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A B S T R A C T

We explore the relationship between government-supported science and its translation into inventive activities,
focusing on the European Research Council (ERC), the principal funding mechanism for top-quality research
in Europe. We show that, compared to similar European research, ERC science accrues a greater number
of patent citations. Moreover, patents that draw upon ERC research are of superior quality, measured by
forward citations. Compared to similar European research, inventive activities arising from ERC science are
more likely to be housed within universities and public research organizations. In absolute terms, however,
US organizations, especially US companies, still lead in deriving the greatest benefits from ERC science. The
significant disparity in corporate sector patenting linked to ERC science in the US and EU is fueled by inventions
undertaken by startups, highlighting the crucial role of a dynamic startup landscape in driving inventions at
the frontier of science. Overall, our findings suggest that ERC science continues to face challenges associated
with the so-called European Paradox.
1. Introduction

Science has played a central role in many of humanity’s greatest
advances over the past century, ranging from instantaneous global
communications to vaccines, medical devices to artificial intelligence,
and industrial robots to new materials (Jones, 2021). Numerous day-to-
day products now incorporate components developed through scientific
advances years earlier. Examples include microchips or light-emitting
plastics in smartphones, as well as graphene in top-performance skis
or bicycles. The relationship between technical change and scientific
advances has become increasingly interlinked in recent decades. Arora
et al. (2023b) report that since the 1980s, the percentage of utility
patents citing science has increased five-fold, while the overall number
of citations to research articles in patents has exploded.

Governments play a leading role in supporting scientific endeav-
ors, either by creating funding agencies such as the National Sci-
ence Foundation (NSF) and the National Institutes of Health (NIH)
in the United States or by directly funding universities and research

✩ This research benefited from helpful comments by Felix Poege, Nikas Scheidt, Markus Simeth, and participants in the 2023 DRUID Conference. We are
responsible for any remaining error. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 860887. Breschi and Fosfuri also acknowledge financial support through the MUSA – Multilayered Urban
Sustainability Action and the GRINS – Growing Resilient, INclusive and Sustainable projects, funded by the European Union – NextGenerationEU, under the
National Recovery and Resilience Plan (NRRP).
∗ Correspondence to: Fuqua School of Business, Duke University, 100 Fuqua Drive, Durham, NC 27708, United States of America.
E-mail addresses: jayprakash.nagar@duke.edu, jay.nagar@unibocconi.it (J.P. Nagar).

institutions (Babina et al., 2023). Thus, understanding the extent to
which government-supported science translates into technical advances
that eventually leads to new products and services is of first-order
importance.

In this paper, we focus on a flagship funding program for science,
the European Research Council (ERC). The ERC was established by the
European Commission in 2007, with the goal to support ‘‘investigator-
driven frontier research across all fields, based on scientific excellence’’.
Over the years, the ERC has become the primary funding vehicle for
top-quality research in Europe. It has awarded over 10,000 grants
to researchers, who have collectively published more than 200,000
articles in scientific journals. Among the ERC grantees are 12 No-
bel Prize winners, 6 Fields Medalists, and 11 Wolf Prize laureates.
By focusing on the ERC, we thus capture unequivocally top-notch
science.

While the ERC has contributed to raising European science to
the frontier, transforming the results of research into inventions that
might be commercialized into new products and services is challenging.
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Our knowledge of the spillover impact of ERC science1 on inventive
activities remains limited.2 This impact extends beyond ERC grant
holders and involves all inventors who may be influenced by published
science.

The difficulties in transitioning from science to invention and then
commercialization have often been framed through the lens of the
so-called European Paradox. This conjecture suggests that while EU
scientific performance is on par with that of its main international
competitors, Europe lags behind in converting research results into
innovations and gaining competitive advantage (Argyropoulou et al.,
2019). Despite being highly popular among policymakers (European
Commission, 1995), whether this conjecture is ultimately founded has
been subject to academic debate (see, for instance, Dosi et al. (2006a)
and Rodríguez-Navarro and Narin (2018)). Focusing on ERC science
allows us to address and potentially mitigate one of the primary con-
cerns that have perplexed scholars debating the existence of a European
Paradox, namely, whether the Paradox does not exist because European
science is not cutting-edge to start with.

Our objective in this study is to assess whether science sponsored
by the ERC, relative to comparable scientific research, generates more
or fewer knowledge spillovers that manifest in subsequent patenting
activities. In addition, we investigate the types of organizations (uni-
versities, public research organizations, companies, startups) that more
frequently draw upon ERC science in their inventive activities and
explore whether these inventions are more likely to occur in Europe
or elsewhere.

To address our research questions, we gathered comprehensive
data on all ERC-funded projects from the program’s inception in 2007
until April 2022. After excluding projects not yet terminated, our final
sample consists of 4,753 closed projects with 116,538 publications. To
examine the publication output of these projects, we linked them to
the Microsoft Academic Graph (MAG) database, a large-scale schol-
arly database that provides information about academic publications,
authors, institutions, conferences, and more. This yielded a sample of
91,365 scientific publications published in journals in the period 2007–
2018 from 4,567 closed projects. To identify the patents citing those
publications and their patent holders we used the Reliance on Science
(RoS) data set (Marx and Fuegi, 2020). Overall, we were able to identify
a total of 32,021 unique patents that cited 11,457 unique ERC articles.
Finally, to interpret the extent of the spillover effect and assess the
quality of subsequent inventions against an appropriate benchmark, we
developed a control sample of comparable European science that has
not been funded by the ERC.

Using this dataset, we present evidence that ERC science has a
similar likelihood of yielding spillover inventions to that of comparable
European science, as measured by the probability of ERC publications
receiving patent citations. However, conditional on being cited in
patents, it receives a greater number of patent citations per publication.
This suggests that when ERC science has applied value (i.e., it is cited in
patents) it serves as the foundation for a greater number of inventions
than comparable European science. Most importantly, inventions based
on ERC science are, on average, of superior value. Our data shows that
patents based on ERC science receive 21.7% more forward citations for

1 The term ‘ERC science’ refers to all scientific publications that have
een produced as a result of funding from the ERC and acknowledge ERC
rants, including Starting Grants, Consolidator Grants, Advanced Grants, Proof
f Concept Grants, and Synergy Grants. One data limitation is that there
re instances where a publication may acknowledge funding from multiple
ources. Attributing the specific scientific output to only one source of grant
r funding mechanism is not possible in such instances.

2 An exception is Munari and Toschi (2021) who looked at the invention
ctivities by the ERC grant holders using 446 survey responses from scientists
ho applied to the Proof of Concept (PoC) scheme. They showed that receiving
follow-on PoC grant was effective in fostering the early commercialization
2

f scientific discoveries.
USPTO patents and 9.21% more for EPO patents than a control group
of patents. These findings indicate that ERC science is more likely to
have a spillover effect on high-quality inventions compared to similar
European scientific research.

Next, we examine the type and geographical location of the organi-
zations that build upon ERC science. Our findings show that universities
and public research organizations are more likely to be found as appli-
cants of patents citing ERC science than patents citing European science
of comparable quality. In other words, universities and public research
organizations enjoy a comparative advantage in the exploitation of
this cutting-edge science. In absolute terms, however, the corporate
sector, especially US companies, still leads in converting these research
findings into valuable inventions. The difference in corporate patenting
between the US and EU is primarily driven by startup patents, with
the US taking the lead. This underscores the dynamic innovation en-
vironment fostered by startups in the US, which spearheads invention
activities at the forefront of science. Thus, although we document a
robust spillover effect of ERC science on inventive activities, European
industry still lags behind in fully capitalizing on the benefits derived
from such a spillover. Consequently, ERC science continues to face
challenges associated with the European Paradox.

The rest of the paper is organized as follows. The next section
provides a brief overview of the related literature on which we build
our research questions. Section 3 describes the data collection process
and the methodology employed. Section 4 presents and discusses the
results derived from the study. Finally, Section 5 concludes the paper
by summarizing the findings’ key policy takeaways and implications.

2. Related literature and research questions

In this section, we position our contribution within the existing
literature on the role of science in the inventive process, the importance
of government funding in facilitating scientific research, the European
Paradox, the ERC program, and its impact on inventive activities.
Against this backdrop, we introduce our research questions, which aim
to shed light on the relationship between ERC science and inventive
activity.

