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Abstract
Wepropose aminimal set of commonly acceptable principles to consistently formulate
amortization schedules in accordance with different contractual clauses. Our goal
is bringing to the fore premises that are sometimes left implicit, and yet seem to
draw a wide consensus in practice. We demonstrate by means of examples how these
principles may be used to deal with risk or financial innovations, and to fill gaps arising
from unforeseen contingencies.
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1 Introduction

The repayment of a loan has two goals: returning the borrowed sum (the principal) and
providing an interest payment to the lender. There exists a variety of reimbursement
schemes, attesting both human ingenuity and a kaleidoscope of practical needs. When
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the amount of the principal is sizable, it is often convenient to arrange its repayment
over multiple installments that allow a gradual reimbursement of the debt.

Amortization is a time-honored and well-known method to spread the reimburse-
ment of a loan over a sequence of payments. The typical example is the fixed-rate
constant-payment 30-yearmortgage, cemented inU.S. as the default option for finance
housing after the Great Depression (Green 2013). In British English, amortization has
been understood as “The action or an act of paying off a debt, liability, etc., gradually
by making regular repayments over a period of time” at least since the early XIX
century (OED Online 2022).

From a technical point of view, the amortization method derives a schedule of
installments and separate each of them into a principal component and an interest
component. A well-formed amortization plan ensures that the sum of the principal
components paid over time matches the borrowed sum, and thus extinguishes the
debt. The etymology of amortization, from the Vulgar Latin admortire (to extinguish),
relates to the outstanding debt being progressively decremented to zero.

Amortization is not the only repayment scheme where the principal is gradually
reimbursed and the debt is fully repaid. The defining feature of amortization as “a
method of extinguishing a debt” is that “any payment over what is needed to pay
interest on the principal [is] to be applied at once toward liquidation of the debt. As
the debt is being paid off, a smaller amount goes toward the payment of interest.”
(Richardson and Miller 1946, pp. 111–112).

Besides the standard textbook example of a fixed-rate constant-payment amortiza-
tion plan, there is a huge variety of clauses that may affect a schedule. For instance, the
interest rate may be variable (or adjustable) according to predetermined rules, whose
effect is not known at the time of drawing the payment schedule: this may prevent con-
stant payments. Variable-rate amortization plans cover a significant amount of loans
in many countries. Other common occurrences include, e.g., a stoppage in payment; a
capped rate kicking in; a switch from fixed-rate to variable-rate; a discount on either
principal or interest payments; adjustable payment dates.

We argue that there is a widespread consensus on the proper amortization schedule
for each of these (and many other) variants. This paper modestly set forth a minimal
set of generally acceptable principles to consistently formulate amortization sched-
ules in accordance with many different contractual clauses, including possible future
innovations.

We emphasize that our proposal for a set of generally acceptable principles con-
cerns only amortization schedules. One may design gradual repayment schemes based
on alternative assumptions, or even devise alternative interpretations for a series of
multiple payments matching an amortization plan. These formulations are outside the
scope of this paper; see for instance (Pressacco et al. 2022) for issues concerning the
interpretation of repayment schemes in legal controversies.

However, we do claim that our proposal matches a general consensus about what
characterizes an amortization plan.We offer a set of principles that is compact, general,
and simple. It is compact because it contains four principles. It is general because, as
the paper demonstrates, it covers many different occurrences. It is simple because it
is formulated in a plain language easily understood by non-mathematicians such as
customers or courts. Indeed, using plain language contributes to generality by glossing
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over notation and details. The paper turns to a technical language when it exemplifies
the application of the principles in specific cases.

From now on, we speak of generally acceptable principles (GAP) for financial
amortization.1 We state the GAP in Sect. 2, and demonstrate them by revisiting two
standard fixed-rate amortization plans. Section 3 applies GAP to situations where
the amortization schedule may change because of future events mentioned in the
contractual conditions; e.g., when the rate is variable or when flexible payments are
allowed. Section 4 expands the approach to situations where unexpected occurrences
may induce the parties to restructure the amortization plan; e.g., after a temporary
stoppage in payments. Section 5 exemplifies the use of GAP to draw an amortization
plan tailored to specific arrangements; finally, we test the boundaries of GAP and
exhibit for each of the four principles an amortization contract that violates it—our
implicit claim is that these counterexamples are contractually feasible but extremely
unlikely to occur in practice.

2 Generally acceptable principles for amortization

Financial amortization refers to a contract that spreads the reimbursement of a loan
over a sequence of payments at different time points. The underlying contract is often
exemplified by an amortization plan, that lists for each time point the due payment and
its subdivision into a principal and an interest component, along with the outstanding
debt. Typically, the amortization contract presumes at least twopaymentswith (strictly)
positive principal components: consequently, the loan is reimbursed gradually.

When it is available, the amortization plan summarizes the relevant financial con-
sequences. However, amortization involves a large set of contractual conditions to
determine parties’ obligations. Some are explicit and easily understood: e.g., the lender
usually sets periods of equal length or quotes an interest rate. The parties may bargain
over the time intervals between payments or the size of each interest component, but
similar conventional clauses are usually adopted for the sake of simplicity.

