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Abstract
Weanalyze the infinite repetitionwith imperfect feedback of a simultaneous or sequen-
tial game, assuming that players are strategically sophisticated—but impatient—
expected-utility maximizers. Sophisticated strategic reasoning in the repeated game
is combined with belief updating to provide a foundation for a refinement of self-
confirming equilibrium. In particular, we model strategic sophistication as rationality
and common strong belief in rationality. Then, we combine belief updating and sophis-
ticated reasoning to provide sufficient conditions for a kind of learning—that is, the
ability, in the limit, to exactly forecast the sequence of future observations—thus show-
ing that impatient agents end up playing a sequence of self-confirming equilibria in
strongly rationalizable conjectures of the one-period game.

JEL Classification C72 · C73 · D82 · D83

1 Introduction

In this paper we analyze the limits of learning dynamics in the infinite repetition
with imperfect monitoring of a one-period game played by strategically sophisti-
cated agents. The one-period game may be sequential or with simultaneous moves.
Focusing on the case of impatient agents who maximize their subjective expected
one-period payoff, we relate such limits to solutions of the one-period game, that is,
self-confirming equilibrium and rationalizability.
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In a self-confirming equilibrium (SCE), players best respond to confirmed con-
jectures (first-order beliefs) about co-players’ behavior, where “confirmed”means that
each player, given her conjecture, correctly predicts what she observes about the play.
The SCE concept characterizes the rest-point limits of learning dynamics in games
played recurrently given the possibly imperfect feedback about play obtained by each
player at the end of each period (e.g., Fudenberg and Kreps 1995 and Gilli 1999).1

Since the SCE concept is not meant to capture strategic reasoning, in such rest points
players’ conjectures may be incompatible with strategic reasoning based on what is
commonly known about the game. Indeed, in an environmentwith possibly incomplete
information and private values, the SCE set at any given state of nature is indepen-
dent of players’ interactive knowledge of the profile of payoff functions.2 It is then
natural to ask how one can characterize the limits of learning dynamics when beliefs
are shaped by sophisticated strategic reasoning, which we take to mean some form of
common belief in rationality.

The literature offers two kinds of answers that directly focus on refinements of SCE,
neglecting an explicit analysis of learning dynamics. The simplest one can be found
in the works that first put forward a version of the SCE concept (Battigalli 1987, and
Battigalli and Guaitoli 1988): SCE should be refined by requiring that players’ con-
jectures about co-players’ behavior assign probability 1 to co-players’ rationalizable
strategies, a condition that follows from common belief in rationality. Yet, such SCE
in rationalizable conjectures allows for the possibility that confirmation of conjec-
tures is not commonly believed, which may be thought to jeopardize the stability of
the equilibrium. Intuitively, if confirmed conjectures is a pre-requisite to play again
the same strategies, why should a sophisticated player who is unsure whether her co-
players’ conjectures are confirmed expect them to behave in the future as in the current
period? And if they don’t, why should she? Motivated by such informal considera-
tions, Rubinstein and Wolinsky (1994) proposed an even more refined notion of SCE:
while an SCE in rationalizable conjectures obtains if—on top of rationality—there
is common belief in rationality and conjectures are confirmed, in a rationalizable
SCE 3 players’ conjectures about behavior are compatible with common belief of
both rationality and confirmation of conjectures. Rationalizable SCE is elegant and
intuitive, but—unlike the mere SCE concept, to the best of our knowledge—there is
no formal result relating it to learning in recurrent interactions. Instead, here we obtain
a kind of learning foundation for SCE in rationalizable conjectures.

To formally represent rationality and strategic sophistication,we adopt the approach
of epistemic game theory4 extended to infinitely repeated games as in Battigalli and
Tebaldi (2019). To ease notation, we assume complete information: the rules of the
game and players’ expected-utility preferences over streams of stochastic outcomes
are commonly known. Since the one-period game being repeated may have a sequen-
tial (multistage) structure, we need to distinguish between strategies of the one-period

1 Note that the terms “conjectural equilibrium” and “subjective equilibrium” were also used in the early
literature to refer to concepts similar to SCE. Formore on this, see the discussion in Sect. 7 and the references
therein.
2 Cf. Chapter 8.7 in Battigalli et al. (2023).
3 In the words of Rubinstein and Wolinsky, “rationalizable conjectural equilibrium”.
4 See, e.g., the survey of Dekel and Siniscalchi (2015).
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game and strategies of the repeated game; we call the latter superstrategies. Players
are endowed with conditional probability systems (CPSs), which specify subjec-
tive beliefs about the behavior and beliefs of co-players in the infinitely repeated game
conditional on every personal history (roughly, information set) so as to satisfy the
chain rule.We assume that players are rational, that is, they carry out (super)strategies
that maximize their subjective expected utility (SEU) conditional on every personal
history, including those that they did not expect to observe according to earlier conjec-
tures specified by their CPSs. Of course, assumptions about intertemporal preferences
are crucial. We focus on the extreme case of impatient players who do not value future
payoffs, as in much of the literature on learning in games.5 Since SEU maximizers
have no strict incentive to randomize, we also assume that players carry out pure
(super)strategies. To model strategic sophistication, we assume common strong belief
in rationality (Battigalli and Siniscalchi 2002): each player strongly believes in the
co-players’ rationality, i.e., she assigns probability 1 to it conditional on every per-
sonal history that does not contradict it; furthermore, she strongly believes that, on
top of being rational, her co-players also strongly believe in the rationality of others;
analogous assumptions hold for higher and higher levels of beliefs about beliefs. This
is how forward-induction reasoning is typically modeled in epistemic game theory.6

With this, we can show that impatient agents play (strongly) rationalizable strategies
in every period, and assign probability 1 to the (strongly) rationalizable strategies
of others even if they are surprised.7 The reason is that, on a rationalizable path,
unexpected observations cannot be due to deviations from rationalizability; therefore,
common strong belief in rationality implies that even surprised players keep believing
in rationalizability. To obtain convergence to SCE play, we assume that the profile of
superstrategies and CPSs satisfy an “observational grain of truth” condition (cf.
Kalai and Lehrer 1993, 1995): after some time T , each player assigns positive proba-
bility to what she is actually going to observe in the continuation (infinitely repeated)
game.8 This implies that, in the long-run limit, players assign probability 1 towhat they
observe, i.e., their conjectures are confirmed. Since players maximize their one-period
expected utility, there must be convergence to playing an SCE in rationalizable con-
jectures in each period. However, the SCE played in the limit may change from period
to period, because convergence of conjectures about superstrategies in the infinite rep-
etition does not imply that marginal one-period conjectures converge as well. We also
show a converse: for every sequence of one-period SCEs in rationalizable conjectures
there is a profile of superstrategies and CPSs satisfying the aforementioned conditions
that yields such sequence in the limit. Convergence to a sequence of one-period SCEs

5 This is a maintained assumption in the main body of the paper. In Appendix A.3 we also address the case
of a positive discount factor.
6 A similar theory of strategic reasoning was independently proposed by Stalnaker (1998). See the detailed
discussion in Section 6.2.3 of Battigalli and Siniscalchi (2002).
7 Strong rationalizability is akin to the notion of rationalizability for sequential games put forward by
Pearce (1984), often called “extensive-form rationalizability” (see Battigalli and Tebaldi 2019, and relevant
references therein). Thus, it coincides with the usual rationalizability concept in games with simultaneous
moves.
8 Absent randomization, our assumption is a generalization of the “grain of truth” condition of Kalai and
Lehrer (1993).
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Fig. 1 Game example

in rationalizable conjectures is ultimately a result of play converging to an SCE in
rationalizable conjectures of the repeated game, coupled with impatience.9

As explained above, we rule out randomized strategies. But, just like pure Nash
equilibria, also SCEs in pure strategies need not exist (think of playing Matching
Pennies with ex post observable realized payoffs). For similar reasons, pure SCEs
in rationalizable conjectures may not exist in games that instead have “mere” pure
SCEs (see Example 4). Thus, our results imply that observational grain of truth may
be incompatible with rationality, or with rationality and common strong belief in
rationality.

1.1 Heuristic examples

To give guidance and provide intuition we informally analyze two examples we will
repeatedly refer to in the rest of the paper.

Consider the two-person, two-stage, one-period game depicted in Fig. 1. In the first
stage, only player 1 (she, player label and payoffs in bold) is active and can go Out
or In, while player 2 (he, player label and payoffs in Italics) can only “wait.” Action
Out effectively terminates the game. But we find it convenient in the analysis of the
repetition of such one-period games to have a fixed number L of stages, in this case
L = 2. Thus, we have player 1 and 2 “wait” for one stage after Out before they get
their payoffs. A key ingredient of the analysis is what players are able to observe, i.e.,
their feedback, at the end of each stage, including the last one. End-game information
is crucial to determine the information structure of the repeated game and, relatedly,
the set of SCEs. In this example, we assume that players observe (i) first-stage actions,
so that action In leads to a proper subgame, and (ii) only their realized payoff at the
end of the second stage. Of course, we also assume that players remember what they
did and their earlier information. Thus, if player 2 chooses �eft after In, he observes
that his payoff is 0, but cannot ascertain whether 1 chose up or down. With this, the
game has two SCE outcomes:

1. Player 1 goes Out.

9 In Appendix A.3 we show the same convergence holds for the (more general) case of possibly positive
discount factor.
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(a) Indeed, she is afraid that 2 would choose r ight in the subgame with more than
50% probability. Her conjecture is trivially confirmed, because she cannot
observe how the co-player would have reacted.10

(b) Player 2’s plan for the subgame is immaterial. He is initially certain of Out;
hence, his conjecture is confirmed. If he—counterfactually—observed In, he
would revise his conjecture about 1 and choose a best reply.

2. Player 1 goes In and then up in the subgame, player 2 goes �eft in the subgame.

(a) Indeed, player 1 is certain that2wouldgo �eft in the subgameandher conjecture
is confirmed.

(b) Player 2 is certain of In and deems In.d more likely than In.u. He only observes
that his realized payoff is 0, as he—necessarily—expected, and cannot identify
1’s subgame action; hence, his conjecture is confirmed.

Both one-period equilibrium outcomes can occur infinitely often in the limit play of
the repeated game if players are rational (i.e., they always best respond to their beliefs),
and their conjectures about the co-player’s superstrategy converge, as must be the case
if the observational-grain-of-truth condition holds. However, only the first outcome
is consistent with sophisticated strategic thinking based on common knowledge of
the game (complete information): Strategy In.d of player 1 is strictly dominated by
Out. If player 2 strongly believes in 1’s rationality, upon observing action In—even
if surprised—he would infer that 1 is going up in the subgame; thus, he would react
by going right. If player 1 is certain that 2 is rational and strongly believes in her
rationality, then she expects r in the subgame and goes Out.

Note that, in this example, the outcomeof SCE in strongly rationalizable conjectures
coincides with rationalizable SCE in the sense of Fudenberg and Kamada (2015), who
extend Rubinstein and Wolinsky (1994) to sequential games, assuming (sequential)
rationality, confirmation of conjectures, and common initial belief in both. While,
in this case, strongly rationalizable conjectures select the outcome by mere forward-
induction reasoning, the unique selection by rationalizable SCEmust rely on a different
argument, because a concept based on common initial belief cannot feature forward-
induction. In particular, SCE (In.u, �) is inconsistent with the following necessary
conditions for rationalizable SCE: (i) player 2’s initial conjecture is confirmed and
assigns probability 0 to dominated strategies of the co-player, (ii) player 2 best replies
to his conjecture. Indeed, condition (i) implies that, if player 2 expects to observe In,
then he must be initially certain of In.u, the only undominated strategy of 1 consistent
with his conjecture; hence, upon observing In, he must be certain that the co-player
goes up in the subgame, and his best reply is r , not �. Note also that it is easy to exhibit
examples of sequential games where, by means of forward-induction reasoning, SCE
in strongly rationalizable conjectures rules out some rationalizable SCEs.11

10 Given such conjecture, if she plans by folding back, she plans to minimize her loss in the subgame by
choosing up. But, whatever her continuation plan for the subgame, she believes she is better off going Out
at the root.
11 Consider the Battle of the Sexes with an Outside Option, with any assumption about feedback. The
next example instead illustrates that, in simultaneous-move games, rationalizable SCE refines SCE in
rationalizable conjectures.
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Since in this simple example there is only one strongly rationalizable outcome of the
one-period game, under impatience, strong rationalizablity in the repeated game yields
the infinite repetition of this outcome. In less simple examples with multiple strongly
rationalizable one-period outcomes, players may assign subjective probability 0 to
some of them and be surprised by observations concerning the previous periods. But
strong rationalizability in the repeated game implies that players, even if surprised,
hold on to the belief that co-players are rational and strategically sophisticated.12

The second example illustrates the difference between Rubinstein’s and Wolin-
ski’s (1994) rationalizable SCE and the SCE in rationalizable conjectures in games
with simultaneous moves.13 Intuitively, the former concept follows from rationality,
confirmation of conjectures, and common belief in both. Hence, it must be a refine-
ment of SCE in rationalizable conjectures, which does not rely on common belief in
confirmation.

Consider a discrete location game with two players and simultaneous moves. Each
player can choose among the same 4 locations, {1, 2, 3, 4}. Players only observe their
realized payoffs, which are negatively proportional to the distance between their loca-
tion choice and the co-player’s location: ui (ai , a j ) = −|ai − a j |. This is common
knowledge, just like all the other aspects of the game.With this, all actions are rational-
izable. The case in which one player chooses location 2 and the other chooses location
3 is part of an SCE in rationalizable conjectures: It can be justified by conjectures
assigning (sufficiently close to) uniform probability to the other being in a location at
distance 1. These conjectures assign probability (close to) 1/2 to 1—for the player in
location 2—and to 4—for the player in location 3. Since it is common knowledge that
each player observes her realized payoff, locations 1 and 4 are inconsistent with ratio-
nality and confirmation of conjectures upon observing distance 1. Therefore, this is not
a rationalizable self-confirming equilibrium: belief in rationality and confirmation of
conjectures is violated. Note that all Nash equilibria—where both players choose the
same location—are both rationalizable SCEs and SCEs in rationalizable conjectures.

