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Abstract

Paging is a prototypical problem in the area of online algorithms. It has also played a
central role in the development of learning-augmented algorithms – a recent line of research
that aims to ameliorate the shortcomings of classical worst-case analysis by giving algorithms
access to predictions. Such predictions can typically be generated using a machine learning
approach, but they are inherently imperfect. Previous work on learning-augmented paging
has investigated predictions on (i) when the current page will be requested again (reoccurrence
predictions), (ii) the current state of the cache in an optimal algorithm (state predictions),
(iii) all requests until the current page gets requested again, and (iv) the relative order in
which pages are requested.

We study learning-augmented paging from the new perspective of requiring the least
possible amount of predicted information. More specifically, the predictions obtained along-
side each page request are limited to one bit only. We consider two natural such setups:
(i) discard predictions, in which the predicted bit denotes whether or not it is “safe” to evict
this page, and (ii) phase predictions, where the bit denotes whether the current page will be
requested in the next phase (for an appropriate partitioning of the input into phases). We
develop algorithms for each of the two setups that satisfy all three desirable properties of
learning-augmented algorithms – that is, they are consistent, robust and smooth – despite
being limited to a one-bit prediction per request. We also present lower bounds establishing
that our algorithms are essentially best possible.

1 Introduction

Paging (also known as caching) is a classical online problem, and an important special case
of several other online problems [10], which can be motivated through resource management
in operating systems. You are given a fast cache memory with capacity to simultaneously
store at most a constant number, k, of pages. Requested pages, according to a sequence of
page requests, have to be loaded into the cache to be served by the operating system. More
specifically, pages are requested one by one in an online fashion, and each request needs to
be immediately served upon its arrival. Serving a page is done at zero cost if the requested
page currently resides in the cache. If this is not the case, then a page fault occurs and the
page has to first be loaded into the cache (after potentially evicting some other page to make
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space). This incurs a fixed cost. The underlying algorithmic question is to decide which
page to evict each time a page has to be loaded into the cache, with the goal to minimize
the total incurred cost, i.e., the total number of page faults.

Paging has been extensively studied and is well-understood. There exists an optimal
offline algorithm, LFD (longest forward distance), that simply follows the so-called Belady’s
rule: always evict the page that will be requested again the furthest in the future. Note
that Belady’s rule can only be applied to the offline variant of the problem, where all future
page requests are known to the algorithm. With respect to online algorithms, no deter-
ministic online algorithm can obtain a competitive ratio1 smaller than k [40]. Two simple
deterministic algorithms that are k-competitive [40] exist: FIFO (evict the oldest page in
the cache) and LRU (evict the least recently used/requested page from the cache). Fiat et
al. [20] developed a randomized algorithm called Mark that is (2Hk − 1)-competitive2 [1].
Furthermore this is tight, up to a constant factor of 2, since no randomized algorithm can
obtain a competitive ratio better than Hk [20]. Later, optimal Hk-competitive randomized
algorithms were discovered [1, 31].

The above results are tight in the worst case, although inputs encountered in many prac-
tical situations may allow for a better performance. The novel research area of learning-
augmented algorithms attempts to take advantage of such opportunities and ameliorate
shortcomings of worst-case analysis by assuming that the algorithm has black-box access
to a set of (e.g., machine-learned) predictions regarding the input. Naturally, the quality
of these predictions is not known a priori, hence the goal is to design algorithms with a
good performance on the following parameters: robustness, which is the worst-case perfor-
mance guarantee that holds independently of the prediction accuracy; consistency, which is
the competitive ratio under perfect predictions; and smoothness, which describes the rate at
which the competitive ratio deteriorates with increasing prediction error.

Given the central role of paging within online algorithms, it is no surprise that learning-
augmented paging has been extensively studied as well, and actually a significant number of
papers in the area are either directly or indirectly linked to the paging problem. Examples
include the seminal paper by Lykouris and Vassilvitskii [30], who studied reoccurence predic-
tions, i.e., along with each page request the algorithm obtains a prediction on the timepoint
of the next request of that page. Their results were later refined by Rohatgi [37] and Wei [42].
Jiang et al. [25] investigated the setting in which all requests until the next request of the
currently requested page are predicted, whereas Bansal et al. [7] considered predictions re-
garding the relative order in which the pages are requested. Antoniadis et al. [2] looked into
so-called state predictions that predict the cache-contents of an optimal algorithm.

Although the above algorithms have been analyzed with respect to their consistency,
robustness and smoothness, no consideration has been made regarding the total amount of
predicted information. Given that the predicted information needs to be computed through
a separate black-box algorithm and also communicated to the actual paging algorithm for
each request, a learning-augmented algorithm that is based on a large amount of predicted
information may be impractical in a real-world application.

In this paper we study learning-augmented paging while taking a new approach, requir-
ing a minimal amount of predicted information. We assume that the predictions must be
encoded in only one bit per request. This is indeed the least possible amount of predicted in-
formation (up to a constant) since any (deterministic or randomized) algorithm that receives
perfect predictions that can be encoded in sublinearly many bits (in the length of the request
sequence) cannot be better than Hk-competitive [32]. Moreover, there are binary classifiers
producing one-bit predictions for paging [24, 39] which have great performance in practice
(see Section 1.2 for more details) and it is desirable to use them in learning-augmented
algorithms.

We study two natural such setups, with one-bit predictions, which we call discard predic-
tions and phase predictions. The predicted bit in discard predictions denotes whether LFD
would evict the current page before it gets requested again. In phase predictions, the bit
denotes whether the current page will be requested again in the following k-phase (the notion
of a k-phase is based on marking algorithms, such as Mark and LRU, and it is formally

1Competitive ratio is the standard performance metric for online algorithms, see Section 1.1 for a definition.
2Hk =

∑
k

i=1
1/i is the k’th harmonic number. Recall that ln k ≤ Hk ≤ 1 + ln k.
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defined in Section 2). Both of these new setups can be interpreted as condensing the relevant
information from the previously existing setups into one bit per request.

We develop algorithms for each of the two setups that satisfy all three desirable properties
of learning-augmented algorithms – that is, they are consistent, robust and smooth – despite
being limited to a one-bit prediction per request. We also present lower bounds establishing
that our algorithms are essentially best possible.