2.1. Science and invention

Existing research has shown the significant role of science in the
invention process. In fact, many inventions would not have been pos-
sible without the underlying scientific knowledge (Narin et al., 1997;
Rosenberg, 1990). Science serves as a direct input into the inventive
process, narrowing the scope of the search, facilitating more targeted
experimentation, decreasing search costs, and focusing inventive ac-
tivities (Fabrizio, 2009; Rosenberg, 1974; Nelson, 1962; Evenson and
Kislev, 1976; Kline and Rosenberg, 1986). Moreover, scientific research
generates important non-findings and explanatory mechanisms (David
et al., 1992) that alter inventors’ search processes and lead them to
use new knowledge combinations thus eliminating fruitless paths and
shortening invention time (Fleming and Sorenson, 2004).

Carpenter and Narin (1983) pioneered the studies of science and
innovation linkages by using the citations in the patent documents
to scientific articles, which are part of the so-called Non-Patent Lit-
erature (NPL), to examine the ‘‘science dependence’’ of technology.
In a validation exercise using survey data, Roach and Cohen (2013)
found that NPL citations are informative in measuring the intellectual
influence of public sector research. However, there exist widespread
structural differences in the citation patterns among the different patent
authorities. Citations to NPL literature have increased more rapidly for
USPTO compared to EPO documents (Narin and Olivastro, 1998; Marx
and Fuegi, 2020).

Building on this measure, existing studies found that prior scientific
inquiries play a crucial role in the invention process. Arora et al.
(2023b) report that both extensive and intensive NPL citations in patent
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documents have increased substantially since the 1980s. Patents with
NPL citations receive more forward citations and are more likely to be
renewed (Ahmadpoor and Jones, 2017; Sorenson and Fleming, 2004).
Krieger et al. (2022) show that patents closer to science are better, more
novel, and more likely to be in the tails of value distribution (greater
risk and greater reward) than patents disconnected from science. The
invention quality also depends on the quality of the science it is based
upon. Poege et al. (2019) found a very strong positive relationship
between the quality of the scientific contributions referenced in patents
and the value of the inventions (monetary and non-monetary measures
of patent value).

Finally, the role played by basic science in fueling invention is
not uniform across scientific fields. Notably, patents within the life
sciences sector tend to have a substantially higher number of non-
patent literature (NPL) citations, highlighting the unique and critical
role that scientific research plays in driving advancements in this field
(Branstetter and Ogura, 2005).

We contribute to this literature by focusing on the inventive activ-
ities stemming from ERC science. For a meaningful comparison, we
carefully control for the quality of science underpinning patents. On
the one hand, as we detail in Section 3.2.1, we built a control group of
publications matching ERC scientific articles by citation ranking, which
helps interpreting our findings. On the other hand, our regressions
include the number of article citations to account for the scientific
impact of publications.

2.2. Government funding of basic science

Arora et al. (2018) document a decline in US firms’ focus on scien-
tific research, although there has been no change in the production of
technical knowledge (as measured by patents). This highlights the cru-
cial role that government-funded research programs play in innovation
activities, particularly in fields neglected by private investors. Further-
more, government funding of public research is becoming increasingly
crucial as new and novel ideas become harder to find. Bloom et al.
(2020) show evidence, using data from various industries, products,
and firms, that research effort is rising substantially while research
productivity is declining sharply.

Studies have shown that public funding of research plays a sig-
nificant role in generating breakthrough inventions. Corredoira et al.
(2018) use data on federally funded patents to show the importance
of public funding in stimulating technical progress. They find that
government-funded patents are inputs into a broader range of tech-
nologies. Recent studies have also used patent-to-article citations to
trace the influence of public knowledge in spurring inventions. Azoulay
et al. (2019) find that public-sector funding spurs the development of
corporate-sector patents. A $10 million boost in U.S. National Institutes
of Health (NIH) funding leads to a net increase of 2.3 patents. Our
study is closely linked to Li et al. (2017), which used the output of
research grants awarded by the NIH and found that only 10% of NIH
grants generate a patent directly, but 30% generate articles that are
subsequently cited by patents. The bulk of the effect of NIH research on
patenting is indirect, while often policymakers focus on direct patenting
by academic scientists. We will also adopt this broader view in our
analysis below.

2.3. The European Paradox

While the literature has shown that both science and government-
funded research are associated with greater inventive activity, the
European context can be unique. There is a widespread belief among
European policymakers and the research community that although Eu-
ropean research organizations play a leading role in top-level scientific
output, they lag behind in converting it into successful and profitable
innovations, commonly known as European Paradox (European Com-
mission, 1995; Argyropoulou et al., 2019). Empirical evidence provided
3

l

by Tijssen and Van Wijk (1999) confirms the existence of a European
Paradox in different ICT domains such as computers, data processing,
and telecommunications. Radicic and Pugh (2017) examined the ef-
fectiveness of national and European Union (EU) R&D programs in
promoting input and output additionality for small and medium-sized
enterprises in twenty-eight European countries. The authors contend
that the European Paradox, where R&D inputs are being promoted
but commercialization efforts remain lackluster, still exists. In their
study on the discovery of giant magnetoresistance (GMR) by French
and German scientists and its commercialization by IBM, Dedrick and
Kraemer (2015) argue that while the labs of the scientists received
only small licensing fees and the Nobel Prize, IBM captured significant
profits from selling hard disk drives and magnetic heads using GMR.

However, the existence of a European Paradox has been questioned
by other scholars. Among the first to raise questions on the sheer
existence of any paradox were Dosi et al. (2006a,b), who argued that
Europe has weaknesses at both ends, with a scientific research system
that lags behind the US in some areas and a relatively weak industry.
Bonaccorsi (2007) also suggests that the weak performance of European
science in fast-moving and new fields is a better explanation for the
current difficulties in high-technology industries and trade than the
European Paradox, which is offered as a less plausible explanation.
Europe lagged significantly behind the USA in producing important and
highly cited research (Rodríguez-Navarro and Narin, 2018; Herranz and
Ruiz-Castillo, 2013; Bauwens et al., 2011), a weakness that was indeed
addressed with the creation of the ERC.

We contribute to this debate by showing that ERC science is more
conducive to better quality inventions than comparable science. How-
ever, in absolute terms, US organizations, particularly US companies,
and even more so US startups, still lead in deriving the greatest benefits
from ERC science.

2.4. ERC funding and inventive activity

The ERC was set up in 2007 under the EU’s Seventh Framework
Programme for Research, extended under Horizon 2020 (2014–2020)
and continues under Horizon Europe (2021–2027). The budget allo-
cated to ERC projects has been increasing over time: from e7.5 billion
in the period 2007–2013 to e13.3 billion in the period 2014–2020.
Currently, the ERC budget from 2021 to 2027 amounts to more than
e16 billion, around 17% the overall Horizon Europe budget. There are
three main categories of ERC grants — Starting Grants, Consolidator
Grants, and Advanced Grants -given to early career researchers, expe-
rienced researchers, and established researchers, respectively. Principal
Investigators from anywhere in the world can apply for an ERC grant.
The host institution must be established in an EU Member State or Asso-
ciated Country. As per the ERC Annual Work Program 2022 Document,
‘‘the fundamental activity of the ERC, via its main frontier research
grants, is to provide attractive, long-term funding to support excel-
lent investigators and their research teams to pursue ground-breaking,
high-gain/high-risk research’’.3

There is not much evidence available on the impact of the ERC
funding scheme on innovation, and the few existing studies are based

3 While the ERC is designed to fund groundbreaking research, some studies
uggest that its selection committee may limit truly innovative proposals by
valuating them based on existing knowledge boundaries (Luukkonen, 2012).
pplicants with a history of high-risk research are less likely to be selected for

unding, and receiving an ERC grant does not significantly increase risk-taking
ehavior (Veugelers et al., 2022). Ghirelli et al. (2023) study the effect of ERC
rants on the research productivity and quality of the winning applicants. They
ind no statistical effect in a regression discontinuity design, while positive
ong-term effects in a difference-in-differences analysis.
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on data coming from the PoC program.4 For example, Munari and
Toschi (2021), using 446 survey responses from scientists who applied
to the ERC PoC scheme, found that the program effectively promoted
the commercialization of research, academic engagement outcomes,
as well as access to follow-on funding. The authors also discovered
that the scientist’s academic seniority had a negative moderating effect
on the relationship between receiving PoC funding and engaging in
valorization outcomes.