The rest of the paper is organized as follows. Section2 contains some mathemat-
ical preliminaries. Section3 describes one-period multistage games with imperfectly
observable actions and their infinite repetition. Section4 analyzes rationality for the
one-period game and its repetition, and characterizes the behavioral and first-order-
belief implications of rationality and common strong belief in rationality. Section5
analyzes convergence of conjectures. Section6 contains the main results of the paper.
Section7 discusses in detail the related literature and some possible extensions of our
work.

12 The following variation of the example has multiple rationalizable outcomes: Player 1 at the root has
also a third action zs that leads to a zero-sum subgame with zero-maxmin value in pure actions. In this
variation, both actions Out and zs (followed by appropriate continuations in the subgame) are strongly
rationalizable.
13 We consider a simple discretized version of Example (a) in Rubinstein and Wolinsky (1994).
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2 Preliminaries

We provide some mathematical and notational preliminaries.

2.1 Mathematical preliminaries

We let [n] = {1, . . . , n} denote the set of the first n natural numbers. Given a finite set
X , we let X [n] denote the set of functions from [n] to X (i.e., the sequences of length n
of elements of X ), XN denote the set of infinite sequences of elements of X , X [0] = {∅}
denote the singleton containing the empty sequence ∅, X<N0 = ∪n∈N0X

[n] denote
the set of finite sequences of elements of X (including the empty sequence), and
X≤N0 = X<N0 ∪ XN denote the set of finite and infinite sequences of elements of
X .14 We write x [n] = (xk)nk=1 ∈ X≤N0 for any n ∈ N ∪ {∞}, with x [0] = ∅.

We endow every finite set X with the discrete topology and any Cartesian product of
sets with the product topology, and we consider the corresponding Borel σ -algebras.
Given a sequence of finite sets (Xn)n∈N, the σ -algebra B(X) on their product X =∏

n∈N Xn is the one generated by all the cylinders of the form {x1} × . . . × {xn} ×
Xn+1 × . . ., with n ∈ N. Given any topological space Y endowed with its Borel
σ -algebra B(Y ), we let �(Y ) denote the space of probability measures defined on
(Y ,B(Y )), which we endow with the topology of weak convergence.

We let � denote the canonical “prefix-of” partial order over sequences.15 Given a
sequence x [n] ∈ X [n], we define its length as �(x [n]) = n.

2.2 Beliefs representation and properties

In this subsection we introduce conditional probability systems, used to represent
players’ beliefs in sequential games, and we give the definition of strong belief.

Definition 1 Let Y be a Polish space and C ⊆ B(Y ) be a countable collection of
clopen16 subsets of Y . A conditional probability system (CPS) on (Y , C) is a map
from conditioning events to probability measures,μ = (μ(·|C))C∈C ∈ [�(Y )]C , such
that:

(i) for all C ∈ C, μ(C |C) = 1;
(ii) for all E ∈ B(Y ) and C, D ∈ C such that E ⊆ D ⊆ C ,

μ(E |C) = μ(E |D)μ(D|C).

We let �C(Y ) denote the set of all CPSs on (Y , C). CPSs will be used to represent
the beliefs of a player, compactly modeling the way in which, upon observing some

14 That is, we regard such sequences as functions with domain [n] or N and codomain X . Cf. Stanley
(1996).
15 That is, x [m] ≺ y[n] if m < n and y[n] = (x [m], ...); x [m] � y[n] if either x [m] ≺ y[n], or m = n and
x [m] = y[n].
16 Simultaneously closed and open. See the discussion and motivation in Battigalli and Siniscalchi (2002)
and Battigalli and Tebaldi (2019).
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personal history of actions and messages (from which a conditioning event can be
inferred), a player updates or revises her beliefs. In particular, (i) upon observing
the event corresponding to any personal history, a player is certain of it; (ii) beliefs
complywith the chain rule of conditional probabilities, hence, standard updating holds
whenever an observed event was previously deemed possible: μ(D|C) > 0 implies
μ(E |D) = μ(E |C)/μ(D|C).

Definition 2 Fix an event E ∈ B(Y ) and a CPS μ ∈ �C(Y ). We say that μ strongly
believes E if, for every C ∈ C,

E ∩ C 
= ∅ ⇒ μ(E |C) = 1.

In words, μ strongly believes E if an agent with CPS μ is certain of E whenever
possible, i.e., upon observing any evidence that does not contradict E .

3 Games

We give a formal description of the one-period game and of its repetition.

3.1 One-period game

A finite multistage game with feedback is a game that may last for more than one
stage, where at each stage every player chooses an action and then observes a message
about the play. We represent the information accruing to agents as the play unfolds
with a formalism that is similar to the one used to represent information (monitoring)
in repeated games.17 Stages are indexed by natural numbers: stage k starts after the
end of stage k − 1 and ends with the realization of the profiles of actions played
and messages received by players. To ease notation, we adopt the convention that the
set of available actions (after some non-terminal play) of an inactive player is the
singleton {w}, where w is interpreted as the action “wait.” A finite multistage game
has necessarily a finite horizon, that is, a maximum number of stages L ∈ N after
which the game ends. In order to simplify the formal representation of the infinite
repetition of the game, we adopt the convention that, each time the one-period game
is played, the play lasts L stages. If at some history shorter than L the game ends, then
players are assumed to play the action “wait” for all the following stages, until stage
L . The rules of interaction are represented by the primitive elements

〈I , (Ai , Mi ,Ai , fi )i∈I 〉,

where:

• I is the finite set of players;
• Ai is the finite set of all actions player i may ever take at any point in the game;

17 See Battigalli and Generoso (2024).
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• Mi is the finite set of all messages player i may observe at any point in the
game, including the initial message m0

i , saying that the game is about to start
and informing i of her feasible actions;

• Ai = (Ak
i : Mi ⇒ Ai )

L
k=1 is a sequence of constraint correspondences, where for

every k and possible message mk−1
i , Ak

i

(
mk−1

i

)
specifies the set of i’s feasible

actions at stage k; thus, i is informed of her feasible actions, independently of her
mnemonic abilities;

• fi = ( f ki : A[k] → Mi )
L
k=0 is the incremental feedback structure, where for every

k and every conceivable sequence of action profiles a[k], f ki
(
a[k]

)
is the message

that would be observed by player i at the end of stage k if the sequence of actions
a[k] were played. We denote the sequence of k messages received by i when a[k]

has been played as f [k]i

(
a[k]

)
.

The sequence of own actions (which are automatically observed as soon as they
are irreversibly chosen) and received messages up to the current stage, or personal
history, determines the information potentially available to a player. Since the initial
message m0

i is fixed, we ignore it in the following notation and it does not affect the
length of histories.

From these primitives we derive the sets of one-period histories and personal his-
tories, that is, the objective and the subjective trees generated by the one-period game
form:18

• H̄ is the set of histories, that is, partial, or complete plays made of feasible
sequences of action profiles including the empty sequence a[0] = ∅ (root).

• Z = {
z ∈ H̄ : �(z) = L

}
is the set of terminal histories (recall that all paths of

play are defined to have the same length, L);
• H = H̄ \ Z is the set of non-terminal histories;
• H̄i is the set of personal histories is, that is, feasible sequences of own actions and
messages, and it is partitioned into Zi and Hi (terminal and non-terminal personal
histories).

Personal histories represent what a player is allowed to observe at each stage given
that a certain history has occurred. We informally assume that the rules of interaction
represented by the foregoing formal structure are common knowledge. Whether at a
certain stage the player is able to use the sequence of own actions andmessages she has
observed as information depends on her memory. In this framework, the assumption
of perfect memory consists in saying that, at every stage k, each player i remembers
her personal history. Under perfect memory, for each player, personal histories of
actions and messages yield an information partition that satisfies the standard perfect
recall assumption (see Battigalli and Generoso 2024 and its working paper version).
In particular, let

Pi : H̄i ⇒ H̄ ,

(ai ,mi )
[k] �→

{
h ∈ H̄ : a[k]i = projA≤Ni

h , f [k]i (h) = m[k]i

}
,

18 See the complete formalism in Appendix A.1.
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denote the correspondence from personal histories to objective histories consistent
with them. As anticipated, Pi yields a partition of H̄ that satisfies perfect recall.19

We now define strategies, that is, descriptions of information-dependent behavior.
Since rational players behave as planned, we also interpret strategies as plans, consis-
tently with the meaning of the term in the natural language.20 A strategy of player i is
a function si = (si (hi ))hi∈Hi such that, for each hi ∈ Hi , si (hi ) ∈ A�(hi )+1

i (mi (hi )),
where mi (hi ) denotes the last message in personal history hi . The set of i’s strategies
is denoted by Si , whereas S = ×i∈I Si and S−i = × j 
=i S j denote the sets of strategy
profiles and co-players’ strategy profiles, respectively. From these elements we can
derive the path function ζ : S → Z mapping strategies to terminal histories (see
Appendix A.1). We also let ζi := P−1i ◦ ζ : S → Zi denote the map from strategies
to terminal personal histories.

It is also useful to define, for each player i ∈ I , the sets of profiles that induce, and
strategies that allow, some personal history hi ∈ H̄i :

• S(hi ) = {s ∈ S : hi � ζi (s)}, the set of strategy profiles inducing hi ;
• Si (hi ) = {si ∈ Si : ∃s−i ∈ S−i , hi � ζi (si , s−i )} = projSi S(hi ), the set of
strategies of i that allow hi ;

• S−i (hi ) = {s−i ∈ S−i : ∃si ∈ Si , hi � ζi (si , s−i )} = projS−i S(hi ), the set of
co-players’ strategy profiles that allow hi .

Intuitively, S−i (hi ) represents the information that hi reveals to i about the co-
players’ behavior, that is, the strategies that the co-players are carrying out. One can
verify that, for every hi ∈ Hi , S(hi ) can be factorized as S(hi ) = Si (hi ) × S−i (hi ).
Hence, for every i ,

Ci = {S−i (hi ) : hi ∈ Hi }

is the relevant collection of observable events about co-players’ behavior that will be
used to define the set of CPSs of i . A CPS of i for the one-period game is an element of
�Ci (S−i ), that is, it is a system of conjectures that are connected, whenever possible,
by the chain rule.

Positing a set of outcomes (consequences) Y , an outcome function g : Z → Y
and von Neumann-Morgenstern utility functions (vi : Y → R)i∈I , we construct
payoff functions (ui = vi ◦ g : Z → R)i∈I on terminal histories. With this, we
can also conveniently define strategic-form utility functions Ui = ui ◦ ζ : S → R.
The continuation value of strategy si at personal history hi , given one-period CPS
γ i ∈ �Ci (S−i ), is

V γ i

i,hi
(si ) =

∑

s−i∈S−i (hi )
Ui (si |hi , s−i )γ i (s−i |S−i (hi )),

19 Note that Pi (hi ) does not depend on the initial message m0
i , because it is fixed.

20 We do not offer a theory of irrationality, or of how players think about the irrationality of co-players.
Furthermore, we assume it to be transparent that observed behavior is intentional. Therefore, here we need
not consider the relationship between the plans and behavior of irrational players (see Section 6 of Battigalli
and De Vito 2021).
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where si |hi is the modified strategy allowing hi and playing like si at each personal
history that does not strictly precede hi .

Then, a one-period multistage game � with feedback structure f = ( fi )i∈I is
defined as

� = 〈I , (Ai , Mi ,Ai , fi , ui )i∈I 〉.

To conclude the subsection, we define the notion of observationally equivalent strategy
profiles of co-players, which plays a fundamental role in our analysis.

Definition 3 Fix i ∈ I and si ∈ Si . Two profiles of co-players’ strategies s̄−i , s−i ∈
S−i are observationally equivalent, given si , if ζi (si , s̄−i ) = ζi (si , s−i ).

In words, s−i is observationally equivalent to s̄−i given si if these two profiles,
when played along with si , induce the same sequence of messages and own actions
observed by player i , who thus is unable to distinguish between the two profiles.

We refer to the example of the Introduction to illustrate the formalism.

Example 1 Go back to the two-stage (L = 2) one-period game depicted in Fig. 1 of
the Introduction. Note that, formally, players choose simultaneously in each stage,
but inactive players can only choose the waiting action. The first-stage feedback
is perfect, that is, each function f 1i is injective. With this, A1

1

(
m0

1

) = {In,Out},
A1

2

(
m0

2

) = {w}, A2
i

(
f 1i (Out, w)

) = {w} (i ∈ {1, 2}), A2
1

(
f 11 (In, w)

) = {u, d}, and
A2

2

(
f 12 (In, w)

) = {�, r}. The second-stage feedback of each player i coincides with
her payoff function, that is, f 2i

(
a[2]

) = f 2i
(
ā[2]

)
if and only if ui

(
a[2]

) = ui
(
ā[2]

)
.

Player 1 has four strategies, S1 = {Out.u,Out.d, In.u, In.d}, two of which are real-
ization equivalent and can be summarized by the structurally reduced strategy21 Out.
Player 2 has two strategies, which can be identified with her actions in the subgame ,
S2 = {�, r}. �

3.2 Infinitely repeated game

The infinite repetition of the game is itself a multistage game, whose elements are
characterized by the primitives of the one-period game. For example, the set of fea-
sible actions for player i after personal history hi = (ai ,mi )

[k] ∈ (Ai × Mi )
[k] is

Ak−L·τ(hi )+1
i (mk

i ), where τ(hi ) := ��(hi )/L� denotes number of periods that have
elapsed in hi . For the sake of brevity, we abuse notation lettingAk+1

i (hi ) denote the set
of feasible actions, given the lastmessage inhi , a personal history of length k. Similarly,

the message observed by i after history a[k] is f k−L·τ(a[k])
i

(
(a j )k

j=τ(a[k])+1
)
, that is,

the message player i would observe after one-period objective history (a j )k
j=τ(a[k])+1,

where again τ(a[k]) := �k/L�. We let fki denote the feedback function mapping from
sequences of action profiles of length k to the corresponding message observed by i .
More generally, we use symbols in bold to denote mathematical objects related to the

21 See Kuhn (1953, Theorem 1).
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repeated game (sometimes abbreviated in “supergame”), such as the various sets of
histories analogous to the one-period game ones. All the aspects of the repeated game
are (informally) assumed to be commonly known.22

Terminal histories of the repeated game are infinite sequences of feasible action
profiles, that is, elements of ZN. We similarly define the informational correspon-
dences

Pi : H̄i ⇒ H̄

such that

Pi ((ai ,mi )
[k]) =

{

a[k] : a[k]i = projA≤Ni
a[k],

(
f�i

(
a[�]

))k

�=1 = m[k]i

}

.