A second set of conditions are also explicit, albeit potentially less transparent to the
borrower: e.g., the constant-payment amortization plan associated with a variable-rate
loan is subject to future revisions, whenever the underlying rate changes. The lender
may provide a few schedules under alternative scenarios as illustrative examples, but
for practical purposes the original amortization plan is unlikely to stay unchanged ex
post.

A contractual condition may often be viewed as a function that is known at the
time of signing the contract. It is convenient to distinguish three cases. The first, and
simplest, is the casewhen the values of the function inputs are all known and, therefore,
its output is also known. The standard constant-payment schedule fits this first case.

The second case is when at least one key input will be known in the future, thus
the output is not (yet) known. Amortization plans with variable rates that are subject
to future events fit the second case. Under additional restrictive assumptions, one

1 There is no connection with the Generally Accepted Accounting Principles (GAAP), usually associated
with the Accounting Standards Codification (ASC) published by the Financial Accounting Standards Board
(FASB).
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might reconfigure the first case as the class of deterministic amortization schedules
and the second case as the class of aleatory schedules. This paper need not pursue this
approach.

The third case is residual, and covers the possibility of (contractually) unfore-
seen contingencies that may affect amortization: e.g., how to deal with a stoppage
in payments or, more generally, with circumstances leading to a restructuring of the
amortization plan.

In general, unforeseen contingencies lead to incomplete contracts. There is a sizable
economic literature studying incomplete contracts, viewed as agreements that are
renegotiated whenever a contingency (unforeseen by at least one party) arises (Tirole
2009). The incompleteness may stem from different causes, ranging from the cost of
writing or tracking contingencies (Dye 1985) to the differential awareness of parties
over all possibilities (Filiz-Obay 2012; Zhao 2011).

This paper focuses on identifying generally acceptable principles that are used to
fill the gaps in incomplete amortization contracts. Following the legal literature, we
emphasize that the parties are free to contract over which default rules they wish to
use (Ayres and Gertner 1989). The generally acceptable principles distill a convenient
checklist of fallbacks for a great variety of gaps in the contractual provisions.2 Financial
innovations may over time lead to revise these principles or change the consensus
supporting them. We demonstrate a few principles that suffice to revise or complete
amortization plans affected by unforeseen contingencies.

We restrict attention to (financial) amortization, defined as gradual loan reimburse-
ment where at least two payments are associated with (strictly positive) principal
components; that is, the original debt undergoes a partial reduction before extinction.
In particular, we do not consider lump-sum repayments or perpetuities.

We assume that the contract is clearly formulated and well understood by both
parties; that is, the key values or the rules by which they can be derived are mutually
known. For example, if the rate of interest i is fixed, then its value is given; if it is vari-
able, the rules bywhich the interest is computed in each period are specified. Similarly,
either the maturity (the time at which the debt is fully repaid) or the circumstances to
achieve it are given. The assumption that the contract is not ambiguous is a minimal
requirement for its legal validity. Nonetheless, we imagine that the contract may be
incomplete, and unforeseen contingencies (not covered by its provisions) may occur.

Wepropose the followingminimal set ofGenerallyAcceptable Principles (GAP) for
financial amortization as a compact checklist: (a) to recognize when a loan repayment
can be framed as amortization, and (b) to complete the amortization plan, filling gaps
in the explicit contractual clauses.3

A1. The maturity is finite.
A2. The sum of the principal components equals the initial outstanding debt.
A3. The interest component matures at the time of payment, and is computed over

the outstanding debt for the last elapsed period between consecutive maturities.

2 That is, the GAP are meant to fill some gaps—pun intended.
3 We are aware that the norms of a specific country may impose stronger restrictions, but the legalities
of different countries are out of the scope of this paper. Yet, to the best of our knowledge, the GAP are
compatible with the legal frameworks currently in force across the European Union.
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A4. Each payment is first attributed to the interest component; the residual is applied
to the outstanding debt.

We opt for a verbal format over a mathematical formulation for two reasons. First, it
is shorter andmore widely accessible to users. Second, because a full description of all
the unforeseen contingencies is by definition unattainable, it is preferable to compress
information and deliver principles in a form that is open to interpretation or revision in
face of the unexpected. This implies that we cannot claim that GAP cover any possible
eventuality; more modestly, we believe that they provide effective guidelines toward
drawing proper amortization plans, although they may not be sufficient to pinpoint a
unique solution.

For instance, consider A1. Apparently trivial, it covers the cases where debt restruc-
turing include a change in the number of payments or, more generally, in its maturity,
possibly subject to random events. It states that any gap filling must ensure that the
maturity remains finite: f.i., if the number of payments is a random variable, its sup-
port must be finite. (We stay clear from theoretical subtleties such as “almost surely”
when they carry no practical import.) A similar interpretation applies for A2: a debt
restructuring may change the number of principal payments from what was originally
planned, but it must ensure that ex post the debt is fully repaid,4

Principles A3 and A4 state how payments are accounted for. The interest is con-
tractually determined, and comes due at the time of payment so that it is possible to
decompose the payment into two components. Using mathematical notation, a pay-
ment P is decomposed into an interest I and a principal C so that P = I + C . At
the time of payment, there must be enough information to determine two of the three
values for P, I ,C . Moreover, the defining feature of amortization is usually under-
stood as involving the preliminary deduction of interest from the current payment, and
the imputation of the difference toward reducing the outstanding debt. This applies
even to the case of negative amortization, when the current payment does not cover
the interest: therefore, the principal component is negative and the outstanding debt
becomes higher.