Between 2007 and 2016, the UK, Germany, France, and Switzerland
received three times more ERC grants than Mediterranean countries
like Italy, Israel, Greece, and Spain.5 However, they received only
one and a half times more PoC grants between 2010 and 2017. This
difference may be due to countries with a strong tradition of applied
research and academic entrepreneurship having funding opportunities
for translational research from other sources, while countries with
fewer opportunities rely on the PoC program (Seeber et al., 2022).
Overall, the existing evidence suggests that the ERC PoC program is
somewhat successful in addressing the European Paradox by supporting
the translation of cutting-edge research into real-world applications,
especially in countries with fewer alternative sources of funding. How-
ever, the broader impact of ERC science on inventive activities that go
beyond the inventions directly developed by grant holders has not been
studied. This is the focus of the current paper.

2.5. Research questions

As we have reviewed above, there is substantial evidence that sci-
ence is a crucial component of technical change and that government-
funded research is conducive to inventions. However, the impact of the
ERC program on European inventions is a priori unclear. First, we do
not know if the science developed in ERC projects is suitable for com-
mercial applications, for which patented inventions are a prerequisite.
Second, if the answer to the first question is positive, we still do not
know whether European inventors are the best placed to benefit from
it.

Concerning how much ERC science can spill over inventive activ-
ities, there are two counteracting forces. On the one hand, the ERC
program is designed to support only excellent research that pushes the
frontier of knowledge. The ERC provides generous multi-annual grants
that come without strings attached and enable grantees to dedicate
full time to their research projects. Considerable financial resources are
available for research assistants, teaching buyouts, and other research-
related benefits. On the other hand, the type of research funded by
the ERC may be far from commercial applications, potentially isolating
researchers from reality and market forces. The financial independence
to pursue excellent research might distance it from the needs of both
companies and the economy at large. While ERC-funded research may
advance the frontier of knowledge, it is unclear whether it will also be
able to spill over to inventive activities.

Therefore, our first research question is:

RQ1: Does ERC-funded science, compared to similar scientific en-
deavors in Europe, generate more or fewer knowledge spillovers
that subsequently drive inventive activity?

4 The ERC PoC scheme provides up to e150,000 of additional funding to
RC grant holders to bridge the gap between their research and the early stages
f commercialization. The scheme enables researchers to test the feasibility of
heir ideas, explore business opportunities, and establish intellectual property
ights, among other things.

5 The distribution of research funds among European countries is unequal,
ith some countries like the UK receiving a greater share of funding due to the

oncentration of research in prestigious universities and centers. In contrast,
ountries like Italy receive less support from the ERC and often experience a
rain drain of researchers who are awarded ERC grants (Zecchina and Anfossi,
4

015).
Even if ERC science is particularly suitable to spill over inventive
ctivities, it remains unclear which organizations are best placed for
uch endeavors. The concept of ‘‘scientific’’ absorptive capacity suggests
hat organizations must possess the capability to effectively absorb and
tilize scientific knowledge (Arora and Gambardella, 1994). Conse-
uently, universities, given their proximity to scientific advancements,
an be in a favorable position to transform scientific breakthroughs
nto tangible inventions. However, universities might face challenges in
ecognizing the commercial potential associated with these inventions.

Additionally, the successful transformation of frontier science into
ommercially valuable innovations necessitates the existence of a sup-
ortive ecosystem (Stam and de Ven, 2021). Factors such as tech
ransfer funds and deep tech venture capital contribute to the devel-
pment of this ecosystem (Nanda, 2020). Although science itself is not
eographically bound, the presence or absence of such an ecosystem
an significantly influence the inventive activity derived from frontier
cience.

Therefore, our second research question is:

RQ2: Which types of organizations are more likely to develop
inventions based on ERC science, and in which geographical areas
do these organizations tend to be located?

. Data

.1. Data sources

For this study, we combined several sources of data. Fig. 1 provides
stylized description of the workflow. In the following subsections, we
escribe in detail each step we followed to build our data set.

.1.1. ERC publication data
ERC Research Information System (ERIS) is a primary source of

ata for the research output (e.g., working papers, journal articles,
atents, etc.) of the ERC-funded research projects.6 ERIS, developed
y the European Research Council Executive Agency, presents and
anages detailed information on the ERC funding activities, outcomes,

nd achievements. The ERIS integrates ERC data with external data
elated to the ERC projects. For each publication of an ERC-funded
esearch project, the Scopus IDs and Microsoft Academic Graph IDs are
vailable, which makes it easy to create links with other data sets.

There are 12,387 research projects funded by the ERC, as of April
022, which include 4,909 projects in Physical Sciences and Engineer-
ng, 3,643 in Life Sciences, 2,409 in Social Sciences and Humanities,
nd 1,426 other projects (see Tables A1-A3 in Appendix A). Out of
2,387 projects, 5,404 are closed projects, 23 are early terminated
rojects, 13 are suspended projects due to various reasons, and 6,644
re ongoing research projects (see Table A4 in Appendix A).

As far as the research output of ERC projects is concerned, the ERIS
atabase provides publication data for 4,278 projects, of which 4,180
ere closed projects, 5 were early terminated projects, and 93 were
ngoing projects (see Fig. 1). For these projects, ERIS reports a total of
41,091 scientific publications.7 While ERIS is a valuable and reliable

source of information regarding the results of ERC projects, it is not
without its limitations and challenges. First, a significant issue is the
presence of duplicates within the database; a single publication might
be listed multiple times. This redundancy can occur when researchers
submit the same article multiple times with slight variations in details,
or when an article is disseminated in multiple formats, such as a confer-
ence paper and a subsequent journal publication. Table A5 in Appendix
A provides an example. To ensure accuracy and prevent duplications,
we utilized the Microsoft Academic Graph (MAG) ID, which serves as a

6 https://erc.europa.eu/projects-figures/erc-research-information-system
7 As of April 2022.

https://erc.europa.eu/projects-figures/erc-research-information-system
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Fig. 1. Workflow description.
Notes:a Downloaded in April 2022. ERIS provides publication data for 4,278 projects, of which 4,180 were closed, 5 were terminated early, and 93 were ongoing projects. 1,224
losed projects do not report any publications in the ERIS database. b The ERIS database may contain multiple versions of the same paper. c We retrieved the MAG ID using

the publication’s DOI and title, yielding 116,538 publications from 4,753 projects across journals and conferences. After excluding entries with missing data for scientific field,
publication year, and authors’ affiliation, we retained 91,365 scientific journal publications from 2007 to 2018 stemming from 4,567 ERC projects published solely in journals.
unique identifier for publications, regardless of their various versions.8
In that respect, a second related problem is that the MAG ID is available
only for 96,922 publications out of 141,091 publications contained in
ERIS. For the remaining 44,169 publications, we retrieved the MAG ID
by matching them using the article’s DOI (when available), title, and
year of publication. Overall, we identified 109,332 unique publications
(i.e., unique MAG ID), which were reported as the output of 4,161
closed projects in the ERIS database.

A third significant limitation of the ERIS database is the absence of
reported research output for 1,224 closed ERC projects. This omission
represents a substantial gap in the database’s coverage of project out-
comes. To address this issue, we sourced data on publications from the
Community Research and Development Information Service (CORDIS).9
The CORDIS is a database of results from projects funded by the
European Union. A total of 8,390 publications were downloaded from
the CORDIS database, encompassing 730 out of 1,224 projects for
which ERIS does not report scientific output. We successfully matched
these publications with 7,026 unique entries in the MAG database using
DOI, title, and year of publication as the output of 592 closed projects.
On the other hand, there remain 494 closed projects for which we have

8 The MAG is an open-source database compiled by Microsoft Corporation,
hich provides information on authors, affiliations, citations, year of publi-

ation, DOI, title, publication venue (journal or conference name), scientific
ield, and other information. The extent of MAG’s coverage is similar to that of
copus and Web of Science. A study by Hug and Brändle (2017), which utilized
1,215 validated, multidisciplinary publications from the University of Zurich’s
pen Archive and Repository, found that MAG had the highest coverage

52.5%), followed by Scopus (52%), and Web of Science (47.2%). However,
he MAG database is no longer active and maintained. The last update was
one on December 31, 2021. For details, see https://www.microsoft.com/en-
s/research/project/microsoft-academic-graph/. OpenAlex is an open-source
lternative to MAG that builds on the last open dataset that Microsoft
ublished by integrating other data to further develop its platform.

