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We discuss numerical aspects of instantons in two- and three-dimensional ϕ4 theories with an internal
OðNÞ symmetry group, the so-called N-vector model. By combining asymptotic transseries expansions for
large arguments with convergence acceleration techniques, we obtain high-precision values for certain
integrals of the instanton that naturally occur in loop corrections around instanton configurations.
Knowledge of these numerical properties is necessary in order to evaluate corrections to the large-order
factorial growth of perturbation theory in ϕ4 theories. The results contribute to the understanding of the
mathematical structures underlying the instanton configurations.
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I. ORIENTATION

The N-vector model (the self-interacting ϕ4 field
theory in D ¼ 2 and D ¼ 3 dimensions) gives rise to
instanton configurations, whose structure is more compli-
cated than the corresponding configurations in quantum
mechanics (in one space dimension), which is equivalent
to a D ¼ 1-dimensional field theory (see Figs. 2 and 3 of
Ref. [1]). The instantons provide nontrivial saddle points of
the Euclidean action, about which we expand partition
functions, and generating functions [2–6]. Instantons also
constitute fundamental objects in statistical and optimiza-
tion problems possessing hard phases (see Refs. [7–9]).
Here, we derive a semianalytic representation which can be
used to describe the instanton uniformly over the radial
variable, to a relative accuracy of 10−22 or better.
In one dimension (1D), one canonically identifies the

argument of the instanton as the Euclidean “time” t, with
the notion that −∞ < t < ∞ (see Ref. [1]). In 2D and 3D,
this is not so easy, because the angular symmetry dictates
that one should choose a radial variable. The radial variable
r, in turn, can only take values in the range 0 < r < ∞.
The connection to the 1D case [4] is found if we consider

that in 1D, we can interpret the “radial” variable with theZ2

symmetry (positive and negative real numbers). The surface
area of the zero-dimensional unit sphere embedded in
one-dimensional space is 2πðD¼1Þ=2=ΓððD ¼ 1Þ=2Þ ¼ 2;
the result confirms the Z2 symmetry of the (analytically
known) instantons in one-dimensional theories [1,4].
In two-dimensional and three-dimensional ϕ4 theories,

the instanton is not known analytically. Here, we aim to
demonstrate that the analytic structure of the instanton
is linked to the concept of transseries and resurgent
expansions (see Refs. [10–18]). Specifically, we derive
an asymptotic representation of the instanton, for large
argument, in the form of a transseries (resurgent expansion)
in the variables χ ¼ 1=r and expð−1=χÞ ¼ expð−rÞ, where
r is the distance from the origin. The transseries repre-
sentation for large r is complemented by a power-series
representation for small r, which is augmented by Padé
approximants and nonlinear sequence transformations to
enhance its applicability for intermediate values of the
radial variable. The goal is to match the large-r and small-r
representations at a suitable intermediate transition value of
the radial variable, to obtain a uniform, high-precision
representation of the instanton in 2D and 3D.
We organize the paper as follows. Fundamentals of

instantons in ϕ4 theories are discussed in Sec. II. The
three-dimensional instanton in a three-dimensional ϕ4

theory is analyzed in Sec. III. Our analysis of the instanton
configuration in a two-dimensional field theory follows in
Sec. IV. Virial theorems and the asymptotic behavior of the
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instanton are discussed in Sec. V. The high-precision
evaluation of instanton integrals and of instanton actions
is discussed in Sec. VI. Conclusions are drawn in Sec. VII.

II. FUNDAMENTALS OF INSTANTONS
IN ϕ4 THEORIES

A. Instanton equations

For the consideration of the instanton configuration, it is
sufficient to consider the D-dimensional scalar theory, with
the action

S½ϕ� ¼
Z

dDx

�
1

2

�
∇⃗ϕðx⃗Þ

�
2 þ 1

2
ϕðx⃗Þ2 þ g

4
ϕðx⃗Þ4

�
; ð1Þ

where x⃗ is a D-dimensional vector. Consideration of the
variation δS½ϕ� leads to the defining equation of the
instanton,

−∇⃗2
ϕclðx⃗Þ þ ϕclðx⃗Þ þ gϕclðx⃗Þ3 ¼ 0: ð2Þ

Differentiation with respect to a coordinate leads to the
equation of the zero mode ∂μϕclðx⃗Þ,

�
−∇⃗2 þ 1þ 3gϕclðx⃗Þ2

�
∂μϕclðx⃗Þ ¼ 0; ð3Þ

where μ ¼ 1;…; D. The zero mode constitutes an eigen-
state (with zero eigenvalue) of the longitudinal fluctuation
operator given in Eq. (47); the zero mode is included here
in the discussion in order to illustrate that the instanton
configuration is crucial in the exploration of several
fundamental properties of the fluctuation operator of
quartic theories [4,5].
In a quartic theory, the instanton solution exists only for

negative g, because the tunneling can proceed only through
a barrier. Therefore, with the scaling

ϕclðx⃗Þ ¼
ffiffiffiffiffiffiffi
−
1

g

s
ξclðx⃗Þ; ð4Þ

the equations for the instanton and the zero mode are,
respectively,

�
−∇⃗2 þ 1 − ξclðx⃗Þ2

�
ξclðx⃗Þ ¼ 0; ð5Þ

�
−∇⃗2 þ 1 − 3ξclðx⃗Þ2

�
∂μξclðx⃗Þ ¼ 0: ð6Þ

The presence of the prefactor
ffiffiffiffiffiffiffiffiffiffiffi
−1=g

p
in Eq. (4) illustrates

the fact that the instanton solution exists only for negative
values of the coupling parameter g, i.e., in the unstable
sector of the theory where the self-interaction term g

4
ϕðx⃗Þ4

becomes negative [4,5].

