
     

PAPER • OPEN ACCESS

The twin peaks of learning neural networks
To cite this article: Elizaveta Demyanenko et al 2024 Mach. Learn.: Sci. Technol. 5 025061

 

View the article online for updates and enhancements.

You may also like
Dual-energy digital radiography in the
assessment of bone mechanical properties
P S Toljamo, E Lammentausta, P
Pulkkinen et al.

-

Home monitoring of bone density in the
wrist—a parametric EIT computer
modeling study
Avihai Ron, Shimon Abboud and Marina
Arad

-

How is the phase angle associated with
total and regional bone mineral density in
university athletes?
Priscila Custódio Martins, Mikael Seabra
Moraes and Diego Augusto Santos Silva

-

This content was downloaded from IP address 94.33.239.149 on 23/07/2024 at 10:31

https://doi.org/10.1088/2632-2153/ad524d
/article/10.1088/0967-3334/33/1/29
/article/10.1088/0967-3334/33/1/29
/article/10.1088/2057-1976/2/3/035002
/article/10.1088/2057-1976/2/3/035002
/article/10.1088/2057-1976/2/3/035002
/article/10.1088/1361-6579/ac114b
/article/10.1088/1361-6579/ac114b
/article/10.1088/1361-6579/ac114b


Mach. Learn.: Sci. Technol. 5 (2024) 025061 https://doi.org/10.1088/2632-2153/ad524d

OPEN ACCESS

RECEIVED

23 January 2024

REVISED

17 April 2024

ACCEPTED FOR PUBLICATION

30 May 2024

PUBLISHED

10 June 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

The twin peaks of learning neural networks
Elizaveta Demyanenko, Christoph Feinauer, Enrico MMalatesta∗ and Luca Saglietti
Department of Computing Sciences, Bocconi University, 20136 Milano, Italy
∗ Author to whom any correspondence should be addressed.

E-mail: enrico.m.malatesta@gmail.com

Keywords:mean dimension, double descent, replica method, random feature model

Supplementary material for this article is available online

Abstract
Recent works demonstrated the existence of a double-descent phenomenon for the generalization
error of neural networks, where highly overparameterized models escape overfitting and achieve
good test performance, at odds with the standard bias-variance trade-off described by statistical
learning theory. In the present work, we explore a link between this phenomenon and the increase
of complexity and sensitivity of the function represented by neural networks. In particular, we
study the Boolean mean dimension (BMD), a metric developed in the context of Boolean function
analysis. Focusing on a simple teacher-student setting for the random feature model, we derive a
theoretical analysis based on the replica method that yields an interpretable expression for the
BMD, in the high dimensional regime where the number of data points, the number of features,
and the input size grow to infinity. We find that, as the degree of overparameterization of the
network is increased, the BMD reaches an evident peak at the interpolation threshold, in
correspondence with the generalization error peak, and then slowly approaches a low asymptotic
value. The same phenomenology is then traced in numerical experiments with different model
classes and training setups. Moreover, we find empirically that adversarially initialized models tend
to show higher BMD values, and that models that are more robust to adversarial attacks exhibit a
lower BMD.

1. Introduction

The evergrowing scale of modern neural networks often prevents a detailed understanding of how
predictions relate back to the model inputs (Sejnowski 2020). While this lack of interpretability can hinder
adoption in sectors with a high impact on society (Rudin 2019), the impressive performance of neural
network-based models in fields like natural language processing (Vaswani et al 2017, OpenAI 2023, Touvron
et al 2023), computational biology (Jumper et al 2021) and computer vision and image generation (Ramesh
et al 2022, Rombach et al 2022) have made them the de-facto standard for many real-world applications.
This tension has motivated a large interest in the field of explainable AI (XAI) (Guidotti et al 2018,
Montavon et al 2018, Vilone and Longo 2020).

Deep learning models, which by now can feature hundreds of billions of parameters (Brown et al 2020),
seemingly defy the notion that increasing model complexity should decrease generalization performance.
Counter to what one would expect from statistical learning theory (Vapnik 1999), the observation has been
that larger—heavily overparameterized—models often perform better (Neyshabur et al 2017). This has led
to the question how complex the function represented by an overparameterized neural network is after
training. Many lines of research suggest that neural network models are biased towards implementing simple
functions, despite their large parameter count, and that this implicit bias is crucial for their good
generalization performance (Valle-Perez et al 2018). The general problem of measuring the complexity of
deep neural networks has given rise to several complexity metrics (Novak et al 2018) and studies on how they
relate to generalization (Jiang et al 2019).
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Connected to this, recent studies (Belkin et al 2019, Geiger et al 2019) on the effect of
overparameterization in neural networks led to the rediscovery of the ‘double descent’ phenomenon, first
observed in the statistical physics literature (Opper 1995), which is the observation that when increasing the
capacity of a neural network (measured, for example, by the number of parameters) the generalization error
shows a sudden peak around the interpolation point (where approximately zero training error is achieved),
but then a second decrease towards a low asymptotic value is observed at higher overparameterization.

