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Abstract
We study algorithmic Bayesian persuasion problems in which the principal (a.k.a. the
sender) has to persuade multiple agents (a.k.a. receivers) by using public commu-
nication channels. Specifically, our model follows the multi-receiver model with
no inter-agent externalities introduced by Arieli and Babichenko (J Econ Theory
182:185–217, 2019). It is known that the problem of computing a sender-optimal pub-
lic persuasive signaling scheme is not approximable even in simple settings. Therefore,
prior works usually focus on determining restricted classes of the problem for which
efficient approximation is possible. Typically, positive results in this space amounts to
finding bi-criteria approximation algorithms yielding an almost optimal and almost
persuasive solution in polynomial time. In this paper, we take a different perspec-
tive and study the persuasion problem in the general setting where the space of the
states of nature, the action space of the receivers, and the utility function of the sender
can be arbitrary. We fully characterize the computational complexity of computing
a bi-criteria approximation of an optimal public signaling scheme in such settings.
In particular, we show that, assuming the Exponential Time Hypothesis, solving this
problem requires at least a quasi-polynomial number of steps even in instances with
simple utility functions and binary action spaces such as an election with the k-voting
rule. In doing so, we prove that a relaxed version of the Maximum Feasible Sub-
system of Linear Inequalities problem requires at least quasi-polynomial time to
be solved. Finally, we close the gap by providing a quasi-polynomial time bi-criteria
approximation algorithm for arbitrary public persuasion problems that, under mild
assumptions, yields a QPTAS.
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1 Introduction

In many real-life strategic interactions, agents rely on information revealed by an
exogenous entity to take decisions. The latter acts as an informed principal whose
goal is to shape the agents’ beliefs so as to achieve a desired outcome. In this context,
deciding what information to reveal amounts to an information structure design prob-
lem. When information is incomplete, the information structure determines “which
agent gets to know what” about the current state of the environment (i.e., the param-
eters determining payoff functions). There has been a recent surge of interest in the
study of how an informed principal may steer agents’ collective behavior towards a
favorable outcome. The study of these problems has been largely driven by their appli-
cation in various domains such as auctions and online advertisement [1–3], voting [4,
5], traffic routing [6, 7], recommendation systems [8], security [9–11], and marketing
[12, 13].

Persuasion is the task faced by an informed principal, which we call the sender,
which tries to influence the behavior of the self-interested agent(s) (i.e., the receivers)
taking part in a strategic interactions. The sender faces the algorithmic problem of
determining the optimal information structure to achieve her objectives. A solution to
this problem is described through the notion of signaling scheme, which is a mapping
from the sender’s observations to the space of probability distributions over the set
of available signals. A foundational model describing the persuasion problem is the
Bayesian persuasion framework (BP) introduced by Kamenica and Gentzkow in [14].
That model describes a setting with a sender and a single receiver. There is a set of
parameters influencing the payoff functions of the sender and of the receiver. These
parameters are collectively called the state of nature, and model exogenous stochas-
ticity in the environment. The sender and the receiver share a common prior over
the possible states of nature. However, only the sender gets to observe the realized
state of nature, which is drawn according to the shared prior probability distribu-
tion. This originates a fundamental asymmetry in the information available to the two
agents. The sender can exploit this additional knowledge to steer the receiver’s actions
towards a favorable outcome. Specifically, the action selected by the receiver is the
best action available under her current posterior distribution, which is updated in a
classical Bayesian fashion after observing the sender’s signal. Therefore, the prior
distribution together with the sender’s signaling scheme determine the receiver equi-
libriumbehavior.Weobserve that theBP framework assumes the sender’s commitment
power, which is a natural assumption in many settings (see, e.g., the arguments by [14,
15]). One argument to that effect is that reputation and credibility may be a key factor
for the long-term utility of the sender [16].

In many practical scenarios, the sender may need to persuade multiple receivers,
revealing information to each one of them. In the multi-receiver setting, it is useful
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to make a distinction between private and public signaling schemes.1 In the former
setting, the sender may reveal different information to each receiver through private
communication channels. In the latter, which is the focus of this paper, the sender has
to reveal the same information to all receivers. Public persuasion is well suited for
settings where private communication channels are either too costly or impractical.
This is the case in scenarios with a large population of receivers, such as elections,
and scenarios where receivers may share private information, which are frequent in
practice.

In our paper, we adopt and generalize the multi-agent persuasion model intro-
duced by Arieli and Babichenko in [18], which rules out the possibility of inter-agent
externalities. Specifically, each receiver’s utility depends only on her action and on
the realized state of nature, but not on the actions of other receivers. This assumption
allows one to focus on the key problem of coordinating the receivers’ behavior, without
the additional complexity arising from externalities which have been shown to make
the problem largely intractable [6, 19]. Previous works on Arieli and Babichenko’s
model either address the private persuasion setting [18, 20, 21] or make some struc-
tural assumptions which render them special cases of our model [22]. To the best
of our knowledge, this is the first work which generalizes the model by Arieli and
Babichenko to settings with arbitrary spaces of states of nature, arbitrary receivers’
action spaces, and arbitrary sender’s utility functions. The generality of our setting
raises a number of technical difficulties with respect to previous works on the same
model. Our solution to these challenges is a first step towards actionable persuasion
models that can be applied to real-world multi-receiver problems without structural
restrictions.

1.1 Context: Persuasion with Multiple Receivers

Dughmi and Xu [23] analyze for the first time Bayesian persuasion from a computa-
tional perspective, focusing on the single receiver case. In [18], Arieli and Babichenko
introduce the model of persuasion with multiple receivers and without inter-agent
externalities, with a focus on private Bayesian persuasion. In particular, they study
the setting with a binary action space for the receivers and a binary space of states of
nature. They provide a characterization of the optimal signaling scheme in the case of
supermodular, anonymous submodular, and supermajority sender’s utility functions.
In [20], Babichenko and Barman extend the work by Arieli and Babichenko providing
a tight (1 − 1/e)-approximate signaling scheme for monotone submodular sender’s
utilities and showing that an optimal private scheme for anonymous utility functions
can be found efficiently. In [21], Dughmi and Xu generalize the previous model to
settings with an arbitrary number of states of nature.

When considering the problem of designing public persuasive signaling schemes,
some previous works study scenarios with inter-agent externalities by making some
structural assumptions on the nature of the strategic interaction. For instance, Bhaskar
et al. [6] and Rubinstein [19] study public signaling problems in which two receivers

1 For the sake of completeness, we also mention that some recent work studies signaling schemes in the
middle between private and public, called semi-public [17].
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play a zero-sum game. In particular, Bhaskar et al. rule out an additive PTAS assuming
hardness of the planted clique problem. The setting studied by Bhaskar et al. [6] and
Rubinstein [19] is fundamentally different from ours. In their setting the game can be
compactly represented through its normal-form representation, and the complexity of
the problem lies in handling externalities among players. On the other hand, in our
setting, a compact normal-form representation is not possible since it is exponential
in the (arbitrary) number of receivers.

Moreover, Rubinstein proves that the problem of computing an ε-optimal signal-
ing scheme requires at least quasi-polynomial time assuming the Exponential Time
Hypothesis (ETH). This result is tight due to the quasi-polynomial approximation
scheme proposed by Cheng et al. [5].

A number of previous works focus on the public signaling problem in the no inter-
agent externalities framework of Arieli and Babichenko. In particular, Dughmi and
Xu [21] rule out the existence of a PTAS even when receivers have binary action
spaces and objectives are linear, unless P = NP. For this reason, most of the follow-
ing works focus on the computation of bi- or tri-criteria approximations in which the
persuasion constraints can be violated by a small amount. In [5], Cheng et al. describe
a polynomial-time tri-criteria approximation algorithm for k-voting scenarios. The
work of [5] on k-voting is related to the voting problem that we study in this paper.
However, while we relax the problem allowing approximately optimal and approx-
imately persuasive signaling schemes, [5] considers also a third type of relaxation.
In particular, they consider a relaxed sender’s utility function in which less than k
votes are sufficient to win the election. This third relaxation is necessary to provide
a PTAS to the problem, while we show that without relaxing the utility function the
problem requires at least quasi-polynomial time. In [22], Xu studies public persuasion
with binary action spaces and an arbitrary number of states of nature, showing that
no bi-criteria FPTAS is possible, unless P = NP. Furthermore, the author proposes a
bi-criteria PTAS for monotone submodular sender’s utility functions and shows that,
when the number of states of nature is fixed and a non-degeneracy assumption holds,
an optimal signaling scheme can be computed in polynomial time.

1.2 Our Results and Techniques

We provide a tight characterization of the complexity of computing bi-criteria approx-
imations of optimal public signaling schemes in arbitrary persuasion problems with n
receivers and no inter-agent externalities.

Impossibility result Previous works studying the same model (i.e., one with no
inter-agent externalities and public signaling schemes) exploit specific structures of
the sender’s utility functions to provide optimal or approximate polynomial-time
algorithms. We show that the complexity of the approximation problem shifts from
poly-time to quasi-poly-time when the utility function of the sender can be arbitrary.
Indeed, we show that the positive results by Xu [22], which assumes noise-stability
of the sender’s utility function, cannot be extended to the case of arbitrary sender’s
utility functions. Specifically, we argue that no polynomial-time bi-criteria approxima-
tion algorithm is possible in general settings. This is shown by reasoning over simple
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k-voting instances, which are per se an interesting application scenario of Bayesian
persuasion (see, e.g., the work by Castiglioni et al. [24]), and are sufficient to extend
the result to the general case of arbitrary sender’s utility functions. In addressing this
result, we follow a different approach from that used in [22]. Specifically, we cannot
hope for a ‘standard’ NP-hardness result because there exist quasi-polynomial time
bi-criteria approximation algorithms (Theorem 2). Therefore, by assuming ETH, we
show that it is unlikely that there exists a bi-criteria polynomial-time approximation
algorithm even in instances with simple utility functions and a fixed space of actions.
Let n be the size of the instance in input. Ourmain impossibility result reads as follows.

Theorem 1 Assuming ETH, there exists a constant ε∗ > 0 such that, for any 0 < ε ≤
ε∗, finding a signaling scheme that is ε-persuasive and α-approximate requires time
n�̃(log n) for any multiplicative or additive factor α ∈ (0, 1), even with binary action
spaces.

The proof of this result requires an intermediate step that is of independent interest
and of general applicability. Specifically, we study a slight variation of theMaximum
Feasible Subsystem of Linear Inequalities problem (ε-MFS) [5],where, given
a linear system A x ≥ 0, A ∈ [−1, 1]nrow×ncol , we look for the vector x ∈ �ncol almost
(i.e., except for an additive factor ε) satisfying the highest number of inequalities
(Definition 4). This is a constrained variant of the Max FLS problem previously
studied by Amaldi and Kann in [25], and it is commonly used in scheduling [26],
signaling, and mechanism design [5]. In Sect. 5, we prove that solving ε-MFS requires
at least a quasi-polynomial number of steps assuming ETH. The proof is based on a
reduction from two-provers games [27, 28]. Then, equipped with the result on ε-MFS,
we focus on a simple public persuasion problem where the receivers are voters, and
they have a binary action space since theymust choose one between two candidates. In
Sect. 6, we prove a hardness result (Theorem 8) for this setting which directly implies
Theorem 1. We show that the ε-MFS problem is deeply connected to the problem
of computing ‘good’ posteriors, as finding of an optimal x in ε-MFS maps to the
problem of finding an ε-persuasive posterior, which is equivalent to determining an
ε-persuasive signaling scheme.