In a theory with an internal OðNÞ symmetry group, one
has the following instanton:

ϕ
cl
ðx⃗Þ ¼ ϕclðx⃗Þu ¼

ffiffiffiffiffiffiffi
−
1

g

s
ξclðx⃗Þu; ð7Þ

where vectors in the internal space are designated by
underlining, and we can choose

u ¼ f1; 0;…; 0gT: ð8Þ

Hence, up to multiplication by a (constant) unit vector u
in the internal OðNÞ space of the theory, the instanton
configuration, whose radial part is governed by Eq. (2),
does not depend on the dimension N of the internal
symmetry group.
The instanton equation (2) is invariant under the replace-

ment ϕclðx⃗Þ → −ϕclðx⃗Þ. Hence, there is a sign ambiguity in
the choice of the instanton, and the degeneracy under the
operation ξcl → −ξcl needs to be taken into account when
using dispersion relations. Indeed, via dispersion relations,
one can establish that the instanton action A, defined via

S½ϕcl� ¼ −A=g; ð9Þ

governs the large-order behavior of the perturbative coef-
ficients GK in the Kth order of the expansion in g of the
n-point correlation functions in a D-dimensional OðNÞ
theory [4]. In the notation adopted in Eq. (1.9) of Ref. [4],
we have

GK ¼ cðN;DÞ
π

�
1

A

�ðnþNþD−1Þ=2�
−
1

A

�
K

ð10Þ

× Γ
�
K þ nþ N þD − 1

2

�
½1þOð1=KÞ�: ð11Þ

Here, cðN;DÞ is a constant coefficient to be determined
separately for each N and D.

B. Instantons and large-order behavior

The connection between instantons and large-order
behavior is usually obtained by saddle-point evaluations
of contour integrals [19]. In the following, we will mention
a less known derivation [20] that has the advantage of
being simpler and more intuitive. The basic idea is that
Feynman diagrams of the ϕ4 theory at large orders K ≫ 1
are essentially random regular graphs with connectivity 4
and size K. For a large number of vertices, it is known that
random regular graphs have a locally tree-like structure
(with the size of the loops growing as logK). This allows us
to write an iterative equation that turns out to be equivalent
to the instanton equation (2). The Feynman rules imply that
there is a factor 1=ðk⃗2i þm2Þ for each line i in the graph and
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a Dirac-δ function on each vertex ensuring the conservation
of momentum. Invoking the tree-like structure, one can
then write the following equation (see also Fig. 1):

gðk⃗Þ ¼ 1

k⃗2 þm2

Z
dDk1
ð2πÞD

Z
dDk2
ð2πÞD

Z
dDk3
ð2πÞD

× gðk⃗1Þgðk⃗2Þgðk⃗3ÞδðDÞðk⃗1 þ k⃗2 þ k⃗3 − k⃗Þ: ð12Þ

So, multiplying everything by k⃗2 þm2, the previous
equation in real space is equivalent to

ð−∇⃗2 þm2Þgðx⃗Þ ¼ g3ðx⃗Þ; ð13Þ

which is the instanton equation for the ϕ4 theory for
gðx⃗Þ ¼ ξclðx⃗Þ.
Using a standard procedure (similar in spirit to the cavity

method from spin-glass theory [21]), one can identify the
action in Eq. (1) as the Bethe free energy of the problem.
This allows us to derive in a simple way the instanton
equation and the action; the 1=K correction about the
instanton [4,5] corresponds to the 1=K finite size correction
to the Bethe lattice random graphs.

III. THREE-DIMENSIONAL INSTANTON

A. Large argument

We use the fact that ξclðx⃗Þ ¼ ξclðjx⃗jÞ ¼ ξclðrÞ is radially
symmetric and this constitutes am “S state” in the formal-
ism adopted in atomic physics [22,23]. The equation

fulfilled by the instanton ξclðrÞ ¼ ξð3Þcl ðrÞ (including the
dimension D in the superscript) in three dimensions is
[see Eq. (5)],

−
∂
2

∂r2
ξð3Þcl ðrÞ−

2

r
∂

∂r
ξð3Þcl ðrÞ þ ξð3Þcl ðrÞ−

	
ξð3Þcl ðrÞ



3 ¼ 0: ð14Þ

We are attempting to find a systematic expansion of the
solution of Eq. (14), and do so for large argument r → ∞ in
the current section. A remark might be in order. Namely,
linear second-order differential equations typically have
solutions regular and irregular at infinite argument. The
equations defining the instanton, by contrast, are highly
nonlinear, and hence this consideration does not apply. In
fact, the asymptotics for large argument uniquely determine
the instanton solution. In this context, it is instructive to
recall [24] that the uniqueness of the solution for a non-
linear differential equation, determined by a given initial
condition or asymptotic behavior, constitutes a pivotal
factor in the emergence of a range of complex phenomena,
including chaos. This uniqueness leads to behaviors which
are sensitive to the small variations in the initial condi-
tions [25–27]. Furthermore, this intrinsic uniqueness in
nonlinear differential equations is analogous to the sensitive
dependence on initial conditions observed in fluid dynam-
ics, particularly in the transition from laminar to turbulent
flow, where even minor perturbations can drastically alter
the flow patterns, echoing the underlying chaotic dynamics
described in fluid mechanics research [28].
The instanton goes to zero as r → ∞, and so one can

neglect the term ½ξð3Þcl ðrÞ�3 ≪ ξð3Þcl ðrÞ in a first approxima-
tion. Combining Eqs. (2) and (4), and neglecting the term
proportional to the third power of the instanton, for large r,
one obtains the relation

