
P0,j(·) and for any n≥ 1

P(Xn+1,j ∈ · | (Xk,i)k≤n,i=1,...,M )

=
α0,jP0,j(·) +

∑n
k=1Wk,jδXk,j

(·)
α0,j +

∑n
k=1Wk,j

,

where the random weights Wk,j are positive r.v.’s and
may be functions of the observed values of the other
sequences. It is proved in [60] that if, conditionally on
(Xk,j ,Wk,j)k≤n,j≤M , the future observations (Xn+1,j)j≤M

are mutually independent and Wn,j is independent of
Xn,j , j = 1, . . . ,M , then the sequences [Xn,j ]n≥1,j=1,...,M

are partially c.i.d.

4.3 Markov exchangeability

The representation theorem 2.2 for exchangeable se-
quences gives the conceptual justification of the Bayesian
inferential setting for random sampling. A natural ques-
tion is if there is a symmetry notion and a de Finetti-like
representation theorem that justify the Bayesian inferen-
tial setting for Markov chains. In this section we recall
the notion of Markov exchangeability [36] and its predic-
tive characterization [55], and review Diaconis and Freed-
man’s representation theorem and a different represen-
tation that relates Markov exchangeability to partial ex-
changeability in the sense of de Finetti. Many models, for
instance state-space models for nonstationary time series,
are based on Markov chains; thus, these results also give
insights on predictive constructions for Bayesian learning
with temporal data, beyond Markov chains.

Let X be a finite or countable set that includes at least
two points, and (Xn)n≥0 be a sequence of r.v.’s tak-
ing values in X, and with probability law P. The pro-
cess (Xn)n≥0 is partially exchangeable in the sense of
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Diaconis and Freedman, or, following the terminology
of [134] and [131], Markov exchangeable, if its prob-
ability law is invariant under finite permutations that
do not alter the number of transitions between any two
states; more precisely, if P(X0 = x0, . . . ,Xn = xn) =
P(X0 = x′0, . . . ,Xn = x′n) whenever (x0, . . . , xn) and
(x′0, . . . , x

′
n) have the same initial value (i.e. x0 = x′0) and

exhibit the same number of transitions from state i to state
j, for every i, j ∈X.

Under a recurrence condition, Diaconis and Freedman
prove a de Finetti-like representation theorem for Markov
exchangeable sequences. The process (Xn)n≥0 is recur-
rent if the initial state x0 is visited infinitely many times
with probability one. Let us also define, for any i, j ∈ X,
the transition counts T

(n)
i,j as the number of transitions

from state i to state j in (X0, . . . ,Xn), and the matrix of
normalized transition counts as the matrix with elements
T̂
(n)
i,j = T

(n)
i,j /

∑
k∈X T

(n)
i,k if the sum is different from zero,

and zero otherwise.

THEOREM 4.6 (Diaconis and Freedman [36], Theorem
7 and Remark 25). Suppose that the process (Xn)n≥0,
starting at x0, is recurrent. If (Xn)n≥0 is Markov ex-
changeable, then

i) With probability one, the matrix of normalized tran-
sition counts converges (in the topology of coordi-
nate convergence) to a random limit Q̃;

ii) conditionally on Q̃, the process (Xn)n≥0 is a
Markov chain with transition matrix Q̃.

In applications in Bayesian statistics, the probability
law of the random limit Q̃, which is uniquely determined
by P, plays the role of the prior.

The following result gives a predictive characterization
of Markov exchangeable processes; it parallels Theorems
2.3 and 4.4.

THEOREM 4.7 ([55]). A predictive rule (Pn)n≥0 for
a process (Xn)n≥0 with X0 = x0 and Xn ∈ X charac-
terizes a Markov exchangeable process if and only if for
every n ≥ 0 and every (x1, . . . , xn) the following condi-
tions hold:

i) For every j ∈ X, P(Xn+1 = j | x0:n) depends on
x0:n only through x0 and its transition counts;

ii) For every k ≥ 1 and all strings y, y′ and z of ele-
ments in X that do not contain xn and have no com-
mon elements, the function that maps (y,y′) into
P((Xn+1, . . . ,Xn+k) = (y,z, xn,y

′,z, xn) | x0:n)
is symmetric in (y,y′).

This is proved in [55], where a predictive condition for
recurrence is also given. The characterization becomes
much simpler when the predictive distribution of Xn+1

only depends on the last visited state xn and on the xnth
row txn

of the matrix of transition counts: P(Xn+1=y |
x0:n)=p(y |xn, txn

). In this case, (Xn)n≥0 is Markov ex-
changeable if and only if

p(y |x, t)p(z |x, t+ ey) = p(z |x, t)p(y |x, t+ ez)(4.3)

for every t and every x, y, z ∈X, where ey and ez have a
1 at positions y and z, respectively, and 0 elsewhere.