Positive result In order to design an approximation algorithm (in the multiplicative
sense), we resort to the assumption of α-approximable utility functions for the sender,
as previously defined by Xu in [22]. An α-approximable sender’s utility function is
such that it is possible to obtain in polynomial time a tie-breaking for the receivers
guaranteeing to the sender an α-approximation of the optimal objective value. The
α-approximability condition is a natural minimal requirement since, otherwise, even
the problem of evaluating the sender’s objective function for a given posterior over
the states of nature would not be tractable. When the sender’s utility function is α-
approximable, there is no hope for a better approximation than an α-approximate
signaling scheme. The following theorem, presented in Sect. 7, shows that it is pos-
sible to compute, in quasi-polynomial time, a bi-criteria approximation with a factor
arbitrarily close to α.
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Theorem 2 Let the sender’s utility function f be α-approximable. Then, for any δ > 0

and ε > 0, there exists a poly
(
nlog(n/δ) / ε2

)
algorithm that outputs an α (1 − δ)-

approximate ε-persuasive public signaling scheme.

Therefore, our approximation algorithm guarantees the best possible factor on the
objective value, and an arbitrary small loss in persuasiveness. For 1-approximable
functions, Theorem 2 yields a bi-criteria QPTAS. In the setting of Xu [22] (i.e., binary
action spaces and state-independent sender’s utility function), our result directly yields
a QPTAS for any monotone sender’s utility function. In order to prove the result, we
show that any posterior can be represented as a convex combination of k-uniform
posteriors with only a small loss in the objective value. By restricting our attention to
the set of k-uniform posteriors, which has a quasi-polynomial size, the problem can
be solved via a linear program of quasi-polynomial size.

2 Preliminaries

This section describes the instantiation of the Bayesian persuasion frameworkwhich is
the focus of this work (Sect. 2.1), public signaling problems (Sect. 2.2) and the notion
of the bi-criteria approximation which we adopt (Sect. 2.3). For a comprehensive
overview of the Bayesian persuasion framework we refer the reader to[15], [29], and
[30].2

2.1 Basic Model

Our model is a generalization of the framework introduced by Arieli and Babichenko
in [18], that is, multi-agent persuasion with no inter-agent externalities. We adopt
the perspective of a sender facing a finite set of receivers R := [n̄]. Each receiver

r ∈ R has a finite set of �r actions Ar := {ai }�
r

i=1. Each receiver’s payoff depends
only on the action she takes and on a (random) state of nature θ , drawn from a finite
set 	 := {θi }di=1 of cardinality d. In particular, receiver r ’s utility is given by the
function ur : Ar × 	 → [0, 1]. The utility of each receiver does not depend on
other receivers’ actions because of the no inter-agent externalities assumption. We
denote by urθ (a

r ) ∈ [0, 1] the utility observed by receiver r when the state of nature
is θ and she plays ar . Let A := ×r∈RAr be the set of joint receivers’ actions.
An action profile (i.e., a tuple specifying an action for each receiver) is denoted by
a = (ar )n̄r=1 ∈ A. The sender’s utility, when the state of nature is θ , is given by
the function fθ : A → [0, 1]. We write fθ (a) to denote the sender’s payoff when
the receivers behave according to action profile a and the state of nature is θ . As it
is customary in Bayesian persuasion, we assume fθ can be represented succinctly,
that is without explicitly describing the function through its (exponentially many)
input–output pairs. As an example, the reader can refer to Eq.3, where it is possible

2 Throughout the paper, the set {1, . . . , x} is denoted by [x], int(X) is the interior of set X , and �X is the
set of all probability distributions over X . The indicator function for the set E is denoted by I [E]. Bold case
letters denote column vectors. Moreover, we generally denote the size of a problem input by n.
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to compute the sender’s payoff by reasoning on the structure of the action profile at
hand.

The state of nature θ is drawn from a common prior distribution μ ∈ int(�	),
which is explicitly known to the sender and the receivers. Moreover, the sender can
publicly commit to a policyφ (i.e., a signaling scheme, see Sect. 2.2) whichmaps states
of nature to signals for the receivers. A generic signal for receiver r is denoted by sr ,
while the set of available signals to each receiver r is denoted by Sr . The interaction
between the sender and the receivers goes as follows:

1. The sender commits to a publicly known signaling scheme φ;
2. The sender observes the realized state of nature θ ∼ μ;
3. The sender draws a signal sr for each receiver according to the signaling scheme

φθ , and communicates to each receiver r the signal sr ;
4. Each receiver r observes sr and updates her prior beliefs over 	 following Bayes

rule. Then, each receiver r selects an action ar ∈ Ar maximizing her expected
reward.

Let a = (a1, . . . , an̄) ∈ A be the tuple of the receivers’ choices, then each receiver r
gets payoff urθ (a

r ), and the sender observes payoff fθ (a). This work focuses on the
specific setting in which φ is a public signaling schemes. We give more details on the
structure of public signaling schemes in the following section.

2.2 Public Signaling Schemes

A signal profile is a tuple s = (sr )n̄r=1 ∈ S specifying a signal for each receiver,
where S := ×r∈RSr . A public signaling scheme is a function φ : 	 → �S mapping
states of nature to probability distributions over signal profiles, with the constraint that
each receiver has to receive the same signal, that is, for any θ and s ∼ φθ , it holds
sr = sr

′
for each pair of receivers r , r ′. With an overload of notation we write s ∈ S

to denote the public signal received by all receivers. The probability with which the
sender selects s after observing θ is denoted by φθ (s). Thus, it holds

∑
s∈S φθ (s) = 1

for each θ ∈ 	.
After observing s ∈ S, receiver r performs a Bayesian update and infers a posterior

belief p ∈ �	 over the states of nature. Specifically, the realized state of nature is θ

with probability

pθ := μθ φθ (s)∑
θ∈	 μθ φθ (s)

.

Since the prior is common knowledge and all receivers observe the same s, they all
perform the same Bayesian update and have the same posterior belief regarding the
realized state of nature. After computing p, since the problem is without inter-agent
externalities, each receiver solves a disjoint single-agent decision problem to find the
action maximizing her expected utility.

A signaling scheme is directwhen signals can bemapped to actions of the receivers,
and interpreted as action recommendations. Each receiver is sent the same signal
s ∈ A specifying a (possibly different) action for each other receiver, that is, the set
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of possible signals is S = A. Moreover, a signaling scheme is persuasive if following
the recommendations is an equilibrium of the underlying Bayesian game [31, 32]. A
direct signaling scheme is persuasive if the sender’s action recommendations belongs
to argmaxa∈Ar

∑
θ∈	 pθ urθ (a) for every receiver r . A simple revelation-principle

style argument shows that there always exists an optimal public signaling scheme
which is both direct and persuasive [17, 22]. A signal in a direct signaling scheme
can be equivalently expressed as an action profile a ∈ A. It is easy to see that there is
an exponential number of such signals. We write φθ (a) to denote the probability with
which the sender selects s = a when the realized state of nature is θ . The problem of
determining an optimal public signaling scheme which is direct and persuasive can be
formulated with the following (exponentially sized) linear program (LP):

max
∑

θ∈	,a∈A
μθ φθ (a) fθ (a) (1a)

s.t.
∑
θ∈	

μθ φθ (a)
(
urθ (a

r ) − urθ (a
′)
)

≥ 0 ∀r ∈ R,∀a ∈ A, a′ ∈ Ar

∑
a∈A

φθ (a) = 1 ∀θ ∈ 	

φθ(a) ≥ 0 ∀θ ∈ 	,∀a ∈ A (1b)

where a = (ar )n̄r=1 ∈ A. The sender’s goal is computing the signaling scheme maxi-
mizing her expected utility (Objective Function (1a)). Constraints (1b) force the public
signaling scheme to be persuasive.3,4

2.3 Bi-criteria Approximation

Let ε ∈ [0, 1]. We say that a public signaling scheme is ε-persuasive if the following
holds for any r ∈ R, a ∈ A, and a′ ∈ Ar :

∑
θ∈	

μθ φθ (a)
(
urθ (a

r ) − urθ (a
′)
)

≥ −ε. (2)

Throughout the paper, we focus on the computation of approximately optimal sig-
naling schemes. Let Opt be the optimal value of LP (1), i.e., the best expected revenue

3 The interaction between the sender and receivers could be modeled by introducing a singlemeta-receiver
with action set A, that is, an action set equal to the Cartesian product of the action sets of the original
receivers. However, from a computational perspective, this would not help in assessing the tractability of
the problem. In particular, the new meta-receiver has an exponential action space (being the Cartesian
product of the original sets). Our negative result (Theorem 1) shows that, in this setting, concavification
approaches analogous to what proposed for the single receiver case by Kamenica and Gentzkow [14] would
not be tractable.
4 Note that the persuasiveness Constraints (1b) are different from the ones defining private signaling
schemes. Indeed, since each receiver observes all the action recommendations in public signaling schemes,
in LP (1) there is a constraint for each tuple of actions/signal a, receiver r , and deviation a′. In private sig-
naling schemes, each receiver observes only her action recommendation and hence there is a persuasiveness
constraint for each action/signal a, receiver r , and deviation a′.
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that the sender can reach under public persuasion constraints. For each state of nature
θ , fθ is a non-negative function, and we have that Opt ≥ 0. When a signaling scheme
yields an expected sender utility of at least αOpt, with α ∈ (0, 1], we say that the sig-
naling scheme is α-approximate (that is, approximate in multiplicative sense). When a
signaling scheme yields an expected sender utility of at leastOpt−α, with α ∈ [0, 1),
we say that the scheme is α-optimal (that is, approximate in additive sense).

Finally, we consider approximationswhich relax both the optimality and the persua-
siveness constraints.When a signaling scheme is both ε-persuasive andα-approximate
(or α-optimal), we say it is a bi-criteria approximation. We say that one such signaling
scheme is (α, ε)-persuasive.

3 An Application: Persuasion in Voting Problems

In order to clarify the framework we just described, we present a simple example of a
possible application of public Bayesian persuasion with no inter-agent externalities.
This example is going to be useful in the remainder of the paper.

In an election with the k-voting rule, candidates are elected if they receive at least
k ∈ [n̄] votes (see Brandt et al. [33] for further details). In this setting, a sender (e.g.,
a politician or a lobbyist) may send signals to the voters on the basis of her private
information which is hidden to them. After observing the sender’s signal, each voter
(i.e., one of the receivers) chooses one among the set of candidates.

