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IDENTIFICATION IN THE RANDOM UTILITY MODEL

CHRISTOPHER TURANSICK

Abstract. The random utility model is known to be unidentified, but there are

times when the model admits a unique representation. We offer two characterizations

for the existence of a unique random utility representation. Our first characteriza-

tion puts conditions on a graphical representation of the data set. Non-uniqueness

arises when multiple inflows can be assigned to multiple outflows on this graph. Our

second characterization provides a direct test for uniqueness given a random utility

representation. We also show that the support of a random utility representation is

identified if and only if the representation itself is identified.
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1. Introduction

The fundamental goal of revealed preference theory is recovering an agent’s prefer-

ence from choice data. When faced with rational agents, revealed preference theorists

have shown that recovery can be achieved. However, agents are not rational as choices

are stochastic. The natural relaxation of the standard rationality assumption is to

stochastic rationality; agents are rational conditional on a varying unobserved state.

This type of rationality is modeled by the random utility model of Block and Marschak

(1959). Instead of a single preference, agents possess a distribution over preferences.

The goal now is to recover a distribution over preferences instead of just a single

preference. Unfortunately, there has been less success in recovering a distribution of

preferences.

While the random utility model is identified when there are three or fewer alternatives

(Block and Marschak, 1959), for larger environments, the random utility model is in

general not identified (Barberá and Pattanaik, 1986; Fishburn, 1998).1 The heart of

the identification problem is as follows. We can recover the probability that w is

preferred to x and the probability that y is preferred to z, but we cannot necessarily

recover the probability that both w is preferred to x and y is preferred to z (Strzalecki,

2017). Notably, not even the support of the rationalizing distribution is guaranteed

to be identified. This means that analysts are unable to even recover the types of

preferences in a population. There are distributions with disjoint supports that induce

the same set of choice probabilities (Fishburn, 1998).

This uniqueness problem gives rise to both empirical and theoretical concerns. From

a theoretical perspective, identification of a model allows theorists to map the param-

eters of their models to behavioral outcomes. One of the main goals of choice theory

is to provide simplified approximations of reality in an attempt to explain observed

choice behavior. Identification of a model allows us to do exactly this. From an empir-

ical perspective, identification of a choice model allows social planners and mechanism

1Falmagne (1978), Barberá and Pattanaik (1986), and Gibbard (2021) tell us that the random utility
model is identified up to the probability weights on contour sets.
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designers to perform proper counterfactual analysis. Identification guarantees that

counterfactual analysis will be accurate up to the choice of model. When choice be-

havior has multiple representations, counterfactuals may take on different values for

each one of these representations. This is especially important when we are considering

counterfactuals and policy questions that rely on more than just choice frequencies.

To accommodate the random utility model’s lack of identification, we ask a new

type of question. We ask which rationalizable data sets can be uniquely represented

by the random utility model. This differs from the standard approach in the literature

which puts further assumptions on the random utility model to ensure that every

rationalizable data set is uniquely represented. We take our approach primarily for

two reasons. Our first reason is to avoid the restrictive behavioral implications of

identifying assumptions. As an example, consider the Luce model and its variants.

In practice, these are the most commonly used random utility models. Identification

of these models comes at the cost of behavioral implications that are not observed

in practice and ex ante unreasonable counterfactuals.2 Our second reason for this

approach is to give insight in to how non-uniqueness arises. As part of our analysis,

we pin down the exact graphical structure of non-uniqueness in the random utility

model. We believe this will aid researchers in developing new identified random utility

models.3

In order to pin down the graphical structure of non-uniqueness, we use the graph-

ical construction of Fiorini (2004) to take a look at the counterexample of Fishburn

(1998). Our first result generalizes the structure of this example and characterizes

which data sets have a unique random utility representation. Non-uniqueness arises

when multiple inflows can be assigned to multiple outflows. It is the fact that the

random utility model does not pin down the assignment of inflows to outflows that

2Behavioral and counterfactual shortcomings of the Luce class of models are well documented. To
name a few, we have the red bus/blue bus problem (Debreu, 1960), overestimation of demand for goods
with high prices (Bajari and Benkard, 2001), misleading cross elasticities (Ackerberg and Rysman,
2005), and demand being discontinuous in characteristics (Lu and Saito, 2021).
3Notably, Fishburn (1998) develops an example that shows one way that non-uniqueness arises. We
show that, in essence, this is the only way that non-uniqueness arises.
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causes non-uniqueness. Any identified random utility model will either preclude the

event where this assignment problem arises or pin down the assignment of inflows to

outflows.

Our second result characterizes which distributions over preferences are observa-

tionally unique. To do this, we translate the conditions used in our first result into

conditions about the contour sets of preferences in the support of the distribution. A

distribution will be observationally equivalent to some other distribution if there are

two preferences in the support that satisfy the following. The two preferences must

share some common upper and associated lower contour set and the ordering within

these two contour sets differ between the preferences. For larger choice environments,

this result means that a unique representation and a full support representation are

mutually exclusive.4

The last of our three results characterizes when the support of a random utility

representation is uniquely identified. With complete data, every random utility rep-

resentation has the same support if and only if the random utility representation is

unique. In other words, when we have complete data, pinning down the support of a

representation is just as hard as pinning down the representation itself.

