
Università Commerciale “Luigi Bocconi”

PhD School

PhD program in: STATISTICS

Cycle: 34th

Disciplinary Field (code): SECS-S/01 STATISTICS

Machine Learning Approaches for
Computing Information Value and

Information Density

Advisor: EMANUELE BORGONOVO

PhD Thesis by

Mariusz Budzinski

ID number: 3084829

Academic Year: 2023



1



1. Abstract

Information value (VoI) analysis is a key component for decision-making supported by

quantitative simulations [37]. A key obstacle to the full utilization of VoI is computational

efficiency. This thesis examines the use of machine learning approaches to estimating VoI

for realistic simulators. We compare the smoothing approaches already introduced, and

propose two novelties. First, an approach based on the nearest neighbors. We prove

a central limit theorem and then we discuss the automatic selection of the number of

neighbors through a LassoLars weighting approach. We also propose a modification of

a previously introduced algorithm by using MARS regression. We compare the resulting

estimators through a wide range of numerical experiments. We then adapt the algorithms

for the estimation of a new quantity, the information density. Experiments show that the

algorithms can be successfully modified and one obtains consistent indications about the

regional importance of variables, both individually and in groups.
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CHAPTER 1
ESTIMATING INFORMATION VALUE: A COMPARISON OF

MACHINE LEARNING APPROACHES

3. Introduction

Decision-makers rely on the information provided by quantitative models in an increas-

ing number of applications. As [11] highlights, proper uncertainty quantification plays a

central role in making the analysis transparent and better informed. Within uncertainty

quantification, factor prioritization, i.e., the identification of the factors that drive uncer-

tainty in model predictions becomes a key task for analysts and decision-makers. For factor

prioritization, analysts rely on global sensitivity measures. Indicators in this family range

from variance-based ([33],[27]) to distribution-based [5]), to value of information-based in-

dices [25]. Among these sensitivity measures, the value of information is specifically suited

to all those applications in which simulation outputs are used to evaluate and compare

alternative policies.

The suggestion of value of information (VoI) as a global sensitivity method comes from

works such as [12, 13] in the context of medical decision-making. These works highlight that

VoI can quantify input importance while taking into account whether the optimal policy

changes when we receive perfect information about a feature. They summarize this fact

suggesting that VoI provides value as well as decision sensitivity. Reviews of applications

of VoI can be found in works such as [6, 21, 41].

Because VoI is a global sensitivity measure, its estimation can be challenging as recently

highlighted in [24]. In fact, the definition of VoI requires a so-called double loop of Monte

Carlo evaluations. First, one propagates uncertainty in the decision-support model and

identifies the nominal optimal alternative. Then, one fixes the input of interest at a given

value, samples from the conditional distribution and re-evaluates the model on this con-

ditional sample (say with a sample of size Nint). This operation needs to be repeated for

several values of the input of interest (say Next) and for each input, leading to a total
5
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double-loop estimation cost of CDL = nXNextNint model evaluations, where nX is the num-

ber of model inputs. Several works have then addressed this challenge. The combination

of a double loop design and a Gaussian process has been pioneered for the calculation of

VoI in [25] and [26]. To reduce computational burden, [35, 38] propose alternative one-loop

approaches that require COL = N model evaluations. The approach in [35] relies on scat-

terplot partitioning. In addition, the approach is affected by the curse of dimensionality,

and becomes unreliable when calculating the VoI of groups of factors of cardinality greater

than two. The approach of [38], instead, considers a non-parametric regression over these

scatterplots avoiding the partition size selection, and performs well also for input groups.

In this work, we propose two new approaches. First, we present a nearest neighbors VoI

estimator and we prove a corresponding central limit theorem. Based on this proposal, we

develop a new algorithmic procedure. We investigate the algorithm in detail and propose

a machine learning approach for determining the number of neighbors. The approach

relies on creating an artificial dataset of output values associated with each neighborhood

and then processing this dataset with a shrinkage procedure to identify the influential

neighbors. We also discover that when the VoI estimation concerns a group of features

of cardinality greater than 2, the VoI nearest neighbors estimator requires a large sample

to obtain reliable estimates, which translates into a very long computation time. This

is due to the curse of dimensionality. To overcome this issue we notice that the nearest

neighbors approach consists of modeling the neighborhood of a fixed point by taking an

average. The generalization of such an approach would be to use a more complex model.

Such intuition stands behind local regression methods which are characterized by greater

statistical and generalization power. Methods that follow such an intuition are for example

local linear regression and the MARS model. This leads us to replace the nearest neighbors

approach with such methods when estimating VoI. The approach yields a notable reduction

in computational time and makes VoI estimation possible for very large data sets with even

millions of observations. Additionally, the VoI estimator becomes more reliable. This is

due to the fact local regression modeling has greater generalization power than the nearest

neighbors approach.
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In order to compare the proposed algorithms with the state-of-the-art solution given

by Strong and Oakley [37], we conduct a series of experiments with a case study with

2 scenarios: a multilinear model in which inputs are correlated, but with known analytic

solutions for all conditional distributions, and the same model in which inputs are correlated

but where sampling from the conditional distributions requires MCMC. The testing is done

for different sample sizes and not only for individual inputs but also for input groups up

to order 7.

We also demonstrate how to use VoI as a feature selection tool for decision problems when

the decision maker needs to choose an option from a set of alternatives. We demonstrate

the results of such selection for two case studies.

The remainder of the work is structured as follows. In Section 4, we review extant

literature, with a focus on VoI and estimation algorithms. In Section 5, we introduce

the proposed method and demonstrate the method in the two case studies, and compare

the received results with other existing algorithms in the fourth section. In the end, we

summarize obtained results.

4. Literature Review

This work intersects literature streams regarding VoI and machine learning approaches.

We provide a synthetic review in this section, focusing on the works and aspects more

closely related to our work. In Subsection 4.1 we introduce the notion of VoI and the

estimation algorithms by Strong and Oakley [36] and Strong and Oakley [37]. In Subsection

4.2 we give a brief description of the Nearest Neighbor method for regression problems.

4.1. Information Value. The notion of information value has been developed within the

realms of decision analysis and probability theory. A first intuition can be found in an

unpublished note by Frank P. Ramsey [30]. It has then been formally developed in works

such as [29]. As in [25], we consider the formulation of VoI as an expected utility increase,

which is also typically used in statistical applications [4].

Let (Ω,B(Ω),P) be a probability space. Consider a decision maker who is using a model

to support the selection of an action from a finite set of possible alternatives A. The input

and output of this model are represented by random vectors defined on the (Ω,B(Ω),P),
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X : = (X1, ...,Xk) and Y : =
(
Ya1 , Ya2 , ..., Ya|A|

)
=

(
g(X, a1), g(X.a2), ..., g(X, a|A|)

)
,

where g(X, a) represents the model’s output for alternative a ∈ A. We also assume that

the decision maker has assessed a utility function, S : R → R, S (Ya).

The decision-making problem is to select an alternative such that

(1) argmax
a∈A

E(S (Ya)).

In case the analyst receives the posterior information Xu = (xi1 , . . . xil), with u = {i1, i2, . . . , il},

l ≤ k and u ⊆ (1, 2, . . . , k), where k is the number of features, two things can happen. The

distribution of the Ya might change as well as the preferred alternative. The maximization

problem becomes

(2) argmax
a∈A

E(S (Ya(X))|Xu).

Problem (16) is called prior expected value of action posterior to perfect information ([28],

p.252). We then have the following definition of VoI:

Definition 4.1 (Information Value (VoI)). The VoI for getting to know Xu is given by

(3) ϵSXu
= E(max

a∈A
E(S (Ya)|Xu)) − max

a∈A
E(S (Ya)).

VoI equals the expected increase in utility registers when the uncertainty about the

model inputs or groups of inputs will be removed. Note that (17) is always greater than

equal to zero. Also, VoI is null if information about Xunever causes the optimal decision

to change. Thus, a null VoI signals that the decision-maker’s selection is not affected by

uncertainty about Xu. This makes VoI a measure of decision sensitivity, besides of value

sensitivity. In order to be able to use VoI in practical applications, efficient estimation

methods are needed.

The efficient estimation of VoI has attracted notable interest in the literature. Coyle

and Oakley [9] provides an overview of methods developed in the late 1990’s and early

2000’s. Of these, the double loop Monte Carlo approach is then subject to intensive

numerical investigation in the work of [25]. Heath et al. [19] carry out a recent overview of

calculation methods. They compare the Strong and Oakley single-loop (partition-based)

estimation method [36], the method of Sadatsafavi et al. [32] and the non-parametric
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regression method of Strong and Oakley [37]. The results of Heath et al. [19] evidence

the efficiency of the non-parametric regression methods of Strong and Oakley. We present

these algorithms in detail next.

The starting point of the analysis is a dataset of input-output realizations obtained by

propagating uncertainty in the decision support model. Then a scatterplot of N observa-

tions {xi, y
i
a}i∈1:N,a∈A can be formed and used to estimate (17).

Strong and Oakley (2013) approach [36]. We consider first the algorithm proposed

in Oakley and Strong [36] (Algorithm 1).

Algorithm 1 Strong and Oakley [2013] [36]

INPUT: Input data set ( S (yi,a), x̃i)i∈ ¯1,N,a∈A

PARAMETERS:

• K - cardinality of the partition

OUTPUT: Information value for continuous feature X̃

1: Sort input data set in ascending order by the value of x̃

2: Divide the input data set prepared in such a way into K blocks, each of J observations,

JK = N .

3: Estimate the first term in the RHS of Eq (17) by

ϵ̂S
X̃ ,1

=
1

K

K∑
k=1

max
a∈A

1

J

J∑
j=1

S (yka,j),

where k indexes block number.

4: Estimate the second term in the RHS of Eq (17) by simple average

ϵ̂S
X̃ ,2

= max
a∈A

1

N

N∑
j=1

S (yj,a)

5: Final estimate is given by the

ϵ̂S
X̃

= ϵ̂S
X̃ ,1

− ϵ̂S
X̃ ,2

In Step 1, for each alternative one forms the scatterplot between the considered continuous

feature and the corresponding utility.
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In Step 2 we need to distinguish two cases. In the case Xi is a continuous random

variable, we need to partition the horizontal axis of the scatterplot. Usually, one assigns

equi-populated partitions. Here a crucial step is the selection of the partition cardinality

(K in Algorithm 1). The realizations of Ya in each partition are averaged to yield an

estimate of (16). In the case X̃ is discrete, there is no need for partitioning. In Step 3, all

such estimates are further averaged over the partitions to approximate the first term in the

RHS of (17). Step 4 uses a simple average to estimate (15). The output of the algorithm

is as in Step 5.

At small sample sizes, the estimates yielded by Algorithm 1 are very sensitive to the

choice of the partition cardinality K. At large sample sizes, instead, Strong and Oakley

(2013) [36] show a plateau effect in which estimates become insensitive to the actual par-

tition number for a wide range of values of K. [36] then recommend picking a value in

this plateau of estimates as the value of VOI to report. The estimation procedure suffers

from the curse of dimensionality, as high-dimensional partitions may not be sufficiently

populated by data to ensure the required statistical accuracy of the estimates.

An alternative algorithm is then proposed by Strong, Oakley, and Brennan (2014) [37].