In the following, we will employ instances of k-voting in which receivers have to
choose one between two candidates. Then, they have a binary action spacewith actions
a0 and a1 corresponding to choosing the first or the second candidate, respectively.
Each receiver r has utility urθ (a) ∈ [0, 1] for each a ∈ {a0, a1}, where θ ∈ 	. The
sender’s preferred candidate is the one corresponding to action a0. Therefore, her
objective is maximizing the probability that a0 receives more than k votes. Formally,
the sender’s utility function is such that fθ = f for each θ , and

f (a) :=
{
1 if |{r ∈ R : ar = a0}| ≥ k

0 otherwise
for each a ∈ A. (3)

Moreover, letW : �	 → N
+
0 be a function returning, for a given posterior distribution

p ∈ �	, the number of receivers such that
∑

θ pθ (urθ (a0) − urθ (a1)) ≥ 0, i.e., the
number of voters thatwill vote for a0 with a persuasive signaling scheme.Analogously,
Wε(p) is the number of receivers for which

∑
θ pθ (urθ (a0) − urθ (a1)) ≥ −ε, i.e., the

number of voters that will vote for a0 with an ε-persuasive signaling scheme. In the
above voting setting, we refer to the problem of finding an ε-persuasive signaling
scheme which is also α-approximate (or α-optimal) as (α, ε)-k-voting. To further
clarify this election scenario, we provide the following simple example, adapted from
Castiglioni et al. [24].

Example 1 There are three voters R = {1, 2, 3} who must select one between two
candidates {a0, a1}. The sender (e.g., a politician or a lobbyist) observes the realized
state of nature, drawn from the uniform probability distribution (1/3, 1/3, 1/3) over
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Table 1 Voters’ payoffs from
voting different candidates

State A State B State C
a0 a1 a0 a1 a0 a1

Voters 1 +1 −1/4 −1 −1/4 −1 −1/4

2 −1 −1/4 +1 −1/4 −1 −1/4

3 −1 −1/4 −1 −1/4 +1 −1/4

Table 2 Optimal signaling
scheme

Signals
not A not B not C

States A 0 1/2 1/2

B 1/2 0 1/2

C 1/2 1/2 0

	 = {A, B,C}, and exploits this information to support the election of a0. The state
of nature describes the position of a0 on a matter of particular interest to the voters.
Moreover, all the voters have a slightly negative opinion of candidate a1, independently
of the state of nature, while the opinion on candidate a0 can be better or worse than
the opinion on a1 depending the state of nature. Table 1 describes the utility of the
three voters.

We consider a k-voting rulewith k = 2.Without any formof signaling, all the voters
would vote for a1 because it provides an expected utility of −1/4, against −1/3, and
the sender would get a utility of 0. If the sender discloses all the information regarding
the state of nature (i.e., with a fully informative signal), the sender would still get a
utility of 0, since two out of three receivers would pick a1 in each of the possible
states. However, the sender can design a public signaling scheme guaranteeing herself
a utility of 1 for each state of nature. Table 2 describes one such scheme with arbitrary
signals. Suppose the observed state is A, and that the signal sent by the sender is not
B. Then, the posterior distribution over the states of nature is (1/2, 0, 1/2). Therefore,
receiver 1 and receiver 3 would vote for a0 since their expected utility would be 0
against −1/4. Similarly, for any other signal, two receivers vote for a0. Then, the
sender’s expected payoff is 1. We can recover an equivalent direct signaling scheme
by sending a tuple with a candidates’ suggestion for each voter. For example, not A
would become (a1, a0, a0), and each voter would observe the recommendations given
to the others.

4 Technical Toolkit

In this section, we summarize some key results previously studied in the literature that
we will extensively use in the remainder of the paper. In particular, we describe some
of the results on two-prover games by Babichenko et al. [34] and Deligkas et al. [28]
(Sect. 4.1), and we describe a useful theorem on error-correcting codes due to Gilbert
[35] (Sect. 4.2).
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4.1 Two-Prover Games

A two-prover game G is a co-operative game played by two players (Merlin1 and
Merlin2, respectively), and an adjudicator (verifier) called Arthur. At the beginning of
the game, Arthur draws a pair of questions (x, y) ∈ X ×Y according to a probability
distributionD over the joint set of questions (i.e.,D ∈ �X×Y ).Merlin1 (resp.,Merlin2)
observes x (resp., y) and chooses an answer ξ1 (resp., ξ2) from her finite set of answers
�1 (resp.,�2). Then, Arthur declares theMerlins to havewonwith a probability equal
to the valueof a verification functionV(x, y, ξ1, ξ2).A strategy forMerlin1 is a function
η1 : X → �1 mapping each possible question to an answer. Analogously, η2 : Y →
�2 is a strategy of Merlin2. Before the beginning of the game,Merlin1 andMerlin2 can
agree on their pair of (possibly mixed) strategies (η1, η2), but no communication is
allowed during the games. The payoff of a game G to the Merlins under (η1, η2)

is defined as: u(G, η1, η2) := E(x,y)∼D[V(x, y, η1(x), η2(y))]. The value of a two-
prover game G, denoted by ω(G), is the maximum expected payoff to the Merlins
when they play optimally: ω(G) := maxη1 maxη2 u(G, η1, η2). The size of the game
is |G| = |X × Y × �1 × �2|.

A two-prover game is called a free game if D is a uniform probability distribution
over X × Y . This implies that there is no correlation between the questions sent to
Merlin1 and Merlin2. It is possible to build a family of free games mapping to 3SAT
formulas arising from Dinur’s PCP theorem. We say that the size n of a formula
ϕ is the number of variables plus the number of clauses in the formula. Moreover,
SAT(ϕ)∈ [0, 1] is the maximum fraction of clauses that can be satisfied in ϕ. With
this notation, the Dinur’s PCP Theorem reads as follows:

Theorem 3 [Dinur’s PCP Theorem [36]] Given any 3SAT instance ϕ of size n, and
a constant ρ ∈ (0, 1/8), we can produce in polynomial time a 3SAT instance ϕ′ such
that:

1. The size of ϕ′ is n · polylog(n);
2. Each clause of ϕ′ contains exactly 3 variables, and every variable is contained in

at most d = O(1) clauses;
3. If SAT(ϕ) = 1, then SAT(ϕ′) = 1;
4. If SAT(ϕ) < 1, then SAT(ϕ′) < 1 − ρ.

A 3SAT formula can be seen as a bipartite graph in which the left vertices are the
variables, the right vertices are the clauses, and there is an edge between a variable and
a clause whenever that variable appears in that clause. Then, such a bipartite graph
has constant degree since each vertex has constant degree. This holds because each
clause has at most 3 variables and each variable is contained in at most d clauses. A
useful result on bipartite graphs is the following.

Lemma 1 (Lemma 1 of Deligkas et al. [28]) Let (V , E) be a bipartite graph with
|V | = n, where U and W are the two disjoints and independent sets such that V =
U ∪ W (i.e., U and W are the two sides of the graph), and where each vertex has a
degree at most ν.

Suppose thatU and W both have a constant fraction of the vertices, i.e., |U | = c · n
and |W | = (1 − c) · n for some c ∈ [0, 1).
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Then, we can efficiently find a partition {Si }
√
n

i=1 of U, and a partition {Tj }
√
n

j=1

of W, such that each set has a size of at most 2
√
n, and for all i and j we have

|(Si × Tj ) ∩ E | ≤ 2 ν2.

Lemma 1 can be used to build the following free game.

Definition 1 (Definition 2 of Deligkas et al. [28]) Given a 3SAT formula ϕ of size n,
we define a free game Fϕ as follows:

1. Arthur applies Theorem 3 to obtain formula ϕ′ of size n · polylog(n);
2. let m = √

n · polylog(n). Arthur applies Lemma 1 to partition the variables of ϕ′
in sets {Si }mi=1, and the clauses in sets {Tj }mj=1;

3. Arthur draws an index i uniformly at random from [m], and draws independently
an index j uniformly at random from [m]. Then, he sends Si to Merlin1 and Tj to
Merlin2;

4. Merlin1 responds by choosing a truth assignment for each variable in Si , and Mer-
lin2 responds by choosing a truth assignment to every variable that is involved with
a clause in Tj ;

5. Arthur awards the Merlins payoff 1 if and only if the following conditions are both
satisfied:

• Merlin2’s assignment satisfies all clauses in Tj ;
• the twoMerlins’ assignments are compatible, i.e., for each variable v appearing

in Si and each clause in Tj that contains v, Merlin1’s assignment to v agrees
with Merlin2’s assignment to v;

Arthur awards payoff 0 otherwise.

When computing the Merlins’ rewards, the second condition is always satisfied
when Si and Tj share no variables. Moreover, when Merlin1’s and Merlin2’s assign-
ments are not compatible, we say that they are in conflict. The following lemma shows
that, if ϕ is unsatisfiable, then the value of the corresponding free gameFϕ is bounded
away from 1.

Lemma 2 (Lemma 2 by Deligkas et al. [28]) Given a 3SAT formula ϕ, the following
holds:

• If ϕ is satisfiable then ω(Fϕ) = 1;
• If ϕ is unsatisfiable then ω(Fϕ) ≤ 1 − ρ/2ν.

We define FreeGameδ as a specific problem within the class of promise problems
(see, e.g., Even et al. [37], Goldreich [38]).

Definition 2 [FreeGameδ] A FreeGameδ problem is defined as:

• INPUT: a free game Fϕ and a constant δ ∈ (0, 1).
• OUTPUT: Yes-instances: ω(Fϕ) = 1; No-instances: ω(Fϕ) ≤ 1 − δ.

Finally, we will need to assume the Exponential Time Hypothesis (ETH), which con-
jectures that any deterministic algorithm solving 3SAT requires 2�(n) time.

Theorem 4 [Theorem 2 byDeligkas et al. [28]] Assuming ETH, there exists a constant
δ = ρ/2ν such that FreeGameδ requires time n�̃(log n).5

5 As usual, we use the notation �̃ to suppress polylogarithmic factors.
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4.2 Error-Correcting Codes

A message of length k ∈ N+ is encoded as a block of length n ∈ N+, with n ≥ k. A
code is a mapping e : {0, 1}k → {0, 1}n . Moreover, let dist(e(x), e(y)) be the relative
Hamming distance between e(x) and e(y), which is defined as the Hamming distance
weighted by 1/n. The rate of a code is defined as R := k/n. Finally, the relative
distance dist(e) of a code e is the maximum value drel such that dist(e(x), e(y)) ≥
drel for each x, y ∈ {0, 1}k .

In the following, we will need an infinite sequence of codes E := {ek : {0, 1}k →
{0, 1}n}k∈N+ containing one code ek for each possiblemessage length k. The following
result, due to Gilbert [35], can be used to construct an infinite sequence of codes with
constant rate and distance.

Theorem 5 (Gilbert-Varshamov Bound) For every k ∈ N+, 0 ≤ drel < 1
2 and

n ≥ k / (1−H2(drel)), there exists a code e : {0, 1}k → {0, 1}n with dist(e) = drel,
where

H2(d
rel) := drel log2

(
1

drel

)
+ (1 − drel) log2

(
1

1 − drel

)
.

Moreover, such a code can be computed in time 2O(n).

5 Maximum �-Feasible Subsystem of Linear Inequalities

First, we prove the following auxiliary results that follow from Lemma 2 and will be
useful in the remainder of the paper. Omitted proofs can be found in the Appendix.

Lemma 3 Given a 3SAT formula ϕ,
if ϕ is unsatisfiable, then for each (possibly randomized)Merlin2’s strategy η2 there

exists a set Si such that eachMerlin1’s assignment to variables in Si is in conflict with
Merlin2’s assignment with a probability of at least ρ/2ν.

Now, we introduce the maximum ε -feasible subsystem of linear inequalities prob-
lem. Given a system of linear inequalities A x ≥ 0 with A ∈ [−1, 1]nrow×ncol and
x ∈ �ncol , we study the problem of finding the largest subsystem of linear inequalities
that violate the constraints of at most ε. As we will show in Sect. 6, this problem
presents some deep analogies with the problem of determining good posteriors in
Bayesian persuasion problems.