1.1 Our contribution

An important preliminary observation is that there is an asymmetry regarding prediction
errors: Wrongly evicting a page will generally only lead to one page-fault once that page is
requested again, however keeping a page which should be evicted in the cache can lead to
multiple page-faults while the algorithm keeps evicting pages that will be requested again
soon. For this reason we distinguish between two types of prediction errors. For a sequence
of n page requests, let p ∈ {0, 1}n be the vector of predictions and p∗ ∈ {0, 1}n be the
ground truth, where, intuitively, a value of 0 means (in both setups) that, according to the
prediction, the page requested should stay in cache. We define η0 and η1 as the numbers of
incorrect predictions 0 and 1, respectively, usually leaving out the parameters p and p∗ when
they are understood:

ηh(p, p
∗) = |{i ∈ [n] | pi = h, p∗i = 1− h}| , for h ∈ {0, 1}.

In order to capture how different types of errors affect the cost of an algorithm, we
generalize the notion of competitive ratio to what we call (α, β, γ)-competitiveness.

Definition 1. A learning-augmented online paging algorithm Alg is called (α, β, γ)-compe-
titive if there exists a constant b (possibly depending on k) such that for any instance I with
ground truth p∗ and any predictions p,

Alg(I, p) ≤ α ·Opt(I) + β · η0(p, p
∗) + γ · η1(p, p

∗) + b ,

where Alg(I, p) and Opt(I) denote3 costs incurred on this instance by the online algorithm
and the offline optimal algorithm, respectively, and η0, η1 denote the two types of error of
predictions provided to the online algorithm.

Note that the notion of (α, β, γ)-competitiveness generalizes that of the (classical) com-
petitive ratio: an algorithm is c-competitive if and only if it is (c, 0, 0)-competitive. Further-
more, it is easy to see that (α, β, γ)-competitiveness directly implies a consistency of α; it
also quantifies the smoothness of the algorithm. We can achieve robustness as follows: any
deterministic (α, β, γ)-competitive algorithm for paging can be combined with LRU or FIFO
through the result of Fiat et al. [20] to give a deterministic algorithm with a consistency
of (1 + ǫ)α and a robustness4 of 1+ǫ

ǫ
k, for any ǫ > 0. Similarly, any randomized (α, β, γ)-

competitive algorithm for paging can be combined (see [2] and [8]) with an Hk-competitive
algorithm [1, 31] to give a ((1 + ǫ)α)-consistent and ((1 + ǫ)Hk)-robust algorithm. Both of
these combination approaches work independently of the considered prediction setup. We
therefore focus the rest of the paper on giving upper and lower bounds for the (α, β, γ)-
competitiveness.

As explained at the beginning of this section, the two types of prediction errors have
significantly different impact: keeping a page in cache while it was safe to evict is potentially
much more costly than evicting a page that should have been kept. Hence, β will intuitively
be much larger than γ in our results. Our lower bounds also show that α + β cannot be
smaller than the best classical competitive ratio.

We remark that previous papers on learning-augmented paging (e.g., [30, 37, 42]) analyze
smoothness by expressing the (classical) competitive ratio as a function of the normalized

3Following a standard practice in online algorithms literature, in what follows, we abuse the notation and use
Alg and Opt to denote both the algorithms and their respective costs incurred on the implicitly understood
instance that we are currently reasoning about.

4Actually, Fiat et al. [20] show the more general result that one can combine m algorithms such that for any
input instance I this combination incurs a cost that is within a factor ci from the cost of each corresponding
algorithm i on I . The constants ci can be chosen arbitrarily as long as they satisfy

∑
m

i=1
1/ci ≤ 1.
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prediction error η

Opt
, and that our results could also be stated in that manner because every

(α, β, γ)-competitive algorithm is also (α+β · η0

Opt
+γ · η1

Opt
)-competitive in the classical sense.

Discard-predictions setup upper bounds. In Section 3 we develop a deterministic and
a randomized algorithm for the discard-predictions setup:

Theorem 1. There is a deterministic (1, k − 1, 1)-competitive algorithm for the discard-
predictions setup.

The algorithm realizing Theorem 1 is very simple and natural: On each page-fault, evict
a page that is predicted as safe to evict, if such a page exists. If it does not exist, then
just flush the cache, i.e., evict all pages that it contains. The analysis is based on deriving
appropriate bounds on the page-faults for both Alg and Opt within any two consecutive
flushes, as well as the respective prediction error.

Theorem 2. There is a randomized (1, 2Hk, 1)-competitive algorithm for the discard-predictions
setup.

Compared to the deterministic algorithm above, the algorithm from Theorem 2 uses
an approach resembling the classical Mark algorithm when evicting pages predicted 0.
However, we note that it does not fall into the class of so-called marking algorithms (see
Section 2), as pages predicted 1 are evicted sooner. This is essential for achieving α = 1
but requires a different definition of phases and a novel way of charging evictions of pages
predicted 0.

Phase-predictions setup upper bounds. For phase-predictions, in Section 4 we design
an algorithm called Mark&Predict which can be seen as a modification of the classical
Mark algorithm giving priority to pages predicted 1 when choosing a page to evict. We
prove two bounds for this algorithm. The first one is sharper for small η1 and, in fact, it
holds even with deterministic evictions of pages predicted 1.

Theorem 3. Mark&Predict is a randomized (2, Hk, 1)-competitive algorithm for the
phase-predictions setup.

The second bound exploits the random eviction of pages predicted 1 and gives a much
stronger result if η1 is relatively large.

Theorem 4. Mark&Predict is a randomized
(

2, Hk, γ(η1/Opt)
)

-competitive algorithm
for the phase-predictions setup, where

γ(x) = 2x−1 (ln(2x+ 1) + 1) .

In other words, the (expected) cost of Mark&Predict is at most

2

(

ln

(

2η1
Opt

+ 1

)

+ 2

)

·Opt+Hk · η0.

Note that this expression should not be considered when η1 ≤ Opt as γ(1) > 1 so
the guarantee of the previous theorem would then be stronger. For η1 > Opt, multiple
possibilities exist to phrase the above expression into our (α, β, γ)-competitiveness notion,
so we chose the one matching the previously established value of α. To illustrate the gain

over the previous bound, with η1/Opt = Ω(k), we obtain γ(η1/Opt) = O
(

log k
k

)

, thus

matching the lower bound of Theorem 6.

Lower bounds. In Section 5, we give lower bounds that show that the upper bounds
above are essentially tight. More specifically, we prove the following for the two considered
setups.

Theorem 5. In both the discard-predictions and phase-predictions setups, there is no deter-
ministic (α, β, γ)-competitive algorithm such that either α+ β < k or α+ (k − 1) · γ < k.