In the present work, we study the double descent phenomenon under a notion of function sensitivity
based on themean dimension (Hoyt and Owen 2021, Hahn et al 2022). The mean dimension yields a
measure of the mean interaction order between input variables in a function, and can also be proved to be
related to the variance of the function under local perturbations of the input features. While this notion
originated in the field statistics (Liu and Owen 2006), several computational techniques have been proposed
for its estimation in the context of neural networks. One of the main obstacles, however, comes from trying
to characterize the sensitivity of the function over an input distribution that is strongly structured and not
fully known.

In this paper, we propose to focus on the study of the Boolean mean dimension (O’Donnell 2014) (BMD),
which involves a simple i.i.d. binary input distribution. We show how the BMD can be estimated efficiently,
and provide analytical and numerical evidence of the correlation of this metric with several phenomena
observed on the data used for training and testing the model.

2. Related works

2.1. Overparameterization and double descent
Several studies (Baity-Jesi et al 2018, Geiger et al 2019, Advani et al 2020) confirmed the robustness of the
double descent phenomenology for a large variety of architectures, datasets, and learning paradigms. An
analytical study of double descent in the context of the random feature model (RFM) (Rahimi and Recht
2007) was conducted rigorously for the square loss in Mei and Montanari (2019) and for generic loss
by Gerace et al (2020) using the replica method (Mézard et al 1987). Double descent has then later found also
in the context of one layer model learning a Gaussian mixture dataset (Mignacco et al 2020); similarly to the
RFM, the peak in the generalization can be avoided by optimally regularizing the network. In this context
in Baldassi et al (2020) it was also shown that choosing the optimal regularization corresponds to maximize a
flatness-based measure of the loss minimizer. A range of later studies further explored this phenomenology
in related settings (d’Ascoli et al 2020, Gerace et al 2022).

Different scenarios have also been shown to give rise to a similar phenomenology, such as the epoch-wise
double descent and sample non-monotonicity (Nakkiran et al 2021) and the triple descent that can appear
with noisy labels and can be regularized by the non-linearity of the activation function (d’Ascoli et al 2020).

In this work, we connect the usual double descent of the generalization error with the behavior of the
mean dimension, which is a complexity metric that can be evaluated without requiring task-specific data.

2.2. Mean dimension and BMD
Themean dimension (MD), based on the analysis of variance (ANOVA) expansion (Efron and Stein 1981,
Owen 2003), can be intuitively understood as a marker of the complexity of a function due to the presence of
interactions between a large set of input variables.

The mean dimension has been used as a tool to analyze and compare for example neural networks (Hoyt
and Owen 2021, Hahn et al 2022) and, with a slightly different definition, also generative models of protein
sequences (Feinauer and Borgonovo 2022). The MD has the advantage that it can be calculated for a
black-box function, without regard to the internal mechanism for calculating the input-output relation. One
major drawback, however, is the intense computational cost associated with its direct estimation. This
computational limitation has led to the proposal of several approximation strategies (Hoyt and Owen 2021,
Hahn et al 2022). In some special cases, the mean dimension can be explicitly expressed as a function of the
coefficients of a Fourier expansion, as seen from the relationship between the BMD and the total influence
(O’Donnell 2014) defined in the analysis of Boolean functions (see below), and its generalization (Feinauer
and Borgonovo 2022) for functions with categorical variables.

3. Mean dimension

In the next paragraphs, we first provide a general mathematical definition of the mean dimension for a
square-integrable function with real-valued input distribution. We then specialize to the case of a binary
input distribution and define the BMD, which will be the main quantity investigated throughout this paper.
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Finally, we will discuss how to efficiently estimate the MD and the BMD through a simple Monte Carlo
procedure.

3.1. Mathematical definition
To give a proper mathematical definition of the mean dimension, for a real-valued function f(x) of n
variables f : Rn → R, it is convenient to introduce some notation that will be used in the rest of the paper. We
will denote the set of indexes {1, . . . n} by [n]. We define xu the set of input variables xi, with i ∈ u⊆ [n] and
by x\u the set of variables for which i /∈ u. We will also assume that x is drawn from a distribution p(x). The
basic idea of the mean dimension (Hahn et al 2022) is to derive a complexity measure for f from an
expansion of the type

f(x) =
∑
u⊆[n]

fu (xu) (1)

where the ‘components’ fu(xu) can be computed from the following recursion relation

fu (xu)≡
ˆ

f(x) p
(
x\u|xu

)
dx\u −

∑
v⊂u

fv (xv) (2)

with the initial condition f∅ =
´
f(x)p(x)dx≡ E[f]. It can be shown that coefficients of the expansion have

zero average if u is non empty

ˆ
fu (xu)pu (xu) dxu = 0 u ̸= ∅ (3)

where we have denoted by pu(xu) the marginal probability distribution over the set u. Moreover, they satisfy
orthogonality relations, namely

ˆ
fu (xu) fv (xv)pu∪v (xu∪v) dxu∪v = 0 , if u ̸= v . (4)

Using those relations we can write the variance of the function as a decomposition of 2n − 1 terms

σ2 = E
[
f 2
]
−E [f]2 =

∑
u⊆[n]\∅

σ2
u (5)

where

σ2
u ≡
ˆ

f 2u (xu) pu (xu) dxu . (6)

The mean dimensionMf is then defined as (Hahn et al 2022)

Mf =
∑
u⊆[n]

|u|σ
2
u

σ2
, (7)

i.e. a weighted sum over possible interactions, with each subset of inputs contributing based on how much
they influence the variance.