Definition 3 (MFS) Given a matrix A ∈ [−1, 1]nrow×ncol , the problem of finding the
maximum feasible subsystem of linear inequalities (MFS) reads as follows:

max
x∗∈�ncol

∑
i∈[nrow]

I [w∗
i ≥ 0] s.t. w∗ = A x∗.
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We are interested in the problem of finding a vector x which yields at least the same
number of feasible inequalities of MFS under a relaxation of the constraints with
respect to Definition 3.

Definition 4 (ε-MFS) Given a matrix A ∈ [−1, 1]nrow×ncol , let

k∗ := max
x∗∈�ncol

∑
i∈[nrow]

I [w∗
i ≥ 0] s.t. w∗ = A x∗.

Then, the problem of finding themaximum ε -feasible subsystem of linear inequalities
( ε-MFS) amounts to finding a probability vector x ∈ �ncol such that, by letting
w = A x, it holds:

∑
i∈[nrow]

I [wi ≥ −ε] ≥ k∗.

This problem was previously studied by Cheng et al. [5]. In particular, they design a
PTAS for the ε-MFS problem guaranteeing the satisfaction of at least k∗ − ε · nrow
inequalities. This yields a bi-criteria PTAS for the MFS problem.

5.1 Upper-bound on�-MFS

First, we show that ε-MFS can be exactly solved in nO(log n) steps for every fixed
ε > 0. We introduce the following auxiliary definition.

Definition 5 (k-uniform distribution) A probability distribution x ∈ �X is k-uniform
if and only if it is the average of a multiset of k basis vectors in an |X |-dimensional
space.

Equivalently, each entry xi of a k-uniform distribution has to be a multiple of 1/k.
Then, the following result holds.

Proposition 6 ε-MFS can be solved in nO(log n) steps.

Proof Denote by x∗ the optimal solution of ε-MFS.
Let x̃ ∈ �ncol be the empirical distribution of k i.i.d. samples drawn fromprobability

distribution x∗.
Moreover, let w∗ := A x∗ and w̃ := A x̃.
By Hoeffding’s inequality we have

Pr(w∗
i − w̃i ≥ ε) ≤ e−2kε2

for each i ∈ [nrow].
Then, by the union bound, we get

Pr(∃i s.t. w∗
i − w̃i ≥ ε) ≤ nrow · e−2kε2 .
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Finally, we can write

Pr(w∗
i − w̃i ≤ ε ∀i ∈ [nrow]) ≥ 1 − nrow · e−2kε2 .

Thus, setting k = log nrow/ε2 ensures the existence of a vector x̃ guaranteeing that,
if w∗

i ≥ 0, then w̃i ≥ −ε.
Since x̃ is k-uniform by construction, we can find it by enumerating over all the

O((ncol)k) k-uniform probability vectors where k = log nrow/ε2. Trivially, this task
can be performed in nlog nrow/ε2 steps and, therefore, in nO(log n) steps. ��

5.2 Lower-bound on�-MFS

Now we show that ε-MFS requires at least n�̃(log n) steps. In doing so, we close the
gap with the upper bound stated by Proposition 6 except for polylogarithmic factors
of log n in the denominator of the exponent.

Theorem 7 Assuming ETH, there exists a constant ε > 0 such that solving ε-
MFS requires time n�̃(log n).

Proof Overview. We provide a polynomial-time reduction from FreeGameδ (Def-
inition 1) to ε-MFS, where ε = δ / 26 = ρ / (52ν) (see Sect. 4.1 for the definition
of parameters δ, ρ, ν). We show that, given a free game instance Fϕ , it is possible to
build a matrix A such that, for a certain value k∗, the following holds:

(i) If ω(Fϕ) = 1, then there exists a vector x such that

∑
i∈[nrow]

I [wi ≥ 0] = k∗, (4)

where w = A x;
(ii) If ω(Fϕ) ≤ 1 − δ, then all vectors x are such that

∑
i∈[nrow]

I [wi ≥ −ε] < k∗, (5)

with w = A x.

Construction. In the free game Fϕ , Arthur sends a set of variables Si to Mer-
lin1 and a set of clauses Tj to Merlin2, where i, j ∈ [m], m = √

n polylog(n). Then,
Merlin1’s (resp.,Merlin2’s) answer is denoted by ξ1 ∈ �1 (resp., ξ2 ∈ �2). The system
of linear inequalities used in the reduction has a vector of variables x structured as
follows.

1. Variables corresponding to Merlin2’s answers. There is a variable xTj ,ξ2 for each
j ∈ [m] and, due to Lemma1 and assuming |Tj | = 2m, it holds ξ2 ∈ �2 = {0, 1}6m
(if |Tj | < 2m, we extend ξ2 with a sufficient number of extra bits).
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2. Variables corresponding toMerlin1’s answers.We need to introduce some further
machinery to augment the dimensionality of �1 through a viable mapping. Let
e : {0, 1}2m → {0, 1}8m be the code defined in Theorem 5 with rate 1/4 and
relative distance dist(e) ≥ 1/5. We can safely assume that |Si | = 2m and ξ1 ∈
�1 = {0, 1}2m (if |Si | < 2m, we extend ξ1 with a sufficient number of extra bits).
Then, e(ξ1) is the 8m-dimensional encoding of answer ξ1 via code e. Let e(ξ1) j
be the j-th bit of vector e(ξ1). We have a variable xi,� for each index i ∈ [8m]
and � := (� j ) j∈[m] ∈ {0, 1}m . These xi,� variables can be interpreted as follows.
Suppose to have an encoding of an answer for each of the possible set S j . There
are m such encodings, each of them having 8m bits. Then, it holds xi,� > 0 if and
only if the i-th bit of the encoding corresponding to S j is � j .

There is a total of m · 2m · (25m + 8) variables. Matrix A has a number of columns
equal to the number of variables. We denote with A·,(Tj ,ξ2) the entry in row (·) and
column corresponding to variable xTj ,ξ2 . Analogously, A·,(i,�) is the entry in row (·)
and column corresponding to variable xi,�. Rows are grouped in four types, denoted
by {ti }4i=1. We write Ati ,· when referring to an entry of any row of type ti . Further
arguments may be added as a subscript to identify specific entries of A. Rows are
structured as follows.

1. Rows of type t1: there are q rows of type t1 such that At1,(Tj ,ξ2) = 1 for each
j ∈ [m], ξ2 ∈ �2, and −1 otherwise (the value of q is specified later in the proof).

2. Rows of type t2: there are q rows for each subset T ⊆ {Tj } j∈[m] with cardinality
m/2 (i.e., there is a total of q · ( m

m/2

)
rows of type t2). Then, the following holds

for each T :

A(t2,T ),(Tj ,ξ2) =
{−1 if Tj ∈ T , ξ2 ∈ �2

−1 if Tj /∈ T , ξ2 ∈ �2
and

A(t2,T ),(i,�) = 0 for each i ∈ [8m], � ∈ {0, 1}m .

3. Rows of type t3: there are q rows of type t3 for each subset of 4m indices I drawn
from [8m], for a total of q · (8m

4m

)
rows. For each subset of indices I we have:

A(t3,I),(Tj ,ξ2) = 0 for each Tj , ξ2 and

A(t3,I),(i,�) =
{

−1 if i ∈ I, � ∈ {0, 1}m
−1 if i /∈ I, � ∈ {0, 1}m .

4. Rows of type t4: there is a row of type t4 for each Si and ξ1. Each of these rows
is such that:

A(t4,Si ,ξ1),(Tj ,ξ2) =
{

−1/2 if V(Si , Tj , ξ1, ξ2) = 1

−1 otherwise
and

A(t4,Si ,ξ1),( j,�) =
{

−1/2 if e(ξ1) j = �i

−1 otherwise
.

123



Algorithmica

Finally, we set k∗ =
(
1 + ( m

m/2

) + (8m
4m

))
q + m and q � m (for example, q =

210m). We say that row i satisfies ε-MFS condition for a certain x if wi ≥ −ε, where
w = A x (in the following, we will also consider wi ≥ 0 as an alternative condition).
We require at least k∗ rows to satisfy the ε-MFS condition. Then, all rows of types
t1, t2, t3 and at least m rows of type t4 must be such that wi satisfies the ε-MFS
condition.

Completeness.Given a satisfiable assignment of variables ζ to ϕ, we build vector
x as follows. Let ζTj be the partial assignment obtained by restricting ζ to the variables
in the clauses of Tj (if |Tj | < 2m we pad ζTj with bits 0 until ζTj has length 6m). Then,
we set xTj ,ζT j

= 1/2m. Moreover, for each i ∈ [8m] and �i = (e(ζS1)i , . . . , e(ζSm )i ),
we set xi,�i = 1/16m. We show that x is such that there are at least k∗ rows i with
wi ≥ 0 (Condition (4)). First, each row i of type t1 is such that wi = 0 since∑

Tj ,ξ2
xTj ,ξ2 = ∑

i,� xi,� = 1/2. For each Tj ,
∑

ξ2
xTj ,ξ2 = 1/2m. Then, for each

subset T of {Tj } j∈[m], we have
∑

ξ2,Tj∈T xTj ,ξ2 = 1/4. This implies that each row i
of type t2 is such that wi = 0. A similar argument holds for rows of type t3. Finally,
we show that for each Si there is at least a row i of type t4 such that wi ≥ 0. Take the
row corresponding to (Si , ζSi ). For each xb,� > 0 where b ∈ [8m] and � ∈ {0, 1}m ,
it holds e(ζSi )b = �i . Then, there are 8m columns played with probability 1/16m
with value 1/2, i.e.,

∑
b,� A(t4,Si ,ζSi ),(b,�)

xb,� = 1/4. Moreover, for each (Tj , ζTj ),
it holds V(Si , Tj , ζSi , ζTj ) = 1. Then,

∑
Tj ,ξ2

A(t4,Si ,ζSi ),(Tj ,ζT j )
xTj ,ξ2 = −1/4. This

concludes the proof of completeness.
Soundness. We show that, if ω(Fϕ) ≤ 1 − δ, there is no probability distribution

x such that

∑
i∈nrow

I [wi ≥ −ε] ≥ k∗, (6)

withw = A x. Assume, by contradiction, that one such vector x exists. For the sake
of clarity, we summarize the structure of the proof:

(i) We show that the probability assigned by x to columns with index (Tj , ξ2) has
to be close to 1/2, and the same has to hold for columns of type (i, �).

(ii) We show that x has to assign probability almost uniformly among Tj s and indices
i of the encoding of�1 (resp., Lemmas 5 and 6 below). Intuitively, this resembles
the fact that, inFϕ ,Arthur draws questions Tj according to a uniform probability
distribution.

(iii) For each Si , there is at most one row (t4, Si , ξ1) such that w(t4,Si ,ξ1) ≥ −ε

(Lemma 7). Together with the hypothesis that at least m rows of type t4 satisfy
the ε-MFS condition, this implies that there exists exactly one such row for each
Si .

(iv) Finally, we show that the above construction leads to a contradiction with
Lemma 3 for a suitable free game.

Before providing the details of the four above steps, we introduce the following
result, due to Babichenko et al. [34].
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Lemma 4 (Lemma 2 of Babichenko et al. [34]) Let v ∈ �n be a probability vector,
and u be the n-dimensional uniform probability vector.