The information content of infinite personal histories is similarly defined, replacing
[k] with N.

In this context, we still call “strategy” the description of the information-dependent
behavior of a player in a single period.We instead call “ superstrategy” the description
of the information-dependent behavior of a player in the repeated game; we let si ∈
Si = ×hi∈HiA�(hi )+1

i (hi ) denote the superstrategies of player i .23

As for the one-period game, one can define the path function over superstrategies
ζ : S→ ZN and the composition ζ i := P−1i ◦ζ mapping to terminal (infinite) personal
histories, as well as the sets of (profiles of co-players’) superstrategies Si (hi ), S−i (hi )
allowing any personal history hi ∈ Hi of the repeated game.24

Under the assumption of perfect memory, the relevant collection of conditioning
events for the CPSs of player i is

Ci = {S−i (hi ) : hi ∈ Hi } .

In particular, supergame CPSs of player i are represented by elements of�Ci (S−i ).

Definition 4 Fix i ∈ I and si ∈ Si . Two profiles of superstrategies s̄−i ∈ S−i and
s−i ∈ S−i are observationally equivalent given si if ζ i (si , s̄−i ) = ζ i (si , s−i ).

At the end of every period an outcome of the one-period game � is generated.
Since players are impatient, they have zero discount factor, and no payoff can be

meaningfully attached to infinite terminal histories. We directly rely on a form of
sequential rationality based on continuation values, that is, we require players to
take, at every personal history, choices that maximize the (discounted) expected utility
computed at that point in time.25

22 This includes, of course, the terminal feedback of the one-period game, which is crucial to define the
supergame information structure and the supergame solution concept we adopt.
23 The set Si is compact in the standard product topology. See, e.g., Battigalli and Tebaldi (2019).
24 These sets are clopen. See, e.g., Battigalli and Tebaldi (2019).
25 This allows us to cope with “the impatience issue” and to extend the analysis to any possible δi ∈ [0, 1).
If the discount factor is strictly positive, continuation-value maximization implies ex ante expected utility
maximization. See Appendix A.3 for the general definition of continuation value.
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For each infinite history z ∈ ZN, let zt (z) denote its t-th coordinate projection,
that is, the one-period terminal history played in period t . The continuation value of
superstrategy si ∈ Si at personal history hi , given μi ∈ �Ci (S−i ), is

Vμi

i,hi
(si ) =

∫

S−i (hi )
ui (zτ(hi )+1(ζ (si |hi , s−i )))μi (ds−i |S−i (hi )),

where si |hi is the modified superstrategy allowing hi and playing like si at each
personal history that does not strictly precede hi .

4 Rationality and strategic reasoning

We begin this section with our definition of rationality, based on the previously intro-
duced continuation values. We then connect rationality and one-period rationality, and
we characterize and connect the behavioral and first-order-belief implications of (one-
period) rationality and common strong belief in (one-period) rationality, i.e., RCSBR
(one-period RCSBR).

4.1 Rational planning

Player i is rational if she plays a strategy that satisfies one-step optimality given her
CPS. This definition of rationality can be seen as a generalization of folding-back
optimality to the infinite-horizon case.

Definition 5 A superstrategy si is one-step optimal in the repeated game given μi ∈
�Ci (S−i )—written si ∈ BRi

(
μi

)
—if, for all hi ∈ Hi ,

si (hi ) ∈ arg max
ai∈A�(hi )+1

i (hi )
Vμi

i,hi
(si |hi ai ),

where si |hi ai is the superstrategy that allows hi , plays ai at hi and behaves like si at
any other personal history that does not precede hi . Similarly, a strategy si is one-step
optimal in the one-period game given a one-period CPS γ i ∈ �Ci (S−i )—written
si ∈ BROi

(
γ i

)
—if, for all hi ∈ Hi ,

si (hi ) ∈ arg max
ai∈A�(hi )+1

i (hi )

V γ i

i,hi
(si |hi ai ).

We point out that we operate under the one-shot deviation principle: since
impatience implies continuity at infinity, one-step optimality is equivalent to sequen-
tial optimality, that is, maximization with respect to continuation (super)strategies
conditional on every personal history. Hence, we often refer to one-step optimal
(super)strategies as sequential best replies.26

26 Furthermore, sequential optimality (hence, one-step optimality) is realization equivalent to the require-
ment that the continuations of the given strategy maximize expected utility starting from histories consistent
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We are interested in studying the implications for the one-period game of assump-
tions on the infinite interaction. Therefore, we need to identify one-period objects
induced by the infinite repetition. First notice that from superstrategy si , for every
period t and every history z[t−1] that describes the play up to, but excluding, period t ,
denoting the corresponding personal history as z[t−1]i , one can derive the (one-period)

strategy induced by si at z[t−1]: it starts by playing like si at z
[t−1]
i , and for every

one-period personal history hi it plays the action prescribed by si at the concatenation
(z[t−1]i , hi ).

Similarly, a CPS for the supergame specifies, given z[t−1]i , a CPS for the one-

period game following z[t−1]i . Supergame conjectures are probability measures over
superstrategies, and induce conjectures over co-players’ strategies for the relevant one-
period game: the probability assigned to a profile of strategies s−i is just the probability
assigned to the (closed) set of profiles of superstrategies inducing s−i . Remark 1 states
that this system of conjectures is indeed a CPS of the one-period game, which we thus
refer to as induced one-period CPS.

Remark 1 Fix μi ∈ �Ci (S−i ), a period t ∈ N, and a path z[t−1] ∈ Z [t−1]. Then the
system of marginal probabilities induced by μi on the co-players’ strategies played
from personal history z[t−1]i is a CPS of the one-period game.

If rational players only care about the present, then in every one-period game they
should act so as to maximize their current one-period expected utility conditional on
each personal history.

Proposition 1 A superstrategy s̄i is one-step optimal given μi ∈ �Ci (S−i ) if and
only if, for every period t and path z[t−1], the strategy induced in the corresponding
one-period game is one-step optimal given the induced one-period CPS.

Remark 2 For every player and every CPS (one-period CPS), there always exists a
one-step optimal superstrategy (strategy).27

4.2 Strategic thinking and strong rationalizability

Battigalli and Tebaldi (2019) extend the analysis of rationality and common strong
belief in rationality of Battigalli and Siniscalchi (2002) to a class of infinite sequential
games, which includes the infinite repetition of finite one-period games (simultane-
ous or sequential). To provide perspective for our results, it is useful to relate to their
work. Events about behavior and interactive strategic thinking can be defined within
the canonical type structure

(
S−i , Ti , Ci , βi : Ti → �Ci (S−i × T−i )

)
i∈I based on

the givenmultistage game—in our case, the infinitely repeated game:Ti is the compact
space of epistemic types (ways of thinking) of player i , that is, collectively coherent
infinite hierarchies of conditional probability systems based on the countable collec-
tion {S−i (hi )× T−i }hi∈Hi

of (clopen) conditioning events corresponding to personal

with it. Rationalizability for sequential games is often equivalently defined by means of this weaker version
of sequential optimality. See Appendix A.4 for details.
27 See Appendix A.4.
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histories; βi (ti ) =
(
βi,hi (ti )

)
hi∈Hi

(with βi,hi (ti ) ∈ �(S−i (hi )× T−i ) for each
hi ∈ Hi ) is the CPS over superstrategies and types of the co-players associated with
type (infinite hierarchy) ti , and belief map βi is a homeomorphism.28 With this,

• an event about player i is a measurable subset of Si × Ti ;
• Ri is the event “i is rational,” that is, the set of i-states (si , ti ) such that si is
one-step (hence, sequentially) optimal given the first-order CPS in hierarchy ti ,
which is obtained from the marginal on S−i of each conditional belief βi,hi (ti );

• SBi (E−i ) is the event that i strongly believes E−i , that is, CPS βi (ti ) assigns
probability 1 to E−i whenever E−i ∩ (S−i (hi )× T−i ) 
= ∅;

• Rm+1
i = Rm

i ∩ SBi
(
Rm
−i

)
, with R1

i = Ri ; for example, R2
i is the event that i is

rational and strongly believes in the co-players’ rationality;
• rationality and common strong belief in rationality (RCSBR) is the event
×i∈I R∞i = ×i∈I ∩∞m=1 Rm

i ;• finally note that ∩∞m=1SBi
(
Rm
−i

) ⊆ SBi
(
R∞−i

)
; thus, (si , ti ) ∈ R∞i satisfies the

best rationalization principle: for every i ∈ I and m ∈ N∪ {∞}, βi,hi (ti )
assigns probability 1 to Rm

−i whenever Rm
−i ∩ (S−i (hi )× T−i ) 
= ∅, in partic-

ular, βi,hi (ti )
(
R∞−i

) = 1 whenever R∞−i ∩ (S−i (hi )× T−i ) 
= ∅.
Of course, a similar analysis applies to all finite games (see Battigalli and Sinis-

calchi 2002), including the one-period games considered here. We are interested in
the implications of RCSBR for strategic behavior and conjectures about co-players’
behavior (first-order beliefs). Building on Battigalli and Tebaldi (2019) and adapt-
ing their results, one can show that such implications are characterized by the strong
rationalizability solution concept defined below.

Definition 6 For every player i ∈ I , let

�1
i = {(si , μi ) ∈ Si ×�Ci (S−i ) : si ∈ BRi (μ

i )},
�1
i = {(si , γ i ) ∈ Si ×�Ci (S−i ) : si ∈ BROi (γ

i )},
and recursively define, for each k ∈ N,

�k+1
i = {(si , μi ) ∈ Si ×�Ci (S−i ) : si ∈ BRi (μ

i ), ∀m ≤ k,∀hi ∈ Hi ,

projS−i �
m
−i ∩ S−i (hi ) 
= ∅ ⇒ μi (projS−i �

m
−i |S−i (hi )) = 1},

and

�k+1
i = {(si , γ i ) ∈ Si ×�Ci (S−i ) : si ∈ BROi (γ

i ),∀m ≤ k,∀hi ∈ Hi ,

projS−i �
m
−i ∩ S−i (hi ) 
= ∅ ⇒ γ i (projS−i �

m
−i |S−i (hi )) = 1},

where �m
−i =

∏
j 
=i �m

j and �m
−i =

∏
j 
=i �m

j . Then let

�∞i = ∩k∈N�k
i and �∞

i = ∩k∈N�k
i .

28 As clarified by Battigalli and Tebaldi (2019), who generalize Battigalli and Siniscalchi (2002), what
really matters for the results and their proofs is that the type structure à la Battigalli and Siniscalchi is
compact and features continuous and onto belief maps.
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Any profile
(
si , μi

)
i∈I ∈

∏
i∈I �∞i (one-period profile

(
si , μi

)
i∈I ∈

∏
i∈I �∞

i ) is
called strongly rationalizable; for each player i ∈ I , superstrategy si (strategy si ) is
strongly rationalizable if si ∈ projSi �

∞
i (si ∈ projSi �

∞
i ), and CPS μi (one-period

CPS γ i ) is strongly rationalizable if μi ∈ proj�Ci (S−i )�
∞
i (γ i ∈ proj�Ci (S−i )�

∞
i ).

Example 2 Consider again the one-period game depicted in Fig. 1 of the Introduction.
Formally, one-period strong rationalizability works as follows:

�1
1 = {Out.u} ×

{

γ 1 : γ 1 (r | {�, r}) ≥ 1

2

}

∪ {In.u} ×
{

γ 1 : γ 1 (r | {�, r}) ≤ 1

2

}

,

�1
2 = {�}×

{

γ 2 :γ 2 (In.d| {In.u, In.d})≥ 1

2

}

∪{r}×
{

γ 2 :γ 2 (In.d| {In.u, In.d})≤ 1

2

}

,

�2
1 = �1

1 ,

�2
2 = {r} ×

{
γ 2 : γ 2 (In.d| {In.u, In.d}) = 0

}
,

�3
1 = {Out.u} ×

{
γ 1 : γ 1 (r | {�, r}) = 1

}
,

�3
2 = �2

2 ,

and, for all k > 3,

�k
1 = �3

1 ,

�k
2 = {r} ×

{
γ 2 : γ 2 (Out.u|S1) = 1, γ 2 (In.d| {In.u, In.d}) = 0

}
.

The last equality rests on the best rationalization principle: even if, by strategic rea-
soning, player 2 is initially certain of Out, upon observing In (a non-rationalizable
choice of player 1), he would still believe that player 1 is—at least—rational, and that
she is going up in the subgame. �

We can use the aforementioned characterization result to study the implications of
RCSBR with impatience. The intuition is that the behavior of sophisticated players
must be consistent with one-period strong rationalizability at every on-path history
(by Proposition 1 and an inductive argument); thus, each player at the beginning of the
game expects with probability 1 such co-players’ behavior. As long as players carry
out strongly rationalizable strategies—by the best rationalization principle embedded
in RCSBR—common strong belief in rationality implies that players keep assigning
probability 1 to the co-players’ strongly rationalizable strategies, even if they observe
personal histories to which their earlier conjectures assigned probability 0. The same
argument applies to the second period and all subsequent periods. The following
result formalizes this intuition. Since we are ultimately interested in players’ behavior
and their beliefs about co-players’ behavior, in our formal analysis we only consider
“first-order states”

(
(si , μi )

)
i∈I ∈

∏
i∈I Si ×�Ci (S−i ), the induced path of play ζ (s),

and players’ beliefs held upon observing personal histories that realize as path ζ (s)
unfolds. In particular, we say that players satisfy strong rationalizability when we
consider a strongly rationalizable state

(
(si , μi )

)
i∈I ∈

∏
i∈I �∞i .
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Theorem 1 Let players satisfy strong rationalizability. Then, in every period, on the
actual path of play, players carry out strongly rationalizable (one-period) strategies
and hold strongly rationalizable one-period CPSs.

Of course, one-period strong rationalizability is not implied after deviations from
strong rationalizability (hence, off path), such deviations are rationalized ascribing to
co-players lower levels of sophisticated reasoning.

