
Learning-Augmented Maximum Flow

Adam Polaka,b,∗, Maksym Zubb

aMax-Planck Institute for Informatics, Saarland Informatics Campus, 66123, Saarbrucken, Germany
bJagiellonian University, ul. Lojasiewicza 6, 30-348, Krakow, Poland

Abstract

We propose a framework for speeding up maximum flow computation by using predictions. A prediction is a flow,
i.e., an assignment of non-negative flow values to edges, which satisfies the flow conservation property, but does not
necessarily respect the edge capacities of the actual instance (since these were unknown at the time of learning).
We present an algorithm that, given an m-edge flow network and a predicted flow, computes a maximum flow in
O(mη) time, where η is the ℓ1 error of the prediction, i.e., the sum over the edges of the absolute difference between
the predicted and optimal flow values. Moreover, we prove that, given an oracle access to a distribution over flow
networks, it is possible to efficiently PAC-learn a prediction minimizing the expected ℓ1 error over that distribution.
Our results fit into the recent line of research on learning-augmented algorithms, which aims to improve over worst-
case bounds of classical algorithms by using predictions, e.g., machine-learned from previous similar instances. So far,
the main focus in this area was on improving competitive ratios for online problems. Following Dinitz et al. (NeurIPS
2021), our results are among the firsts to improve the running time of an offline problem.

Keywords: combinatorial optimization, maximum flow, algorithms with predictions

1. Introduction1

Computing a maximum s-t flow in a flow network2

(i.e., in a directed graph with nonnegative edge capac-3

ities and designated source and sink nodes) is a basic4

problem in combinatorial optimization. It is a building5

block of a number of more advanced algorithms, with6

relevance both in theory (e.g., in graph algorithms and7

scheduling) and in practice (e.g., in computer vision and8

transport).9

Imagine we are to solve multiple similar instances10

of the maximum flow problem, e.g., the instances are11

drawn at random from a distribution, or they are snap-12

shots of a single underlying instance changing over13

time. Can we learn what a typical optimal solution looks14

like, and then use it to speed up further computations?15

Or, to put it differently, assume we have a solution –16

e.g., obtained from past data or computed by a very fast17

heuristic – that is not necessarily optimal, maybe not18

even feasible, but close to an optimal solution. How can19

we use such an imperfect solution to warm-start a max-20

imum flow algorithm and get a better running time?21

∗Corresponding author
Email addresses: apolak@mpi-inf.mpg.de (Adam Polak),

max.zub@student.uj.edu.pl (Maksym Zub)

Warm-starting maximum flow algorithms has been22

studied in the past experimentally (e.g., in computer vi-23

sion, where maximum flow is often used to compute24

minimum cuts in subsequent frames of a video [19, 18]).25

In contrast, we propose an approach with theoretical26

guarantees.127

Learning-augmented algorithms (also called algo-28

rithms with predictions) are the subject of a recent line29

of research that aims to improve over worst-case bounds30

of classical algorithms by using possibly imperfect pre-31

dictions. So far, the main focus in this area was on im-32

proving competitive ratios for online problems. Dinitz33

et al. [6] took a first step to explore improving the run-34

ning times of offline problems. They gave an algorithm35

for the weighted bipartite matching problem that uses a36

learned dual solution to improve over the running time37

of the classic Hungarian algorithm. Our approach draws38

inspiration from their work, but it differs significantly in39

two aspects. First, we learn a primal, not a dual so-40

lution. Second, we impose an additional restriction on41

the learned solution, namely the flow conservation prop-42

1Interestingly, while the theoretical guarantees of our algorithms
are linear in the ℓ1 error of flow predictions, the empirical perfor-
mance of the heuristic warm-starting approaches [19, 18] happens to
be roughly linear in the ℓ0 change in edge capacities.

Preprint submitted to Information Processing Letters August 13, 2024



erty. This restriction makes our learning problem harder43

and the subsequent algorithmic problem easier. In Sec-44

tion 1.2 we discuss these differences in greater depth.45

1.1. Our results46

We propose a framework for speeding up maximum47

flow computation by using predicted flow values. Here,48

by prediction we mean a flow, which satisfies the flow49

conservation property, but does not necessarily respect50

the edge capacities of the actual instance (since these51

were unknown at the time of learning). We present an52

algorithm that, given a flow network G = (V, E) with53

edge capacities c ∈ ZE
⩾0, and a predicted flow f ∈ ZE

⩾0,54

computes a maximum flow f ∗c ∈ ZE
⩾0 in O(|E| · η) time,55

where η = || f − f ∗c ||1 =
∑

e∈E | f (e) − f ∗c (e)| is the ℓ1 er-56

ror of the prediction. Moreover, we prove that, given an57

oracle access to a (joint) distribution over edge capaci-58

ties, it is possible to efficiently PAC-learn a prediction59

minimizing the expected ℓ1 error over that distribution.60

To formally state our results, let us first define the61

maximum flow problem and related concepts.62

Definition 1. Given a directed graph G = (V, E), source63

and sink nodes s, t ∈ V , and nonnegative integral edge64

capacities c : E → Z⩾0, the maximum flow problem65

asks to find a function f : E → Z⩾0, assigning nonneg-66

ative integral flow to the edges, that satisfies67

• capacity constraints: ∀e∈E f (e) ⩽ c(e), and68

• flow conservation:

∀v∈V\{s,t}

∑
u : (u,v)∈E

f (u, v) =
∑

u : (v,u)∈E

f (v, u)

,69

and maximizes the flow value defined as val( f ) =70 ∑
(s,u)∈E f (s, u). We denote by f ∗c a maximum flow for71

given capacities c.72

Let us note that we have made the decision to focus73

on the integral version of the problem for two reasons.74

First, in many applications edge capacities are integral75

anyway, and hence there always exists an integral solu-76

tion as well, see, e.g., [1]. Second, the error measure77

we work with, namely the ℓ1 distance, is meaningless if78

one allows arbitrary scaling without changing the prob-79

lem, as it would be the case for rational edge capacities.80

Finally, we remark that all the fastest maximum flow al-81

gorithms, including the almost-linear time one [4], are82

only weakly polynomial, i.e., their running times de-83

pend polylogarithmically on the maximum edge capac-84

ity value and, in particular, they work only with integral85

edge capacities.86

In Section 2, we prove the following theorem giv-87

ing an algorithm that can be seen as the Ford-Fulkerson88

method with a warm start.89

Theorem 2. Given a directed graph G = (V, E), source
and sink s, t ∈ V, edge capacities c : E → Z⩾0, and
a predicted flow function f : E → Z⩾0 satisfying flow
conservation, one can compute a maximum (s, t)-flow in
G, in time

O
(
|E| · || f − f ∗c ||1

)
.

