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Abstract
The starting point of this paper is the problem of scheduling n jobs with processing times and due dates

on a single machine so as to minimize the total processing time of tardy jobs, i.e., 1 | |
∑

pjUj . This problem
was identified by Bringmann et al. (Algorithmica 2022) as a natural subquadratic-time special case of the
classic 1 | |

∑
wjUj problem, which likely requires time quadratic in the total processing time P , because of

a fine-grained lower bound. Bringmann et al. obtain their Õ(P 7/4) time scheduling algorithm through a new
variant of convolution, dubbed Max-Min Skewed Convolution, which they solve in Õ(n7/4) time. Our main
technical contribution is a faster and simpler convolution algorithm running in Õ(n5/3) time. It implies an
Õ(P 5/3) time algorithm for 1 | |

∑
pjUj , but may also be of independent interest.

Inspired by recent developments for the Subset Sum and Knapsack problems, we study 1 | |
∑

pjUj

parameterized by the maximum job processing time pmax. With proximity techniques borrowed from integer
linear programming (ILP), we show structural properties of the problem that, coupled with a new dynamic
programming formulation, lead to an Õ(n + p3max) time algorithm. Moreover, in the setting with multiple
machines, we use similar techniques to get an n · pO(m)

max time algorithm for Pm | |
∑

pjUj .
Finally, we point out that the considered problems exhibit a particular triangular block structure in the

constraint matrices of their ILP formulations. In light of recent ILP research, a question that arises is whether
one can devise a generic algorithm for such a class of ILPs. We give a negative answer to this question: we
show that already a slight generalization of the structure of the scheduling ILP leads to a strongly NP-hard
problem.

1 Introduction
We consider the scheduling problem 1 | |

∑
pjUj of minimizing the total sum of processing times of tardy jobs,

where we are given a set of n jobs, numbered from 1 to n, and each job j has a processing time pj and a due date
dj . A schedule is defined by a permutation σ : {1, . . . , n} → {1, . . . , n} of the jobs, and, based on this schedule σ,
the completion time of jobs is defined. The completion time Cj of a job j is Cj =

∑
i :σ(i)6σ(j) pi. The objective

of the problem is to find a schedule σ that minimizes the sum of processing times of jobs that miss their due date
dj (called tardy), i.e.,

min
σ

∑
j :Cj>dj

pj .

Note that for tardy jobs we pay their penalty regardless of the actual completion time. Therefore, in the remainder
of the paper, we will use the equivalent problem formulation that we have to select a subset of jobs S ⊆ {1, . . . , n}
such that all selected job can be completed by their due dates. In this case it can be assumed that the jobs
from S are scheduled by the earliest-due-date-first order [17]. One could also think of the problem as a scenario
where the jobs that cannot be scheduled before their due dates on the available machine have to be outsourced
somewhere else, and the cost of doing this is proportional to the total size of these outsourced jobs. These two
properties are typical for hybrid cloud computing platforms.

For the case where all due dates are identical, the scheduling problem is equivalent to the classic Subset Sum
problem. In the latter problem we are given a (multi-)set of numbers {a1, . . . , an} and a target value t, and
the objective is to find a subset of the numbers that sums up exactly to t, which is equivalent to the problem
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of finding the maximum subset sum that is at most t. With arbitrary due dates, 1 | |
∑
pjUj behaves like a

multi-level generalization of the Subset Sum problem, where upper bounds are imposed not only on the whole
sum, but also on prefix sums.

In recent years there has been considerable attention on developing fast pseudopolynomial time algorithms
solving the Subset Sum problem. Most prominent is the algorithm by Bringmann [1] solving the problem in
time Õ(t).1 The algorithm relies, among other techniques, on the use of Boolean convolution, which can be
computed very efficiently in time O(n log n) by Fast Fourier Transform. Pseudopolynomial time algorithms have
also been studied for a parameter amax = maxi ai, which is stronger, i.e., amax 6 t. Eisenbrand and Weismantel [8]
developed an algorithm for integer linear programming (ILP) that, when applied to Subset Sum, gives a running
time of O(n+a3max), the first algorithm with a running time of the form O(n+poly(amax)). Based on the Steinitz
Lemma they developed proximity results, which can be used to reduce the size of t and therefore solve the problem
within a running time independent of the size of the target value t. The currently fastest algorithm in this regard
is by Polak, Rohwedder and Węgrzycki [19] with running time Õ(n+ a

5/3
max).

Given the recent attention on pseudopolynomial time algorithms for Subset Sum, it is not surprising that
also 1 | |

∑
pjUj has been considered in this direction. Already in the late ’60s, Lawler and Moore [17] considered

this problem or, more precisely, the general form of 1 | |
∑
wjUj , where the penalty for each job being tardy is not

necessarily pj , but can be an independent weight wj . They solved this problem in time O(nP ), where P is the
sum of processing times over all jobs. Their algorithm follows from a (by now) standard dynamic programming
approach. This general form of the problem is unlikely to admit better algorithms: under a common hardness
assumption the running time of this algorithm is essentially the best possible. Indeed, assuming that (min,+)-
convolution cannot be solved in subquadratic time (a common hardness assumption in fine-grained complexity),
there is no algorithm that solves 1 | |

∑
wjUj in time O(P 2−ε), for any ε > 0. This follows from the fact that

1 | |
∑
wjUj generalizes Knapsack and the hardness already holds for Knapsack [6, 16]. Since the hardness does not

hold for Subset Sum (the case of Knapsack where profits equal weights), one could hope that it also does not hold
either for the special case of 1 | |

∑
wjUj , where penalties equal processing times, which is precisely 1 | |

∑
pjUj .

Indeed, Bringmann, Fischer, Hermelin, Shabtay, and Wellnitz [2] recently obtained a subquadratic algorithm with
running time Õ(P 7/4) for the problem. Along with this main result, they also consider other parameters: the sum
of distinct due dates and the number of distinct due dates. See also Hermelin et al. [9] for more related results.