−
∂
2

∂r2
ξð3Þcl ðrÞ −

2

r
∂

∂r
ξð3Þcl ðrÞ þ ξð3Þcl ðrÞ ≈ 0: ð15Þ

Our ansatz

ξð3Þcl ðrÞ ¼
expð−rÞ

r

X∞
n¼0

an
rn

; ð16Þ

is a nonanalytic expansion in the variable 1=r, for large r. In
fact, when expressed in terms of the variable χ ¼ 1=r, the
expansion (16) constitutes a nonanalytic (resurgent, transs-
eries) expansion in the variables χ and expð−1=χÞ (see
Refs. [10–12]), and χ ¼ 0 becomes a singular point of the
differential equation. The importance of nonanalytic expo-
nentials (resurgent expansions) in the solution of differ-
ential equations with singular points has been stressed in

Ref. [12]. The substitution ξð3Þcl ðrÞ ¼ gðrÞ=r takes Eq. (15)
into the form

−
∂
2

∂r2
gðrÞ þ gðrÞ ¼ 0; gðrÞ ¼ C expð−rÞ; ð17Þ

for which the solution regular at infinity is just expð−rÞ.
Hence, the ansatz (16) collapses to a single term, with C
being an overall constant, and reads

FIG. 1. Tree diagram illustrating the emergence of the instanton.
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ξð3Þcl ðrÞ ¼ C
expð−rÞ

r
; ð18Þ

for which the approximate equality in Eq. (15) becomes
an exact equality. Here, C is a coefficient which can be
determined numerically. We have mapped the differential
equation (15) onto a linear numerical grid with a lattice
spacing that decreases as 1=N , where N is the number
of the iteration. We use computer algebra [29,30] with a

128-decimal-digit internal precision, investigate the asymp-
totic behavior of the resulting solution in the regime of
large radial argument of the instanton, where the conver-
gence toward the exact solution can be written in terms of
powers of 1=N , and employ suitable convergence accel-
eration techniques [31], in order to extrapolate to zero
lattice spacing.
With this method, we obtain a 60-figure result for C

which reads as follows:

C ¼ 2.712 808 360 940 844 770 465 994 573 657 808 840 265 350 950 750 281 746 458 229ð1Þ: ð19Þ

One can now approximate, in Eq. (14),

−
∂
2

∂r2
ξð3Þcl ðrÞ −

2

r
∂

∂r
ξð3Þcl ðrÞ þ ξð3Þcl ðrÞ − ξð3Þcl ðrÞ3 ≈ −

∂
2

∂r2
ξð3Þcl ðrÞ −

2

r
∂

∂r
ξð3Þcl ðrÞ þ ξð3Þcl ðrÞ − C3

expð−3rÞ
r3

¼ 0: ð20Þ

The structure of this equation justifies the ansatz

ξð3Þcl ðrÞ ¼ C
expð−rÞ

r
þ expð−3rÞ

r

X∞
n¼0

bn
rn

þ…: ð21Þ

Matching of the bn coefficients leads to the result,

ξð3Þcl ðrÞ ¼ C
expð−rÞ

r
− C3

expð−3rÞ
8r3

�
1 −

3

2r
þ 21

8r2
−

45

8r3
þ 465

32r4
−
2835

64r5
þ 40005

256r6
þOðr−7Þ

�
þ…: ð22Þ

This expression, cubed, generates terms proportional to ½expð−rÞr þ expð−3rÞ
r3 �3 → ðexpð−rÞr Þ2 × expð−3rÞ

r3 ¼ expð−5rÞ
r5

. Now, we enter

with the ansatz that also contains a term of the form expð−5rÞ
r

P∞
n¼0

cn
rn again into Eq. (14), match the coefficients cn, and find

ξð3Þcl ðrÞ ¼ C
expð−rÞ

r
− C3

expð−3rÞ
8r3

�
1 −

3

2r
þ 21

8r2
−

45

8r3
þ 465

32r4
−
2835

64r5
þ 40005

256r6
þOðr−7Þ

�

þ C5
expð−5rÞ
64r5

�
1 −

19

6r
þ 151

18r2
−

815

36r3
þ 56921

864r4
−
1094215

5184r5
þ 2592553

3456r6
þOðr−7Þ

�
: ð23Þ

Finally, with the contribution of order expð−7rÞ included, we have

ξð3Þcl ðrÞ ¼ C
expð−rÞ

r
− C3

expð−3rÞ
8r3

�
1 −

3

2r
þ 21

8r2
−

45

8r3
þ 465

32r4
−
2835

64r5
þ 40005

256r6
þOðr−7Þ

�

þ C5
expð−5rÞ
64r5

�
1 −

19

6r
þ 151

18r2
−

815

36r3
þ 56921

864r4
−
1094215

5184r5
þ 2592553

3456r6
þOðr−7Þ

�

− C7
expð−7rÞ
512r7

�
1 −

29

6r
þ 271

16r2
−
3943

72r3
þ 614143

3456r4
−
8322275

13824r5
þ 80215771

36864r6
þOðr−7Þ

�
: ð24Þ

For the term proportional to expð−3rÞ, we find the compact formula,

−C3
expð−3rÞ

8r3

�
1 −

3

2r
þ 21

8r2
−

45

8r3
þ 465

32r4
þOðr−5Þ

�
¼ −C3

expð−rÞ
r

ðEið−2rÞ − 2 expð2rÞEið−4rÞÞ; ð25Þ

where EiðrÞ the exponential integral function, but we were unable to find general expressions for the terms in the series
multiplying the exponential factors expð−5rÞ and expð−7rÞ.
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Transseries in the variable χ ¼ 1=r have been encoun-
tered in the study of anharmonic oscillators [32–35]. They
have also been investigated mathematically [10–12].
We see that only “odd-transseries” orders of the form
exp½−ð2nþ 1Þ=χ� contribute. The “one-transseries” con-
tribution to the instanton wave function is found to read
as Cχ expð−1=χÞ, without correction terms. The expan-
sion (24) shows that the large-argument expansion of the

instanton wave function ξð3Þcl ðrÞ is determined by a single
constant C, whose numerical value is given in Eq. (19).
An inspection shows that the perturbative coefficients in

the variable χ ¼ 1=r grow factorially. In order to match the
resurgent expansion for large argument with the Taylor
expansion for small argument r, we have calculated terms
up to the 13-instanton contribution and summed the series,
starting from large values of r, down to r ¼ 3,