Example Consider a standard fixed-rate constant-payment amortization plan for an
amount of 1000 over four equal-length periods, at a constant interest rate i = 5%.
(It is understood that i is the effective interest rate per period.) The constant payment
is P = 1000/an i with n = 4 and i = 0.05; that is, P = 282.01 after rounding
to the second digit.5 The amortization plan is given in Table 1, where the columns
respectively carry the (end of) period t , the payment Pt , the interest component It , the
principal component Ct , and the outstanding debt Dt = Dt−1 − Pt (that is, after the
payment Pt has taken place).

This example has no unforeseen contingencies. The amortization plan satisfies the
four GAP: A1 holds because there are four payments; A2 holds because

∑4
t=1Ct=D0,

4 In the literature, A2 is known as the elementary equivalence whereas the financial equivalence states
the equality between the initial outstanding debt and the present value of all payments. We argue that the
elementary equivalence is a simpler and thus better candidate for a generally acceptable principle.
5 Throughout the paper, we carry out exact computations but show numbers rounded to the second digit.
This explains seeming incongruities such as D3 − C4 �= D4 in Table 1.
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Table 1 A constant-payment
amortization plan

t Pt It Ct Dt

0 – – – 1000.00

1 282.01 50.00 232.01 767.99

2 282.01 38.40 243.61 524.38

3 282.01 26.22 255.79 268.59

4 282.01 13.43 268.58 0.00

Table 2 A constant-principal
amortization plan

t Pt It Ct Dt

0 – – – 1000

1 300.00 50.00 250.00 750.00

2 287.50 37.50 250.00 500.00

3 275.00 25.00 250.00 250.00

4 262.50 12.50 250.00 0

up to inconsequential rounding; A3 holds because It = i Dt−1; and A4 holds because
Ct = Pt − It .

The key point goes in the opposite direction: the mere contractual clauses need to
be complemented by the GAP to fully identify the amortization plan. For instance,
A3 justifies the numbers in the third column and A4 those in the fourth column. The
GAP summarize the implicit rules that, along with the contractual clauses, are used
to draw up the amortization plan. The GAP are necessary to fill the gap between the
contractual clauses (n = 4 and i = 0.05) and the full amortization schedule.

Similarly, theGAPallowan immediate derivation of the amortization plan assuming
constant principal components. Given n = 4, A2 implies Ct = D0/n = 1000/4 =
250 at the end of each period t . Then, using A3 and A4 as before, the amortization
plan shown in Table 2 obtains.

We claim that the GAP complement the contractual conditions (e.g. i , n and the
sequence of payments {Pt }) in order to derive the amortization plan. While the con-
tractual conditions are by necessity explicit, the GAP are often implicitly understood.
Their validity and applicability rest on general consensus. For standard amortization
plans, their usage is widespread and so ingrained in common professional practice
that there is little need to make them explicit.

This is no longer true when the amortization contract is subject to random events
or, more generally, to unforeseen contingencies that call for gap-filling rules. For con-
venience, we distinguish two cases. We speak of riskswhen the contractual provisions
include a variety of (possibly, random) events that are fully accounted for; for example,
when the interest rate is variable because it is linked to some market rate. We speak of
(unforeseen) contingencies when some actual occurrence is not covered by the con-
tractual provisions; for example, when the possibility of a stoppage in payments is not
explicitly mentioned. The next two sections demonstrate the reach of GAP in the case
of risks and contingencies, respectively.
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3 GAP in face of risks

The fixed-rate constant-payment amortization plan is a time-honored benchmark,
but financial innovation has introduced a variety of amortization contracts. They are
usually spurred by ingenious efforts to encourage the debtor’s solvency without jeop-
ardizing the lender’s return. The balance between these motives is affected by the
(exogenous) market conditions and the (endogenous) parties’ obligations.

A common theme is to embed the amortization contract with an adequate flexibility
to face risks; that is, to deal with future events that are contractually described but not
yet knownat the timeof signing the contract. For instance, the partiesmay agree that the
rate is variable and face the risk that the payments are not constant. In general, dealing
with risks imply that the original amortization plan is subject to changes associated to
specific (possibly, aleatory) events.

Because financial innovation accommodates emerging needs, it is often the case
that new provisions are grafted onto the fixed-rate constant-payment standard without
a full and explicit description of all possible consequences. We claim that the GAP
are usually (and implicitly) invoked to fill the gaps, and help revise the amortization
plan whenever a risk occurs. We demonstrate this over two common amortization
contracts: First, the case of flexible paymentswhere the borrower is given some latitude
in choosing when and how much to pay back; second, two variants for the case of
variable rates.

3.1 Flexible payments

Consider an amount of 1000 to be repaid over 60 monthly payments, at a nominal
interest rate i (12) = 6%. Assuming a flexible-payment provision, the borrower is
allowed to amortize the full debt under the following agreement: pay back 10% of the
principal within 1 year, 60% of it within 3 years, and all of it within the maturity of 5
years. Interest payments are due monthly.