The rest of this paper is organized as follows. We close this section with a review of

related literature. Section 2 reviews the random utility model and the counterexample

to uniqueness of Fishburn (1998). In Section 3, we introduce and discuss our main

results. We conclude in Section 4.

1.1. Related Literature. Our paper builds on the literature that studies the empir-

ical content of the random utility model of Block and Marschak (1959). Falmagne

(1978), Barberá and Pattanaik (1986), McFadden and Richter (1990), and Fiorini

(2004) offer characterizations and discussions of the random utility model. More closely

4This observation was first noted in McClellon (2015). The result of McClellon (2015) speaks to data
sets that are generated by full support distributions. Our result does not require knowledge of the
generating process. We only need knowledge of observables.
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related to our work, there is a strand of literature that studies the uniqueness proper-

ties of the random utility model. Fishburn (1998) offers an example which shows that

the random utility model is not identified. McClellon (2015) uses and extends this

example to show that the problem of non-uniqueness is widespread for larger choice

environments. Dardanoni et al. (2020) and Gibbard (2021) study random utility when

agents have limited cognitive ability. Dardanoni et al. (2020) study identification of

both the underlying preferences as well as the cognitive parameters of the decision mak-

ers using a stronger type of data, mixture choice data. Gibbard (2021) studies which

uniqueness properties of the random utility model remain when agents have limited

attention. Our paper lies in the intersection of these two strands of literature. We offer

a characterization of when the random utility model admits a unique representation.

Our paper is also related to the literature which extends the random utility model

in order to recover uniqueness. Gul and Pesendorfer (2006) extend the random utility

model to choice over lotteries. They show that restricting the set of preferences to

expected utility preferences recovers uniqueness. Lin (2020) studies this uniqueness

result by considering to what extent the axioms of expected utility can be relaxed

while maintaining uniqueness. Lin shows that the relaxation of the independence

axiom to the betweenness axiom (Dekel, 1986) causes uniqueness to be lost. Yang

(2021) considers randomization over quasi-linear preferences and choice over price-

indexed bundles. The restriction to quasi-linear preferences leads to identification of

the model. These papers recover uniqueness by restricting the set of preferences allowed

by the model.

More recently, there is a strand of literature which recovers uniqueness by putting as-

sumptions on the support of a random utility representation. Apesteguia et al. (2017)

are the first to do this. They extend the random utility model by asking that the

support of the representation satisfy the single-crossing property with respect to an

exogenous order. Filiz-Ozbay and Masatlioglu (2020) extend this result by considering

randomization over choice functions while maintaining the single-crossing assumption.

Honda (2021) takes a different approach. Instead of assuming single-crossing, Honda

assumes a random cravings condition. The random cravings condition supposes that
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there is some underlying true preference and that every preference in the support of

a representation only differs from this true preference by the ranking of a single al-

ternative. Unlike the prior collection of papers, the models of these papers allow any

preference to be in the support of some representation. These papers simply restrict

which preferences can concurrently be in the support of a single representation.

2. The Random Utility Model and Fishburn

To begin, we review the random utility model (RUM). Let X be a finite set of

alternatives. Let Π be the set of linear orders over X .5 We use π to denote an element

of Π. We use the notation π(A) > π(B) to denote that every element of A is ranked

higher than every element of B according to π. This implies no further restrictions on

how π ranks elements of A against other elements of A. The same is true for elements

of B. When A = {x}, we use the notation π(x). Further, we call ∆(Π) the set of

probability distributions over Π. We say that an agent makes decisions according to

RUM if they are endowed with a ν ∈ ∆(Π) and, whenever they make a decision, they

draw a linear order according to this ν and then choose the maximal element according

to the drawn linear order.

We consider stochastic choice data for each non-empty subset of X . To formalize

this, the data we consider is called a system of choice probabilities. A pair (X,P )

is a system of choice probabilities if for all non-empty subsets A of X , PA(·) defines

a probability distribution over the elements of A. A system of choice probabilities

captures the choice probability of each element x of each non-empty subset A of X .

We now define what it means for data to be rationalizable by RUM.

Definition. We say that a system of choice probabilities is rationalizable if there exists

some ν ∈ ∆(Π) such that for all non-empty A ⊆ X and all x ∈ A we have

PA(x) =
∑

π∈Π

ν(π)1{π(x) > π(A \ {x})}.

5A linear order is an antisymmetric, transitive, and complete binary relation.
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Falmagne (1978) was the first to characterize rationalizability for RUM. The char-

acterization relies on the Block-Marschak polynomials, henceforth BM-polynomials,

which were first introduced by Block and Marschak (1959). We state the definition of

the BM-polynomials here.

Definition. For a non-empty set A ⊆ X and an element x ∈ A, the BM-polynomial

for x in A is given by

q(x,A) = PA(x)−
∑

A(A′

q(x,A′)

=
∑

A⊆A′

(−1)|A
′\A|PA′(x).

To interpret the BM-polynomials, we turn to a result of Falmagne (1978). Let Mx,A

be the set of linear orders on X that rank x exactly at the top of A.