Max-min skewed convolution. Typically, a convolution has two input vectors a and b and outputs a
vector c, where c[k] = ⊕i+j=k(a[i] ⊗ a[j]). Different kinds of operators ⊕ and ⊗ have been studied, and, if
the operators require only constant time, then a quadratic time algorithm is trivial. However, if, for example,
“⊕” = “+” (standard addition) and “⊗” = “·” (standard multiplication), then Fast Fourier Transform can solve
convolution very efficiently in time O(n log n). If, on the other hand, “⊕” = “max” and “⊗” = “+”, it is generally
believed that no algorithm can solve the problem in time O(n2−ε) for some fixed ε > 0 [6]. Convolution problems
have been studied extensively in fine-grained complexity, partly because they serve as good subroutines for other
problems, see also [3, 18] for other recent examples. The scheduling algorithm by Bringmann et al. [2] works by
first reducing the problem to a new variant of convolution, called max-min skewed convolution, and then solving
this problem in subquadratic time. Max-min skewed convolution is defined as the problem where we are given
vectors (a[0], a[1], . . . , a[n− 1]) and (b[0], b[1], . . . , b[n− 1]) as well as a third vector (d[0], d[1], . . . , d[2n− 1]) and
our goal is to compute, for each k = 0, 1, . . . , 2n− 1, the value

c[k] = max
i+j=k

{min{a[i], b[j] + d[k]}.

This extends the standard max-min convolution, where d[k] = 0 for all k. Max-min convolution can be solved
non-trivially in time Õ(n3/2) [14]. Bringmann et al. develop an algorithm with running time Õ(n7/4) for max-min
skewed convolution, when d[k] = k for all k (which is the relevant case for 1 | |

∑
pjUj). By their reduction this

implies an Õ(P 7/4) time algorithm for 1 | |
∑
pjUj .

Our first result and our main technical contribution is a faster, simpler and more general algorithm for
max-min skewed convolution.

Theorem 1.1. Max-min skewed convolution can be computed in time O(n5/3 log n).

1The Õ notation hides polylogarithmic factors.
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As a direct consequence, we obtain an improved algorithm for 1 | |
∑
pjUj .

Corollary 1.1. The problem 1 | |
∑
pjUj can be solved in Õ(P 5/3) time, where P is the sum of processing times.

Since convolution algorithms are often used as building blocks for other problems, we believe that this result is
of independent interest, in particular, since our algorithm also works for arbitrary d[k]. From a technical point
of view, the algorithm can be seen as a two-dimensional generalization of the approach used in the Õ(n3/2)
time algorithm for max-min convolution [14]. This is quite different and more compact than the algorithm by
Bringmann et al. [2], which only relies on the ideas in [14] indirectly by invoking max-min convolution as a black
box.

Parameterization by the maximum processing time. As mentioned before, Subset Sum has been
extensively studied with respect to running times in the maximum value amax. Our second contribution is that
we show that running time in similar spirit can also be achieved for 1 | |

∑
pjUj . Based on techniques from integer

programming, namely, Steinitz Lemma type of arguments that have also been crucial for Subset Sum, we show
new structural properties of solutions for the problem. Based on this structural understanding, we develop an
algorithm that leads to the following result.

Theorem 1.2. The problem 1 | |
∑
pjUj can be solved in time Õ(n+ p3max).

For the generalized problem Pm | |
∑
pjUj with multiple machines, we present an algorithm relying on a different

structural property.

Theorem 1.3. The problem Pm | |
∑
pjUj can be solved in time O(n · pO(m)

max ).

Similar algorithmic results with running times depending on the parameter pmax have been developed for makespan
scheduling and minimizing weighted completion time (without due dates) [13].

Integer programming generalization and lower bounds. The problem 1 | |
∑
pjUj can be formulated

as an integer linear program (ILP) with binary variables as follows:

(1.1) maximize
∑
j

pjxj subject to


p1 0 · · · 0

p1 p2
. . .

...
. . . 0

p1 p2 · · · pn

 · x 6


d1
d2
...
dn

 , x ∈ {0, 1}n.

Here, variable xj indicates whether job j is selected in the solution (or, in the alternative formulation, finished
within its due date). The objective is to maximize the processing time of the selected jobs. The necessary and
sufficient conditions are that the total volume of selected jobs with due date at most some time t does not exceed
t. It suffices to consider only constraints for t equal to one of the jobs’ due dates.

Clearly, the shape of the non-zeros in the constraint matrix of the ILP exhibits a very special structure, a
certain triangular shape. In recent years there has been significant attention in the area of structured integer
programming on identifying parameters and structures for which integer programming is tractable [4, 5, 10, 12, 15,
7]. The most prominent example in this line of work are so-called n-fold integer programs (see [4] and references
therein), which are of the form

maximize cTx subject to



A1 A2 · · · An
B1 0 0

0 B2
. . .

...
. . . . . . 0

0 · · · 0 Bn

 · x = b and ∀i xi ∈ Z>0.

Here Ai and Bi are “small” matrices in the sense that it is considered acceptable for the running time to depend
superpolynomially (e.g., exponentially) on their parameters. It is known that these types of integer programs
can be solved in FPT time maxi f(Ai, Bi) · poly(|I|), where f(Ai, Bi) is a function that depends only on the
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matrices Ai and Bi (potentially superpolynomially), but not on n or any other parameters, and poly(|I|) is some
polynomial in the encoding length of the input [4]. There exist generalizations of this result and also other
tractable structures, but none of them captures the triangular shape of (1.1).

We now consider a natural generalization of n-fold ILPs that also contains the triangle structure (1.1), in the
remainder referred to as triangle-fold ILPs.

maximize cTx subject to



A1 0 · · · 0

A1 A2
. . .

...
. . . 0

A1 A2 · · · An
B1 0 0

0 B2
. . .

...
. . . . . . 0

0 · · · 0 Bn


· x 6 b and ∀i xi ∈ Z>0.

Let us elaborate on some of the design choices and why they come naturally. First, it is obvious that this
structure generalizes n-fold, because constraints can be “disabled” by selecting a right-hand side of ∞ (or some
sufficiently large number). After disabling a prefix of constraints, we end up with exactly the n-fold structure
except that we have inequality (6) constraints instead of equality constraints. Clearly, equality constraints can
easily be emulated by duplicating and negating the constraints. The reason we chose inequality is that with
equality constraints this ILP would directly decompose into independent small subproblems, which would be
uninteresting from an algorithmic point of view and also not general enough to capture (1.1). The matrices
B1, . . . , Bn can, for example, be used to express lower and upper bounds on variables, such as the constraints
xi ∈ {0, 1} in (1.1).