In a constant-payment amortization plan, given an effective monthly interest rate
i = 0.5%, the monthly payment is P = 1000/a60 0.005 = 19.33 and a standard
amortization schedule may be easily drawn ex ante and attached to the contract; see
Table 3.

The flexible-payment provision relaxes the obligation to deliver constant payments,
requiring only that a given amount Et of the principal be reimbursed by the end of
month t . (The letter Et is a mnemonic for the extinguished debt at time t .) Continuing
with our example, the amount Et for three specific months (t = 12, 36, 60) is
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Table 3 Another
constant-payment amortization
plan

t Pt It Ct Dt

0 – – – 1000

1 19.33 5.00 14.33 985.67

. . . . . . . . . . . . . . .

11 19.33 4.27 15.07 838.34

12 19.33 4.19 15.14 823.20

13 19.33 4.12 15.22 807.98

14 19.33 4.04 15.29 792.69

. . . . . . . . . . . . . . .

36 19.33 2.27 17.07 436.20

37 19.33 2.18 17.15 419.05

. . . . . . . . . . . . . . .

60 19.33 0.10 19.24 0.00

E12 =
12∑

t=1

Ct = 100,

E36 = E12 +
36∑

t=13

Ct = 600,

E60 = E36 +
60∑

t=37

Ct = 1000.

(1)

It may be checked that the constant-payment plan would reimburse E ′
12 = 176.80 by

t = 12 and E ′
36 = 563.80 by t = 36. In our example, therefore, the flexible-payment

provision is less burdensome because it allows the borrower a partial right to postpone
the principal repayment. This comparison is irrelevant in the following discussion.

The borrower has the option of repaying the initial debt using any sequence of
principal components that satisfies (1) and can adjust the monthly payments as he6

sees fit until before the three contractually specified due dates. This borrower’s option
adds a risk in the contract, and precludes drawing the ex ante amortization plan at
t = 0. Nonetheless, the GAP can be used to derive the amortization plan as time
proceeds and the borrower delivers his payments.

For instance, suppose that the borrower avails himself of the option at its fullest
and delays his principal payments as much as possible. Therefore, C12 = 100, C36 =
E36 − E12 = 500 and C60 = E60 − E36 = 400 are the only principal payments made
to the lender, while Ct = 0, for t �= 12, 36, 60.

Let us reviewhow theGAP can be used to deliver the amortization plan, and the total
payments due by the lender. First, note that A1 holds because there are at most sixty
payments, even though their exact number is not known at the time of the contract.
Similarly, A2 is satisfied because of (1).

6 We assume a male borrower and a female lender.
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Table 4 Ex post amortization
plan with flexible payments

t Pt It Ct Dt

0 – – – 1000

1 5.00 5.00 0 1000

. . . . . . . . . . . . . . .

12 105.00 5.00 100 900

13 4.50 4.50 0 900

. . . . . . . . . . . . . . .

36 504.50 4.50 500 400

37 2.00 2.00 0 400

. . . . . . . . . . . . . . .

60 402.00 2.00 400 0

Because the three nonzero principal payments are C12 = 100, C36 = 500 and
C60 = 400,A4 implies that the outstanding debt sequence decreases only at t = 12, 36
and 60. Therefore, D0 = · · · = D11 = 1000; D12 = · · · = D35 = 900; D36 =
· · · = D59 = 400; and D60 = 0. By A3, the corresponding interest components are
It = 1000 · 0.005 = 5 for t = 1, · · · , 12; It = 900 · 0.005 = 4.5 for t = 13, · · · , 36;
and It = 400 · 0.005 = 2 for t = 37, · · · , 60.

Expost, given the borrower’s choice, the amortization schedule is as given inTable 4.
(We use ellipsis when the rows are identical except for t .) Clearly, Pt = It + Ct by
A4.

Analogously, one may use the GAP to deal with different payment at different
times. For instance, if at t = 1 the borrower pays P1 = 7, using A4 we decompose
P1 into I1 = 5 and C1 = P1 − I1 = 2. Then the third line of the amortization plan
would carry D2 = D1 − C1 = 1000 − 2 = 998.

We have discussed one specific example, but there are many variants that confer
different degrees of flexibility in the arrangement of the payments, for either principal
or interest components. A common case is to restructure the amortization by increasing
the frequency of payments while reducing their amounts, for example by splitting
monthly dues into two semi-monthly payments.

3.2 Variable rates

An alternative arrangement calls for a loan to be repaid using a variable rate, where
the interest rate is computed monthly as a function of some contractually given index.
For example, a typical provision for euro-denominated loans is to add a contractually
fixed spread over the EURIBOR (Euro Interbank Offered Rate) for a given maturity.

Consider again an amount of 1000 to be repaid over 60 monthly payments, and
suppose that at t = 0 the nominal interest rate is i (12) = 6%. Changes in the variable
rate lead to changes in the payment schedule. This constitutes a risk that usually
prevents the ex ante firm amortization schedule drawn at t = 0 from staying the same
until the end.
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As mere guidelines, the GAP allow for different arrangements after a change in
the interest rate. This latitude conforms to the precept that the generally acceptable
principles should govern financial innovation by reducing controversies or misunder-
standings, while leaving the parties space to seek whatever solutions fit them best. For
this reason, it is necessary that the amortization contract specifies which convention
applies to remove an ambiguity that may impair its validity.