9 https://cordis.europa.eu/
5

no output data in either ERIS or CORDIS databases. For this subset of
projects, we have attempted to use Scopus as explained next.

Scopus is a comprehensive abstract and citation database of peer-
reviewed literature, which was launched by Elsevier in 2004. To
retrieve data on projects with missing publications from ERIS and
CORDIS, we exploited the funding search field. In particular, we
filtered articles published before 2018 where the funding acronym
was ERC or the funding acknowledgment contained European Research
Council.10 This methodology enabled us to identify 39,528 unique
Scopus publications that met our criteria. However, the approach is not
without its limitations. Primarily, the ERC acronym is not exclusive to
the European Research Council and is also used by other entities, such
as the Engineering Research Center in Korea and the NSF’s Engineering
Research Center in the USA, leading to a significant risk of false
positives. Moreover, the absence of ERC project names and funding
numbers in the Scopus data complicates the task of linking publications
to their originating projects and to the institutions that received the
ERC grants. Given that the selection of a control sample of publications
hinges on the availability of grantee institution information (refer
to Section 3.2.1), this limitation hindered the use of this additional
data in the initial phase of our analysis, where we evaluated the
likelihood of publications receiving citations in patent documents. In
the second part of our analysis, which focused on identifying patents
citing ERC scientific outputs, we conducted a meticulous manual review
of the acknowledgment text for all Scopus-extracted publications that
conformed to the aforementioned criteria.

To summarize, our data set comprises 116,358 distinct publications
(each identified by a unique Microsoft Academic ID) associated with
the ERC from 4,753 closed projects, with 109,332 sourced from ERIS

10 To this purpose, we used the AbstractRetrieval function of the
Python package pybliometrics. This function retrieves comprehensive
bibliographic information for any given publication, including the fields
funding and funding_text.

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://cordis.europa.eu/
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and 7,026 derived from CORDIS. From this sample, we retained only
articles published in journals. We further dropped publications with
missing information in the MAG database for the scientific field, year
of publication, and affiliation of the authors. We keep only publications
published in the years 2007–2018 in our final sample (see Tables A6-A8
in Appendix A). Our final sample comprises 91,365 scientific journal
publications, originating from 4,567 ERC projects in the period 2007–
2018. It encompasses 53,001 publications from Physical Sciences and
Engineering projects, 27,755 for Life Sciences projects, 9,482 from
Social Sciences and Humanities projects, and 1,127 from other projects.

3.1.2. Patents citing ERC science
Our measure of knowledge spillovers from science to inventive ac-

tivities is whether a given scientific article is cited in patent documents.
Using patent citations to NPL, we can trace inventions that build upon
prior scientific knowledge (Roach and Cohen, 2013).

Specifically, we used the Marx and Fuegi (2020)’s Reliance on
Science (RoS) dataset to identify the ERC publications that are cited
in patent documents.11 The RoS database provides the link between the
cademic research articles from the MAG database and the patent publi-
ation identifiers. Marx and Fuegi (2020) argue that their algorithm can
apture up to 93% of patent citations to science with an accuracy rate of
9% or higher. The RoS dataset contains 22 million patent citations to
cience covering both citations on the front page and those in the body
f the document. In the final sample, we have 32,021 unique patents
hat cite ERC articles and 11,457 unique ERC articles that receive at
east one citation in patent documents.12 It is noteworthy that, among
he 32,021 patents citing ERC science, 55.83% were filed with the
SPTO, followed by 23.56% as WO-PCT applications, and 9.48% with

he EPO. Tables B1, B2, B4, and B5 in Appendix B report, respectively,
he distribution of citing patents by patent authority, the distribution
f patent-to-science citations by position within the patent document,
PL reference type, and patent technical fields.

It is also worth noting that our results are robust to different
evels of confidence scores regarding the patent-to-science citation
inkage. Marx and Fuegi (2020) assigned a confidence score to each
atent-to-paper citation linkage. The score evaluates the extent to
hich the linkage corresponds to a true citation. In a robustness

heck, we replicated all the results for a confidence score no less
han 4, which corresponds, according to Marx and Fuegi (2020), to

99.47% precision and a 92.81% recall rate. Table B3 in Appendix
shows the distribution of the level of confidence score of ERC pub-

ication and patent linkages in our data set. Around 95.15% of ERC
ublication-patent linkages have a confidence score of 4 or more.

We merged the patents citing ERC science with the EPO PATSTAT
atabase and we extracted information on the patent filing date, the
nternational Patent Classification (IPC) classes, patent applicants, and
atent inventors. We used instead the OECD patent quality indicators
atabase (Squicciarini et al., 2013) to retrieve information on the
orward citations received by a patent, the number of claims, and the
amily size.

Next, we identified patents owned by startups. To do so, we re-
ied on PitchBook13, which includes startups headquartered in North
merica, Europe, and Asia. We followed established best practices

or performing the matching (see, for instance, Menon and Tarasconi
2017) for the matching of Crunchbase with PATSTAT, and Conti-
iani (2023) for the matching of Crunchbase with PatEx). In order to

11 https://zenodo.org/records/8278104
12 To identify articles cited in patents, we utilized publications from ERIS
nd CORDIS, as well as those extracted from Scopus (refer to Section 3.1.1).
13 According to Retterath and Braun (2020), PitchBook is one of the best
ommercial data providers for startups due to its coverage and accuracy
cross key dimensions such as general company data, founders, and funding
6

nformation.
standardize the names of patent assignees and startups, we initially
eliminated duplicate spaces, hyphens, and legal designations like LTD,
CO, GMBH, and so on. Our name-matching process was based on
the following criteria: exact match, alphanumeric match, Jaro–Winkler
similarity, and Levenshtein distance. After obtaining candidate pairs
through this matching process, we applied two filtering conditions.
The first condition required that the patent’s priority year be at least
equal to the startup’s founding year minus two. This ensured that
the selected startup was operational around the time the patent was
filed. The second condition involved assessing how closely aligned the
patent’s technology class was14 with the startup’s primary industry
type. We limit our startup sample to those founded after 2007, which
corresponds with the initiation of the ERC funding program.

3.2. Methodology

A primary challenge in assessing the impact of ERC-funded research
on inventive activities is the lack of a counterfactual scenario. A way to
address this challenge might involve examining ERC project proposals
that narrowly missed funding due to scores just below the qualifying
threshold, in a regression discontinuity design framework. For instance,
a recent study assessing the influence of ERC grants on the research pro-
ductivity and quality of awardees contrasted the grant recipients with
applicants ranked marginally below the funding cutoff (Ghirelli et al.,
2023). Unfortunately, implementing such a methodology is not viable
in our context since information on unsuccessful applications remains
confidential. Furthermore, even if details on near-miss projects were
accessible, correlating them with specific research outcomes would be
challenging. Indeed, there is no certainty that researchers who did not
secure funding would continue their intended line of inquiry or would
not secure funding from alternative sources.

Our goal remains thus confined to providing correlational evidence.
However, to interpret our findings, we still need to compare them
with suitable benchmarks. To do so, we utilized a matched sample
methodology to construct two control groups, each corresponding to
one of our research questions. The first control sample is composed
of scientific research closely resembling ERC-funded science in various
key aspects, but not financed by the ERC, offering a benchmark for
assessing the impact of ERC publications on subsequent inventive activ-
ities. The second control sample includes patents that are comparable to
those citing ERC publications but do not actually cite them, providing
a benchmark against which we can compare the characteristics of the
inventions that build upon ERC science.

3.2.1. Construction of a control sample of publications
To identify a control sample of publications, we proceeded as fol-

lows. For each ERC publication, we randomly selected from the uni-
verse of articles that do not belong to the sample of ERC-funded
publications a control publication satisfying the following conditions.
First, at least one of the authors must be from the institution that
received the ERC grant. Second, the article must be published in the
same journal and belong to the same scientific field (among the 251
Web of Science fields) as the ERC publication.15 Third, the article
must belong to the same citation group as the ERC publication. To
this purpose, we grouped all articles published in a given year and

14 We utilized the International Patent Classification (IPC) classes, which are
categorized into 35 subgroups as defined by WIPO (World Intellectual Property
Organization).