Note that the above bound holds simultaneously for90

every maximum flow f ∗c , which might not be unique. In91

other words, the prediction is good if it is close to at92

least one optimal solution.93

One of the sought-after properties of learning-
augmented algorithms is robustness, i.e., retaining
worst-case guarantees of classic algorithms even for
arbitrarily bad predictions. However, in the case of
running time bounds, robustness comes essentially for
free (up to a multiplicative factor of 2, vanishing in
the asymptotic notation). Indeed, one can always run
step-by-step an algorithm with predictions alongside the
fastest known classic algorithm, stopping when either of
them stops. Therefore, Theorem 2 paired with the recent
O(|E|1+o(1)) time algorithm for the maximum flow prob-
lem [4] actually leads to a robust learning-augmented
algorithm with running time

O
(
|E| ·min{|| f − f ∗c ||1, |E|

o(1)}
)
.

Naturally, a similar bound but with the ℓ∞ error (in-94

stead of the ℓ1 error) would be more desirable, but let95

us argue that such a bound is unlikely. Indeed, the96

maximum flow problem with unit edge capacities is not97

known to be significantly easier than the general prob-98

lem, yet for that special case the ℓ∞ prediction error can99

trivially be bounded by a constant, and hence a mean-100

ingful bound of the desired form would mean that it is101

an easier problem. Let us also remark that our choice of102

the ℓ1 distance as the prediction error metric is consis-103

tent with related works [6, 3].104

The proof of Theorem 2 that we give at the beginning105

of Section 2 uses a simple algorithm that calls the Ford-106

Fulkerson method (see Section 1.2) as a black-box but107

also spends O(|E| · || f − f ∗c ||1) time on top of that. Later,108

in Section 2.1, we prove the following stronger result109

that implies Theorem 2.110

Theorem 3. Given a directed graph G = (V, E), source111

and sink s, t ∈ V, edge capacities c : E → Z⩾0,112

and a predicted flow function f : E → Z⩾0 satisfying113

flow conservation, one can reduce computing a maxi-114

mum (s, t)-flow in G to computing maximum flows in two115

2



graphs, each with O(|E|) edges and the maximum flow116

value bounded by O(|| f − f ∗c ||1). The reduction works in117

O(|E|) time.118

Composing Theorem 3 with the Ford-Fulkerson119

method gives the same worst-case running time bound120

as Theorem 2. However, the alternative approach has121

the advantage that all the computations that take more122

than linear time can be delegated to one of many avail-123

able highly optimized implementations of maximum124

flow algorithms, and therefore this approach might be125

more efficient in practice126

Next, we want to argue that predictions required by127

the above algorithm can be efficiently learned, in a PAC-128

learning sense. We assume that the underlying graph,129

as well as the choice of the source and sink nodes, are130

fixed. (This assumption is almost without loss of gener-131

ality, because one can take the underlying graph to be a132

clique, with capacities zero for nonexistent edges; that,133

however, may cause a running time overhead, because134

of the increased number of edges.) Our goal is to prove135

that, given a joint distribution over edge capacities, we136

can efficiently learn a flow approximately minimizing137

the expected ℓ1 error over that distribution. We do it in138

two steps. First, in Section 3, we prove Theorem 4, giv-139

ing an algorithm that finds a prediction that minimizes140

the error on a given set of samples. It works under the141

assumption2 that f ∗ci
’s are unique (or, arbitrarily fixed)142

solutions to the maximum flow problem instances given143

by capacities ci’s. Then, in Section 4, we prove The-144

orem 5, which states that if the number of samples is145

large enough, then such a prediction for these samples146

also approximately minimizes the error for the whole147

distribution.148

Theorem 4. Given a directed graph G = (V, E), with
source and sink s, t ∈ V, and a collection of k lists of
edge capacities c1, c2, . . . , ck ∈ ZE

⩾0, one can find an in-
tegral flow prediction that minimizes the prediction er-
ror on this collection, i.e.,

f̂ = arg min
{1

k

∑
i∈[k]

|| f − f ∗ci
||1
∣∣∣

f : E → Z⩾0 satisfying flow conservation
}
,

in time O(T (k · |E|)), where T (m) ⩽ m1+o(1) denotes the149

min-cost flow complexity in graphs with m edges.150

2This is a standard assumption for PAC-learnability results in the
literature on (static) algorithms with predictions, see, e.g., [6, 25, 5].

Theorem 5. Let G = (V, E) be a directed graph,
with source and sink s, t ∈ V, and let c1, c2, . . . , ck ∈

ZE
⩾0, for k = Θ(c2

max|E|
3 log(cmax|E|)), be indepen-

dent samples from a distribution D, where cmax =

maxc∈supp(D),e∈E c(e). Let f̂ ∈ ZE
⩾0 be a flow that mini-

mizes the prediction error on this collection of samples,
as in Theorem 4. Then, with high probability over the
choice of the samples, the expected ℓ1 error of f̂ overD
is approximately minimum possible, i.e.,