We discuss the two most common ways to redraw the amortization schedule after
a change in the interest rate. We respectively call them same-principle and same-
principal, for reasons that will be clearmomentarily. The two nicknames sound similar,
but the two conventions carry some differences in the ensuing amortization plan.

Same-principleUnder this convention, after a change in the interest rate, it is assumed
that the interest will no longer change and a new constant-payment plan is recomputed
over the current outstanding debt. The assumption of no future changes is the same
made at the time the ex ante amortization plan was drawn: it is a mere convention used
after any change; hence, the nickname “same-principle”.

At t = 0, the nominal interest rate is i (12) = 6%; therefore, the first payment is
P1 = 1000/a60 0.005 = 19.33. Suppose that, at t = 1, the nominal interest rate goes up
to 6.6%. Under the same-principle convention, the second payment is computed on the
outstanding debt D1 = 1000−C1 = 1000− (19.33− 5) = 1000− 14.33 = 985.67
using the (new) monthly interest rate of 0.0055; this yields P2 = 985.67/a59 0.0055 =
19.61.

The GAP kick in to complete (assuming no future changes) the rest of the new
amortization plan. We have I2 = 985.67 · 0.0055 = 5.42 by A3 and C2 = P2 − I2 =
19.61 − 5.42 = 4.19 by A4. If no future changes occur, all other lines in the new
schedule are drawn as for a constant-payment amortization plan. If, at a future time t ,
the monthly interest changes again to i , then one recomputes Pt = Dt−1/a60−t i and
draws the revised amortization plan from t onwards.

Same-principal Under this convention, after a change in the interest rate, the original
constant-payment plan is ditched but the new schedule is drawn preserving the princi-
pal components of the original plan; hence, the nickname “same-principal”. In simple
words, the columns Ct and Dt from the original plan are cut-and-pasted in the revised
schedule.

This convention preserves a substantial piece of the information provided in the
amortization schedule at t = 0 at the cost of giving up the principle that payments
should be (theoretically) constant. There is no settled consensus on which convention
is preferable, but the same-principal convention shifts all the risk from the variability
of the interest rate exclusively on the interest payments.

Returning to our example, the first payment is still P1 = 1000/a60 0.005 = 19.33
and the sequence of principal components from the original amortization plan verifies
A2. Under the same-principal convention, this sequence is used as the starting point
for the revised amortization schedule. At t = 2, when the monthly interest changes to
0.0055, this is used to recompute the interest component I2 on the outstanding debt
D1. Then, the full payment expected from the borrower is P2 = I2 + C2, where C2
is the same as in the original amortization plan while I2 and thus P2 have changed.
More generally, after a change in the interest rate at time t , the new interest is used to
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compute It on the outstanding debt Dt−1 and Pt = It +Ct , where Ct is still the same
as in the original amortization plan.

4 GAP in face of contingencies

The previous section covers cases where the amortization contract is subject to risks
that are expected and covered by its provisions. This section moves on to deal with
(unforeseen) contingencies, where the GAP may be used to configure the space of
options open to the parties. We leave it understood that an unforeseen contingency
may lead to resolution of the contract or to one party’s default. We focus instead on
examples where the contract is kept alive by revising the initial amortization schedule.
We consider respectively the aftermath of a stoppage in payments, and themore general
case of debt restructuring.

4.1 Stoppage

Suppose that the borrowermisses one full payment at some time τ , so that Pτ = 0. (We
postpone the case where the borrower delivers only a partial payment and Pτ > 0.)
This omission is usually a breach of the amortization plan; we seek to remedy it by
saving the scope of the contract and revising the original schedule. Our discussion is
general, but we emphasize that the legal provisions in some countries may restrict the
set of feasible revisions.

Returning to our simple case, given Pτ = Cτ + Iτ = 0, the borrower needs to
make up both the principal component Cτ and the interest component Iτ . There is a
variety of possible arrangements conforming to GAP. For instance, a penalty such as
a default interest rate i ′ > i may apply to compensate the lender for the borrower’s
delay concerning Pτ .

We illustrate two of the most common options, amenable to the same distinction
(same-principle vs. same-principal) introduced above. For simplicity, we assume that
payments restart one period later, at τ + 1, the underlying amortization is based on
constant payments at a fixed interest rate i , and that the interest rate after the stoppage
stays unchanged.

Same-principle The missing payment is capitalized and rolled over to the outstanding
debt in the next period τ + 1. This is consistent with A4, as discussed at the end of
this subsection. Given Pτ = 0, from the recursive formula for the outstanding debt

Dτ = Dτ−1 · (1 + i) − Pτ (2)

it follows that

Dτ = Dτ−1(1 + i).

The new amortization plan is recomputed for the outstanding debt Dτ from period τ

to the same maturity n in the original contract. For t = τ +1, . . . , n, the new constant
payment is
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Table 5 Ex post amortization
plan, after a stoppage at τ = 12

t Pt It Ct Dt

0 – – – 1000

1 19.33 5.00 14.33 985.67

. . . . . . . . . . . . . . .

11 19.33 4.27 15.07 838.34

12 0 4.19 −4.19 842.53

13 19.79 4.21 15.57 826.96

14 19.79 4.13 15.65 811.30

. . . . . . . . . . . . . . .