15 To check the robustness of our findings and mitigate any potential
influence stemming from variations in scientific content between ERC-funded
and control publications, we constructed a control sample based on the
textual components of the publications. This was achieved through the concept
classification of OpenAlex, which categorizes works based on multiple concepts
derived from their title and abstract. Examples and additional details can be

found in Appendix E. Our baseline results remain consistent.

https://zenodo.org/records/8278104
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Table 1
Summary statistics: ERC and Control publications.

ERC publications Control publications Difference

Mean SD Mean SD

Number of authors 6.901 6.767 6.186 5.650 0.715∗∗∗

Number of article citations (log) 3.331 1.308 3.195 1.252 0.136∗∗∗

US co-author dummy (0/1) 0.237 0.425 0.256 0.436 −0.019∗∗∗

Patent citation (0/1) 0.100 0.300 0.091 0.288 0.009∗∗∗

USPTO citation (0/1) 0.063 0.242 0.055 0.229 0.007∗∗∗

EPO citation (0/1) 0.021 0.145 0.018 0.133 0.004∗∗∗

Number of patent citations 0.296 2.182 0.250 2.270 0.046∗∗∗

Notes. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1. There are 𝑁 = 57, 948 ERC publications and an equal number of Control publications. Number of authors
is the total number of authors in a publication. Number of article citations is the (log) value of scientific citations received by a publication. US
co-author dummy is a binary variable equal to one if the publication has at least one co-author affiliated with a US organization. Patent citation
is a binary variable that is one if a publication is cited in any patent document at any patent office, and zero otherwise. USPTO citation and EPO
citation are binary variables equal to one if a publication is cited, respectively, in a USPTO or EPO patent, and zero otherwise. Finally, Number
of patent citations represents the cumulative count of patent citations received by the publication, considering only one patent per family.
cientific field into five quintiles based on the total number of citations
eceived.16 We dropped all ERC publications for which we could not
ind a suitable control. The final sample comprises 57,948 ERC publica-
ions and their respective control publications. In our baseline sample,
e retain only one control publication for each ERC publication. In
robustness check. we carried out further analysis by including up

o five control publications, whenever they meet the above specified
onditions. Our findings remain consistent regardless of the number of
ontrol publications considered, as shown in Appendix D.

Table 1 reports descriptive statistics for the sample of ERC and
ontrol publications. Notably, approximately 10% of the ERC publi-
ations receive citations from patents. Moreover, these publications
emonstrate a higher likelihood of being cited by patents from the
SPTO, with a citation incidence of 6.3%, as opposed to a 2.1% citation

ate from patents issued by the EPO. It is important to highlight that
espite the fact that the control publications are sourced from identical
ournals, scientific fields, and citation distribution quintiles as their ERC
ounterparts, the latter exhibit a marginally higher number of scientific
itations (publication-to-publication citations), as shown in Table 1. To
ccount for this discrepancy, we will include this variable as a control
n our regression analyses where relevant. Furthermore, our analysis
ndicates that ERC publications tend to have a slightly larger authorship
eam and are less likely to include a co-author based in the United
tates compared to the control publications. Again, we include these
ariables in our estimation models.

.2.2. Construction of a control sample of patents
To investigate our second research question – identifying the orga-

ization type and geographical region most inclined to capitalize on
RC science – we utilized a methodology akin to that employed in the
rior section, which is based on the seminal study of Jaffe et al. (1993).

For each of the 32,094 unique patents citing ERC articles, we ran-
omly selected a control patent that matched several key criteria. The
ationale behind this selection criteria is to ensure that counterfactual
atents build upon science that is qualitatively comparable to the
cience used by ERC-based patents. First, the control patent needed to
e classified under the same International Patent Classification (IPC)
ode at the 4-digit level and share the same application year as the
RC-citing patent. Second, the control patent must be filed at the same
atent office as the ERC-citing patent.17 Third, the control patent must
ave cited at least one scientific publication from the same journal as

16 A few examples of ERC publications and their corresponding control
ublications are provided in Table B7 in Appendix B.
17 To verify the robustness of our findings and mitigate any potential

nfluence stemming from variations in scientific content between ERC-funded
nd control publications cited by the patent, we also constructed a sample
f control patents using the similarity of publications based on the OpenAlex
7

oncept, as described in Appendix E. Our baseline results remain consistent.
the ERC-cited article and co-authored by a scientist affiliated with a
European institution. Finally, we dropped ERC-based patents for which
we could not find a suitable control.

Overall, our final sample comprises 1,363 EPO patents that cited
ERC publications, and an equal number of control patents; and 7,981
USPTO patents citing ERC publications, and an equal number of control
patents.18 Table 2 reports summary statistics.

Several notable trends emerge from our analysis. First, ERC-based
patents consistently cite a greater number of NPL references compared
to their control counterparts, a pattern observable in both EPO and
USPTO data. Second, ERC-based patents attract a notably higher vol-
ume of forward citations, indicative of their greater impact. This trend
is especially pronounced at the USPTO, where the average number of
forward citations over a five-year span after publication for ERC patents
is nearly double that of the controls. For EPO patents, the factor is 1.5
times higher in favor of ERC-based patents.

There is also a marked trend in the provenance of ERC-based patent
applications, with academic institutions taking the lead. Specifically,
30% of USPTO ERC-based patents list a US university as the applicant,
in contrast to 24% in the control group. A similar pattern is observed in
the EPO data, where 32% of ERC-based patents have an EU university
as the applicant, compared to 21% for the control group. This under-
scores the significant role of universities in driving inventions that build
upon ERC science. More generally, compared to the control group, the
use of ERC science seems to be particularly pronounced among top
research organizations. Finally, it is worth noting that startups account
for quite a large fraction of the ERC-based patents, highlighting the
crucial role of a dynamic startup landscape in driving inventions at the
frontier of science. This is especially the case for the USPTO, where
startups are responsible for 16% of all patents citing ERC publications,
a fraction that is significantly larger than the one found for the control
group.

4. Results

4.1. Is ERC science spilling over inventions?

To assess whether ERC publications have a greater likelihood of
receiving a patent citation, and therefore have a greater impact on
inventive activities than other European publications of comparable
quality (RQ1), we estimated, separately for the EPO and the USPTO,
the following equation through a Linear Probability Model:

𝑃𝑖𝑡 = 𝛽0+𝛽1(𝐸𝑅𝐶 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡)+𝜂𝑋𝑖𝑡+
∑

𝑓
𝛽𝑓 SF𝑓𝑖×J𝑓𝑖×CG𝑓𝑖+𝜈𝑡+𝜖𝑖 (1)

18 It should be noted that from the initial data set, we were forced to drop
1,674 EPO and 9,895 USPTO ERC-based patents due to the absence of suitable
control patents (see Table B1).
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Table 2
Summary statistics: ERC-based and Control patents.