With this formulation it is also notable that the scheduling problem on multiple machines, Pm | |
∑
pjUj ,

can be modelled easily: instead of one decision variable xj ∈ {0, 1} for each job j, we introduce variables
xj,1, xj,2, . . . , xj,m ∈ {0, 1}, one for each machine. Then we use the constraints p1x1,i + p2x2,i + · · ·+ pjxj,i 6 dj
for each machine i and job j, which ensure that on each machine the selected jobs can be finished within their
respective due date. Finally, we use constraints of the form xj,1+xj,2+ · · ·+xj,m 6 1 to guarantee that each job is
scheduled on at most one machine. It can easily be verified that these constraints have the form of a triangle-fold
where the small submatrices have dimension only dependent on m.

Given the positive results for 1 | |
∑
pjUj and Pm | |

∑
pjUj , one may hope to develop a general theory for

triangle-folds. Instead of specific techniques for these (and potentially other) problems, in this way one could
create general techniques that apply to many problems. For example, having an algorithm with the running time
of the form maxi f(Ai, Bi) · poly(|I|) (like we have for n-folds), one would directly get an FPT algorithm for
Pm | |

∑
pjUj with parameters pmax and m. However, we show strong hardness results, which indicate that such

a generalization is not possible.

Theorem 1.4. There exist fixed matrices Ai, Bi of constant dimensions for which testing feasibility of triangle-
fold ILPs is NP-hard. This holds even in the case when A1 = A2 = · · · = An and B1 = B2 = · · · = Bn.

This hardness result has a surprising quality: not only are there no FPT algorithms for triangle-folds, but also
no XP algorithms, which is in stark contrast to other similarly shaped cases.

2 Max-min skewed convolution
Recall that max-min skewed convolution is defined as the problem where, given vectors a, b and d, we want to
compute, for each k = 0, 1, . . . , 2n− 1, the value

c[k] = max
i+j=k

{min{a[i], b[j] + d[k]}.

In this section we give an algorithm that solves this problem in time O(n5/3 log n). Assume without loss of
generality that the values in a and b are all different. This can easily be achieved by multiplying all values

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2950

D
ow

nl
oa

de
d 

01
/0

5/
24

 to
 9

3.
14

4.
13

5.
71

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



a = (5, 6, 4, 9, 1, 7, 3, 8, 2)

b = (8, 4, 1, 2, 3, 7, 6, 5, 9)

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8]
a[0] 0 1 1 1 1 1 1 1 0
a[1] 0 1 1 1 1 1 1 1 0
a[2] 0 1 1 1 1 1 1 1 0
a[3] 0 0 1 1 0 0 0 0 0
a[4] 1 1 1 1 1 1 1 1 0
a[5] 0 1 1 1 1 0 0 0 0
a[6] 1 1 1 1 1 1 1 1 0
a[7] 0 0 1 1 0 0 0 0 0
a[8] 1 1 1 1 1 1 1 1 0

Figure 1: Matrix Mk for k = 6 and vectors a and b, which it is derived from. The entry in cell for row a[i] and
column b[j] describes whether there exist i′, j′ with i′+ j′ = k, a[i′] > a[i] and b[j′] > b[j]. For example, the entry
for a[2] and b[2] is 1 because a[3] > a[2] and b[3] > b[2].

(including those in d) by 4n and adding a different number from 0, 1, . . . , 2n− 1 to each entry in a and b. After
computing the convolution we then divide the output numbers by 4n and round down to reverse the effect of
these changes.

The algorithm consists of two phases. In the first phase we build a data structure to aid the computation of
each c[k]. Then in the second phase we compute each element c[k] separately with a binary search. The goal of
the data structure is thus to efficiently answer queries of the form “is c[k] > v?” for some given k and v.

First we introduce a quite excessive data structure. Building it explicitly is impossible within our running
time goals, but it will help gain intuition. Suppose for every k we have a matrix Mk (see Figure 1), where the
rows correspond to the values a[0], a[1], . . . , a[n − 1], the columns correspond to b[0], b[1], . . . , b[n − 1], and the
entries tell us whether, for some a[i], b[j], there exist i′ and j′ with i′ + j′ = k, a[i′] > a[i] and b[j′] > b[j]. This
matrix contains enough information to answer the queries above: To determine whether c[k] > v, we need to
check if there are i′, j′ with i′ + j′ = k and a[i′] > v and b[j′] > v − d[k]. Choose the smallest a[i] such that
a[i] > v and the smallest b[j] such that b[j] > v − d[k]. If such a[i] or b[j] does not exist, then we already know
that c[k] 6 v. Otherwise, if both elements exist, the entry Mk[a[i], b[j]] directly gives us the answer: If it is 0,
then for all i′+ j′ = k either (1) a[i′] < a[i] and hence (since a[i] is the smallest element greater than v) a[i′] 6 v,
or (2) b[j′] < b[j] and hence b[j′] 6 v−d[k]; thus c[k] 6 v. The converse is also true: Suppose that c[k] 6 v. Then
for all i′, j′ with i′ + j′ = k we have that either a[i′] 6 v < a[i] or b[j′] 6 v − d[k] < b[j], and thus the matrix
entry at (a[i], b[j]) is 0.

It is obvious that we cannot afford to explicitly construct the matrices described above; their space alone
would be cubic in n. Instead, we are only going to compute a few carefully chosen values of these matrices,
that allow us to recover any other value in sublinear time. First, reorder the columns and rows so that the
corresponding values (a[i] or b[j]) are increasing. We call the resulting matrix M sort

k , see also Figure 2. Clearly,
this does not change the information stored in it, but one can observe that now the rows and columns are each
nonincreasing. We will compute only the values at intersections of every bn/pc-th row and every bn/pc-th column,
for a parameter p ∈ N, which is going to be specified later. This means we are computing a total of O(np2) many
values. Although computing a single entry of one of the matrices M sort

k would require linear time, we will show
that computing the same entry for all matrices (all k) can be done much more efficiently than in O(n2) time.