5 Learning

Let us fix a profile ((si , μi ))i∈I ∈ ∏
i∈I Si ×�Ci (S−i ), which we interpret as the true

state, that is, the profile of superstrategies actually played and CPSs actually held by
players.29 Players’ superstrategies yield a path of play ζ (s) in the repeated game and
corresponding personal histories observed by each player. In particular, we focus on
the sequence of personal histories observed at the beginning of each period (or end of
the previous period) and the corresponding sequence of conjectures about co-players’
superstrategies and one-period strategies implied by each player’s CPS at the given
state. For every t ∈ N, we let hti denote the personal history of i at the beginning of
period t induced by the true state, that is, hti ≺ ζ i (s) with �(hti ) = L(t − 1). We refer
to the belief of player i upon observing hti as her conjecture at time t . For pedagogical
purposes, we first consider convergence of conjectures in finite time and then the more
general case of asymptotic convergence.

Definition 7 The conjectures of player i have converged from time T if, for every
t ≥ T ,

μi (·|S−i (hti )) = μi (·|S−i (hTi )).

Let t̂ > t . For every E−i ⊆ S−i (ht̂i ), the chain rule implies

μi (E−i |S−i (hti )) = μi (E−i |S−i (ht̂i )) · μi (S−i (ht̂i )|S−i (hti )).

Hence, convergence requires that μi (S−i (ht̂i )|S−i (hti )) = 1. Since this must hold for
all t̂, t ≥ T , we obtain the following characterization.

Remark 3 Player i’s conjectures have converged from time T if and only if the con-
jecture conditional on the observed personal history at every t ≥ T , μi (·|S−i (hti )),
assigns probability 1 to the set S−i

(
ζ i (si , s−i )

)
of co-players’ superstrategies that are

observationally equivalent, given i’s own superstrategy, to the true ones.

Hence, convergence of conjectures is equivalent to a form of learning, that is,
eventually acquiring the ability to perfectly forecast the future messages one will
observe. Intuitively, a player that is certain—and correct—about the message she will

29 From an epistemic perspective, we are considering the behavior and first-order beliefs at some state of
the world (si , ti )i∈I in the canonical type structure.

123



P. Battigalli, D. Bordoli

observe in every period, has no reason to change her conjectures about others’ behavior.
We express convergence of conjectures after a finite number of periods with the phrase
“learning in finite time,” whereas asymptotic convergence (formally defined below) is
expressed as “asymptotic learning,” which is weaker than the former. Note that we do
not mean that players “learn the truth,” we only mean that they stop changing (from
some T or in the limit) their beliefs about co-players’ behavior.

To improve the reader’s understanding, we can flesh out sufficient conditions for
learning in finite time.30 LetHi (s) ⊆ Hi denote the totally ordered and countable set of
personal histories of the supergame observed by player i if the profile s of superstrate-
gies is played,31 and—for any hi ∈ Hi (s)—let Hi

(
s|hi

) = {
h′i ∈ Hi (s) : hi � h′i

}

denote the subset of weak successors of hi in Hi (s).

Remark 4 Fix a state (s,μ) = (
(s j ,μ j )

)
j∈I and a player i ∈ I . Suppose that, for some

on-path personal history hi ∈ Hi (s), (1) the union Supp
(
μi |hi , s

)
of the supports of

the on-path conjectures
(
μi

(·|h′i
))

h′i∈Hi (s−i |hi ) is finite, and (2) there is at least one

profile s′−i ∈ Supp
(
μi |hi , s

)
that is observationally equivalent to s−i for i given si .

Then player i learns in finite time at state (s,μ).

Intuitively, the on-path conjectures about co-players’ superstrategies specified by
CPSμi change if and only if observed personal histories rule out a set of superstrategies
with positive probability measure according to earlier conjectures. If, for some on-
path personal history hi , the union of the supports of the on-path conjectures from
hi onward is finite, such changes can occur only a finite number of times. Since one
profile of co-players’ superstrategies in this union is indistinguishable from the true
one, it must be the case that player i eventually assigns probability 1 to what she
observes.

Since conjectures are updated according to the chain rule, a sufficient condition for
asymptotic learning is the well-known requirement that conjectures assign positive
probability to the relevant part of the “true state of the world,” at least from some
time onward (at some finite history on path). In our setting, this relevant part is the
set of co-players’ superstrategies observationally equivalent to the true ones—given
the player’s feedback and her own superstrategy. We call this property “observational
grain of truth.”Our results are similar to the ones ofKalai andLehrer (1993), extending
them to the case of imperfect monitoring and multistage one-period games.32 In the
“medium run,” for every ε > 0, there exists a time starting from which conjectures
are “ε-close” to the objective distribution of observations. In our case, “ε -closeness”
means that the conjecture assigns probability at least 1−ε to the set of superstrategies
observationally equivalent to the true ones.

30 See also the simplified explanation of Kalai and Lehrer (1993) given by Battigalli et al. (1992) in their
survey on learning in games.
31 That is, the finite prefixes of the infinite personal history ζi (s).
32 Yet, we simplify the analysis of learning by focusing on pure (super)strategies.
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Definition 8 We say that observational grain of truth holds for player i if there exists
a time T ∈ N such that33

μi (S−i (ζ i (si , s−i ))|S−i (hTi )) > 0.

Proposition 2 If observational grain of truth holds for player i , then, for every ε > 0,
there exists a time T such that, for all t ≥ T

μi (S−i (ζ i (si , s−i ))|S−i (hti )) ≥ 1− ε.

Therefore,

lim
t→∞μi (S−i (ζ i (si , s−i ))|S−i (hti )) = 1.

Of course, learning in finite time implies observational grain of truth.34 More gen-
erally, we obtain the following corollary.

Corollary 1 Asymptotic learning (limt→∞ μi (S−i (ζ i (si , s−i ))|S−i (hti )) = 1) and
observational grain of truth are equivalent.

In an infinitely repeated game, there is a tension between the grain of truth assump-
tion of Kalai and Lehrer (1993, 1995) and richness of the initial belief. Nachbar (1997,
2005) formalizes this point, showing that the players’ ability to asymptotically learn
anything they believe possible is incompatible with actual on-path learning and some
cautionary condition on the beliefs. The same can be true for our observational grain
of truth assumption, as shown in the following example.

Example 3 (Discrete location game) Consider again the discrete location game
described in Sect. 1.1. As we will see with Proposition 3, for each possible sequence
of location choices there exists (at least) one strongly rationalizable superstrategy
inducing it. Whatever the action played by i in a period, there is a minimum of three
different messages (payoffs) that i might observe (depending on what the co-player
plays): 0,−1, and−2 (and additionally−3 if i chooses 1 or 4). In principle, one might
see no reason why i’s belief should exclude any infinite sequence of messages that
might possibly be observed given i’s own superstrategy and strong rationalizability of
the co-player’s behavior. Whatever the superstrategy of i , the set of such sequences
has (at least) the cardinality of {0,−1,−2}N, that is, of the continuum. Therefore, if
additionally the belief exhibits nice properties, like being atomless on the appropriate
subset of superstrategies, then each individual sequence will always have probability
mass 0, and observational grain of truth will fail. �

Observational grain of truth, however, may describe well situations in which play-
ers understand each others’ lines of thought. For instance, suppose that the support

33 While in our definitions we refer to conjectures held at the beginning of periods, both Definitions 7 and
8 can be given equivalently in terms of personal histories of general length k.
34 Hence, so do the sufficient conditions in Remark 4.
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of each player’s conjecture is the set of co-players’ “simple” strongly rationalizable
superstrategies, i.e., those implementable by finite automata (see, e.g., Chapter 9 of
Osborne & Rubinstein 1994 and relevant references therein). Since this set is count-
able, each superstrategy in the support of the conjecture is assigned strictly positive
probability. Thus, if the co-players indeed play simple strongly rationalizable super-
strategies, observational grain of truth holds.35

6 Strong rationalizability, learning, and equilibrium

In this section we provide the main results of the paper. We begin by formally defin-
ing SCE and SCE in strongly rationalizable conjectures. In Sect. 6.1 we discuss the
implications of learning in finite time. Section6.2 illustrates the concepts with some
examples. Section6.3 analyzes asymptotic learning.

Definition 9 State ((si , μi ))i∈I is a self-confirming equilibrium (SCE) if, for every
player i ∈ I :

(i) (confirmation of conjectures) μi
(
S−i (ζ i (s))|S−i

) = 1;
(ii) (rationality) si ∈ BRi (μ

i ).

State ((si , μi ))i∈I is an SCE in strongly rationalizable conjectures if it is an SCE
of the infinitely repeated game such that, for every i ∈ I , (si , μi ) ∈ �∞i .

The one-period counterparts are analogously defined. If condition (i) of Definition 9
is replaced by “(i’) there exists T ∈ N such that μi

(
S−i (ζ i (s))|S−i (hTi )

) = 1,” we
call the state an eventual SCE (in strongly rationalizable conjectures).

6.1 Implications of learning in finite time and RCSBR

Here we study the implications of rationality and strategic sophistication on play and
beliefs when conjectures converge in a finite number of periods, that is, under learning
in finite time.

Theorem 2 Assume that strong rationalizability is satisfied and there is a time T > 0
starting from which all players’ conjectures have converged. Then the state induces,
starting from T , a sequence of one-period self-confirming equilibria in strongly ratio-
nalizable (one-period) conjectures.

We use the first part of this subsection to prove the theorem through a series of
other results, that we find interesting on their own.

We first take a further step in connecting confirmation of conjectures (about the
repeated play) and one-period conjectures. Let st denote the on-path strategy profile
induced by superstrategies si , s−i in period t .

35 As a consequence of Proposition 3 below, one can show that impatience ensures the compatibility
between simplicity and strong rationalizability.
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Remark 5 For every player i ∈ I , for every ε ≥ 0 and T ∈ N such that, for all t ≥ T ,

μi (S−i (ζ i (si , s−i ))|S−i (hti )) ≥ 1− ε,

all one-period CPSs (μi
t )t≥T , induced by μi at every period t ≥ T starting at personal

history hti , satisfy

μi
t (S−i

(
ζi (s

t )
) |S−i ) ≥ 1− ε.

Remark 5 tells us that ε-confirmed beliefs about the infinite interaction induce one-
period ε-confirmed beliefs. This is also true for ε = 0, which is what we use in the
current theorem.36 However, we state a more general result because it will be useful
later. The next result follows from this observation and Theorem 1.

Corollary 2 Every SCE (in strongly rationalizable conjectures) of the infinite repetition
induces a sequence of one-period SCEs (in strongly rationalizable conjectures).

Hence, it is possible to translate results on supergame SCEs in results on sequences
of one-period SCEs. Definition 9 and Theorem 1 also yield the following fact.

Remark 6 If strong rationalizability is satisfied and conjectures converge in finite time,
then the state of the game must feature an eventual SCE in strongly rationalizable
conjectures.

Corollary 2 andRemark6 are allweneed to proveTheorem2. If players’ conjectures
converge from time T , and strong rationalizability is satisfied, then the true state of the
game must induce, from time T onward, a sequence of one-period SCEs in strongly
rationalizable conjectures.

In the rest of this subsection we show a kind of converse result: every sequence
of one-period SCEs in strongly rationalizable conjectures can be induced under the
assumptions stated in Theorem 2.

Theorem 3 Every sequence of one-period SCEs in strongly rationalizable conjectures
starting from some time T can be induced by a strongly rationalizable state that
features learning in finite time.

The key ingredient to obtain this result is some kind of converse of Theorem1:when
(one-period) strong rationalizability is satisfied, since players are impatient, we can
find a state consistent with their play in which strong rationalizability for the infinite
repetition is satisfied.

Proposition 3 If an infinite (i.e., terminal) history of the repeated game is made of
a sequence of one-period terminal histories consistent with one-period strong ratio-
nalizability, then there exists a profile of strongly rationalizable superstrategies that
induce it.

36 Note that the hypothesis of Remark 5 may hold vacuously.

123



P. Battigalli, D. Bordoli

Since a sequence of strongly rationalizable (one-period) strategies induces a
sequence of one-period terminal histories consistent with one-period strong ratio-
nalizability, Proposition 3 allows us to conclude that such sequence of strategies can
be induced on path by a profile of strongly rationalizable superstrategies. Then one
can find strongly rationalizable CPSs that justify these superstrategies as sequential
best replies and are consistent with the sequence of strongly rationalizable one-period
CPSs, which is turn are part of the sequence of one-period equilibria posited in The-
orem 3. Confirmation of conjectures for such one-period CPSs implies confirmation
for the CPSs on the infinite repetition.

A result similar to Theorem 3 also holdswhen players have positive discount factors
(see Appendix A.3).

6.2 Examples

We illustrate some of the concepts and results presented so far with examples.

Example 4 Let us go back to the example of Fig. 1. As explained above, the strongly
rationalizable strategies are: s1 =Out.u and s2 =r. Hence, the only outcome of SCE in
rationalizable conjectures is Out. Strategy pair (In.u, �) is part of an SCE (supported
by a non-rationalizable conjecture of player 2): player 1 holds a correct conjecture,
player 2 assigns probability 1 to In (observed), and at least 1/2 to In.d. This SCE
can occur in the limit if we remove common strong belief in rationality, and maintain
rationality and observational grain of truth.

Let us also present a variation of the game of Fig. 1. Suppose that, after In, the
players face a Matching-Pennies game with higher minmax payoff than the outside
option, with the addition of a safe option for player 2 that costs ε > 0: Clearly, s is

1 \ 2 � r s

u 2, 0 0, 2 0,−ε

d 0, 2 2, 0 0,−ε

not rational for player 2, and Out, which yields payoff 0, is optimal only if player 1
assigns probability 1 to 2 playing s. The strongly rationalizable strategies of player
1 are In.u and In.d, and the strongly rationalizable strategies of player 2 are � and r.
If payoffs are observable, there is no SCE where 1 goes In. In fact, Out is the only
outcome consistent with SCE, but it is not strongly rationalizable. Thus, there is no
SCE in strongly rationalizable conjectures. Ourmain result (Theorem4 below) implies
that, in this case, observational grain of truth is consistent with mere rationality, but
inconsistent with rationality and common strong belief in rationality. �

Example 5 Consider the discrete location game with two players and simultaneous
moves, introduced in Sect. 1.1. Each player can choose among the same 4 locations,
{1, 2, 3, 4}, and players only observe their payoff, negatively proportional to the dis-
tance between the chosen locations. The outcomes of SCE in rationalizable conjectures
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are (2, 3), (3, 2), and {(a, a)}4a=1. Any sequence of these outcomes can occur in the
limit under rationality and common strong belief in rationality and observational grain
of truth. �

The last example of this section illustrates the difference between convergence
of beliefs over superstrategies and convergence of marginal one-period beliefs over
strategies.