3.2. Pseudo-Boolean functions and Fourier coefficients
We now derive an explicit expression for the mean dimension of n-dimensional pseudo-Boolean functions
taking values on the real domain, f : {−1,1}n → R under the assumption of input features that are i.i.d. from
{−1,1}.

Denoting by s ∈ {−1,1}n the n-dimensional binary input of f, such a function can be uniquely written as
a Fourier expansion (O’Donnell 2014) in terms of a finite set of Fourier coefficients f̂u, u⊆ [n] as

f(s) = C+
∑
i

hi si +
∑
i<j

Jijsi sj +
∑
i<j<k

Kijksi sjsk + . . .=
∑
u⊆[n]

f̂uχu (su) (8)

where

χu (su) =
∏
i∈u

si (9)

3
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represent the Fourier basis of the decomposition that are orthonormal ⟨χu(s)χv(s)⟩= δu,v with respect to the
uniform distribution over {−1,1}n, where we use the notation

⟨•⟩ ≡ 1

2n

∑
s∈{−1,1}n

• . (10)

The Fourier coefficients f̂u can give information about the moments of the function f with respect to the
uniform distribution (10) over s; for example the first moment is

⟨f(s)⟩= f̂∅ (11)

whereas the variance can be obtained as

σ2 = ⟨f 2 (s)⟩− ⟨f(s)⟩2 =
∑

u⊆[n]\∅

f̂ 2u . (12)

We can quantify the contribution ck of interaction of order k to the variance of f(s) as the ratio

ck =

∑
u⊆[n]\∅:|u|=k f̂

2
u

σ2
. (13)

Notice that
∑

k ck = 1, so that ck can be interpreted as a (discrete) probability measure over interactions. The
mean dimension of f can then be written as the mean interaction degree when weighted according to it
contribution to the variance, i.e. as a weighted sum of feature influences divided by the total variance of the
function, so

Mf ≡
n∑

k=1

kck =

∑
u⊆[n] |u| f̂ 2u
σ2

. (14)

This expression is equivalent to equation (7) for pseudo-Boolean functions under the assumptions that all
features are i.i.d from {−1,1}. The expression connects the notion of simplicity in terms of variance
contributions to the same notion in terms of explicit expansion coefficients. Intuitively, a large mean
dimension is indicating that the function fluctuates due to a large contribution of high-degree interactions.

3.3. Estimating the mean dimension throughMonte Carlo
The expression of the mean dimension in (7) involves a sum over all the set of subsets of n variables, and its
numerical evaluation through a brute-force approach would be intractable in high dimension. However, it
can be shown that a more efficient evaluation scheme of equation (7), can be achieved through a Monte
Carlo approach (Liu and Owen 2006). First, the MD can be rewritten as a sum over the n input components:

Mf =

∑n
i=1 τ

2
i

σ2
(15)

where the influence of the ith input component τ i is defined as:

τ 2i =
1

2

ˆ
dxdx ′i p(x) p

(
x ′i |x\i

)(
f(x)− f

(
x⊕i
))2

. (16)

And where we have denoted by x⊕i a vector x with a resampled ith coordinate. We show an original proof of
this identity in appendix A.

Note that the definition of the MD for a generic input distribution in equation (16), entails a resampling
procedure that presumes knowledge of the conditional distribution of a pixel given the rest of the pixel
values. In the general case, this pixel is to be resampled multiple times from this conditional distribution, to
compute the variance of the function under this variation of the input. This conditional distribution,
however, is not a known quantity for a real dataset. For this reason, for example, some authors have proposed
an ‘exchange’ procedure, where one randomply samples a different pixel value observed in the same dataset
(Hahn et al 2022), however this approximation neglects the within sample correlations.

Expression (16) can be specialized to the case of binary i.i.d. inputs, where one can identify the influence
functions τ 2i with the discrete derivatives:

τ 2i =
⟨
(Di f(s))

2
⟩

(17)
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whereDi f(s) denotes the ith (discrete) derivative of f(s), i.e.

Di f(s)≡
f(s1, . . . , si = 1, . . . , sn)− f(s1, . . . , si =−1, . . . , sn)

2
(18)

and measures the average sensitivity of the function to a flip of the ith variable. The sum of the influences∑
i

⟨
(Di f(s))

2
⟩
is known in the field of the analysis of pseudo-Boolean functions as total influence of

f (O’Donnell 2014). In terms of the Fourier expansion, we have

Di f(s) =
∑

u⊆[n]:i∈u

f̂uχu\i
(
su\i
)
. (19)

Therefore computing the mean dimension for pseudo-Boolean functions boils down to querying the
function f on uniformly sampled binary sequences of length n− 1.

3.4. BMD
In the general case, the underlying input distribution of the training dataset is not known and estimating the
MD on this distribution becomes unfeasible. In the present work, we propose employing the estimation
procedure presented in the last section, based on binary sequences, as an easily computable proxy of the
sensitivity of the neural network function. In order to distinguish this proxy from the mean dimension over
the dataset distribution, we call the resulting quantity the BMD. We show in the results below that the BMD
can in some cases be computed analytically, and that it is qualitatively related to the generalization
phenomenology in neural networks.