Indeed, for fixed u,w ∈ Z, it takes only O(n log n) time to compute, for all k, whether there exists i′ and j′ with
i′ + j′ = k, a[i′] > u and b[j′] > v. This fact follows from a standard application of Fast Fourier Transformation
(FFT): we construct two vectors a′, b′ where

a′[i] =

{
1 if a[i] > u,

0 otherwise,
b′[i] =

{
1 if b[j] > w,

0 otherwise,
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b[2] b[3] b[4] b[1] b[7] b[6] b[5] b[0] b[8]
a[4] 1 1 1 1 1 1 1 1 0
a[8] 1 1 1 1 1 1 1 1 0
a[6] 1 1 1 1 1 1 1 1 0
a[2] 1 1 1 1 1 1 1 0 0
a[0] 1 1 1 1 1 1 1 0 0
a[1] 1 1 1 1 1 1 1 0 0
a[5] 1 1 1 1 0 0 0 0 0
a[7] 1 1 0 0 0 0 0 0 0
a[3] 1 1 0 0 0 0 0 0 0

Figure 2: Matrix M sort
k , which is identical to that in Figure 1 except for reordering of rows and columns.

Highlighted are the elements that we compute during preprocessing (assuming p = 3).

and compute their (+, ·)-convolution with FFT. For non-zero output entries there exist i′, j′ as above, and for
zero entries they do not. It follows that computing the selected O(np2) values of M sort

0 ,M sort
1 , . . . ,M sort

2n−2 can be
done in time O(p2 · n log n).

We now consider the second phase, where the algorithm computes c[k], for each k separately, using binary
search. To this end, we design a procedure (see Figure 3) to determine, given k ∈ {0, 1, 2, . . . , 2n− 2} and v ∈ Z,
whether c[k] > v. The procedure will run in O(n/p) time. As described in the beginning of the proof, this
corresponds to computing the value of a specific cell (a[i], b[j]) in the matrix M sort

k . If this cell happens to be
among the precomputed values, we are done. Otherwise, consider the bn/pc × bn/pc submatrix that encloses
(a[i], b[j]) and whose corners are among the precomputed values. If the lower right corner (a[i′′], b[j′′]) is equal
to one, then entry (a[i], b[j]) must also be one by monotonicity. Hence, assume otherwise. The entry (a[i], b[j])
could still be one, but this happens only if there is a witness (i′, j′) that satisfies i′ + j′ = k and

1. a[i′′] > a[i′] > a[i] and b[j′] > b[j], or

2. b[j′′] > b[j′] > b[j] and a[i′] > a[i].

The number of possible witnesses for the first case is bounded by n/p, since there are only bn/pc many values
a[i′] between a[i] and a[i′′] (since they are in the same bn/pc× bn/pc submatrix) and the corresponding j′ is fully
determined by i′. Likewise, there are at most n/p many possible witnesses for the second case. Hence, we can
compute the value of the cell (a[i], b[j]) by exhaustively checking all these candidates for a witness, i.e.,

{(i′, k − i′) | a[i′] ∈ [a[i], a[i′′])} ∪ {(k − j′, j′) | b[j′] ∈ [b[j], b[j′′])}.

i ←− arg min{a[i] | a[i] > v};
j ←− arg min{b[j] | b[j] > v − d[k]};
if i or j does not exist then return no;
(a[i′′], b[j′′])←− the closest precomputed cell below and to the right of M sort

k [a[i], b[j]];
if M sort

k [a[i′′], b[j′′]] = 1 then return yes;
foreach i′ ∈ {i′ | a[i] 6 a[i′] < a[i′′]} do

if b[k − i′] > b[j] then return yes;
end
foreach j′ ∈ {j′ | b[j] 6 b[j′] < b[j′′]} do

if a[k − j′] > a[i] then return yes;
end
return no;

Figure 3: Procedure used in binary search to check whether c[k] > v.

Finally, let us note that, for a fixed k, the value of c[k] has to be among the following 2n values:
a[0], a[1], . . . , a[n − 1], b[0] + d[k], b[1] + d[k], . . . , b[n − 1] + d[k]. A careful binary search only over these values

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2952

D
ow

nl
oa

de
d 

01
/0

5/
24

 to
 9

3.
14

4.
13

5.
71

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



makes the number of iterations logarithmic in n, and not in the maximum possible output value. Indeed, after the
preprocessing, we already have access to sorted versions of the lists a[0], a[1], . . . , a[n−1] and b[0], b[1], . . . , b[n−1]
and, in particular, to a sorted version of b[0] + d[k], b[1] + d[k], . . . , b[n − 1] + d[k] (since this is just a constant
offset of the latter list). We then first binary search for the lowest upper bound of c[k] in a[0], a[1], . . . , a[n − 1]
and then in b[0] + d[k], b[1] + d[k], . . . , b[n− 1] + d[k] in order to determine the exact value of c[k].

The total running time of both phases is O(p2 ·n log(n) +n · log(n) ·n/p). We set p = n1/3 in order to balance
the two terms, and this gives the desired O(n5/3 log n) running time.

3 Parameterizing by the maximum processing time
In this section we study algorithms for 1 | |

∑
pjUj with running time optimized for pmax and n instead of P . We

present an algorithm with a running time of Õ(n+p3max). Such a running time is particularly appealing when n is
much larger than pmax. This complements Lawler and Moore’s algorithm with complexity O(nP ) 6 O(n2pmax),
which is fast when n is small. Interestingly, in both cases we have roughly cubic dependence on n+ pmax.

Our result is based on a central structural property that we prove for an optimal solution and a sophisticated
dynamic programming algorithm that recovers solutions of this form. The structural property uses exchange
arguments that are similar to an approach used by Eisenbrand and Weismantel [8] to prove proximity results in
integer programming via the Steinitz Lemma.

In the following, a solution is characterized by the subset of jobs that are finished within their due date.
Once such a subset is selected, jobs in this subset can be scheduled in non-decreasing order sorted by their due
date. In the remainder we assume that d1 6 d2 6 · · · 6 dn. This sorting can be done efficiently: we may
assume without loss of generality that all due dates are at most npmax. Then radix sort requires only time
O(n logn(npmax)) 6 O(n+ pmax).

Lemma 3.1. There exists an optimal solution S ⊆ {1, 2, . . . , n} such that for all i = 1, 2, . . . , n it holds that either

1. |{1, 2, . . . , i} ∩ S| < 2pmax, or

2. |{i+ 1, i+ 2, . . . , n} \ S| < 2pmax.