Mx,A = {π|π(X \ A) > π(x) > π(A \ {x})}

Falmagne (1978) shows that a distribution ν rationalizes a system of choice probabili-

ties if and only if q(x,A) = ν(Mx,A) for all all such x ∈ A ⊆ X . This is also the classic

uniqueness result for RUM. Any two representations of a system of choice probabili-

ties must put the same probability weight on each contour set. The characterization

of RUM by Falmagne (1978) states that all BM-polynomials must be non-negative.

We are interested in characterizing when the rationalizing probability distribution is

unique.

Our characterization combines the graphical representation of RUM presented in

Fiorini (2004) with the intuition of the counterexample to uniqueness presented in

Fishburn (1998). We begin with the graphical construction due to Fiorini (2004).

Consider a graph with nodes indexed by the elements of 2X , the power set of X . We

will use the set indexing a node to refer to that node. There exists an edge between

two nodes A and B if one of the following is true.

(1) A ⊆ B and |B \ A| = 1
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∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

q(b,{
a
,b,c}

)

q(a, {a, b, c})q(
c,
{a
, b
, c
})

q(b,{
a
,b}

)

q(a, {a, b}) q(
c,
{a
, c
})

q(a, {a, c}) q(
c,
{b
, c
}) q(b,{

b,c}
)

q(a, {a})

q(b,{
b}
)

q(
c,
{c
})

Figure 1. The probability flow diagram for the set X = {a, b, c}.

(2) B ⊆ A and |A \B| = 1

In other words, the edge set of this graph is formed by applying the covering relation of

⊆ to X . Now we assign weights to these edges. Assign q(x,A) to the edge connecting

A and A \ {x}. Fiorini (2004) does not give a name to this graph, but we will refer

to it as the probability flow diagram. Figure 1 gives an example of the probability

flow diagram for the set X = {a, b, c}.

We now revisit the counterexample of Fishburn (1998) and explore the probability

flow diagram of the counterexample.

Example 1 (Fishburn’s Counterexample). Let X = {a, b, c, d}. Consider the following

probability distributions over linear orders on X.

ν1(π) =







1

2
if π ∈ {a ≻ b ≻ c ≻ d, b ≻ a ≻ d ≻ c}

0 otherwise

ν2(π) =







1

2
if π ∈ {a ≻ b ≻ d ≻ c, b ≻ a ≻ c ≻ d}

0 otherwise
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∅

{c} {d}

{c, d}

{b, c, d} {a, c, d}

{a, b, c, d}

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure 2. The reduced probability flow diagram for the Fishburn coun-
terexample.

These two probability distributions induce the same system of choice probabilities.

This is the counterexample which Fishburn (1998) uses to show that RUM is not

identified. Figure 2 shows the reduced probability flow diagram of this example.6 In

the example above, as both probability distributions induce the same system of choice

probabilities, they have the same probability flow diagram. The key feature of this

example is found at the node {c, d}. Note that there are two edges with strictly

positive weight that go into {c, d} and two edges with strictly positive weight that

leave {c, d}. It turns out that this two-in and two-out structure exactly characterizes

non-uniqueness in RUM. We generalize this two-in and two-out structure in the next

section.

6By reduced probability flow diagram we mean that we take the probability flow diagram and remove
each edge with zero weight and each node whose connected edges all have zero weight.
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3. Characterizing Uniqueness

In this section, we present two characterizations which tell us when a RUM repre-

sentation is unique. The first characterization tests choice data while the second tests

the representation itself. Using these results, we then characterize when the support

of a rationalizing distribution is unique. We now introduce the terminology needed to

state our characterizations.

Definition. We call a path ρ a finite sequence of sets {Ai}
|X|
i=0 such that Ai+1 ( Ai for

all i, A0 = X , and A|X| = ∅.

Fiorini (2004) notes that there is a bijection between paths on the probability flow

diagram and the set of linear orders of X . The bijection pairs the path {X,X \

{x1}, X \{x1, x2}, . . . ,∅} with the order that ranks x1 ≻ x2 ≻ . . . . When we construct

a representation, the probability weight associated with order π is derived as follows.

We decompose the probability flow diagram into paths flows. We then assign the path

flow of the path corresponding to π as the probability weight put on π. We will be

using the prior bijection and the associated edge weights to study which orders can

receive a strictly positive weight in a representation. This idea is captured graphically

by the following definition.

Definition. For a system of choice probabilities (X,P ) and its corresponding prob-

ability flow diagram, we call a path supported if for all i ∈ {0, . . . , |X| − 1},

q(Ai \ Ai+1, Ai) > 0.

There exists a representation which puts strictly positive weight on a linear order π if

and only if the path associated with π is supported.7 Due to this, if a system of choice

probabilities has multiple representations, it must be that the differing probability

weights are restricted to orders which have supported paths. As we mentioned prior,

7To see this, note that if the algorithm used in the proof of Theorem 1 begins by subtracting out the
considered supported path, then that linear order π is in the support of the representation. Further,
any order which has a path which is not supported must necessarily receive zero probability weight
in a representation.
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the characterization for uniqueness relies on the idea of two-in and two-out. The

definition of branching formalizes this idea.