EXAMPLE 4.8 (Reinforced urn scheme). Let X be fi-
nite or countable, and let (Xn)n≥0 satisfy X0 = x0 and

(4.4) P(Xn+1 = y | x0:n) =
αxn

qxn
(y) + txn,y

αxn
+
∑

j∈X txn,j
,

where for every x, αx is a positive number and qx(·) is
a probability mass function on X. It is easy to verify that
the predictive rule (4.4) satisfies (4.3). Moreover, by the
Lévy extension of the Borel-Cantelli lemma, the state x0
is visited infinitely many times (see [55] for the details).
Hence, (Xn)n≥0 is a mixture of Markov chains.

For a finite state space, Zabell [131] derived the predic-
tive rule (4.4) from Johnson’s sufficiency postulate and as-
suming that (Xn)n≥0 is recurrent and Markov exchange-
able, characterizing independent Dirichlet prior distribu-
tions on the rows of the random transition matrix. □

By the result i) in Theorem 4.6, the random transition
matrix Q̃ has an empirical meaning as the limit of the ma-
trix of normalized transition counts. An interesting ques-
tion is whether it also has an interpretation in terms of
prediction, in the spirit of Proposition 2.4. We can show
it does by leveraging on an alternative characterization of
Markov exchangeable processes, hinted in [32] and [131]
and developed in [51], in terms of partial exchangeability
of the matrix of successor states.

The nth successor state of a state x is defined as the
state visited by the process (Xn)n≥0 just after the nth visit
to state x. Denoting by τn(x) the time of the nth visit to
state x, with τn(x) =∞ if x is not visited n times, we can
define the nth successor state of x as

Sx,n =Xτn(x)+1

if τn(x) is finite. Let us collect the successor states for
all x in an array [Sx,n]x∈X,n≥1. Note that the xth row
of [Sx,n] has infinite length if the state x is visited in-
finitely many times, otherwise it is of finite length. The
set of states that are visited infinitely many times depends
on the path ω, so does the length of the row (Sx,n)n. To
avoid rows of finite length, [51] enlarge the state space,
by adding an external point ∂, and define Sx,n(ω) = ∂ if
τn(x)(ω) =∞.

It is proved in [51] that (Xn)n≥0 is a mixture of recur-
rent Markov chains if and only if the array of successor
states [Sx,n]x∈X,n≥1 is partially exchangeable by rows in
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the sense of de Finetti, (see Theorem 1 in [51] for more
details and for the extension to uncountable state spaces).
This allows us to use the results in Section 4.1 for the ar-
ray [Sx,n]x∈X,n≥1 of successor states. For each x, the xth
row (Sx,n)n≥1 is exchangeable, thus the successors Sx,n

of state x are conditionally i.i.d. given a random prob-
ability mass function Q̃x on X. The probability masses
Q̃x,i ≡ Q̃x(i) are the limits of the empirical frequencies∑n

k=1 δSx,k
(i)/n, i ∈X, and correspond to the xth row of

the random transition matrix Q̃. Partial exchangeability
also implies that the rows of the array of successor states
are not independent sequences: probabilistic dependence
across them is introduced through the joint prior law of
the vector (Q̃x, x ∈ X), i.e. of the rows of the random
transition matrix Q̃.

Moreover, the random transition matrix is the limit of
the predictive distributions, in the sense that, for all x, i,

lim
n

P(Sx,n+1 = i | Sx,1, . . . , Sx,n, V )

= lim
n

P(Sx,n+1 = i | Sx,1, . . . , Sx,n) = Q̃x,i

where V collects all the rows of the matrix of successors
states but the xth. This result refers to the successor states.
In terms of the sequence (Xn)n≥0, see Theorem 1 in [55].

Stochastic processes with reinforcement are again pow-
erful tools in predictive constructions of Markov ex-
changeable sequences. An elegant construction, through
edge reinforced random walks on a graph, is Diaconis
and Rolles’ [40] characterization of a conjugate prior for
the transition matrix of a reversible Markov chain. Devel-
opments for variable order reversible Markov chains are
in [6]. The reinforced urn schemes in the following ex-
amples could also be read in terms of reinforced random
walk on a graph (by associating urns to the vertices).