Proof. Let S be an optimal solution that does not satisfy this property for some i. It is easy to see that if we find
some A ⊆ S ∩ {1, 2, . . . , i} and B ⊆ {i+ 1, i+ 2, . . . , n} \S with the same volumes (that is,

∑
j∈A pj =

∑
j∈B pj),

then (S \A) ∪B would form an optimal solution that is closer to satisfying the property. Note that the solution
(S \A) ∪B is feasible since the due dates of the jobs in B are strictly larger than the due dates of the jobs in A.

Since both 1. and 2. are false for i, we have that A′ = S ∩ {1, 2, . . . , i} and B′ = {i+ 1, i+ 2, . . . , n} \ S both
have cardinality at least 2pmax. We construct A and B algorithmically as follows. Starting with A1 = B1 = ∅ we
iterate over k = 1, 2, . . . , 2pmax. In each iteration we check whether

∑
j∈Ak

pj −
∑
j∈Bk

pj is positive or not. If
it is positive, we set Bk+1 = Bk ∪ {j} for some j ∈ B′ \ Bk and Ak+1 = Ak; otherwise we set Ak+1 = Ak ∪ {j}
for some j ∈ A′ \ Ak. The difference

∑
j∈Ak

pj −
∑
j∈Bk

pj is always between −pmax and pmax − 1. Hence, by
pidgeon-hole principle there are two indices k < h such that

∑
j∈Ak

pj−
∑
j∈Bk

pj =
∑
j∈Ah

pj−
∑
j∈Bh

pj . Since
Ak ⊆ Ah and Bk ⊆ Bh by construction, we can simply set A = Ah \ Ak and B = Bh \ Bk and it follows that∑
j∈A pj =

∑
j∈B pj .

Corollary 3.1. There exists an optimal solution S ⊆ {1, 2, . . . , n} and an index i ∈ {1, 2, . . . , n} such that

1. |{1, 2, . . . , i} ∩ S| 6 2pmax, and

2. |{i+ 1, i+ 2, . . . , n} \ S| < 2pmax.

Proof. Consider the solution S as it Lemma 3.1 and let i be the maximum index such that |S ∩ {1, 2, . . . , i}| <
2pmax. If i = n the corollary’s statement follows. Otherwise, we set i′ = i + 1. Then |S ∩ {1, 2, . . . , i′}| = 2pmax

and by virtue of Lemma 3.1 it must hold that |S \ {i′ + 1, i′ + 2, . . . , n}| < 2pmax.

Although we do not know the index i from Corollary 3.1, we can compute efficiently an index, which is equally
good for our purposes.

Lemma 3.2. In time O(n) we can compute an index ` such that there exists an optimal solution S with
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1. p({1, 2, . . . , `} ∩ S) 6 O(p2max), and

2. p({`+ 1, `+ 2, . . . , n} \ S) 6 O(p2max),

where p(X) =
∑
i∈X pi, for a subset X ⊆ {1, . . . , n}.

Proof. For j = 1, 2, . . . , n let tj denote the (possibly negative) maximum time such that we can schedule all jobs
j, j + 1, . . . , n after tj and before their respective due dates. It is easy to see that

tj = min
j′>j

(
dj′ −

∑
j6k6j′

pk

)
.

It follows that tj = min{tj+1, dj} − pj and thus we can compute all values tj in time O(n). Now let h be the
biggest index such that th < 0. If such an index does not exist, it is trivial to compute the optimal solution by
scheduling all jobs. Further, let k < h be the biggest index such that

∑h
j=k pj > 2p2max or k = 1 if no such index

exists. Similarly, let ` > h be the smallest index such that
∑`
j=h pj > 4p2max or ` = n if this does not exist. Let i

be the index as in Corollary 3.1. We will now argue that either k 6 i 6 ` or ` satisfies the claim trivially. This
finishes the proof, since p({i, i+1, . . . , `}) 6 p({k, k+1, . . . , `}) 6 O(p2max) and thus the properties in this lemma,
which i satisfies due to Corollary 3.1, transfer to `.

As for k 6 i, we may assume that k > 1 and therefore
∑`
j=k pj > 2p2max. Notice that there must jobs in

{k, k+ 1, . . . , n} of total volume more than 2p2max, which are not in S. This is because tk < th− 2p2max < −2p2max.
On the other hand, from Property 1 of Corollary 3.1 it follows that p({i + 1, i + 2, . . . , n} \ S) < 2p2max. This
implies that k 6 i.

We will now show that i 6 ` or ` satisfies the lemma’s statement trivially. Assume w.l.o.g. that ` < n and
thus

∑`
j=h pj > 4p2max. Notice that t` > th + 4p2max > 2p2max + pmax. If S ∩ {1, 2, . . . , `} contains jobs of a total

processing time more than 2p2max, then i 6 ` follows directly because of Corollary 3.1. Conversely, if the total
processing time is at most 2p2max, then we can schedule all these jobs and also all jobs in {`+1, `+2, . . . , n} (since
t` > 2p2max), which must be optimal. Hence, ` satisfies the properties of the lemma.

An immediate consequence of the previous lemma is that we can estimate the optimum up to an additive error
of O(p2max). We use this to perform a binary search with O(log(pmax)) iterations. In each iteration we need to
check if there is a solution of at least a given value v. For this it suffices to devise an algorithm that decides
whether there exists a solution that runs a subset of jobs without any idle time (between 0 and dn) or not. To
reduce to this problem, we add dummy jobs with due date dn and total processing time dn − v; more precisely,
min{pmax, dn−v}many jobs with processing time 1 and max{0, d(dn−v−pmax)/pmaxe}many jobs with processing
time pmax. Using that w.l.o.g. dn 6 npmax, we can bound the total number of added jobs by O(n+pmax), which is
insignificant for our target running time. If there exists a schedule without any idle time, we remove the dummy
jobs and obtain a schedule where jobs with total processing time at least dn − (dn − v) = v finish within their
due dates. If on the other hand there is a schedule for a total processing time v′ > v, we can add dummy jobs of
size exactly dn − v′ to arrive at a schedule without idle time. For the remainder of the section we consider this
decision problem. We will create two data structures that allow us to efficiently query information about the two
partial solutions from Lemma 3.2, that is, the solution for jobs 1, 2, . . . , ` and that for `+ 1, `+ 2, . . . , n.