4. Analytical results

We now derive an analytic expression for the mean dimension in the special case of the RFM (Rahimi and
Recht 2007, Goldt et al 2019, Loureiro et al 2021, Baldassi et al 2022), focusing on the same high dimensional
regime where the double descent phenomenon can be detected. In the next sections, we will define the
model, the learning task and the high dimensional limit precisely, and we will sketch the analytical derivation
of the expression for the BMD.

4.1. Model definition and learning task
The RFM is a two-layer neural network with random and fixed first-layer weights (also called features) and
trainable second-layer weights. Given a D-dimensional input, x ∈ RD, and denoting by F ∈ RD×N the D×N
frozen feature matrix, the pre-activation of the RFM is given by:

ŷ(w;x) =
1√
N

N∑
i=1

wi σ

(
1√
D

D∑
k=1

Fki xk

)
(20)

where w is an N-dimensional weight vector and σ is a (usually non-linear) function. The parameter N
indicates the number of features in the RFM and can be varied to change the degree of over-parametrization
of the model. As in Baldassi et al (2022), we will hereafter focus on the case of i.i.d. standard normal
distributed feature components Fki ∼N (0,1), although the formalism allows for a simple extension to a
generic fixed feature map, under a simple weak correlation requirement (see Gerace et al 2020, Loureiro et al
2021 for additional details).

We consider a classification task defined by a training dataset of size P, denoted asD = {xµ,yµ}Pµ=1. The
inputs are assumed to be i.i.d. with first and second moments fixed respectively to Exi = 0 and Ex2i = 1.
Note that, for example, both binary input components xi ∈ {−1,1} and Gaussian components xi ∼N (0,1)
satisfy the above assumption. The binary labels yµ ∈ {−1,1} are assumed to be produced by a ‘teacher’ linear
model wT ∈ RD, with normalized weights on the D-sphere ∥wT∥22 = D, according to:

yµ = sign

(
1√
D

D∑
k=1

wT
k x

µ
k

)
, µ ∈ [P] . (21)

The learning task is then framed as an optimization problem with generic loss function ℓ and ridge
regularization

w⋆ = arg min
w∈RN

[
P∑

µ=1

ℓ(yµ, ŷµ (w;xµ))+
λ

2
∥w∥22

]
, (22)

5
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where λ is a positive external parameter controlling the regularization strength. In the following we will
consider the two most common convex loss functions, namely the mean squared error (MSE) and the
cross-entropy (CE) losses, defined as

ℓmse (y, ŷ) =
1

2
(yµ − ŷµ)2 (23a)

ℓce (y, ŷ) = log
(
1+ e−ŷy

)
. (23b)

We analyze the learning problem in the high-dimensional limit where the number of features, input
components and training-set size diverge N , D , P→∞ at constant rates α≡ P/N=O(1) and
αD ≡ D/N=O(1). In this limit, strong concentration properties allow for a deterministic characterization
of the above-defined learning problem in terms of a finite set of scalar quantities called order parameters. In
the next sections, and in detail in the appendices, we will sketch the derivation of this reduced description.

4.2. Rephrasing the problem in terms of the Boltzmannmeasure
The learning task in (22) can be characterized within a statistical physics framework. One can introduce a
probability measure over the weights w in terms of the Boltzmann distribution

w∼ pβ (w;D) =
e−β

∑P
µ=1 ℓ(y

µ, ŷµ(w;xµ))− βλ
2

∑N
i=1 w

2
i

Zβ
(24)

where β is the inverse temperature, the loss function in (22) plays the role of an energy, and the partition
function Zβ is a normalization factor that reads

Zβ =

ˆ
dwe−β

∑P
µ=1 ℓ(y

µ, ŷµ(w;xµ))− βλ
2

∑N
i=1 w

2
i . (25)

The distribution pβ(w;D) can be interpreted in a Bayesian setting as the posterior distribution over the
weights w given a datasetD, and (24) corresponds to Bayes theorem, where the term e−β

∑
µ ℓ(yµ, ŷµ(w;xµ)),

corresponds to the likelihood and e−
βλ
2 ∥w∥22 is the prior distribution over the weights.

In the zero-temperature limit, when β →∞, the probability measure pβ(w;D) concentrates on the
solutions to the optimization problem in (22). To characterize the typical (i.e. the most probable) properties
of these solutions, one needs to perform an average over the possible realizations of the training setD and of
the features F, computing the free-energy of the system

f =− lim
β→∞

lim
N→∞

1

βN
ED,F lnZβ . (26)

The computation of this ‘quenched’ average can be achieved via the replica method (Mézard et al 1987) from
spin-glass theory, which reduces the characterization of the solutions of (22) to the determination of a finite
set of scalar quantities called order parameters (Engel and Van den Broeck 2001, Malatesta 2023).

In appendix B.1, we sketch the replica calculation for the free energy, first presented in Gerace et al
(2020), in the simplifying case of an odd non-linear activation σ.