EXAMPLE 4.9 (Reinforced Hoppe urn processes).
The predictive rule of Example 4.8 was obtained by [53]
through a class of ‘reinforced Hoppe urn processes’, that
includes other constructions in the literature as special
cases. Let the sample space (or color space) be finite or
countable. To each x ∈X, associate a Hoppe urn Ux, with
αx black balls and discrete color distribution qx on X.
Balls are extracted from each urn by Hoppe sampling as
in Example 3.9, but we now move across urns as follows.
Pick x0 from an initial distribution q on X, set X0 = x0,
go to urn Ux0

and pick a ball from it. Since the ball will
be black, a color x1 is sampled from qx0

and a ball of
color x1 is added in the urn, together with the black ball.
Set X1 = x1 and move to Hoppe urn Ux1

, and proceed
simlarly. Let (Xn)n≥0 be the process so obtained. In this
construction, the draws from the state-specific Hoppe urns
Ux represent the successors of state x and are Pólya se-
quences, independent across x; thus, the process (Xn)n≥0

is Markov exchangeable. Under mild conditions it is also

recurrent (see [55] for details). It follows that a recurrent
reinforced Hoppe urn process is conditionally Markov,
and the prior on the random transition matrix Q̃ is such
that the rows of Q̃, regarded as random measures on the
state space X, are independent, with Q̃x ∼ DP(αx, qx) (or
Dirichlet distributions in the case of a finite state space).

As a special case, with a finite state space X, suppose
that, for each x ∈ X, the color distribution qx has finite
support in X; then the process (Xn)n≥0 reduces to the
reinforced urn process by [91].

If X= {0,1,2, . . .} and for each x ∈X, the color distri-
bution qx of urn Ux has positive masses only on x + 1
and x0 = 0, the process (Xn) corresponds to the rein-
forced urn process proposed by [126] for Bayesian sur-
vival analysis. In this case, the exchangeable sequence of
the lengths of the x0 blocks characterizes a novel Beta-
Stacy prior can be used as a conjugate prior with ex-
changeable censored data. A version of this predictive
construction allows a generalization of the finite popula-
tion Bayesian bootstrap [86] to include censored observa-
tions [92]. □

A hierarchical version of the reinforced Hoppe urn
process gives the popular infinite hidden Markov model
proposed by Beal, Ghahramani and Rasmussen [9] for
Bayesian learning in hidden Markov models with an un-
bounded number of states.

EXAMPLE 4.10 (infinite Hidden Markov Model). Sup-
pose that the state space (θ∗1, θ

∗
2, . . .) is countable and un-

known. In [9], this is the state space of the latent state
process (Xn)n≥0 of a hidden Markov model where a new
state may be added as the need occurs. The authors con-
struct (Xn)n≥0 through a predictive scheme that again
envisages a reinforced Hoppe urn process; but, differ-
ently from Example 4.9, and also from the construction
in Example 4.5, here Hoppe’s urns are created as a new
state (color) is discovered; and colors are drawn when the
need occurs from a common ‘oracle’ Hoppe urn with an
initial number γ of black balls and diffuse color distri-
bution P0. The process starts by picking a ball from the
oracle urn; since the ball will be black, a first color, say
θ∗1 , is picked from P0; and the black ball and an addi-
tional ball of color θ∗1 are returned in the oracle urn. Then
one sets X0 = θ∗1 and creates a Hoppe urn Uθ∗

1
with α

black balls, picks a ball from it, and proceeds similarly.
This generates a process (Xn)n≥0 that is recurrent and
Markov exchangeable; thus, there exist Q̃ conditionally
on which (Xn)n≥0 is a Markov chain with transition ma-
trix Q̃, and the construction characterizes the prior law
on Q̃. The draws from the oracle urn generate the states
of the process, and are a Pólya sequence with directing
random measure P̃ ∼ DP(γ,P0). Conditionally on all the
draws (θ∗1, θ

∗
2, . . .) from the oracle urns, thus on P̃ = P ,
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the process (Xn)n≥0 is a reinforced Hoppe urn process
as in Example 4.9, with state space (θ∗1, θ

∗
2, . . .); thus, the

rows of Q̃, regarded as random distributions on the state
space (θ∗1, θ

∗
2, . . .), have independent DP(α,P ) distribu-

tions. Therefore, the prior law on the rows of Q̃, regarded
as random distributions, is a hierarchical Dirichlet pro-
cess with parameters (α,γ,P0). Here, the construction of
the prior is purely predictive; the hierarchical Dirichlet
process was introduced later [120].

The predictive distribution of Xn+1 given x0:n is ana-
lytically complex; however, an advantage of the predictive
construction is to allow for efficient computational strate-
gies (see [61]). □

4.4 Row-column exchangeability

Many data are in the form of arrays, graphs, matrices,
and forms of partial exchangeability are developed for
general random structures. In this section we briefly re-
view Aldous’ notion of row-column exchangeability, or
partial exchangeability for random arrays, and refer to Al-
dous [2] and Kallenberg [78] for extensive treatment. An
excellent review paper that also includes Bayesian mod-
els for exchangeable random structures in statistics and
machine learning is [96]. We do not even try to review the
wide and growing literature on row-column exchangeable
arrays, and related theory of exchangeable random graphs
and more recent theory for sparse graphs. We just recall
basic concepts and the analogue of de Finetti representa-
tion theorem for row-column exchangeable arrays. In the
predictive perspective of this paper, it would be interest-
ing to include basic properties of the predictive distribu-
tions, in analogy to Proposition 2.4 for exchangeable se-
quences. However, results of this nature for row-column
exchangeable arrays seem lacking. To our knowledge, a
first result, that relates the problem with de Finetti’s con-
cept of partial exchangeability and holds for a fairly gen-
eral class of row-column exchangeable arrays, is given in
unpublished work by [49].