Ec∼D|| f̂ − f ∗c ||1 ⩽ min
f

Ec∼D|| f − f ∗c ||1 + O(1),

where the minimum is taken over functions f ∈ ZE
⩾0151

satisfying the flow conservation property.152

1.2. Related work153

Maximum flow algorithms. There are numerous algo-154

rithms for the maximum flow problem. The Ford-155

Fulkerson method [12] is a starting point for many156

of them, and its vanilla version runs in weakly poly-157

nomial O(|E| · val( f ∗c )) time for integral edge capaci-158

ties. The strongly polynomial time algorithms, which159

also work for rational edge capacities, can be roughly160

split into three groups: augmenting paths algorithms161

(e.g., [9, 7, 13]), push-relabel algorithms (e.g., [14]),162

and pseudoflow algorithms (e.g., [15]). Each of these163

groups contains algorithms with running time Õ(|V | · |E|)164

that are widely used in practice, see, e.g., [2, 11]. A long165

line of research on Laplacian solvers and interior-point166

methods, initiated by [26], culminated recently with a167

(weakly polynomial) almost-linear O(|E|1+o(1)) time al-168

gorithm [4].169

In the light of this new development, it may seem170

that our learning-augmented algorithm is only relevant171

for very small prediction errors, namely || f − f ∗ci
||1 ⩽172

|E|1+o(1). However, at this point it is not yet clear if the173

new almost-linear time algorithm will lead to practical174

developments.3175

Learning-augmented algorithms. The idea of using176

predictions to improve the performance of algorithms177

is not a new one, see, e.g., [22]. However, the recent178

systematic study of such methods – under the umbrella179

term of learning-augmented algorithms, or simply algo-180

rithms with predictions – seems to have started with the181

works of Lykouris and Vassilvitskii [21], and Purohit,182

Svitkina, and Kumar [24]. Since then, the field devel-183

oped rapidly, see [23] for a survey. So far, the majority184

3See https://codeforces.com/blog/entry/100510 for a
relevant discussion with an author of [4].

3

https://codeforces.com/blog/entry/100510


of the works focus on online algorithms, where predic-185

tions help reduce uncertainty about the yet unseen part186

of the instance. There are, however, also works on, e.g.,187

data structures [20], streaming algorithms [17], and sub-188

linear algorithms [8]. Apart from a simple example of189

binary search [21], until recently there were no works on190

improving algorithms running times using predictions.191

This has changed with the work of Dinitz et al. [6], the192

recent followup works of Chen et al. [3], and Sakaue193

and Oki [25], as well as the work of Ergun et al. [10]194

(which is however concerned with approximation algo-195

rithms and uses a significantly different approach).196

Learning-augmented weighted bipartite matching. A197

direct inspiration for our approach is the work of Dinitz198

et al. [6]. They study the maximum weighted bipar-199

tite matching problem and predict the dual4 solution.200

They give a learning-augmented algorithm that solves201

the matching problem in O(|E|
√
|V | ·min{η,

√
|V |}) time,202

where η is the ℓ1 error of the predicted dual solution –203

our Theorem 2 is an analogue of that result. They also204

show that, given an oracle access to a joint distribution205

over edge weights, one can efficiently learn a prediction206

minimizing the expected ℓ1 error over the distribution –207

our Theorems 4 and 5 are together an analogue of that208

result.209

The most apparent difference between their approach210

and ours is that they use a predicted dual solution and we211

use a predicted primal solution. The reason they state212

for focusing on the dual solution is that the primal so-213

lution is very volatile to small changes in the input. Let214

us note that this argument clearly applies to weighted215

problems (in particular, e.g., to the minimum cost flow216

problem) but it is not clear if it also applies to the maxi-217

mum flow problem. Moreover, it is also not clear if the218

dual solution is indeed less volatile, even for weighted219

problems.220

The second important difference is that they do not221

impose any constraints on predictions, while we require222

that the predicted solution satisfies the flow conserva-223

tion property. This difference has the following con-224

sequences. First, their learning algorithm can be very225

simple – the best possible prediction is just a coordinate-226

wise median over the solutions for the samples – while227

we need to solve the minimum cost flow problem in-228

stead. Second, turning a prediction into a feasible so-229

lution is also harder for us, as we want to maintain the230

flow conservation property. On the other hand, once we231

4Recall that the matching problem can be formulated as a linear
program, and every linear program has a corresponding dual program.