Definition. We call two paths ρ and ρ′ branching if there exists some i ≤ j with

i, j ∈ {1, . . . , |X| − 1} such that Aρ
i−1 6= A

ρ′

i−1, A
ρ
j+1 6= A

ρ′

j+1, and for all m ∈ {i, . . . , j},

Aρ
m = Aρ′

m.

Unlike in the counterexample of Fishburn (1998), the definition of branching does

not require the two-in and two-out to happen at the same node. The definition of

branching allows for two paths to go into the same node, share a few common edges,

and then split. We now have all the terminology we need to state our first theorem.

Theorem 1. Suppose that a system of choice probabilities (X,P ) is rationalizable.

The rationalizing ν is unique if and only if the probability flow diagram has no pairs of

supported branching paths.

We leave all proofs to the appendix. However, we discuss the intuition of the proof

here. To see the logic for necessity, first consider a node that satisfies two-in and

two-out. Call the two-in edges a and b respectively. Call the two-out edges c and d

respectively. We can construct two disjoint sets of paths that induce this two-in and

two-out property. Consider the pair of paths {(a, c), (b, d)}. These two paths satisfy

two-in and two-out at the considered node. Similarly, the pair of paths {(a, d), (b, c)}

satisfy two-in and two-out along the same edges as the first pair of paths. This shows

that two supported branching paths imply non-uniqueness.

To see the logic for sufficiency, we first note that if no pair of supported paths satisfy

two-in and two-out, then every supported path that satisfies two-out with some other

supported path must do so above any node at which they satisfy two-in. Similarly, any

supported path that satisfies two-in with some other supported path must do so below

any node at which they satisfy two-out. These two facts mean that for every supported

path there exists some edge such that any two-in happens below that edge and every

two-out happens above that edge. The weight along this edge uniquely identifies the

probability weight put on the order associated with this path.
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Note that Theorem 1 subsumes some known results. Block and Marschak (1959)

tells us that, when |X| ≤ 3, any representation is unique. We note that branching

paths are not found unless |X| ≥ 4.8 As an immediate corollary of Theorem 1, we are

able to show that, when |X| ≤ 3, any representation of a system of choice probabilities

is unique.

McClellon (2015) shows that when |X| ≥ 4, the issue of non-uniqueness is wide-

spread. The result notes that if a system of choice probabilities is induced by a full

support distribution, then there is a different distribution which induces the same sys-

tem of choice probabilities. If a system of choice probabilities is induced by a full

support distribution, then every path is supported. Since there are branching paths

when |X| ≥ 4, it follows immediately that any representation is not unique. This result

can be extended to say that if every BM-polynomial of a system of choice probabilities

is strictly positive, then the representation is not unique.

This result has an interesting implication for the Luce and logit class of models.

Since Luce choice probabilities can be represented by the logit model and the logit

model induces a full support over preferences, for |X| ≥ 4, any random utility rep-

resentation of any system of choice probabilities consistent with Luce is not unique.

This observation extends to other statistical discrete choice models with full support

including the generalized extreme values model (see McFadden (1977) and Dagsvik

(1995)).

We now move onto our second characterization. Intuitively, this characterization

takes the structure of branching paths and restates that structure in terms of prop-

erties of the contour sets of the associated orders. Checking that the support of a

representation satisfies these properties amounts to a finite test. Before moving for-

ward, we state the definition of upper contour set.

8To see this, observe the following. A pair of branching paths share the node X , have differing nodes
somewhere below X , have a common node below their differing nodes, have another differing node
below their common node, and then share the node ∅. This requires having five nodes which can only
happen when |X | ≥ 4.



IDENTIFICATION IN THE RANDOM UTILITY MODEL 13

Definition. The weak upper contour set of some x ∈ X according to π ∈ Π is the set

of all elements y ∈ X such that π(y) ≥ π(x). We write

Uπ(x) = {y|π(y) ≥ π(x)}

to denote the weak upper contour set of x according to π.

With this definition, we are now able to state our second characterization.

Theorem 2. Suppose that a system of choice probabilities (X,P ) is rationalizable. The

rationalizing ν is unique if and only if there are no pairs of orders π and π′ satisfying

the following.

(1) ν(π) > 0 and ν(π′) > 0

(2) There exists x, y, z ∈ X such that

(a) π({x, y}) > π(z) and π′({x, y}) > π′(z)

(b) x 6= y

(c) Uπ(z) 6= Uπ′(z)

(d) Uπ(x) = Uπ′(y)

Intuitively, the first condition of Theorem 2 captures the definition of a supported

path and the second condition captures the definition of a pair of branching paths.

Our proof consists of showing that the existence of a pair of supported branching

paths is equivalent to the two conditions of Theorem 2. Necessity follows primarily

from definitions. The logic for sufficiency is as follows. We first suppose that the

representation is not unique. Then, by Theorem 1, there must be a pair of supported

branching paths. We show that no matter how one allocates the weight from these

supported branching paths, there will always be two orders which violate the conditions

of Theorem 2. Now, consider the following definition.

Definition. Let Sν = {π|ν(π) > 0} be the set of linear orders with strictly positive

weight under representation ν. Then we call Sν the support of ν.