Algorithm 2 Strong and Oakley (2014) [37] approach

INPUT: Input data set {S (yi,a), x̃i}i∈ ¯1,N,a∈A,where x̃i ∈ Rk, for k ∈ N

OUTPUT: Information value for set of features X̃

1: For each a ∈ A fit Gaussian Process Regressor or Generalised Additive Model g(x̃) to

the input data set {S (yi,a), x̃i}
2: The final estimate is given by the following

ϵ̂S
X̃

=
1

N

N∑
i=1

max
a

g(x̃i) − max
a

1

N

N∑
i=1

g(x̃i)

The idea is to treat the output of the model as noisy. In Step 1 a non-parametric

smoothing procedure such as a Gaussian Process Regressor (GPR) [31] or a Generalised

Additive Model (GAM) [17] is used to smooth the data for each a ∈ A separately. In Step

2 these smoothed values are inserted in the VOI formula to yield the final estimate. In
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comparison to Algorithm 1, Algorithm 2 avoids to chose the partition cardinality which

makes it attractive to use. The algorithm also is less exposed to the curse of dimensionality.

On the other hand, some smoothing procedures may fail to work for a dataset of large

dimensionality. Oakley and Strong (2014) [37] recommend the use of GAMs for moderate

to big data sets.

4.2. The Nearest Neighbors approach. The nearest neighbors algorithm is a non-

parametric method developed by Evelyn Fix and Joseph Hodges in 1951 [14] for classifi-

cation problems and later adapted to regression [2]. Due to its versatility, many different

variants of this method were later proposed. In the case of the classification, it is worth

mentioning [39], where the Stabilized Nearest Neighbors classifier is introduced. Stability

refers to obtaining stable classification results for samples drawn from the same popula-

tion. In the case of regression, it is worth mentioning [10], where the problem of choosing a

metric in the Nearest Neighbors regressor was emphasized and a novel metric is presented

which is invariant on affine transformations and gives asymptotically consistent results. In

our work, we also took into account the problem of choosing the optimal metric. The way

we deal with this problem is described in the next section.

Apart from classification and regression problems, the nearest neighbors approach has

found application in a much areas from statistical testing ([7],[23]) to machine learning

applications such as pattern recognition [20]. In [20], a probabilistic version of the nearest

neighbors method is introduced, which alows for automatic selection of the number of

nearest neighbors. In our work, we also recognize this issue but our approach is different

see Section 5.

4.3. Lasso Lars. The Lasso model (least absolute shrinkage and selection operator) is

a linear regression model introduced in geophysics [34] and later developed by Robert

Tibshirani [40], who coined the term. Its characteristic is the use of L1 regularization

which reduces model dimensionality by decreasing the number of relevant coefficients.

The loss function of the Lasso is not differentiable, but a wide variety of techniques from

convex analysis and optimization theory have been developed to train the model. These
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include coordinate descent, subgradient methods, proximal gradient methods, and least-

angle regression (LARS). The so-called LassoLars model is the Lasso model which uses

the Lars algorithm for fitting. Such an algorithm is extremely efficient, requiring the same

order of computation as that of a single least squares fit using the same number of features.

5. A Nearest Neibghour Approach to VoI Estimation

This section is divided into three parts. In Section 5.1, we introduce general results

for the estimation, deriving a central limit theorem for the estimates. In Section 5.2, we

discuss an approach for automating the selection of neighbors through cross-validation and

LassoLars weighting.

5.1. A Central Limit Theorem Result. If X̃ is a set of continuous random variables, in

order to define E(Y |X̃ = x), we have to specify what limiting procedure produces the set

X̃ = x, to avoid the Borel–Kolmogorov paradox. Define the set H ϵ
x := {ω

∣∣∣∥X̃(ω)−x∥ < ϵ}
with the assumtion that H ϵ

x is measurable with P(H ϵ
x) > 0 for all ϵ > 0 [16]. Then we can

define E(Y |X̃ = x) as

lim
ϵ→0

E(Y |H ϵ
x).

Now focus on the first term on the RHS of (17). We can write

(4) EX̃(max
a∈A

EY (S (Ya)|X̃ = x)) = EX̃(max
a∈A

lim
ϵ→0

EY (S (Ya)|H ϵ
x)).

The question is whether we can approximate (4), selecting a sufficiently small δ > 0, so

that the quantity

(5) εX(δ) = EX̃(max
a∈A

EY (S (Ya)|H δ
x )),

tends to εX when δ → 0.

The problem then becomes whether we can exchange the limit and the max operations.

We need to specify under which conditions for a function f(a, ϵ), f : A × R → R the

following holds true:

(6) max
a∈A

lim
µ→0

f(a, µ) = lim
µ→0

max
a∈A

f(a, µ).
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For this, it is sufficient that µ → f(a, µ) is continuous at µ = 0 for each a ∈ A. To see this

consider two cases

• Case 1: A is a discrete set

Define the preferred action a∗ := argmaxa∈A limϵ→0 f(a, ϵ), the second best action

as a∗∗ and δa∗,a∗∗ := 1
2

limϵ→0(f(a∗, ϵ)−f(a∗∗, ϵ)). By continuity of f at ϵ = 0, there

exists ζ > 0 such that |f(a, ζ)− limϵ→0 f(a, ϵ)| < δa∗,a∗∗ , for every a ∈ A uniformly.

Hence, argmaxa∈A f(a, ζ) = a∗.

• Case 2: A = Rk

By the continuity of f(a, ·) at 0 we can write

∀ρ > 0 ∃ζ > 0: ∀a ∈ A lim
ϵ→0

f(a, ϵ) − ρ < f(a, ζ) < lim
ϵ→0

f(a, ϵ) + ρ

Applying the max operator to the above inequality and taking ρ → 0, (6) is true.

Assume further that A is a discrete set. Notice that (17) can be rewritten in the following

form

ϵS
X̃

= E(max
a∈A

E(S (Ya)|X̃ = x)) − max
a

E(S (Ya)) = E(E(S (Ya∗x)|X̃ = x) − E(S (Ya∗∗)|X̃ = x))

= E(lim
ϵ→0

E(S (Ya∗x) − S (Ya∗∗)|H ϵ
x)),

(7)

where a∗x = argmaxa∈A E(S (Ya)|X̃ = x) and a∗∗ = argmaxa∈A E(S (Ya)). We can then

define

(8) ϵS
X̃

(δ) = E(E(S (Ya∗
Hδ
x

) − S (Ya∗∗)|H δ
x )),

where a∗
H δ

x
= argmaxa∈A E(S (Ya)|H δ

x ) and by (6)

(9) lim
δ→0

ϵS
X̃

(δ) = ϵS
X̃

.
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The outer expectation in (8) can be approximated by its empirical average so that estimates

of a∗
H δ

x
, a∗∗ can be written as

â∗H δ
x

:= argmax
a∈A

1

|H δ
x |

∑
(y′a,x

′)|x′∈H δ
x

S (y′a),

â∗∗ := argmax
a∈A

1

N

N∑
i=1

S (yi,a),

(10)

respectively, where N is the sample size and |H δ
x | is the cardinality of the set H δ

x . Then we

have

1

N

N∑
i=1

EY (S (Yâ∗
Hδ
xi

) − S (Yâ∗∗)|H δ
xi

) =
1

N

N∑
i=1

1

|H δ
xi
|

∑
(yj,â∗

Hδ
xi

,xj)|xj∈H δ
xi

(S (yj,â∗
Hδ
xi

) − S (yj,â∗∗)).

(11)

The next step is to change the order of the summation in (11). Because action set A is

discrete and |A| = d, we can define the following ordered set

∆Ŝ = {S (y1,a1) − S (y1,â∗∗), · · · , S (y1,ad) − S (y1,â∗∗), · · · ,

S (yN,a1) − S (yN,â∗∗), · · · , S (yN,ad) − S (y1,â∗∗)}.

Then (11) can be further rewritten as

(12)
N∗d∑
i=1

∆Ŝi
1

N

∑
x|x⌊i/d⌋∈H δ

x

1

|Hδ
x|

∗ δâ∗
Hδ
x
=a⌊i/N⌋

=
N∗d∑
i=1

∆Ŝiα̂i = ϵ̂S
X̃

(δ).

In equation (12) we recognize a central limit theorem (CLT):

(13) ϵ̂S
X̃

(δ) →d N (ϵS
X̃

(δ),
N∗d∑
i=1

V(α̂i∆Ŝi)),

where
∑N∗d

i=1 E(α̂i∆Ŝi) = ϵS
X̃

(δ). Equation (13) states that the estimate in (12) is asymp-

totically normal.

In the context of numerical applications, the estimation is made on the basis of a finite

sample size. This leads to a few complications. First of all it is impossible to take the

limit δ → 0, since it is required that |H δ
x | > 0, for all x. The direct consequence of this is

an estimator whose bias increases as δ increases. On the other hand, the variance of such
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an estimator decreases with δ. It is the well-know bias-variance trade-off that influences

directly accuracy and speed. This is where the problem of δ selection arises as well as

the metric to determine Hδ
x. Moreover, when X̃ is of high dimensionality, the approach

is exposed to the curse of dimensionality. Since the number of points falling in a given

neighborhood might be small, leading to inaccurate estimates. In our experiments, we

found that the proposed estimator is very sensitive to the choices of Hδ
x, especially when

feature space is multidimensional.

In our work, we decide to use one of the most popular versions of the nearest neighbors

algorithm, namely k-nearest neighbors which is to choose the considered number of nearest

neighbors and treat them as a neighborhood Hδ
x. In our experiments, we recognize the

problem of selecting the number of neighbors and propose a new approach that allows for

dynamic and automated selection of the number of neighbors. We explain the method in

the next subsection.

5.2. Cross-validation + LassoLars weighting. The approach is presented in Algo-

rithm (3) and it is divided into three stages. First, the algorithm performs a search for

metric, where we limit ourselves to the weighted Euclidean metric which is equivalent to

applying the linear transform of the p-dimensional feature vector x̃ →
√
α ◦ x̃, where

α ∈ [0 : 1]p, ◦ is the Hadamard product (
√
α ◦ x̃)i =

√
αix̃i and using not weighted Eu-

clidean metric. This are Steps 1-12. The second stage, Steps 13-15, is to find weights for

the weighted k- nearest neighbor approach using of the Lasso regression. The last stage,

Steps 16-19, is to use the results of the previous stages in order to output the estimates.

Algorithm 3 Information value estimate for continuous input features X̃ based on

nearest neighbour algorithm

INPUT: Input data set ( S (yi, a), x̃i)i∈ ¯1:N,a∈A

PARAMETERS:

• K - number of folds in the validation procedure

• kmax - maximal number of nearest neighbors to consider

• nbayes - number of steps for Bayesian search

• kbayes - maximal number of nearest neighbours to consider during Bayesian search

OUTPUT: information value for X̃
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1: Split randomly K times matrix {x̃i}i∈1̄n into train/validation subsets Fi,Gi such that

Fi ⊔Gi = {x̃j}j∈1:N for each i ∈ 1 : K.

2: for each a ∈ A do

3: Perform Bayesian search to find optimal α, Steps 4-10:

4: For candidate vector α consider the transformed data set {
√
α ◦ x̃i}1:N , where ◦ is

the Hadamard product. Note that train/validation splits do not change but they

include now transformed features.

