UNIVERSITA COMMERCIALE “Luicl BocconNt”
PuD ScHOOL

PhD program in: STATISTICS
Cycle: 34th
Disciplinary Field (code): SECS-S/01 STATISTICS

Machine Learning Approaches for
Computing Information Value and
Information Density

Advisor: EMANUELE BORGONQVO

PhD Thesis by
Mariusz Budzinski

ID number: 3084829

Academic Year: 2023






1. ABSTRACT

Information value (Vol) analysis is a key component for decision-making supported by
quantitative simulations [37]. A key obstacle to the full utilization of Vol is computational
efficiency. This thesis examines the use of machine learning approaches to estimating Vol
for realistic simulators. We compare the smoothing approaches already introduced, and
propose two novelties. First, an approach based on the nearest neighbors. We prove
a central limit theorem and then we discuss the automatic selection of the number of
neighbors through a LassoLars weighting approach. We also propose a modification of
a previously introduced algorithm by using MARS regression. We compare the resulting
estimators through a wide range of numerical experiments. We then adapt the algorithms
for the estimation of a new quantity, the information density. Experiments show that the
algorithms can be successfully modified and one obtains consistent indications about the

regional importance of variables, both individually and in groups.
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CHAPTER 1
ESTIMATING INFORMATION VALUE: A COMPARISON OF
MACHINE LEARNING APPROACHES

3. INTRODUCTION

Decision-makers rely on the information provided by quantitative models in an increas-
ing number of applications. As [I1] highlights, proper uncertainty quantification plays a
central role in making the analysis transparent and better informed. Within uncertainty
quantification, factor prioritization, i.e., the identification of the factors that drive uncer-
tainty in model predictions becomes a key task for analysts and decision-makers. For factor
prioritization, analysts rely on global sensitivity measures. Indicators in this family range
from variance-based ([33],[27]) to distribution-based [5]), to value of information-based in-
dices [25]. Among these sensitivity measures, the value of information is specifically suited
to all those applications in which simulation outputs are used to evaluate and compare
alternative policies.

The suggestion of value of information (Vol) as a global sensitivity method comes from
works such as [12],[13] in the context of medical decision-making. These works highlight that
Vol can quantify input importance while taking into account whether the optimal policy
changes when we receive perfect information about a feature. They summarize this fact
suggesting that Vol provides value as well as decision sensitivity. Reviews of applications
of VoI can be found in works such as [6, 2], 4T].

Because Vol is a global sensitivity measure, its estimation can be challenging as recently
highlighted in [24]. In fact, the definition of Vol requires a so-called double loop of Monte
Carlo evaluations. First, one propagates uncertainty in the decision-support model and
identifies the nominal optimal alternative. Then, one fixes the input of interest at a given
value, samples from the conditional distribution and re-evaluates the model on this con-
ditional sample (say with a sample of size Nj,). This operation needs to be repeated for

several values of the input of interest (say Ne) and for each input, leading to a total
5
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double-loop estimation cost of CPY = nx Neyt Nine model evaluations, where nx is the num-
ber of model inputs. Several works have then addressed this challenge. The combination
of a double loop design and a Gaussian process has been pioneered for the calculation of
Vol in [25] and [26]. To reduce computational burden, [35, B8] propose alternative one-loop
approaches that require CO% = N model evaluations. The approach in [35] relies on scat-
terplot partitioning. In addition, the approach is affected by the curse of dimensionality,
and becomes unreliable when calculating the Vol of groups of factors of cardinality greater
than two. The approach of [3§], instead, considers a non-parametric regression over these
scatterplots avoiding the partition size selection, and performs well also for input groups.

In this work, we propose two new approaches. First, we present a nearest neighbors Vol
estimator and we prove a corresponding central limit theorem. Based on this proposal, we
develop a new algorithmic procedure. We investigate the algorithm in detail and propose
a machine learning approach for determining the number of neighbors. The approach
relies on creating an artificial dataset of output values associated with each neighborhood
and then processing this dataset with a shrinkage procedure to identify the influential
neighbors. We also discover that when the Vol estimation concerns a group of features
of cardinality greater than 2, the Vol nearest neighbors estimator requires a large sample
to obtain reliable estimates, which translates into a very long computation time. This
is due to the curse of dimensionality. To overcome this issue we notice that the nearest
neighbors approach consists of modeling the neighborhood of a fixed point by taking an
average. The generalization of such an approach would be to use a more complex model.
Such intuition stands behind local regression methods which are characterized by greater
statistical and generalization power. Methods that follow such an intuition are for example
local linear regression and the MARS model. This leads us to replace the nearest neighbors
approach with such methods when estimating Vol. The approach yields a notable reduction
in computational time and makes Vol estimation possible for very large data sets with even
millions of observations. Additionally, the Vol estimator becomes more reliable. This is
due to the fact local regression modeling has greater generalization power than the nearest

neighbors approach.
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In order to compare the proposed algorithms with the state-of-the-art solution given
by Strong and Oakley [37], we conduct a series of experiments with a case study with
2 scenarios: a multilinear model in which inputs are correlated, but with known analytic
solutions for all conditional distributions, and the same model in which inputs are correlated
but where sampling from the conditional distributions requires MCMC. The testing is done
for different sample sizes and not only for individual inputs but also for input groups up
to order 7.

We also demonstrate how to use Vol as a feature selection tool for decision problems when
the decision maker needs to choose an option from a set of alternatives. We demonstrate
the results of such selection for two case studies.

The remainder of the work is structured as follows. In Section [l we review extant
literature, with a focus on Vol and estimation algorithms. In Section [3 we introduce
the proposed method and demonstrate the method in the two case studies, and compare
the received results with other existing algorithms in the fourth section. In the end, we

summarize obtained results.