ERC-based patents Control patents Difference

Mean SD Mean SD

Panel A: EPO
Number of inventors 3.853 2.393 3.969 2.528 −0.116
Number of NPL citations 25.660 44.980 20.188 28.158 5.472∗∗∗

Forward citations (5 years) 1.183 4.317 0.857 3.374 0.326∗

Family size 5.971 5.831 6.345 5.904 −0.373
Number of claims 14.386 5.865 14.395 6.384 −0.010
Patent applicant is a:
EU University 0.319 0.466 0.210 0.407 0.109∗∗∗

EU Company 0.227 0.419 0.241 0.428 −0.013
Top research organization 0.279 0.449 0.191 0.393 0.088∗∗∗

Top US research organization 0.082 0.275 0.062 0.242 0.020∗

Top EU research organization 0.147 0.355 0.090 0.287 0.057∗∗∗

Startup 0.098 0.298 0.103 0.305 −0.005
Startup: EU 0.040 0.195 0.028 0.165 0.012

Panel B: USPTO
Number of inventors 3.864 2.635 3.705 2.482 0.159∗∗∗

Number of NPL citations 109.918 173.883 57.714 79.082 52.204∗∗∗

Forward citations (5 years) 17.441 38.196 9.605 22.839 7.835∗∗∗

Family size 6.141 6.781 5.820 6.736 0.321∗∗

Number of claims 18.589 10.899 17.524 10.454 1.065∗∗∗

Patent applicant is a:
US University 0.308 0.462 0.247 0.431 0.061∗∗∗

US Company 0.369 0.482 0.382 0.486 −0.014
Top research organization 0.285 0.452 0.197 0.398 0.089∗∗∗

Top US research organization 0.217 0.412 0.150 0.357 0.067∗∗∗

Top EU research organization 0.035 0.185 0.024 0.153 0.011∗∗∗

Startup 0.163 0.370 0.136 0.342 0.028∗∗∗

Startup: US 0.130 0.337 0.107 0.310 0.023∗∗∗

Notes. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1. There are 𝑁 = 1, 363 EPO patents that cited an ERC publication, and an equal number of Control patents.
There are 𝑁 = 7, 981 USPTO patents that cited an ERC publication, and an equal number of Control patents. Number of inventors is the count of
inventors reported in the patent document. Number of NPL citations is the overall count of NPL citations in a patent document. Forward citations
is the number of patent citations garnered within five years after the patent publication. Family size and Number of claims are, respectively, the
number of patents in the patent family and the number of claims in the patent document. US (EU) University and US (EU) Company are dummy
variables taking a value of one if the patent applicant is, respectively, a US (EU) university or a US (EU) company. The dummy variable Top
research organization takes a value of one if the patent applicant is included among the top 200 public research institutions and universities,
as classified by the rankings list published by the SCImago Research Group. The Startup dummy variable takes a value of one if the patent
applicant is a startup founded after 2006. The startup data is sourced from Pitchbook. The Startup: EU(US) dummy equals one if the patent
applicant startup’s headquarters are in the EU(US).
In our model, 𝑃𝑖𝑡 is a binary variable that equals 1 if publication 𝑖
ublished in year 𝑡 receives at least one citation from EPO (USPTO)
atent documents, and 0 otherwise. The variable 𝐸𝑅𝐶 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡
ndicates the source of funding for the publication: it is set to 1 if the
ublication originated from an ERC-funded project and 0 for publica-
ions in the control group. The matrix 𝑋𝑖𝑡 encompasses a set of control
ariables. Specifically, following, for instance, Wuchty et al. (2007)
nd Bikard and Marx (2020), we include controls for the quality of
ublications by incorporating the logarithm of the number of scientific
itations received (Number of article citations), the total number of
uthors (Number of authors), and the presence of a US co-author in
he authorship team (US co-author dummy). Furthermore, ∑𝑓 𝛽𝑓 SF𝑓𝑖 ×
𝑓𝑖 × CG𝑓𝑖 represents a vector of fixed effects based on the unique
ombination of Scientific Field (SF), Journal (J), and Citation Group
CG), while 𝜈𝑡 is a vector of year-fixed effects, allowing us to control
or unobserved heterogeneity over time.

Table 3 reports regression results. The probability that at least one
nvention is built upon a given ERC publication is not different from
he probability that at least one invention is built upon a control
roup publication, after controlling for the quality of publications.19

cross all models, publications with higher citation and author counts

19 Results of Logit estimates are shown in Table C2 in the Appendix. Except
or EPO citations, all results are similar to those from linear probability
stimations. It is worth noting, however, that the number of observations
ignificantly decreases due to the existence of clusters of SF𝑓𝑖 × J𝑓𝑖 × CG𝑓𝑖
ithin which we have no variation in the outcome, that is, all publications
8

n the cluster either did not receive any citation or they were all cited. This
show an increased probability of receiving patent citations. Notably,
publications featuring a US co-author are more likely to garner citations
from patents filed with the USPTO rather than the EPO.

Next, we estimated Negative Binomial regressions, where the de-
pendent variable is the total number of patent citations received by any
given publication (and not whether the publication has been cited or
not in a patent). Results are reported in Table 4. Column (1) indicates
that an ERC-funded publication receives, on average, 4.31% more
patent citations compared to a publication from the control group.20

In Column (2), which specifically focuses on Life Science publications,
there are no statistically significant differences in citation numbers.
However, when examining other sciences (physical science) excluding
Life Science and Social Science and Humanities, ERC publications
receive 6.59% more citations compared to the control group.21

is an issue known as complete separation in econometrics. It occurs in non-
linear models, such as logistic, when there is a combination of regressors
whose value perfectly predicts the outcome. This leads to issues where the
logistic regression coefficients become infinitely large or undefined, as the
model attempts to fit a probability of 0 or 1 exactly. As a result, maximum
likelihood estimation cannot converge to a finite solution, leading to dropped
observations or failed model convergence. This problem does not affect linear
probability models, which use ordinary least squares and thus do not encounter
issues of non-convergence under complete separation.

20 (𝑒0.0422 − 1) × 100 = 4.31.
21 Note that, when running NB regressions, the number of observations drops

substantially. This is due to the existence of clusters of SF𝑓𝑖 ×J𝑓𝑖 ×CG𝑓𝑖 within
which we have no variation in the outcome. In other words, within the given
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Table 3
Publications: Likelihood of receiving a patent citation (Linear Probability Model).

(1) (2) (3) (4) (5) (6)
Any Patent EPO USPTO Any Patent EPO USPTO

ERC Publication −0.0021 0.0001 −0.0007 −0.0026 −0.0000 −0.0007
(0.0017) (0.0008) (0.0013) (0.0017) (0.0008) (0.0013)

Number of article citations (log) 0.0799∗∗∗ 0.0251∗∗∗ 0.0602∗∗∗ 0.0792∗∗∗ 0.0251∗∗∗ 0.0599∗∗∗

(0.0061) (0.0022) (0.0047) (0.0059) (0.0022) (0.0046)
US co-author dummy (0/1) −0.0011 −0.0025∗∗ 0.0042∗∗

(0.0022) (0.0012) (0.0019)
Number of authors 0.0007∗∗∗ 0.0001 0.0001

(0.0003) (0.0001) (0.0002)
Constant −0.0033 0.0514 0.0959 −0.0047 0.0510 0.0960

(0.1049) (0.0727) (0.1223) (0.1051) (0.0726) (0.1226)

Observations 115,896 115,896 115,896 115,896 115,896 115,896
R-squared 0.0568 0.0205 0.0556 0.0570 0.0206 0.0556
Scientific field × Journal × Citation Group FE Yes Yes Yes Yes Yes Yes
Publication year FE Yes Yes Yes Yes Yes Yes

Notes. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1. Robust standard errors clustered by Scientific Field × Journal × Citation Group in parentheses. This table presents results
from a linear probability model evaluating the probability of ERC and control group publications being cited in patents, whether on the front page or within
the document body. There are 𝑁 = 57, 948 ERC publications and an equal number of Control publications. In columns (1) and (4), a value of 1 for the outcome
variable indicates a citation in any patent document, otherwise 0. In columns (2) and (5), the outcome variable is 1 if the publication is cited in an EPO patent,
and 0 otherwise. In columns (3) and (6), the dependent variable is 1 for citations in a USPTO patent, and 0 otherwise. The variable ERC Publication is set to 1
for publications based on ERC-funded research, and 0 otherwise. The regression controls for publication quality through the total number of scientific citations
the publication has received (Number of article citations) and the number of authors (Number of authors). Moreover, the regressions also control for the presence of
authors affiliated with US organizations (US co-author dummy). All columns in the table feature fixed effects (FE) based on the unique combination of Scientific
Field, Journal, and Citation Group, in addition to fixed effects pertaining to the year of publication.
Table 4
Publications: Number of citations received in patents (Negative Binomial Regression).