5: for each test set Gi do

6: for each
√
αx̃m ∈ Gi find its kbayes nearest neighbours among Fi and

create the nearest neighbours matrix A such that

Amn := n-th nearest neighbour of x̃m among Fi

7: for each j ≤ k calculate the validation absolute score CV a
ij

CV a,α
ij :=

1

|Gi|
∑
x̃l∈Gi

| 1

m

∑
0≤m≤j

S (yAlm
, a) − S (yl, a)|

8: return minj meani CV
a,α
ij

9: end for

10: After nbayes step of Bayesian search select optimal α∗
a

α∗
a = argmin

α
min
j

mean
i

CV a,α
ij

11: Using α∗
a repeat Steps 5- 7 using kmax nearest neighbors instead of kbayes and return

average validation score matrix CV
a,α∗

a
ij . Denote by

k∗
a,i = argmin

j
CV

a,α∗
a

ij

12: Using (
√
α∗
ax̃i)i∈1,N contruct matrix (Bij )i∈1:N,j∈1:maxi k∗a,i

, where

Ba
ij = j-th nearest neighbour of

√
α∗
ax̃i
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and matrix
(
C a

ij

)
i∈1:N,j∈1:maxi k∗a,i

, where

C a
ij = S(yBa

ij
, a)

13: end for

14: for each i ∈ 1 : K do

15: Fit LassoLars model or other regression model to the (C a
j,1:k∗a,i

, S (yj, a))j∈1:N and

compute predictions (Ŝ (yj, a))j∈1:N on training inputs C a
j,1:k∗a,i

16: Compute the following

ϵ̂i
X̃

=
1

N

N∑
i=1

(Ŝ (yi, â
∗
i ) − Ŝ (yi, â

∗∗)),

where

â∗∗ = argmax
a

N∑
i=1

Ŝ (yi, a),

â∗i = argmax
a∈A

Ŝ (yi, a)

17: end for

18: Define

ϵ̂X̃ = mean
i

ϵ̂i
X̃

19: return ϵ̂X̃

The algorithm works as follows. First of all the assignment of four parameters is required:

an initial value kmax of neighbors, the number K of train/validation splits, the number

kbayes of nearest neighbors to consider during the nbayes steps in a Bayesian search.

In Step 1 we split randomly K times the input data set into train/validation subsets.

Step 2 states that each a ∈ A is processed separately. In Step 3 a Bayesian search for

metric begins. For candidate vector α the input data set is transformed to {
√
αx̃i}1∈1:N as

in Step 4. Each previously created train/validation split Fi ⊔Gi is processesd as in Steps

5-9. Firstly, kbayes nearest neighbors for all observations from Gi are determined among the

training part Fi, and the matrix A is created as in Step 6. In Step 7 the mean validation

absolute error of the j-nearest neighbors regressor for each j ≤ kbayes is calculated. The
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minimal average validation error across all train/validation partitions is returned in Step

8. After nbayes steps of Bayesian search the optimal weights vector α∗
a is returned as in

Step 10.

In Step 11 the optimal number of neighbors k∗
a,i are computed for each train/validation

split. This completes the search for a weighted Euclidean metric. The second stage begins.

In Step 12 matrix
(
C a

ij

)
i∈1:N,j∈1:maxi k∗a,i

is contructed, where

C a
ij = S(yBa

ij
, a)

and Ba
ij is the j-th nearest neighbour of

√
α∗
ax̃i. In Steps 14-17 each of the K train/validation

splits is processed separately. Consider the i-th split and define the data set

Ca.i =
(

(C a
nm)m∈1:k∗a,i

, S (yn, a)
)
n∈1:N

.

In Step 15 the LassoLars model is fitted on Ca,i, where (C a
nm)m∈1:k∗a,i

is a feature vector and

the corresponding response is S (yn, a). The prediction on Ca,i is returned. The justifica-

tion of this step is that the LassoLars model automatically assigns weights to neighbours

through L1 regularization, thus selecting the ’important’ ones. Then in Step 16 an estimate

of VoI is calculated based on the prediction from Step 15. The final estimate is an average

of estimates given for each train/validation split as in Steps 18, 19.

Finally, we highlight a connection of our Algorithm 3 with Strong and Oakley’s Al-

gorithm 2, in the case a GP model is chosen as a smoothing technique. The trained GP

model for a new observation x̃∗ returns the following prediction

(14) y∗ = (K (x̃∗, x̃i))i∈1:N (K (x̃i, x̃j))
−1
i∈1:N,j∈1:N(S (yi, a))i∈1:N ,

where K (·, ·) is a kernel function. The prediction (14) is a weighted average of the input

data set (S (yi, a))i∈1:N with a specific choice of the weights. This is equivalent to the

weighted nearest neighbors algorithm. Thus, Algorithm 2 and Algorithm 3 differs only

by the weights selection.

5.3. Local learning approach. The idea presented in Algorithm 3 is based on equation

(8) which is a local approximation of the inner expectation. In section 5.2, we have proposed

using the nearest neighbors algorithm for that purpose but we can be more general and
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use a local modeling approach to make our estimate more robust. By local modeling we

mean using models that fits to the data locally. A well-known representative example is

the locally estimated scatterplot smoothing model (LOESS) [8]. The obvious gain from

using local modeling is in predictive power as local models are a more flexible solution

than the ordinary nearest neighbors approaches, becasue they can incorporate not trivial

local patterns in data. On the ther hand, LOESS model is computationally expensive,

becasue it performs fitting in the neighborhood. A good alternative is to partition data

into blocks and build a model for each block separately. Such an approach is expected to

be much faster computationally and also very flexible if partitioning is done automatically

and is optimized to the data. A good example of such algorithm is the multivariate

adaptive regression splines model (MARS) [15]. The idea presented here is similar to the

one presented in Algorithm 2 with the difference that instead of a GAM or a GP model

we fit a MARS or a LOESS model.

6. Numerical Experiments

In this section, we compare the performance of the algorithms in a series of numerical

experiments. In Section 6.1, we present results for the first case study in [37]. In Section

6.2, we present results for the second case study in [37]

6.1. Case Study 1.[37]. As a first case study, we rely on Case Study 1 of Strong’s and

Oaekly’s [37]. The model represents a hypothetical decision tree with correlated inputs.

The decision-maker is selecting between two alternatives whose utility S (y, ai) (i = 1, 2)

depends on 12 uncertain inputs as follows:

S (y, a1)|X̃ = x̃) = λ(x5x6x7 + x8x9x10) − (x1 + x2x3x4)

S (y, a2)|X̃ = x̃) = λ(x14x15x16 + x17x18x19) − (x11 + x12x13x4),
.

as in [37], in The inputs are assigned a joint normal distribution, with X5, X6, X14 and X16

pairwise correlated with a correlation coefficient equal to 0.6. Table 1 reports the means

and standard deviations of the inputs. We also assign λ = 10000 as in [37]. We report

a selection of several experiments developed to test the performance of the algorithms

presented in the previous sections. We perform experiments at increasing sample sizes and
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Table 1: Summary of means and standard deviations for case study 1

to obtain an uncertainty quantification of the estimates we perform 300 replicates sampling

independent data sets from the input distributions and correspondingly re-running the

model. The uncertainty in the estimates is then represented as a boxplot. Figures 1,2, 3.

display the obtained results. Figure 1 present results for individual features, while Figures

2, 3 for features group. Above each box in parentheses is the mean and standard deviation

of the estimates. Additionally, the mean is indicated by a solid line on each box. The

graphs in each figure show results for sample sizes starting at M = 500 (first graph) to

M = 50000 respectively (the sample size is displayed at the top of each graph).

Table 2 shows the average execution times (over 300 replicates) in seconds of the alter-

native algorithms (listed in the first column), for alternative sample sizes (second column)

and for alternative group size (from one feature, column 3, to eight features, column 7).

Algorithm
Sample

size

One

feature

Two

features

Four

features

Five

features

Eight

features

Algorithm 3

(LassoLars weights)

500 0.35 3 3 4 7

1000 0.4 4 4 6 8

10000 10 14 10 12 20

25000 30 16 15 15 24

50000 35 20 27 27 30

Algorithm 3

(No LassoLars weights)

500 0.3 3 3 4 7

1000 0.35 3 3 5 8

10000 5 8 8 10 18

25000 13 9 10 12 20

50000 20 10 17 18 21

Algorithm 2

(LOESS)

500 0.05 0.05 0.15 Too large Too large

1000 0.06 0.1 0.5 dimensionlity dimensionlity
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10000 1 3 30 for for

25000 13 50 600 the R the R

50000 33 145 >600 implementation implementation

Algorithm 2

(MARS)

500 <1 <1 1 <1 <1

1000 <1 <1 1 <1 <1

10000 <1 < 1 1 <1 <1

25000 <1 <1 1 1 1

50000 <1 <1 1 1 3

Algorithm 2

(GAM)

500 <1 <1 <1 2 <1

1000 <1 <1 <1 3 <1

10000 <1 <1 <1 <1 1

25000 <1 <1 1 1 3

50000 <1 1 3 3 6

Algorithm 2

(GP)

500 2 2 2 2 3

1000 4 4 4 4 4

10000 50 60 70 92 192

25000 >500 >500 >500 >500 >500

50000 >500 >500 >500 >500 >500

Table 2. Approximate running times in seconds of various algorithms for

VoI estimation depending on the number of input variables.

The second row reports the performance of the LarroLars algorithm with weight selec-

tion. The values show that the algorithm takes about 0.35 seconds to estimate information

value at a sample size N = 500, while it takes 35 seconds at N = 50000. For groups of

larger size, we have a systematic increase with the sample size, but the increase with respect

to the cardinality of the group is not systematic. For instance, at N = 50000, we register

the lowest estimation time for groups of 2 features and the time for the 8-feature group

is lower than the time for the 1-feature group (we discuss this aspect further). The third

row reports the performance of the same algorithm without automatic weight selection.
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The algorithm is systematically faster that the version with weight selection. Also for this

algorithm we register a systematic increase with the sample size, but a non-systematic in-

crease with the group size, with the group of two features being faster than the group with

1 feature. The fourth row reports results for the times of Algorithm 2 with LOESS as a

metamodel. We see that the algorithm is substantially slower that the LassoLars algorithm

and inapplicable for groups of four features for N ≥ 25000 and not applicable for groups of

5 ot 8 features. Conversely, Algorithm 2 with MARS (row 5) or GAM (row 6) proves to be

computationally fast, with running times smaller than 1 second in the majority of cases.

Finally, row 7 shows that the GP algorithm fails to yield estimates within reasonable time

at N = 25000 and N = 50000. This result is in line with previous literature findings [19].

Regarding the non-systematic increase with respect to the group size, we belive this is is

mainly due to the fact that for higher dimensional feature groups it is optimal to consider

a smaller number of neighbors than in low-dimensional cases. This is directly related to

the curse of dimensionality and it is easily seen in the following example. Consider a single

feature X1 and any point x1
0 from the input data set. If we plot a sphere on the basis of

X1 and a fixed radius centered at x1
0, then there will be k0 neighbors within its boundary

(let’s assume that k0 > 0). On the other hand, if we want to include a larger number

of features and plot a sphere with the same center and such that it includes the same

number of neighbors k0, its radius will have to increase with the increase of the number of

features under consideration, which icrease a bias as in (13). Thus, for a fixed number of

observations in the input set, as the number of considered features increases, due to the

bias-variance tradeoff it is optimal to use a smaller number of neighbors.

Notice that the GP and LOESS algorithms are dropped in calculations for sample sizes

equal to N = 25000 and N = 50000 because their execution time is larger than 10 minutes.

Additionally, we use the R implementation of the LOESS algorithm, which allows us to

perform calculations for groups of variables with a maximum size of 4. Overall, Algo-

rithm 2 (GAM) and Algorithm 2 (MARS) turn out to be timewise inefficient, for sample

sizes greater than N = 10000, while the remaining algorithms are fast and of practical

applicability also at large sample sizes. (The LassoLars weights Algorithm 5 increases the

computation time, but to such an extent that it is still possible to apply the algorithm
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to data sets with a large number of observations.) This aspect is important because we

are guaranteed an asymptotic consistency and thus all these algorithms allow analysts to

exploit from the largest possible sample size.

In Figure 1, the mean point estimates are stable at about 610 with all algorithms at all

sample sizes. The horizontal axis reports the 95% confidence intervals for the estimates

of X6. One notes that the width of the confidence intervals shrinks as the sample size

increases. At N = 500 for Algorithm 3 (with LassoLars weights) we register CI0.95 =

[490, 720], which corresponds to a [−18%,+20%] around the mean, while at N = 50000

we register CI0.95 = [594, 626], which corresponds to a variation of about 2% around the

mean.