Suppose we are in the case where there is non-uniqueness. Theorem 2 tells us that

there are two linear orders in the support of our representation that have different
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rankings of x and y, rank both above z, and differ in their ranking of z. This means

that there is some fourth element w such that w is ranked below x and y in both

orders and is ranked differently compared to z in both rankings. If we restrict to the

choice problem of X = {w, x, y, z}, this is exactly the example of Fishburn (1998)

with potentially differing probability weights. A consequence of this observation is

that if the system of choice probabilities (X,P ) is not uniquely represented, then there

exists some subset of X of size four, call it Y ⊆ X , such that (Y, P ) is not uniquely

represented. In other words, if an analyst wants to check for uniqueness, it is sufficient

to check for uniqueness of each system of choice probabilities induced by sets of size

four. This further means that, subject to finding a representation, if we observe choices

only from sets of size four and smaller and we have a unique representation, we can

recover the choice probabilities of sets larger than size four. This is not true in the

general case where observing choices from larger choice sets further restricts the set of

potential representations.

Another interesting consequence of Theorem 2 is that uniqueness is a property of

the support of a rationalizing distribution. This means that if a distribution over pref-

erences is the unique representation for some system of choice probabilities, then any

distribution with the same support is also the unique representation for its system of

choice probabilities. The opposite is also true. If a distribution over preferences is

observationally equivalent to some other distribution over preferences, then any distri-

bution over preferences with the same support is observationally equivalent to some

other distribution over preferences. It turns out that uniqueness of a representation is

equivalent to the support of a representation being identified.

Theorem 3. Suppose that a system of choice probabilities (X,P ) is rationalizable.

Each rationalizing distribution has the same support if and only if (X,P ) is uniquely

rationalizable.

Obviously, if the support is not identified then the rationalizing distribution will not

be identified. The intuition for the other direction of the proof is much the same as

the intuition for Theorem 1. If the rationalizing distribution is not identified, then
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the probability flow diagram will have the two-in and two-out structure. Just as be-

fore, this means we can decompose the two-in and two-out structure into two disjoint

sets of paths. These two disjoint sets then represent two disjoint sets of preferences

which induce the two-in and two-out structure. This shows that non-uniqueness of the

distribution of preferences implies non-uniqueness of the support of preferences.

4. Discussion

In this paper, we provide two characterizations for when a random utility repre-

sentation is unique. Theorem 1 provides conditions on the BM-polynomials which

characterize the graphical structure of non-uniqueness. As BM-polynomials are rarely

used in empirical settings, we think of Theorem 1 as a theoretical tool for develop-

ing other identified random utility models. Theorem 2 gives conditions which tell us

when a representation is observationally equivalent to some other representation. We

view Theorem 2 as being a potential empirical tool. Once a representation is found

using standard methods (see Kitamura and Stoye (2018) and Smeulders et al. (2021)),

Theorem 2 can be applied to check for uniqueness.

As an application of our results, we now consider the single-crossing random utility

model (SCRUM) of Apesteguia et al. (2017). SCRUM puts an additional restriction

on the underlying structure of X in that X is endowed with some exogenous linear

order ⊲. We say a system of choice probabilities is rationalizable by SCRUM if there

exists some RUM representation of the system, ν, such that the support of ν can be

ordered so that it satisfies the single-crossing property with respect to ⊲. Recall that

the single-crossing property is as follows.

Definition. We say that a representation ν satisfies the single-crossing property if the

support of ν can be ordered in such a way that for all x ⊲ y, πi(x) > πi(y) implies

πj(x) > πj(y) for all j ≥ i.

Apesteguia et al. (2017) show that a SCRUM representation is unique. We now

return to the counterexample of Fishburn (1998).
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Example 2 (Fishburn and SCRUM). Let X = {a, b, c, d}. Consider the system of

choice probabilities induced by the following two distributions over linear orders.

ν1(π) =







1

2
if π ∈ {a ≻ b ≻ c ≻ d, b ≻ a ≻ d ≻ c}

0 otherwise

ν2(π) =







1

2
if π ∈ {a ≻ b ≻ d ≻ c, b ≻ a ≻ c ≻ d}

0 otherwise

Suppose the exogenous order on X is a⊲b⊲c⊲d. Then the system of choice probabilities

is SCRUM rationalized by ν1. Now suppose that the exogenous order on X is a⊲b⊲d⊲c.

Then the system of choice probabilities is SCRUM rationalized by ν2.

Recall that when a system of choice probabilities has multiple representations, it

essentially embeds the example of Fishburn (1998) in some subset of size four. As

we see in the above example, the SCRUM representation of the Fishburn example is

pinned down by the exogenous order ⊲. This follows from the fact that if ν1 satisfies

the single-crossing property with respect to ⊲ it must be the case that ν2 does not.

Uniqueness in SCRUM now follows from extensions of this logic.

We see three potential extensions of our work. In this paper, we have maintained

the assumption that we observe choice on every non-empty subset of X . In empirical

settings, this is often unreasonable. One natural extension of our work is to consider

the same question but with choice on a limited domain. A potential second extension

is to generalize our results to infinite choice domains. This extension would provide

insight for model builders who consider choices over lotteries (Gul and Pesendorfer,

2006), dynamic choice (Frick et al., 2019), or choice over price-indexed bundles (Yang,

2021).