Example 6 (Battle of the sexes) Let the one-period game be the Battle of the Sexes
(BoS): Suppose there is perfect feedback, or—equivalently—that fi = ui for each

1 \ 2 B S

B 2, 1 0, 0
S 0, 0 1, 2

i ∈ {1, 2}. Thus, SCE and SCE in rationalizable conjectures coincide with (pure) Nash
equilibrium in the one-period game. There exist strongly rationalizable superstrategies
s1 and s2 inducing the alternated path ζ (s1, s2) = ((B, B), (S, S), (B, B), (S, S), . . .)

justified by CPSs that strongly believe in the superstrategy of the co-player. Such CPSs
are confirmed, which means that we have convergence of conjectures from period
T = 1. Thus, the above path is consistent with learning and strong rationalizability.
Next, consider a different situation. Suppose that player 1 believes that player 2 wants
to “cooperate” and play the alternated sequence of equilibria. In particular, 1 is sure
that 2 will start playing B. Upon observing S, she would be sure that 2 decided to
start with S, but would now play B. Upon observing S again, 1 would think that
2 was hoping that 1 would have come along, but now has understood 1’s intention
and would play B. Upon observing S for the fourth time, she would make the same
identical reasoning. If 1 goes on with this kind of thinking, then her CPS is such that,
at any time along a sequence of (B, S)’s, 1’s one-period conjecture assigns probability
1 to 2 playing B. One can check that this is consistent with the definition of CPS. As
a result, 1’s one-period conjectures repeat steadily and unchanged in every period.
However, they are not confirmed. Observe that, if 2 follows an analogous reasoning,
with S in place of B, then the actual play is exactly an infinite sequence of (B, S)’s,
motivated by conjectures over superstrategies that have not converged, although the
induced one-period conjectures have converged. �

6.3 Medium-run and long-run implications of asymptotic learning and RCSBR

We now offer some results on the medium and long-run implications of asymptotic
learning, or equivalently, observational grain of truth (Corollary 1) at a strongly ratio-
nalizable state. As shown in Sect. 5, under observational grain of truth conjectures (and
CPSs) become ε-confirmed in finite time, that is, in the medium run. By strong ratio-
nalizability, players carry out (on path) one-period sequential best replies to strongly
rationalizable one-period CPSs. We can show that, after a sufficiently long time, by
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finiteness of the one-period game, these strategies are also sequential best replies to
rationalizable “fully confirmed modifications” of these CPSs. Thus, the play is even-
tually consistent with one-period SCEs in strongly rationalizable conjectures.37

Definition 10 Fix a profile ((si , μi ))i∈I ∈ ∏
i∈I Si × �Ci (S−i ) that satisfies obser-

vational grain of truth. For each i ∈ I , let ĥi ≺ ζ i (s) be the first on-path personal
history such that μi (S−i

(
ζ i (s)

) |S−i (ĥi )) > 0; the fully confirmed modification of
μi is the CPS μ̂i such that

(i) for every hi ∈ Hi with ĥi � hi ≺ ζ i (s) and every (measurable) E−i ⊆ S−i ,

μ̂i (E−i |S−i (hi )) = μi
(
E−i ∩ S−i

(
ζ i (s)

) |S−i (hi )
)

μi
(
S−i

(
ζ i (s)

) |S−i (hi )
) ;

(ii) for every other hi ∈ Hi , μ̂i (·|S−i (hi )) = μi (·|S−i (hi )).
In words, μ̂i is an on-path rescaling of μi : when μi assigns strictly positive

probability to S−i
(
ζ i (si , s−i )

)
(the set of co-players’ superstrategies observation-

ally equivalent to the true ones, given i’s superstrategy si ), μ̂i is obtained conditioning
on such set of superstrategies, that thus is assigned probability 1. One can verify that
μ̂i is indeed a CPS, as it satisfies the chain rule of probability.38 The modifications
of the one-period CPSs μi

t , induced on path by μi , coincide with the one-period
CPSs μ̂i induced by μ̂i

t . When the on-path conjectures become “ε-confirmed,” i.e.,
μi

(
S−i

(
ζ i (s)

) |S−i
(
hti

)) ≥ 1 − ε, the induced fully confirmed modifications are
close to these on-path conjectures.

Definition 11 A one-period ε -self-confirming equilibrium in strongly rationaliz-
able conjectures is a profile ((si , γ i ))i∈I ∈ ∏

i∈I Si ×�Ci (S−i ) such that, for every
i ∈ I ,

(i) γ i (S−i (ζi (s))|S−i ) ≥ 1− ε;
(ii) (si , γ i ) ∈ �∞

i .

With this, we can state our main result.

Theorem 4 If observational grain of truth and strong rationalizability hold for every
player at a given state, then for every ε > 0 there exists a time T starting from which
the state induces a sequence of one-period ε -self-confirming equilibria in strongly
rationalizable conjectures. Furthermore, there exists some T̂ starting from which, in
each period, the induced profile of strategies is part of a one-period self-confirming
equilibrium in strongly rationalizable conjectures, in which each player i’s CPS is the
fully confirmed modification of i’s one-period CPS μi

t .

The intuition is quite simple: after a sufficiently long time, players’ one-period
conjectures are almost confirmed. Since the one-period game is finite and strategies are

37 Appendix A.3 contains a result of similar flavor for players with possibly positive discount factor.
38 See Appendix for details.

123



Sophisticated reasoning, learning, and equilibrium...

sequential best replies to one-period almost confirmed CPSs, they are also sequential
best replies to their fully-confirmed modifications. Since the on-path one-period CPSs
are strongly rationalizable, it turns out that also their fully confirmed modifications
are strongly rationalizable. The result follows.

We can also find a kind of converse to Theorem 4 using a similar construction as
for Theorem 3.

Remark 7 Consider any sequence of strongly rationalizable (one-period) strategy pro-
files such that, for every ε > 0, there exists T starting from which these profiles
are one-period ε-self-confirming equilibria. Then such sequence can be induced by a
strongly rationalizable state that features observational grain of truth.

7 Literature review and discussion

In this paper we analyze the medium and long-run behavior of strategically sophisti-
cated rational players in infinitely repeated games with imperfect feedback. We model
sophisticated strategic thinking by assuming common strong belief in rationality and
prove that, under an “observational grain of truth” assumption, players’ behavior and
conjectures, i.e., first-order beliefs, converge to an SCE with strongly rationalizable
conjectures of the repeated game. Under the maintained assumption that players are
impatient, in the long run they play SCEs with strongly rationalizable conjectures of
the one-period game, but the one-period equilibrium may change over time. We also
show that our assumptions are tight. We are now in a position to discuss the related lit-
erature in detail. While doing this, we consider the limitations and possible extensions
of our work.

Drawing onBattigalli (1987), Battigalli andGuaitoli (1988) use the notion of SCE39

in strongly rationalizable conjectures to analyze economic policy in a macroeconomic
game with incomplete information. This equilibrium concept is adapted and used by
Schipper (2021) to analyze discovery and equilibrium in games with unawareness
(lack of conception of some features of the game). Here we provide both an epistemic
and a learning foundation to the equilibrium concept. Although we assume complete
information, we can extend our results to environments with incomplete information
about payoff functions, as in the epistemic analysis of Battigalli and Siniscalchi (2002)
and Battigalli and Tebaldi (2019). We conjecture that our approach can be extended
to analyze processes of learning and discovery as agents repeatedly play a game with
unawareness, but this is well beyond the scope of this paper.40

Fudenberg and Levine (1993) coined the term “self-confirming equilibrium.” They
put forward a notion of randomized SCE motivated by a population-game scenario
whereby agents are drawn from large populations and randomly matched in every
period to play a sequential game, so that randomized strategies of the one-period game
are interpreted as stable statistical distributions of pure strategies within populations.
In this case, conjecture-confirmation means that each agent assigns probability 1 to

39 They called it “conjectural equilibrium.” On the history and terminology concerning SCE and related
concepts see the Discussion section of Battigalli et al. (2015).
40 See the discussion in Schipper (2021), pages 3–4.
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the set of co-players’ randomized strategies inducing the actual frequency distribution
of observations given her (pure) strategy. This implies that agents playing in the same
role may hold different beliefs about co-players’ randomized strategies—subject to
confirmation. Hence, the “mixed strategy” representing their aggregate behavior need
not be a best reply to a confirmed conjecture. The large-population scenario justifies
one-period expected payoff maximization despite a positive discount factor, as agents
understand that they cannot affect the behavior of future co-players, who are almost
certainly different from their current co-players, and—in the long run—they also have
no incentive to experiment. We do not consider a population-game scenario for two
reasons. First, many recurrent interactions feature a fixed set of players. Second, the
analysis would be technically more difficult. We relate to one-period game equilibria
by assuming impatient players. In Appendix A.3, with (partially) patient players we
obtain convergence to repeated-game SCE (cf. Kalai and Lehrer 1993, 1995, who
called the concept “subjective equilibrium”). We conjecture that one could cover the
case of large but finite populations allowing for chance moves and analyzing the
population game as a grand game with (finitely) many agents partitioned according
to their role (cf. Fudenberg and Kamada 2018). Assuming that agents can only obtain
information about the behavior of those they are matched with, this should yield the
existence of approximate SCEs (in rationalizable conjectures) and allow to reconcile
an approximate form of observational grain of truth with rationality (and common
strong belief in rationality).

Another differencewith Fudenberg andLevine (1993) is that, unlike us, they assume
perfect feedback about chosen actions (terminal history/node) at the end of the one-
period game.When the latter is a sequential game, co-players’ one-period strategies are
nonetheless imperfectly observable, which is what makes their SCE concept different
from Nash equilibrium. Note, however, that under perfect feedback pure SCEs in two-
person games are realization-equivalent to Nash equilibria.41 Fudenberg and Kamada
(2015, 2018) remove the perfect feedback assumption, positing a terminal information
partition for each player.42 Finally, like Fudenberg and Levine (1993) (and Rubinstein
andWolinsky 1994) we allow players to believe in correlation of co-players’ behavior,
whereas Kalai and Lehrer (1993, 1995) restrict their attention to beliefs featuring
independence.

We explained in the Introduction the main conceptual difference between SCE
with rationalizable conjectures and the rationalizable SCE concept of Rubinstein and
Wolinsky (1994): unlike the former, the latter postulates common belief in the con-
firmation of conjectures. This is argued informally in their paper, and it is formally
proved in the epistemic analysis of Esponda (2013),who focuses on gameswith incom-
plete information. Another important difference between our work and these papers
on rationalizable SCE is that they consider simultaneous-move games. While the SCE
concept, which does not presume strategic sophistication, can bemeaningfully applied

41 The latter may be partially randomized off path. Cf. Battigalli (1987) and Fudenberg and Levine (1993).
42 For this reason, they call the equilibrium “partition confirmed.” Instead, we keep the same terminology
independently of the information/feedback structure.
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to the strategic form of a sequential game,43 notions of SCE with strategically sophis-
ticated players must be adapted to take sequential moves into account, because their
application to the strategic form of a sequential game with feedback would allow for
non-credible threats.44 Dekel et al. (1999) analyze a version of rationalizable SCE for
sequential games with perfect feedback. Asmentioned above, Fudenberg and Kamada
(2015, 2018) allow for imperfect feedback. These papers on rationalizable SCE in
sequential games feature a weak notion of strategic sophistication, as they assume that
there is common certainty of rationality and conjecture confirmation at the beginning
of the game, but not if players are surprised by moves that are compatible with such
assumptions. We instead assume common strong belief in rationality. Yet, we do not
assume common strong belief in confirmation and we rule out randomization; thus,
as anticipated in the Introduction, the two concepts are not nested.45

The learning aspect of our paper is related to Kalai and Lehrer (1993) who analyze
repeated games with perfect monitoring where each player knows her payoff func-
tion, and Kalai and Lehrer (1995) on repeated games with imperfect monitoring and
imperfect knowledge of one’s own payoff function. As in their work, we obtain con-
vergence of conjectures about superstrategies from a kind of “grain of truth” condition.
As in Kalai and Lehrer (1995), our condition concerns the personal observations made
by each player, rather than the path of play. Furthermore, since we model beliefs as
conditional probability systems, we can state this condition as something that holds
eventually, that is, we allow for finitely many “surprises.” The most important dif-
ference between our work and these papers is that they do not assume sophisticated
strategic thinking, which is the reason why only knowledge of one’s own payoff func-
tion matters, rather than interactive knowledge about the game.

Finally, we do not model the information structure of the one-period game and
of the repeated game by means of information partitions. We represent the flow of
information accruing to players between stages and periods by means of feedback
functions and thereby comply with the following “separation principle” of Battigalli
and Generoso (2024): the description of the rules of the game is independent of play-
ers’ personal features, such as their mnemonic abilities.46 Besides this conceptual
advantage, our representation allows to seamlessly blend information flows within
each one-period game with repeated-game monitoring. To simplify the exposition, we
assume a multistage structure (cf. Myerson 1986), but our analysis and results can be
extended to more general sequential games represented as in Battigalli and Generoso
(2024).

43 Provided that also feedback, besides the payoff functions, is accurately represented in strategic form.
See the discussion in Battigalli et al. (2019), who point out that this claim is not true when players are
ambiguity averse.
44 Rubinstein and Wolinsky (1994) write that their analysis concerns “normal-form games.” They do not
clarify whether they mean that the analysis can be meaningfully applied to the normal/strategic form of the
given game with feedback. But it is obvious that this is not the case.
45 Except, of course, within the class of simultaneous-move games, where rationalizable SCE refines SCE
in rationalizable conjectures. See Example 5.
46 As explained in Sect. 3, we informally assume that players have perfect memory. This assumption about
players’ mnemonic abilities is expressed formally in Battigalli and Generoso (2024).
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A Appendix

A.1 Additional formalism and remarks on game structure

We provide the formalism for all game objects defined implicitly, or somewhat infor-
mally, in the main text, and we provide related remarks to be used in the proofs of our
results.47 Let us define the different sets of histories for the one-period game:

• H̄ is the set of histories, that is, the feasible sequences of action profiles including
the empty sequence a[0] = ∅ (root).