In studying exchangeability, we have regarded the
data (X1, . . . ,Xn) as elements of an infinite sequence
(Xn)n≥1. Similarly, here we consider an observed finite
array [Xi,j ]i,j=1,...,n as a sub-array of an infinite random
array X = [Xi,j ]i,j≥1; the Xi,j are X-valued random vari-
ables, where X is a Polish space.

DEFINITION 4.11. An infinite random array X =
[Xi,j ]i,j≥1 is separately exchangeable if

(4.5) X
d
= [Xσ1(i),σ2(j)]i,j≥1

for all finite permutations σ1, σ2 of N. It is jointly ex-
changeable if the above holds in the special case σ1 = σ2.

Condition (4.5) is equivalent to requiring that the rows
of X are exchangeable and the columns are exchangeable;

it is thus referred to as row-and-column exchangeability
(RCE). We will use the terminolgy RCE array to mean
that the array is either separately or jointly exchange-
able. Separate exchangeability is an appropriate assump-
tion if rows and columns of the array correspond with two
distinct sets of entities; for example, rows correspond to
users and columns to movies. If there is a single set of en-
tities, for example the vertices of a graph, one may require
invariance under permutations of the entities, that is, joint
exchangeability.

Binary jointly exchangeable arrays give a representa-
tion of exchangeable random graphs. A random infinite
graph (with known vertices, labeled by N, and random
edges) is exchangeable if its probability law is invari-
ant under every finite permutation of its vertices. Equiva-
lently, if and only if the corresponding adjacency matrix
X = [Xi,j ]i,j≥1, where Xi,j is the indicator of there be-
ing an edge (i, j) in the graph, is jointly exchangeable.
Actually, theoretical results for RCE arrays have been re-
discovered in the developments of the limiting theory for
large graphs initiated by Lovász and Szegedy [89]. The
connection between graph limits and RCE arrays is given
by Diaconis and Janson [39]. We refer to the monograph
by Lovász [88] for the graph limit theory.

Proving a de Finetti-like representation for RCE arrays
has been more delicate than expected. The representation
theorem was independently given by Hoover [68] and Al-
dous [1] and developed more systematically by Kallen-
berg, culminating in his 2005 monograph [78]. The proof
that appears in Aldous ([1]; see also [2], Theorem 14.11)
uses the concept of ‘coding’. The way this is used may
be unfamiliar to some readers; to introduce it, note that
de Finetti’s representation theorem can be given (e.g. [2],
page 129) as follows. A sequence of r.v.’s (Xn)n≥1 is ex-
changeable if and only if there exists a measurable func-
tion H : [0,1]2 → X such that (Xn)n≥1 can be coded
through i.i.d. uniform r.v.’s U,Ui, i ≥ 1 with a represent-
ing function H , that is, (Xn)n≥1

d
= (H(Un,U))n≥1. For

example, binary r.v.’s (Xn)n≥1 are exchangeable if and
only if they can be generated by first picking θ from a
prior law π (through θ = π−1(U), where π−1 is the gen-
eralized inverse of the prior distribution function π), then
sampling Xi

i.i.d.∼ Bernoulli(θ) (through Xi = 1(Ui≤θ)).

THEOREM 4.12 (Aldous-Hoover representation the-
orem for separately exchangeable arrays). An infinite
random array X = [Xi,j ]i,j≥1 is separately exchange-
able if and only if there exists H : [0,1]4 → X such
that X can be coded by i.i.d. Uniform(0,1) independent
r.v.’s U ;Ui, i ≥ 1;Vj , j ≥ 1,Ui,j , i, j ≥ 1, with represent-
ing function H , that is

[Xi,j ]i,j≥1
d
= [X∗

i,j ]i,j≥1,where X∗
i,j =H(U,Ui, Vj ,Ui,j).
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The natural statistical interpretation is that Xi,j is de-
termined by a row effect Ui, a column effect Vj , an indi-
vidual effect Ui,j and an overall effect U .

Binary arrays. To simplify, let us consider binary ar-
rays. The representation theorem can be rephrased by
saying that an infinite binary random array X is sepa-
rately exchangeable if and only if there exists a proba-
bility measure π on the space of (measurable) functions
from [0,1]2 → [0,1] such that X can be generated as fol-
lows (the r.v.’s Ui, Vi,Ui,j are as in the theorem). Each
row i is assigned a latent feature Ui and each column j is
assigned a feature Vj . Independently generate a function
W (·, ·) from the probability distribution π (through the
uniform r.v. U ). Given the features assignment and W ,
set Xi,j = 1 with probability W (Ui, Vj) (that is, Xi,j = 1
if Ui,j ≤W (Ui, Vj)). Note that if W is fixed (not picked
from π), the resulting array [Xi,j ]i,j≥1 is separately ex-
changeable by the symmetry of the construction. Denote
by PW its probability law. Aldous-Hoover representation
theorem proves that any separately exchangeable binary
array is a mixture of such arrays.