4.3. Analytical determination of the BMD in the RFM
We now derive an analytic expression for the BMD which can be efficiently evaluated for a trained RFM. The
definition (15) reads

Mf (w)≡
1
2

∑D
k=1

⟨(
ŷ(w;x)− ŷ

(
w;x⊕k

))2⟩
⟨ŷ2 (w;x)⟩− ⟨ŷ(w;x)⟩2

. (27)

where ⟨•⟩ and x⊕k, defined in (10) and (16), entail an expectation over i.i.d. uniform binary inputs. In
appendix B.2, we perform the annealed averages appearing in the numerator and the denominator
separately, obtaining the expression:

Mf (w) =
1
N

∑
ij Ψ̄ijwiwj

1
N

∑
ijΨijwiwj

(28)

where we defined

Ωij ≡
1

D

D∑
k=1

FkiFkj . (29a)
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Ψ̄ij ≡ κ̄2⋆ΩiiIij + κ̄20Ωij + κ̄21Ω
2
ij , (29b)

Ψij ≡ κ2⋆ Iij +κ21Ωij . (29c)

And the coefficients κ are defined as expectations of derivatives of the activation function over a standard

Gaussian measure Dz= e−z2/2
√
2π

dz:

κ0 =

ˆ
Dzσ (z) , κ1 =

ˆ
Dzσ ′ (z) , κ2 =

ˆ
Dzσ2 (z) , (30a)

κ̄0 = κ1 , κ̄1 =

ˆ
Dzσ ′ ′ (z) , κ̄2 =

ˆ
Dz (σ ′ (z))

2
, (30b)

κ2⋆ = κ2 −κ21 −κ20 , κ̄2⋆ = κ̄2 − κ̄21 − κ̄20 . (30c)

As we show in the appendix, the above expression (28) is universal: evaluating the MD with respect to a
different i.i.d. input distributions with matching first and second moments would give exactly the same
result.

Moreover, note that the evaluation of expression (28) no longer involves a Monte-Carlo over the input
distribution, with a major gain in computational cost. In appendix B.2, we show the agreement of this
compact formula with the computationally more expensive Monte Carlo estimation of the BMD.

The mean dimension therefore explicitly depends on the model parameters w. The evaluation of the
typical BMD of a trained RFM can thus be computed by taking an expectation over the zero-temperature
Boltzmann measure for the weights derived in the replica computation,Mf = ED,F

⟨
Mf(w)

⟩
w
. The notation

⟨•⟩w ≡
´
dw • p∞(w;D) is thus used to indicate an average over the posterior distribution in equation (24),

in the large β limit.
In the case of the replica computation for an odd activation function, that we reported in appendix B.1,

one can simplify further expression (28) by recognizing that κ̄1 = 0 and that Ωii = 1 when the feature
components have second moment equal to 1. In this case, the numerator and the denominator can be
directly expressed in terms of the order parameters of the model:

Mf = 1+(κ̄2 −κ2)
qd
Qd

(31)

where

qd ≡ ED,F

⟨
1

N

N∑
i=1

w2
i

⟩
w

, (32a)

pd ≡ ED,F

⟨
1

N

N∑
i,j=1

Ωijwiwj

⟩
w

, (32b)

Qd ≡ κ2⋆qd +κ21pd . (32c)

The order parameters qd, pd can be computed by solving saddle point equations as shown in
appendix B.1.

Notice that in the case of a linear activation function the BMD is always 1 since a flip in the inputs will
induce always the same response.

In figure 1 we show the plot of the generalization error and the corresponding BMD of the RFM at a fixed
αT , as a function of 1/α for the MSE (left panels) and CE loss (right panels). As shown in Gerace et al
(2020), for small regularization λ the generalization error develops a peak approximately where the model
starts to fit all training data. In the case of the MSE loss, this threshold is often called interpolation threshold
and it is located at N = P. When using the CE loss, this happens when the projected data become linearly
separable and the exact location of the threshold strongly depends on the input statistics and features.
Exactly in the correspondence of the generalization error peak the BMD displays its own peak, meaning that
the function implemented by the network is more sensitive to perturbation of the inputs.

An interesting insight can be deduced from the behavior of the BMD at the optimal value of
regularization for the RFM (dashed red curves in figure 1). While the generalization error becomes
monotonic as the over-parametrization is increased, the BMD still reaches a peak at first and then descends
to 1 only in the kernel limit N/P→∞. This might be surprising since the ground-truth linear model, the
teacher, has BMD equal to 1 and one would expect the best generalizing RFM to achieve the best possible
approximation of this function and therefore to match its BMD. However, blind minimization of the BMD is
not compatible with good generalization, as seen from the performance of the RFM with very large
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Figure 1. Generalization error (top panels) and BMD (bottom panels) as a function of the overparameterization degree
1/α= N/P, for fixed αT = P/D= 3 and with σ = tanh. The left and right panels represents respectively the case of the MSE and
of the CE loss. Several value of the regularization λ are displayed, together with the optimal one (which was found by minimizing
the generalization error for each value of α, see red dashed line). As it can be seen in both plots, for small regularization λ, the
location of the peak in the generalization error exactly coincides with the one in the BMD (vertical dashed lines). As one increases
the regularization the peak in the both the generalization and the BMD is milded.

regularization λ. The explanation of this comes from the architectural mismatch between the linear teacher
and the RFM: according to the GET the RFM learning problem is equivalent to a linear problem with an
additional noise with an intensity regulated by the degree of non-linearity of the activation
function (d’Ascoli et al 2020). This noise initially forces the under-parameterized RFM to overstretch its
parameters to fit the data, causing an increased sensitivity to input perturbations. As the
over-parameterization is increased, the RFM becomes equivalent to an optimally regularized linear
model (Gerace et al 2020) and the BMD slowly drops to 1 in this limit.