Figure 1. Result of VoI estimation for X6 by different algorithms

We then consider the estimation of the joint information value of input groups. Figures

2 and 3 display results for the estimation of a 4-input group, X5, X6, X14, X15 and a 5-

input group X5, X6, X14, X15, X19. Both figures show that the average point estimates of

the tested algorithms differ for almost all sample sizes. Moreover, all algorithms except

Algorithm 3(No LassoLars weights) produce stable estimates starting from a certain

sample size. For example, Algorithm 2(MARS) produces stable estimates starting from

a sample size N > 1000 for both Figures 2 and 3. The point estimate produces a value of
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ϵ̂X5,X6,X14,X15 = 850 Algorithm 3 with LassoLars weights, is stable starting with a sample

size greater than 10000 in Figure 2 (mean estimate around ϵ̂X5,X6,X14,X15 = 845) and than

25000 in Figure 3 (mean estimate around ϵ̂X5,X6,X14,X15,X19 = 848).

We can then establish a confidence interval by considering the area between the 25th

and 75th percentiles. We say that two algorithms give consistent results if their confidence

intervals have a common part. For both Figures 2 and 3 and samples larger than 500 we

observe that the Algorithm 3 without LassoLars weights gives estimates not consistent

with other approaches. The situation changes significantly when Lassolars weights are

used. We observe then the consistency of the results with all tested versions of Algorithm

2. What is more, this consistency turns out to be even greater in comparison with the

consistency among different versions of Algorithm 2. This means that Algorithm 3

in both cases gives results that are a good compromise between estimates derived from

different versions of Algorithm 2.

6.2. Case Study 2 of Strong and Oakley 2014 [37]. The case study contains a three-

state state Markov Model and concerns the selection between two alternatives, a1 and a2,

whose utilities depend on a set of 31 inputs as follows:

S (y, a1)|X = λ(
20∑
i=1

ST
1 M

i
1U1 + X8X9X10) − (X1 + X2X3X4)

S (y, a2)|X = λ(
20∑
i=1

ST
2 M

i
2U2 + X17X18X19) − (X11 + X12X13X4).

Regarding the input distributions, we have S1 := (X5, 1, 0)T ,S2 := (X14, 1 −X14, 0)T , U1 :=

(X6, 0, 0)T ,U2 := (X15, 0, 0)T and
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Figure 2. Result of VoI estimation for the input group (X5, X6, X14, X15)

by different algorithms

M1 :=


X20 X21 X22

X23 X24 X25

0 0 1

 M2 :=


X26 X27 X28

X29 X30 X31

0 0 1

 ,

[37] assign the following distributions to the uncertain inputs:

X20, X21, X22 ∼ Dirichlet(70, 40, 10),

X23, X24, X25 ∼ Dirichlet(10, 100, 20),

X26, X27, X28 ∼ Dirichlet(70, 40, 10),

X29, X30, X31 ∼ Dirichlet(10, 100, 20),
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Figure 3. Result of VoI estimation for (X5, X6, X14, X15, X19) by different

algorithms

X2, X5, X8, X12, X14, X17 are assigned Beta distributions and X3, X4, X10, X13, X19 ∼ Gamma

distributions, with means and standard divations reported in Table 1. Inputs X1 to X19

are assumed independent of the others.

We report results for sample sizes equal to 500, 1000, 10000, 25000 and 50000 for different

combinations of input features. In Figure 4 we present results for single features and in

Figures 5,6,7 for groups of features.

In Figure 4, the mean point estimates are stable at an information value of about ϵ̂X6 =

510 for all algorithms and at all analyzed sample sizes. The horizontal axis reports the 95%

confidence intervals for the estimates of X6. One notes that the width of the confidence

intervals shrinks as the sample size increases. At N = 500 for Algorithm 3 (with LassoLars

weights) we register CI0.95 = [488, 536], which corresponds to a ±4% deviation around the

mean, while at N = 50000 we register CI0.95 = [502, 520], with a deviation of about ±1.7%

around the mean.

We now report results for groups of higher dimensions. Figures 5, 6, and 7 display results

for the estimation of a 2-input group, (X5, X14), a 4-input group (X5, X6, X14, X15) and a

8-input group (X20, X21, X23, X24, X26, X27, X29, X30), respectively.
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Figure 4. Result of VoI estimation for X6 by different algorithms

Figure 5. Result of VoI estimation for (X5, X14) by different algorithms

Figure 5 shows that the point estimates ϵ̂X5,X14 are more sensitive to the sample size

than in the one-dimensional case. Specifically, algorithm 1 fails to produce reasonable
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Figure 6. Result of VoI estimation for (X5, X6, X14, X15) by different algo-

rithms

Figure 7. Result of VoI estimation for

(X20, X21, X23, X24, X26, X27, X29, X30) by different algorithms
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estimates at N = 500, however, it produces accurate estimates for N ≥ 10000. All three

figures show that the average point estimates of the tested algorithms differ for almost

all sample sizes. Moreover, all algorithms except Algorithm 3 (No LassoLars weights)

produce stable estimates starting from a certain sample size. For example, Algorithm 2

(MARS) gives results that show stability starting from a sample size greater than 10000

for all three figures. Algorithm 3 with LassoLars weights, is stable starting with a sample

size greater than 10000 in Figure 6 ( the mean point estimates around ϵ̂X5,X6,X14,X15 =

602) and than 25000 in Figures 5, 7 ( the mean point estimates around ϵ̂X5,X14 = 67;

ϵ̂X20,X21,X23,X24,X26,X27,X29,X30 = 408 respectively).

Overall, we can draw analogous conclusions with respect to Study Case 1 that highlight

the importance of using LassLars weights in Algorithm (3).

6.3. VoI as feature selection tool for decision problems. Consider now that time

or resource constraints allow the decision-maker to collect information on the inputs se-

quentially and that they do not allow to collect simultaneously information on all features.

The problem is then to find the most informative subset of features. This problem (feature

selection) has been formulated in alternative ways and is, by nature, a combinatorial prob-

lem. In fact, there are
(
d
k

)
ways to select k features out of n. In our case, we express the

problem as that of finding the input subset D of minimal cardinality such that XD ⊆ X

of minimal cardinality such that

ϵXD
⩾ αϵX,

where 0 ≤ α ≤ 1. For such a problem direct solution would be to consider all combinations

of features and find the optimal subset. But such an approach is very computationally

expensive. An approximate algorithmic solution is the step-forward feature selection where

at each step a feature that gives the biggest increase in the VoI is selected.

In order to make this approach practical, we need a fast estimation procedure. We

performed experiments for such forward-step feature selection for Case Study 1 (Section

6.1) and Case Study 2 ( Section 6.2) using Algorithm 3 for VoI estimation.

The results are presented in Figures 8 and 9.
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Figure 8. Forward-step feature selection for Case Study 1

Figure 9. Forward-step feature selection for Case Study 2

In Figures, 8 and 9 the horizontal axis presents the selection order given by the feed-

forward procedure and y-axis displays the VoI after adding a new feature to the current

subset of features. Figure 8 shows that set of features {X6, X16, X15, X7} carries over

97% of the total VoI of all 19 features. Similailry, Figure 9 shows that set of features

{X6, X15, X26, X20, X29, X23} carries over 96% of the total VoI of all 30 features. The such

analysis brings a clear picture of the drivers of information value for these case studies.
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CHAPTER 2

INFORMATION DENSITY ESTIMATION

7. Introduction

Global sensitivity measures, and therefore also the value of information in its various

forms, summarize the contribution of inputs to output variability in a unique number. As

such, they do not yield information on the region of the input support which is active in

determining the relevance of an input. This directional concern has the merit, instead,

of making the analysis of input importance more transparent. Here, we note that this

type of sensitivity analysis is called regional sensitivity analysis with the term possibly

being used for the first time in [22]. In the context of decision analysis, graphical tools

are one-way and two-way sensitivity analysis methods. These methods, while providing

regional information, are not engineered to take uncertainty into account. As underlined,

for instance, in [3], their deterministic nature does not make them compatible with a

decision problem under input uncertainty. The earlier analysis of [13] also reveals that

one may obtain false impressions of sensitivity by relying on deterministic methods in the

presence of uncertainty.

To overcome this limitation, Hazen (2014)[18] introduces the notion of information den-

sity, as a regional sensitivity method within VoI analysis. The intuition is to add a tool

that can provide clear information about the critical directions of sensitivity - the same

information that is captured in a graphical sensitivity diagram. A few years after the

proposal, Hazen et al (2022) [1] give formal conditions under which information density

exists and is well-posed. They perform some preliminary numerical experiments for com-

puting information density in a black box context. Their approach, however, is based on a

double-loop design which is computationally expensive. Indeed, Hazen et al (2022) point

out the need for a fast and accurate way to estimate the information density.

In the remaining chapters, we present novel algorithms for the estimation of information

density. Our intuition is to adapt the previously discussed algorithms for VoI estimation so

as to extract simultaneously the regional information associated with information density.

We then adapt the Strong and Oakley’s [38] VoI estimation algorithm and the nearest
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neighbor approach. We conduct a series of experiments with a case study with 2 scenarios:

a multilinear model in which inputs are correlated, but with known analytic solutions

for all conditional distributions, and the same model in which inputs are correlated but

where sampling from the conditional distributions requires MCMC. The testing is done for

different sample sizes and we address both the one and the two-dimensional information

density.

In Section 8, we present the formal definition of information density. In Section 8,

we introduce the estimation methods. In Section 10, we present results of numerical

experiments for two case studies.

8. Information Density

The work of Hazen (2014)[18] introduces the concept of information density. A more

thorough discussion of the definition can be found in the work of Hazen, Borgonovo, and

Lu (2022) [1]. These two works provide the theoretical foundations of information density.

For instance, they show that information density remains meaningful when information

value is defined as an expected utility increase, while information density becomes difficult

to interpret if information value is expressed as a certainty equivalent increase or as a

buying (or selling) price of information. Some numerical experiments and an application

of information density are discussed in Hazen, Borgonovo, and Lu (2022) [1]. However,

the authors adopt a double-loop approach of Monte Carlo simulation to provide an initial

illustration and do not discuss numerical considerations for estimating information density.

In this paper, we address this problem more extensively. Our intuition is to start with the

designs for estimating information value discussed in the previous section and to adapt

them for estimating information density.

Following Hazen et al (2022) [1], we present the definition of information density and

discuss it intuitively by means of an example. The setup is the typical information value

one. We consider a decision maker who is selecting an action from a set of possible actions

A. The uncertain consequences are associated with random payoff V . The decision-maker

possesses a utility function U that maps each possible value of V (and thus each possible
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consequence) to a real number. The problem faced by the decision-maker is then to find

(15) argmax
a∈A

E(U (V a)).

We then consider that the decision-maker has the possibility of collecting information

on random vector X (defined on the same underlying probability space — See Section 4).

Then, the decision problem becomes to find

(16) argmax
a∈A

E(U (V a)|X)).

Problem (16) is called prior expected value of action posterior to perfect information ([28],

p.252). Comparing (16) with (15) gives the expected increase in utility registered when

uncertainty in X is removed

(17) ϵUX = E(max
a∈A

E(U (V a)|X)) − argmax
a∈A

E(U (V a)).

The (17) is known as the value of the information (VoI) of X. Note that VoI is always

greater or equal to zero and is null if and only if X do not change the preferred alternative.