(1) (2) (3)
All Life Science Other Science

ERC Publication 0.0422∗∗ 0.0347 0.0638∗∗

(0.0185) (0.0246) (0.0285)
Number of article citations (log) 0.705∗∗∗ 0.718∗∗∗ 0.705∗∗∗

(0.0115) (0.0158) (0.0171)
US co-author dummy (0/1) −0.00528 0.0400 −0.0797∗∗

(0.0237) (0.0297) (0.0406)
Number of authors 0.00594∗∗∗ 0.00919∗∗∗ −0.00342

(0.00146) (0.00164) (0.00324)
Constant −3.426∗∗∗ −3.571∗∗∗ −3.227∗∗∗

(0.405) (0.446) (0.997)

Observations 59,044 26,188 32,438
Sci. field × Journal × Citation Group FE Yes Yes Yes
Year FE Yes Yes Yes

Notes. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1. Robust standard errors in parentheses. The table reports results from count models evaluating the
patent citations received by both ERC and control group publications. The dependent variable is the aggregate count of patent citations for
each publication. To account for the quality of the publication, the regression model incorporates the total number of scientific citations a
paper has garnered (Number of article citations), and the count of contributing authors (Number of authors). Further, the model controls for the
presence of authors having affiliations with US organizations (US co-author dummy). All columns in the table feature fixed effects (FE) based on
the unique combination of Scientific Field, Journal, and Citation Group, in addition to fixed effects pertaining to the year of publication. The
life science field includes publications in Biological Sciences, Medical Engineering, Environmental Biotechnology, Medical and Health Sciences,
and Agricultural Sciences. Meanwhile, the other sciences encompass publications in all other fields excluding life sciences, social science, and
humanities.
t
a
s
s

In summary, while the propensity of ERC-funded science to exhibit
nventive potential is on par with other European scientific research, it
s noteworthy that when ERC-funded work does demonstrate applied
otential (i.e., it is cited in patents), it tends to contribute to a greater
umber of inventions compared to other research.

.2. Are ERC-based patents more valuable?

In addition to assessing the propensity for ERC science to be trans-
ormed into inventions, we also evaluated whether patents that refer-
nce ERC publications are associated with inventions of higher impact.

combinations of scientific field, journal, and citation group, all observations
exhibit the same outcome variable, either all zero, or 1, 2, and so on. This
raises issues of complete separation, whose effects are similar to the ones
discussed in footnote 19.
9

To that purpose, we performed separate regressions for the EPO and
the USPTO, employing the following model:

𝑌𝑖𝑡 = 𝛽0 + 𝛽1(𝐸𝑅𝐶−𝑏𝑎𝑠𝑒𝑑 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑡) + 𝜂𝑋𝑖𝑡 +
∑

𝑓
𝛽𝑓 IPC𝑓𝑖 × J𝑓𝑖 + 𝜈𝑡 + 𝜖𝑖 (2)

In this equation, 𝑌𝑖𝑡 represents the logarithm of the number of
forward citations received by patent 𝑖 within the five years following
its publication year 𝑡. Forward citations are a widespread proxy for the
value of inventions since the seminal work of Trajtenberg (1990).

ERC-based patent 𝑖𝑡 is a binary variable that takes the value of 1 if
he patent cites ERC-funded research, and 0 otherwise. This distinction
llows us to contrast the impact of patents derived from ERC-funded
cience with those emerging from European science of similar quality,
cientific discipline, and publication outlet. The term 𝑋𝑖𝑡 represents a

matrix of control variables that are likely to correlate with the value
of inventions (see, for instance, Poege et al. (2019) and Harhoff et al.

(2003)).
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Table 5
Patents: Number of citations received in the first five years after publication.

EPO EPO EPO USPTO USPTO USPTO

ERC-based patent 0.0923∗∗∗ 0.0925∗∗∗ 0.0888∗∗∗ 0.3427∗∗∗ 0.3422∗∗∗ 0.1972∗∗∗

(0.0300) (0.0299) (0.0297) (0.0294) (0.0294) (0.0264)
Number of inventors 0.0167∗∗∗ 0.0162∗∗∗ 0.0031 0.0625∗∗∗ 0.0625∗∗∗ 0.0272∗∗∗

(0.0055) (0.0055) (0.0061) (0.0050) (0.0050) (0.0047)
Number of article citations (log) 0.0525∗ 0.0403 0.0488∗ 0.0525∗∗

(0.0296) (0.0280) (0.0274) (0.0240)
Number of NPL citations 0.0045∗∗∗ 0.0023∗∗∗

(0.0008) (0.0003)
Family size 0.0273∗∗∗ 0.0476∗∗∗

(0.0034) (0.0024)
Number of claims 0.0060∗ 0.0151∗∗∗

(0.0034) (0.0011)
Constant 0.4968∗∗ 0.3796∗ −0.0179 2.7089∗∗∗ 2.5925∗∗∗ 1.7333∗∗∗

(0.2051) (0.2117) (0.1494) (0.1640) (0.1738) (0.1659)

Observations 2,670 2,670 2,670 15,949 15,949 15,949
R-squared 0.0917 0.0934 0.2253 0.1560 0.1564 0.2935
Technological field × Journal FE Yes Yes Yes Yes Yes Yes
Patent filing year FE Yes Yes Yes Yes Yes Yes

Notes. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1. Robust standard errors clustered by Technological Field × Journal in parentheses. The table presents
results from a linear regression model. The dependent variable is the logarithm of the number of citations received by a patent in the five years
following its publication. The variable ERC-based patent is set to 1 for patents citing ERC-funded publications, and 0 otherwise. The regressions
control for publication quality through the total number of scientific citations the publication cited in the patent has received (Number of article
citations) and for the number of inventors in the patent (Number of inventors). Moreover, the regressions also control for the total number of
NPL citations made by the patent (Number of NPL citations), the size of the patent family (Family size) and the number of claims of the patent
(Number of claims). All columns include fixed effects (FE) for the combination of Technological Field (IPC 4-digit) and Journal, and for the
application year of the patent.
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Specifically, we account for the total number of inventors associated
with the patent (Number of inventors), the cited publication’s scientific
impact (Number of article citations), the total number of NPL citations
made by the patent (Number of NPL citations), the family size (Family
size), and number of claims contained in the patent (Number of claims).
Regressions also include a vector of fixed effects (∑𝑓 𝛽𝑓 IPC𝑓𝑖 × J𝑓𝑖)
for the unique combination of IPC class (4-digit) × Journal, and patent
application year (𝜈𝑡).

Table 5 reports the regression results for Eq. (2). EPO patents citing
ERC science receive on average 9.2% more forward citations than
control patents.22 The effect is larger when looking at the USPTO:
ERC-based patents receive 21.7% more forward citations than control
patents.23

The finding suggests that the inventions based upon ERC science
are, on average, of greater impact and possibly value than the inven-
tions built upon comparable European science.

4.3. Who builds upon ERC science?

We now turn our attention to the type of organizations and regions,
which are more likely to exploit ERC science in patented inventions
(RQ2). The heterogeneity in the ability of organizations to assimilate
the spillover benefits of publicly funded science is an area that has
attracted little attention in the literature. Transforming cutting-edge
science into inventions requires substantial absorptive capacity, as
highlighted by several scholars (Cohen and Levinthal, 1989; Arora and
Gambardella, 1994; Sheer, 2022). It is thus reasonable to hypothesize
that the output of ERC science is more likely to be converted into
inventions within entities that possess enhanced levels of absorptive
capacity. In this section, we provide empirical evidence of differences
in the geographical location and the organizational type of patent
applicants, comparing instances involving ERC science with those of
a control group.