4. LITERATURE REVIEW

This work intersects literature streams regarding Vol and machine learning approaches.
We provide a synthetic review in this section, focusing on the works and aspects more
closely related to our work. In Subsection 4.1| we introduce the notion of Vol and the
estimation algorithms by Strong and Oakley [36] and Strong and Oakley [37]. In Subsection

4.2 we give a brief description of the Nearest Neighbor method for regression problems.

4.1. Information Value. The notion of information value has been developed within the
realms of decision analysis and probability theory. A first intuition can be found in an
unpublished note by Frank P. Ramsey [30]. It has then been formally developed in works
such as [29]. As in [25], we consider the formulation of Vol as an expected utility increase,
which is also typically used in statistical applications [4].

Let (2, B(€2), P) be a probability space. Consider a decision maker who is using a model
to support the selection of an action from a finite set of possible alternatives A. The input

and output of this model are represented by random vectors defined on the (Q, B(Q2), P),
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) lllAl

X: = (Xy,..,Xy) and Y: = (Yal,YGQ,... Y. ) = (9(X,a1),9(X.a2), ..., (X, aja))),
where g(X, a) represents the model’s output for alternative a € A. We also assume that
the decision maker has assessed a utility function, S: R — R, S(Y,).

The decision-making problem is to select an alternative such that

(1) argmax E(S(Y,)).
acA
In case the analyst receives the posterior information X, = (x;,, ... x;,), with u = {i1,4a, ..., 4},

I <EkanduC(1,2,...,k), where k is the number of features, two things can happen. The
distribution of the Y, might change as well as the preferred alternative. The maximization
problem becomes
(2) argmax E(S(Y,(X))|X,).

acA
Problem (|16)) is called prior expected value of action posterior to perfect information ([28§],

p.252). We then have the following definition of Vol:

Definition 4.1 (Information Value (Vol)). The Vol for getting to know X, is given by

(3) ex, = E(max E(S(Y,)|X,)) — maxE(S(Y,)).

acA a€A

Vol equals the expected increase in utility registers when the uncertainty about the
model inputs or groups of inputs will be removed. Note that is always greater than
equal to zero. Also, Vol is null if information about X, never causes the optimal decision
to change. Thus, a null Vol signals that the decision-maker’s selection is not affected by
uncertainty about X,. This makes Vol a measure of decision sensitivity, besides of value
sensitivity. In order to be able to use Vol in practical applications, efficient estimation
methods are needed.

The efficient estimation of Vol has attracted notable interest in the literature. Coyle
and Oakley [9] provides an overview of methods developed in the late 1990’s and early
2000’s.  Of these, the double loop Monte Carlo approach is then subject to intensive
numerical investigation in the work of [25]. Heath et al. [I9] carry out a recent overview of
calculation methods. They compare the Strong and Oakley single-loop (partition-based)

estimation method [36], the method of Sadatsafavi et al. [32] and the non-parametric
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regression method of Strong and Oakley [37]. The results of Heath et al. [I9] evidence
the efficiency of the non-parametric regression methods of Strong and Oakley. We present
these algorithms in detail next.

The starting point of the analysis is a dataset of input-output realizations obtained by
propagating uncertainty in the decision support model. Then a scatterplot of N observa-
tions {z;, Y. tic1.naca can be formed and used to estimate .

Strong and Oakley (2013) approach [36]. We consider first the algorithm proposed
in Oakley and Strong [36] (Algorithm 1).

Algorithm 1 Strong and Oakley [2013] [36]

INPUT: Input data set ( S(Yia), %i)ic1 N.aca

PARAMETERS:

e K - cardinality of the partition

OUTPUT: Information value for continuous feature X

1: Sort input data set in ascending order by the value of

2: Divide the input data set prepared in such a way into K blocks, each of J observations,
JK = N.
3: Estimate the first term in the RHS of Eq by

1
3 Z
€2 . = — max — S(
X1 acd J (vl5):

where k indexes block number.

4. Estimate the second term in the RHS of Eq by simple average

é *max—ZS Yja)

X2 acA

5: Final estimate is given by the

In Step 1, for each alternative one forms the scatterplot between the considered continuous

feature and the corresponding utility.
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In Step 2 we need to distinguish two cases. In the case X; is a continuous random
variable, we need to partition the horizontal axis of the scatterplot. Usually, one assigns
equi-populated partitions. Here a crucial step is the selection of the partition cardinality
(K in Algorithm . The realizations of Y, in each partition are averaged to yield an
estimate of . In the case X is discrete, there is no need for partitioning. In Step 3, all
such estimates are further averaged over the partitions to approximate the first term in the
RHS of . Step 4 uses a simple average to estimate ([15). The output of the algorithm
is as in Step 5.

At small sample sizes, the estimates yielded by Algorithm [I| are very sensitive to the
choice of the partition cardinality K. At large sample sizes, instead, Strong and Oakley
(2013) [36] show a plateau effect in which estimates become insensitive to the actual par-
tition number for a wide range of values of K. [36] then recommend picking a value in
this plateau of estimates as the value of VOI to report. The estimation procedure suffers
from the curse of dimensionality, as high-dimensional partitions may not be sufficiently
populated by data to ensure the required statistical accuracy of the estimates.

An alternative algorithm is then proposed by Strong, Oakley, and Brennan (2014) [37].