Lemma 3.3. In time O(n + p3max log(pmax)) we can compute for each T = 1, 2, . . . , O(p2max) whether there is a
subset of {1, 2, . . . , `} which can be run exactly during [0, T ].

Proof. We will efficiently compute for each T = 0, 1, . . . , O(p2max) the smallest index iT such that there exists
some AT ⊆ {1, 2, . . . , iT }, which runs on the machine exactly for the time interval [0, T ]. Then it only remains to
check if iT 6 ` for each T .

Consider iT for some fixed T . Then iT ∈ AT , since otherwise iT would not be minimal. Further, we can
assume that job iT is processed exactly during [T − piT , T ], since iT has the highest due date among jobs in AT .
It follows that iT ′ < iT for T ′ = T − pi. Using this idea we can calculate each iT using dynamic programming.
Assume that we have already computed iT ′ for all T ′ < T . Then to compute iT we iterate over all processing
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times k = 1, 2, . . . , pmax. We find the smallest index i such that pi = k, iT−k < i, and di > T . Among the indices
we get for each k we set iT as the smallest, that is,

iT = min
k∈[pmax]

min {i | pi = k, i > iT−k, di > T}.

The inner minimum can be computed using a binary search over the O(p2max) jobs with pi = k and smallest
due date, since the values of iT do not change when restricting to the O(p2max) > T jobs with smallest due
date. It follows that computing iT can be done in O(pmax · log(pmax)). Computing iT for all T requires time
O(p3max · log(pmax)).

Lemma 3.4. In time O(n+p3max log(pmax)) we can compute for each T = 1, 2, . . . , O(p2max) whether there is some
A ⊆ {`+ 1, `+ 2, . . . , n}, such that {`+ 1, `+ 2, . . . , n} \A can be run exactly during [dn + T −

∑n
j=`+1 pj , dn].

Proof. For every T = 1, . . . , O(p2max) determine iT , which is the largest value such that there exists a set
AT ⊆ {iT , iT + 1, . . . , n} with

∑
j∈AT

pj = T , such that {i + 1, i + 2, . . . , n} \ AT can be run exactly during
the interval [dn + T −

∑n
j=i+1 pj , dn]. Consider one such iT and corresponding AT . Let j ∈ AT has the minimal

due date. Then for T ′ = T −pj we have iT ′ > iT . To compute iT we can proceed as follows. Guess the processing
time k of the job in AT with the smallest due date. Then find the maximum j with pj = k and j < iT−k. Finally,
verify that there is indeed a schedule. For this consider the schedule of all jobs {`+ 1, `+ 2, . . . , n}, where we run
them as late as possible (a schedule that is not idle in [dn −

∑n
i=`+1 pi, dn]. Here, we look at the “earliness” of

each job in {`+ 1, . . . , j − 1}. This needs to be at least T for each of the jobs.
We can check the earliness efficiently by precomputing the mentioned schedule and building a Cartesian tree

with the earliness values. This data structure can be built in O(n) and allows us to query for the minimum value
of an interval in constant time.

We can now combine Lemmas 3.2-3.4 to conclude the algorithm’s description. Suppose that S is a set of jobs
corresponding to a solution, where the machine is busy for all of [0, dn]. By Lemma 3.2 there exist some
T, T ′ 6 O(p2max) such that p({1, 2, . . . , `} ∩ S) = T and p({` + 1, ` + 2, . . . , n} \ S) = T ′. In particular, the
machine will be busy with jobs of {1, 2, . . . , `} ∩ S during [0, T ] and with jobs of {`+ 1, `+ 2, . . . , n} ∩ S during
[T, dn]. The choice of T and T ′ implies that

dn = p(S) = p({1, . . . , `} ∩ S) + p({`+ 1, . . . , n} ∩ S) = T + p({`+ 1, . . . , n})− T ′.

Hence, T = dn + T ′ − p({`+ 1, . . . , n}). In order to find a schedule where the machine is busy between [0, dn] we
proceed as follows. We iterate over every potential T = 0, 1, . . . , O(p2max). Then we check using Lemma 3.3 whether
there exists a schedule of jobs in {1, 2, . . . , `} where the machine is busy during [0, T ]. For the correct choice of
T this is satisfied. Finally, using Lemma 3.4 we check whether there is a subset of jobs in {` + 1, ` + 2, . . . , n}
that can be run during [T, dn] = [dn + T ′ − p({`+ 1, . . . , n}), dn]. The preprocessing of Lemmas 3.2-3.4 requires
time O(n + p3max log(pmax)). Then determining the solution requires only O(p2max), which is dominated by the
preprocessing. Finally, notice that we lose another factor of log(pmax) due to the binary search.

4 Multiple machines

In this section we present an algorithm that solves Pm | |
∑
pjUj in n · pO(m)

max time. We assume that jobs are
ordered non-decreasingly by due dates (using radix sort as in the previous section), and that all considered
schedules use earliest-due-date-first on each machine. We will now prove a structural lemma that enables our
result.

Lemma 4.1. There is an optimal schedule such that for every job j and every pair of machines i, i′ we have

(4.2) |`i(j)− `i′(j)| 6 O(p2max),

where `i(j) denotes the total volume of jobs 1, 2, . . . , j scheduled on machine i. Furthermore, the schedule satisfies,
for every j and i, that

(4.3) `i(j) 6 min
j′>j

dj′ − 1

m

j′∑
j′′=j+1

pj′′

+O(p2max).
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Proof. The proof relies on swapping arguments. As a first step we make sure that between `1(n), . . . , `m(n) the
imbalance is at most pmax. If it is bigger, we simply move the last job from the higher loaded machine to the
lower loaded machine.