22 (𝑒0.0888 − 1) × 100 = 9.21.
23 We also tested the robustness of results by using as dependent variable

the patent quality index developed by Squicciarini et al. (2013). Results are
reported in Table C3 in Appendix C and are qualitatively similar.
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Specifically, we estimated the following equation:

𝑃 𝑠𝑚
𝑖𝑡 = 𝛽0+𝛽1(𝐸𝑅𝐶−𝑏𝑎𝑠𝑒𝑑 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑡)+𝜂𝑋𝑖𝑡+

∑

𝑓
𝛽𝑓 IPC𝑓𝑖×J𝑓𝑖+𝜈𝑡+𝜖𝑖𝑡 (3)

In this equation, 𝑃 𝑠𝑚
𝑖𝑡 denotes a binary indicator variable that is set

o 1 if the applicant of patent 𝑖, filed in year 𝑡, belongs to organizational
ype 𝑠 and is located in the region 𝑚; the variable is assigned a value
f 0 in all other cases. As far as organizational types 𝑠 are concerned,
e distinguished three types: (a) Universities and public research orga-
izations, (b) Companies, and (c) Top universities and public research
rganizations. For the third category, we have identified the top 200
ublic research institutions and universities based on the rankings
ublished by the SCImago Research Group.24 With respect to regions
, we focus on organizations located in (i) USA and (ii) Europe.
ERC-based patent 𝑖𝑡 in Eq. (3) is, as before, a binary variable that

akes the value of 1 if the patent cites ERC-funded research, and 0
therwise. Regressions control for a number of factors (𝑋𝑖𝑡): the total
umber of inventors associated with the patent (Number of inventors),
he cited publication’s scientific impact (Number of article citations),
he total number of NPL citations made by the patent (Number of
PL citations), the family size (Family size), and number of claims
ontained in the patent (Number of claims). Regressions also include
ixed effects for the unique combination of IPC class (4-digit) × Journal
∑

𝑓 𝛽𝑓 IPC𝑓𝑖 ∗ J𝑓𝑖), and patent application year (𝜈𝑡).
Fig. 2 illustrates the estimated value and the 95% confidence inter-

al for the coefficient 𝛽1, which is linked to our variable of interest,
RC-based patent 𝑖𝑡. Full regression estimates are reported in Tables C5
nd C6 in Appendix C. Results show that, besides an obvious ‘‘home
dvantage’’ effect, Universities and top public research organizations
ead in the exploitation of ERC science. For example, the probability
hat an EPO (USPTO) patent citing ERC science belongs to a university
s 11.79 (5.72) percentage points higher than a control patent. Simi-
arly, an ERC-based patent is between 6 and 8 percentage points more
ikely to be applied by a top 200 research organization than a control
atent.

24 SCImago is a Spain-based research group from the Consejo Superior de
Investigaciones Científicas (CSIC), University of Granada, Extremadura, Carlos
III (Madrid) and Alcalá de Henares.
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Fig. 2. Probability that the patent assignee is a university, company, top Research Organization or startup for an ERC-based patent.
Having established that ERC science is exploited chiefly by universi-
ties and public research organizations, to what extent do these spillover
effects remain within Europe? As noted above (see Section 3.1.2),
around 55% of all citations to ERC science come from USPTO patents,
whereas citations from EPO patents account for just 9.48%, which
is slightly larger than the percentage of citations from SIPO patents
(8.09%).25 In and of itself, this does not necessarily mean that Europe
lags behind its competitors in exploiting the benefits of the science it
funds and generates. European organizations can and do protect their
inventions in other jurisdictions via direct patent filing or via the WIPO-
PCT patent system. To address this issue, we focused our attention on

25 Table B1 in Appendix B.
11
patent families that include patent filings at both the EPO and USPTO.
These are arguably the patents with greater economic value. We found
9,608 such patent families, each with at least one patent referencing
ERC science.

Fig. 3 reports the distribution of those patents by organization
type and location. The evidence reveals that while universities and
public research entities may have a comparative edge in harnessing
ERC science, as inferred from the preceding analysis (see Fig. 2),
it is the corporate sector that leads in absolute terms in translating
this science into valuable inventions. Corporations are responsible for
approximately 54% of all patent families that cite ERC publications,
with U.S. firms being particularly prominent, accounting for about 26%
of all such citations. Moreover, the aggregate share of US companies
and universities stands at around 41.4%, slightly eclipsing the 32.7%
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Fig. 3. Patent families citing ERC publications
The figure reports the percentage distribution of ERC-based patent families by type and location of patent assignee. Data includes only families with patent filings at both the EPO
and USPTO.
associated with European organizations. This indicates the substantial
absorptive capacity present within the U.S. innovation ecosystem.26

Next, we examined the share of startups in the company’s patents.
tartups27 account for 37.1% of the company’s patents in the US and
1% in the EU, as shown in Fig. 4. The high share of startups’ inventive
ctivities is partially driving the gap between corporate patenting in
he US and the EU. One-third of corporate patent applications in the
S have startups as patent applicants, highlighting the role of the
ibrant innovation ecosystem led by startups in the US in absorbing
nd leading inventive activities at the frontier of science. In contrast,
he EU lags behind due to the absence of a startup ecosystem and
egulatory environments that throttle new ventures. This hinders the
ull capitalization of the excellent and frontier science in the EU.

. Conclusion and discussion

The purpose of this paper was to present some facts regarding the
mpact of science funded by the ERC on technological progress. The
merging portrait of the European research system is one of mixed
utcomes. On the bright side, although ERC science demonstrates the
ame potential of inspiring inventive activities as comparable European
esearch does, it serves as the foundation for a greater volume of
nventions when it possesses applied value. Even more importantly,
nventions based upon ERC science are, on average, of greater impact
han the inventions built upon comparable European science.

On the dark side, ERC science does not directly filter through to
the corporate sector. Universities appear to have a comparative edge in

26 Universities and public research organizations represent approximately
0% of all patent families that cite publications funded by the ERC. In
ontrast, these institutions account for only 14.5% of all patent families that
ite any scientific publication, and just 6.9% of all patent families filed at
oth the EPO and the USPTO. This disparity highlights the preferential access
hat universities have to the fundamental science emerging from ERC-funded
rojects.
27 Startups are the new ventures founded after 2006 sourced from PitchBook,
12

s described in Section 3.1.2.
patenting inventions derived from ERC science relative to those based
on similar European research. This could suggest either a heightened
absorptive capacity within academia or a broader gap between ERC
science and commercial applications compared to non-ERC science.
Moreover, in absolute terms, US organizations, and particularly US
companies, including US startups, appear to lead in the exploitation
of scientific outputs from ERC-funded projects.

Our findings reveal that the potential of ERC science to foster
inventions is not a concern. However, the so-called ‘‘European Paradox’’
becomes apparent when attempting to capture the spillover effects and
transform excellent science into inventive activities. Our research also
emphasizes the importance of startups and new ventures in stimulat-
ing inventive activities, particularly at the forefront of the scientific
frontier. This highlights the paramount importance of cultivating an
ecosystem conducive to bridging this divide. For instance, initiatives
like the European Innovation Council (EIC) Accelerator or other tar-
geted policies and investments, align with the objective of strengthen-
ing an European innovation ecosystem able to capitalize on scientific
advancements.

In addition, our findings call for a deeper understanding of the role
of university patenting as a bridge in transferring technical knowledge,
especially at the frontier of science. For instance, in a recent paper,
Arora et al. (2023a) challenge the notion that public science is a
nonrival public good that contributes to corporate R&D through knowl-
edge spillovers and argue that ‘‘public inventions compete with corporate
inventions more than they act as inputs into corporate innovation’’. Further
research that triangulates data from patents and startup foundation
could investigate if those startups based on ERC science compete or
cooperate with large incumbents.

Finally, we have chosen to benchmark ERC science with comparable
European science. A fruitful avenue of future inquiry could compare the
ERC with a US program meant to support top-notch science and explore
whether they systematically diverge in terms of knowledge spillovers
that manifest in subsequent patenting activities.

This study presents several limitations. First, the impact of ERC-
funded science was assessed using patent data, which, while commonly
employed in empirical literature as a measure of innovation output,
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Fig. 4. Patent families citing ERC publications: All companies and startups
The figure reports the number of ERC-based patent families with corporate and startup assignees. The right axis shows the percentage share of startup patents in all corporate
patents. Data includes only families with patent filings at both the EPO and USPTO.
serves as an imperfect proxy. The economic value of patents varies con-
siderably; many patents do not transition to commercial products and
thus hold no commercial value. Additionally, the propensity to patent
inventions varies widely across firms, industries, and countries. The
effectiveness of patents as a mechanism for appropriating intellectual
property also differs across jurisdictions, influencing firms’ preferences
for utilizing patents over other methods, such as trade secrets.

A second major limitation concerns the identification of counterfac-
tuals and the chosen unit of analysis. Ideally, we would have examined
the impact of researchers who secured ERC funding in comparison
to those who applied but were not selected, due to marginally lower
scores. However, data on unsuccessful applicants is confidential and
unavailable for analysis. Consequently, as a second-best approach, our
study compared the publications of ERC awardees with those of compa-
rable quality from non-ERC grantees. For these reasons, it is crucial to
note that our findings should not be interpreted as establishing a causal
link between receiving ERC grants and the production of commercially
impactful publications.

Despite these limitations, we hope that the findings will stimu-
late further research into the broader effects of this pivotal European
program supporting basic research.
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