Algorithm 2 Strong and Oakley (2014) [37] approach
INPUT: Input data set {S(¥ia): Titic1 v.qear
OUTPUT: Information value for set of features X

where #; € R*, for k € N

1: For each a € A fit Gaussian Process Regressor or Generalised Additive Model ¢(Z) to
the input data set {S(yia), i}
2: The final estimate is given by the following

1 & 1 &
€}g”( - N E mfxg(fi) —max-s E 9(@;)
i=1 =1

a

The idea is to treat the output of the model as noisy. In Step 1 a non-parametric
smoothing procedure such as a Gaussian Process Regressor (GPR) [31] or a Generalised
Additive Model (GAM) [17] is used to smooth the data for each a € A separately. In Step

2 these smoothed values are inserted in the VOI formula to yield the final estimate. In
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comparison to Algorithm [I) Algorithm [2] avoids to chose the partition cardinality which
makes it attractive to use. The algorithm also is less exposed to the curse of dimensionality.
On the other hand, some smoothing procedures may fail to work for a dataset of large
dimensionality. Oakley and Strong (2014) [37] recommend the use of GAMs for moderate
to big data sets.

4.2. The Nearest Neighbors approach. The nearest neighbors algorithm is a non-
parametric method developed by Evelyn Fix and Joseph Hodges in 1951 [14] for classifi-
cation problems and later adapted to regression [2]. Due to its versatility, many different
variants of this method were later proposed. In the case of the classification, it is worth
mentioning [39], where the Stabilized Nearest Neighbors classifier is introduced. Stability
refers to obtaining stable classification results for samples drawn from the same popula-
tion. In the case of regression, it is worth mentioning [I0], where the problem of choosing a
metric in the Nearest Neighbors regressor was emphasized and a novel metric is presented
which is invariant on affine transformations and gives asymptotically consistent results. In
our work, we also took into account the problem of choosing the optimal metric. The way
we deal with this problem is described in the next section.

Apart from classification and regression problems, the nearest neighbors approach has
found application in a much areas from statistical testing ([7],[23]) to machine learning
applications such as pattern recognition [20]. In [20], a probabilistic version of the nearest
neighbors method is introduced, which alows for automatic selection of the number of
nearest neighbors. In our work, we also recognize this issue but our approach is different

see Section Bl

4.3. Lasso Lars. The Lasso model (least absolute shrinkage and selection operator) is
a linear regression model introduced in geophysics [34] and later developed by Robert
Tibshirani [40], who coined the term. Its characteristic is the use of L1 regularization
which reduces model dimensionality by decreasing the number of relevant coefficients.
The loss function of the Lasso is not differentiable, but a wide variety of techniques from

convex analysis and optimization theory have been developed to train the model. These
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include coordinate descent, subgradient methods, proximal gradient methods, and least-
angle regression (LARS). The so-called LassoLars model is the Lasso model which uses
the Lars algorithm for fitting. Such an algorithm is extremely efficient, requiring the same

order of computation as that of a single least squares fit using the same number of features.

5. A NEAREST NEIBGHOUR APPROACH TO VOI ESTIMATION

This section is divided into three parts. In Section [5.1] we introduce general results
for the estimation, deriving a central limit theorem for the estimates. In Section 5.2] we
discuss an approach for automating the selection of neighbors through cross-validation and

LassoLars weighting.

5.1. A Central Limit Theorem Result. If X is a set of continuous random variables, in
order to define [E( Y|X = x), we have to specify what limiting procedure produces the set
X = z, to avoid the Borel Kolmogorov paradox. Define the set Hf = {w|||X(w) —z| < €}
with the assumtion that H¢ is measurable with P(Hf) > 0 for all € > 0 [16]. Then we can
define E(Y|X = z) as

lii% E(Y|HY).
Now focus on the first term on the RHS of . We can write

(4) Ex(max Ey (S(Y,)[X = ) = Ex (maxlim Ey (S(Y,)|HY)).

acA acA e—0

The question is whether we can approximate , selecting a sufficiently small § > 0, so
that the quantity

() ex(0) = Ex(maxEy (S(Y,)|H,)),

acA
tends to ex when 6 — 0.
The problem then becomes whether we can exchange the limit and the max operations.
We need to specify under which conditions for a function f(a,e€), f : A x R — R the
following holds true:

(6) max lim f(a, 1) = lim max f(a, ).
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For this, it is sufficient that u — f(a, ) is continuous at u = 0 for each a € A. To see this

consider two cases

e Case 1: A is a discrete set
Define the preferred action a* = argmax, 4 lim.,q f(a, €), the second best action
as a™ and 0, g = £ limeo(f(a*, €) — f(a**,€)). By continuity of f at e = 0, there
exists ¢ > 0 such that |f(a, () — lim. o f(a, €)| < dg» o=+, for every a € A uniformly.
Hence, argmax, ., f(a,() = a*.

o Case 2: A =Rk

By the continuity of f(a,-) at 0 we can write
Vp>03(>0: Vae A lir%f(a,e) —p< fla,() < lir%f(a,e) +p
€E— €E—

Applying the max operator to the above inequality and taking p — 0, (@ is true.

Assume further that A is a discrete set. Notice that can be rewritten in the following

form

where a* = argmax, ., E(S(Y,)|X = z) and a** = argmax,., E(S(Y,)). We can then
define

(8) ex(0) = E(E(S(Yar,) — S(Yorr)

where a%,, = argmax, 4 E(S(Y,)|H?) and by (6]

9) (lsi_r}(l) s (6) = €x.
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The outer expectation in (8]) can be approximated by its empirical average so that estimates

*k

of a* s, a™ can be written as

H‘S’

1
(yys = Argmax ;= g S(y),
acA |H73| ! el | et S
(yh,x") |z’ €HY

(10)
= argmax — Z S(Yia)

acA

respectively, where N is the sample size and |H?| is the cardinality of the set H?. Then we

have

(1)
¥ D Er(S(Yay, ) = S(¥ar)

The next step is to change the order of the summation in . Because action set A is

discrete and |A| = d, we can define the following ordered set
Ag = {S(y17a1) - S(yl,d**)a ) S(yl,ad) - S(yl@**)a )

S(ynam) = S(unaw) S (Una) = Snam)}-
Then can be further rewritten as

Nxd Nxd

(1) DA D0 ey = D B8 = 0

CE|CL‘LZ~/dJ EHg

In equation we recognize a central limit theorem (CLT):

(13) E5(6) —a N(e;qz(a),z*wozimin

where SN E(6@;,AS;) = €5 (9). Equation (I3) states that the estimate in is asymp-
totically normal.