have a feasible solution, the remaining part of our max-232

imum flow algorithm is simple and easy to analyse, in233

contrast with their tailored primal-dual analysis for the234

analogous part of their algorithm.235

Other algorithmic speedups using predictions. In their236

recent work Chen et al. [3] improve the running time237

of Dinitz et al. for the matching problem, and extend238

their framework to a couple of other graph problems:239

the negative weights single-source shortest paths prob-240

lem, the degree-constrained subgraph problem, and the241

minimum cost 0-1 flow problem. For all these problems242

they use predicted dual solutions. They also propose243

general learnability theorems, which imply a result sim-244

ilar to Lemma 8 (see also the discussion below the proof245

of Lemma 8 for a comparison of such results with The-246

orem 5).247

Sakaue and Oki [25] propose a general framework for248

augmenting discrete optimization problems with pre-249

dictions. Their approach leads to faster algorithms for250

three problems: weighted bipartite matching, weighted251

matroid intersection, and discrete energy minimization252

for computer vision. It is notable that their guarantees253

hold with respect to the ℓ∞ prediction error, compared254

to the ℓ1 error in previous works [6, 3] and ours. In-255

terestingly, their framework allows working with both256

primal and dual predictions. They analyse what proper-257

ties of a problem make it more suitable for one type of258

predictions or the other, and they end up using primal259

predictions for the discrete energy minimization prob-260

lem.261

Ergun et al. [10] study k-means clustering, and use262

predictions to achieve in near-linear time approxima-263

tion factors that are impossible to achieve without pre-264

dictions even in polynomial time. They also propose a265

very general learnability framework, based on relating266

the VC-dimension of a class of functions to their com-267

putational complexity, which implies bounds similar to268

ours, but with a worse sample complexity.269

Dropping flow conservation constraints. In the concur-270

rent and independent work [5], Davies, Moseley, Vas-271

silvitskii, and Wang propose a similar framework for272

speeding up maximum flow computations by using pre-273

dictions. The key difference is that in their setup the274

prediction does not necessarily need to satisfy the flow275

conservation constraints. They prove analogs of our276

Theorems 2–5 for their notion of prediction. In particu-277

lar, they also use the ℓ1 distance between the predicted278

and the maximum flow as the prediction error, and they279

achieve the same running time as in our Theorem 2.280

4



Their analog of our Theorem 2 also follows the two281

step approach consisting of a feasibility step and an op-282

timization step. Their optimization step is identical to283

ours, the key technical difference lies in the feasibility284

step. In this step, our algorithm only needs to fix vi-285

olated capacity constraints, while their algorihtm fixes286

both capacity and flow conservation constraints. It first287

fixes the capacity constraints by just decreasing the flow288

on oversaturated edges – possibly violating additional289

flow conservation constaints, which however are going290

to be fixed next. Then, it fixes the flow conservation291

constraints using a reduction to a maximum flow com-292

putation in an auxiliary graph – similar to our proof of293

Theorem 3.294

On the other hand, learning (Theorem 4) in their setup295

is much easier. Since the prediction for each edge can296

optimized independently, it boils to down to selecting –297

for each edge – the median of optimal flow values along298

that edge among samples.299

1.3. Limitation and open problem300

We do prove that a prediction with a small ℓ1 error301

can be used to speed up maximum flow computation,302

and that given a distribution over flow networks one can303

learn a prediction minimizing the ℓ1 error. However,304

we do not answer the question of what makes a dis-305

tribution have such a minimum that is actually small.306

There seems to be no standard approach to address this307

type of representation error question, and the related308

works [6, 10, 3] do not address it either.309

2. Warm-starting Ford-Fulkerson310

Theorem 2. Given a directed graph G = (V, E), source
and sink s, t ∈ V, edge capacities c : E → Z⩾0, and
a predicted flow function f : E → Z⩾0 satisfying flow
conservation, one can compute a maximum (s, t)-flow in
G, in time

O
(
|E| · || f − f ∗c ||1

)
.

Proof. At first, the predicted flow f does not necessarily311

satisfy the capacity constraints imposed by c, i.e., for312

some edges e ∈ E it might happen that f (e) > c(e).313

The algorithm consists of two steps. In the first step,314

it turns f into f̄ that satisfies the capacity constraints,315

while maintaining the flow conservation property. In316

other words, f̄ is a feasible flow. Then, in the second317

step, the algorithm augments f̄ to an optimal flow.318

First step: feasibility. Recall that every integral flow319

decomposes into cycles and s-t paths5 (see, e.g., [1,320

Theorem 3.5]). The algorithm initializes f̄ = f . While321

there is an edge e ∈ E with f̄ (e) > c(e), the algorithm322

uses, e.g., depth-first search to find a cycle or an s-t323

path containing e (at least one of them is guaranteed to324

exist because of the integral flow decomposition), and325

decreases the flow f̄ along this cycle/path by one unit.326

This keeps the invariant that f̄ satisfies the flow con-327

servation property. When the process is done, f̄ also328

satisfies all the capacity constraints.329

Second step: optimization. Now, the algorithm con-330

structs the residual network with respect to f̄ , i.e.,331

the flow network G f̄ = (V, E f̄ ) with edge set E f̄ =332

{(u, v) | (u, v) ∈ E or (v, u) ∈ E} and residual capacities6
333

c f̄ (u, v) = (c(u, v) − f̄ (u, v)) + f̄ (v, u). Here, for nota-334

tional simplicity, we assume that c(u, v) = f̄ (u, v) = 0 if335

(u, v) < E. Then, the algorithm runs the Ford-Fulkerson336

method [12] on G f̄ to find a maximum flow f ∗c f̄
in time337

O(|E| · val( f ∗c f̄
)). Finally, f̄ + f ∗c f̄

is a maximum flow for338

the original edge capacities c, see, e.g., [1, Property 2.6].339

Running time analysis. Let δ =
∑

e∈E max{ f (e)−c(e), 0}340

be the total amount by which the flow prediction vio-341

lates the capacity constraints. The algorithm makes at342

most δ iterations in the first step, and each iteration de-343

creases the flow value val( f̄ ) by at most one. We con-344

clude that the first step runs in O(|E| · δ) time, and that345

val( f ) − val( f̄ ) ⩽ δ.346

The second step of the algorithm runs in time

O(|E| · val( f ∗c f̄
)) = O(|E| · (val( f ∗c ) − val( f̄ ))) =

= O(|E| · ((val( f ∗c ) − val( f )) + (val( f ) − val( f̄ )))).

Let η = || f − f ∗c ||1 denote the prediction error. It is easy347

to see that | val( f ∗c ) − val( f )| ⩽ η, and that δ ⩽ η, so, in348

particular, val( f ) − val( f̄ ) ⩽ δ ⩽ η. Therefore, the run-349

ning time of both steps of the algorithm can be bounded350

by O(|E| · η).351

2.1. Alternative variant of the first step352

In this section we give an alternative variant of the353

first step of the above algorithm. The asymptotic run-354

ning time remains the same, but, as we explained when355

5I.e., there exists a collection p1, . . . , pk such that each pi is either a
(simple) cycle or a (simple) s-t path in G, and f (e) = #{i ∈ [k] | e ∈ pi}

for every edge e ∈ E.
6The amount of extra flow that can be sent from u to v equals the

sum of remaining capacity for edge (u, v), i.e., c(u, v)− f̄ (u, v), and the
flow sent from v to u, which can be reversed, i.e., f̄ (v, u). Usually we
expect only one of these two summands to be non-zero.

5



introducing Theorem 3 in Section 1.1, this alternative356

algorithm might be more efficient in practice, because it357

allows delegating most of the work to any existing well-358

optimized maximum flow solver. See Algorithm 1.359

Algorithm 1: Computing maximum flow
Input: flow network G = (V, E), source s, target

t, edge capacities c, predicted flow f
Output: maximum flow for edge capacities c
/* Step 1: Feasibility */

Ẽ ← ∅; G̃ ← (V ∪ {s̃, t̃}, Ẽ); δ← 0
foreach (u, v) ∈ E do

Ẽ ← Ẽ ∪ {(v, u)}
if f (u, v) ⩽ c(u, v) then

c̃(v, u)← f (u, v)

else
c̃(v, u)← c(u, v)
δ← δ + f (u, v) − c(u, v)
Ẽ ← Ẽ ∪ {(s̃, u), (v, t̃}
c̃(s̃, u), c̃(v, t̃)← f (u, v) − c(u, v)

Ẽ ← Ẽ ∪ {(s, t)}; c̃(s, t)← δ
f̃ ← max flow from s̃ to t̃ in G̃ with capacities c̃
foreach (u, v) ∈ E do

f̄ (u, v)← min( f (u, v), c(u, v)) − f̃ (v, u)