If ||v − u|| > c, then there exists a subset of indices I ⊆ [n] such that |I| = n/2
and

∑
i∈I vi > 1

2 + c
4 .

Then, we proceed with the following steps (the proofs of the auxiliary results can
be found in Appendix A.2):

(i) Equation6 requires all rows i of type t1, t2, t3 to be such that wi ≥ −ε. This
implies that, for rows of type t1, it holds

∑
Tj ,ξ2

xTj ,ξ2 ≥ 1

2

(
1 − ε

)
. (7)

If, by contradiction, this inequality did not hold, each row i of type t1 would be
such that wi < 1/2− ε/2− (1/2+ ε/2) = −ε, thus violating Eq.6. Moreover,
Eq. 6 implies that at least a row (t4, Si , ξ1) has w(t4,Si ,ξ1) ≥ −ε. Therefore, it
holds

∑
i,� xi,� ≥ 1/2 − ε. Indeed, if, by contradiction, this condition did not

hold, all rows of type t4 would havewi < 1/2 (1/2− ε)−1/2 (1/2+ ε) = −ε.
(ii) Let v1 ∈ �m be the probability vector defined as

v1, j :=
∑

ξ2
xTj ,ξ2∑

j,ξ2 xTj ,ξ2

,

and ṽ be a uniform probability vector of suitable dimension. The following
result shows that having a bounded element-wise difference between v1 and ṽ is
a necessary condition for Eq.6 to be satisfied.

Lemma 5 If ||v1 − ṽ||1 > 16ε, there exists a row i of type t2 such that wi < −ε.

Let v2 ∈ �[8m] be the probability vector defined as

v2,i :=
∑

� xi,�∑
i,� xi,�

,

and ṽ be a suitable uniform probability vector. Moreover, the following holds.

Lemma 6 If ||v2 − ṽ||1 > 16ε, there exists a row i of type t3 such that wi < −ε.

In order to satisfy Eq.6, all rows i of type t2 and t3 have to be such that wi ≥ −ε.
Then, by Lemmas 5 and 6, it holds that ||v1 − ṽ||1 ≤ 16 ε and ||v2 − ṽ||1 ≤ 16 ε.

(iii) We show that, for each Si , there exists at most one row (t4, Si , ξ1) for which
w(t4,Si ,ξ1) ≥ −ε.

Lemma 7 For each Si , i ∈ [m], there exists at most one row (t4, Si , ξ1) such that
w(t4,Si ,ξ1) ≥ −ε.
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Then, there are at leastm rows (t4, Si , ξ1) such thatw(t4,Si ,ξ1) ≥ −ε and, byLemma7,
we get that there exists exactly one such row for each Si , i ∈ [m]. Therefore, for each
Si , there exists ξ i1 ∈ �1 such that

∑

(Tj ,ξ2):V(Si ,Tj ,ξ
i
1,ξ2)=1

x(Tj ,ξ2) ≥ 1

2
− 4 ε.

Notice that, if this condition did not hold, by Step (i) we would obtain

wt4,Si ,ξ i1
< −1

2

(
1

2
− 4 ε

)
− 7

2
ε + 1

2

(
1

2
+ ε

2

)
= −ε,

which would go against the satisfiability of Eq.6.

(iv) Finally, let F∗
ϕ be a free game in which Arthur (i.e., the verifier) chooses question

Tj with probability v1, j as defined in Step (ii), andMerlin2 (i.e., the second prover)
answers ξ2 with probability xTj ,ξ2/v1, j . In this setting (i.e.,F∗

ϕ ), given question Si
to Merlin1, the two provers will provide compatible answers with probability

P

(
V∗(Si , Tj , ξ

i
1, ξ2

)
= 1 | Si ) = 1/2 − 4 ε∑

j,ξ2 xTj ,ξ2

≥ 1/2 − 4 ε

1/2 + ε
≥ 1 − 10 ε,

where the first inequality holds for Eq.7 at Step (i). In a canonical (as in Defini-
tion 1) free game Fϕ , Arthur picks questions according to a uniform probability
distribution. Therefore, the main difference between Fϕ and F∗

ϕ is that, in the
latter, Arthur draws questions for Merlin2 from v1 which may not be a uniform
probability distribution. However, we know that differences between v1 and a
uniform probability vector must be limited. Specifically, by Lemma 5, we have
||v1 − ṽ||1 ≤ 16 ε. Then, if Merlin1 and Merlin2 applied in Fϕ the strategies we
described for F∗

ϕ , their answers would be compatible with probability at least

P(V(Si , Tj , ξ
i
1, ξ2) = 1 | Si ) ≥ 1 − 26 ε, for each Si . Finally, by picking

ε = ρ/52 ν, we reach a contradiction with Lemma 3.

This concludes the proof. ��

6 Hardness of (˛,�)-Persuasion

We show that a public signaling scheme approximating the value of the optimal one
cannot be computed in polynomial time even if we allow it to be ε-persuasive (see
Eq.2). Specifically, assuming ETH, computing an (α, ε)-persuasive signaling scheme
requires at least n�̃(log n), where the dimension of the instance is n = O(n̄ d). We
prove this result for the specific case of the k-voting problem, as introduced in Sect. 3.
Besides its practical applicability, this problem is particularly instructive in highlight-
ing the strong connection between the problem of finding suitable posteriors and the
ε-MFS problem, as discussed in the following lemma. An analogous observation was
also highlighted by Cheng et al. in [5].
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Lemma 8 Given a k-voting instance, the problem of finding a posterior p ∈ �	 such
that Wε(p) ≥ k is equivalent to finding an ε-feasible subsystem of k linear inequalities
over the simplex when A ∈ [−1, 1]n̄×d is such that:

Ar ,θ = urθ (a0) − urθ (a1) for each r ∈ R, θ ∈ 	. (8)

Proof By setting x = p, it directly follows that
∑

i∈[n̄] I [Ai x ≥ −ε] ≥ k if and only
if Wε(p) ≥ k. ��

The above lemma shows that deciding if there exists a posterior p such that
W (p) ≥ k or if all the posteriors have Wε(p) < k (i.e., deciding if the utility of
the sender can be greater than zero) is as hard as solving the ε-MFS problem. More
precisely, if an ε-MFS instance does not admit any solution, then there does not exist a
posterior guaranteeing a strictly positive winning probability for the sender’s preferred
candidate. On the other hand, if an ε-MFS instance admits a solution, there exists a sig-
naling scheme where at least one of the induced posteriors guarantees strictly positive
winning probability to the sender’s preferred candidate. However, the above connec-
tion between the ε-MFS problem and the k-voting problem is not sufficient to prove the
inapproximability of the k-voting problem, as the probability whereby this posterior
is reached may be arbitrarily small.

Luckily enough, the next theorem shows that it is possible to strengthen the inap-
proximability result by constructing an instance in which, when 3SAT is satisfiable,
there exists a signaling scheme such that all the induced posteriors satisfy W (p) ≥ k
(i.e., the sender’s preferred candidate wins with a probability of 1). The main idea
is to suitably extend the construction of Theorem 7 with an additional set of states
{θd}d ∈ {0, 1}7m , where we can see vectors d as the concatenation of a subvector
dS ∈ {0, 1}m and a subvector dT ∈ {0, 1}6m . Moreover, we need to extend the set of
receivers. In particular, we replace each receiver relative to a set Si and an answer ξ1
with a set including a receiver for each d. The new receivers’ payoffs are defined as
follows. Let ⊕ be the XOR operator. The payoff of the receiver relative to Si , ξ1, and
d in a state θ(Tj ,ξ2⊕dT ) is equivalent to the payoff of the original receiver in the state
θ(Tj ,ξ2), while we use a similar procedure for the payoffs in the states θ(i,�). Then, the
signaling scheme employs a signal sd for each d. Each signal sd defines which of the
{0, 1}7m games we are playing. All these games are equivalent since we are simply
changing the meaning of the states: for example, a state θ(Tj ,ξ2⊕dT ) is equivalent to
the original state θ(Tj ,ξ2). Using this construction, we have that all the signals induce
a posterior in which at least k voters votes for c0, while in the original game only one
signal induces a posterior that satisfies this condition.

Theorem 8 Given a k-voting instance and assuming ETH, there exists a constant
ε∗ > 0 such that, for any 0 < ε ≤ ε∗, finding an (α, ε)-persuasive signaling scheme
requires n�̃(log n) steps for any multiplicative or additive factor α ∈ (0, 1).

Proof Overview.By following the proof of Theorem 7, we can provide a polynomial-
time reduction from FreeGameδ to the problem of finding an ε-persuasive signaling
scheme in k-voting, with ε = δ/780 = ρ/1560ν. Specifically, if ω(Fϕ) = 1, there
exists a signaling scheme guaranteeing the sender an expected value of 1. Otherwise,
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if ω(Fϕ) ≤ 1− δ, then all posteriors are such that Wε(p) < k (i.e., the sender cannot
obtain more than 0).

Construction. The k-voting instance has the following possible states of nature.

1. θ(Tj ,ξ2) for each set of clauses Tj , j ∈ [m], and answer ξ2 ∈ �2 = {0, 1}6m .
Let e : {0, 1}2m → {0, 1}8m be an encoding function with R = 1/4 and dist(e) ≥
1/5 (as in the proof of Theorem 7).
We have a state θ(i,�) for each i ∈ [8m], and � = (�1, . . . , �m) ∈ {0, 1}m .

2. There is a state θd for each d ∈ {0, 1}7m .
It is useful to see vector d as the union of the subvector dS ∈ {0, 1}m and the
subvector dT ∈ {0, 1}6m .
The common prior μ is such that:

μθ(T j ,ξ2)
= 1

m 22+6m for each θ(Tj ,ξ2),

μθ(i,�) = 1

m 25+m
for each θ(i,�),

μθd = 1

21+7m for each θd.

To simplify the notation, in the remaining of the proof, let urθ := urθ (a0) − urθ (a1).
The k-voting instance comprises the following receivers.

1. Receivers of type t1: there are q (the value of q is specified later in the proof)
receivers of type t1, which are such that ut1θ(T j ,ξ2)

= 1 for each (Tj , ξ2), and −1/3

otherwise.
2. Receivers of type t2: there are q receivers of type t2 such that u

t2
θ(i,�)

= 1 for each
(i, �), and −1/3 otherwise.

3. Receivers of type t3: there are q receivers of type t3 for each subset T ⊆ {Tj } j∈[m]
of cardinality m/2. Each receiver corresponding to the subset T is such that:

u(t3,T )
θ(T j ,ξ2)

=
{

−1 if Tj ∈ T , ξ2 ∈ �2

−1 if Tj /∈ T , ξ2 ∈ �2
and u(t3,T )

θ = 0 for every otherθ.

4. Receivers of type t4:
we have q receivers of type t4 for each subset I of 4m indices selected from [8m].
Each receiver corresponding to subset I is such that:

u(t4,I)
θ(i,�)

=
{

−1 if i ∈ I, � ∈ {0, 1}m
−1 if i /∈ I, � ∈ {0, 1}m and u(t4,I)

θ = 0 for every otherθ.