In the context of numerical applications, the estimation is made on the basis of a finite
sample size. This leads to a few complications. First of all it is impossible to take the
limit 6 — 0, since it is required that |H°| > 0, for all z. The direct consequence of this is

an estimator whose bias increases as ¢ increases. On the other hand, the variance of such
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an estimator decreases with 6. It is the well-know bias-variance trade-off that influences
directly accuracy and speed. This is where the problem of § selection arises as well as
the metric to determine HS. Moreover, when X is of high dimensionality, the approach
is exposed to the curse of dimensionality. Since the number of points falling in a given
neighborhood might be small, leading to inaccurate estimates. In our experiments, we
found that the proposed estimator is very sensitive to the choices of H?, especially when
feature space is multidimensional.

In our work, we decide to use one of the most popular versions of the nearest neighbors
algorithm, namely k-nearest neighbors which is to choose the considered number of nearest
neighbors and treat them as a neighborhood H?S. In our experiments, we recognize the
problem of selecting the number of neighbors and propose a new approach that allows for
dynamic and automated selection of the number of neighbors. We explain the method in

the next subsection.

5.2. Cross-validation 4+ LassoLars weighting. The approach is presented in Algo-
rithm and it is divided into three stages. First, the algorithm performs a search for
metric, where we limit ourselves to the weighted Euclidean metric which is equivalent to
applying the linear transform of the p-dimensional feature vector ¥ — /a o Z, where
a € [0 : 1]7, o is the Hadamard product (v/o o Z); = /;Z; and using not weighted Eu-
clidean metric. This are Steps 1-12. The second stage, Steps 13-15, is to find weights for
the weighted k- nearest neighbor approach using of the Lasso regression. The last stage,

Steps 16-19, is to use the results of the previous stages in order to output the estimates.

Algorithm 3 Information value estimate for continuous input features X based on
nearest neighbour algorithm

INPUT: Input data set ( S(¥i,a), i)ic1:v aca

PARAMETERS:

e K - number of folds in the validation procedure
® k. - maximal number of nearest neighbors to consider
® Njpayes - number of steps for Bayesian search

® kpayes - maximal number of nearest neighbours to consider during Bayesian search

OUTPUT: information value for X
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1: Split randomly K times matrix {Z;};ci;, into train/validation subsets F;, G; such that

Fi L Gz = {:Z‘j}jelzN for each 7 €l K.

2: for each a € A do

3:
4.

>

10:

11:

12:

Perform Bayesian search to find optimal «, Steps 4-10:
For candidate vector o consider the transformed data set {\/a o &;}1.n, where o is
the Hadamard product. Note that train/validation splits do not change but they
include now transformed features.
for ecach test set G; do

for each \/aZ,, € G; find its kpeyes nearest neighbours among F; and

create the nearest neighbours matrix A such that

A, = n-th nearest neighbour of z,, among F;

for each 7 < k calculate the validation absolute score C VZ—}’

v, zg = |G’ Z | Z S yAlm7 S(ylua)|

O<m<g

return min; mean; C'V;;""

end for

After nyqyes step of Bayesian search select optimal o,

a;, = argmin min mean C'V;;*
o J v

Using ] repeat Steps 5- 7 using kmax nearest neighbors instead of kpqyes and return

average validation score matrix CV;** . Denote by
* _ : avaz
k;; = argmin C'V;;
j
1 * 1 ..
Using (\/@3%;) ¢, y contruct matrix (By), . where

i€l:N,jelmax; k) .

Bfj = j-th nearest neighbour of \/a;7;
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and matrix (Ca where

U)zel :N,j€limax; k; , )

€4 = S(ysg. 0)

13: end for

14: for each 7€ 1: K do

15:  Fit LassoLars model or other regression model to the (C7y,. ,S(y;,a))jen:n and
compute predictions (g(yj, a))jer.n on training inputs C, KL |

16:  Compute the following

1w, .
éxzﬁzsyu i S(yla ))7

=1
where
N
a*’* = argmaxz S(y;,a),
@ i=1
ar = argmax S(y;, a)
acA
17: end for
18: Define
€x = mean éx

19: return éx

The algorithm works as follows. First of all the assignment of four parameters is required:
an initial value k., of neighbors, the number K of train/validation splits, the number
Kpayes of nearest neighbors to consider during the 745 steps in a Bayesian search.

In Step 1 we split randomly K times the input data set into train/validation subsets.
Step 2 states that each a € A is processed separately. In Step 3 a Bayesian search for
metric begins. For candidate vector « the input data set is transformed to {\/aZ; }1e1.n as
in Step 4. Each previously created train/validation split F; U G; is processesd as in Steps
5-9. Firstly, Kpqyes nearest neighbors for all observations from G; are determined among the
training part F;, and the matrix A is created as in Step 6. In Step 7 the mean validation

absolute error of the j-nearest neighbors regressor for each j < kpgyes is calculated. The
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minimal average validation error across all train/validation partitions is returned in Step
8. After npyqyes steps of Bayesian search the optimal weights vector o is returned as in
Step 10.

In Step 11 the optimal number of neighbors k ; are computed for each train/validation
split. This completes the search for a weighted Euclidean metric. The second stage begins.