/* Step 2: Optimization */

G f̄ ← residual network with respect to flow f̄
f ∗c f̄
← max flow from s to t in G f̄

return f̄ + f ∗c f̄

Consider graph G̃ = (V, Ẽ) with Ẽ = {(v, u) ∈ V × V |360

(u, v) ∈ E}, i.e., a copy of G with reversed edges. Set361

capacities to c̃(v, u) = f (u, v). Note that the first step362

of the original algorithm essentially finds an integral t-s363

flow f̃ in G̃ such that364

(i) if f (u, v) > c(u, v), then f̃ (v, u) ⩾ f (u, v) − c(u, v),365

for every (u, v) ∈ E;366

(ii) val( f̃ ) ⩽ δ.367

At the end of the first step f̄ (u, v) = f (u, v) − f̃ (v, u). In368

this section we give a different way to compute such f̃ .369

Add to G̃ edge (s, t), and set c̃(s, t) = δ. Now, the370

problem of finding a t-s flow satisfying (i) and (ii) be-371

comes the problem of finding a circulation7 satisfying372

(i). This problem – of finding a circulation with lower373

bounds – can be reduced to a problem of finding a374

7A circulation is defined similarly to a flow. The only exception is
that there are no designated source and sink nodes, and hence the flow
conservation property has to be satisfied for all the nodes of the graph
(see, e.g., [1, Section 1.2]).

maximum flow (without lower bounds) in a graph with375

the maximum flow value equal to the sum of all lower376

bounds, see, e.g., [1, Section 6.7]. The reduction works377

as follows.378

First, add to G̃ two new nodes s̃ and t̃. Next, for each379

edge e = (u, v) ∈ E that violates the capacity constraint380

let δe = f (u, v) − c(u, v) > 0 be the excess flow for381

this edge; add to G̃ two edges, (s̃, u) and (v, t̃), set their382

capacities to c̃(s̃, u) = c̃(v, t̃) = δe, and decrease the ca-383

pacity of edge (v, u) by δe, so that c̃(v, u) = c(u, v). This384

ends the description of the graph constructed in the re-385

duction.386

Note that the total capacity of edges leaving s̃ equals387

the total capacity of edges entering t̃, which also equals388

δ =
∑

e∈E max{ f (e) − c(e), 0}. As we will see in a mo-389

ment, the existence of a flow saturating these edges is390

equivalent to the existence of a circulation satisfying the391

lower bounds – which is guaranteed to exist because the392

original first step of the algorithm finds such a circula-393

tion.394

After constructing G̃ as above, the alternative first395

step proceeds as follows. The algorithm computes a396

maximum s̃-t̃ flow f̃ in G̃, using a Ford-Fulkerson397

method. Then, for each edge e = (u, v) ∈ E that vi-398

olates the capacity constraint (in the original graph G),399

the algorithm first removes the saturated edges (s̃, u) and400

(v, t̃) from G̃. Note that now nodes u and v do not sat-401

isfy the flow conservation property, namely node v has402

an excess of δe units of incoming flow and node u has a403

deficit of δe units of incoming flow. The algorithm re-404

stores the flow conservation property by increasing flow405

f̃ (v, u) by δe units, and therefore it ensures that the lower406

bound for this edge is satisfied. This procedure essen-407

tially proves the equivalence of the existence of a flow408

saturating the sink and source edges and the existence409

of a suitable circulation.410

This ends the description of the alternative algorithm.411

Let us analyse its running time. Graph G̃ has O(|E|)412

edges and can be constructed in O(|E|) time. Since413

val( f̃ ) = δ, the Ford-Fulkerson method runs in O(|E| · δ)414

time. Finally, transforming f̃ to f̄ takes O(|E|) time.415

Therefore, the total running time of O(|E| · δ) remains416

unchanged compared to the original first step of the al-417

gorithm. This proves Theorem 3.418

Theorem 3. Given a directed graph G = (V, E), source419

and sink s, t ∈ V, edge capacities c : E → Z⩾0,420

and a predicted flow function f : E → Z⩾0 satisfying421

flow conservation, one can reduce computing a maxi-422

mum (s, t)-flow in G to computing maximum flows in two423

graphs, each with O(|E|) edges and the maximum flow424

value bounded by O(|| f − f ∗c ||1). The reduction works in425

6



O(|E|) time.426

Finally, we remark that a similar trick – for handling427

edges initialized with a flow exceeding their capacities428

– was already proposed, albeit without provable running429

time guarantees, in the context of repeatedly solving430

similar minimum cut instances in a computer vision ap-431

plication [19]. That trick however only allows comput-432

ing the maximum flow value and a corresponding mini-433

mum cut, but not the flow itself.434

3. Learning a prediction that minimizes error435

Theorem 4. Given a directed graph G = (V, E), with
source and sink s, t ∈ V, and a collection of k lists of
edge capacities c1, c2, . . . , ck ∈ ZE

⩾0, one can find an in-
tegral flow prediction that minimizes the prediction er-
ror on this collection, i.e.,

f̂ = arg min
{1

k

∑
i∈[k]