Equation (17) can be rewritten in the following form

(18) ϵUX = E(max
a∈A

E(∆U a|X)),

where

∆U a = U (V a) − U (V a∗)

is the gain for switching to alternative a. Note that this quantity is negative for all a ∈ A
if no new information is received, because a∗ is the preferred alternative in that case. In

the case, with new information, a∗ becomes sub-optimal, then this quantity can become

positive for some a.

Equation (18) shows that ϵUX is the expected value of the random variable maxa∈A E(∆U a|X).

Consider the case when X is absolutely continuous with density fX(x) over some region

ΩX ∈ Rd. Hazen et al (2022) prove that

(19) ιX(x) = fX(x) max
a∈A

E(∆U a|X = x)
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is indeed a density of maxa∈A E(∆U a|X), that is, they prove that

(20) ϵUX =

∫
X
ιX(x)dx =

∫
X
fX(x) max

a∈A
E(∆U a|X = x),

where X is the support of X. Equation (19) is called information density of X since it

is non-negative and its integral is the overall information value. Hazen at al (2022) show

that in the case a∗ is not unique (it is a set), then also information density is not unique,

and we have one information density in correspondence of each alternative in the set.

Example 8.1. We illustrate the notion of information density with a toy decision problem

taken from Hazen et al 2022 [1]. Consider a decision maker selecting among two alter-

natives, a0 and a1. The first alternative is associated with a sure payoff equal of 6$, the

second with a random payoff $10 if event E occurs. The problem is visualized in graphs (a)

and (b) of Figure 10. Let the probability of E occurring be denoted by p. Suppose that p is

assigned the base-case value of p̂ = 0.8. Then, alternative a1 is prefered, with an expected

payoff equal to 8. The value of p at which we change from alternative a1 to alternative

Figure 10. Simple toy decision problem Hazen et al (2022) [1]

a0 (critical value) is pcrit = 0.6. If p assumes values below this threshold, the preferred

alternative changes (Figure 10 (c)) and the decision-maker selects a0. However, p is un-

certain and the analyst assigns a beta(a=4.8, b=1.2) distribution with mean p̂ (Figure 10

(c)). If we perform an uncertainty analysis sampling values of p from this distribution, the
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probabilistic sensitivity analysis would reveal an 11.4% chance of switching from alterna-

tive a1 to alternative a0. We can also compute the VoI of p (either from the sample or

analytically), which results equal to 0.12$. This value is relatively small if compared to the

optimal expected payoff of alternative a1 (which, we recall, equals 8$). This result might

be interpreted as indicating that uncertainty in p might not be an issue despite the 11.4%

chance of change. However, if we rely solely on the magnitude of VoI we do not obtain any

insight into the fact that p needs to decrease below the threshold pcrit = 0.6, in order for

the preferred alternative to change. This directional information is, instead, delivered by

the one-way sensitivity plot. Thus, VoI itself does not allow us to determine the directions

of concern in a sensitivity analysis. However, for this test case, it is possible to derive the

information density of p analytically. The resulting graph is reported in Figure 11 taken

from Hazen et al (2022).
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Figure 11. Information density for p and direction of concern, from Hazen

et al (2022) [1]

The information density in Figure 11 evidences that information about p has its highest

value when p is comprised between 0.3 and 0.6. Also it clearly indicates that the direction

of concern for p is at the left of its base-case value. In particular, it is the part of the

support of p below the threshold that makes p informative. Conversely, If p falls at the

right of the threshold, the preferred alternative is not going to change.

The region of maximal information density as well as the direction of concern can also be

sought in a two-dimensional setting. Consider that not only p but also v1 become uncertain,

with base-case values (p̂, v̂1) = (0.80, 80$), and assign v0 = 65$ with certainty. Suppose p

and v1 are regarded as independent and assigned the following distributions: p is beta with

mean 0.80 and standard deviation 0.0026 (beta(48, 12)), and v1 is normal with mean 80$

and standard deviation 40$. See the left panel of Figure 12, taken from Hazen et al (2022).

Figure 12. Information density for (p, v1) and direction of concern, Hazen et al (2022) [1]
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The dashed line in the graphs of Figure 12 marks the border between the regions where

a∗ = a1 (above the line in this case) and a∗ = a0 (below the line in this case) are, respec-

tively, optimal.

The left and right graphs in Figure 12 also present contour plots of the joint probability

density fp.v1(p, v1) and the joint information density ιp.v1, respectively. We recall that the

joint value of information of (p, v1) equals 12.24$, which is of the same order of the problem

payoffs. Therefore, joint information about (p, v1) is significant for the decision maker. Let

us compare the contour plots in the left and right graphs in Figure 12. The region in which

the joint density of (p, v1) is different from zero covers values included in the rectangle

[0.65, 0.9]× [0, 150]. This region overlaps with both the regions where a1 or a0 is preferred.

In the right graph, however, we have a null information density only in the region where a1

is preferred, as a consequence of the fact that the information gain is non-null only in this

region. The right graph also shows that the contour lines reveal a mode of the information

density at about the point (0.82, $120). This is the region where information about (p, v1)

has its highest value. The arrow from the baseline (p̂, v̂1) = (0.80, $80) to the mode of the

information density evidence the direction of concern. Note that (δp, δv1) = (0.02, $40), so

that for both p and v1, the direction of concern involves an increase (right of the current

values).

9. Estimation

In the previous example, information density can be found analytically. However, in

order to use information density in practical applications, we need efficient estimation

methods. Before this work, in Hazen et al (2022) a double-loop approach is used to

calculate information density numerically. Such an approach works as follows. To fix

ideas, consider a one-dimensional setting and let Xi be the parameter of interest. In a

double-loop design, the first step is to preselect a set of values (called a grid) on which

to compute information density. Let NG be the number of points in the grid and let xk
i

denote a point in the grid (k = 1, 2, . . . , G). Then, once Xj is fixed at any of these values,

we re-evaluate the model through Monte Carlo propagation obtaining a sample of NCond

points from which to compute the conditional expected utility of each alternative. From
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knowledge of the conditional expected utility one computes the information gain at a given

point (ζXi
(xk

i )).

The computational cost for each input is then equal to NG · NCond model evaluations.

In the case the model is characterized by long running times, then this cost becomes

prohibitive. Conversely, we have seen that there are computationally convenient algorithms

to estimate information value and, in the previous chapter, we have also discussed new

alternatives. We argue that these algorithms can be modified to yield information density

as well.

As a first method, we propose an adaptation of the VoI estimation algorithm developed

by Strong and Oakley [37].

Algorithm 4 Strong and Oakley (2014) [37] adaptation

INPUT: Input data set {U (vi,a), xi}i∈ ¯1,N,a∈A,where xi ∈ Rd, for d ∈ N

OUTPUT: Information density of Xi

1: For each a ∈ A fit a machine learning regression model ga(x̃) to the input data set

{U (vi,a), xi}
2: Evaluate the kernel density estimator f̂Xi

(xi) of fXi
(xi) using the input data set

3: for each xi in the input data set do

compute

ι̂UX (xi) = (max
a

ga(xi) − gâ∗(xi))f̂Xi
(xi),

where â∗ = argmaxa
1
N

∑N
i=1 g(xi)

4: end for

5: return (xi, ι̂
U
X (xi)) and visualize it

The idea is the same as for Algorithm (2) and is to treat the model output as noisy. Step

1 is the same as Step 1 of Algorithm (2). Step 2 foresees rsees the use of a kernel density

estimator to determine X. Notice that this step becomes redundant if the probability

density function of X is known. In that case, the value of fXi
(xi) can be assigned directly

in the density estimator.

In Step 3, the results of Steps 1 and 2 are inserted into the information density formula to

obtain the final estimate. The algorithm finally returns all pair of points (xi, ι̂
U
X (xi)). These
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can be used to obtain a visual display. Notice that, potentially, it is not needed to calculate

the pair (xi, ι̂
U
X (xi)) for all points in the dataset, but the analyst can also pre-determine a

grid of selected points. The reason for selecting a subset of lower cardinality could be to

reduce computational time. (However, in our experiments no issues have emerged in this

respect).

A second proposal is the modification of the nearest neighbor approach based on Algo-

rithm (3).

Algorithm 5 Information density estimate for continuous input features X̃ based on

nearest neighbour algorithm

INPUT: Input data set ( U (vi,a), xi)i∈ ¯1:N,a∈A

PARAMETERS:

• K - number of folds in the validation procedure

• kmax - maximal number of nearest neighbours to consider

• nbayes - number of steps for Bayesian search

• kbayes - maximal number of nearest neighbors to consider during Bayesian search

OUTPUT: information density for X at xi

13: Steps 1-13 are the same as in Algorithm (3)

14: for each i ∈ 1 : K do

15: Fit the LassoLars model or other another regression model to the (C a
j,1:k∗a,i

,U (vj,a))j∈1:N

and compute the predictions (Û i(vj,a))j∈1:N on training inputs C a
j,1:k∗a,i

16: end for

17: Compute

Û (vj,a) =
1

K

K∑
i=1

Û i(vj,a)

18: Evaluate the kernel density estimator f̂Xi
(xi) of fXi

(xi) using the input data set

19: The final estimate ι̂UX (x) at input data point xi is given by

ι̂UX (xi) = (max
a

Û i(vj,a) − Û i(vj,a∗))f̂X(xi),

where â∗ = argmaxa
1
N

∑N
i=j Û

i(vj,a)

20: return (xi, ι̂
U
X (xi)) and visualize it
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Up to step 13, the algorithm foresees the same steps as of Algorithm (3). Then, differ-

ently from Algorithm (3), the algorithm foresees storing the value of the information gain

at each location, multiply it by the input density and return the value of the information

density as such location.

10. Numerical Experiments

In this section, we analyse the performance of the algorithms presented in Section 9

through a series of numerical experiments. We rely on the same case studies as in Section

6. The first step is the generation of a sample from the input distributions. This step is

followed by an uncertainty propagation, so that to obtain the unconditional distribution of

all the alternatives. We generate samples of sizes N=500, 1000, 10000, 25000 and 50000.

In Section 10.1 we presents results for the toy model, for which the analytical values of the

information gain, information density and VoI are available. In Section 10.2, we present

results for the first case study in [37]. In Section 10.3, we present results for the second

case study in [37].

We observe that analytical expressions for these two case studies are not available. Then,

it becomes of interest to compare the estimates produced by the alternative algorithms.

10.1. Results for the Analytical Example. In this section, we report results for the

numerical estimation of the information density for the univariate and bivariate cases

discussed in Section 8, with reference to the toy model in Hazen at al (2022). Results are

summarized in Figure 13.

On the horizontal axis of each graph of each graph in Figure 13, we report the support

of the input and on the vertical axis we display the corresponding information density. In

each graph, the green curve indicates the analytical information density.

The first row in Figure 13 repors the estimates of the information density of p with

Algorithm 4 in which MARS is used as an emulator. We note that starting at N=10000

numerical estimates are close to analytical ones. Thus, the MARS estimator shows an

asymptotically consistent behavior. The second row in Figure 13 displays results when the

GAM is used in Algorithm 4. One notes that this algorithm is not as effective as MARS.

For instance, at N = 1000, N = 10000 and N = 25000 one would obtain a visual impression
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Figure 13. Result of information density estimates for p by different algo-

rithms.

of a bimodal information density, which does not coincide with the analytical one. The

impression still remains at N = 50000 either. The third row in Figure 13 displays results

when the GDP is used in Algorithm 4. One notes that this choice visually as effective

as MARS for small sample sizes. However, at large sample sizes the execution time of

the algorithm prevents its utilization. The fourth and the fifth rows in Figure 13 display

results for the Algorithm 5 with weights and without LassoLars weights, respectively.

The graphs show that the estimates are highly volatile and the user will not get accurate

information about the information density event at the largest sample sizes.