In Step 12 matrix (C’F‘-

Z])ie LN e lima; ke, 15 contructed, where

Cicjl' - S(sz‘ga a)

and B} is the j-th nearest neighbour of \/aj7;. In Steps 14-17 each of the K train/validation
splits is processed separately. Consider the i-th split and define the data set
Coi = ((Cr?m)mel:k;i ) S(Qna a))nel:N .
In Step 15 the LassoLars model is fitted on Cg;, where (CF,.), ;. pe 1S a feature vector and
the corresponding response is S(y,,a). The prediction on C; is £eturned. The justifica-
tion of this step is that the LassoLars model automatically assigns weights to neighbours
through L' regularization, thus selecting the 'important’ ones. Then in Step 16 an estimate
of Vol is calculated based on the prediction from Step 15. The final estimate is an average
of estimates given for each train/validation split as in Steps 18, 19.
Finally, we highlight a connection of our Algorithm [3| with Strong and Oakley’s Al-
gorithm [2 in the case a GP model is chosen as a smoothing technique. The trained GP

model for a new observation Z* returns the following prediction

(14) y" = (K (7", ji))iel:N (K (@4, jj));ellzN,jelzN<S(yia a))iet:n,

where K (-,-) is a kernel function. The prediction is a weighted average of the input
data set (S(vi,a))ic1.ny with a specific choice of the weights. This is equivalent to the
weighted nearest neighbors algorithm. Thus, Algorithm [2] and Algorithm [3| differs only
by the weights selection.

5.3. Local learning approach. The idea presented in Algorithm [3]is based on equation
(8)) which is a local approximation of the inner expectation. In section we have proposed

using the nearest neighbors algorithm for that purpose but we can be more general and
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use a local modeling approach to make our estimate more robust. By local modeling we
mean using models that fits to the data locally. A well-known representative example is
the locally estimated scatterplot smoothing model (LOESS) [8]. The obvious gain from
using local modeling is in predictive power as local models are a more flexible solution
than the ordinary nearest neighbors approaches, becasue they can incorporate not trivial
local patterns in data. On the ther hand, LOESS model is computationally expensive,
becasue it performs fitting in the neighborhood. A good alternative is to partition data
into blocks and build a model for each block separately. Such an approach is expected to
be much faster computationally and also very flexible if partitioning is done automatically
and is optimized to the data. A good example of such algorithm is the multivariate
adaptive regression splines model (MARS) [15]. The idea presented here is similar to the
one presented in Algorithm |2l with the difference that instead of a GAM or a GP model
we fit a MARS or a LOESS model.

6. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the algorithms in a series of numerical
experiments. In Section we present results for the first case study in [37]. In Section

6.2, we present results for the second case study in [37]

6.1. Case Study 1.[37]. As a first case study, we rely on Case Study 1 of Strong’s and
Oaekly’s [37]. The model represents a hypothetical decision tree with correlated inputs.
The decision-maker is selecting between two alternatives whose utility S(y, a;) (i = 1,2)

depends on 12 uncertain inputs as follows:

S(y,a1)|X = %) = Mwsaerr + r379210) — (21 + ToT374)

S(?J, a2)|X =X) = )\(5131435154516 + 5617331851719) — (211 + 517121’13954)7
as in [37], in The inputs are assigned a joint normal distribution, with X5, Xg, X14 and X4
pairwise correlated with a correlation coefficient equal to 0.6. Table 1 reports the means
and standard deviations of the inputs. We also assign A = 10000 as in [37]. We report

a selection of several experiments developed to test the performance of the algorithms

presented in the previous sections. We perform experiments at increasing sample sizes and
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X Xz X X X5 X A7 Xz

Xy Ay

Xy Xp

A3 Xia

Xig X7

Xz X

Mean 1000 10 52 400 70 03 3.0

Std 1 2 1.0 200 10 01 05

25 -0.10

10 0.02

02

05 1500 8

1 2

6.1 a0

1.0 10

0.30

0.05

3.0 20 -010

1.0 5 002

Table 1: Summary of means and standard deviations for case study 1

05

02

to obtain an uncertainty quantification of the estimates we perform 300 replicates sampling

independent data sets from the input distributions and correspondingly re-running the

model. The uncertainty in the estimates is then represented as a boxplot. Figures

display the obtained results. Figure [1| present results for individual features, while Figures

2, [] for features group. Above each box in parentheses is the mean and standard deviation

of the estimates. Additionally, the mean is indicated by a solid line on each box. The

graphs in each figure show results for sample sizes starting at M = 500 (first graph) to

M = 50000 respectively (the sample size is displayed at the top of each graph).

Table [2 shows the average execution times (over 300 replicates) in seconds of the alter-

native algorithms (listed in the first column), for alternative sample sizes (second column)

and for alternative group size (from one feature, column 3, to eight features, column 7).

Algorithm
(LOESS)

. Sample | One Two Four Five Eight
Algorithm
size | feature | features | features features features
500 0.35 3 3 4 7
1000 0.4 4 4 6 8
Algorithm
10000 | 10 14 10 12 20
(LassoLars weights)
25000 | 30 16 15 15 24
50000 |35 20 27 27 30
500 0.3 3 3 4 7
1000 0.35 3 3 5 8
Algorithm
10000 |5 8 8 10 18
(No LassoLars weights)
25000 |13 9 10 12 20
50000 | 20 10 17 18 21
500 0.05 0.05 0.15 Too large Too large
1000 0.06 0.1 0.5 dimensionlity dimensionlity
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10000 |1 3 30 for for
25000 |13 50 600 the R the R
50000 |33 145 >600 implementation | implementation
500 <1 <1 1 <1 <1
. 1000 <1 <1 1 <1 <1
Algorithm 10000 | <1 <1 1 <1 <1
(MARS) 25000 | <1 <1 1 1 1
50000 | <1 <1 1 1 3
500 <1 <1 <1 2 <1
. 1000 <1 <1 <1 3 <1
Algorithm 10000 | <1 <1 <1 <1 1
(GAM) 25000 | <1 <1 1 1 3
50000 | <1 1 3 3 6
500 2 2 2 2 3
Algorithm 1000 4 4 4 4 4
(GP) 10000 | 50 60 70 92 192
25000 | >500 | >500 >500 >500 >500
50000 | >500 | >500 >500 >500 >500

TABLE 2. Approximate running times in seconds of various algorithms for

Vol estimation depending on the number of input variables.