THEOREM 4.13 (Aldous-Hoover; binary arrays). Let
X = [Xi,j ]i,j≥1 be an infinite separately exchangeable bi-
nary random array. Then, there is a probability distribu-
tion π such that

(4.6) P(X ∈ ·) =
∫

PW (·)dπ(W ).

Borrowing from the language of random graphs, a
(measurable) map W : [0,1]2 → [0,1] is called a graphon.
A graphon defines a probability law PW as above, how-
ever this parametrization is not unique; in other words,
in statistical sense, W is not identifiable. Indeed, if W ′

is obtained from W by a measure-preserving transforma-
tion of each variable, then clearly the associated process
[X ′

i,j ]i,j≥1 has the same joint distribution as [Xi,j ]i,j≥1.
It has been proved that this is the only source of non-
uniqueness [78]. A unique parametrization can be ob-
tained by substituting the graphons W by equivalence
classes. The results by Orbanz and Szegedy [97] imply
that this parametrization is measurable. See [39] and [96]
for a more extensive treatement.

For jointly exchangeable arrays, there is an analo-
gous representation result as Theorem 4.12, with X∗

i,j =
H(U,Ui,Uj ,U{i,j}), where (Ui)i≥1 and [U{i,j}]i,j≥1 are,
respectively, a sequence and an array of independent uni-
form r.v.’s and H is symmetric in (Ui,Uj); see [2], The-
orem 14.21. Note that the indexes of the U{i,j} are un-
ordered and the array [U{i,j}] may be thought of as an
upper-triangular matrix with i.i.d. uniform entries.

Let us consider binary arrays; in particular, binary ar-
rays representing the adjacency matrix of an infinite sim-
ple graph (undirected and with no multiple edges and

self-loops), thus, [Xi,j ]i,j≥1 symmetric with a zero di-
agonal. A binary jointly exchangeable array can be con-
structed in a similar way as before, by now assigning fea-
tures to vertices. Namely, each vertex i ∈ N is assigned
a latent feature Ui, with Ui

i.i.d.∼ Uniform(0,1); given the
latent features and a graphon W , we set Xi,j = 1 with
probability W (Ui,Uj), independently for all i, j. The ar-
ray [Xi,j ]i,j≥1 so constructed is jointly exchangeable by
construction (and is symmetric if W is such). Denote by
P

(joint)
W its probability law. The Aldous-Hoover represen-

tation theorem shows that any binary jointly exchangeable
array can be constructed as a mixture of these P

(joint)
W . In

other words, if [Xi,j ]i,j≥1 is an infinite jointly exchange-
able binary array, then conditionally on the features and
on the graphon, the Xi,j are independent Bernoulli(θ̃i,j)
where θ̃i,j =W (Ui,Uj).

As given, the Aldous-Hoover theorem does not provide
an empirical link for the elements of the representation.
For exchangeable sequences, de Finetti’s representation
theorem is complemented by a law of large numbers, that
gives an empirical meaning to the random directing mea-
sure F̃ as the limit of the sequence of empirical distri-
butions; moreover, F̃ is also the limit of the predictive
distributions Pn (see Proposition 2.4). For RCE arrays,
the notion of an empirical distribution and a law of large
numbers are given by Kallenberg [76], Theorem 3. The
asymptotic theory is also thoroughly explained in [96].
Instead, no result seems available on convergence of pre-
dictive distributions, that relate the Aldous-Hoover repre-
sentation to prediction. To our knowledge, a first result is
given in [49]; but we do not expand this further here.

5. RECURSIVE ALGORITHMS AND PREDICTIONS

The predictive approach has been shown to be power-
ful in many contexts. A last but important (to us) point
we want to make in this paper is that a Bayesian predic-
tive approach can also be taken in less ‘classic’ contexts,
in particular to evaluate predictive algorithms, possibly
arising from other fields, in order to obtain better aware-
ness of their implicit assumptions and provide probabilis-
tic quantification of uncertainty. We discuss this point for
two recursive procedures. The first example is from [56];
the second one is new.