5. Receivers of type t5:
there is a receiver of type t5 for each Si , ξ1 ∈ �1 and d ∈ {0, 1}7m .
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Then, for each receiver of type t5 the following holds:

u(t5,Si ,ξ1,d)
θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1/2 if θ = θ(Tj ,ξ2) and V(Si , Tj , ξ1, ξ2 ⊕ dT ) = 1

−1/2 if θ = θ(i ′,�) and e(ξ1)i ′ = [� ⊕ dS]i
−1/2 if θ = θd

−1 otherwise

Finally, we set k =
(
2 + ( m

m/2

) + (8m
4m

))
q+m. By setting q � m (e.g., q = 210m),

candidate a0 can get at least k votes only if all receivers of type t1, t2, t3, t4 vote
for her.

Completeness. Given a satisfiable assignment ζ to the variables in ϕ, let [ζ ]Tj ∈
{0, 1}6m be the vector specifying the variables assignment of each clause in Tj , and
[ζ ]Si ∈ {0, 1}2m be the vector specifying the assignment of each variable belonging
to Si . The sender has a signal for each d ∈ {0, 1}7m . The set of signals is denoted by
S, where |S| = 27m , and a signal is denoted by sd ∈ S. We define a signaling scheme
φ as follows. First, we set φθd(sd) = 1 for each θd. If |Tj | < 2m for some j ∈ [m], we
pad [ζ ]Tj with bits 0 util |[ζ ]Tj | = 6m. Then, for each Tj , φθ(T j ,[ζ ]T j ⊕dT )

(sd) = 1/2m .

For each i ∈ [8m], set φθ(i,�⊕dS )
= 1/26m , where � = (e([ζ ]S1)i , . . . , e([ζ ]Sm )i ). First,

we prove that the signaling scheme is well-formed. For each state θ(Tj ,ξ2), it holds that

∑
sd∈S

φθ(T j ,ξ2)
(sd) = 1

2m
∣∣{d : [ζ ]Tj ⊕ dT = ξ2

}∣∣ = 1,

and, for each θ(i,�), the following holds:

∑
sd∈S

φθ(i,�) (sd) = 1

26m
∣∣{d : (e([ζ ]S1)i , . . . , e([ζ ]Sm )i ⊕ dS = �

}∣∣ = 1.

Now, we show that there exist at least k voters that will choose a0. Let p ∈ �	 be
the posterior induced by a signal sd. All receivers of type t1 choose a0 since it holds:

∑
(Tj ,ξ2)

pθ(T j ,ξ2)
=

∑
(Tj ,ξ2)

μθ(T j ,ξ2)
φθ(T j ,ξ2)

(sd)∑
θ∈	 μθφθ (sd)

= 1

22+7m

(
1

21+7m + 1

22+7m + 1

22+7m

)−1

= 1

4
.

Analogously, all receivers of type t2 select a0.Furthermore, for each Tj , it holds∑
ξ2

pθ(T j ,ξ2)
= 1/4m. Then, for each subset T ⊆ {Tj } j∈[m] of cardinality m/2, it

holds
∑

Tj∈T ,ξ2
pθ(T j ,ξ2)

= m/2 1/4 m = 1/8. Therefore, each receiver of type
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t3 chooses a0. An analogous argument holds for receivers of type t4. Finally, we
show that, for each Si , the receiver (t5, Si , [ζ ]Si ,d) chooses a0. In particular, receiver
(t5, Si , [ζ ]Si ,d) has the following expected utility:

1

2
pθd − 1

2

∑
(Tj ,ξ2)

pθ(T j ,ξ2)
− 1

2

∑
(i ′,�)

pθ(i ′,�) = 0

since, for each p(Tj ,ξ2) > 0, the following holds ξ2 ⊕ dT = [ζ ]Tj ⊕ dT ⊕ dT = [ζ ]Tj

and V(Si , Tj , [ζ ]Si , ξ2 ⊕ dT ) = V(Si , Tj , [ζ ]Si , [ζ ]Tj ) = 1 for each Tj . Moreover,
for each p(θi ′,l ) > 0, it holds [l ⊕ dS]i = e([ζ ]Si )i ′ ⊕ dS,i ⊕ dS,i = e([ζ ]Si )i ′ . This
concludes the proof of completeness.6

Soundness. We prove that, if ω(Fϕ) ≤ 1 − δ, there is no posterior in which a0
is chosen by at least k receivers, thus implying that the sender’s utility is equal to
0. Now, suppose, towards a contradiction, that there exists a posterior p such that
at least k receivers select a0. Let γ := ∑

(Tj ,ξ2)
pθ(T j ,ξ2)

+ ∑
(i,�) pθ(i,�) . Since all

voters of types t1 and t2 vote for a0, it holds that
∑

(Tj ,ξ2)
pθ(T j ,ξ2)

≥ 1
4 − ε and∑

(i,�) pθ(i,�) ≥ 1
4 − ε. Moreover, since at least a receiver (t5, Si , ξ1,d) must play

a0, there exists a d ∈ {0, 1}7m and a state θd with pθ ≥ 1
2 − ε. This implies that

1
2 − 2ε ≤ γ ≤ 1

2 + ε.
Consider the reduction to ε′-MFS, with ε′ = ρ/52ν (Theorem 7). Let x(Tj ,ξ2) =

pθ(T j ,ξ2⊕dT )
/γ , x(i,�) = pθ(i,�⊕dS )

/γ , and ε = ε′/30. All rows of type t1 of ε′-MFS are
such that

wt1 = 1

γ

⎛
⎝ ∑

(Tj ,ξ2)

pθ(T j ,ξ2)
−

∑
(i,�)

pθ(i,�)

⎞
⎠ ≥ −3ε

γ
≥ −9ε ≥ −ε′.

All voters of type t3 choose a0. Then, for all T ⊆ {Tj } j∈[m] of cardinality m/2, it
holds:

∑
(Tj ,ξ2):Tj∈T

pθ(T j ,ξ2)
−

∑
(Tj ,ξ2):Tj /∈T

pθ(T j ,ξ2)
≥ −ε.

Then, all rows of type t2 of ε′-MFS are such that:

w(t2,T ) = 1

γ

⎛
⎝ ∑

(Tj ,ξ2):Tj∈T
pθ(T j ,ξ2)

−
∑

(Tj ,ξ2):Tj /∈T
pθ(T j ,ξ2)

⎞
⎠ ≥ − ε

γ
≥ −3ε ≥ −ε′.

A similar argument proves that all rows of type t3 of the instance of ε′-MFS have
w(t3,I) ≥ −ε′.

6 For the sake of presentation, in the proof, we employ indirect signals of type sd. However, it is possible
to construct an equivalent direct signaling scheme. Let pd ∈ �	 be the posterior induced by sd. Then, it is
enough to substitute each sd with a direct signal recommending a0 to all receivers such that

∑
θ pdθ u

r
θ ≥ 0,

and a1 to all the others.
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To conclude the proof, we prove that, for each voter (t5, Si , ξ1,d) that votes for a0,
the corresponding row (t4, Si , ξ1) of the instance ε′-MFS is such that w(t4,Si ,ξ1) ≥
−ε′. Let γ ′ := ∑

(Tj ,ξ2):V(Si ,Tj ,ξ1,ξ2)=1 x(Tj ,ξ2) and γ ′′ := ∑
(i ′,�):e(ξ1)i ′=�i

x(i ′,�). First,

we have that γ ′ ≥ 1/4 − 7ε. If this did not hold, we would have

∑
θ

pθu
(t5,Si ,ξ1,d)
θ < −1

2

(
1

4
− ε

)
− 1

2

(
1

4
− 7ε

)
− 6ε + 1

2

(
1

2
+ 2ε

)
= ε.

Similarly, it holds γ ′′ ≥ 1/4 − 7ε. Hence

w(t4,Si ,ξ1) = −1

2
γ ′ + 1

2
γ ′′ − (1 − γ ′ − γ ′′)

= 1

2γ

⎛
⎝ ∑

(Tj ,ξ2):V(Si ,Tj ,ξ1,ξ2)=1

pθ(T j ,ξ2⊕dT )
+ 3

∑

(i ′,�):e(ξ1)i ′=�i

pθ(i ′,�⊕dS )

⎞
⎠ − 1

≥ 2(1/4 − 7ε)

1/2 + ε
− 1 ≥ −30 ε = −ε′.

Thus, there exists a probability vector x for the instance of ε′-MFS in which at least
k rows satisfy the ε′-MFS condition (Eq.5), which is in contradiction with ω(Fϕ) ≤
1 − δ. This concludes the proof. ��

Theorem8 shows that, assuming theETH, computing an (α, ε)-persuasive signaling
schemes requires at least a quasi-polynomial number of steps in the specific scenario
of a k-voting instance. Therefore, the same holds in the general setting of arbitrary
public persuasion problems with binary action spaces, which is precisely the claim of
Theorem 1.

7 A Quasi-Polynomial Time Algorithm

In this section, we prove that our hardness result (Theorem 8) is tight by devising a bi-
criteria approximation algorithm. Our result extends the results by Cheng et al. [5] and
Xu [22], which deal with signaling problems with binary action spaces and sender’s
utility functions which are independent from the state of nature. This is arguably
a restrictive assumption, and even the original Bayesian persuasion framework by
Kamenica and Gentzkow [14] describes state-dependent sender’s utility functions.
Our results generalize those by Cheng et al. [5] to the case of state-dependent sender’s
utility functions, and arbitrary discrete action spaces.

In order to prove our result, we need some further machinery. Let Zr := 2A
r
be

the power set of Ar . Then, Z := ×r∈RZr is the set of tuples specifying a subset of
Ar for each receiver r . For a given probability distribution over the states of nature,
we are interested in determining the set of best responses of each receiver r , i.e., the
subset of Ar maximizing her expected utility. Formally, we have the following.

123



Algorithmica

Definition 6 (BR-set) Given a probability distribution over states of nature p ∈ �	,
the best-response set (BR-set)Mp := (Z1, . . . , Zn) ∈ Z is such that

Zr = argmax
a∈Ar

∑
θ∈	

pθ u
r
θ (a) for each r ∈ R.

Similarly, we define a notion of ε-BR-set which comprises ε-approximate best
responses to a given distribution over the states of nature.

Definition 7 (ε-BR-set) Given a probability distribution over states of nature p ∈ �	,
the ε-best-response set (ε-BR-set) Mp,ε := (Z1, . . . , Zn) ∈ Z is such that, for each
r ∈ R, action a belongs to Zr if and only if

∑
θ∈	

pθ u
r
θ (a) ≥

∑
θ∈	

pθ u
r
θ (a

′) − ε for each a′ ∈ Ar .

We introduce a suitable notion of approximability of the sender’s objective function.
Our notion of α-approximable function is a generalization of the one proposed by
Xu [22, Definition 4.5] to the setting of arbitrary action spaces and state-dependent
sender’s utility functions.

Definition 8 (α-Approximability) Let f := { fθ }θ∈	 be a set of functions fθ : A →
[0, 1].

We say that f is α-approximable if there exists a function g : �	 × Z → A
computable in polynomial time such that, for all p ∈ �	 and Z ∈ Z , it holds:
a = g(p, Z), a ∈ Z and

∑
θ∈	

pθ fθ (a) ≥ α max
a∗∈Z

∑
θ∈	

pθ fθ (a∗).