Note that in the large dataset limit, when α,αT →∞ with αD =O(1), a secondary peak for the BMD of
the RFM emerges around αD = 1, i.e. when the number of parameters of the RFM is the same as the number
of input features. This peak is caused by the insurgence of singular values in the spectrum of the covariance
matrix Ω and is more accentuated at lower values of the regularization. Since modern deep networks operate
in a completely different regime from the large dataset limit specified above, we expect this secondary peak
not to be visible in realistic settings. For example, in the above plots in the low regularization regime, this
peak is overshadowed by the main BMD peak. We analyze this phenomenology in detail in appendix C.

5. Numerical results

In the following subsections, we explore numerically the robustness of the BMD phenomenology analyzed in
the RFM, considering different types of data distribution, model architecture and learning task.

Furthermore, we show that adversarially initialized models also display higher BMD, and that the
increased sensitivity associated with a large BMD can hinder the robustness of the model against random
perturbations of the training inputs.

Finally, we show that the location of the BMD peak is robust to the choice of input statistics used for its
measurement, even in non-i.i.d. settings.

5.1. Experimental setup
In the following subsections, each panel displays the performance of a large number of different model
architectures with varying degree of over-parameterization, trained on different datasets. Except where
specified otherwise, all model are initialized with the common Xavier method (Glorot and Bengio 2010) and
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use the Adam optimizer (Kingma and Ba 2014), with batch size 128 and learning rate 10−4. No specific early
stopping criterion is implemented. As in other works analysing the double descent, we experiment with
different levels of uniformly random label noise during training (which is introduced by corrupting a
random fraction of labels), which tends to make the double descent peak more pronounced (Nakkiran et al
2021). We discuss the effect of label noise below.

5.1.1. Model architectures
We consider different types of model architectures:

• RFM, described above, where the number of hidden neurons in the first (fixed) layer controls the degree of
over-parameterization.

• Two-layer fully-connected network (MLP) with tanh activation, where the number of hidden neurons in
the first layer controls the degree of over-parameterization.

• ResNet-18: a family of minimal ResNet (He et al 2016) architectures based on the implementation of
(Nakkiran et al 2021). The structure is finalized with fully connected and softmax layers. As in Nakkiran
et al (2021), we control the over-parameterization of the model by changing the number of channels in the
convolutional layers. Namely, the 4 ResNet blocks contain convolutional layers of widths [k, 2k, 4k, 8k], with
k varying from 1 to 20.

Both RFM and two-layer fully connected networks in our experiments use hyperbolic tangent activation
functions and have weights initialized from a Gaussian distribution and bias terms initialized with zeros. The
loss function optimized during training is the cross-entropy loss with L2 regularization (the intensity of the
regularization is set to zero if not specified otherwise).

5.1.2. Data preprocessing
In the following experiments, we use continuous inputs during the training of the models, normalizing the
input features to lie within the [−1,1] interval. While such normalizations are common in preprocessing
pipelines, here this procedure has also the benefit of matching the range of variability of the training inputs
with that of the randomly i.i.d. sampled binary sequences used to estimate the BMD. We explore the effect of
different normalization ranges in appendix section E.

5.2. MD and generalization peaks as a function of overparametrization
In figure 2 we show train and test error, and the BMD for an RFM trained with and without label noise on
binary MNIST (even vs odd digits) as a function of the hidden layer width. In figure 3, we instead consider a
two-layer MLP trained on 10-digits MNIST (varying width) and a ResNet-18 trained on CIFAR10 (varying
number of channels), both with label noise. In the multi-label case, we are defining the BMD of the network
as the average of the BMDs over the classes, where the output of the network is a vector of predicted
log-probabilities for each class (i.e. there is a log-softmax activation in the last layer).

5.2.1. Position of the BMD peak
The BMD displays a peak around the point where the number of parameters of the model allows it to reach
zero training error, in close correspondence with the generalization error peak. We find this phenomenology
to be robust with respect to the model class, the dataset, and the over-parameterization procedure. Notice
however, that standard optimizers based on SGD are able to implicitly regularize the trained models and can
strongly reduce the peaking behavior, as already observed in the context of double descent. In the presented
figures we introduced label-noise, which ensures the presence of over-fitting and is thus able to restore both
peaks.

An important observation is that, in order to see this phenomenology, it is not necessary to account for
the training input distribution for the evaluation of the MD, which would not be possible in the case of real
data. In fact, in the over-fitting regime, it is possible to detect an increased sensitivity of the neural network
function for multiple input distributions, including the i.i.d. binary inputs entailed in the BMD evaluation.
This is explored further in section 5.6.

5.2.2. Asymptotic behavior of the BMD
When the degree of parametrization of the model is further increased, the BMD decreases and settles on an
asymptotic value. The decrease of the BMD in the number of parameters is faster with lower label noise, see
figure 2(left panel vs. right panel). The asymptotic value, reached in the limit of an infinite number of
parameters, is task- and model-dependent. For example, in figure 2, the functions learned by the RFMs no
longer approximate a linear model (BMD equal to 1), and are instead bound to higher values of the BMD.
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Figure 2. Train error (turquoise), test error (violet) and BMD (orange) curves of the random feature model trained on the
MNIST dataset with binary labels on 5 K train samples with 0% label noise (left) and 10% label noise (right), tested on 5 K
samples. The resulting plots represent an average (and standard deviations) obtained repeating 20 different times the experiment.