|| f − f ∗ci
||1
∣∣∣

f : E → Z⩾0 satisfying flow conservation
}
,

in time O(T (k · |E|)), where T (m) ⩽ m1+o(1) denotes the436

min-cost flow complexity in graphs with m edges.437

Proof. The first step of the learning algorithm (see Al-438

gorithm 2) is to compute a maximum flow f ∗ci
for each439

i ∈ [k]. This step can be completed in k · T (|E|) ⩽440

O(T (k · |E|)) time in total.441

Now, the goal is to find an integral flow f (satis-442

fying the flow conservation property) that minimizes443 ∑
i∈[k]
∑

e∈E | f (e)− f ∗ci
(e)| =

∑
e∈E
∑

i∈[k] | f (e)− f ∗ci
(e)|. For444

an edge e ∈ E, let coste(x) =
∑

i∈[k] |x − f ∗ci
(e)| denote445

the contribution of f (e) to the minimization objective,446

which now can be written simply as
∑

e∈E coste( f (e)).447

Let us analyse how the function coste(x) behaves.448

Let x1 ⩽ x2 ⩽ · · · ⩽ xk denote the sorted elements449

of the (multi-)set { f ∗c1
(e), f ∗c2

(e), . . . , f ∗ck
(e)}. Clearly,450

coste(0) =
∑

i∈[k] xi. For x ∈ [0, x1], the contribution451

coste(x) is a decreasing linear function with slope −k.452

For x ∈ [x1, x2], the slope is −k + 2. More generally,453

for x ∈ [xi, xi+1] the slope is 2i − k, because increasing454

the flow by δ increases also by δ each of the first i sum-455

mands, and decreases by the same amount each of the456

remaining (k − i) summands in the sum
∑

i∈[k] |x − xi|.457

Hence, coste(x) is piecewise linear and convex, and the458

overall goal is to find a flow minimizing a separable459

piecewise linear convex cost function.460

The above problem can be reduced to the standard461

minimum cost flow problem [1, Chapter 14]. The re-462

duction works as follows. For notational simplicity, let463

x0 = 0 and xk+1 = +∞. Replace each edge e ∈ E with464

k + 1 parallel edges e0, . . . , ek, and let edge ei have ca-465

pacity xi+1 − xi and cost (of sending one unit of flow)466

equal to 2i − k. It is easy to observe that any opti-467

mal solution to the minimum cost flow problem in the468

constructed multigraph uses some prefix of the cheapest469

parallel edges for each e ∈ E, and the total cost of such470

prefix behaves exactly like coste. Since all the intro-471

duced capacities are integral, it is guaranteed that there472

exists an optimal integral solution. The multigraph has473

(k + 1) · |E| edges, hence the minimum cost flow can be474

found in O(T (k · |E|)).475

Algorithm 2: Learning prediction from samples
Input: flow network G = (V, E), and sampled

edge capacity functions c1, c2, . . . , ck

Output: flow f minimizing 1
k
∑

i∈[k] || f − f ∗ci
||1

foreach i ∈ {1, 2, . . . , k} do
compute maximum flow f ∗ci

for capacities ci

foreach e ∈ E do
x1 ⩽ · · · ⩽ xk ← sorted set

{
f ∗c1

(e), . . . , f ∗ck
(e)
}

x0 ← 0, xk+1 ← +∞

replace e with k + 1 parallel edges e0, . . . , ek

foreach i ∈ {0, . . . , k} do
capacity of ei ← xi+1 − xi

cost of ei ← 2i − k

return minimum cost flow in the modified graph

4. Sample complexity476

Theorem 5. Let G = (V, E) be a directed graph,
with source and sink s, t ∈ V, and let c1, c2, . . . , ck ∈

ZE
⩾0, for k = Θ(c2

max|E|
3 log(cmax|E|)), be indepen-

dent samples from a distribution D, where cmax =

maxc∈supp(D),e∈E c(e). Let f̂ ∈ ZE
⩾0 be a flow that mini-

mizes the prediction error on this collection of samples,
as in Theorem 4. Then, with high probability over the
choice of the samples, the expected ℓ1 error of f̂ overD
is approximately minimum possible, i.e.,

Ec∼D|| f̂ − f ∗c ||1 ⩽ min
f

Ec∼D|| f − f ∗c ||1 + O(1),

where the minimum is taken over functions f ∈ ZE
⩾0477

satisfying the flow conservation property.478

7



For a flow prediction f ∈ ZE
⩾0, let us use

costc1,...,ck ( f ) =
1
k

∑
i∈[k]

|| f − f ∗ci
||1,

costD( f ) = Ec∼D|| f − f ∗c ||1

to denote the ℓ1 error of f on the samples and on the479

distribution, respectively. We will use Hoeffding’s in-480

equality to prove that the number of samples in The-481

orem 5 is large enough for costc1,...,ck ( f ) to be a good482

approximation of costD( f ), with high probability for all483

f ’s simultaneously.484

Theorem 6 (Hoeffding’s inequality [16]). Let
X1, . . . , Xk be independent random variables with
values from 0 to U, and let S = X1 + · · · + Xk denote
their sum. Then, for all t > 0,

P
(
|S − ES | ⩾ t

)
⩽ 2 · exp(−2t2/kU2).

To use the inequality, first we need a bound on the485

values of the considered functions.486

Lemma 7. Any flow prediction f that minimizes the er-487

ror must satisfy || f ||1 ⩽ 2cmax|E|.488

Let us note that Lemma 7 is actually nontrivial. Even489

though || f ∗ci
||∞ ⩽ cmax for every i ∈ [k], it may happen490

that || f ||∞ > cmax because of the flow conservation con-491

straint, e.g., when multiple disjoint paths end at a single492

node and force a single edge going out of that node to493

have a flow larger than cmax.494

Proof of Lemma 7. For every c ∈ supp(D), we have495

||c||1 ⩽ cmax|E|, and, since 0 ⩽ f ∗c ⩽ c, then also496

|| f ∗c ||1 ⩽ cmax|E|. Moreover, by the triangle inequal-497

ity, || f − f ∗c ||1 + || f
∗
c ||1 ⩾ || f ||1, and thus || f − f ∗c ||1 ⩾498

|| f ||1 − cmax|E|. If || f ||1 > 2cmax|E|, then || f − f ∗c ||1 >499

cmax|E| for every c ∈ supp(D), and thus also costD( f ) =500

Ec∼D|| f − f ∗c ||1 > cmax|E|.501

At the same time, if we consider the all-zero vector502

as a flow prediction, we have ||0 − f ∗c ||1 = || f
∗
c ||1 ⩽503

cmax|E|, for every c ∈ supp(D), and thus also costD(0) =504

Ec∼D||0 − f ∗c ||1 ⩽ cmax|E|. It follows that f could not505

minimize the error if || f ||1 > 2cmax|E|.506

Now we are ready to apply Hoeffding’s inequality in507

order to prove the following lemma.508

Lemma 8. With high probability over the choice of the
samples, for all f ∈ ZE

⩾0 satisfying the flow conserva-
tion property and such that || f ||1 ⩽ 2cmax|E| it holds that

| costc1,...,ck ( f ) − costD( f )| ⩽ 1.

Proof. For a fixed f , satisfying the conditions of the
lemma, let Xi =

1
k || f − f ∗ci

||1. We have that || f − f ∗ci
||1 ⩽

|| f ||1+ || f ∗ci
||1 ⩽ (2+1)·cmax|E|, so the random variable Xi

has values from 0 to 3cmax|E|/k. Clearly, costc1,...,ck ( f ) =
X1 + · · · + Xk, and E costc1,...,ck ( f ) = costD( f ). Applying
Hoeffding’s inequality, with t = 1, we get that

P
(
| costc1,...,ck ( f ) − costD( f )| ⩾ 1

)
⩽ 2 · exp

(
−

2
k · (3cmax|E|/k)2

)
= exp(−Θ(k/(cmax |E|)2))
= exp(−Θ(|E| log(cmax|E|))).