ξð3Þcl ðr ¼ 3.0Þ ¼ 0.045 013 219 071…; ð26Þ

where a more precise result for ξð3Þcl at the matching point is
given in Eq. (62b). In the summation process, we have used
½40=40�-Padé approximations [36] in order to sum the
divergent perturbative series decorating the instanton con-
tributions of order expð−nrÞ, where n is an odd integer, and
77-order Weniger-Levin transformations [37], in order to
verify the accuracy of the result (26) in the intermediate
region near r ≈ 3.0. The matching point is chosen heuris-
tically, based on the requirement that both methods for the
calculation should work in the intermediate region between
the large-r transseries representation and the small-r power
series, which will be discussed in the following.

B. Small argument

We recall the equation fulfilled by the instanton
[see Eq. (14)]

−
∂
2

∂r2
ξð3Þcl ðrÞ −

2

r
∂

∂r
ξð3Þcl ðrÞ þ ξð3Þcl ðrÞ − ½ξð3Þcl ðrÞ�3 ¼ 0: ð27Þ

Plugging in a polynomial ansatz into Eq. (27), with

ξð3Þcl ð0Þ ¼ F ¼ 4.337 387 679 976… ð28Þ

[see also Eq. (61c)], one finds

ξð3Þcl ðrÞ ¼ F þ 1

6
ðF − F 3Þr2 þ 1

120
ðF − 4F 3 þ 3F 5Þr4

þ F − 17F 3 þ 35F 5 − 19F 7

5040
r6 þOðr8Þ: ð29Þ

Only even powers of r contribute. Using computer
algebra [29], one can easily determine all coefficients up
to order r80, and write

ξð3Þcl ðrÞ ¼
X∞
n¼0

a2nr2n: ð30Þ

A closer inspection reveals that the series of the a2n is
factorially divergent and alternating. Still, one can use
summation techniques to confirm the result (26) at the

matching point ξð3Þcl ðr ¼ 3.0Þ [see also Eq. (62b)]. In the
summation process, we have used ½62=62�-Padé approx-
imations [36] in order to sum the divergent perturbative
series at r ¼ 3, or alternatively 117-order Weniger-Levin
transformations [37]. This leads to the desired accuracy in
the intermediate region. Improvements of the numerical
accuracy are possible when one expands the instanton
about additional reference points (e.g., where r assumes the
value of a small integer) and concatenates the expansions in
regions of overlap.

IV. TWO-DIMENSIONAL INSTANTON

A. Large argument

In two dimensions, the instanton is equally radially sym-

metric (see Fig. 2), and we can write ξð2Þcl ðx⃗Þ ¼ ξð2Þcl ðrÞ. The
equation fulfilled by the instanton is

−
∂
2

∂r2
ξð2Þcl ðrÞ −

1

r
∂

∂r
ξð2Þcl ðrÞ þ ξð2Þcl ðrÞ − ½ξð2Þcl ðrÞ�3 ¼ 0: ð31Þ

Just like in the three-dimensional case (see Sec. III A), the
instanton goes exponentially to zero as r → ∞, and so one

can neglect the term ½ξð2Þcl ðrÞ�3 in a first approximation.
Then, one obtains the relation [see also Eq. (15)]

−
∂
2

∂r2
ξð2Þcl ðrÞ −

1

r
∂

∂r
ξð2Þcl ðrÞ þ ξð2Þcl ðrÞ ≈ 0: ð32Þ

FIG. 2. The two-dimensional instanton ξclðrÞ ¼ ξð2Þcl ðrÞ is

radially symmetric. Its value at the origin is ξð2Þcl ð0Þ ¼ G ¼
2.206 200 864 650…, according to Eqs. (38) and (61b).
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By a similar analysis as described for the three-dimensional case, one obtains

ξð2Þcl ðrÞ ¼ D
expð−rÞ
r1=2

�
1 −

1

8r
þ 9

128r2
−

75

1024r3
þ 3675

32768r4
−

59535

262144r5
þ 2401245

4194304r6
þOðr−7Þ

�

−D3
expð−3rÞ
8r3=2

�
1 −

9

8r
þ 213

128r2
−

3215

1024r3
þ 238563

32768r4
−

5283711

262144r5
þ 273186513

4194304r6
þOðr−7Þ

�

þD5
expð−5rÞ
64r5=2

�
1 −

53

24r
þ 589

128r2
−

96193

9216r3
þ 23551553

884736r4
−
544320827

7077888r5
þ 85429251785

339738624r6
þOðr−7Þ

�

−D7
expð−7rÞ
512r7=2

�
1 −

79

24r
þ 10037

1152r2
−

629833

27648r3
þ 55541473

884736r4
−
1326870785

7077888r5
þ 23212812833

37748736r6
þOðr−7Þ

�
: ð33Þ

Just as in the three-dimensional case, we can find a compact expression for the leading term, which for D ¼ 2 is of
order expð−rÞ= ffiffiffi

r
p

,

D
expð−rÞ
r1=2

�
1 −

1

8r
þ 9

128r2
−

75

1024r3
þ 3675

32768r4
þOðr−5Þ

�
¼ iDHð1Þ

0 ðirÞ: ð34Þ

Here,Hð1Þ
α ðrÞ is the Hankel function [38] of the first kind of

order α. However, we were unable to find general ex-
pressions for the terms in the series multiplying the
exponential factors expð−3rÞ, expð−5rÞ and expð−7rÞ.
For D ¼ 2, one finds for the D coefficient the following