Figure 3. (Left) Train error (turquoise), test error (violet) and BMD (orange) of the two-layer fully-connected network trained on
the MNIST dataset with 10 labels on 20 K train samples with 20% label noise, tested on the 5 K samples. The resulting plot
represents an average (and standard deviations) obtained repeating 20 different times the experiment. (Right) Train error, test
error and BMD of ResNet-18 trained on the CIFAR-10 with 15% label noise in the train set. The resulting plot represents an
average (and standard deviations) obtained repeating 5 different times the experiment.

5.2.3. Visibility of the BMD peak and Label Noise
The double-descent generalization peak can be a very subtle phenomenon when the learning task is too
coherent and the noise level in the data is too weak. With this type of data, the phenomenon can be made
more evident (Nakkiran et al 2021) by adding label noise to the training data. This strategy naturally reduces
the signal-to-noise ratio and increases the over-fitting potential during training. The BMD peak, however,
seems to be easily identifiable even with zero label noise, (see left panel of figure 2) where the generalization
peak is less pronounced. Note that the BMD does not require any data (neither training nor test) in order to
be estimated, so it can be used as a black-box test for assessing the proximity to the separability threshold and
therefore as a signal of over-fitting.

5.2.4. Impact of regularization
It has been shown that regularizing the model weakens the double-descent peak and that, at the optimal
value of the regularization intensity, the generalization error smoothly decreases with the degree of
over-parameterization. Similarly, the BMD peak can be dampened by adding stronger regularization, as
shown in figure 4.

5.2.5. BMD and training set size
In this section, we investigate the effect of varying the number of training samples for a fixed model capacity
and training procedure. By increasing the number of training samples, starting from a low number, the same
model can switch from being over- to under-parameterized. Therefore increasing the number of training
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Figure 4. Impact of training with L2 regularization of the random feature model using the MNIST dataset with 10 labels, 200
train samples with no label noise and evaluating on 5 K test samples. The loss used is cross-entropy. In all plots, the curves are
colored by the strength of the regularization weight λ. (Left) Regularization effect on the train error. (Center) Regularization
effect on the test error. (Right) Regularization effect on the BMD. The generalization error smoothly decreases with the degree of
over-parameterization. Similarly, the BMD peak can be dampened by adding stronger regularization.

Figure 5. Effect of changing the training set size on the test error (left panel) and the BMD (right panel) of the random feature
model using the MNIST dataset with 10 labels, with no label noise and evaluating on 200 test samples. The resulting plot
represents an average (and standard deviations) obtained repeating 15 different times the experiment.

samples has two effects on the test error curve: on the one hand, increasing the number of training samples
decreases the test error, shifting the test error curve mostly downwards. On the other hand, increasing the
number of training samples increases the capacity at which the double descent peak occurs since a higher
capacity is needed until the training set is effectively memorized. This shifts the test error curve (and the
BMD curve) to the right. This effect can be seen in figure 5.

5.3. BMD and adversarial initialization
In this section, we analyze the BMD of two-layer fully connected networks under adversarial initialization
(Liu et al 2020) on the MNIST dataset. This initialization scheme can be used to artificially hinder the
generalization performance of the model, forcing it to converge on a bad minimum of the loss. We here aim
to show that the initialization has also an effect on the BMD of the model, increasing the sensitivity of the
network.

The adversarial initialization protocol works as follows. We train a two-layer fully connected network in
two different phases: in the first phase, we push the network towards an adversarial initialization by
pretraining the model with 100% label noise for a fixed amount of epochs; in the second phase, we train the
model on the original dataset, with no label noise, for 200 epochs. The resulting plot, in figure 6(left panel),
represents an average over 15 different realizations of the experiment and shows the effect of the length of the
pretraining phase on both generalization performance and BMD of the network. In agreement with our
analysis, we observe a simultaneous increase of the two metrics when the adversarial initialization phase is
longer and the network is driven towards worse generalization.
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Figure 6. (Left): BMD (orange points), and test error (violet points) estimated for a two-layer fully connected network of width
103, trained according to the adversarial initialization protocol described in section 5.3 on 20 K samples of the MNIST dataset. On
the horizontal axis we vary the number of pretraining epochs, and plot the corresponding increase in the generalization error and
the BMD of the model after the second learning stage. The points represent an average of 15 different realizations of the
experiment. (Right): BMD (orange line) and counts (turquoise line) estimated for a two-layer fully connected network trained on
the MNIST dataset using 20 K train samples with 20% label noise and tested on 5 K samples. Counts represent the average
amount of sign flips of random pixels of a correctly predicted test image that are necessary to fool the model to a wrong class label.
The amount is averaged over all the correctly predicted test data samples. The resulting plot represents an average of 40 different
realizations of the experiment. We observe that higher values of the BMD correspond to lower robustness of the model and vice
versa.