Let F denote the set of all f ’s satisfying the
conditions of the lemma. We can upper-bound the
number of such f ’s by |F | ⩽ (2cmax|E| + 1)|E| =
exp(Θ(|E| log(cmax|E|))). To finish the proof, note that

|F | · poly(cmax|E|)
⩽ exp(Θ(|E| log(cmax|E|))) · exp(Θ(log(cmax|E|)))

= exp(Θ(|E| log(cmax|E|))),

and hence we can take the union bound to conclude509

that with high probability it holds that | costc1,...,ck ( f ) −510

costD( f )| ⩽ 1 for all f ∈ F simultaneously.511

Let us remark that the above proof of Lemma 8 cru-512

cially relies on the fact that it suffices to consider a finite513

set of possible flow predictions – because they are inte-514

gral and bounded – and therefore we can use the union515

bound. Dinitz et al. [6, Section 3.3 in their supplemental516

material] give a proof of an analogous result regarding517

learning optimal dual solution for the weighted bipar-518

tite matching problem. Their proof is more complex519

than ours, it uses the notion of pseudo-dimension, but520

thanks to that it works also for fractional predictions.521

We note that it is possible to prove alternative version of522

Lemma 8, in the spirit of Dinitz et al., that would gen-523

eralize to fractional flows but would lose a small factor524

log |E| in the sample complexity.525

With Lemma 8 at hand, it takes a standard argument526

to prove Theorem 5.527

Proof of Theorem 5. Let f̂ and f̃ be flow predictions
that minimize the error on the samples and on the whole
distribution, respectively. By Lemma 7, || f̂ ||1, || f̃ ||1 ⩽
2cmax|E|, and hence Lemma 8 applies. Note that it is
crucial that Lemma 8 holds with high probability for all
f ’s, because f̂ is chosen after the samples are drawn
fromD. We finish the proof with the following chain of

8



inequalities.

costD( f̂ )
Lemma 8
↓

⩽ costc1,...,ck ( f̂ ) + 1
⩽
↑

because f̂ minimizes the error
on c1, . . . , ck

costc1,...,ck ( f̄ ) + 1 ⩽
↑

Lemma 8

costD( f̄ ) + 2.