36 19.79 2.32 17.47 446.45

37 19.79 2.23 17.55 428.89

. . . . . . . . . . . . . . .

60 19.79 0.10 19.69 0.00

P ′
t = Dτ /an−τ i

For instance, consider an amount of 1000 to be repaid over 60 monthly payments
at the nominal interest rate i (12) = 6%. The amortization plan is given in Table 3.
After a stoppage at τ = 12, with Pτ = 0, the outstanding debt at τ = 12 increases to
D12 = D11 · (1 + i) = 838.34 · 1.005 = 842.53.

The new constant-payment amortization plan that recovers the missing payment
starts at τ = 13 and the new payment is P ′ = 842.53/a60−12 0.005 = 19.79. Table 5
provides the ex post amortization plan, juxtaposing the original schedule until t = 11,
the missed payment in τ = 12, and the revised schedule from t = 13 onward. The
stoppage causes the outstanding debt to increase at τ = 12. Consistent with A4,
because the (null) payment at t = 12 cannot cover the due interest, the residual
applied to the principal component is negative. GAP still hold, as in the previous
example about the same-principle convention.

Same-principal A different option is to return as fast as possible to the constant pay-
ments of the original amortization plan. The quickest route, after Pτ = 0, is to set the
new payment to P ′

τ+1 = Pτ + Pτ+1; we use a prime to denote the values revised after
the stoppage. Indeed, by (2), we have

Dτ+1 = Dτ−1 · (1 + i)2 − Pτ · (1 + i) − Pτ+1.

Given Pτ = 0, this can be rewritten as

D′
τ+1 = Dτ−1 · (1 + i)2 − P ′

τ+1.

Therefore, D′
τ+1 = Dτ+1 if and only if P ′

τ+1 = Pτ · (1 + i) + Pτ+1. With obvious
meaning, we call this the same-principal convention.

Returning to our example, suppose again a stoppage at τ = 12 with Pτ = 0. As
before, the missing payment is capitalized and rolled over to the outstanding debt
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Table 6 Another ex post
amortization plan, after a
stoppage at τ = 12

t Pt It Ct Dt

0 – – – 1000

1 19.33 5.00 14.33 985.67

. . . . . . . . . . . . . . .

11 19.33 4.27 15.07 838.34

12 0 4.19 −4.19 842.53

13 38.76 4.21 34.55 807.98

14 19.33 4.04 15.29 792.69

. . . . . . . . . . . . . . .

36 19.33 2.27 17.07 436.20

. . . . . . . . . . . . . . .

60 19.33 0.10 19.24 0.00

in the next period so that D12 = 842.53. Following the same-principal convention,
the missing payment is recovered entirely at τ = 13 setting P ′

13 = 19.33 · 1.005 +
19.33 = 38.76. The new payment P ′

13 is decomposed into the interest component
I13 = 0.005 · 842.53 = 4.21 and the principal component C13 = D12 − D13 =
842.53 − 807.98 = 34.55. Consistent with A3 and A4, P ′

13 = C13 + I13. Table 6
shows the amortization plan that, from t = 14 onward, repeats the same amounts as
the original plan in Table 3.

Moving beyond the special case of a zero payment, there usually arises an unex-
pected contingency whenever the borrower pays any amount 0 ≤ P < Pτ in some
period τ . The discussion above extends straightforwardly, with a distinction. By A4,
the amount P is applied first to the interest component.

If P < Iτ , then the payment cannot even cover the interest Iτ . Therefore, part of Iτ
must be carried over to subsequent payments and thus the outstanding debt becomes
higher: D′

τ > Dτ−1. We have seen this increase in both examples above, with a zero
payment. This temporary increase in the outstanding debt is usually known as negative
amortizaton.

If P ≥ Iτ , then P is large enough to cover the interest payment in period τ and
thus the outstanding debt is still decreasing: Dτ−1 > D′

τ > Dτ . Therefore, negative
amortization does not occur.

4.2 Restructuring

It is possible to view the revision of the amortization schedule after an (unexpected)
stoppage as an instance of debt restructuring, but we conveniently draw the following
distinction. A stoppage is a discontinuation in payments that comes without a fore-
warning; whereas a restructuring initiates after the borrower signals to the lender that
he expects to face difficulties in meeting his future obligations, with the purpose of
avoiding unforetold interruptions.

For simplicity, we assume that before the payment Pτ comes due, the borrower
informs the lender that he cannot pay it in full at time τ . The parties seek to agree
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Table 7 Longer maturity t Pt It Ct Dt

0 – – – 1000

1 19.33 5.00 14.33 985.67

. . . . . . . . . . . . . . .

11 19.33 4.27 15.07 838.34

12 15.98 4.19 11.79 826.55

13 15.98 4.13 11.85 814.70

. . . . . . . . . . . . . . .

60 15.98 1.00 14.98 185.67

. . . . . . . . . . . . . . .

72 15.98 0.08 15.90 0.00

on a different amortization schedule that is compatible with the borrower’s distress.
Assuming constant payments, two typical arrangements are the following. First, the
parties may extend the maturity of the contract to a longer (finite) date, increasing the
number of payments but preserving the rate of interest and the length of each period.
Second, the parties may keep the same maturity and agree to postpone payments for
a number of periods; when payments restart, a higher rate of interest applies.