Recursive computations are particularly convenient in
sequential learning from streaming data, where it is cru-
cial to have predictions that can be quickly updated as
new observations become available, at a constant compu-
tational cost and with limited storage of information; and
recursive procedures have been developed since at least
the work of Kalman [79]. Recent directions in a Bayesian
predictive approach include, among others, [66], [50] and
[14]. In Sections 5.1 and 5.2 below, we examine two
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recursive algorithms for prediction with streaming data;
and, in line with the principles at the basis of this pa-
per, exposed in the Introduction, we show how they can
be read as Bayesian predictive learning rules (although
not exchangeable), unveiling the implied statistical model
and obtaining Bayesian uncertainty quantification. In the
examples, the implied model is asymptotically exchange-
able, thus for n large the ‘algorithm’ provides a com-
putationally simple approximation of an exchangeable
Bayesian procedure.

In some more detail, we can read the algorithms as par-
ticular cases of a broad class of Bayesian recursive pre-
dictive rules of the following form: X1 ∼ P0 and for every
n≥ 1 Xn+1 |X1, . . . ,Xn ∼ Pn, with

(5.1)
{
Pn = pn(Tn),
Tn = hn(Tn−1,Xn),

where pn and hn are given functions, and Tn is a pre-
dictive sufficient summary (Sect. 3.2) of X1, . . . ,Xn.
The form of Pn allows storage of only the sufficient
summaries and straightforward updating. Suitable spec-
ifications lead to desirable properties for the sequence
(Xn)n≥1 (in the examples, asymptotic exchangeability).

In an exchangeable parametric setting, many common
models, for example the Beta-Bernoulli scheme, have a
recursive rule of the form (5.1). In a nonparametric set-
ting, this holds for Pólya sequences, whose predictive rule
(3.5) can be written recursively as

Pn =
α+ n− 1

α+ n
Pn−1 +

1

α+ n
δXn

.

In this case Tn ≡ Pn, and the recursive rule applies di-
rectly to the predictive distributions. This extends to other
discrete nonparametric schemes; it is however quite deli-
cate in the continuous case. Here, a general class of se-
quences (Xn)n≥1 that satisfy (5.1) are measure-valued
Pólya sequences (MVPS; [112]), characterized by

Pn(·) =
γP0(·) +

∑n
i=1RXi

(·)
γ +

∑n
i=1RXi

(X)
, n≥ 1,

where R is a non-null finite transition kernel on the sam-
ple space X and γ is a positive constant. Letting µ0(·) =
γP0(·), we can write the above predictive distributions as
in (5.1), withPn(·) =

µn(·)
µn(X)

µn(·) = µn−1(·) +RXn
(·).

The predictive sufficient statistic Tn in (5.1) is, in this
case, the random measure µn, which is updated by simply
adding the random measure RXn

to µn−1. This scheme
extends the Hoppe’s urn characterization of Pólya se-
quences shown in Example 3.9: any set of colors B in X
has initially mass µ0(B); then, at each step n, the mass of

B is reinforced with a mass Rxn
(B). As proved in [112],

a measure-valued Pólya sequence (Xn)n≥1 is exchange-
able if and only if it coincides with a kernel-based Dirich-
let sequence; unfortunately, as seen in Example 3.13, the
latter seems quite limited for statistical applications; and
so are exchangeable specifications of MVPS. Moreover,
natural extensions, for example allowing for random rein-
forcement (see e.g. [59], [111]) also require to go beyond
exchangeability. Indeed, MVPS can be asymptotically ex-
changeable. The procedure we consider in the next sec-
tion 5.1 will be shown to be an asymptotically exchange-
able generalized MVPS.

Remark. As seen in Section 2, asymptotic exchange-
ability holds for c.i.d. sequences. A class of recursive pre-
dictive rules that, under mild assumptions, meets the c.i.d.
condition, is presented in [12], (Sect. 4.1, Eqn (5)). Al-
though this class is rather general, not all the predictive
rules of the form (5.1) - in particular, not those arising in
the following sections - are included in it. We need the
generality and the predictive features of the class (5.1).

5.1 Newton’s algorithm and recursive prediction in
mixture models

Michael Newton and collaborators ([94], [95], [93])
proposed a recursive procedure for unsupervised sequen-
tial learning in mixture models, that extends an earlier
proposal by Smith and Makov [118] and is referred to
as the Newton’s algorithm in the Bayesian nonparamet-
ric literature. Let (Xn)n≥1 be a sequence of r.v.’s taking
values in X⊆Rd, and consider a mixture model

Xi |G
i.i.d.∼ fG(x)≡

∫
k(x | θ)dG(θ),

where k(x | θ), θ ∈Θ⊆Rk, is a kernel density of known
parametric form, and G is the unknown mixing distribu-
tion. Let us assume that the mixture model is identifiable.
The Newton’s algorithm estimates G starting from an ini-
tial guess G0 and recursively updating the estimate, as
x1, x2, . . . become available, as

(5.2) Gn(·) = (1− αn)Gn−1(·) + αnGn−1(· | xn),

where αn and Gn−1(· | xn) are as described in Exam-
ple 3.13 of Section 3, and a simple choice for αn is
αn = 1/(α+ n) for some α> 0. At step n, the algorithm
returns Gn(·) as the estimate of G(·).