This directly implies that if α is a constant independent of k, then β = Ω(k) and γ = Ω(1).
A special case is that any 1-consistent deterministic algorithm must have β at least k − 1
and γ at least 1, matching the upper bound of Theorem 1, or, more precisely:
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Corollary 1. In both setups, no deterministic paging algorithm is (1, k−1−ǫ, γ)- or (1, β, 1−
ǫ)-competitive, for any constant ǫ > 0 and any value of β and γ.

An analogous lower bound can be obtained for randomized algorithms as well.

Theorem 6. In both the discard-predictions and phase-predictions setups, there is no (α, β, γ)-
competitive randomized algorithm such that either α+β < Hk or α+(k− 1) ·γ < Hk, where
Hi = ln i+O(1) is the i-th harmonic number.

This result implies that, in the upper bounds of Theorems 3 and 4 for Mark&Predict,
the value of β is tight up to an additive term of 2 and the asymptotic value of γ, when
η1/Opt is large, cannot be improved by more than a constant factor in Theorem 4.

Corollary 2. In both setups, no randomized paging algorithm is (2, Hk − 2 − ǫ, γ)- or
(2, β, Hk−2

k−1 − ǫ)-competitive, for any constant ǫ > 0 and any value of β and γ.

The previous theorem implies a subconstant lower bound (≈ 1
k
log k) on γ for a value of

α up to O(log k). We complement it by showing that γ is lower bounded by a constant if we
want to achieve α = 1.

Theorem 7. There is no (1, β, γ)-competitive randomized algorithm such that γ < 1/7 for
the discard-predictions setup or γ < 1/2 for the phase-predictions setup.

The last two theorems imply that, in the upper bound of Theorem 2, the values of β and
γ cannot be improved by more than a constant factor.

Corollary 3. In the discard-predictions setup, no randomized paging algorithm is (1, Hk −
1− ǫ, γ)- or (1, β, 1

7 − ǫ)-competitive, for any constant ǫ > 0 and any value of β and γ.

Similarly to the lower bounds known for classical paging, all three of our lower bound
results are based on instances coming from a universe of k + 1 many pages. However, in
order to achieve the desired bounds we need to carefully define the prediction sequence.
Somewhat surprisingly, in each of our lower bound results, we are able to use the same
prediction sequence for both prediction setups.

1.2 Further related work

Paging with few predictions. In a very recent paper [22], Im et al. consider a different
approach to limiting the amount of predicted information within learning-augmented paging.
The algorithm has access to an ML-oracle which can be at any time queried about the
reoccurrence prediction for any page in the cache. They analyze the trade-offs between
the number of queries, the prediction error and algorithm performance. Furthermore, the
competitive ratio of the obtained algorithms is O(logb+1 k), where b is the number of queries
per page fault. Thus, the consistency of the algorithm would generally be quite far from
those of the algorithms presented in this paper.

Other learning-augmented online algorithms. In addition to the already mentioned
results on learning-augmented paging, several exciting learning-augmented algorithms have
been developed for various online problems, including among others weighted paging [7],
k-server [28], metrical task systems [2], ski-rental [36, 3], non-clairvoyant scheduling [36, 27],
online-knapsack [23, 43, 12], secretary and matching problems [16, 5], graph exploration [17],
as well as energy-efficient scheduling [6, 4, 3]. Machine- learned predictions have also been
considered for designing offline algorithms with an improved running time, see for instance
the results of Dinitz et al. [14] on matchings, Chen et al. [13] on graph algorithms, Ergun et
al. [19] on k-means clustering, Sakaue and Oki [38] on discrete optimization, and Polak and
Zub [35] on maximum flows. An extensive list of results in the area can be found on [26]. We
would also like to point the reader to the surveys [33, 34] by Mitzenmacher and Vassilvitskii.

We note that, although our work is closer in spirit to the aforementioned results on
learning-augmented paging, our notion of (α, β, γ)-competitiveness is an extension of the
(ρ, µ)-competitiveness from [3]. While (ρ, µ)-competitiveness captures the tradeoff between
the dependence on the optimal cost and the prediction error, (α, β, γ)-competitiveness cap-
tures the three-way tradeoff between the dependence on the optimal cost and the two kinds
of prediction errors.
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Advice complexity. An inspiration for considering paging with succinct predictions is
that ideas from the research area of advice complexity could possibly be applied to learning-
augmented algorithms; in particular, the advice from [15] for the paging problem. The goal,
when studying online algorithms with advice, is to determine for online problems how much
information about the future is necessary and sufficient to perform optimally or to achieve a
certain competitive ratio. This is formalized in different computational models, all of which
assume that the online algorithm is given some number of bits of advice [15, 21, 9, 18]. (See
the survey on online algorithms with advice [11].) The difference from learning-augmented
algorithms is that the advice is always correct, so robustness is not a consideration, and the
emphasis is on the number of bits the algorithms use, rather than if one could realistically
expect that the advice could be obtained. The advice-complexity result that is probably
the closest to our work is by Dobrev et al. [15] who studied advice that is equivalent to the
ground truth for our discard predictions. Their result implies for our setting that when the
predictions are guaranteed to be perfect (as one assumes in advice complexity), then one
can obtain a simple 1-competitive algorithm, with predictions of just one bit per request.
However, it does not immediately imply a positive result in our setting when the predictions
are of unknown quality.

Discard predictions in practice. Previous research suggests the practicality of the suc-
cinct predictions presented in this paper. Jain and Lin [24] proposed Hawkeye, an SVM-based
binary classifier whose goal is to predict whether a requested page is likely to be kept in cache
by the optimal Belady’s algorithm. The classifier labels each page as either cache-friendly
or cache-averse, which directly correspond to zero and one, respectively, in our discard-
prediction setup. Hawkeye’s predictions were accurate enough for wining the 2nd Cache
Replacement Championship. Later, Hawkeye was outperformed by Shi et al.’s Glider [39], a
deep learning LSTM-based predictor that solves the same binary classification problem. On
the other hand, machine-learning models capable of producing reoccurrence predictions and
state predictions only recently started being developed, and, while they also have a surpris-
ingly high accuracy, they are prohibitively large and slow to evaluate for performance-critical
applications [29].

1.3 Open problems

Better dependence on η1 in discard-predictions setup. For the case of large η1, we
provide a stronger guarantee for Mark&Predict in Theorem 4. However, we were not able
to obtain a comparable result for the discard-predictions setup, and it would be interesting
to further close the gap for the case of large η1 as well. Somewhat surprisingly, an important
challenge towards that direction seems to be that of recognizing the presence of an incorrect
0-prediction early enough. This can be easily done in the phase-predictions setup; and we do
actually properly account for all incorrect 0-predictions (see Observation 5). On the other
hand, our criterion in the discard-predictions setup (see Observation 1) may overlook some
of them. This in turn may lead an algorithm to keep the cache full with pages associated
with 0-predictions, forcing it to evict all pages with 1-predictions, implying γ ≥ 1.