Longer maturity The borrower informs the lender of his financial difficulties during
the period between τ − 1 and τ ; then the outstanding debt to be restructured is Dτ−1.
If they agree to increase the number of payments from n to n′, the new (constant)
payment is P ′ = Dτ−1/an′−(τ−1) i .

Freeze in paymentsAlternatively, the partiesmay agree to skip k < n−τ payments and
restart the amortization at the end of period τ + k until the maturity n, using a higher
interest rate i ′ > i . Then the number of nonzero payments that remain to be made is
n− (τ −1)−k. Assuming that the parties agree to apply the former interest rate i until
payments resume, the new constant payment is P ′ = Dτ−1(1+ i)k/an−(τ−1)−k i ′ . (It
is a simple matter to replace i ′ for i if the new interest rate applies from τ on.)

We illustrate these two simple cases returning to the example where an amount
of 1000 is to be repaid over n = 60 monthly payments at the nominal interest rate
i (12) = 6%; see the amortization schedule in Table 3. Assume that the restructuring
begins at τ = 12, and that the borrower has made regular payments up to τ − 1 = 11.

Suppose n′ = n + 12 = 72: the original maturity is extended by 12 months and
the number of payments still to be made is n′ − (τ − 1) = 61. We have P ′ =
838.34/a61 0.005 = 15.98, for t = 12, 13, · · · , 72. Table 7 shows the amortization
schedule. Since the reimbursement of the loan is delayed, the outstanding debt and
the interest components from t = 12 onward are higher than in the original plan of
Table 3.

If instead the parties agree to skip k = 12 payments and keep the original maturity,
then there remain 60 − (12 − 1) − 12 = 37 payments to be made. Assuming that the
nominal interest rate is raised to i (12)′ = 6.6%, the new payment is P ′ = 838.34 ·
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Table 8 Freeze in payments t Pt It Ct Dt

0 – – – 1000

1 19.33 5.00 14.33 985.67

. . . . . . . . . . . . . . .

11 19.33 4.27 15.07 838.34

12 0 4.64 −4.64 842.95

13 0 4.61 −4.61 847.59

. . . . . . . . . . . . . . .

23 0 4.90 −4.90 895.37

24 26.81 4.92 21.89 873.49

. . . . . . . . . . . . . . .

60 26.81 0.15 26.66 0.00

1.005512/a37 0.0055 = 26.81, to be paid on t = 24, 25, · · · , 60. Again, the delay in
reimbursement induces higher interest components as shown in Table 8.
Two tranches In general, debt restructuring aims to balance a temporary reduction in
the borrower’s outflow with a straightforward amortization plan. The two previous
examples illustrate especially simple options. Another possibility is to split the reim-
bursement still due into two tranches with constant payments, where each payment
from the second tranche is proportionally higher than each payment in the first tranche.

As before, assume that the outstanding debt to be restructured is Dτ−1 and that
there are n − (τ − 1) payments until maturity. Let m1,m2 be the number of payments
in the first and second tranche, respectively; then m1 + m2 = n − (τ − 1). Given the
constant payment Ps for tranche s = 1, 2, assume that P2 = αP1, where α > 0 is a
given proportion. (For instance, if α = 2, then P2 is twice higher than P1.)

Then the two payments P1, P2 satisfy the system

⎧
⎨

⎩

P2 = Dτ−1 · (1 + i)m1 − P1sm1 i

am2 i
P2 = αP1

which yields

P1 = Dτ−1 · (1 + i)m1/am2 i

α + sm1 i/am2 i
(3)

Returning to the example where an amount of 1000 is to be repaid over n = 60
monthly payments at the nominal interest rate i (12) = 6%, assume again that the
restructuring occurs at τ = 12. The 49 future payments are split into a first tranche
with m1 = 24 constant payments P1 and a second tranche with m2 = 25 constant
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Table 9 Two tranches t Pt It Ct Dt

0 – – – 1000

1 19.33 5.00 14.33 985.67

. . . . . . . . . . . . . . .

11 19.33 4.27 15.07 838.34

12 13.07 4.19 8.87 829.46

. . . . . . . . . . . . . . .

35 13.07 3.11 9.95 612.66

36 26.13 3.06 23.07 589.59

. . . . . . . . . . . . . . .

60 26.13 0.13 26.00 0.00

payments P2. Given α = 2, we obtain from (3) that

P1 = D11 · (1.005)24/a25 0.005
2 + s24 0.005/a25 0.005

= 13.07

and thus P2 = 26.13. The amortization plan is drawn in Table 9.

5 Concluding remarks

This section ties two loose ends. First, we illustrate the use of GAP to draw an amor-
tization plan tailored to a specific arrangement requested by the borrower. Second,
for each of the four principles we exhibit an amortization contract that violates it; we
argue that these (or other) counterexamplesmay be both theoretically and contractually
feasible but that financial arrangements outside of GAP are definitely unusual.

5.1 GAP after tailored arrangements

Consider a borrower who uses the full loan for purchasing a long-lived asset and is
required to depreciate its book value following a specific accounting rule. The borrower
might ask the lender (e.g., for tax reasons) to draw an amortization plan where the
principal components per period match the depreciation values.