60-figure result [using the same method as previously
employed for Eq. (19)]:

D ¼ 3.518 062 198 025 031 180 209 129 887 741

356 933 215 813 390 992 384 663 366 560ð1Þ: ð35Þ

Furthermore, it is clear that the perturbative coefficients in
the variable χ ¼ 1=r grow very fast, and in fact, they grow
factorially. We have calculated terms up to the contribution
of order expð−13rÞ and summed the series, starting from
large values of r, down to r ¼ 3, with the result

ξð2Þcl ðr ¼ 3.0Þ ¼ 0.097 418 218 653…; ð36Þ

where the most precise result for the value of ξð2Þcl ðr ¼ 3.0Þ
at the matching point is given in Eq. (62a). Just as in the
three-dimensional case, in the summation process, we have
used ½40=40�-Padé approximations in order to sum the
divergent perturbative series decorating the instanton con-
tributions of order expð−nrÞ, where n ≤ 13 is an odd
integer, or 77-order Weniger-Levin transformations [37], in
order to achieve the accuracy in the intermediate region.

B. Small argument

We now need to repeat the analysis from Sec. III B, for
the two-dimensional case. Plugging a polynomial ansatz
into Eq. (31),

�
−

∂
2

∂r2
−
1

r
∂

∂r
þ 1 − ξð2Þcl ðrÞ2

�
ξð2Þcl ðrÞ ¼ 0 ð37Þ

with

ξð2Þcl ð0Þ ¼ G ¼ 2.206 200 864 650…; ð38Þ

[see also Eq. (61b)], one finds

ξð2Þcl ðrÞ ¼ Gþ 1

4
ðG − G3Þr2 þ 1

64
ðG − 4G3 þ 3G5Þr4

þ G − 19G3 þ 39G5 − 21G7

2304
r6 þOðr8Þ: ð39Þ

Using computer algebra [29], one can easily determine all
coefficients up to order r80, say, and write the divergent,
asymptotic expansion

ξð2Þcl ðrÞ ¼
X∞
n¼0

a2nr2n: ð40Þ

Here, too, a closer inspection reveals that the series is
divergent, because of factorial divergence of the magnitude
of the (alternating-in-sign) power series at about r ¼ 0.
One confirms the result given in Eq. (36). In the sum-
mation process, we have used ½62=62�-Padé approxima-
tions in order to sum the divergent perturbative series at
r ¼ 3, or alternatively 117-order Weniger-Levin transfor-
mations [37]. This yields the desired accuracy in the
intermediate region.
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V. INSTANTONS AND VIRIAL THEOREMS

A. Derivation of the virial theorems

One of the goals of the current investigation is to explore
possible analytic representations of integrals of powers of
the instanton, for example, on the basis of the PSLQ
algorithm [39–42]. In this endeavor, it helps to realize that
integrals of different powers of the instanton are related to
each other, and to the instanton action. Virial theorems of
the instanton are instrumental in this regard, and we here
present their derivation.
We consider the general action

SðϕÞ ¼
Z

dDx

�
1

2

�
∇⃗ϕðx⃗Þ

�
2 þ Vðϕðx⃗ÞÞ

�
; ð41Þ

where in the case of the action (1), one has

Vðϕðx⃗ÞÞ ¼ 1

2
ϕðx⃗Þ þ 1

4
gϕ4ðx⃗Þ: ð42Þ

We assume that the field equation, obtained by variational
calculus, has a finite action solution ϕclðx⃗Þ. If the action
SðϕclÞ is finite so is the action Sðϕcl; λÞ, obtained from
SðϕclÞ ¼ Sðϕcl; λ ¼ 1Þ by the replacement ϕðx⃗Þ → ϕclðλx⃗Þ
in the integrand of the action. One finds, after a suitable
backsubstitution,

S½ϕcl; λ� ¼ λ2−D
Z

dDx

�
1

2

�
∇⃗ϕclðx⃗Þ

�
2
�

þ λ−D
Z

dDxVðϕclðx⃗ÞÞ: ð43Þ

Because ϕclðxÞ satisfies the field equation, the variation of
the action vanishes for λ ¼ 1, i.e., we have the equation
d
dλS½ϕcl; λ�jλ¼1

¼ 0,

Z
dDx0

�
D − 2

2

�
∇⃗ϕclðx⃗0Þ

�
2 þDVðϕclðx⃗0ÞÞ

�
¼ 0: ð44Þ

This relation allows us to express the kinetic term

[integral of ð∇⃗ϕclÞ2] in terms of the potential term [integral
of VðϕclÞ] and vice versa. The classical action S½ϕcl� can
thus be expressed in terms of the kinetic term only:

S½ϕcl� ¼
1

D

Z
dDx

�
∇⃗ϕclðx⃗Þ

�
2
; ð45Þ

a form that shows that SðϕclÞ is always positive. The
second derivative of Sðϕcl; λÞ reads as

d2

ðdλÞ2 S½ϕc; λ�
����
λ¼1

¼ ð2 −DÞ
Z

½∂μϕcðx⃗Þ�2dDx: ð46Þ

For D ≥ 2, this result shows that the solution is not a local
minimum of the action and, thus, the so-called longitudinal
fluctuation operator ML, defined as