The second row reports the performance of the LarroLars algorithm with weight selec-

tion. The values show that the algorithm takes about 0.35 seconds to estimate information

value at a sample size N = 500, while it takes 35 seconds at N = 50000. For groups of

larger size, we have a systematic increase with the sample size, but the increase with respect

to the cardinality of the group is not systematic. For instance, at N = 50000, we register

the lowest estimation time for groups of 2 features and the time for the 8-feature group

is lower than the time for the 1-feature group (we discuss this aspect further). The third

row reports the performance of the same algorithm without automatic weight selection.
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The algorithm is systematically faster that the version with weight selection. Also for this
algorithm we register a systematic increase with the sample size, but a non-systematic in-
crease with the group size, with the group of two features being faster than the group with
1 feature. The fourth row reports results for the times of Algorithm 2 with LOESS as a
metamodel. We see that the algorithm is substantially slower that the LassoLars algorithm
and inapplicable for groups of four features for N > 25000 and not applicable for groups of
5 ot 8 features. Conversely, Algorithm 2 with MARS (row 5) or GAM (row 6) proves to be
computationally fast, with running times smaller than 1 second in the majority of cases.
Finally, row 7 shows that the GP algorithm fails to yield estimates within reasonable time
at N = 25000 and N = 50000. This result is in line with previous literature findings [19].

Regarding the non-systematic increase with respect to the group size, we belive this is is
mainly due to the fact that for higher dimensional feature groups it is optimal to consider
a smaller number of neighbors than in low-dimensional cases. This is directly related to
the curse of dimensionality and it is easily seen in the following example. Consider a single
feature X; and any point x{ from the input data set. If we plot a sphere on the basis of
X, and a fixed radius centered at z}, then there will be ko neighbors within its boundary
(let’s assume that kg > 0). On the other hand, if we want to include a larger number
of features and plot a sphere with the same center and such that it includes the same
number of neighbors ko, its radius will have to increase with the increase of the number of
features under consideration, which icrease a bias as in . Thus, for a fixed number of
observations in the input set, as the number of considered features increases, due to the
bias-variance tradeoff it is optimal to use a smaller number of neighbors.

Notice that the GP and LOESS algorithms are dropped in calculations for sample sizes
equal to N = 25000 and N = 50000 because their execution time is larger than 10 minutes.
Additionally, we use the R implementation of the LOESS algorithm, which allows us to
perform calculations for groups of variables with a maximum size of 4. Overall, Algo-
rithm [2] (GAM) and Algorithm [2] (MARS) turn out to be timewise inefficient, for sample
sizes greater than N = 10000, while the remaining algorithms are fast and of practical
applicability also at large sample sizes. (The LassoLars weights Algorithm [5| increases the

computation time, but to such an extent that it is still possible to apply the algorithm
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to data sets with a large number of observations.) This aspect is important because we
are guaranteed an asymptotic consistency and thus all these algorithms allow analysts to
exploit from the largest possible sample size.

In Figure [T} the mean point estimates are stable at about 610 with all algorithms at all
sample sizes. The horizontal axis reports the 95% confidence intervals for the estimates
of Xgs. One notes that the width of the confidence intervals shrinks as the sample size
increases. At N = 500 for Algorithm [3| (with LassoLars weights) we register C'lyg5 =
[490, 720], which corresponds to a [—18%, +20%] around the mean, while at N = 50000

we register C'ly g5 = [594,626], which corresponds to a variation of about 2% around the

mean.
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FiGURE 1. Result of Vol estimation for Xg by different algorithms

We then consider the estimation of the joint information value of input groups. Figures
and [3] display results for the estimation of a 4-input group, Xs, X, X14, X15 and a 5-
input group X5, X¢, X14, X15, X19. Both figures show that the average point estimates of
the tested algorithms differ for almost all sample sizes. Moreover, all algorithms except
Algorithm (No LassoLars weights) produce stable estimates starting from a certain
sample size. For example, Algorithm (MARS) produces stable estimates starting from
a sample size N > 1000 for both Figures [2[ and |3, The point estimate produces a value of
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€x5. X6, X14,X15 = 300 Algorithm [3| with LassoLars weights, is stable starting with a sample
size greater than 10000 in Figure 2| (mean estimate around €x, x, x,,,x,s = 845) and than
25000 in Figure [3| (mean estimate around €x; x; x14,X15, %10 = 348).