H̄ = {∅} ∪
{

(ak)�k=1 : � ≤ L,∀k ∈ [�] , ak ∈
∏

i∈I
Ak

i ( f
k−1
i (a[k−1]))

}

;

• Z = {
z ∈ H̄ : �(z) = L

}
is the set of terminal histories;

• H = H̄ \ Z is the set of non-terminal histories;
• the set of personal histories is

H̄i ={(ai ,mi )
[k] ∈ (Ai × Mi )

[k] : k ≤ L, ∃a[k]−i ∈ H̄a[k]i
, f [k]i (a[k]i , a[k]−i ) = m[k]i }

∪ {
(
f 0i (∅)

)
},

and it is partitioned into Zi and Hi (terminal and non-terminal personal histories).48

Let h̄i := P−1i and h̄i := P−1i denote the maps that associate each objective history
of the one-period and repeated gameswith the correspondingpersonal history. The path
function ζ : S → Z is defined as follows: for every s ∈ S = ×i∈I Si , ζ(s) = (ak)Lk=1 ∈
Z , where a1 = (si (m0

i ))i∈I and, for every � ≥ 2, a� = ((si (h̄i (a[�−1])))i∈I ). Recall
that we use � to represent the “prefix of” relation for any two sequences. Define the
sets of strategies and strategy profiles consistent with objective histories h ∈ H̄ as
follows:

• S(h) = {s ∈ S : h � ζ(s)};
• Si (h) = {si ∈ Si : ∃s−i ∈ S−i , h � ζ(s−i , si )} = projSi S(h);
• S−i (h) = {s−i ∈ S−i : ∃si ∈ Si , h � ζ(s−i , si )} = projS−i S(h).

Recall that, similarly, S(hi ) denotes the set of strategy profiles inducing personal
history hi .

Remark 8 For all hi ∈ Hi and i ∈ I , S(hi ) = Si (hi )× S−i (hi ). For all gi , hi ∈ H̄i ,

gi � hi ⇒ S(hi ) ⊆ S(gi ) ⇔ Si (hi ) ⊆ Si (gi ) ∧ S−i (hi ) ⊆ S−i (gi ).

47 The proofs of these quite intuitive remarks are available upon request.
48 H̄

a[k]i
is the section of H̄ at a[k]i .
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By inspection of the definitions above, observe that, for every hi ∈ H̄i , S(hi ) =
∪h∈Pi (hi )S(h). Thus, by the above remark, S−i (hi ) = ∪h∈Pi (hi )S−i (h).

Define the objects for the supergame in an analogous way as just done for the
one-period game. Then the following remarks also hold.

Remark 9 Z = ZN, Zi = ZN

i , H = ∪n≥0
(
Z [n] × H

)
and Hi = ∪n≥0

(
Z [n]i × Hi

)
.

Remark 10 For every hi ∈ Hi , S(hi ) = Si (hi )×S−i (hi ). Moreover, for every gi ,hi ∈
Hi ,

gi � hi ⇒ S(hi ) ⊆ S(gi ) ⇔ Si (hi ) ⊆ Si (gi ) ∧ S−i (hi ) ⊆ S−i (gi ).

The last two equalities of Remark 9 follow from the observation that a finite history
of the repeated game is the concatenation between a (possibly empty) finite sequence
of terminal histories of the one-period game with a (possibly empty) non-terminal
history of the one-period game, and similarly for personal histories.

A.2 Proofs

Recall that h̄i := P−1i and h̄i := P−1i denote the maps that associate each objective
history of the one-period and repeated games with the corresponding personal history.

Let us also notice that, for all i ∈ I andhi ∈ Hi ,Vi,hi : Si×�Ci (S−i ) → R is jointly
continuous. Therefore, for all i ∈ I and hi ∈ Hi , also Vi,hi : Si ×�Ci (S−i ) → R is
jointly continuous.

A.2.1 Proofs for Sect. 4

Proof of Remark 1 Let the candidate CPS of the one-period game be

μi
t (·|S−i (projHi

hi )) := marg∏
hi∈{h̄i (z[t−1])}×Hi

A�(hi )+1−i (hi )
μi (·|S−i (hi ))

for every hi ∈
{
h̄i (z[t−1])

} × Hi , where
{
h̄i (z[t−1])

} × Hi ∼= Hi . We want to show
that the map hi �→ μi

t (·|S−i (hi )) satisfies the chain rule. Note that

μi
t (S−i (hi )|S−i (hi )) = μi

(
S−i

(
(h̄i (z[t−1]), hi )

)
|S−i

(
(h̄i (z[t−1]), hi )

))
= 1

for every hi ∈ Hi . For any E−i ⊆ S−i , let

SE−i
−i

(
h̄i (z[t−1])

)
=

{
s−i ∈ S−i

(
h̄i (z[t−1])

)
: s−i |{h̄i (z[t−1])}×Hi

∈ E−i
}

.

denote the set of co-players’ superstrategy profiles inducing one-period strategy pro-
files in E−i in the t-th period after any history that i cannot distinguish from z[t−1].
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With this, for all E−i and gi , hi ∈ Hi such that hi � gi ,

μi
t (E−i ∩ S−i (gi )|S−i (hi ))
= μi

(
SE−i
−i

(
h̄i (z[t−1])

)
∩ S−i

(
(h̄i (z[t−1]), gi )

)
|S−i

(
(h̄i (z[t−1]), hi )

))

= μi
(
SE−i
−i

(
h̄i (z[t−1])

)
|S−i

(
h̄i (z[t−1]), gi )

))

·μi
(
S−i

(
(h̄i (z[t−1]), gi )

)
|S−i

(
(h̄i (z[t−1]), hi )

))
=

= μi
t (E−i |S−i (gi )) μi

t (S−i (gi )|S−i (hi )) .

��
Proof of Proposition 1 Fix any time t and objective history z[t−1]. Take any personal
history gi =

(
h̄i (z[t−1]), gi

) ∈ {
h̄i (z[t−1])

}× Hi , i.e., any personal history obtained
by concatenating the (t − 1)-period personal history induced by z[t−1] with one-
period personal history gi . We want to show that a superstrategy is one-step optimal at
personal history gi if and only if the strategy it induces in period t is one-step optimal
at (one-period) personal history gi . We look at the restriction of superstrategies to
particular subsets of Hi , using the standard notation for the restriction of functions:
si |Fi , for any Fi ⊆ Hi . We write si |hi to denote the superstrategy allowing hi and
playing like si at each personal history that does not strictly precede hi . For fixed si ,
s−i , and z[t−1], let si,t (si ) denote the (one-period) strategy played by si in period t
following history z[t−1], and similarly define s−i,t (s−i ) the profile of strategies played
by s−i . Observe that, for every si ∈ Si , since players are impatient, we have

Vμi

i,gi
(si ) =

∫

S−i (gi )
ui (zt (ζ (si |gi , s−i ))) μi (ds−i |S−i (gi ))

=
∫

S−i (gi )
ui

(
ζ

(
si,t (si |gi ), s−i,t (s−i )

))
μi (ds−i |S−i (gi )),

where, again, zt (z) denotes the one-period terminal history determined by z in period
t , that is, the t-th coordinate of the sequence z ∈ Z = ZN. Moreover, notice that

s−i,t (si |gi ) = s−i,t (si )|gi .
Let

Ss−i−i (gi ) =
{
s−i ∈ S−i (gi ) : s−i,t (s−i ) = s−i

}
.

Since players are impatient, their continuation value at the beginning of period t is
fully determined by the expected payoff from the subsequent one-period game. Recall
from the proof of Remark 1 the definition of the induced one-period CPS μi

t . Then
one can see that

Vμi

i,gi
(si ) =

∑

s−i∈S−i (gi )
ui

(
ζ

(
si,t (si )|gi , s−i

))
μi
t (s−i |gi ) = V

μi
t (·|gi )

i,gi

(
si,t (si )|gi

)
.
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Since all z[t−1] ∈ Z [t−1] and gi ∈ Hi yield the repeated-game personal history
gi = (h̄i (z[t−1]), gi ), and for every gi ∈ Hi there are gi ∈ Hi and z[t−1] ∈ Z [t−1] such
that gi = (h̄i (z[t−1]), gi ), we conclude that, for all gi ∈ Hi and ai ∈ A�(gi )+1

i (gi ) =
A�(gi )+1

i (gi ),

V
μi
t (·|gi )

i,gi
(s̄ti ) = Vμi

i,gi
(s̄i ) ≥ Vμi

i,gi
(s̄i |gi ai ) = V

μi
t (·|gi )

i,gi
(s̄ti |gi ai ),

and that, for all gi ∈ Hi and ai ∈ A�(gi )+1
i (gi ) = A�(gi )+1

i (gi ),

Vμi

i,gi
(s̄i ) = V

μi
t (·|gi )

i,gi
(s̄ti ) ≥ V

μi
t (·|gi )

i,gi
(s̄ti |gi ai ) = Vμi

i,gi
(s̄i |gi ai ).

��
Proof of Theorem 1 Fix ((si , μi ))i∈I ∈ ∏

i∈I �∞i . We want to show that, for all t ∈ N,
in the one-period game starting after z[t−1] = (z1 (ζ (s)) , ..., zt−1 (ζ (s))), the induced
strategy si,t (si ) and the induced one-period CPS μi

t are strongly rationalizable, i.e.,
((si,t (si ), μi

t )) ∈ �∞
i .

We are going to prove by induction the following claim.

Claim 1 For all k ∈ N, if ((si , μi ))i∈I ∈ ∏
i∈I �k

i then, for all t ∈ N, in the one-period
game starting at z[t−1],

S−i (hi ) ∩ projS−i �
m
−i 
= ∅ ⇒ μi

t (projS−i �
m
−i |S−i (hi )) = 1,

for all m < k and hi ∈ Hi .

The claim implies that, for every k, μi
t ∈ proj�Ci (S−i )�

k
i (obvious for k = 1, where

�0−i :=
∏

j 
=i S j × �C j (S− j )). Since si,t (si ) ∈ BROi (μ
i
t ) (by Proposition 1), we

have ((si,t (si ), μi
t )) ∈ �k

i . To prove the claim, we prove that, for all k ∈ N, i ∈ I ,
t ∈ N, hi ∈ Hi , and s′−i ∈ S−i (hi )∩projS−i �k−1

−i (provided this last intersection is not

empty), there exists s′−i ∈ projS−i �
k−1
−i ∩ S−i (h̄i (z[t−1])) such that s−i,t (s′−i ) = s′−i .

Proof Basis step: We start with k = 2. By Proposition 1, for all i ∈ I and t ∈
N, if (si , μi ) ∈ �1

i then si,t (si ) ∈ BROi (μ
i
t ), which implies that si,t (si ) ∈ �1

i .
Now suppose that ((si , μi ))i∈I ∈ ∏

i∈I �2
i . Take all hi ∈ Hi such that S−i (hi ) ∩

projS−i �
1−i 
= ∅. We want to show that, for any profile of strategies s′−i = (s′j ) j 
=i ∈

S−i (hi ) ∩ projS−i �
1−i , there exists a profile of superstrategies s′−i ∈ projS−i �

1−i such
that s−i,t (s′−i ) = s′−i . To see this, consider the case t = 1. For each j 
= i , there is some

γ j ∈ �C j (S− j ) such that s′j ∈ BRO j (γ
j ). Then, we can find some νi ∈ �Ci (S−i )

such that, for all hi ∈ Hi and E−i ⊆ S−i ,

νi (SE−i
−i |S−i (hi )) = γ i (E−i |S−i (hi )),
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where SE−i
−i := {s−i ∈ S−i : s−i,t (s−i ) ∈ E−i }. Indeed, consider ν j ∈ �C j (S− j )

such that, for all h j ∈ Hj and s− j ∈ suppγ j (·|S− j (h j ))\ ∪g j≺h j suppμ
j (·|g j ),49

ν j (sN− j |S− j (h j )) = γ j (s− j |S− j (h j )),

where sN− j is the superstrategy playing like s− j in every period. Indeed, the above

condition is consistent with ν j being a CPS. By Proposition 1, there exists s′j ∈
BR j (ν

j ) such that s1j (s
′
j ) = s j , and hence s′−i ∈ projS−i �

1−i ∩ S−i (hi ).
Suppose now that t ≥ 2. There exists s′−i ∈ S−i (h̄i (z[t−1])) such that s′−i ∈

projS−i �
1−i . For every hi ∈ Hi for which it is possible, take some s′−i ∈ S−i (hi ) ∩

projS−i �
1−i 
= ∅. We want to show that there exists s′−i ∈ S−i (hi ) ∩ projS−i �

1−i ,
where h j = (h̄ j (z[t−1]), h j ). For every j 
= i , take any γ j ∈ �C j (S− j ) such that
s′j ∈ BRO j (γ

j ). Then, let ν j ∈ �C j (S− j ) be such that:

(i) s′j ∈ BR j (ν
j );

(ii) for all h j ∈ Hj and s̄− j ∈ suppγ j (·|S− j (h j ))\ ∪g j≺h j suppγ
j (·|g j ),

ν j
(

S
s̄N− j
− j

(
(h̄ j (z

[t−1]), h j )
)
|S− j

(
(h̄ j (z

[t−1]), h j )
))

= γ j (s̄− j |S− j (h j )),

where S
s̄N− j
− j

(
(h̄ j (z[t−1]), h j )

)
is the set of j’s co-players’ superstrategies that allow

(h̄ j (z[t−1]), h j ) and play like s̄− j in the rest of the period and in every subsequent
period on and off path;

(iii) s′−i ∈ S−i (h̄i (z[t−1])).
Conditions (i) and (iii) are compatible. Condition (ii), as before, does not contradict

the fact that ν j is a CPS, nor can it prevent the superstrategy from satisfying one-step
optimality in the previous periods, as that only depends on the past induced one-period
CPSs, not modified by this requirement. Indeed, the second condition only affects
conjectures about continuation strategies from h̄ j (z[t−1]) onward. Thus, it allows
s j,t (s′j ) = s′j . Consequently, there exists s′−i ∈ S−i ((h̄i (z[t−1]), hi )) ∩ projS−i �

1−i .
Hence, for all i ∈ I , t ∈ N, and hi ∈ Hi

S−i (hi ) ∩ projS−i �
1−i 
= ∅ ⇒ S−i ((h̄i (z[t−1]), hi )) ∩ projS−i �

1−i 
= ∅ ⇒
⇒ μi (projS−i �

1−i |S−i ((h̄i (z[t−1]), hi ))) = 1⇒ μi
t (projS−i �

1−i |S−i (hi )) = 1

where the last implication follows from the fact that, for all j ∈ I and t ∈ N,

s′j ∈ projS j
�1

j ⇒ s j,t (s′j ) ∈ projS j �
1
j .