The voting function f defined in Sect. 3 is 1-approximable, while, for example, when
the action space is binary a non-monotone submodular function is 1/2-approximable.
The α-approximability assumption is a natural requirement since, otherwise, even
evaluating the sender’s objective value would result in an intractable problem. When
f is α-approximable, it is possible to find an approximation of the optimal receivers’
actions profile when they are constrained to select actions profiles in Z .

We now provide an algorithm which computes in quasi-polynomial time, for any
α-approximable f , a bi-criteria approximation of the optimal solution with an approx-
imation on the objective value arbitrarily close to α. When f is 1-approximable our
result yields a bi-criteria QPTAS for the problem. The key idea is showing that an
optimal signaling scheme can be approximated by a convex combination of suitable
k-uniform posteriors. As in previous works [5, 22], the key part of the proof is a
decomposition lemma that proves that all the posteriors can be decomposed in a con-
vex combination of k-uniform posteriors with a small loss in utility. However, the
assumption of state-dependent sender’s utility functions makes previous approaches
ineffective in our setting. In particular, we observe that previous decomposition lem-
mas are based on a direct application of the Hoeffding’s and union bounds. In our case,
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such a direct derivation is not possible, and we need to introduce some technical inter-
mediate results (Lemmas 9 – 12). In particular, we need to develop a new probabilistic
analysis of the decomposition lemma. Let � := maxr∈R �r , n̄ := |R|, and d := |	|.
The proof of our main positive result, as stated in Theorem 2, goes as follows.

Proof of Theorem 2 We show that there exists a poly
(
d log(n̄�/δ) / ε2

)
algorithm that

computes the given approximation. Let k = 32 log(4n̄�/δ) / ε2 and K ⊂ �	 be the
set of k-uniformdistributions over	 (Def. 5).Weprove that all posteriorsp∗ ∈ �	 can
be decomposed as a convex combination of k-uniform posteriors without lowering too
much the sender’s expected utility. Formally, each posterior p∗ ∈ �	 can be written
as p∗ = ∑

p∈K γp p, with γ ∈ �K such that

∑
p∈K

γp
∑
θ∈	

pθ fθ (g(p,Mε(p))) ≥ α (1 − δ) max
a∗∈M(p∗)

∑
θ∈	

p∗
θ fθ (a∗).

Let γ̃ ∈ K be the empirical distribution of k i.i.d. samples from p∗, where each
θ has probability p∗

θ of being sampled. Therefore, the vector γ̃ is a random variable
supported on k-uniform posteriors with expectation p∗. Moreover, let γ ∈ �K be a
probability distribution such as, for each p ∈ K, γp := Pr(γ̃ = p). For each γ ∈ �K
andp ∈ K, we denote byγ

(θ,i)
p the conditional probability of having observed posterior

p, given that the posterior must assign probability i/k to state θ . Formally, for each
p ∈ K, if pθ = i/k, we have

γ (θ,i)
p = γp∑

p′:p′
θ=i/k

γp′
,

and γ
(θ,i)
p = 0 otherwise. The random variable γ̃ (θ,i) ∈ K is such that, for each p ∈ K,

Pr(γ̃ (θ,i) = p) = γ
(θ,i)
p . Finally, let P ⊆ K be the set of posteriors such that

P :=
{
p ∈ K :

∣∣∣∣∣
∑
θ

pθu
r
θ (a) −

∑
θ

p∗
θu

r
θ (a)

∣∣∣∣∣ ≤ ε

2
∀r ∈ R, a ∈ Ar

}
. (9)

Now, we prove the following intermediate results (the proofs of the auxiliary results
are provided in Appendix A.3). The following lemma show that, given a posterior p∗
and a state θ , if we take k i.i.d. samples from p∗ and we consider only the induced
posteriors p in which pθ is close to p∗

θ , then the probability that the utility of all the
receivers in p is close to the their utility in p∗ is close to 1.

Lemma 9 Given p∗ ∈ �	, for each θ ∈ 	, and for each i ∈ [k] such that

∣∣∣∣
i

k
− p∗

θ

∣∣∣∣ ≤ ε

4
,
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it holds:

∑
p∈P :pθ=i/k

γp ≥
(
1 − δ

2

) ∑
p∈K:pθ=i/k

γp,

where γ is the distribution of k i.i.d. samples from p∗.

Then, we show that the condition in the previous lemma is satisfied with high proba-
bility. In particular, we show that given a posterior p∗ and a state θ , if we take k i.i.d.
samples from p∗, then with probability close to 1 the induced posterior p is such that
pθ is close to p∗

θ . Formally, we prove the following lemma.

Lemma 10 Given p∗ ∈ �	, for each θ ∈ 	, it holds:

∑
i :|i/k−p∗

θ |≥ε/4

∑
p∈K:pθ=i/k

γp ≤ δ

2
p∗
θ ,

where γ is the distribution of k i.i.d. samples from p∗.

The following result combines Lemmas 9 and 10. In particular, if we consider the
distribution of k i.i.d. samples from a posterior p∗, we have that, for each θ , the
probability that in state θ the utility of all the receivers is close to their utility in p∗ is
close to 1. Equivalently, the induced posterior belongs to P as defined in (9).

Lemma 11 Given a p∗ ∈ �	, for each θ ∈ 	, it holds:

∑
p∈P

γp pθ ≥ (1 − δ) p∗
θ ,

where γ is the distribution of k i.i.d. samples from p∗.

Now, we need to prove that all the posteriors in P guarantee to the sender at least
the same expected utility of p∗. Formally, we prove that the ε-BR-set of each p ∈ P
contains the BR-set of p∗. This is shown via the following lemma.

Lemma 12 Given p∗ ∈ �	, for each p ∈ P , it holds: M(p∗) ⊆ Mε(p).

Finally, we prove that we can represent each posterior p∗ as a convex combination of
k-uniform posteriors with a small loss in the sender’s expected utility. For p ∈ K and
Z ∈ Z , let g∗ : �	 × Z → [0, 1] be a function such that

g∗(p, Z) := max
a∈Z

∑
θ

pθ fθ (a).

Given p∗ ∈ �	, we are interested in bounding the difference in the sender’s
expected utility when p∗ is approximated as a convex combination γ of k-uniform pos-
teriors, the sender exploits an α-approximation of f , and receivers play ε-persuasive
best-responses. Formally,
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Lemma 13 Given a p∗ ∈ �	, it holds:

∑
p∈K

γp
∑
θ

pθ fθ (g(p,Mε(p))) ≥ α(1 − δ) fθ (g
∗(p∗,M(p∗))),

where γ is the distribution of k i.i.d. samples from p∗.

Therefore, we can safely restrict to posteriors in K. Since there are |K| =
poly

(
d log(n̄�/ε) / ε2

)
posteriors, the following linear program (LP 10) has O(|K|) vari-

ables and constraints, and finds an α (1 − δ)-approximation of the optimal signaling
scheme:

max
γ∈�K

∑
p∈K

γp
∑
θ∈	

pθ fθ (g(p,Mε(p))) (10a)

s.t.
∑
p∈K

γp pθ = μθ ∀θ ∈ 	 (10b)

Given the distribution on the k-uniformposteriorsγ ,we can construct a direct signaling
scheme φ by setting:

φθ (a) =
∑

p∈K:a=g(p,Mε (p))

γp pθ , for each θ ∈ 	 and a ∈ A.

This shows that such signaling scheme φ is α(1 − δ)-approximate and ε-persuasive,
which are precisely our desiderata, thus concluding the proof. ��
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Appendix A Omitted Proofs

A.1 Omitted Proof for Lemma 3

Lemma 3 Given a 3SAT formula ϕ, if ϕ is unsatisfiable, then for each (possibly ran-
domized)Merlin2’s strategy η2 there exists a set Si such that eachMerlin1’s assignment
to variables in Si is in conflict withMerlin2’s assignment with a probability of at least
ρ/2ν.

Proof Letω(Fϕ, η2|Si ) be the probabilitywithwhichArthur acceptsMerlin’s answers
when Merlin1 receives Si , and Merlin2 follows strategy η2. Formally:

ω(Fϕ, η2|Si ) := max
η1

ETi [V(Si , Ti , η1, η2)].

By definition of the value of a free game, we have:

ω(Fϕ) = 1

m
max
η2

∑
Si

ω(Fϕ, η2|Si ) ≥ max
η2

min
Si

ω(Fϕ, η2|Si ).

Then, by Lemma 2, this results in:

max
η2

min
Si

ω(Fϕ, η2|Si ) ≤ 1 − ρ

2ν
,

which proves the statement of the lemma. ��

A.2 Omitted Proofs for Theorem 7

Lemma 5 If ||v1 − ṽ||1 > 16ε, there exists a row i of type t2 such that wi < −ε.

Proof Lemma 4 implies that, if ||v1 − ṽ||1 > 16ε, then there exists a subset T ⊆
{Tj } j∈[m] such that

∑
Tj∈T

∑
ξ2

xTj ,ξ2

> (1/2 + 4ε)
∑
j,ξ2

xTj ,ξ2

> 1/4 + ε.

It follows that

∑
Tj /∈T

∑
ξ2

xTj ,ξ2 < 1/2 + ε − 1/4 − ε = 1/4,

which implies that row (t2, T ) is such that wt2,T < −1/4 − ε + 1/4 < −ε. ��
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Lemma 6 If ||v2 − ṽ||1 > 16ε, there exists a row i of type t3 such that wi < −ε.

Proof Lemma 4 implies that, if ||v2 − ṽ||1 > 16ε, then there exists a set I ⊆ [8m]
such that

∑
i∈I

∑
�

xi,�

> (1/2 + 4ε)
∑
i,�

xi,�

> 1/4 + ε.

Then,

∑
i /∈I

∑
�

xi,� < 1/2 + ε/2 − 1/4 − ε = 1/4 − ε/2.

It follows that there exists a row (t3, I) such thatwt3,I < −1/4−ε+1/4−ε/2 <

−ε. ��
Lemma 7 For each Si , i ∈ [m], there exists at most one row (t4, Si , ξ1) such that
w(t4,Si ,ξ1) ≥ −ε.

Proof Let

f(x, ξ1) :=
∑

j :�i=e(ξ1) j

x j,�.

Assume, by contradiction, that for a given Si there exist two assignments ξ ′
1 and ξ ′′

1
such that w(t4,Si ,ξ1) ≥ −ε for each ξ1 ∈ {ξ ′

1, ξ
′′
1 }. Then, f(x, ξ1) ≥ 1/2 − ε, for each

ξ1 ∈ {ξ ′
1, ξ

′′
1 }. Otherwise, we would get w(t4,Si ,ξ1) < 1/2(1/2− ε)− 1/2(1/2+ ε) =

−ε for at least one ξ1 ∈ {ξ ′
1, ξ

′′
1 }. Let x′ be the vector such that

x ′
i,� := xi,�∑

i,� xi,�
.

Then, for ξ1 ∈ {ξ ′
1, ξ

′′
1 },

f(x′, ξ1) ≥ 1/2 − ε

1/2 + ε
≥ 1 − 4ε.

By Lemmas 4 and 6, we have that ||v2 − ṽ||1 ≤ 16ε. Therefore, we can obtain a
uniform vector x̃ by moving at most 16ε probability from x′. This results in a decrease
of f of at most 16ε, that is f(x̃, ξ1) ≥ 1 − 20ε for each ξ1 ∈ {ξ ′

1, ξ
′′
1 }.