MLðx⃗; x⃗0Þ ¼
δ2S

δϕðx⃗Þδϕðx⃗0Þ
����
ϕ¼ϕcl

; ð47Þ

has at least one negative eigenvalue [4,35]. A closer
inspection [4,35] reveals one, and only one, negative eigen-
value. This fact is well known and it leads, within the path
and field integral formalisms, to an imaginary part of the
square root of the Fredholm determinant of the fluctuation
operator, which corresponds to the product of the eigen-
values of ML. This imaginary part, in turn, is instrumental
in deriving the large-order estimate given in Eq. (10) for the
perturbative expansions of correlation functions [4,5,35].
In the example of potentials of special form

VðϕÞ ¼ 1

2
ϕ2 þ 1

4
gϕM; ð48Þ

one can derive an additional relation. If the action S½ϕcl� is
finite, so is the following action obtained by the replace-
ment ϕcl → Λϕcl:

S½Λϕcl� ¼ Λ2

Z
dDx

1

2

h�
∇⃗ϕclðx⃗Þ

�
2 þ ϕ2

clðx⃗Þ
i

þ 1

4
ΛMg

Z
dDxϕM

cl ðx⃗Þ: ð49Þ

Again, if ϕcl is the instanton solution, then the derivative
with respect to Λ must vanish for Λ ¼ 1. One obtains
further relations, in addition to (45),

SðϕclÞ ¼ −
g
8
ðM − 2Þ

Z
dDxϕM

cl ðx⃗Þ

¼M¼4 −
g
4

Z
dDxϕ4

clðx⃗Þ ðM ¼ 4Þ: ð50Þ

This relation is consistent with the fact that the instanton
exists only for negative g. Thus, one can express the
instanton action as follows:

SðϕclÞ ¼
M − 2

2D −MðD − 2Þ
Z

dDxϕ2
clðx⃗Þ

¼M¼4 1

4 −D

Z
dDxϕ2

clðx⃗Þ: ð51Þ

We have used Eqs. (45) and (50). In particular, Eqs. (50)
and (51) are consistent only if the denominator in the
expression on the right-hand side of Eq. (51) is positive,
which implies

M ≤
2D

D − 2
; ð52Þ
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and, therefore, the field theory must be super-renormaliz-
able or at least renormalizable. At the special dimension
D ¼ 2M=ðM − 2Þ, where the theory is renormalizable, one
finds the paradoxical result

R
dDxϕ2

clðx⃗Þ ¼ 0. This implies
that only the massless equation (where the coefficient of ϕ2

in the original action vanishes) has instanton solutions
(see also Appendix A). Finally, one verifies that the second
derivative of the scaled action (49) at Λ ¼ 1 is negative,
confirming the existence of a negative eigenvalue ofML for
all dimensions [4,5,35].

B. Summary of the virial theorems

We summarize. From Eqs. (45), (50), and (51), we have
for the ϕ4 theory with the action (1),

SðϕclÞ ¼
1

D

Z
dDx

�
∇⃗ϕclðx⃗Þ

�
2 ¼ −

g
4

Z
dDxϕ4

clðx⃗Þ

¼ 1

4 −D

Z
dDxϕ2

clðx⃗Þ: ð53Þ

With the scaling given by Eq. (4), the action of the instanton
becomes (g < 0),

ϕclðx⃗Þ ¼
ffiffiffiffiffiffiffi
−
1

g

s
ξclðrÞ; r ¼ jx⃗j; SðϕclÞ ¼ −

A
g
> 0:

ð54aÞ

We have three equivalent representations of the action A,

A ¼ 1

D

Z
dDx

�
∇⃗ξclðrÞ

�
2 ¼ 1

4

Z
dDxξ4clðrÞ

¼ 1

4 −D

Z
dDxξ2clðrÞ: ð54bÞ

We have numerically verified these relations on lattices
with decreasing lattice spacing, using the method outlined
in the discussion preceding Eq. (19). Using the radial
symmetry of the solution, we can establish that

A ¼ ΩD

D

Z
∞

0

dr rD−1½ξ0clðrÞ�2; ð55Þ

whereΩD ¼ 2πD=2=Γð1
2
DÞ is the generalized surface of the

(D − 1)-dimensional unit sphere embedded in D-dimen-
sional space.

C. Asymptotic behavior

The asymptotic behavior of the radial instanton equation

�
−
�
d
dr

�
2

−
D − 1

r
d
dr

þ 1

�
ξclðrÞ − ξ3clðrÞ ¼ 0 ð56Þ

is of interest for large r. Asymptotically, one can show that,
for r → ∞,

ξclðrÞ ¼ C

ffiffiffi
2

π

r
r1−D=2KD=2−1ðrÞ þOðe−3rÞ ð57Þ

where Kν is a modified Bessel function of the second kind
normalized such that KνðrÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2rÞp

e−r for large r. This
implies that

ξðDÞ
cl ðrÞ ∝

ffiffiffi
2

π

r
r1−D=2

ffiffiffiffiffi
π

2r

r
e−r ¼ e−r

rD=2−1=2 : ð58Þ

Our formulas (24) and (33) confirm this asymptotic
behavior.