Hence, μi
t ∈ �2

i . Then again,

si ∈ BRi (μ
i ) ⇒ si,t (si ) ∈ BROi (μ

i
t )

49 We use supp to indicate the support of a measure.
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for every i ∈ I , which implies that ((si,t (si ), μi
t ))i∈I ∈ �2.

Inductive step: Suppose that, for some k ∈ N, for all m ≤ k and t ∈ N, if
((si , μi ))i∈I ∈ ∏

i∈I �m
i , then ((si,t (si ), μi

t ))i∈I ∈
∏

i∈I �m . Suppose also that there
exists s′−i ∈ projS−i�

�−i ∩ S−i (h̄i (z[t−1])) such that s−i,t (s′−i ) = s′−i , for all � < k,

hi ∈ Hi such that S−i (hi ) ∩ projS−i �
�−i 
= ∅, and s′−i ∈ S−i (hi ) ∩ projS−i �

�−i .
First, we want to show that, given any suitable hi , for every s′−i ∈ S−i (hi ) ∩

projS−i �
k
−i there exists s′−i ∈ S−i (h̄i (z[t−1]))∩projS−i �k

−i such that s−i,t (s′−i ) = s′−i .
Condition S−i (h̄i (z[t−1])) ∩ projS−i�

k
−i 
= ∅ holds because the LHS contains s−i .

Conditions s′−i ∈ S−i (h̄i (z[t−1])) and s−i,t (s′−i ) = s−i are mutually consistent, and
consistent with s′−i ∈ projS−i �

k
−i . Indeed, there exist s′i such that s′ = (s′i , s′−i ) ∈

projS
∏

i∈I �k
i ∩ S(h̄i (z[t−1])), which implies that s−i,t (s′−i ) ∈ projS−i �

k
−i . In partic-

ular, we want to build s′−i such that s−i,t (s′−i ) = s′−i .
Take any j 
= i . Let γ j ∈ �C j (S− j ) be a one-period CPS justifying s′j = projS j s

′−i ,
that is,γ j stronglybelieves projS− j

�k−1
− j and s′j ∈ BRO j (γ

j ).Hence, by the inductive

hypothesis, for all h j such that S− j (h j )∩projS− j
�k−1
− j , and s′− j ∈ suppγ j (·|S− j (h j )),

there exists s′′− j ∈ projS− j
�k−1
− j ∩ S− j (h̄ j (z[t−1])) such that st− j (s

′′− j ) = s′− j .

By defining ν j ∈ �C j (S− j ) as a CPS that strongly believes s′′− j , and such that

ν
j
t = γ j , it immediately follows that there exists s′j ∈ BR j (ν

j ) such that s′j ∈
projS j

�k
j ∩ S j (h̄ j (z[t−1])) and s j,t (s′j ) = s′j . Letting s′j ∈ S j (h̄ j (z[t−1])) is possible

because h̄ j (z[t−1]) is consistent with strong belief of level k in rationality, and thus
any superstrategy that is a sequential best reply to a CPS assigning probability one to
h̄ j (z[t−1]) can allow it without loss of generality, and independently of the subsequent
choices (since the player is impatient and the personal history is terminal for period
t − 1).

This holds for every j 
= i . Observe that for every h ∈ H it holds that

S−i (h̄i (h)) ⊇ S−i (h) =
∏

j 
=i
S j (h̄ j (h)).

Hence, we have shown the existence of s′−i ∈ S−i (h̄i (z[t−1]))∩ projS−i �
k
−i such that

s−i,t (s′−i ) = s′−i , and thus S−i
(
(h̄i (z[t−1]), hi )

)∩ projS−i �
k
−i 
= ∅. Assume now that

((si , μi ))i∈I ∈ �k+1. Then, for all i ∈ I , t ∈ N, m ≤ k, and hi ∈ Hi ,

S−i (hi ) ∩ projSi �
m
−i 
= ∅ ⇒ S−i ((h̄i (z[t−1]), hi )) ∩ projS−i �

m
−i 
= ∅ ⇒

⇒ μi (projS−i �
m
−i |S−i (h̄i (z[t−1]), hi )) = 1⇒ μi

t (projS−i �
m
−i |S−i (hi )) = 1,

where the last implication follows from the inductive hypothesis. Hence, μi
t ∈

proj�Ci (S−i )�
k+1
i . Then again,

si ∈ BRi (μ
i ) ⇒ si,t (si ) ∈ BROi (μ

i
t )
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for every i ∈ I , that is, ((si,t (si ), μi
t ))i∈I ∈ �k+1.

If ((si , μi ))i∈I ∈ �∞, then, for all t ∈ N, i ∈ I , hi ∈ Hi , and k ∈ N,

S−i (hi ) ∩ projS−i �
∞−i 
= ∅ ⇒ μi

t (projS−i �
k
−i |S−i (hi ))

= 1⇒ μi
t (projS−i �

∞−i |S−i (hi )) = 1.

Hence, ((si,t (si ), μi
t ))i∈I ∈

∏
i∈I �∞. ��

A.2.2 Proofs for Sect. 5

Proof of Remark 3 Fix k ≥ t ≥ T , then μi (·|S−i (hti )) = μi (·|S−i (hki )) if and only if

μi (S−i (hki )|S−i (hti )) = 1.

This requires that, for every t ≥ T ,

μi (S−i (hti )|S−i (hTi )) = 1,

which happens if and only if

μi (∩t≥TS−i (hti )|S−i (hTi )) = 1,

i.e.,

μi (S−i (ζ i (si , s−i ))|S−i (hTi )) = 1.

If this holds for T , it must also hold for every t ≥ T . In words, if the conjectures of
player i over co-players superstrategies has converged starting from T , then at every
t ≥ T player i believes with certainty in co-players’ superstrategy profiles that are
observationally equivalent, given i’s own superstrategy, to the true ones. Of course,
also the reverse implications hold. ��
Proof of Proposition 2 Observe that the sequence (S−i (hti ))t∈N is decreasing, and such
that S−i (hti ) ↓ S−i (ζ i (s)) = ∩t∈NS−i (hti ). Hence, by continuity of measures, for
every k ∈ N,

lim
t→∞μi (S−i (hti )|S−i (hki )) = μi (S−i (h̄i (ζ (si , s−i )))|S−i (hki )).

If there exists some T ∈ N such that μi (S−i (ζ i (si , s−i ))|S−i (hTi )) > 0, then, for all
� ≥ t ≥ T ,

μi (S−i (ζ i (si , s−i ))|S−i (hti )) > 0 and μi (S−i (h�
i )|S−i (hti )) > 0,
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by the chain rule. Hence, for all � ≥ t ≥ T , again applying the chain rule,

μi (S−i (ζ i (si , s−i ))|S−i (h�
i )) =

μi (S−i (ζ i (si , s−i ))|S−i (hti ))
μi (S−i (h�

i )|S−i (hti ))
.

Taking the limit as � →∞, we obtain

lim
�→∞μi (S−i (ζ i (si , s−i ))|S−i (h�

i )) =
μi (S−i (ζ i (si , s−i ))|S−i (hti ))
μi (S−i (ζ i (si , s−i ))|S−i (hti ))

= 1,

proving the second claim. The first claim follows immediately from the definition of
limit. ��

A.2.3 Proofs for Sect. 6

Proof of Remark 5 Recall that st denotes the strategy induced in period t by superstrat-
egy s. For every t ∈ N,

μi
t (S−i

(
h̄i (ζ(st ))

) |S−i ) = μi (S−i
((
hti ,Nhi (ζ(st ))

)) |S−i (hti )) ≥
≥ μi (S−i

(
ζ i (s)

) |S−i (hti )),

where the inequality is by the fact that
(
hti , h̄i (ζ(st ))

) � ζ i (s). Hence, for all t ∈ N

and ε ≥ 0,

μi (S−i
(
ζ i (s)

) |S−i (hti )) ≥ 1− ε ⇒ μi
t (S−i

(
ζi (s

t )
) |S−i ) ≥ 1− ε. ��

Proof of Remark 6 We have seen in Sect. 5 that convergence of conjectures in finite
time is equivalent to the existence of a time T starting from which

∀i ∈ I , μi (S−i (ζ i (s))|S−i (hTi )) = 1,

and thus condition (i’) of Definition 9 is satisfied. Then strong rationalizability implies
condition (ii) by definition. ��
Proof of Proposition 3 We have shown in the proof of Theorem 1 that, for all k ∈ N,
t ∈ N, and i ∈ I , for all z[t] ∈ Z [t] such that S(z[t]) ∩ projS�

k 
= ∅, and for all
s′i ∈ projSi �

k , there exists s′i ∈ projSi �
k
i ∩ Si (z[t]) such that si,t (s′i ) = s′i .

Since S(h) = ∏
i∈I Si (h) for every h ∈ H̄ , it follows that, for all t ∈ N, h ∈

Z [t] such that S(h) ∩ projS�
∞ 
= ∅, z ∈ Z with projS�

∞ ∩ S(z) 
= ∅, and k ∈
N, projS�

k ∩ S((h, z)) 
= ∅. Since projS�
k and S((h, z)) are closed, projS�

k ∩
S((h, z)) is closed, and thus compact. By finite intersection property of compact sets,
and because for every m < k we know that projS�

m ∩ projS�
k = projS�

k , it holds
that ∩k∈N

(
S((h, z)) ∩ projS�

k
) = S((h, z)) ∩ projS�

∞ 
= ∅. In other words, there
exists s′ ∈ S(h) ∩ projS�

∞ such that ζ(st (s′)) = z.
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Recall that, for a period t and some history h of length greater than L · t , zt (h)

denotes the on-path history of the one-period game in period t . By the above, for every
z ∈ Z consistent with one-period strong rationalizability, there exists s′ ∈ projS�

∞
such that z1(ζ (s′)) = z. Now proceed by induction: as inductive hypothesis, suppose
that, for a fixed t ∈ N, for every h ∈ Z [t] with zk(h) consistent with one-period
strong rationalizability for every k ≤ t , there exists s′ ∈ projS�

∞ such that s′ ∈ S(h).
Then, for every z ∈ Z consistent with one-period strong rationalizability there exists
s′′ ∈ S((h, z)) ∩ projS�

∞.
Hence, if z ∈ Z∞ is such that, for every t ∈ N, zt (z) is consistent with one-

period strong rationalizability, then, for every t , S((z1(z), . . . , zt (z))) ∩ projS�
∞ 
=

∅. As above, S(z[t](z)) ∩ projS�
∞ is compact. Moreover, S((z1(z), . . . , zt (z))) ∩

S(z[�](z)) = S((z1(z), . . . , zt (z))) whenever � ≤ t . Thus, by the finite intersec-
tion property of compact sets, ∩t∈N

(
S((z1(z), . . . , zt (z))) ∩ projS�

∞) = S(z) ∩
projS�

∞ 
= ∅. ��
Proof of Theorem 3 Let z ∈ Z∞ be the terminal history induced by the sequence of
one-period SCEs in strongly rationalizable conjectures

(
((sti , γ

i
t ))i∈I

)
t∈N. For every

i ∈ I , take νi ∈ �Ci (S−i ) so that, for all t ∈ N, hi ∈ Hi , and s−i ∈ S−i ,

νi
(
Ss−i−i (h̄i ((z1(z), . . . , zt−1(z)))) ∩ projS−i �

∞−i |S−i ((h̄i ((z1(z), . . . , zt−1(z))), hi ))
)

= γ i
t (s−i |S−i (hi )),

where once again

Ss−i−i (h̄i ((z1(z), . . . , zt−1(z))) = {s−i ∈ S−i (h̄i ((z1(z), . . . , zt−1(z))) : s−i,t (s) = s−i }.

Since γ i
t strongly believes each event in the sequence (projS−i �

k)∞k=1, then, by def-

inition and by Proposition 3, there exists νi
(·|S−i ((h̄i ((z1(z), . . . , zt−1(z))), hi ))

)

that strongly believes (projS−i �
k)∞k=1. Observe that, by definition, νi assigns ini-

tial probability 1 to all sets in the sequence (S−i (h̄i (z1(z), . . . , zt−1(z))))t∈N, and
thus is confirmed on path. Furthermore, let νi strongly believe each event in
(projS−i �

k
−i )∞k=0 (which consists in imposing constraints on νi at personal histories

outside ∪t∈N
({h̄i (z1(z), . . . , zt−1(z))} × Hi

)
). Then, there exists s′i ∈ Si such that

s′i ∈ BRi (ν
i ), and si,t (s′i ) = sti . Therefore, ((s

′
i , ν

i ))i∈I ∈ �∞ is such that ζ (s′) = z,
and νi has converged for every player. ��
Proof of Theorem 4:

Claim 2 Fix a state such that observational grain of truth and strong rationalizability
are satisfied for all players. There exists ε̄ > 0 such that, for all i ∈ I , γ i ∈ �Ci (S−i ),
si ∈ BROi (γ

i ), and zi ∈ Zi , if

γ i (S−i (zi )|S−i ) ≥ 1− ε̄

then si ∈ BROi (ν
i ), where νi is the fully confirmed modification on γ i .
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Proof We proceed by contradiction: assume si /∈ BROi (ν
i ), and show that si /∈

BROi (γ
i ). Let s′i ∈ BROi (ν

i ). Let

m := min{ui (z)− ui (z
′) > 0 : i ∈ I , z, z′ ∈ Z},

where m > 0 by finiteness of Z . Let

M := max{ui (z)− ui (z
′) > 0 : i ∈ I , z, z′ ∈ Z},

whereM < ∞, again, by finiteness of Z. Notice that theremust exist hi ∈ Hi such that
V νi

i,hi
(s′i )− V νi

i,hi
(si ) > 0 (and thus in particular V νi

i,hi
(s′i )− V νi

i,hi
(si ) ≥ m), otherwise

si ∈ BROi (ν
i ) and we are done. Notice that

V γ i

i,hi
(si )− V γ i

i,hi
(s′i ) ≤ γ i (S−i (zi )|S−i ) · (−m)+

(
1− γ i (S−i (zi )|S−i )

)
· M

≤ M − (1− ε̄)(M + m) .