By construction dist(e) = 1/5, which implies dist(e(ξ ′
1), e(ξ

′′
1 )) ≥ 1/5. Then, there

exists a set of indices I, with |I| ≥ 8m/5, such that e(ξ ′
1) j �= e(ξ ′′

1 ) j for each j ∈ I.
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Therefore,

f(x̃, ξ ′
1) + f(x̃, ξ ′′

1 ) ≤
∑
j∈I

1/8m +
∑
j /∈I

2/8m ≤ 2 − 1/5.

This leads to a contradiction with f(x̃, ξ ′
1) + f(x̃, ξ ′′

1 ) ≥ 2 − 40ε. ��

A.3 Omitted Proofs for Theorem 2

Lemma 9 Given p∗ ∈ �	, for each θ ∈ 	, and for each i ∈ [k] such that

∣∣∣∣
i

k
− p∗

θ

∣∣∣∣ ≤ ε

4
,

it holds:

∑
p∈P :pθ=i/k

γp ≥
(
1 − δ

2

) ∑
p∈K:pθ=i/k

γp,

where γ is the distribution of k i.i.d. samples from p∗.

Proof Fix θ̄ ∈ 	 and i ∈ [k]with |i/k− p∗̄
θ
| ≤ ε/4. Then, for each r ∈ R and a ∈ Ar ,

let t̃ ra := ∑
θ γ̃

(θ̄ ,i)
θ urθ (a) and tra := ∑

θ p∗
θu

r
θ (a).

First, we show that |E[t̃ ra ] − tra | ≤ ε/4.
Equivalently,

∣∣∣∣∣
∑
θ

urθ (a)
(
E[γ̃ (θ̄ ,i)

θ ] − p∗
θ

)∣∣∣∣∣ ≤ ε

4
.

Assume i/k ≥ p∗̄
θ
.

Then,

∑
θ

|E[γ̃ (θ̄ ,i)
θ ] − p∗

θ | = i

k
− p∗̄

θ
+

∑

θ �=θ̄

(
p∗
θ − p∗

θ∑
θ ′ �=θ̄ p∗

θ ′
·
(
1 − i

k

))

≤ε

4
+ 1 − p∗̄

θ
− 1 + i

k

≤ε

2
. (A1)

Analogously, if i/k ≤ p∗̄
θ
, we get that

∑
θ

∣∣∣E
[
γ̃

(θ̄ ,i)
θ

]
− p∗

θ

∣∣∣ ≤ ε

2
.
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Furthermore, let

M1 :=
{
θ ∈ 	 : E

[
γ̃

(θ̄ ,i)
θ

]
− p∗

θ ≥ 0
}

,

and M2 := 	 \ M1.
Then,

∑
θ∈M1

(
E

[
γ̃

(θ̄ ,i)
θ

]
− p∗

θ

)
= −

∑
θ∈M2

(
E

[
γ̃

(θ̄ ,i)
θ

]
− p∗

θ

)
≤ ε

4
, (A2)

where the equality comes from
∑

θ E

[
γ̃

(θ̄ ,i)
θ

]
= ∑

θ p∗
θ = 1 and the inequality

follows from Eq.A1. Then,

∑
θ

urθ (a)
(
E

[
γ̃

(θ̄ ,i)
θ

]
− p∗

θ

)

=
∑

θ∈M1

urθ (a)
(
E

[
γ̃

(θ̄ ,i)
θ

]
− p∗

θ

)
+

∑
θ∈M2

urθ (a)
(
E

[
γ̃

(θ̄ ,i)
θ

]
− p∗

θ

)

≤ ε

4
,

where we use both

∑
θ∈M2

urθ (a)
(
E

[
γ̃

(θ̄ ,i)
θ

]
− p∗

θ

)
≤ 0

and

∑
θ∈M1

urθ (a)
(
E

[
γ̃ (θ̄ ,i)

]
− p∗

θ

)
≤ ε

4

by Equation (A2).
Analogously, it is possible to show that

∑
θ

urθ (a)
(
E

[
γ̃

(θ̄ ,i)
θ

]
− p∗

θ

)
≥ −ε

4
.

Then,

Pr(|tra − t̃ ra | ≥ ε/2) ≤ Pr(|t̃ ra − E[t̃ ra ]| ≥ ε/4).

Moreover, by the Hoeffding’s inequality, we have that, for each r ∈ R and a ∈ Ar ,

Pr(|t̃ ra − E[t̃ ra ]| ≥ ε/4) ≤ 2e−2k( ε
4 )2 = 2e−4ε2 log(4n̄�/δ) / ε2 = 2

(
δ

4n̄�

)4

≤ δ

2n̄�
.
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The union bound yields the following:

Pr

⎛
⎝ ⋂

r∈R,a∈Ar

|t̃ ra − tra | ≤ ε

2

⎞
⎠ ≥ 1 −

∑
r ,a

Pr
(
|t̃ ra − tra | ≥ ε

2

)

≥ 1 −
∑
r ,a

Pr
(
|t̃ ra − E[t̃ ra ]| ≥ ε

4

)

=1 − δ

2
.

By the definition of P , this implies that Pr(γ̃ (θ̄ ,i) ∈ P) ≥ 1 − δ/2.
Finally,

∑
p∈P :pθ̄=i/k

γp Pr

(
γ̃θ̄ = i

k

)
· Pr

(
γ̃ ∈ P | γ̃θ̄ = i

k

)

= Pr

(
γ̃θ̄ = i

k

)
· Pr

(
γ̃ (θ̄ ,i) ∈ P

)

≥
(
1 − δ

2

)
Pr

(
γ̃θ̄ = i

k

)

=
(
1 − δ

2

) ∑
p∈K:pθ̄=i/k

γp.

This concludes the proof. ��

Lemma 10 Given p∗ ∈ �	, for each θ ∈ 	, it holds:

∑
i :|i/k−p∗

θ |≥ε/4

∑
p∈K:pθ=i/k

γp ≤ δ

2
p∗
θ ,

where γ is the distribution of k i.i.d. samples from p∗.

Proof The random variable γ̃θ is drawn from a binomial distribution.
We consider three possible cases. If p∗

θ ≥ 1/8, then, by Hoeffding’s inequality, we
have

Pr
(
|γ̃θ − p∗

θ | ≥ ε

4

)
≤ 2e−2k(ε/4)2

= 2e−4 log(4n̄�/δ)

≤ δ

2
p∗
θ .
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If p∗
θ ≤ 1/8, then, by Chernoff’s bound, it holds

Pr
(
γ̃θ − p∗

θ ≥ ε

4

)
≤ e

−k( ε
4 )

2 1
1−2p∗

θ
log

(
1−p∗

θ
p∗
θ

)

≤ e
−2 log

(
4n̄�
δ

)
log

(
7

8p∗
θ

)

≤
(
8

7
p∗
θ

)2 log
(
4
δ

)

(A3)

≤ 8

7
e p∗

θ e
−2 log

(
4
δ

)

≤ δ

4
p∗
θ , (A4)

where, to get from (A3) to (A4), we use the fact that 8/7 e p∗
θ ≤ 1 and 2 log(4/δ) ≥ 1.

Moreover,

Pr
(
γ̃θ − p∗

θ ≤ −ε

4

)
≤ e

−k(ε/4)2 1
2(1−p∗

θ
)p∗

θ

≤ e
− log(4n̄�/δ)

p∗
θ =

(
e

1
p∗
θ

)log
(

δ
4

)

≤
(

1

p∗
θ

e

)log
(

δ
4

)

(A5)

≤
(

1

p∗
θ

)−1

e
log

(
δ
4

)

= δ

4
p∗
θ . (A6)

where in (A5) we use the fact that ex ≥ ex , and in (A6) that log(δ/4) < −1.
Then,

∑
i :|i/k−p∗

θ |≥ε/4

∑
p∈K:pθ=i/k

γp = Pr
(
|γ̃θ − p∗

θ | ≥ ε

4

)
≤ δ

2
p∗
θ ,

which concludes the proof of the lemma. ��
Lemma 11 Given a p∗ ∈ �	, for each θ ∈ 	, it holds:

∑
p∈P

γp pθ ≥ (1 − δ) p∗
θ ,

where γ is the distribution of k i.i.d. samples from p∗.
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Proof We show the following:

∑
p∈P

γp pθ ≥
∑

i :|i/k−p∗
θ |≤ε/4

i

k

∑
p∈P :pθ=i/k

γp (A7)

≥
∑

i :|i/k−p∗
θ |≤ε/4

i

k

∑
p∈K:pθ=i/k

(
1 − δ

2

)
γp (A8)

=
(
1 − δ

2

) ∑
i :|i/k−p∗

θ |≤ε/4

i

k

∑
p∈K:pθ=i/k

γp

≥
(
1 − δ

2

)⎛
⎝p∗

θ −
∑

i :|i/k−p∗
θ |≥ε/4

i

k

∑
p∈K:pθ=i/k

γp

⎞
⎠

≥
(
1 − δ

2

)⎛
⎝p∗

θ −
∑

i :|i/k−p∗
θ |≥ε/4

∑
p∈K:pθ=i/k

γp

⎞
⎠ (A9)

≥
(
1 − δ

2

)2

p∗
θ

≥(1 − δ) p∗
θ . (A10)

Equation (A7) holds since we are restricting the set of posteriors; Eq. (A8) holds by
Lemma 9; Eq. (A9) holds since i/k ≤ 1; and Eq. (A10) holds by Lemma 10. This
concludes the proof of the lemma. ��

Lemma 12 Given p∗ ∈ �	, for each p ∈ P , it holds: M(p∗) ⊆ Mε(p).

Proof Let Z1 = Mε(p) and Z2 = M(p∗), and a ∈ Zr
2. Then, for all a

′ ∈ Ar ,

∑
θ

pθ u
r
θ (a) ≥

∑
θ

p∗
θ u

r
θ (a) − ε

2
≥

∑
θ

p∗
θ u

r
θ (a

′) − ε

2
≥

∑
θ

pθ u
r
θ (a

′) − ε.

Thus, a ∈ Zr
1, which proves the lemma. ��

Lemma 13 Given a p∗ ∈ �	, it holds:

∑
p∈K

γp
∑
θ

pθ fθ (g(p,Mε(p))) ≥ α(1 − δ) fθ (g
∗(p∗,M(p∗))),

where γ is the distribution of k i.i.d. samples from p∗.
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Proof We prove the following:

∑
p∈K

γp
∑
θ

pθ fθ (g(p,Mε(p))) (A11)

≥ α
∑
p∈K

γp
∑
θ

pθ fθ (g
∗(p,Mε(p))) (A12)

≥ α
∑
p∈P

γp
∑
θ

pθ fθ (g
∗(p,Mε(p))) (A13)

≥ α
∑
p∈P

γp
∑
θ

pθ fθ (g
∗(p∗,Mε(p))) (A14)

≥ α
∑
p∈P

γp
∑
θ

pθ fθ (g
∗(p∗,M(p∗))) (A15)

≥ α (1 − δ)
∑
θ

p∗
θ fθ (g

∗(p∗,M(p∗))). (A16)

Equation (A11) is the relaxed sender’s expected utility; Eq. (A12) holds by Defini-
tion 8; Eq. (A13) holds by restricting the set of posteriors; Eq. (A14) holds by the
optimality of g∗; Eq. (A15) holds by Lemma 12; and Eq. (A16) holds by Lemma 11.
This concludes the proof. ��
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