The third potential extension we consider utilizes the algorithmic nature of our ap-

proach. Instead of asking when we have a unique representation, one may be interested

in recovering the set of representations for a given system of choice probabilities. As the

set of representations for a given system of choice probabilities is convex, this amounts
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to finding the extreme points of the set of representations. In our construction of a

representation, we consider a specific order in which we decompose the probability

flow diagram into path flows (and thus assign probability weights to the corresponding

order). However, one could exogenously vary the order in which path flows are sub-

tracted from the probability flow diagram. Consider the following description of an

algorithm.

(1) Choose some yet unchosen order over paths.

(2) Decompose the probability flow diagram into path flows according to the chosen

order. Assign the smallest remaining edge capacity of the considered path as

the path flow of that path. (See the proof of Theorem 1.)

(3) Repeat the prior steps until every order over paths has been exhausted.

This algorithm will return a collection of representations, each of which is an extreme

point of the set of representations.9 It is an open question whether this algorithm

returns every extreme point of the set of representations.

At the end of the day, identified models are appealing as they allow for proper

counterfactual analysis and clean interpretation of parameters. Our main insight tells

us when we can treat the random utility model as if it were identified. This insight

offers aid in the future construction of identified random utility models.

Appendix A. Omitted Proofs

Definition. We call two paths ρ and ρ′ in-branching if there exists some i ∈

{1, . . . , |X| − 1} such that Aρ
i = A

ρ′

i and A
ρ
i−1 6= A

ρ′

i−1

Definition. We call two paths ρ and ρ′ out-branching if there exists some i ∈

{1, . . . , |X| − 1} such that Aρ
i = A

ρ′

i and A
ρ
i+1 6= A

ρ′

i+1

Definition. We call a collection of sets, {Ai, . . . , Aj}, a branching section of paths ρ

and ρ′ if Aρ
i−1 6= A

ρ′

i−1, A
ρ
j+1 6= A

ρ′

j+1, and for all m ∈ {i, . . . , j}, Aρ
m = Aρ′

m.

9To see this, note that every distribution found by this algorithm can be matched with an order/rank-
ing over linear orders. The representation associated with a specific ranking over linear orders places
the most probability weight possible on a given linear order conditional on higher ranked linear orders
getting the most probability weight possible with further iterative conditioning.
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A.1. Proof of Theorem 1. We begin by showing necessity. We proceed by contra-
position. Suppose there are two supported paths, ρ and ρ′, that are branching. This
means that these two paths share some set of common nodes {An, . . . , Am} such that

A
ρ
n−1 6= A

ρ′

n−1 and A
ρ
m+1 6= A

ρ′

m+1. Consider the following two paths, respectively ρ′′

and ρ′′′, (Aρ
0, . . . , A

ρ
m, A

ρ′

m+1, . . . , A
ρ′

|X|) and (Aρ′

0 , . . . , A
ρ′

m, A
ρ
m+1, . . . , A

ρ

|X|). Note that the

node set and the edge set of ρ∪ρ′ are the same as the node set and edge set of ρ′′∪ρ′′′.
Let r be the minimum flow along the edge set of ρ ∪ ρ′. Without loss, let r be the
flow of an edge that belongs to the edge set of ρ and ρ′′. We will now construct two
different representations. We construct ν1 as follows.

(1) Let ν1(πρ) = r.
(2) For all q(·, ·) on the edge set of ρ, let q0(·, ·) = q(·, ·)− r. For all q(·, ·) not on

the edge set of ρ, let q0(·, ·) = q(·, ·).
(3) Initialize at i = 0.
(4) Let s be the smallest strictly positive qi(·, ·). Choose some edge which has flow

equal to s. Since inflow equals outflow (see explanation below the algorithms),
this edge is a part of some path from X to ∅ with all edges along the path
having strictly positive flow. Fix this path and call it γ.

(5) Let πi denote the linear order that is bijectively associated with γ. Set ν1(πi) =
s.

(6) For all edges along path γ, let qi+1(·, ·) = qi(·, ·) − s. For all edges not along
path γ, let qi+1(·, ·) = qi(·, ·).

(7) If there is strictly positive flow anywhere along the graph, return to step 4. If
not, terminate the algorithm.

We construct ν2 as follows.

(1) Let ν2(πρ′′) = r.
(2) For all q(·, ·) on the edge set of ρ′′, let q0(·, ·) = q(·, ·)− r. For all q(·, ·) not on

the edge set of ρ′′, let q0(·, ·) = q(·, ·).
(3) Initialize at i = 0.
(4) Let s be the smallest strictly positive qi(·, ·). Choose some edge which has flow

equal to s. Since inflow equals outflow, this edge is a part of some path from X

to ∅ with all edges along the path having strictly positive flow. Fix this path
and call it γ.

(5) Let πi denote the linear order that is bijectively associated with γ. Set ν2(πi) =
s.

(6) For all edges along path γ, let qi+1(·, ·) = qi(·, ·) − s. For all edges not along
path γ, let qi+1(·, ·) = qi(·, ·).