In this respect, as an additional information on the algorithm performance, it is also

useful to take into account also the value of the VoI estimate corresponding to a given
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information density plot. Figure 13, displays in the legende of each plot the estimated

value of ϵp.

The estimates of Algorithm 5 are less accurate then the estimates of the other al-

gorithms, confirming the volatility impression generated by the plot. For instance at

N = 50000, the GAM algorithm attains ϵp = 0.12, which coincides with the analytical

value, while Algorithm 5 exhibits ϵp = 0.10, still with a 16% error.

Figure 14. Result of information density estimation for the (p, v1) by dif-

ferent algorithms

Figure 14 displays results for the estimation of the joint information density of (p, v1).

In this respect, the results in Figure 14 are the numerical counterpart of the bivariate

calculations performed for the toy model in Example 9.1. The graphs in rows 1-5 of Figure

14 display estimates obtained by the same algorithms as in Figure 13. Also, in each graph,

the green shadow indicates the true information density.
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We note that in this case the LassoLars algorithm exhibits the best performance: the

information value estimates are close to the analytical value of ϵp,v1 = 12.24 across all

samples. Algorithm 4 with GAM produces slightly less accurate estimates and the MARS

algorithm follows. Algorithm 5 without weights produces unreliable information value

estimates, while the GP algorithm shows the worst performance in this case, with large

errors in the VoI estimates. We then focus on the information density indications produced

by the three best performing algorithms. All graphs concur in indicating the active region

as comprised within the rectangle [0.65, 1] × [100, 200], basically at all sample sizes, with

the indications becoming more precise as N increases. Also the direction of concern is

correctly represented in the majority of the graphs. An exception is registgered by the

GAM algorithm at N=500 and N=1000. In this case, the maximal information density is

registered in a region that does not coincide with the one obtained analytically. However,

if one considers the indications of Algorithm 4 with MARS and GAM as well as of

Algorithm 5 at sample sizes starting at N = 10000, one obtains a correct indication

about the region in which (p, v1) are active and about the direction of concern.

In the next two subsections, we examine the performance of the algorithms in estimating

information density for the two case studies in [37]. For these case studies analytical results

for the information density and VoI are not available and therefore an analyst needs to rely

on the comparison of the graphs and estimates produced by the alternative algorithms. We

start with Case Study 1 in [37].

10.2. Case Study 1.[37]. Figure (15) presents results for the information density of X6,

the input associated with the largest individual value of information. Similarly, to Figure

13 the graphs in the first row display estimates produced by Algorithm 4 with MARS,

with sample sizes from N = 500 to N = 10000, the second row with Algorithm 4 with

GAM, and similar.
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Figure 15. Result of information density estimation for the X6 by different

algorithms

The graphs in the first and second rows of Figure 15 show that the direction of concern for

X6 is at the left of X6 = 0.38. All algorithms concur in this indication, with two exceptions.

Algorithm 4 with GP fails at large sample sizes due to computational time (as in the

previous cases). Algorithm 5, with and without wrights, produces noisy estimates, which

are difficult to interpret at small sample sizes. Also, all algorithms agree in indicating that

the maximum information density occurs at a value of X6 ∼ 0.42.

In order to assess the performance in the bivariate case, we use the same dataset to obtain

estimates of the joint information density of the two most important variables (X5, X6).

Figure(16) displays the results.
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Figure 16. Result of information density estimation for the (X5, X6) by

different algorithms

The graphs in Figure(16) show that all algorithms produce stabile visualizations start-

ing from N = 10000 observations. We also find that the information density estima-

tor given by Algorithm (4) (in each tested version) gives significantly smoother results

with respect to Algorithm (5). At the same time, starting from a sample size above

N=10000 observations, all graphs allow us to draw the same conclusions about the max-

imum information density, as well as about the areas where it is null. The area in which

the pair (X5, X6) becomes informative is contained in the rectangle [0.5, 0.9] × [0.3, 0.6]

at all sample sizes. The direction of concern is evidenced in each graph by the red ar-

rows that start at the baseline value (the population mean in our case) and end at the
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point of maximal value. For instance, if we take the fifth graph in the first row, the ar-

row originates at (Ê(X5), Ê(X6)) = (0.7, 0.3) and ends at (0.68, 0.41), with a length of

(∆X5 = 0.02,∆X6 = 0.11). Note that the arrow is almost aligned with the direction of X6,

showing that information on X6 is more relevant than X5. This is, indeed, in line with the

corresponding information value: we have ϵX6 ≃ 500, while ϵX5 ≃ 30.

10.3. Case Study 2.[37]. Figure (17) displays the results of estimating the information

density by different algorithms for a single feature X6.

Figure 17. Result of information density estimation for the X6 by different

algorithms

All variants of Algorithm (4) give consistent results starting from sample size N= 1000

although the values of the estimated VoI vary slightly around N=500. In the case of the

two versions of Algorithm (5) we can also observe stabilization of the estimates starting
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from sample size N = 10000. However, Algorithm (5) gives a relatively noisy estimator

of the information density, the same as for first study case.

Based on Algorithm (4) and at all sample sizes, we conclude that is informative for

values smaller than X6=0.3. A similar conclusion is drawn based on the results of Algo-

rithm (5), but the value threshold is noisy. Also, all algorithms at all sample sizes concur

in indicating that information density is maximal at X6 = 0.2.

Figure 18. Result of information density estimation for the (X5, X6) by

different algorithms

Figure (18) shows that all algorithms produce stabile visualizations starting from N =

10000 observations. At N=10000, 25000 and 50000, we have that most algorithms concur

in indicating an estimate of the joint VoI of about ϵ̂(X5,X6) = 518 with some exceptions.

Specifically, Algorithm (5) with GP at N=1000 and N=10000 gives estimates of ϵ̂(X5,X6) ≃
543 and ϵ̂(X5,X6) ≃ 528, respectively; also, Algorithm (5) without LassoLars weights tends
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yields upward biased estimates with ϵ̂(X5,X6) ≃ 538 and ϵ̂(X5,X6) ≃ 561 at N = 25000 and

N = 50000, respectively. However, all graphs show that the region where information

about the pair (X5, X6) is active is a region enclosed in the rectangle [0.5, 0.9] × [0, 0.3] at

all sample sizes. The direction of interest marked by the red arrow becomes relatively stable

above N=1000 observations. In this case, it takes its origin at (Ê(X5), Ê(X6)) = (0.7, 0.3)

and ends at the pont (0.69, 0.2), with a length of (∆X5 = 0.01,∆X6 = −0.1) (0.4, 0.5).

This clearly indicates that the shift in the direction of X6 is greater than the one in the

direction of X5.

Let us now look at further insights about other inputs. We consider N = 50000 and

study information density for additional individual inputs as well as input pairs. Figures

19 and 20 report results using Algorithm 5 with MARS.

Figure 19. Result of information density estimation for individual inputs

by Algorithm 4(MARS) for N=50000

The first graph in Figure 19 shows that the direction of concern for X5 is left of its

current base case. The second graph shows that the direction of concern for X14, instead,

is right of its current base case value. The input X14 becomes active for values X14 ≥ 0.9

and information on this input is most valuable for values of X14 at about 0.95. Similarly,

also for X15 the direction of concern is right of its current base case value. The region

of maximum information value is concentrated around the value X15 = 0.37. The most

informative feature in terms of VoI is X6, for which ϵ̂X6 = 509. Moreover, the direction of
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Figure 20. Result of information density estimation for different grups of

variables by Algorithm 4 (MARS) for N=50000

interest is to the left of the current base value, and the information density itself takes a

maximum value around X6 = 0.18.

The graphs in Figure 20 show the information density estimates for two-dimensional

cases. The first two graphs show the estimates for (X5, X14) and (X5, X6), respectively.

The activation area for the first graph is contained in the [0.4, 0.8]× [0.7, 1] area, while that

for the second graph is contained in [0.4, 0.8]× [0, 0.3]. The direction of concern for the first

graph is characterized by length (∆X5 ,∆X14) = (−0.2, 0.14), and for the second graph by

(∆X5 ,∆X14) = (0.01,−0.1). Intuitively, the direction of the arrows shows also the direction

of greater informativeness. For instance, the arrow in the second graph is almost vertical,

indicating that information on X6 is more valuable than information on X5. This fact is in

agreement with the corresponding information values, as we have ϵ̂X6 = 509 and ϵ̂X5 = 36.

The direction of concern is towards lower values of X6. Similarly, last graph of Figure

20, the direction of concern is characterized by a length of (∆X23 ,∆X24) = (−0.03, 0.003).

Thus, we can conclude that the informativeness of X24 is very low in comparison with X23.

The direction of concern is towards lower values of X23.
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11. Summary

We have presented theoretical proof of the central limit theorem for the nearest neighbors

estimator of the Value of the Information. We further proposed an improvement for the

nearest neighbors algorithm by the weights derived from a model from the class of linear

models. To test our claims we performed many experiments using two test cases widely

used in the literature. Results confirmed that using weights in the nearest neighbors

algorithm can increase the accuracy of the final estimate. The best algorithm to use when

computing VoI estimate, based on our experiments is the MARS algorithm which suffers

less than other algorithms from the curse of dimensionality and can be used for large data

sets. We have also used the MARS algorithm to find the most important features for both

case studies which can have a crucial impact on understanding the decision problem which

is being solved.

We have then modified the algorithms to estimate information density, a recently pre-

sented quantity that enriches the VoI through a graphical method of sensitivity analysis.

In this case, for the estimation of information density, we recommend using several algo-

rithms at the same time, as we have observed in experiments that depending on the input

data, different solutions may turn out to be more or less performing. Therefore, relying

on multiple algorithms in the absence of closed-form expressions is the best guarantee for

analysts to have robust conclusions to be then communicated to decision-makers.
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12. Appendix A

During the thesis, several more experiments were performed, in excess of the ones de-

scribed in the main text of the thesis. In these appendices, we present additional ones,

starting with experiments performed for VoI estimation for the first case study 6.1. Figures

21, 22, 23, 24 and 25 report VoI estimates yielded by Algorithm 2 and Algorithm 3 at

N = 500, N = 1000, N = 10000, N = 25000 and N = 50000, respectively.

Figure 21. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=500
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Figure 23. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=10000
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Figure 24. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=25000
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Figure 25. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=50000
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Figure 22. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=1000
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Here we present the results of further the experiments performed for VoI estimation

for the second case study 6.2. Figures 26, 27, 28, 29 and 30 report results yielded by

Algorithm 2 and Algorithm 3 at sample sizes of N=500, N=1000, N=10000, N=25000

and N=50000, respectively.

Figure 26. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=500
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Figure 27. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=1000
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Figure 28. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=10000
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Figure 29. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=25000
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Figure 30. VoI estimation results for different groups of variables by Al-

gorithm 2 and Algorithm 3 for N=50000
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13. Appendix B

Here we present the rest of the experiments performed for information density estimation

for the first case study 6.1. Figures 31, 32, 33, 34 and 35 report information density

estimates yielded by Algrithm 4 and Algrithm 5 for different groups of variables.

Figure 31. Result of information density estimation for different grups of

variables by Algorithm 4 (MARS)
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Figure 32. Result of information density estimation for different grups of

variables by Algorithm 4 (GAM)
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Figure 33. Result of information density estimation for different variables

by Algorithm 4 (GP)
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Figure 34. Result of information density estimation for different grups of

variables by Algorithm 5 (without LassoLars weights)
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Figure 35. Result of information density estimation for different grups of

variables by Algorithm 5 (with LassoLars weights)
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Here we present the rest of the experiments performed for information density estimation

for the second case study 6.2. Figures 31, 32, 33, 34 and 35 report information density

estimates yielded by Algrithm 4 and Algrithm 5 for different groups of variables.