528

Acknowledgments529

We would like to thank Alexandra Lassota, Sai530

Ganesh Nagarajan, and Moritz Venzin for helpful dis-531

cussion.532

Funding533

Part of this work was done while Adam Polak was534

at École Polytechnique Fédérale de Lausanne supported535

by the Swiss National Science Foundation projects Lat-536

tice Algorithms and Integer Programming (185030) and537

Complexity of Integer Programming (CRFS-2 207365).538

During the preparation of this paper Maksym Zub was a539

participant of the tutoring programme under the Excel-540

lence Initiative at the Jagiellonian University.541

None of the funding sources had any involvement in542

study design, in the writing of the report, or in the deci-543

sion to submit the article for publication.544

Declaration of interests545

The authors declare that they have no known com-546

peting financial interests or personal relationships that547

could have appeared to influence the work reported in548

this paper.549

References550

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin.551

Network flows – theory, algorithms and applications. Prentice552

Hall, 1993.553

[2] Yuri Boykov and Vladimir Kolmogorov. An experimental554

comparison of min-cut/max-flow algorithms for energy mini-555

mization in vision. IEEE Trans. Pattern Anal. Mach. Intell.,556

26(9):1124–1137, 2004. doi:10.1109/TPAMI.2004.60.557

[3] Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang.558

Faster fundamental graph algorithms via learned predictions.559

In International Conference on Machine Learning, ICML560

2022, volume 162 of Proceedings of Machine Learning Re-561

search, pages 3583–3602. PMLR, 2022. URL: https://562

proceedings.mlr.press/v162/chen22v.html.563

[4] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maxi-564

milian Probst Gutenberg, and Sushant Sachdeva. Maximum565

flow and minimum-cost flow in almost-linear time. In 63rd566

IEEE Annual Symposium on Foundations of Computer Science,567

FOCS 2022, pages 612–623. IEEE, 2022. doi:10.1109/568

FOCS54457.2022.00064.569

[5] Sami Davies, Benjamin Moseley, Sergei Vassilvitskii, and570

Yuyan Wang. Predictive flows for faster ford-fulkerson. In In-571

ternational Conference on Machine Learning, ICML 2023, vol-572

ume 202 of Proceedings of Machine Learning Research, pages573

7231–7248. PMLR, 2023. URL: https://proceedings.574

mlr.press/v202/davies23b.html.575

[6] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin576

Moseley, and Sergei Vassilvitskii. Faster matchings via learned577

duals. In Advances in Neural Information Processing Systems,578

volume 34, pages 10393–10406. Curran Associates, Inc., 2021.579

URL: https://papers.nips.cc/paper/2021/hash/580

5616060fb8ae85d93f334e7267307664-Abstract.html.581

[7] Yefim Dinitz. Algorithm for solution of a problem of maximum582

flow in networks with power estimation. Soviet Math. Dokl.,583

11:1277–1280, 1970.584

[8] Talya Eden, Piotr Indyk, Shyam Narayanan, Ronitt Rubin-585

feld, Sandeep Silwal, and Tal Wagner. Learning-based sup-586

port estimation in sublinear time. In 9th International Con-587

ference on Learning Representations, ICLR 2021. OpenRe-588

view.net, 2021. URL: https://openreview.net/forum?589

id=tilovEHA3YS.590

[9] Jack R. Edmonds and Richard M. Karp. Theoretical improve-591

ments in algorithmic efficiency for network flow problems. J.592

ACM, 19(2):248–264, 1972. doi:10.1145/321694.321699.593

[10] Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff,594

and Samson Zhou. Learning-augmented k-means clustering.595

In The Tenth International Conference on Learning Represen-596

tations, ICLR 2022. OpenReview.net, 2022. URL: https:597

//openreview.net/forum?id=X8cLTHexYyY.598

[11] Barak Fishbain, Dorit S. Hochbaum, and Stefan Müller. A com-599

petitive study of the pseudoflow algorithm for the minimum s-t600

cut problem in vision applications. J. Real Time Image Process.,601

11(3):589–609, 2016. doi:10.1007/s11554-013-0344-3.602

[12] L. R. Ford and D. R. Fulkerson. Maximal flow through a net-603

work. Canadian Journal of Mathematics, 8:399–404, 1956.604

doi:10.4153/CJM-1956-045-5.605

[13] Zvi Galil and Amnon Naamad. An O(EV log2 V) algorithm for606

the maximal flow problem. J. Comput. Syst. Sci., 21(2):203–607

217, 1980. doi:10.1016/0022-0000(80)90035-5.608

[14] Andrew V. Goldberg and Robert Endre Tarjan. A new approach609

to the maximum flow problem. In Proceedings of the 18th An-610

nual ACM Symposium on Theory of Computing, 1986, pages611

136–146. ACM, 1986. doi:10.1145/12130.12144.612

[15] Dorit S. Hochbaum. The pseudoflow algorithm: A new algo-613

rithm for the maximum-flow problem. Oper. Res., 56(4):992–614

1009, 2008. doi:10.1287/opre.1080.0524.615

[16] Wassily Hoeffding. Probability inequalities for sums of bounded616

random variables. Journal of the American Statistical Associa-617

tion, 58(301):13–30, 1963. doi:10.1080/01621459.1963.618

10500830.619

[17] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian.620

Learning-based frequency estimation algorithms. In 7th Inter-621

national Conference on Learning Representations, ICLR 2019.622

OpenReview.net, 2019. URL: https://openreview.net/623

forum?id=r1lohoCqY7.624

[18] Olivier Juan and Yuri Boykov. Active graph cuts. In 2006 IEEE625

Computer Society Conference on Computer Vision and Pattern626

Recognition (CVPR 2006), pages 1023–1029. IEEE Computer627

Society, 2006. doi:10.1109/CVPR.2006.47.628

9

https://doi.org/10.1109/TPAMI.2004.60
https://proceedings.mlr.press/v162/chen22v.html
https://proceedings.mlr.press/v162/chen22v.html
https://proceedings.mlr.press/v162/chen22v.html
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/FOCS54457.2022.00064
https://proceedings.mlr.press/v202/davies23b.html
https://proceedings.mlr.press/v202/davies23b.html
https://proceedings.mlr.press/v202/davies23b.html
https://papers.nips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
https://papers.nips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
https://papers.nips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
https://openreview.net/forum?id=tilovEHA3YS
https://openreview.net/forum?id=tilovEHA3YS
https://openreview.net/forum?id=tilovEHA3YS
https://doi.org/10.1145/321694.321699
https://openreview.net/forum?id=X8cLTHexYyY
https://openreview.net/forum?id=X8cLTHexYyY
https://openreview.net/forum?id=X8cLTHexYyY
https://doi.org/10.1007/s11554-013-0344-3
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1016/0022-0000(80)90035-5
https://doi.org/10.1145/12130.12144
https://doi.org/10.1287/opre.1080.0524
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://openreview.net/forum?id=r1lohoCqY7
https://openreview.net/forum?id=r1lohoCqY7
https://openreview.net/forum?id=r1lohoCqY7
https://doi.org/10.1109/CVPR.2006.47


[19] Pushmeet Kohli and Philip H. S. Torr. Efficiently solving dy-629

namic markov random fields using graph cuts. In 10th IEEE In-630

ternational Conference on Computer Vision (ICCV 2005), pages631

922–929. IEEE Computer Society, 2005. doi:10.1109/ICCV.632

2005.81.633

[20] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis634

Polyzotis. The case for learned index structures. In Proceedings635

of the 2018 International Conference on Management of Data,636

SIGMOD Conference 2018, pages 489–504. ACM, 2018. doi:637

10.1145/3183713.3196909.638

[21] Thodoris Lykouris and Sergei Vassilvitskii. Competitive639

caching with machine learned advice. J. ACM, 68(4):24:1–640

24:25, 2021. doi:10.1145/3447579.641

[22] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi.642

Allocating online advertisement space with unreliable esti-643

mates. In Proceedings 8th ACM Conference on Electronic Com-644

merce (EC-2007), pages 288–294. ACM, 2007. doi:10.1145/645

1250910.1250952.646

[23] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms647

with predictions. In Tim Roughgarden, editor, Beyond the648

Worst-Case Analysis of Algorithms, pages 646–662. Cambridge649

University Press, 2020. doi:10.1017/9781108637435.037.650

[24] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improv-651

ing online algorithms via ML predictions. In Advances652

in Neural Information Processing Systems 31: Annual653

Conference on Neural Information Processing Systems654

2018, NeurIPS 2018, pages 9684–9693, 2018. URL:655

https://proceedings.neurips.cc/paper/2018/hash/656

73a427badebe0e32caa2e1fc7530b7f3-Abstract.html.657

[25] Shinsaku Sakaue and Taihei Oki. Discrete-convex-658

analysis-based framework for warm-starting algorithms659

with predictions. In NeurIPS, 2022. URL: http:660

//papers.nips.cc/paper_files/paper/2022/hash/661

844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.662

html.663

[26] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time al-664

gorithms for graph partitioning, graph sparsification, and solv-665

ing linear systems. In Proceedings of the 36th Annual ACM666

Symposium on Theory of Computing, 2004, pages 81–90. ACM,667

2004. doi:10.1145/1007352.1007372.668

10

https://doi.org/10.1109/ICCV.2005.81
https://doi.org/10.1109/ICCV.2005.81
https://doi.org/10.1109/ICCV.2005.81
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3447579
https://doi.org/10.1145/1250910.1250952
https://doi.org/10.1145/1250910.1250952
https://doi.org/10.1145/1250910.1250952
https://doi.org/10.1017/9781108637435.037
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.html
https://doi.org/10.1145/1007352.1007372

	Introduction
	Our results
	Related work
	Limitation and open problem

	Warm-starting Ford-Fulkerson
	Alternative variant of the first step

	Learning a prediction that minimizes error
	Sample complexity