Assume for simplicity that the purchase price of the asset is equal to the initial
debt D0, and the depreciation horizon covers n periods, after which the asset has a
salvage value Dn ≥ 0. Finally, we suppose that depreciation is carried out using the
declining balance method, although the approach works with any another method; see
f.i. Section 2.4.2 in Broverman (2017) for other depreciation formulas.

The declining balance method postulates that the depreciation amount per period is
computed by applying a discount rate d to the current value Dt−1; that is,Ct = dDt−1.
Because Ct = Dt−1 − Dt , this implies Dt = (1 − d)Dt−1 and, more generally,

123



Generally acceptable principles...

Table 10 Amortization plan
with settlement at n

t Pt It Ct Dt

0 – – – 1000

1 250 50 200 800

2 200 40 160 640

3 160 32 128 512

. . . . . . . . . . . . . . .

9 41.94 8.39 33.55 134.22

10 140.93 6.71 134.22 0

Table 11 Amortization plan
with settlement at n + 1

t Pt It Ct Dt

0 – – – 1000

1 250 50 200 800

2 200 40 160 640

3 160 32 128 512

. . . . . . . . . . . . . . .

9 41.94 8.39 33.55 134.22

10 33.55 6.71 26.84 107.37

11 112.74 5.37 107.37 0

Dt = D0(1 − d)t . The salvage value at the end of the depreciation period is Dn =
D0(1 − d)n > 0.

The goal is to draw an amortization plan where the outstanding debt matches the
depreciated value in the books. This goal obtains if we set the principal components
equal to the depreciation amounts per period, and then use GAP to complete the
schedule. Additional care is needed only for the salvage value Dn > 0.

If Dn ≈ 0, the parties may conventionally agree that the debt is settled. Otherwise,
the two simplest options are to settle the debt at the end of period n or n+1. Settlement
in n requires a payment P ′

n = C ′
n + In , with C ′

n = Cn + Dn = Dn−1 and In = i Dn−1.
Settlement in period n+1 requires a payment Pn+1 = Cn+1 + In+1, with Cn+1 = Dn

and In+1 = i Dn . Either approach respects GAP.
For example, consider a loan (and a corresponding asset) with value 1000. The loan

carries a yearly interest rate i = 5%. The asset value is to depreciated in n = 10 years
with annual discount rate d = 20%, and salvage value D10 = 1000 · (1 − 0.20)10 =
107.37.

Assuming full settlement at the end of period n = 10, we have C ′
10 = D9 =

1000·(1−0.20)9 = 134.22 and I10 = 134.22·0.05 = 6.71, so that P ′
10 = C10+ I10 =

134.22 + 6.71 = 140.93. See Table 10.
Assuming full settlement at n + 1 = 11, we have C11 = D10 = 107.37 and

I11 = 107.37 · 0, 05 = 5.37, so that P11 = 107.37 + 5.37 = 112.74. See Table 11.
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5.2 Gaps in GAP

It is important to clarify that one can conceive legitimate amortization plans outside
of the GAP perimeter. Our modest claim is that GAP distill a widespread consensus:
In theory, the class of amortization schedules is large; in practice, only contracts that
match GAP are unlikely to come under serious scrutiny. We test the boundaries of our
claim by exhibiting four minimal counterexamples: each of them violates one GAP
and can be completed preserving the remaining three GAP.
A1. At the end of each equal-length period t , the borrower is expected to pay back
a fraction (1/2)t of the original debt. This simple provision implies that the original
debt is repaid using an infinite sequence of payments, summing up to a converging
series. Therefore, the maturity for this contract is not finite.
A2. The initial outstanding debt is divided into n equal payments C = D0/n, but
in each period t = 1, . . . , n the borrower pays back as principal component the real
(inflation-adjusted) value of the original amount, computed as C(1 + rt )t where rt
is the cumulative inflation rate over the period [0, t]. The sum of these principal
components is (very likely) different from the outstanding debt. The plan can be
completed preserving A1 and A3-A4.

It is worth emphasizing that GAP do not rule out inflation-adjusted amortization
plans. A2 claims only that the sum of the principal components must equal the initial
outstanding debt, which is usually interpreted in nominal terms. But one may draw
an amortization schedule that keeps distinct the principal component (in nominal
value), the inflation-adjusted correction component, and the interest component. It is
reasonable to expect that future financial innovation may lead to amortization plans
in real terms. When this happens, experience and practice may suggest a revision of
GAP.
A3: the interest component at time t is computed over the principal component Ct for
the whole period [0, t] ; that is, assuming that the period interest rate is i , we have
It = Ct · (i t). This arrangement ignores the outstanding debt, in violation of A3.
The plan can be completed using A1-A2 and A4. This theoretical construct has been
suggested amidst legal controversies over anatocism in Italy, but to the best of our
knowledge is not used in practice.
A4: every payment is initially attributed entirely to the principal component until the
outstanding debt is zero, postponing the payment of the interest meanwhile matured;
that is, Pt = Ct until period τ with

∑τ
t=1 Ct = D0, followed by a final payment

Pτ+1 = I that settles the interest, regardless of how this is specifically calculated.
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