Other online problems with succinct predictions. For many online problems, the
possibility of obtaining good succinct predictions might be more realistic than obtaining more
precise, lengthy predictions. It would be interesting to see if such predictions still allow for
effective learning-augmented algorithms. Prior results on advice complexity give meaningful
lower bounds with respect to the size of such predictions and may provide guidance on what
to predict.

2 Preliminaries

Classical paging. In paging, we have a (potentially large) universe U of pages and a cache
of size k. At each time step i = 1, . . . , n, we receive a request ri to a page in U which needs
to be satisfied by loading the page associated to ri to the cache (if it is not in the cache
already). This may require evicting some other page to make space for the requested page.
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The goal of an algorithm is to serve the whole request sequence at minimal cost . The cost
of an algorithm is the number of page loads (and therefore also the number of page faults)
performed to serve the request sequence. Note that this number is within an additive term k
from the number of page evictions. In our analyses, we can choose to work with whichever of
these two quantities is easier to estimate, because of the additive constant in the definition
of competitiveness.

When making space for the page associated to ri, online algorithms have to decide
which page to evict without knowledge of ri+1, . . . , rn, while offline algorithms have this
information.

Marking algorithms. For the purpose of designing marking algorithms, we partition the
request sequence into k-phases. A k-phase is a maximal subsequence of at most k distinct
pages. The first k-phase starts at the first request, and any subsequent k-phase i starts at
the first request following the last request of k-phase i− 1.

The following automatic procedure helps designing algorithms for caching: at the begin-
ning of each k-phase, we unmark all pages. Whenever a page is requested for the first time in
a k-phase, we mark it. We say that an algorithm belongs to the class of marking algorithms,
if it never evicts a marked page. All marking algorithms are (at most) k-competitive [41]
and they have the same cache content at the end of each k-phase: the k marked pages which
were requested during that k-phase.

Algorithm Mark [20] evicts an unmarked page chosen uniformly at random. In the ith k-
phase, with ci pages requested that were not requested in k-phase i − 1 (we call such pages

new, the others are called old), it has in expectation
∑k−ci

j=1
ci

k−(j−1) ≤ ci(Hk −Hci +1) page

faults. One can show that Opt ≥ 1
2

∑m

i=1 ci, where m is the total number of k-phases in the
request sequence, and hence Mark is at most 2Hk-competitive. We refer to [10] for more
details.

Receiving predictions. Each request ri comes with a prediction, pi ∈ {0, 1}. If a request
comes with a prediction of 0 (resp. 1), we call it a 0-prediction (resp. 1-prediction), and the
requested page a 0-page (resp. 1-page) until the next time it is requested. Throughout the
paper, we use ri to refer both to the request and to the page associated with that request.

Discard-predictions setup. In this setup, we fix an optimal offline algorithm, say LFD.
When a requested page is not in cache, LFD evicts any page that will never be requested
again, if such a page exists, and otherwise evicts the unique page of the k pages in cache
that will be requested again furthest out in the future.

Prediction pi for request ri is supposed to predict the ground truth p∗i defined as:

p∗i =

{

0, if LFD keeps ri in cache until it is requested again,

1, if LFD evicts ri before it is requested again.

For a page ri that LFD retains in cache until the end of the request sequence, p∗i = 0.
For simplicity, we define p∗ with respect to a fixed optimal algorithm. However, if the

prediction vector p happens to predict well the behavior of any other (good but not necessarily
optimal) algorithm, then our upper bounds hold also with respect to the performance of that
algorithm in place of Opt.

Phase-predictions setup. In this setup, we partition the request sequence into k-phases,
as described above in the paragraph on marking algorithms.

We define the ground truth p∗i for request ri in some k-phase j as follows:

p∗i =

{

0, if ri is requested in k-phase j + 1,

1, if ri is not requested in k-phase j + 1.

Note that, in both setups, at the point where a decision is made as to which page to
evict, the algorithms only consider the most recent prediction for each page, the one from
the most recent request to the page. In the discard-predictions setup, this is the only logical

7



possibility. In the phase-predictions setup, there could theoretically be a page, p, requested
more than once in phase i, where the prediction (as to whether or not it will be requested in
phase i + 1) is inconsistent within phase i. We assume that the last prediction is the most
relevant, so only this one is used by our algorithms, and only this one contribute towards a
possible error in η0 or η1. In fact, if convenient for implementation, we could avoid running
the predictor at repeated requests by producing predictions at once for each page in the
cache at the end of phase i. In addition, in the phase-predictions setup, predictions in the
last phase do not count at all, and in particular, do not count in ηh.

In a given phase, the pages that are in cache at the beginning of the phase are called
old pages. Pages requested within a phase that are not old are called new pages. Thus, all
requests in the first phase are to new pages.

3 Algorithms with discard-predictions

We first investigate the discard-predictions setup. The following simple observation is useful
in the analyses of our algorithms.

Observation 1. Consider a moment when there is a set S of 0-pages (whose most recent
prediction is 0) of size k+ c− 1 and a page r /∈ S is requested. Then, at least c pages from S
have incorrect prediction.

Proof. Page r surely has to be in cache. Each ρ ∈ S has prediction 0 by the definition of S.
Since the cache has size k, any algorithm needs to have evicted at least 1+ |S|− k = c pages
from S. In particular this is true for LFD. Therefore at least c pages from S have incorrect
predictions.

3.1 Deterministic algorithm

Our first algorithm is deterministic, and, despite being very simple, it attains the best possible
(α, β, γ)-competitiveness for 1-consistent deterministic algorithms (see the lower bound in
Theorem 5).

Theorem 1. There is a deterministic (1, k − 1, 1)-competitive algorithm for the discard-
predictions setup.

Proof. Consider the deterministic algorithm, Alg, that on a fault evicts an arbitrary 1-page,
if there is such a page in cache, and flushes the cache otherwise.

We count evictions, and note that up to an additive constant (depending on k), this is
the same as the number of faults. We divide the request sequence into stages, starting a
new stage when Alg flushes the cache (i.e., when it is full and contains only 0-pages). We
assume an integer number of stages (an assumption that also only adds up to an additive
constant; again, depending on k) and consider one stage at a time.