(7) If there is strictly positive flow anywhere along the graph, return to step 4. If
not, terminate the algorithm.
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Note that we know from Fiorini (2004) and Falmagne (1978) that we have inflow equals
outflow on this graph at the start of each of these algorithms. Since each iteration of
the algorithm subtracts out a fixed amount from each edge of a given path, we have
inflow equals outflow at each stage of this algorithm. This means that this algorithm
terminates with zero flow along the graph. To see this, suppose not. Then there is
positive flow somewhere along the graph at termination. Since we have inflow equals
outflow, we can follow this positive flow all the way to the nodes X and ∅. This then
shows that there is some path with strictly positive flow, thus contradicting termination
of our algorithm. Further, this algorithm assigns q(x,A) to orders that rank x exactly
at the top of A. Thus, we know from Falmagne (1978) that ν1 and ν2 rationalize the
system of choice probabilities. Now note that since there is an edge that is shared
between ρ and ρ′′ which has flow equal to r, ν1 puts zero weight on πρ′′ while ν2 puts
weight equal to r on πρ′′ . Thus these two representations are different, meaning that
there is not a unique representation. By contraposition, we have proven necessity.

Now we prove sufficiency. Suppose no two supported paths are branching.

Claim 1. Let ρ and ρ′ be supported out-branching paths. Let i ∈ {1, . . . , |X| − 1} be

such that A
ρ
i = A

ρ′

i and A
ρ
i+1 6= A

ρ′

i+1. Then for all j ≤ i, no supported path may be

in-branching at Aj for either ρ or ρ′.

Proof. Suppose not. Then, without loss of generality, there exists some supported path

ρ′′ such that ρ′′ and ρ are in-branching and there exists j ≤ i such that Aρ
j = A

ρ′′

j and

A
ρ
j−1 6= A

ρ′′

j−1. Construct supported path ρ′′′ as follows.

ρ′′′ = (Aρ′′

0 , . . . , A
ρ′′

j , A
ρ
j+1, . . . , A

ρ
i , A

ρ′

i+1, . . . , A
ρ′

|X|)

By construction, ρ and ρ′′′ are supported paths which are branching. This is a contra-
diction. Thus our claim is proven. �

Claim 2. Let ρ and ρ′ be supported in-branching paths. Let i ∈ {1, . . . , |X| − 1} be

such that A
ρ
i = A

ρ′

i and A
ρ
i−1 6= A

ρ′

i−1. Then for all j ≥ i, no supported path may be

out-branching at Aj for either ρ or ρ′.

Proof. The logic is identical to the proof of Claim 1. �

Together, Claim 1 and Claim 2 state that for every supported path ρ there exists
some i ∈ {1, . . . , |X| − 1}, such that Ai is in ρ, with all supported out-branching paths
doing so at or above Ai and with all supported in-branching paths doing so strictly
below Ai. This means that the edge associated with q(Ai \ Ai+1, Ai) belongs to no
supported path other than ρ. We know from Falmagne (1978) that any rationalizing
ν must put probability weight on the set of orders ranking Ai \ Ai+1 exactly at the
top of Ai equal to q(Ai \Ai+1, Ai). Since ρ is the unique supported path that contains
q(Ai \ Ai+1, Ai), it must be the case that the order π associated with ρ must have
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ν(π) = q(Ai \ Ai+1, Ai). This can be said about all such orders. Thus no pair of
supported paths being branching implies that the rationalizing representation must be
unique. Thus we have proven our theorem.

A.2. Proof of Theorem 2. We begin by proving necessity of the conditions on ν. We
proceed by contraposition. Let ν put strictly positive probability weight on two orders
π and π′ satisfying condition 2 of the theorem. This means that there exist x, y ∈ X

such that x 6= y and Uπ(x) = Uπ′(y). Let A1 denote a node in the path corresponding
to π. Similarly, let A2 denote a node in the path corresponding to π′. Since x 6= y

and Uπ(x) = Uπ′(y), there exists some k < l such that A1
k 6= A2

k (since y 6∈ Uπ′(x) and
x 6∈ Uπ(y)) and A1

l = A2
l . This means we can find k < i ≤ l such that A1

i = A2
i and

A1
i−1 6= A2

i−1. By Uπ(z) 6= Uπ′(z), it must be that A1
z 6= A2

z. This implies there is some
node after Ai at which ρ and ρ′ out-branch. Call the first node that does this Aj . Thus
A1

i−1 6= A2
i−1, A

1
j+1 6= A2

j+1, and for all m ∈ {i, . . . , j}, A1
m = A2

m. This means that ρ
and ρ′ are a pair of supported branching paths. Thus ν is not unique by Theorem 1,
and by contraposition the conditions on ν are necessary.