Take ε̄ = m
m+M , then the difference above must be negative, contradicting si ∈

BROi (γ
i ). ��

When a one-period ε-SCE in strongly rationalizable conjectures is played with
ε ≤ ε̄ above, then for all i si ∈ BROi (ν

i ), where νi is a confirmed conjectured (given
s−i ). Since (si , γ i ) ∈ �∞

i and suppνi ⊆ suppγ i , then (si , νi ) ∈ �∞
i . This concludes

the proof. ��
Proof of Remark 7 Let z ∈ Z∞ be the infinite history induced by the sequence
of strongly rationalizable one-period pairs

(
((sti , γ

i,t ))i∈I
)
t∈N. We construct νi ∈

�Ci (S−i ) in the same way as in the proof of Theorem 3. Notice now that such νi

is also strongly rationalizable, and assigns initial probability 1 − εi to the set of co-
players’ superstrategies that can induce the personal history specified by the given
sequence of strategy profiles, where

1− εi = γ i,1(S−i (h̄i (z1(z))) .

Hence, there exists s′i ∈ Si such that s′i ∈ BRi (ν
i ), and si,t (s′i ) = sti . Therefore,

((s′i , νi ))i∈I ∈ �∞ is such that ζ (s′) = z, and νi satisfies observational grain of truth
for every player. ��

A.3 Positive discount factor

When each player has a possibly positive discount factor δi ∈ [0, 1), the continuation
value of superstrategy si ∈ Si at personal history hi , given μi ∈ �Ci (S−i ), is defined
as

Vμi

i,hi
(si ) =

∞∑

t=τ(hi )+1
δ
t−τ(hi )−1
i ·

∫

S−i (hi )
ui (zt (ζ (si |hi , s−i )))μi (ds−i |S−i (hi )),
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where si |hi is the modified superstrategy allowing hi and playing like si at each
personal history that does not strictly precede hi . Let δ = (δi )i∈I denote the possibly
positive discount factors.

Let us first notice two standard continuity results.50

Lemma 1 The infinite repetition of the multistage game � with discount factors δ =
(δi )i∈I satisfies continuity at infinity for continuation values, i.e.,

∀i ∈ I ,∀hi ∈ Hi , lim
t→∞[sup{|V

μi

i,hi
(si )− Vμi

i,hi
(s̄i )| : μi ∈ �Ci (S−i ), si , s̄i ∈ Si ,

∀gi ∈ Hi , �(gi ) < t ⇒ si (gi ) = s̄i (gi )}
] = 0.

Lemma 2 For all i ∈ I and hi ∈ Hi , Vi,hi : Si×�Ci (S−i ) → R is jointly continuous.

We now provide an almost-equilibrium convergence result for possibly positive
discount factor. As for the case of impatience, conjectures (about the infinite repeti-
tion) become ε-confirmed in finite time, that is, for every ε > 0 there exists a period
starting from which players assign probability 1 − ε to co-players’ superstrategies
observationally equivalent to the true ones. The main difference with the impatience
case is that, by continuity at infinity, the (continuation) superstrategies are close to
exact sequential best replies to the fully confirmed modifications, but they might never
fully become best replies. In other words, the plan of action of the player is close in
continuation value to a sequential best reply to some conjecture that assigns probability
1 to the set of superstrategies observationally equivalent to the true ones. The modified
conjecture (Definition 10) coincides with the original conjecture off-path, and on-path
equals the probability assigned by the original conjecture conditional on full confir-
mation, i.e., the event that co-players’ superstrategies are observationally equivalent to
the true ones. Without full convergence—that only needs to happen asymptotically—
(continuation) superstrategies need not be exact sequential best replies to the fully
confirmed modifications, contrary to when δ = 0.

We define formally i’s “continuation objects” for the infinite repetition, given a
certain personal history hi . Let

C
 hi
i = {S−i (gi ) ⊆ S−i : gi  hi }

be the set of conditioning events that are induced by the sub-tree of h̄i with root

hi , and let �C
 hi
i (S−i ) denote the corresponding set of CPSs. After hi , “optimality

from there on” depends only on these CPSs. In other words, optimality starting at hi
should be intended as optimality in the “subjective continuation game with root hi .”
Given a continuation superstrategy s hii ∈ S hii := ×gi hiA�(gi )+1(gi ) and a CPS

νi ∈ �C
 hi
i (S−i ), the definition of continuation value for the continuation game is

clear: for every gi  hi , for all si ∈ Si and μi ∈ �Ci (S−i ) such that projS hii
si = s hii

50 The proofs are available upon request.
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and proj
[�(S−i )]C

hi
i

μi = νi ,

V νi

i,gi (s
 hi
i ) =

∞∑

t=τ(gi )+1
δ
t−τ(gi )−1
i

∫

S−i (gi )
ui (zt (ζ (s hii |gi , s−i )))νi (ds−i |S−i (gi )) =

=
∞∑

t=τ(gi )+1
δ
t−τ(gi )−1
i

∫

S−i (gi )
ui (zt (ζ (si |gi , s−i )))μi (ds−i |S−i (gi )) = Vμi

i,gi
(si ),

where ζ (s hii |gi , s−i ) is the terminal history induced by playing continuation super-

strategy s hii after gi and superstrategies s−i . Let μi
 hi denote the projection of CPS

μi over the set of CPSs �C
 hi
i (S−i ). Then, si is optimal starting at hi , with respect to

μi , if s hii is one-step optimal given μi
 hi , that is, for every gi  hi ,

s hii (gi ) ∈ arg max
ai∈A�(gi )+1

i

V
μi hi
i,gi

(
s hii |gi ai

)
,

where V
μi hi
i,gi

(s hii |gi ai ) denotes, in the usual way, the continuation value at gi of

playing continuation like superstrategy s hii after gi and ai . With an abuse of notation,
we denote such optimality property as

s hii ∈ BRi

(
μi
 hi

)
.

Remark 11 If a superstrategy is one-step optimal given a CPS, then, for every personal
history, the continuation superstrategy is optimal given the induced continuation CPS.

Remark 11 says that, given si , s
 hi
i , μi , and μi

 hi as above, for every hi ,

si ∈ BRi (μ
i ) ⇒ s hii ∈ BRi

(
μi
 hi

)
.

Definition 12 Fix a personal history hi . We say that a continuation superstrategy s hii

is a sequential ε-best reply to a (continuation) CPS νi , where ε > 0, if, for all s̄ hii
and gi  hi ,

V νi

i,gi

(
s hii

)
≥ V νi

i,gi

(
s̄ hii

)
− ε.

Definition 13 State (si , μi )i∈I is an eventual ε-self-confirming equilibrium in
strongly rationalizable conjectures if there exists a time T such that, for every
i ∈ I ,

(i) for every personal history hi with hTi � hi ≺ ζ i (s),

μi (S−i (ζ i (s))|S−i (hi )) ≥ 1− ε;
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(ii) ((si , μi )) ∈ �∞i .

Theorem 5 If strong rationalizability and observational grain of truth are satisfied at a
given state, then for every ε > 0 the state is an eventual ε-self-confirming equilibrium
in strongly rationalizable conjectures. Furthermore, for all ε′ > 0 and i ∈ I , there
exists an on-path personal history hi such that s

 hi
i is a sequential ε′-best reply to the

fully confirmed modification of μi .

Theorem 4 is ultimately a special case of Theorem 5. The key difference with
impatience is that the superstrategy, from being a ε-best reply, becomes a full best
reply to the fully confirmed modified conjecture, when ε is small enough.

Lastly, notice that a kind of converse result to Theorem 5, in the same way as
Remark 7 is a converse to Theorem 4,51 can be similarly obtained. In fact, Remark 7 is
a sharper result that necessitates constructing consistent superstrategies and CPSs of
the supergame from strategies and CPSs of the one-period game, whereas a converse
to Theorem 5 follows from Definition 13 and Corollary 1 (equivalence of asymptotic
learning and observational grain of truth).
Proof of Theorem 5: The first part needs no further proof. The auxiliary result about
approximate best replies follows from the following claim.

Claim 3 Fix i ∈ I , μi ∈ �Ci (S−i ), si ∈ BRi (μ
i ), and zi ∈ Zi . If for every ε̄ > 0

there exists hε̄
i ≺ zi such that

μi (S−i (zi )|S−i (hε̄
i )) ≥ 1− ε̄,

then, for every ε′ > 0, there exists hi and νi ∈ �C
hi
i (S−i ) such that

νi (S−i (zi )|S−i (gi )) = 1 ∀hi � gi � zi ,

and s hii := proj
S
 hi
i

si is an ε′-best reply to νi .

Proof Let νi be the continuation CPS at hi induced as the fully confirmedmodification
of μi . Let s̄ hii be a sequential best reply to νi . For every off-path personal history

gi  hi , V νi

i,gi
(s̄ hii ) = Vμi

i,gi
(s̄ hii ) = Vμi

i,gi
(s hii ) because νi and μi coincide (and thus

the property is trivially true).
Now take on-path history hi � gi � zi . Let λi (·|S−i (gi )) = μi (·|S−i (gi )\S−i (zi ))

on-path, and equal toμi off-path (implied by chain rule for positive-probability events).
It holds that there exists ε > 0 such that

Vμi

i,gi
(s hii ) = (1− ε)V νi

i,gi

(
s hii

)
+ εV λi

i,gi

(
s hii

)
,

and

0 ≤ Vμi

i,gi

(
s hii

)
− Vμi

i,gi

(
s̄ hii

)

= (1− ε)
(
V νi

i,gi

(
s hii

)
− V νi

i,gi

(
s̄ hii

))
+ ε

(
V λi

i,gi

(
s hii

)
− V λi

i,gi

(
s̄ hii

))

51 Or as Theorem 3 is to Theorem 2.
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and thus

V νi

i,gi

(
s hii

)
− V νi

i,gi

(
s̄ hii

)
≥ − ε

1− ε

(
V λi

i,gi

(
s hii

)
− V λi

i,gi

(
s̄ hii

))

≥ − ε

1− ε

1

1− δi
m ,

where m is as defined in proof of Theorem 5. For every ε′ > 0, we just need to pick ε

small enough to have ε
1−ε

1
1−δi

m ≤ ε′, and the proof is concluded. ��

A.4 Optimality and existence

In this section we define sequential optimality and weak sequential optimality and
compare them with one-step optimality, in the case individuals might be impatient or
partially patient. The use of continuation values allows us to extend sequential opti-
mality conditions to the case of impatient intertemporal preferences in a multi-period
game. Subsequently, we present a version of theOne-Shot Deviation Principle, which
states the equivalence between one-step optimality and sequential optimality. Known
arguments can be adapted to prove the existence of sequentially optimal and weakly
sequentially optimal superstrategies (and strategies), and to prove that a superstrat-
egy (strategy) is weakly sequentially optimal if and only if there exists a behaviorally
equivalent sequentially optimal superstrategy (strategy). This implies that our defini-
tion of strong rationalizability is behaviorally equivalent to the one based on weak
sequential optimality used by Pearce (1984) and many following papers for finite
games, and by Battigalli and Tebaldi (2019) for infinite-horizon games (see also the
discussion in Battigalli and De Vito 2021).

Definition 14 A superstrategy s∗i is sequentially optimal given μi ∈ �Ci (S−i ) if, for
every hi ∈ Hi ,

s∗i ∈ argmax
si∈Si

Vμi

i,hi
(si ).

Similarly, a strategy s∗i is sequentially optimal given a one-period CPS γ i ∈ �Ci (S−i )
if, for every hi ∈ Hi ,

s∗i ∈ argmax
si∈Si

V γ i

i,hi
(si ).

Observe that, for all i ∈ I , hi ∈ Hi , and μi ∈ �Ci (S−i ), by compactness of Si
and continuity of Vμi

i,hi
(·), Vμi

i,hi
(·) admits a maximizer. Of course, the same holds with

respect to the one-period continuation values. For any si ∈ Si , let

Hi (si ) =
{
hi ∈ Hi : ∃s−i ∈ S−i ,hi ≺ ζ i (si , s−i )

}

denote the set of personal histories allowed by si , that is, those that can occur if si is
played. The set Hi (si ) of histories of the one-period game allowed by strategy si is
similarly defined.
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Definition 15 A superstrategy s∗i is weakly sequentially optimal given μi ∈ �Ci (S−i )
if, for every hi ∈ Hi (s∗i ),

s∗i ∈ argmax
si∈Si

Vμi

i,hi
(si ).

Similarly, a strategy s∗i is weakly sequentially optimal given a one-period CPS γ i ∈
�Ci (S−i ) if, for every hi ∈ Hi (s∗i ),

s∗i ∈ argmax
si∈Si

V γ i

i,hi
(si ).

The following two propositions establish that our definition of rationality is equiv-
alent to sequential optimality, and it is hence behaviorally equivalent to the rationality
definition of Battigalli and Tebaldi (2019), provided that players are not impatient.

Proposition 4 (One-shot deviation principle) Fix a player i , a superstrategy si and a
CPS μi over co-players’ superstrategy profiles. Then, si is one-step optimal given μi

if and only if si is sequentially optimal given μi .

Proposition 5 Fix a player i and a CPS μi over co-players’ superstrategy profiles.
Then, there always exist at least one sequentially optimal superstrategy and oneweakly
sequentially optimal superstrategy. Furthermore, every superstrategy behaviorally
equivalent52 to a sequentially optimal superstrategy is weakly sequentially optimal.
The same results hold for the one-period game.

Corollary 3 Fix i ∈ I , superstrategy si , and CPS μi over superstrategies. Then si
is weakly sequentially optimal given μi if and only if there exists a behaviorally
equivalent strategy s̄i which is one-step optimal given μi .

In conclusion, our representation of rationality is equivalent to sequential optimal-
ity, and behaviorally equivalent to weak sequential optimality. The latter—whenever
players are not impatient—coincides with the representation of rationality in Battigalli
and Tebaldi (2019).
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