First consider 0-pages that are evicted. By definition, Alg evicts k such pages in the
stage. Since k 0-pages have arrived in the stage, and a new page must arrive for Alg to
flush, at least one of the 0-pages has an incorrect prediction (obvious here, but captured
more generally by Observation 1) and Opt must have evicted at least one of these k + 1
pages.

Letting a superscript, s, denote the values of just this stage, and a subscript denote 0-
pages and 1-pages, respectively, since both Opt

s
0 and ηs0 are at least one,Alg

s
0 ≤ Opt

s
0 +(k−

1)ηs0.
Considering 1-pages, Alg clearly obtains the same result as Opt, except when there is

a misprediction, which adds a cost of 1. Thus, Alg
s
1 ≤ Opt

s
1 +ηs1.

Summing over both predictions and all stages, Alg ≤ Opt+(k − 1)η0 + η1.

Remark 1. In Theorem 1, the choices α = 1 and β = k−1 can be generalized, showing that
the algorithm is (α, k − α, 1)-competitive, for 1 ≤ α ≤ k (compare with Theorem 5).
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3.2 Randomized algorithm

Now, we presentMark0, a randomized algorithm that evicts all 1-pages immediately. There-
fore, whenever the cache is full and eviction is needed, all the pages in the cache must be 0-
pages and this situation signals a presence of an incorrect 0-prediction. Since we cannot
know which 0-page has incorrect prediction, we evict a random unmarked one in order to
make sure that such evictions can be charged to η0 in the analysis. Mark0 is described in
Algorithm 1.

Algorithm 1 Mark0 Eviction Strategy

1: S := ∅
2: evict all 1-pages
3: for i = 1 to n do

4: if ri is not in cache then

5: if cache is full and all pages from S in cache are marked then

6: S := current cache content
7: unmark all pages

8: if ri ∈ S is unmarked and cache contains some unmarked page from S then

9: evict an unmarked page from S chosen uniformly at random
10: ⊲ We perform this eviction even if the cache is not full

11: if cache is full then
12: evict an unmarked page from S chosen uniformly at random

13: bring ri to cache

14: mark ri
15: if pi = 1 then

16: evict ri

Before proving the competitive ratio of Mark0, we state a few observations, starting by
a simple bound on the evictions of 1-pages.

Observation 2. The number of 1-pages that Mark0 evicts is at most Opt+η1.

Therefore it is enough to count evictions of 0-pages. We call a period between two
executions of line 7 a phase. Phases are similar to k-phases in marking algorithms, with the
difference being that 1-pages are directly evicted by the algorithm, even though such a page
is still marked. Phase 1 starts the first time that the cache is full and a page-fault occurs
(recall that this implies that there has been an incorrect prediction on a 0-page), since S = ∅
and the condition on all pages from S in cache being marked is vacuously true. We define
phase 0 to be the time from the beginning of the request sequence until the start of Phase 1.

The following observation bounds the number of evictions of 0-pages based on the number
of times an eviction is caused by a full cache. An eviction caused by a full cache leads to
an unmarked page from S being evicted. A classical probabilistic argument is then used
to bound the number of times a randomly evicted unmarked page is requested again in the
phase.

Observation 3. Consider a phase with c executions of line 12. The expected number of
evictions of 0-pages is at most cHk.

Proof. Note that the number of evictions of 0-pages is equal to the number of evictions in
lines 12 and 9. There are c evictions made in line 12 and we just need to count evictions
made in line 9.

In each execution of line 12, we evict a page from S. In each execution of line 9, one
previously evicted page from S replaces another page from S in the cache (which is evicted).
The former increases the number of evicted unmarked pages from S by one, while the latter
maintains the number of evicted unmarked pages from S.

Consider the first time, t, when there are no unmarked pages from S contained in the
cache. Until t, whenever an unmarked page from S is loaded to the cache, it is marked and
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another unmarked page from S is evicted. Therefore, there are precisely c unmarked pages
from S which are not present in cache at time t: the pages evicted at line 12 or the ones
these have replaced at line 9. Afterwards, no more evictions of 0-pages are made and such
pages are only loaded to the cache until it becomes full and a new phase starts.

To count evictions made in line 9, we need to estimate the probability of a requested
unmarked page from S being missing from the cache. We use an approach similar to the
classical analysis of the algorithm Mark. Since it makes the situation only more costly for
the algorithm, we can assume that all the evictions in line 12 are performed in the beginning
of the phase and the evictions in line 9 are all performed afterwards. When the jth page

from S is being marked, it is present in the cache with probability k−c−(j−1)
k−(j−1) (the numerator

is the number of unmarked pages from S present in the cache at that moment and the
denominator is the total number of unmarked pages in S) and the probability of a page fault
is c

k−(j−1) . Therefore, the expected number of evictions in line 9 until time t is

k−c
∑

j=1

c

k − (j − 1)
= c(Hk −Hc).

The total expected number of evictions of 0-pages during this phase is then

c+ c(Hk −Hc) ≤ cHk.

We observe that as a consequence of how the phases are defined, every page residing in
the cache at the timepoint between two consecutive phases must have received its prediction
during the phase that just ended. More formally,

Observation 4. Let S(i) be the content of the cache when phase i − 1 ends and phase i
starts. Then all the pages in S(i) received their predictions during phase i− 1.

Proof. This is a consequence of marking: Every page requested during phase i−1 received a
new prediction. The only pages from S(i−1) which did not, are the unmarked ones. Yet, such
pages are not present in the cache at the end of phase i−1. And all pages from S(i)\S(i−1)
must have been requested and loaded during phase i− 1.

We are now ready to analyze the (α, β, γ)-competitiveness of the algorithm. It combines
the previous results and uses the fact that evictions caused by a full cache can be charged
to an erroneously predicted 0-page, as trusting the predictions would require keeping more
than k pages in cache. An additional factor is required in the dependency on η0 as a wrong
prediction may impact both the current phase and the following one.

Theorem 2. There is a randomized (1, 2Hk, 1)-competitive algorithm for the discard-predictions
setup.

Proof. Let us show that Mark0 is (1, 2Hk, 1)-competitive. Consider a request sequence
with optimum cost, Opt, during which Mark0 performs m phases and receives η0 incorrect
predictions 0 and η1 incorrect predictions 1. Let ci denote the number of executions of line 12
during phase i. Combining Observations 2 and 3, the expected cost of Mark0 is at most

OPT + η1 +

m
∑

i=1

ciHk.