5.4. BMD and robustness against adversarial attacks
In this section, we analyze the connection between BMD of a model and its robustness to adversarial attacks.
We consider a two-layer fully-connected network trained on MNIST with 10 classes. We define as our
robustness measure the average count of sign flips of randomly chosen pixels, needed to change the model
prediction on a test sample that was previously classified correctly. The lower the counts, the lower the
robustness of the model. Varying the capacity of the model by varying the width of the hidden layer, we plot
this robustness measure against the BMD of the model in figure 6(right panel). We observe that BMD and
robustness strongly anti-correlate, with the peak in BMD coinciding with a minimum of robustness.

5.5. Pixel-wise contributions to BMD
The MD as expressed in equation (15) is proportional to a sum of contributions τ 2i of single features indexed
by i. Similar to (Hahn et al 2022), we plot these contributions in figure 7 as a heatmap, where the bright spots
indicate features that contribute strongly to the MD. We show four heatmaps, corresponding to different
capacities and at different distances from the BMD peak, for a two-layer fully connected network trained on
MNIST.

Note that the colors are normalized to the [0,1] range, so that very bright spots correspond to pixels that
contribute to the BMD the most. It can be seen that for under-parametrized networks few pixels give the
largest contribution to the BMD. Near the BMD peak, a large fraction of the pixels in the center of the image
dominate the BMD, and for even larger capacities we again have fewer pixels with maximal values. This can
be interpreted as the classifier losing ‘focus’ at the interpolation point and paying attention to fewer patterns
in the over-parametrized regime.

5.6. Different distributions for estimating BMD
In BMD estimates for the previous experiments, equation (16), we focused on the case of i.i.d. binary input
features. In the RFM, however, we have shown analytically that there exists a universality for the MD when
one considers separable input distributions with the same first and second moments. In the numerical
experiments, we have also shown evidence that the BMD peak can still provide insights into the behavior of
the neural network function on the training and test data, which follow very different input statistics. To
explore in detail the role of the input statistics, and of the presence of correlations in the input features, we
measure the MD by resampling the inputs from different distributions: in figure 8 we plot the normalized
MD curves for features sampled from:

• a uniform binary distribution (BMD).
• a standard normal (Gaussian) distributionN (0,1).
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Figure 7. Heatmaps of the pixel contributions (τ 2
i for 1 ⩽ i ⩽ 784) estimated on the two-layer fully connected network trained

on 20 K samples of the MNIST dataset with 10 classes, 20% label noise and normalized to lie within [0,1] interval. The (rescaled)

participation ratio is defined as n×
∑n

i=1 τ
2
i

(
∑

n
i=1 τi)2

. After the rescaling, a participation ratio of 1 indicates a uniform distribution of

pixel contributions, while a value of n indicates a distribution concentrated over a single pixel. The heatmaps correspond to the
contributions estimated with respect to label 0 for the models of different capacities (hidden layer dimensions) and represent only
one seed, while the resulting curves on the plot represent an average over 20 different runs of the experiment.

Figure 8.Mean dimensions estimated using Monte Carlo (equation (16)) w.r.t. different distributions of the two-layer fully
connected network trained on the 20 K of MNIST samples with 20% label noise and tested on 5 K samples. The MD values are
normalized to lie within [0,1] interval. The choice of the distribution does not affect the location of the peak. Moreover,
distributions, which first two moments coincide (e.g. binary uniform Unif{−1,1} and GaussianN (0,1)) yield the same MD
pattern. The resulting plot represents an average over 20 different runs of the experiment.

• a uniform distribution in the range [−1,1] .
• empirical distribution of the training data with random uniform resampling in the range [−1,1].

As one can see in figure 8, the MD curves estimated with binary and Gaussian i.i.d. inputs, with matching
moments, are identical. With the uniform distribution, the second moment is 1/3 and this results in a slightly
rescaled MD curve. Introducing correlations in the inputs, in the MD estimated over the training data
distribution, the curve still shows a similar behavior, and importantly the peak is found at the same value.
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6. Discussion

In this work, we analyzed the BMD as a tool for assessing the sensitivity of neural network functions. In the
treatable setting of the RFM, we derived an exact characterization of the behavior of this metric as a function
of the degree of overparameterization of the model. Notably, we found a strong correlation between the
sharp increase of the BMD and the increase of the generalization error around the interpolation threshold.
This finding indicates that as the neural network starts to overfit the noise in the data, the learned function
becomes more sensitive to small perturbations of the input features. Importantly, while the double descent
curve requires test data to be observed, the BMD can signal this type of failure mode by using information
from the neural network alone. The same phenomenology appears in more realistic scenarios with different
architectures and datasets, where factors influencing double descent, like regularization and label noise, are
also found to affect the BMD in similar fashion. Furthermore, we demonstrated that the BMD is informative
about the vulnerability of trained models to adversarial attacks, despite assuming an input distribution that
is very different from that of the training dataset.

Our study raises intriguing questions regarding the potential applications of BMD for regularization
purposes. Another interesting future direction could be to investigate how comparing the BMDs achieved by
a highly parametrized neural network trained on different datasets can help assess the effective
dimensionality of the training data and the complexity of the discriminative tasks. Finally, it could be
interesting to extend the study of the BMD in the RFM in the framework of a polynomial teacher model,
recently analyzed in Aguirre-López et al (2024).
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