We now show the sufficiency of the conditions on ν. We proceed by contraposition.
Suppose that ν is not unique. Then, by Theorem 1, there is a pair of supported
branching paths on the probability flow diagram of (X,P ). Recall the definition of
branching path. With this definition in mind, we call the length of a branching section
j − i. Let l be the minimum length of all branching sections of all pairs of supported
branching paths. Note that l is well defined because X is finite. Choose a pair of
supported paths ρ and ρ′ such that ρ and ρ′ have a branching section of length l. Let
{Ai, . . . , Aj} be that branching section. Because l is the minimal length of supported
branching sections, there is no k ∈ {i+1, j−1} such that {Ai, . . . , Ak} or {Ak, . . . , Aj}
are supported branching sections. We know from Fiorini (2004) and Falmagne (1978)
that the probability flow diagram satisfies inflow equals outflow. Since there is no
supported out-branching path in {Ai, . . . , Aj−1}, it must be the case that inflow into
Ai equals outflow from Aj .

Let Mx,A be the set of linear orders on X that rank x exactly at the top of A.

Mx,A = {π|π(X \ A) > π(x) > π(A \ x)}

We know from Falmagne (1978) that q(x,A) = ν(Mx,a) for all rationalizing ν. Since ρ

and ρ′ are supported, the total outflow from Aj is strictly greater than the inflow into
Ai from the edge belonging to ρ. This means that ν cannot assign weight onto orders
in MA

ρ

i−1
\Ai,A

ρ

i−1

equal to the total outflow from Aj .

Claim 3. There are two orders, π and π′, satisfying the following.

(1) π 6∈ MA
ρ
i−1

\Ai,A
ρ
i−1

(2) π′ ∈ MA
ρ

i−1
\Ai,A

ρ

i−1

(3) max(π,Aj) 6= max(π′, Aj)
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(4) ν(π) > 0 and ν(π′) > 0

Proof. Since {Ai, . . . , Aj} is a branching section of two supported paths, there are at
least two orders whose paths pass through {Ai, . . . , Aj} which have positive weight
under ν. Further, there must be at least two orders whose paths in-branch at Ai and
have positive weight under ν. Similarly, there must be at least two orders whose paths
out-branch at Aj and have positive weight under ν. There are two cases.

(1) There is some supported edge leaving Aj such that no order in MA
ρ
i−1

\Ai,A
ρ
i−1

with positive weight under ν has a path containing that edge.
Since inflow at Ai equals outflow form Aj , it must be the case that some or-
der not in MA

ρ

i−1
\Ai,A

ρ

i−1

has positive weight and has path containing the prior

mentioned edge. Call this order π. Then any π′ ∈ MA
ρ

i−1
\Ai,A

ρ

i−1

with ν(π′) > 0

and π satisfy the above conditions.
(2) For every supported edge leaving Aj , there is some order in MA

ρ

i−1
\Ai,A

ρ

i−1

with

positive weight under ν whose path contains that edge.
In this case, choose some order π 6∈ MA

ρ
i−1

\Ai,A
ρ
i−1

such that ν(π) > 0 and

the path corresponding to π passes through {Ai, . . . , Aj}. The existence of
such an order is guaranteed by inflow equals outflow. By inflow at Ai equals
outflow at Aj , the path corresponding to π passes through Aj. Choose some
π′ ∈ MA

ρ

i−1
\Ai,A

ρ

i−1

such that ν(π′) > 0 and the path corresponding to π′ does not

have the same edge leaving Aj as the path corresponding to π. The existence of
such a π′ is guaranteed by the supposition. Then π and π′ satisfy the conditions
of the claim.

�

By the definition of ρπ and ρπ′ , both of these paths are branching and supported.
Now let x = min(π,X \ Ai) and y = min(π′, X \ Ai). By π 6∈ MA

ρ

i−1
\Ai,A

ρ

i−1

and

π′ ∈ MA
ρ

i−1
\Ai,A

ρ

i−1

, x 6= y. By Ai ∈ ρπ and Ai ∈ ρπ′ , Uπ(x) = Uπ′(y). Let z =

max(π,Aj). By max(π,Aj) 6= max(π′, Aj), Uπ(z) 6= Uπ′(z). By j ≥ i, π({x, y}) > π(z)
and π′({x, y}) > π′(z). Thus the conditions on ν hold, and, by contraposition, the
sufficiency of the conditions are shown. Thus the theorem is proven.

A.3. Proof of Theorem 3. If there are two rationalizing distributions with different
supports, then (X,P ) is obviously not uniquely rationalizable. All that is left is to
show the other direction. Suppose that (X,P ) is not uniquely rationalizable. Then
|X| ≥ 4 and the probability flow diagram of (X,P ) has supported branching paths.
The two algorithms used in the proof of Theorem 1 find two rationalizing distributions
with different supports and can be used here to do so. Thus, by contraposition, each ra-
tionalizing distribution having the same support implies there is a unique rationalizing
distribution.



22 CHRISTOPHER TURANSICK

References

Ackerberg, D. A. and M. Rysman (2005): “Unobserved Product Differentiation in
Discrete-Choice Models: Estimating Price Elasticities and Welfare Effects,” RAND

Journal of Economics, 771–788.
Apesteguia, J., M. A. Ballester, and J. Lu (2017): “Single-Crossing Random
Utility Models,” Econometrica, 85, 661–674.

Bajari, P. and C. L. Benkard (2001): “Discrete Choice Models as Structural
Models of Demand: Some Economic Implications of Common Approaches,” Unpub-
lished.
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