Now we augment this solution to obtain that, for every two machines i, i′ and every j, we satisfy (4.2). Let
j, i, and i′ be such that `i(j) > `i′(j) + 3p2max. This implies that on i′ there is a set of jobs A with due dates
greater than dj that is processed between `i′(dj) and at least `i(dj)− pmax (the latter because of the balance of
total machine loads). Thus, p(A) > 3p2max − pmax and consequently |A| > 2pmax. On i let B be the set of jobs
with due dates at most dj that are fully processed between `i′(dj) and `i(dj). Then also p(B) > 3p2max − pmax

and |B| > 2pmax. By the same arguments as in Lemma 3.1, there are non-empty subsets A′ ⊆ A and B′ ⊆ B
with equal processing time. We swap A′ and B′, which improves the balance between `i(j) and `i′(j). We now
need to carefully apply these swaps so that after a finite number of them we have no large imbalances anymore.
We start with low values of j, balance all `i(j), and then increase j. However, it might be that balancing `i(j)
and `i′(j) affects the values `i(j′) for j′ < j. To avoid this, we will use some buffer space. Notice that because∑

i

`i(j) =
∑

j′:j′ is scheduled and j′6j

pj′ ,

it follows that a swap does not change the average `i(j) over all i. If we already balanced for all j′ 6 j, then we
will skip some values j′′ > j and only establish (4.2) again for the first j′′ such that

1

m

∑
i

`i(j
′′) >

1

m

∑
i

[`i(j)] + 6p2max.

It is not hard to see that the balance for job prefixes between j and j′′ then also holds (with a slightly worse
constant). To balance the values for j′′, a careful look at the swapping procedure reveals that it suffices to move
jobs, which are scheduled after 1

m

∑
i[`i(j

′′)] − 3p2max. Such jobs cannot have a due date lower than dj , since
maxi `i(j) 6 1

m

∑
i[`i(j)] + 3p2max 6 1

m

∑
i `i(j

′′) − 3p2max. Hence, the swaps do not affect the values `i(j′) for
j′ 6 j. Continuing these swaps, we can establish (4.2).

Let us now consider (4.3). Suppose that for some job j and machine i we have

`i(j) > min
j′>j

dj′ − 1

m

j′∑
j′′=j+1

pj′′

+ Ω(p2max) .

With a sufficiently large hidden constant (compared to (4.2)) it follows that there is a volume of at least 3p2max

of jobs j′ with dj′ > dj that are not scheduled by this optimal solution. This follows simply from considering the
available space on the machines. Also with a sufficiently large constant it holds that `i(j) > 3p2max. In the same
way as earlier in the proof, we can find two non-empty sets of jobs A′ and B′ where A′ consists only of jobs j′
with dj′ > dj that are not scheduled and B′ consists only of jobs j′ with dj′ 6 dj , which are scheduled on machine
i. We can swap these two sets and retain an optimal solution. Indeed, this may lead to a new violation of (4.2).
In an alternating manner we establish (4.2) and then perform a swap for (4.3). Since every time the latter swap
is performed the average due dates of the scheduled jobs increases, the process must terminate eventually.

Having this structural property, we solve the problem by dynamic programming: for every j = 1, 2, . . . , n and
every potential machine-load pattern (`1(j), `2(j), . . . , `m(j)) we store the highest volume of jobs in 1, 2, . . . , j that
achieves these machine loads or lower machine loads on all machines. By Lemma 4.1, we may restrict ourselves
to patterns where machine loads differ pairwise by only O(p2max), but this is not sufficient to obtain our desired
running time. For each job j we will only look at patterns where all machines i satisfy

`i(j) = min
j′>j

dj′ − 1

m

∑
j′>j

pj′

+ k, for k ∈ {−O(p2max), . . . , O(p2max)}.

By the second part of Lemma 4.1 it is clear that we can ignore larger values of k, but it needs to be clarified
why we can ignore smaller values of k as well. In the case that `i(j) < minj′>j{dj′ − 1

m

∑
j′>j pj′} − Ω(p2max)
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for some i and j (with sufficiently large hidden constants), we may assume with (4.2) that all machines i′ satisfy
`i(j) 6 minj′>j{dj′ − 1

m

∑j′

j′′=j+1 pj′′} − pmax. It is not hard to see that starting with such a solution we can
greedily add all remaining jobs j′ > j to the schedule without violating any due date. This is still true if we
increase the machine loads until we reach k = −O(p2max). It is therefore not necessary to remember any lower
load.

For each j = 1, 2, . . . , n, the number of patterns (`1(j), `2(j), . . . , `m(j)) can now be bounded by pO(m)
max , so

there are in total n · pO(m)
max states in the dynamic program. Calculations for each state take O(m) time, because

job j is either scheduled as the last job on one of the m machines, or not scheduled at all. Hence, we obtain an
n · pO(m)

max running time.

5 Hardness of ILP with triangular block structure
In this section we will show that it is NP-hard to decide if there is a feasible solution to an integer linear program
of the form


A 0 · · · 0

A A
. . .

...
...

. . . 0
A A · · · A

 ·

x1
x2
...
xn

 6


b1
b2
...
bm

 , ∀i 0 6 xi 6 ui, ∀i xi ∈ Z,

even when A is a matrix of constant size with integers entries of at most a constant absolute values, bi ∈ {0, 1,+∞}
for i = 1, 2, . . . ,m, and ui ∈ {0,+∞} for i = 1, 2, . . . , n. This implies Theorem 1.4 by taking B1, B2, . . . , Bn each
as an identity matrix and a negated identity matrix on top of each other, which allows us to easily implement the
bounds on the variables.

We will give a reduction from the Subset Sum problem, which asks, given n nonnegative integers
a1, a2, . . . , an ∈ Z>0, and a target value t ∈ Z>0, whether there exists a subset of {a1, a2, . . . , an} that sums
up to t. The Subset Sum problem is weakly NP-hard [11], so the reduction will have to to deal with n-bit input
numbers.

Before we describe the actual reduction, let us start with two general observations that we are going to use
multiple times later in the proof.

First, even though the theorem statement speaks, for clarity, about an ILP structure with only “6” constraints,
we can actually have all three types of constraints, i.e., “6”, “=”, and “>”. Indeed, it suffices to append to the
matrix A a negated copy of each row, in order to be able to specify for each constraint not only an upper bound
but also a lower bound (and use +∞ when only one bound is needed). An equality constraint can then be
expressed as an upper bound and a lower bound with the same value.

Second, even though the constraint matrix has a very rigid repetitive structure, we can selectively cancel each
individual row, by setting the corresponding constraint to “6 +∞”, or each individual column – by setting the
upper bound of the corresponding variable to 0.