We can then establish a confidence interval by considering the area between the 25th
and 75th percentiles. We say that two algorithms give consistent results if their confidence
intervals have a common part. For both Figures [2/ and |3| and samples larger than 500 we
observe that the Algorithm |3 without LassoLars weights gives estimates not consistent
with other approaches. The situation changes significantly when Lassolars weights are
used. We observe then the consistency of the results with all tested versions of Algorithm
2l What is more, this consistency turns out to be even greater in comparison with the
consistency among different versions of Algorithm [2 This means that Algorithm
in both cases gives results that are a good compromise between estimates derived from

different versions of Algorithm

6.2. Case Study 2 of Strong and Oakley 2014 [37]. The case study contains a three-
state state Markov Model and concerns the selection between two alternatives, a; and as,

whose utilities depend on a set of 31 inputs as follows:

20
S(y,a1)|X = /\(Z STMUL + X5 XoX10) — (X1 + X2 X3X,)

i=1

20
S(y, a2)|X = A 55 MUz + X17X15X10) — (X11 + X12X15Xs).

i=1

Regarding the input distributions, we have S; == (X3, 1, O)T,52 = (X4, 1 — Xy, O)T, U, =
(X6,0,0)" Uy == (X135,0,0)" and
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FIGURE 2. Result of Vol estimation for the input group (X5, X4, X14, X15)
by different algorithms
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[37] assign the following distributions to the uncertain inputs:

X0, Xo1, Xas ~ Dirichlet(70, 40, 10),

Xas, Xoi, Xo5 ~ Dirichlet(10, 100, 20),
Xag, Xov, Xag ~ Dirichlet(70, 40, 10),
(

ng, X30, X31 ~ Dirichlet 10, 100, 20),

25
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FIGURE 3. Result of Vol estimation for (X5, X¢, X14, X15, X19) by different

algorithms

Xo, X5, Xg, X129, X14, X7 are assigned Beta distributions and X3, X4, X9, X13, X19 ~ Gamma

distributions, with means and standard divations reported in Table 1. Inputs X; to Xig

are assumed independent of the others.

We report results for sample sizes equal to 500, 1000, 10000, 25000 and 50000 for different

combinations of input features. In Figure 4| we present results for single features and in

Figures Bl[6][7] for groups of features.

In Figure [] the mean point estimates are stable at an information value of about éx, =

510 for all algorithms and at all analyzed sample sizes. The horizontal axis reports the 95%

confidence intervals for the estimates of Xg. One notes that the width of the confidence

intervals shrinks as the sample size increases. At N = 500 for Algorithm 3] (with LassoLars

weights) we register C'ly g5 = [488,536], which corresponds to a £4% deviation around the
mean, while at N = 50000 we register C'lj 95 = [502, 520], with a deviation of about +1.7%

around the mean.

We now report results for groups of higher dimensions. Figures[5] [6] and [7]display results

for the estimation of a 2-input group, (X5, X14), a 4-input group (X5, Xg, X14, X15) and a

8-input group (Xao, Xo1, Xoz, Xoa, Xog, Xor, Xog, X30), respectively.
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Figure [o shows that the point estimates €x, x,, are more sensitive to the sample size

than in the one-dimensional case.

Specifically, algorithm 1 fails to produce reasonable
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estimates at N = 500, however, it produces accurate estimates for N > 10000. All three
figures show that the average point estimates of the tested algorithms differ for almost
all sample sizes. Moreover, all algorithms except Algorithm [3[ (No LassoLars weights)
produce stable estimates starting from a certain sample size. For example, Algorithm
(MARS) gives results that show stability starting from a sample size greater than 10000
for all three figures. Algorithm [3| with LassoLars weights, is stable starting with a sample
size greater than 10000 in Figure |§| ( the mean point estimates around €x, x; x,4,%15 =
602) and than 25000 in Figures 5| [7] ( the mean point estimates around €y, x,, = 67;
€X00.X1,X23. X4, Xa6,Xo7. X20. X50 = 408 respectively).

Overall, we can draw analogous conclusions with respect to Study Case 1 that highlight

the importance of using LassLars weights in Algorithm (3)).

6.3. Vol as feature selection tool for decision problems. Consider now that time
or resource constraints allow the decision-maker to collect information on the inputs se-
quentially and that they do not allow to collect simultaneously information on all features.
The problem is then to find the most informative subset of features. This problem (feature
selection) has been formulated in alternative ways and is, by nature, a combinatorial prob-
lem. In fact, there are (Z) ways to select k features out of n. In our case, we express the
problem as that of finding the input subset D of minimal cardinality such that X, C X

of minimal cardinality such that
€Xp 2 aex,

where 0 < a < 1. For such a problem direct solution would be to consider all combinations
of features and find the optimal subset. But such an approach is very computationally
expensive. An approximate algorithmic solution is the step-forward feature selection where
at each step a feature that gives the biggest increase in the Vol is selected.

In order to make this approach practical, we need a fast estimation procedure. We
performed experiments for such forward-step feature selection for Case Study 1 (Section
and Case Study 2 ( Section using Algorithm [3[ for Vol estimation.

The results are presented in Figures [§ and [9}
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In Figures, [§ and [9] the horizontal axis presents the selection order given by the feed-
forward procedure and y-axis displays the Vol after adding a new feature to the current
subset of features. Figure |8 shows that set of features {Xg, Xi6, X15, X7} carries over
97% of the total Vol of all 19 features. Similailry, Figure [J] shows that set of features
{ X6, X15, Xog, X20, X9, Xo3} carries over 96% of the total Vol of all 30 features. The such

analysis brings a clear picture of the drivers of information value for these case studies.
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CHAPTER 2
INFORMATION DENSITY ESTIMATION

7. INTRODUCTION

Global sensitivity measures, and therefore also the value of information in its various
forms, summarize the contribution of inputs to output variability in a unique number. As
such, they do not yield information on the region of the input support which is active in
determining the relevance of an input. This directional concern has the merit, instead,
of making the analysis of input importance more transparent. Here, we note that this
type of sensitivity analysis is called regional sensitivity analysis with the term possibly
being used for the first time in [22]. In the context of decision analysis, graphical tools
are one-way and two-way sensitivity analysis methods. These methods, while providing
regional information, are not engineered to take uncertainty into account. As underlined,
for instance, in [3], their deterministic nature does not make them compatible with a
decision problem under input uncertainty. The earlier analysis of [13] also reveals that
one may obtain false impressions of sensitivity by relying on deterministic methods in the
presence of uncertainty.