VI. INSTANTON INTEGRALS

We give a collection of numerical results for integrals of
the instanton in quartic theories, with enhanced accuracy.
Our aim is to give, for 2D and 3D, results approaching the
realm of applicability of the PSLQ algorithm [39–42]
which is designed to search for analytic expressions of
integrals in terms of known constants. We remember that
the PSLQ algorithm requires as input data only high-
precision numerical values of the quantity under inves-
tigation, as well as a guess of the mathematical constants in
which the high-precision quantity could potentially be
expressed, and then attempts to find a linear combination
of mathematical constants, multiplied by rational fractions,
as a candidate representation for the quantity under inves-
tigation [43]. First, for completeness, in one dimension, we
recall that the instanton solution is [1]

ξclðrÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðrÞ þ 1
p ; ξðD¼1Þ

cl ðr ¼ 0Þ ¼
ffiffiffi
2

p
; ð59Þ

where the one-dimensional action is

S½ϕ� ¼ 2

Z
∞

0

dr

�
1

2
ð∂rϕðrÞÞ2 þ

1

2
ϕðrÞ2 þ g

4
ϕðrÞ4

�
: ð60Þ

The prefactor 2 reflects on the angular factor ΩD ¼
2πD=2=Γð1

2
DÞ which evaluates to 2 for D ¼ 1. The pre-

factor matters because the instanton action is normalized to
S½ϕclðrÞ� ¼ −A=g, according to Eq. (9). Analytically
known instantons in a four-dimensional ϕ4 theory and
in a six-dimensional ϕ3 theory are given in Appendixes A
and B, respectively.
We have mentioned that instanton solutions are deter-

mined by the value at the origin, given in Eqs. (28)
and (38). It is of interest to obtain results of higher accuracy
for the instanton at the origin, described by the constants F
and G, and for the instanton at the matching point. In order
to obtain more accurate values for F and G, one maps the
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differential equation (15) onto a linear numerical grid with
a lattice spacing that decreases an 1=N , where N is the
number of the iteration, while the origin is kept as the
starting point of the lattice. One then uses computer
arithmetic [29,30] with 128-decimal-digit internal preci-
sion, and extrapolates to N → ∞. In order to calculate the
instanton at the matching point r ¼ 3.0, one decreases the
lattice spacing in such a way that the matching point

remains a member of the numerical lattice in every iteration
as N is being increased. The convergence toward the exact
values of the instanton, in either instance, can be written in
terms of powers of 1=N . One can thus employ suitable
convergence acceleration techniques [31], in order to
extrapolate to zero lattice spacing, and obtain numerically
more accurate results. We obtain the following values,
accurate to 78 decimal figures:

ξðD¼1Þ
cl ðr ¼ 0Þ ¼

ffiffiffi
2

p
; ð61aÞ

ξðD¼2Þ
cl ðr ¼ 0Þ ¼ G ¼ 2.206 200 864 650 746 074 783 634 064 578 940 196 610

274 520 602 192 125 757 262 456 450 184 032 518 642ð1Þ; ð61bÞ

ξðD¼3Þ
cl ðr ¼ 0Þ ¼ F ¼ 4.337 387 679 976 994 356 522 109 173 841 761 465 745

284 082 970 785 762 761 882 558 415 947 364 399 341ð1Þ: ð61cÞ

The values at the matching point r ¼ 3 are interesting for D ¼ 2 and D ¼ 3,

ξðD¼2Þ
cl ðr ¼ 3.0Þ ¼ 0.097 418 218 653 642 217 741 513 024 960 584 546 095

157 618 276 680 772 556 932 915 093 354 850 219 044ð1Þ: ð62aÞ

ξðD¼3Þ
cl ðr ¼ 3.0Þ ¼ 0.045 013 219 071 010 523 997 989 047 723 112 322 109

014 075 244 317 789 103 014 970 206 885 072 459 490ð1Þ: ð62bÞ

Numerical results for the instanton action A are

AðD ¼ 1Þ ¼ 4=3; ð63aÞ

AðD ¼ 2Þ ¼ 5.850 448 262 279 826 939 326 986 338 934 453 868 499

064 115 959 470 267 545 644 043 014 800 957 116 007 ð1Þ: ð63bÞ

AðD ¼ 3Þ ¼ 18.897 251 302 546 190 505 297 247 993 763 227 763 807

178 891 316 289 857 028 151 589 245 449 182 127 167 ð1Þ: ð63cÞ

These results are essential for large-order perturbation theory [see Eq. (10)]. For what follows, it is convenient to introduce
the notation

In ¼
Z

dDx½ξclðrÞ�n; I2 ¼
4 −D
4

I4; I4 ¼
4

D

Z
dDx½∇⃗ξclðrÞ�2; A ¼ 1

4
I4; ð64Þ

where we recall that the (generalized) surface area of the (D − 1)-dimensional unit sphere, embedded in D dimensions, is
ΩD ¼ 2πD=2=ΓðD=2Þ. Results for I2 and I4 follow from the above results for the instanton action A. Results for I3 and I6 are
given as follows:

I3ðD ¼ 1Þ ¼
ffiffiffi
2

p
π; I6ðD ¼ 1Þ ¼ 128=15; ð65aÞ

I3ðD ¼ 2Þ ¼ 15.109 669 726 889 195 199 613 754 001 702 125 888 865

874 563 104 430 202 476 703 241 753 965 063 516 331ð1Þ: ð65bÞ
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I3ðD ¼ 3Þ ¼ 31.691 521 838 323 486 451 591 907 257 120 270 170 457

351 985 790 745 758 122 769 708 466 866 938 412 287ð1Þ: ð65cÞ

I6ðD ¼ 2Þ ¼ 71.080 171 542 041 917 440 792 898 285 323 353 751 992

546 589 483 197 579 092 397 461 668 330 495 246 091ð1Þ: ð65dÞ

I6ðD ¼ 3Þ ¼ 659.868 351 544 567 238 188 639 540 582 544 719 267 515

748 898 263 457 303 680 826 218 470 215 371 739 493ð1Þ: ð65eÞ

VII. CONCLUSIONS

We have analyzed the properties of instanton solutions in
OðNÞ-symmetric quartic field theories inD ¼ 2 andD ¼ 3
dimensions. The basic formulation for the quartic instanton
has been given in Sec. II. We concentrate on the three-
dimensional instanton (D ¼ 3) in Sec. III, which is phe-
nomenologically the most interesting case. We derive
asymptotic expansions for large argument in the form of
a transseries [Eq. (24)] and in the form of an asymptotic
power series [Eq. (29)] for small argument. The quartic
instanton in D ¼ 2 is discussed in Sec. IV. Virial theo-
rems are derived in Sec. V. Instanton integrals are given in
Sec. VI, with a precision approaching the realm of
applicability of the PSLQ algorithm [39–42] which is
designed to search for analytic expressions of integrals
in terms of known constants such as the Euler constant
γE ¼ 0.57721…, various Riemann zeta functions, powers
of π, and multiplicative combinations of these constants.
We can report that we have carried out a limited set of
searches with the same constants that were used in
Eq. (A11) of Ref. [4] without success. A more detailed
search might constituent a possible direction for the future.
In a quartic theory, the instanton solution exists only for