Figure 36. Result of information density estimation for different grups of

variables by Algorithm 4 (MARS)
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Figure 37. Result of information density estimation for different grups of

variables by Algorithm 4 (GAM)
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Figure 38. Result of information density estimation for different grups of

variables by Algorithm 5 (without LassoLars weights)
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Figure 39. Result of information density estimation for different grups of

variables by Algorithm 5 (with LassoLars weights)



Appendix C

Here we present the codes (Python 3.7) that implement the original algorithms for VoI
estimation developed in this thesis.

[27]: from __future__ import division
from __future__ import print_function
import re
from joblib import Parallel, delayed
from lightgbm import LGBMRegressor
from pandas import DataFrame
from rpy2.robjects import pandas2ri
from sklearn.linear_model import LassoLarsCV, LassoLarsIC
from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors
from tqdm import tqdm

pandas2ri.activate()
from rpy2.robjects.packages import importr
from bayes_opt import BayesianOptimization
from time import time

import numpy as np
import time
import logging

import pandas
def experiment_knn_ordinar_val(inputs2, nb, alpha, k_max,␣

↪→train_val_splits):
X = inputs2 * np.sqrt(list(alpha))
y = nb
all_diffs = []
for train_index, test_index in train_val_splits:

X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = NearestNeighbors(n_neighbors=k_max).fit(X_train)
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# clf = FaissKNeighbors()
# clf.fit(X_train, y_train)
dist, indices = clf.kneighbors(X_test, k_max)
predictions = np.array([np.average(y_train[indices[:, :k]][:, :,␣

↪→0],
axis=1) for k in range(1,␣

↪→k_max + 1)])

difss = [np.abs(predictions[:, i] - y_test[i]) for i in␣
↪→range(len(y_test))]

all_diffs.append(difss)
all_diffs_arr = np.vstack(all_diffs)
return np.expand_dims(np.mean(all_diffs_arr, 0), 1)

def grid_search(nb, i, k, skf_list, indices_skf):
fit_intercept = i[0]
positive = i[1]
norm = i[2]
all_diffs = []
for idx, (train_index, test_index) in tqdm(enumerate(skf_list)):

y_train, y_test = nb[train_index], nb[test_index]
skf2_train = np.random.choice(np.arange(len(indices_skf[0])),␣

↪→size=int(len(indices_skf[0]) * 0.75),
replace=False)

skf2_test = np.array(list(set(np.arange(len(indices_skf[0]))).
↪→difference(skf2_train)))

indices = indices_skf[idx]
estimator = LassoLarsCV(normalize=norm, n_jobs=-1, cv=5,␣

↪→fit_intercept=fit_intercept, positive=positive)
estimator.fit(y_train[indices[skf2_train, :k]],␣

↪→y_test[skf2_train], )
predictions = estimator.predict(y_train[indices[skf2_test, :k]])
difss = np.abs(predictions - y_test[skf2_test])
all_diffs.append(difss)

all_diffs_arr = np.hstack(all_diffs)
return np.mean(all_diffs_arr)

def objective(inputs,
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nb,
k_max, train_val_splits,
params, size_sample=10000):

alphas = tuple([params[key]
for key in params.keys() if len(re.findall("alpha",␣

↪→key)) > 0])

# idx_under = np.random.choice(a=np.arange(len(inputs)),␣
↪→size=size_sample, replace=False)

difss = experiment_knn_ordinar_val(inputs2=inputs,
nb=nb, alpha=alphas, k_max=k_max,␣

↪→train_val_splits=train_val_splits)
if difss.shape[1] == 2:

loss = np.max([np.min(difss[:, 0]), np.min(difss[:, 1])])
elif difss.shape[1] == 1:

loss = np.min(difss[:, 0])
return -loss

def inf_val_knn_lasso(nb, inputs, parameters_indx, k_max, k_bayes,␣
↪→n_bayes_steps, n_bayes_sample, n_cv, init_points_bayes):

start_t_knn=time.time()
if n_bayes_sample == 'all':

idx_bayes_search = np.arange(len(inputs))
else:

idx_bayes_search = np.random.choice(a=np.arange(len(inputs)),␣
↪→replace=False, size=n_bayes_sample)

inputs2 = inputs[idx_bayes_search, :][:, parameters_indx].
↪→astype('float32')

inputs2 = np.ascontiguousarray(inputs2)
nb_bayes = nb[idx_bayes_search]
train_val_splits = []
for _ in range(n_cv):

X_train, X_test, y_train, y_test =␣
↪→train_test_split(DataFrame(inputs2), DataFrame(nb_bayes[:, 0]),

test_size=0.1)
idx = X_train.index
idx2 = X_test.index
train_val_splits.append((idx, idx2))

if len(parameters_indx) > 1:
bounds = {

'alpha' + str(i): (0.00001, 1)
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for i in range(0, inputs2.shape[1])
}
optimizer0 = BayesianOptimization(

f=lambda **x: objective(inputs=inputs2,
nb=nb_bayes[:, [0]],
k_max=k_bayes,␣

↪→train_val_splits=train_val_splits,
params=x),

pbounds=bounds,
random_state=1,

)
optimizer0.maximize(init_points=init_points_bayes,␣

↪→n_iter=n_bayes_steps)
alpha_0 = optimizer0.max['params'].values()
alpha_0 = tuple(alpha_0)
optimizer1 = BayesianOptimization(

f=lambda **x: objective(inputs=inputs2,
nb=nb_bayes[:, [1]],
k_max=k_bayes,␣

↪→train_val_splits=train_val_splits,
params=x),

pbounds=bounds,
random_state=1,

)
optimizer1.maximize(init_points=init_points_bayes,␣

↪→n_iter=n_bayes_steps)
alpha_1 = optimizer1.max['params'].values()
alpha_1 = tuple(alpha_1)

else:
alpha_1 = [1]
alpha_0 = [1]

def find_neighbors(X, y, train_val_splits):
dists = []
indices_total = []
for train_index, test_index in train_val_splits:

X_train, X_test = X[train_index], X[test_index]
clf = NearestNeighbors(n_neighbors=k_max).fit(X_train)
dist, indices = clf.kneighbors(X_test)
dists.append(dist)
indices_total.append(indices)

return dists, np.array(indices_total)
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def find_k_cross_validation(nb, k_max, train_val_splits,␣
↪→ind_train_val):

y = nb
all_diffs = []
for idx, (train_index, test_index) in␣

↪→tqdm(enumerate(train_val_splits)):
y_train, y_test = y[train_index], y[test_index]
indices = ind_train_val[idx]

stds=np.array([np.std(y_train[indices[:, :k]][:, :, 0],
axis=1).mean() for k in range(1, k_max +␣

↪→1)])
pandas.Series(index=range(1, k_max + 1),data=stds).plot()

predictions = np.array([np.average(y_train[indices[:, :k]][:,␣
↪→:, 0],

axis=1) for k in range(1,␣
↪→k_max + 1)])

predictions = np.expand_dims(predictions, 2)
difss = np.mean(np.abs(predictions - y_test), 1)
all_diffs.append(difss)

return all_diffs

estimates_knn = []
estimates_knn_lassolars = []

X0 = inputs2 * np.sqrt(list(alpha_0))
X0 = X0[:, ~np.all(X0 == 0, axis=0)]
X1 = inputs2 * np.sqrt(list(alpha_1))
X1 = X1[:, ~np.all(X1 == 0, axis=0)]

y0 = nb_bayes[:, 0]
y1 = nb_bayes[:, 1]

dists0, ind_val_nn_in_train0 = find_neighbors(X0, y0,␣
↪→train_val_splits)

dists1, ind_val_nn_in_train1 = find_neighbors(X1, y1,␣
↪→train_val_splits)

exp_k0 = find_k_cross_validation(nb=nb_bayes[:, [0]],
k_max=k_max,␣

↪→train_val_splits=train_val_splits,
ind_train_val=ind_val_nn_in_train0)
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exp_k1 = find_k_cross_validation(nb=nb_bayes[:, [1]],
k_max=k_max,␣

↪→train_val_splits=train_val_splits,
ind_train_val=ind_val_nn_in_train1)

k_0 = [1 + np.argmin(i[:, 0]) for i in exp_k0]
k_1 = [1 + np.argmin(i[:, 0]) for i in exp_k1]
# k_0 = [1 + np.argmin(np.concatenate(exp_k0, 1).mean(1))]
# k_1 = [1 + np.argmin(np.concatenate(exp_k1, 1).mean(1))]
print(f"K0 {k_0} and K1 {k_1}")

inputs2 = inputs[:, parameters_indx].astype('float32')
inputs2 = np.ascontiguousarray(inputs2)

X0 = inputs2 * np.sqrt(list(alpha_0))
X0 = X0[:, ~np.all(X0 == 0, axis=0)]
X1 = inputs2 * np.sqrt(list(alpha_1))
X1 = X1[:, ~np.all(X1 == 0, axis=0)]

clf = NearestNeighbors(n_neighbors=max(k_0)).fit(X0)
dist0, indices_total0 = clf.kneighbors(X0)
clf = NearestNeighbors(n_neighbors=max(k_1)).fit(X1)
dist1, indices_total1 = clf.kneighbors(X1)

for i in range(len(k_0)):

smooth0 = nb[indices_total0, 0][:, :k_0[i]].mean(1)
smooth1 = nb[indices_total1, 1][:, :k_1[i]].mean(1)
y_smooth = np.vstack((smooth0, smooth1)).T
final_inf = np.mean(np.max(y_smooth, 1)) - np.max(np.

↪→mean(y_smooth, 0))
estimates_knn.append(final_inf)

from sklearn.model_selection import GridSearchCV
parameters = {'normalize': (True, False),

'fit_intercept': (True, False)}

clf = GridSearchCV(LassoLarsIC(), parameters, verbose=4, cv=2,␣
↪→scoring='neg_mean_absolute_error')

clf.fit(nb[indices_total0, 0][:, 1:k_0[i]], nb[:, 0])
smooth0 = clf.predict(nb[indices_total0, 0][:, 1:k_0[i]])
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clf2 = GridSearchCV(LassoLarsIC(), parameters, verbose=4, cv=2,␣
↪→scoring='neg_mean_absolute_error')

clf2.fit(nb[indices_total1, 1][:, 1:k_1[i]], nb[:, 1])
smooth1 = clf2.predict(nb[indices_total1, 1][:, 1:k_1[i]])
y_smooth = np.vstack((smooth0, smooth1)).T
final_inf = np.mean(np.max(y_smooth, 1)) - np.max(np.

↪→mean(y_smooth, 0))
estimates_knn_lassolars.append(final_inf)

return np.mean(estimates_knn), np.mean(estimates_knn_lassolars)

[28]: import pyearth
def alg2MARS(nb,inputs,parameters_indx):

'''Algorithm 2 (MARS)'''

x=inputs[:,parameters_indx]
y1=nb[:,[0]]
y2=nb[:,[1]]
model1=pyearth.Earth()
model1.fit(x,y1)
pred1=model1.predict(x)

model2=pyearth.Earth()
model2.fit(x,y2)
pred2=model2.predict(x)

nb_smooth=np.vstack((pred1,pred2)).T
inf_val=nb_smooth.max(1).mean()-nb_smooth.mean(0).max()
return inf_val

[ ]:
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Appendix D

Here we present the codes (Python 3.7) that implement the original algorithms for infor-
mation density estimation developed in this thesis.