It is enough to show that
∑m

i=1 ci ≤ 2η0 holds.
Consider the moment during phase i when line 12 is executed for the cith time. At this

moment, there are k 0-pages in cache: some of them belong to S(i), others were loaded
during this phase. Moreover, there are ci − 1 unmarked pages from S(i) already evicted,
these are also 0-pages. By Observation 1, at least ci of these pages must have an incorrect
prediction of 0. This prediction was received either during phase i− 1 (if it is an unmarked
page from S(i)), or during phase i (all other cases). Therefore, denoting η0(i) the number
of incorrect predictions 0 received during phase i, we have

∑

i

ci ≤
m
∑

i=1

(

η0(i− 1) + η0(i)
)

≤ 2η0,

which concludes the proof.

10



4 Algorithm with phase-predictions

In this section, we consider the phase-predictions setup and give a randomized algorithm,
Mark&Predict. The idea of this algorithm is to follow the classical Mark algorithm
except that, instead of evicting a page uniformly at random among the set of unmarked pages,
we select a 1-page if the cache contains one. We provide two analyses on the performance of
Mark&Predict, which differ on the bound of the γ parameter, the second bound providing
an improvement for large values of η1.

Algorithm 2 Mark&Predict Eviction Strategy

1: mark all pages in cache
2: for i = 1 to n do

3: if ri is not in cache then

4: if all pages in cache are marked then ⊲ Start of a new phase
5: unmark all pages

6: if there is an unmarked 1-page then

7: evict an unmarked 1-page chosen uniformly at random
8: else

9: evict an unmarked 0-page chosen uniformly at random

10: bring ri into cache

11: mark ri

The following observation is used in both proofs to estimate the value of η0.

Observation 5. Consider a phase with c new pages. If ℓ ≤ c of the 1-pages present at the
beginning of the phase were not requested during the phase, then precisely z = c − ℓ pages
had incorrect 0-predictions at the beginning of the phase.

Proof. Let S denote the set of 0-pages and L the set of 1-pages that were present at the
beginning of the phase. Denote by z the number of pages in S which were not requested
during this phase, so their predictions at the beginning of the phase were incorrect. During
the phase k = c+ (|L| − ℓ) + (|S| − z) distinct pages were requested. Since |S|+ |L| = k, we
get z = c− ℓ.

We first provide an analysis which also holds if an arbitrary 1-page is evicted at Line 7,
in a deterministic manner, say using LRU.

Theorem 3. Mark&Predict is a randomized (2, Hk, 1)-competitive algorithm for the
phase-predictions setup.

Proof. We use standard arguments for the competitive analysis of the randomized paging
algorithm, MARK [20], using terminology from the textbook by Borodin and El-Yaniv [10].
We first consider the case where all predictions are correct. Pages that arrive are always
marked, so they are never evicted in the current k-phase. Thus, the number of 1-pages
that arrive in the current phase will be the number of 1-pages in cache at the beginning of
the next phase. If all predictions in a phase are correct, the number of new pages in the
next k-phase equals the number of 1-pages at the beginning of that phase, and the new pages
will replace those 1-pages. There will be no faults on the 0-pages. Let ci be the number
of new pages in the ith k-phase and m be the total number of phases. Since the algorithm
faults only on new pages, it faults

∑m

i=1 ci times. We now turn to Opt. During the i − 1st
and ith k-phases, at least k+ ci distinct pages have been requested. Since Opt cannot have
had more than k of them in cache at the beginning of phase i − 1, it must have at least ci
faults in these two phases. Considering the even phases and the odd phases separately and
taking the maximum, Opt must fault at least 1

2

∑m

i=1 ci times. This proves 2-consistency.
As long as 1-pages are evicted, the faults are charged to Opt (if it is a correct prediction)

or to η1 (if the prediction is incorrect). Since Opt is at least 1/2 times the total number of
new pages, this gives a contribution of at most 2Opt+η1.
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If the algorithm runs out of pages with 1-predictions to evict, there are only 0-pages from
the previous phase remaining. For each new page processed after this point, there is an
incorrect 0-prediction. Let zi be the number of new pages causing a 0-page to be evicted in
Phase i. These new pages, causing evictions of pages with 0-predictions, arrive after the new
pages that evicted pages with 1-predictions. The number of 1-pages present in the cache at
the start of phase i is ci − zi.

We can assume that all new pages arrive before any of the old pages, as this only increase
the algorithm’s cost. When the first new page evicting a 0-page arrives, there are k−(ci−zi)
pages from the previous phase still in cache and these k − (ci − zi) pages are all 0-pages.
When the first old page arrives, there are k − ci pages from the previous phase in cache, so
the arriving page has a probability of k−ci

k−(ci−zi)
of still being in the cache.

Consider the probability that the jth old page (in the order they arrive in this phase) is

in cache the first time it is requested in the ith phase. This probability is k−ci−(j−1))
k−(ci−zi)−(j−1) ,

so the probability that there is a fault on it is zi
k−(ci−zi)−(j−1) . Hence the expected number

of faults in Phase i due to incorrect 0-predictions is at most

zi +

k−ci
∑

j=1

zi
k − (ci − zi)− (j − 1)

= zi(1 +Hk−ci+zi −Hzi) ≤ ziHk−ci+zi .

By Observation 5, the number of pages with incorrect 0 prediction at the beginning of the
phase i is zi. So, this sum over all phases is at most Hkη0.

The total number of faults is at most 2Opt+Hkη0 + η1.

We provide another analysis of Mark&Predict which exploits the uniformly-random
selection of an unmarked 1-page to evict in line 7, and improves on the bound from Theorem 3
for larger values of η1.

Lemma 1. Consider a phase with c new pages, such that Mark&Predict starts with η0
and η1 pages with incorrect predictions 0 and 1 in its cache. The expected cost incurred by
Mark&Predict is at most

c
(

Hη1+c −Hc + 1
)

+Hk η0.

Proof. Each phase starts at line 5 by unmarking all pages. We denote L the set of 1-pages
contained in the cache at this moment. Note that any unmarked 1-page evicted at line 7
always belongs to L. We analyze two parts of the phase separately: (a) the first part when
there are still unmarked 1-pages in the cache and evictions are done according to line 7 and
(b) when all unmarked 1-pages are evicted and evictions are done by line 9.

Part (a) Marked pages are always in cache, therefore we only need to count page faults
when an unmarked page ri is requested. Let ca ≤ c denote the number of new pages to
arrive during the part (a). Without loss of generality, we can assume that all of them arrive
in the beginning. There are three possibilities:

• ri is new: Mark&Predict incurs a cost of 1.