This recursive procedure was suggested as a sim-
ple and computationally fast approximation of the in-
tractable Bayesian solution in a Dirichlet process mixture
model. In the latter, the mixing distribution is random
and is assigned a DP(αG0) prior; then the prior guess is
E(G̃(·)) =G0(·), and the first update, based on x1, gives
the Bayesian estimate

E(G̃(·) | x1) =
α

α+ 1
G0(·) +

1

α+ 1
G0(· | x1).
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Newton’s algorithm (5.2) replicates the same updating
form for any n > 1. The resulting estimate Gn deviates
from the Bayesian solution E(G̃(·) | x1:n), but is compu-
tationally much simpler; and, in practice, may give a sur-
prisingly good approximation. Based on Gn, one can also
obtain a plug-in estimate of the mixture density fG, as
fGn

(x) =
∫
k(x | θ)dGn(θ). Again, this differs from the

Bayesian density estimate E(fG(x) | x1:n) in the Dirich-
let process mixture model. Note that E(fG(x) | x1:n) is
also the predictive density of Xn+1 given x1:n. Our point
is thus that Newton’s algorithm is using a different learn-
ing rule, namely the predictive density

(5.3) Xn+1 | x1:n ∼ fGn
(x) =

∫
k(x | θ)dGn(θ),

with Gn as in (5.2). This is of the form (5.1), with suffi-
cient statistic Tn =Gn; and gives a generalized measure-
valued Pólya sequence. Because, as seen in Section 2.1,
the predictive rule characterizes the probability law of the
process (Xn)n≥1, reading the algorithm as a probabilistic
predictive rule allows us to reveal the probability law that
the researcher is implicitly assuming for the process. It is
easy to see that (5.3) characterizes a probability law P for
(Xn)n≥1 that is no longer exchangeable. However, one

still has Xn+2 | x1:n
d
= Xn+1 | x1:n. Thus, the sequence

(Xn)n≥1 is c.i.d. (see section 2.3), therefore asymptoti-
cally exchangeable. Actually, [56] prove stronger results:
the asymptotic directing random measure of (Xn)n≥1 has
precisely density fG̃(x) =

∫
k(x | θ)dG̃(θ), where, P-a.s,

the random distribution G̃ is the limit of the sequence Gn,
and fG̃ is the limit in L1 of the predictive density fGn

(x).
The above results imply that for n≥N large

Xn | G̃
i.i.d.
≈ fG̃,

with a novel prior on the random mixing distribution G̃,
that, interestingly, can select absolutely continuous distri-
butions [56]; but is not known explicitly. However, one
can sample from it, through the ‘sampling from the fu-
ture’ algorithm described in Section 2.4. Moreover, in
the same spirit as in Proposition 2.6, but referring to
the mixing distribution, one can obtain an asymptotic
Gaussian approximation of the posterior distribution of
[G̃(t1), . . . , G̃(tM )] given x1:n. Our predictive methodol-
ogy also allows to naturally obtain principled extensions,
that otherwise would mostly be heuristic; see again [56].

5.2 Online gradient descent and prediction

Consider the problem of classifying items as ‘type 0’ or
‘type 1’ based on a d-dimensional vector of features, for
example through a neural network or a generalized linear
model. Let the items arrive sequentially, and, for every
n≥ 1, let Yn and Xn represent the ‘type’ and features of
the nth item, respectively. Typically, the relationship be-
tween Xn and Yn is modelled through P(Yn = 1 | xn) =

g(xn, β), where g is a known function and β is an un-
known d-dimensional parameter, and the Xi are assumed
to be i.i.d. from a distribution (known or unknown) PX .
Given a sample, or ‘training set’, (xi, yi)i=1,...,n, an esti-
mate of the parameter β can be obtained by minimizing,
with respect to β, a loss function L(β;x1, y1, . . . , xn, yn)
measuring the difference between the actual values of
y1, . . . , yn and the ones predicted by the model. While
efficient algorithms exist to solve this optimization prob-
lem, the computational cost becomes substantial when β
is high-dimensional. Additionally, if data arrive sequen-
tially, the process must be restarted from scratch with each
new data point. In this context, β can be estimated by
an online learning [117] procedure, based on the stochas-
tic approximation [110] of the gradient descent dynamic:
β is initialised at time zero as β0 (which can be ran-
dom or deterministic), and then updated, at each new data
(xn, yn), by “moving” it along the direction that mini-
mizes L(βn−1;xn, yn), (that is opposite to the direction
of the gradient with respect to βn−1):

(5.4) βn = βn−1 −
1

n
∇βL(βn−1;xn, yn).