[39]: from __future__ import division
from __future__ import print_function
import re
from pandas import DataFrame
from rpy2.robjects import pandas2ri
from sklearn.linear_model import LassoLarsCV, LassoLarsIC
from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors
from statsmodels.nonparametric.kernel_density import KDEMultivariate
from tqdm import tqdm
import pandas as pd
pandas2ri.activate()
from bayes_opt import BayesianOptimization
import numpy as np
import time

def experiment_knn_ordinar_val(inputs2, nb, alpha, k_max,␣
↪→train_val_splits):

X = inputs2 * np.sqrt(list(alpha))
y = nb
all_diffs = []
for train_index, test_index in train_val_splits:

X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = NearestNeighbors(n_neighbors=k_max).fit(X_train)
# clf = FaissKNeighbors()
# clf.fit(X_train, y_train)
dist, indices = clf.kneighbors(X_test, k_max)
predictions = np.array([np.average(y_train[indices[:, :k]][:, :,␣

↪→0],
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axis=1) for k in range(1,␣
↪→k_max + 1)])

difss = [np.abs(predictions[:, i] - y_test[i]) for i in␣
↪→range(len(y_test))]

all_diffs.append(difss)
all_diffs_arr = np.vstack(all_diffs)
return np.expand_dims(np.mean(all_diffs_arr, 0), 1)

def objective(inputs,
nb,
k_max, train_val_splits,
params, size_sample=10000):

alphas = tuple([params[key]
for key in params.keys() if len(re.findall("alpha",␣

↪→key)) > 0])

difss = experiment_knn_ordinar_val(inputs2=inputs,
nb=nb, alpha=alphas, k_max=k_max,␣

↪→train_val_splits=train_val_splits)
if difss.shape[1] == 2:

loss = np.max([np.min(difss[:, 0]), np.min(difss[:, 1])])
elif difss.shape[1] == 1:

loss = np.min(difss[:, 0])
return -loss

def inf_density_knn(nb, inputs, parameters_indx, k_max, k_bayes,␣
↪→n_bayes_steps, n_bayes_sample, n_cv, init_points_bayes):

'''Algorithm 5'''
start_t_knn = time.time()
if n_bayes_sample == 'all':

idx_bayes_search = np.arange(len(inputs))
else:

idx_bayes_search = np.random.choice(a=np.arange(len(inputs)),␣
↪→replace=False, size=n_bayes_sample)

inputs2 = inputs[idx_bayes_search, :][:, parameters_indx].
↪→astype('float32')

inputs2 = np.ascontiguousarray(inputs2)
nb_bayes = nb[idx_bayes_search]
train_val_splits = []
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for _ in range(n_cv):
X_train, X_test, y_train, y_test =␣

↪→train_test_split(DataFrame(inputs2), DataFrame(nb_bayes[:, 0]),
test_size=0.1)

idx = X_train.index
idx2 = X_test.index
train_val_splits.append((idx, idx2))

if len(parameters_indx) > 1:

start = time.time()
print(f"Start time: {start}")
# Search for direction --- feature selection
bounds = {

'alpha' + str(i): (0.00001, 1)
for i in range(0, inputs2.shape[1])

}
try:

optimizer0 = BayesianOptimization(
f=lambda **x: objective(inputs=inputs2,

nb=nb_bayes[:, [0]],
k_max=k_bayes,␣

↪→train_val_splits=train_val_splits,
params=x),

pbounds=bounds,
random_state=1,

)
optimizer0.maximize(init_points=init_points_bayes,␣

↪→n_iter=n_bayes_steps)
alpha_0 = optimizer0.max['params'].values()
alpha_0 = tuple(alpha_0)

except ValueError:
alpha_0=(1,1)

optimizer1 = BayesianOptimization(
f=lambda **x: objective(inputs=inputs2,

nb=nb_bayes[:, [1]],
k_max=k_bayes,␣

↪→train_val_splits=train_val_splits,
params=x),

pbounds=bounds,
random_state=1,

)
optimizer1.maximize(init_points=init_points_bayes,␣

↪→n_iter=n_bayes_steps)
alpha_1 = optimizer1.max['params'].values()
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alpha_1 = tuple(alpha_1)
end = time.time()
print(f"Time for metric learning : {end - start}")

else:
alpha_1 = [1]
alpha_0 = [1]

def find_neighbors(X, y, train_val_splits):
dists = []
indices_total = []
for train_index, test_index in train_val_splits:

X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = NearestNeighbors(n_neighbors=k_max).fit(X_train)
dist, indices = clf.kneighbors(X_test)
dists.append(dist)
indices_total.append(indices)

return dists, np.array(indices_total)

def find_k_cross_validation(nb, k_max, train_val_splits,␣
↪→ind_train_val):

y = nb
all_diffs = []
for idx, (train_index, test_index) in␣

↪→tqdm(enumerate(train_val_splits)):
y_train, y_test = y[train_index], y[test_index]
indices = ind_train_val[idx]
predictions = np.array([np.average(y_train[indices[:, 1:k]][:

↪→, :, 0],
axis=1) for k in range(2,␣

↪→k_max + 1)])
predictions = np.expand_dims(predictions, 2)
difss = np.mean(np.abs(predictions - y_test), 1)
all_diffs.append(difss)

return all_diffs

estimates = []
estimates_knn = []

print(f"ALPHA1 {alpha_0} and alpha2 {alpha_1}")
X0 = inputs2 * np.sqrt(list(alpha_0))
X0 = X0[:, ~np.all(X0 == 0, axis=0)]
X1 = inputs2 * np.sqrt(list(alpha_1))
X1 = X1[:, ~np.all(X1 == 0, axis=0)]
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y0 = nb_bayes[:, 0]
y1 = nb_bayes[:, 1]

dists0, ind_val_nn_in_train0 = find_neighbors(X0, y0,␣
↪→train_val_splits)

dists1, ind_val_nn_in_train1 = find_neighbors(X1, y1,␣
↪→train_val_splits)

exp_k0 = find_k_cross_validation(nb=nb_bayes[:, [0]],
k_max=k_max,␣

↪→train_val_splits=train_val_splits,
ind_train_val=ind_val_nn_in_train0)

exp_k1 = find_k_cross_validation(nb=nb_bayes[:, [1]],
k_max=k_max,␣

↪→train_val_splits=train_val_splits,
ind_train_val=ind_val_nn_in_train1)

k_0 = [2 + np.argmin(i[:, 0]) for i in exp_k0]
k_1 = [2 + np.argmin(i[:, 0]) for i in exp_k1]

print(f"K0 {k_0} and K1 {k_1}")

inputs2 = inputs[:, parameters_indx].astype('float32')
inputs2 = np.ascontiguousarray(inputs2)

X0 = inputs2 * np.sqrt(list(alpha_0))
X0 = X0[:, ~np.all(X0 == 0, axis=0)]
X1 = inputs2 * np.sqrt(list(alpha_1))
X1 = X1[:, ~np.all(X1 == 0, axis=0)]

clf = NearestNeighbors(n_neighbors=max(k_0)+1).fit(X0)
dist0, indices_total0 = clf.kneighbors(X0)
clf = NearestNeighbors(n_neighbors=max(k_1)+1).fit(X1)
dist1, indices_total1 = clf.kneighbors(X1)

inf_val_den_lasso=[]
inf_val_den=[]
for i in range(len(k_0)):

smooth0 = nb[indices_total0, 0][:, :k_0[i]-1].mean(1)
smooth1 = nb[indices_total1, 1][:, :k_1[i]-1].mean(1)
y_smooth = np.vstack((smooth0, smooth1)).T
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final_inf = np.mean(np.max(y_smooth, 1)) - np.max(np.
↪→mean(y_smooth, 0))

estimates_knn.append(final_inf)
inf_val_den.append(y_smooth)
end_t_knn = time.time()
print(f"KNN {final_inf}", end_t_knn - start_t_knn)
from sklearn.model_selection import GridSearchCV
parameters = {'normalize': ( False,True),

'fit_intercept': ( False,True)}
clf = GridSearchCV(LassoLarsCV(), parameters, verbose=4, cv=5,␣

↪→scoring='neg_mean_squared_error')
clf.fit(nb[indices_total0, 0][:, 1:k_0[i]], nb[:, 0])
smooth0 = clf.predict(nb[indices_total0, 0][:, 1:k_0[i]])
clf2 = GridSearchCV(LassoLarsCV(), parameters, verbose=4, cv=5,␣

↪→scoring='neg_mean_squared_error')
clf2.fit(nb[indices_total1, 1][:, 1:k_1[i]], nb[:, 1])
smooth1 = clf2.predict(nb[indices_total1, 1][:, 1:k_1[i]])

y_smooth_lasso_lars = np.vstack((smooth0, smooth1)).T
final_inf_lasso_lars = np.mean(np.max(y_smooth_lasso_lars, 1)) -␣

↪→np.max(np.mean(y_smooth_lasso_lars, 0))
inf_val_den_lasso.append(y_smooth_lasso_lars)

nb_smooth_lasso=np.vstack((np.concatenate([ j[:,[0]]for j in␣
↪→inf_val_den_lasso ],1).mean(1),

np.concatenate([ j[:,[1]]for j in inf_val_den_lasso ],1).max(1))).T

nb_smooth_knn=np.vstack((np.concatenate([ j[:,[0]]for j in␣
↪→inf_val_den ],1).mean(1),

np.concatenate([ j[:,[1]]for j in inf_val_den ],1).max(1))).T

idx_max=nb_smooth_lasso.mean(0).argmax()
inf_val_density0=nb_smooth_lasso.max(1)-nb_smooth_lasso[:,idx_max]

idx_max=nb_smooth_knn.mean(0).argmax()
inf_val_density1=nb_smooth_knn.max(1)-nb_smooth_knn[:,idx_max]

x=inputs[:,parameters_indx]
clf=KDEMultivariate(data=x,var_type='c'*len(parameters_indx))
x_density=clf.pdf(x)

inf_val_density=inf_val_density0*x_density
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inf_val_density_prim=inf_val_density1*x_density

inf_val_density_result_lasso_pd=pd.DataFrame(data=np.
↪→hstack((x,x_density.reshape((-1,1)),

inf_val_density0.
↪→reshape((-1,1)),

inf_val_density.
↪→reshape((-1,1)))),

columns=[f"x{i}" for i in range(x.
↪→shape[1])]+['x_density','inf_val_gain_x','information_density'])

inf_val_density_result_knn_pd=pd.DataFrame(data=np.
↪→hstack((x,x_density.reshape((-1,1)),

inf_val_density1.
↪→reshape((-1,1)),

inf_val_density_prim.
↪→reshape((-1,1)))),

columns=[f"x{i}" for i in range(x.
↪→shape[1])]+['x_density','inf_val_gain_x','information_density'])

return inf_val_density_result_lasso_pd,inf_val_density_result_knn_pd

[4]: import pyearth
def alg4MARS(nb,inputs,parameters_indx):

'''Algorithm 4 (MARS)'''

x=inputs[:,parameters_indx]
y1=nb[:,[0]]
y2=nb[:,[1]]
model1=pyearth.Earth()
model1.fit(x,y1)
pred1=model1.predict(x)

model2=pyearth.Earth()
model2.fit(x,y2)
pred2=model2.predict(x)

nb_smooth=np.vstack((pred1,pred2)).T
arg_max_total=nb_smooth.mean(0).argmax()
inf_val_density0=nb_smooth.max(1)-nb_smooth[:,arg_max_total]
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clf=KDEMultivariate(data=x,var_type='c'*len(parameters_indx))
x_density=clf.pdf(x)

inf_val_density=inf_val_density0*x_density

inf_val_density_result_pd=pd.DataFrame(data=np.hstack((x,x_density.
↪→reshape((-1,1)),

␣
↪→inf_val_density0.reshape((-1,1)),

␣
↪→inf_val_density.reshape((-1,1)))),

columns=[f"x{i}" for i in range(x.
↪→shape[1])]+['x_density','inf_val_gain_x','information_density'])

return inf_val_density_result_pd
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