• ri is not new and was a 0-page (i.e., the previous prediction on the page ri is 0):
Mark&Predict incurs a cost of 0 (all such pages are in cache now)

• ri is not new and was a 1-page: Mark&Predict incurs a cost of ζi in expectation,

where ζi = ca/(|L| − (j − 1)) if this was the j-th page from L being marked. This follows by
an argument similar to the classical analysis of Mark, as in the proof of Theorem 3: The

probability that ri is in cache is |L|−ca−(j−1)
|L|−(j−1) , implying that the probability that ri is missing

from the cache is ca/(|L| − (j − 1)).
Therefore, our expected cost during part (a) is at most

ca +

|L|−ca
∑

j=1

ca
|L| − (j − 1)

= ca(1 +H|L| −Hca).

At the end of the part (a), we have precisely ca pages in L that are no longer in the cache,
because part (b) starts only if there are more new pages in the phase than pages in L that are
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never marked. All the pages from L that are marked at the end of the phase had incorrect
predictions, so we have η1 ≥ |L| − ca implying |L| ≤ η1 + ca. Therefore, our expected cost is
at most

ca(Hη1+ca −Hca + 1) ≤ c(Hη1+c −Hc + 1).

Part (b) This part never happens if c is the number of pages in L with correct prediction
1, i.e., those left unmarked until the end of the phase. If c is higher, then there must have
been some pages with incorrect prediction 0. Without loss of generality, we can assume that
all c− ca new pages are requested in the beginning of part (b). Again, we only need to count
page faults due to requests ri where ri is unmarked. We have the following cases:

• ri is new: Mark&Predict incurs a cost of 1,

• ri ∈ L: Mark&Predict incurs a cost of 1 because all unmarked pages from L are
evicted by the end of part (a),

• ri /∈ L: Mark&Predict incurs a cost of ζi.

Similar to the previous case, we have ζi = (c− ca)/(k− |L|− (j− 1)) if this is the jth 0-page
being marked, because the phase starts with k−|L| 0-pages in cache and they are not evicted
during part (a). By Observation 5, each arrival of a new page and each request to a further
unmarked page in L increases η0 by 1. Moreover, we have c − ca ≤ η0. Therefore, our cost
is at most

η0 +

k−|L|−(c−ca)
∑

j=1

η0
k − |L| − (j − 1)

≤ η0(Hk −Hη0
+ 1) ≤ η0Hk.

We next give a second upper bound on the (α, β, γ)-competitiveness of Mark&Predict,
which is stronger for large values of η1.

Theorem 4. Mark&Predict is a randomized
(

2, Hk, γ(η1/Opt)
)

-competitive algorithm
for the phase-predictions setup, where

γ(x) = 2x−1 (ln(2x+ 1) + 1) .

Proof. Let ci, η1(i), η0(i) be the numbers of new pages, 1-errors, and 0-errors in ith phase,
respectively. We have Opt ≥ 1

2

∑

i ci. Then, by the preceding lemma, the cost of the
algorithm is at most

∑

i

(

ci
(

Hη1(i)+ci −Hci + 1
)

+Hk η0(i)

)

≤
∑

i

ci

(

ln
(η1(i)

ci
+ 1

)

+ 2

)

+Hk η0,

where the sum is over all phases. The inequality above holds becauseHη+c−Hc ≤ log(η+c
c
)+

1. By the concavity of logarithm, the worst case happens when η1(i)/ci is the same in all the
phases, i.e., η1(i)/ci = 2η1/Opt for all i. Therefore, the expected cost of Mark&Predict

is at most

2Opt

(

ln(
2η1
Opt

+ 1) + 2

)

+Hkη0 ≤ 2Opt+Hk η0 +

(

ln(
2η1
Opt

+ 1) + 1

)

2Opt

η1
η1.

5 Lower bounds

In this section, we provide lower bounds on the possible values of α, β and γ for (α, β, γ)-
competitive algorithms, in both setups. These bounds imply that the results of the previous
two sections are essentially tight.

We first consider deterministic algorithms.

Theorem 5. In both the discard-predictions and phase-predictions setups, there is no deter-
ministic (α, β, γ)-competitive algorithm such that either α+ β < k or α+ (k − 1) · γ < k.
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Proof. Consider any deterministic paging algorithmAlg, and the following two paging prob-
lem instances on a universe of k + 1 pages, each with n requests, where n > k can be ar-
bitrarily large. When there are only k + 1 pages used, the concept of k-phases for marking
algorithms [41] is used to show that LFD faults on the first occurrence of each of the first k
pages requested in the first phase and on the first page in each phase after that, for a total
of Opt ≤ k +

⌈

n−k
k

⌉

faults. Ignoring the first and last phases, LFD always evicts the only
page not present in that phase, so correct predictions in the discard-predictions and phase-
predictions setups are identical, with zeros for every request, except for the last occurrence
of the page not requested in the next phase. (If the last phase contains fewer than k different
pages, there could be more than one correct 1-prediction in the next to last phase, but one
is sufficient. In the last phase, the correct predictions would all be zeros.)

In both instances, after k requests, one to each of k different pages, the unique page
absent in the cache of Alg is always requested. This leads to a cost of n for Alg, since it
faults on all requests.

In the first instance, all predictions are 0. Thus, η0 ≤ Opt−k and η1 = 0. Writing
Alg ≤ αOpt+βη0 + γη1, we obtain that

n = Alg ≤ α ·

(

k +

⌈

n− k

k

⌉)

+ β ·

⌈

n− k

k

⌉

.

Taking the limit as n goes to infinity, one must have

α+ β ≥ k.

In the second instance, all predictions are 1. Thus, η0 = 0 and η1 ≤ n− (s− k). Writing
Alg ≤ αOpt+βη0 + γη1, we obtain that

n = Alg ≤ α · s+ γ · (n− (s− k)).

Since α ≥ 1, α ≥ γ. Then, s ≤ k +
⌈

n−k
k

⌉

implies that

n = Alg ≤ α ·

(

k +

⌈

n− k

k

⌉)

+ γ ·

(

n−

⌈

n− k

k

⌉)

.

Taking the limit as n goes to infinity, one must have

α+ (k − 1) · γ ≥ k.

We now focus on randomized algorithms. The next result first considers a single instance
with different predictions to exhibit two trade-offs on the possible competitive ratios, and
the second trade-off is then improved using a different adversarial strategy.

Theorem 6. In both the discard-predictions and phase-predictions setups, there is no (α, β, γ)-
competitive randomized algorithm such that either α+β < Hk or α+(k− 1) ·γ < Hk, where
Hi = ln i+O(1) is the i-th harmonic number.