Although the results of this section hold for other choices
of L (for example quadratic loss) and g, here we consider
the typical case of binary cross entropy loss
L(β;x1, y1, . . . , xn, yn) =−

∑n
i=1[yi log2(g(xi, β))+(1−

yi) log2(1− g(xi, β))] and logistic function

(5.5) g(x,β) =
ex

Tβ

1 + exTβ
.

In this case, (5.4) becomes

(5.6) βn = βn−1 +
1

n log 2
(yn − g(xn, βn−1))xn.

If PX is known, we can reinterpret the algorithm as a
Bayesian predictive learning rule of the form (5.1), where
Tn = βn is updated at each new observation (xn, yn) as in
(5.6), and we assume that, for y = 0,1,

P(Xn+1 ∈ dx,Yn+1 = y|x1:n, y1:n)(5.7)

= g(x,βn)
y(1− g(x,βn))

1−yPX(dx),

with g as in (5.5). In fact, the assumption that PX is
known (or has been estimated separately) is only instru-
mental for the theoretical results; our final result does not
require to know PX .

This predictive rule is not consistent with exchange-
ability of the sequence ((Xn, Yn))n≥1; however, under
mild assumptions, exchangeability holds asymptotically,
as shown in the following proposition. All the proofs are
in Section S5 of the Supplement [58].

PROPOSITION 5.1. Let ((Xn, Yn))n≥1 have probabil-
ity law P characterized by the predictive rule (5.6)-(5.7),
where g is given by (5.5), E(||β0||2) < ∞, and PX has
bounded support. Then:
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i) The sequence of random vectors (βn)n≥0 converges
P-a.s. to a random limit β̃ and, for every n ≥ 0,
βn =E(β̃ | β0,X1, Y1, . . . ,Xn, Yn);

ii) The sequence of random vectors ((Xn, Yn))n≥1 is
P̃X,Y -asymptotically exchangeable, with the ran-
dom measure P̃X,Y such that the conditional distri-
bution P̃Y |X=x of Y given X = x is Bernoulli(g(x, β̃)).

Informally, this implies that, for n large,

Yn | β̃, xn
indep
≈ Bernoulli(g(xn, β̃)).

The posterior distribution of the random vector β̃ remains
unknown. However, for n large, it can be approximated
by a multivariate Normal distribution centered in βn.

PROPOSITION 5.2. Under the assumptions of Propo-
sition 5.1, with PX being non-degenerate on any linear
subspace of Rd, the conditional distribution of

√
n(β̃ −

βn), given β0,X1, Y1, . . . ,Xn, Yn, converges P-a.s., as
n→∞, to a multivariate Normal distribution with mean
zero and random covariance matrix

U = (log 2)−2

∫
xxT g(x, β̃)(1−g(x, β̃))PX(dx).(5.8)

The random matrix U , that depends on the unknown
parameter β̃, can be approximated by replacing β̃ with
βn. Thus, for n large β̃ | x1:n, y1:n ≈Nd(βn,Un/n), with
Un = (log 2)−2

∫
xxT g(x,βn)(1− g(x,βn))dPX(x).

The following alternative approximation of U does not
require to know PX .

PROPOSITION 5.3. Under the assumptions of Propo-
sition 5.2, as n→∞,

i) The statistic Vn = 1
n

∑n
k=1 k

2(βk − βk−1)(βk −
βk−1)

T converges P-a.s. to the random matrix U
in (5.8);

ii) The conditional distribution of
√
nV

−1/2
n (β̃ − βn),

given β0,X1, Y1, . . . ,Xn, Yn converges P-a.s. to
the standard multivariate Normal distribution.

Thus, for n large, for P-almost all sample paths,

β̃ | x1:n, y1:n ≈Nd(βn, Vn/n),

which can be used, in particular, to provide asymptotic
credible sets.

Remark. The proofs of Propositions 5.1, 5.2 and 5.3
are based on a key martingale property of the sequence
(βn)n≥0. These results can be generalized to other al-
gorithms as long as the martingale property holds and
certain moment bounds are met. Although our tech-
niques are not directly applicable without the martin-
gale property, extending the Bayesian interpretation be-
yond martingale-based learning appears feasible, since

many algorithms are based on stochastic approximations
with well-understood limit theorems and convergence
rates. Also, computational strategies such as Approximate
Bayesian Computation or Variational Bayes might be read
as using a predictive learning rule whose properties could
be studied in our predictive approach.

6. FINAL REMARKS

We have offered a review, from foundations to some re-
cent directions, of principles and methods for Bayesian
predictive modeling; and of course a lot could not be
covered. We barely mentioned that prediction is not, in
fact, the ultimate goal, but the basis for decisions to be
taken under risk. Also, the paper is, somehow unavoid-
ably, mostly theoretical, aiming at discussing fundamental
concepts; but a predictive approach involves the perspec-
tive we adopt in inference and in any statistical problem,
with evident practical implications; ultimately, the basic
principle is that, differently from inferential conclusions,
predictions can be checked with facts.
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