For now, let us consider matrix A composed of four submatrices B, C, D, E, arranged in a 2 × 2 grid, as
follows:

A =

(
B C
D E

)
;


A
A A
A A A
...

. . .

 =



B C
D E
B C B C
D E D E
B C B C B C
D E D E D E
...

. . .


.

In every odd row of A’s we will cancel the bottom (D,E) row, and in every even row – the upper (B,C) row,
and similarly for columns, so that we obtain the following structure of the constraint matrix:
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B C
D E
B C B C
D E D E
B C B C B C
D E D E D E
B C B C B C B C
D E D E D E D E
...

. . .


∼=


B
D E
B C B
D E D E
...

. . .



Now, let us set the four submatrices of A to be 1× 1 matrices with the following values.

B =
(
1
)
, C =

(
−2
)
, D =

(
1
)
, E =

(
−1
)
.

Let us consider a constraint matrix composed of 2n block-rows and 2n block-columns. We set the first
constraint to “6 1”, and all the remaining constraints to “= 0”. Let us denote the variables corresponding to the
first column of A by y1, y2, . . . , yn, and those to the second column by z1, z2, . . . , zn. We have the following ILP:

1
1 −1
1 −2 1
1 −1 1 −1
1 −2 1 −2 1
1 −1 1 −1 1 −1
...

. . .


·



y1
z1
y2
z2
y3
z3
...



6
=
=
=
=
=
...



1
0
0
0
0
0
...


Observe that zi = yi and yi+1 = y1 + · · ·+ yi for every i. Since y1 ∈ {0, 1}, it is easy to verify that there are

exactly two solutions to this ILP. Indeed, either yi = zi = 0 for every i, or y1 = z1 = 1 and yi+1 = zi+1 = 2i for
every i. In other words, either z = (0, 0, 0, . . .), or z = (1, 1, 2, 4, 8, . . .). We will call these two solutions all-zeros
and powers-of-two, respectively.

Now, let us add one more column, namely (1, 0), to matrix A, which therefore looks now as follows:

A =

(
1 −2 1
1 −1 0

)
.

The newly added column (and the corresponding variable) shall be cancelled (by setting the corresponding upper
bound to 0) in all but the last copy of A, which in turn shall have the other two columns cancelled. Let us call
w the variable corresponding to the only non-cancelled copy of the (1, 0) column. Both solutions to the previous
ILP extend to the current one, with w =

∑
i zi. Note that, in both solutions, both

∑
i(yi − 2zi) + w = 0, and∑

i(yi − zi) = 0. Therefore, if we append another copy of the ILP to itself, as follows,

1
1 −1
1 −2 1
1 −1 1 −1
...

. . .
1 −2 1 −2 · · · 1
1 −1 1 −1 · · · 0
1 −2 1 −2 · · · 1 1
1 −1 1 −1 · · · 0 1 −1
...

. . .


·



y1
z1
y2
z2
...
w
y′1
z′1
...



6
=
=
=
...
=
=
6
=
...



1
0
0
0
...
0
0
1
0
...


,

the two copies are independent from each other, and we get an ILP that has exactly four feasible solutions: both
z and z′ can be either all-zeros or powers-of-two, independently, giving four choices in total.
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Let n be the number of elements in the Subset Sum instance we reduce from. We copy the above construction
n+ 1 times, and we will call each copy a super-block. In the last super-block we change the first constraint from
“6 1” to “= 1”, effectively forcing the powers-of-two solution. Therefore, the resulting ILP has exactly 2n feasible
solutions – two choices for each of the first n super-blocks, one choice for the last super-block. We will denote by
zi,j the j-th z-variable in the i-th super-block.

Now, we replace the z-column of A with three identical copies of it, and each variable zi,j with three variables
pi,j , qi,j , ri,j .

For each i, j we will set to 0 exactly two out of the three upper bounds of pi,j , qi,j , ri,j . Therefore, the
solutions of the ILP after the replacement map one-to-one to the solutions of the ILP before the replacement,
with zi,j = pi,j + qi,j + ri,j . Let a1, a2, . . . , an ∈ Z>0 be the elements in the Subset Sum instance we reduce from,
and let t ∈ Z>0 be the target value. The upper bounds are set as follows. For every i and for j = 1, we set
pi,1 6 +∞ and qi,1, ri,1 6 0. For i = 1, 2, . . . , n, we set

pi,j 6 +∞ and qi,j 6 0 if the (j − 1)-th bit of ai is zero, and
pi,j 6 0 and qi,j 6 +∞ if the (j − 1)-th bit of ai is one;

in both cases ri,j 6 0. For i = n + 1 we look at t instead of ai, and we swap the roles of the q-variables and
r-variables, i.e., we set

pn+1,j 6 +∞ and rn+1,j 6 0 if the (j − 1)-th bit of t is zero, and
pn+1,j 6 0 and rn+1,j 6 +∞ if the (j − 1)-th bit of t is one;

and in both cases qn+1,j 6 0.
Note that, for i = 1, 2, . . . , n, depending on whether the part of the solution corresponding to the i-th super-

block is the all-zeros or powers-of-two,
∑
j qi,j equals either 0 or ai. Hence, the set of the sums of all q-variables

over all feasible solutions to the ILP is exactly the set of Subset Sums of {a1, a2, . . . , an}. Moreover,
∑
j rn+1,j = t.

We need one last step to finish the description of the ILP. We add to matrix A row (0, 0, 1,−1, 0), so it looks
as follows:

A =

1 −2 −2 −2 1
1 −1 −1 −1 0
0 0 1 −1 0

 .

The newly added row (and the corresponding constraint) shall be cancelled (by setting the constraint to
“6 +∞”) in all but the last row of the whole constraint matrix. That last constraint in turn shall be set to “= 0”,
so that we will have

∑
i

∑
j qi,j −

∑
i

∑
j ri,j = 0, i.e.,

∑
i

∑
j qi,j = t. Hence, the final constructed ILP has a

feasible solution if and only if there is a choice of all-zeros and powers-of-two solutions for each super-block that
corresponds to a choice of a subset of {a1, a2, . . . , an} that sums up to t. In other words, the ILP has a feasible
solution if and only if the Subset Sum instance has a feasible solution.

Finally, let us note that the ILP has O(n2) variables, and the desired structure.
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