Proof. Consider any randomized paging algorithm Alg, and two paging problem instances
on a universe of k + 1 pages. In order to simplify the mathematical expressions, we assume
that the instance starts with a full cache with predictions associated to each page. Since
there is an additive constant in the definition of the competitive ratio, this does not affect
the result.

In the first instance, for each request, one of the k + 1 pages is chosen uniformly at
random, with a prediction of 0. This leads to an expected cost of approximately n/(k + 1)
for Alg, as the probability that the requested page is the only one absent from the cache of
Alg is 1/(k + 1).

The expected optimal cost is equal to the expected number of k-phases in the instance.
The expected length of a phase is, by the Coupon Collector problem, (k + 1)Hk+1 − 1 =
(k + 1)Hk, where Hi is the i-th harmonic number. So E[Opt] = n/((k + 1)Hk).

For the discard-predictions setup, this means that η0 = Opt and η1 = 0 as each optimal
eviction is equivalent to a prediction error.
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For the phase-predictions setup, this also means that η0 = Opt and η1 = 0 as each phase
contains a single erroneous prediction, on the last request of the page not requested in the
following phase.

Hence, we obtain that, for both setups,

n

k + 1
= E[Alg] ≤ αE[Opt] + βE[η0] + γη1 ≤ (α+ β) ·

n

(k + 1)Hk

,

so
α+ β ≥ Hk.

We note below that replacing the predictions from 0 to 1 does not lead to the target bound.
Indeed, consider an instance such that, at each round, one of the k+1 pages is requested at
random, with a prediction of 1. This again leads to an expected cost of n/(k + 1) for Alg

and n/((k+1)Hk) for Opt. This means that η1 ≤ n and η0 = 0 for both setups. Hence, we
obtain that, for both setups,

n

k + 1
= E[Alg] ≤ αE[Opt] + βη0 + γE[η1] ≤ (α+ (k + 1)Hk · γ) ·

n

(k + 1)Hk

,

so
α+ (k + 1)Hk · γ ≥ Hk.

In order to improve this bound, we keep a universe of k + 1 pages and build an instance
phase by phase, based on the cache C of an optimal solution before the start of the phase.
The first request is the page p0 not in C. Then, we consider a uniformly random permutation
σ1, . . . , σk−1 of k − 1 among the k elements of C. The phase will then be described as a
composition of blocks of requests, where the ith block contains i + 1 page requests: p0 and
the σj for j ≤ i. For instance, if the permutation is (a, b, c, d, e), the blocks will be:

p0a, p0ab, p0abc, p0abcd, p0abcde.

Each block is furthermore repeated several times before requesting the next block to ensure
that the cache of any sensible algorithm contains the pages inside a block afterwards.

We now compute a lower bound on the expected cost of any algorithm on such a sequence.
Before the first block, p0 is contained in the cache, so the probability that requesting a incurs
a cache miss is 1/k, as, except p0, one of the k other pages in the universe incurs a cache
miss. Similarly, the probability that the second block incurs a cache miss is 1/(k − 1), and
the total expected number of cache misses after the last block is Hk − 1. We now notice that
we can also charge one eviction for p0 at the start of the phase. Indeed, after the previous
phase was finished, the algorithm cache must contain the k pages of the last block, to avoid
suffering too many evictions. Therefore, its cache at the start of the phase matches the one
of Opt so does not contain p0. So the algorithm cost is at least Hk per phase while Opt’s
is one per phase.

We now describe predictions: all requests come with a prediction 0 except the last itera-
tion of the last block where all k requests have a prediction 1.

For the discard-predictions setup, the zero-prediction are correct as these pages are re-
quested again in the same phase, and k − 1 one-predictions are wrong on the last iteration
as only a single page should be evicted, so η0 = 0 and η1 = k − 1 per phase.

For the phase-predictions setup, only the last iteration counts towards the error, and a
single page will not appear in the next phase so we also have η0 = 0 and η1 = k − 1 per
phase. Therefore, generalizing to all phases, we have

Hk = E[Alg] ≤ αE[Opt] + βη0 + γE[η1] ≤ α+ (k − 1) · γ.

The previous result shows a subconstant lower bound on γ (≈ 1
k
ln k) for a logarithmic

value of α (up to O(log k)), and we complement it by showing that γ is lower bounded by a
constant if we want to achieve α = 1.

Theorem 7. There is no (1, β, γ)-competitive randomized algorithm such that γ < 1/7 for
the discard-predictions setup or γ < 1/2 for the phase-predictions setup.
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Proof. We consider a universe of k + 1 pages. We construct an instance composed of m
rounds of k − 1 requests, m being a large integer. At the start of each round, request the
page 1, 2 or 3 with equal probability associated to a prediction 1. Then, all pages from 4 to
k + 1 are requested with a prediction 0.

An optimal algorithm never evicts the pages 4 to k + 1 and needs to evict a single page
per phase, where phases are defined as for marking algorithms. Any online algorithm has a
probability at least 1/3 to perform an eviction at each round: either one page among {1, 2, 3}
is not in the cache at the start of the round, or another page is absent which enforces an
eviction.

The expected number of rounds in a phase is equal to the expected length of a phase
of a uniformly random request sequence over 3 pages and k = 2, which is 3H2 = 4.5. So
E[Opt] = m/4.5.

We now focus on the prediction errors. First, note that η0 = 0 in both setups: the
pages predicted 0 are requested in every phase and should never be evicted by an optimal
algorithm.

Then, we have E[η1] = m−E[Opt] = 3.5m/4.5 in the discard-predictions setup. Indeed,
the pages 1, 2 and 3 combined are predicted 1 a total of m times, are never predicted 0 and
Opt only evicts these three pages. So there is an error when such a page is not evicted by
Opt before its subsequent request.

In the phase-predictions setup, there is one error per phase, for the last prediction of the
unique page among {1, 2, 3} which is both requested in that phase but not the following one.
Therefore, E[η1] = m/3H2 = m/4.5.

Therefore, we have:

E[Alg] ≤ 1 · E[Opt] + γE[η1]

γ ≥
E[Alg]− E[Opt]

E[η1]

γ ≥
m

E[η1]
·

(

1

3
−

1

3H2

)

≥
m

E[η1]
·

(

1.5− 1

4.5

)

≥
m

9E[η1]

So, in the discard-predictions setup, we get E[Alg] ≥ 1/7 and for the phase-predictions
setup, we obtain E[Alg] ≥ 1/2.
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