negative g, because the tunneling can proceed only through a
barrier, and the latter exists only negative coupling g < 0.
The imaginary part of the partition function, and of corre-
lation functions, obtained by expanding about the instanton
solution, is proportional (see Ref. [4]) to expð−ð−A=gÞÞ ¼
expðA=gÞ, where S½ϕcl� ¼ −A=g and A is given for D ¼ 2
in Eq. (63b) for D ¼ 3 in Eq. (63c). The instanton action A
universally enters large-order formulas for the perturbative
coefficients of Green functions [see Eq. (10)].
Our calculations suggest that instanton solutions in quartic

theories cannot be expressed in closed analytic form, except
for the case D ¼ 1. We also note that the general properties
of the instanton in massive theories are valid only for
dimensions D < 4. The dimension 4 is singular, as is
evident, e.g., from Eq. (53). The cases of a massless quartic
theory in four dimensions, and of a cubic theory in six
dimensions, are treated in Appendixes A and B.
Our investigations indicate that, with the exception of

known singular cases (see Appendixes A and B), instanton

configurations cannot be calculated analytically for general
field theories, notably, for the two- and three-dimensional
ϕ4 theories. Nevertheless, in view of the nonlinear nature of
the defining differential equations, they admit transseries
solutions and asymptotic expansions which can be used for
accurate numerical calculations. These results are useful in
expansions of partition and correlation functions about
instanton configurations [6].
Let us conclude by mentioning open problems, which

could inspire future research. The first of these concerns the
possibility of analytic expressions for the 78-figure results
reported here for particular function values and integrals of
the two- and three-dimensional instantons, notably, those
communicated in Eqs. (61b)–(65). As already mentioned,
we have performed a limited search based on the PSLQ
algorithm [39–42] using various Riemann zeta functions,
logarithms, and polylogarithms, without finding suitable
analytic formulas. Our inability to find fully analytic
representations is mirrored in recent, somewhat related
investigations [18]. The second open problem concerns the
search for closed-form representations of the higher-order
terms in the transseries solution (24) and (33), generalizing
the results given in Eqs. (25) and (34) to higher orders of
the exponential factor expð−rÞ.
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APPENDIX A: FOUR-DIMENSIONAL MASSLESS
QUARTIC THEORY

The existence of instantons in the renormalizable (but
not super-renormalizable) quartic theory in four dimensions
has been anticipated in Sec. VA. We consider the action
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S½ϕ� ¼
Z

d4x

�
1

2
ð∇⃗ϕÞ2 þ 1

4
gϕ4

�
: ðA1Þ

The corresponding field equation is −∇⃗2
ϕclðx⃗Þ þ

gϕ3
clðx⃗Þ ¼ 0. We know that the solution of minimal action

is spherically symmetric, thus we set

ϕclðxÞ ¼
ffiffiffiffiffiffiffi
−
1

g

s
ξclðrÞ; ðA2Þ

where r ¼ jx⃗j. We then obtain a differential equation
½ð ddrÞ2 þ 3

r
d
dr þ ξ2clðrÞ�ξclðrÞ ¼ 0. The solution is

ξclðrÞ ¼
2

ffiffiffi
2

p

1þ r2
: ðA3Þ

The instanton action is

S½ϕcl� ¼ −
A
g
; A ¼ 8π2

3
: ðA4Þ

The instanton integrals, In ¼
R
d4xξclðrÞn, for n ¼ 3, 4, 6,

are I3 ¼ 8
ffiffiffi
2

p
π2, I4 ¼ 32π2

3
, I6 ¼ 128π2

5
.

APPENDIX B: SIX-DIMENSIONAL MASSLESS
CUBIC THEORY

Another example of the existence of analytically calcu-
lable instantons is the six-dimensional massless cubic

theory [44]. We consider the action

S½ϕ� ¼
Z

d6x
�
1

2
ð∇⃗ϕÞ2 þ 1

3
gϕ3

�
: ðB1Þ

The corresponding field equation for the instanton is

−∇⃗2
ϕclðx⃗Þ þ gϕ2

clðx⃗Þ ¼ 0. We know that the solution of
minimal action is spherically symmetric, thus we set

ϕclðxÞ ¼
1

g
ξclðrÞ; ðB2Þ

where r ¼ jx⃗j and we observe that the instanton exists for
positive g. We then obtain a differential equation
½ð ddrÞ2 þ 5

r
d
dr þ ξclðrÞ�ξclðrÞ ¼ 0. The solution is

ξclðrÞ ¼ −
24

ð1þ r2Þ2 : ðB3Þ

The instanton action is

S½ϕcl� ¼
A
g2

; A ¼ 192π3

5
: ðB4Þ

The instanton integrals, In ¼
R
d4xξclðrÞn, for n ¼ 3, 4, 6,

are I3 ¼ − 1152π3

5
, I4 ¼ 55296π3

35
, I6 ¼ 10616832π3

55
.
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