To overcome this limitation, Hazen (2014)[I8] introduces the notion of information den-
sity, as a regional sensitivity method within Vol analysis. The intuition is to add a tool
that can provide clear information about the critical directions of sensitivity - the same
information that is captured in a graphical sensitivity diagram. A few years after the
proposal, Hazen et al (2022) [I] give formal conditions under which information density
exists and is well-posed. They perform some preliminary numerical experiments for com-
puting information density in a black box context. Their approach, however, is based on a
double-loop design which is computationally expensive. Indeed, Hazen et al (2022) point
out the need for a fast and accurate way to estimate the information density.

In the remaining chapters, we present novel algorithms for the estimation of information
density. Our intuition is to adapt the previously discussed algorithms for Vol estimation so
as to extract simultaneously the regional information associated with information density.

We then adapt the Strong and Oakley’s [38] Vol estimation algorithm and the nearest
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neighbor approach. We conduct a series of experiments with a case study with 2 scenarios:
a multilinear model in which inputs are correlated, but with known analytic solutions
for all conditional distributions, and the same model in which inputs are correlated but
where sampling from the conditional distributions requires MCMC. The testing is done for
different sample sizes and we address both the one and the two-dimensional information
density.

In Section 8] we present the formal definition of information density. In Section
we introduce the estimation methods. In Section we present results of numerical

experiments for two case studies.

8. INFORMATION DENSITY

The work of Hazen (2014)[18] introduces the concept of information density. A more
thorough discussion of the definition can be found in the work of Hazen, Borgonovo, and
Lu (2022) [I]. These two works provide the theoretical foundations of information density.
For instance, they show that information density remains meaningful when information
value is defined as an expected utility increase, while information density becomes difficult
to interpret if information value is expressed as a certainty equivalent increase or as a
buying (or selling) price of information. Some numerical experiments and an application
of information density are discussed in Hazen, Borgonovo, and Lu (2022) [I]. However,
the authors adopt a double-loop approach of Monte Carlo simulation to provide an initial
illustration and do not discuss numerical considerations for estimating information density.
In this paper, we address this problem more extensively. Our intuition is to start with the
designs for estimating information value discussed in the previous section and to adapt
them for estimating information density.

Following Hazen et al (2022) [I], we present the definition of information density and
discuss it intuitively by means of an example. The setup is the typical information value
one. We consider a decision maker who is selecting an action from a set of possible actions
A. The uncertain consequences are associated with random payoff V. The decision-maker

possesses a utility function U that maps each possible value of V' (and thus each possible
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consequence) to a real number. The problem faced by the decision-maker is then to find

(15) argmax E(U (V).

a€A
We then consider that the decision-maker has the possibility of collecting information
on random vector X (defined on the same underlying probability space — See Section .
Then, the decision problem becomes to find

(16) argmax E(U(V*)|X)).

acA
Problem is called prior expected value of action posterior to perfect information ([28],
p.252). Comparing with gives the expected increase in utility registered when
uncertainty in X is removed

(17) e = E(max E(U(V*)|X)) — argmax E(U(V?)).

acA acA
The is known as the value of the information (Vol) of X. Note that Vol is always
greater or equal to zero and is null if and only if X do not change the preferred alternative.
Equation can be rewritten in the following form

(18) ex = E(max E(AU“|X)),

acA
where

AU =U(VY - UV

is the gain for switching to alternative a. Note that this quantity is negative for all a € A
if no new information is received, because a* is the preferred alternative in that case. In
the case, with new information, a* becomes sub-optimal, then this quantity can become
positive for some a.

Equation shows that e¥ is the expected value of the random variable max,c 4 E(A U%X).
Consider the case when X is absolutely continuous with density fx(z) over some region

Ox € RY. Hazen et al (2022) prove that

(19) 1x(x) = fx(x) max E(AUYX = 2)
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is indeed a density of max,c4 E(AU?|X), that is, they prove that

(20) ey / x)dr = / fx(x meajc E(AUX = z),

where X is the support of X. Equation is called information density of X since it
is non-negative and its integral is the overall information value. Hazen at al (2022) show
that in the case a* is not unique (it is a set), then also information density is not unique,

and we have one information density in correspondence of each alternative in the set.

Example 8.1. We illustrate the notion of information density with a toy decision problem
taken from Hazen et al 2022 [1]. Consider a decision maker selecting among two alter-
natives, ag and ay. The first alternative is associated with a sure payoff equal of 6%, the
second with a random payoff $10 if event E occurs. The problem is visualized in graphs (a)
and (b) of Figure . Let the probability of E occurring be denoted by p. Suppose that p is
assigned the base-case value of p = 0.8. Then, alternative ay is prefered, with an expected

payoff equal to 8. The value of p at which we change from alternative a; to alternative

10r i

a = a4 =
3 k-
v = $10 E |
(ek] &

vy = $6 a p >, |
p=0.8 not E . of incorrect |

. 0 decision = 11.4%,
Perit — 0.6 ]_ _ p o
a* =ai | ay ) 0 0.2 04 ) 0.6 08 1
p uncertain ¢ e —t i —r 11|

(b) Decision problem

a) Parameters
(a) (¢) Expected utility

FIGURE 10. Simple toy decision problem Hazen et al (2022) [I]

ag (critical value) is pey = 0.6. If p assumes values below this threshold, the preferred
alternative changes (Figure (c)) and the decision-maker selects ag. However, p is un-
certain and the analyst assigns a beta(a=4.8, b=1.2) distribution with mean p (Figure[1(]

(c)). If we perform an uncertainty analysis sampling values of p from this distribution, the
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probabilistic sensitivity analysis would reveal an 11.4% chance of switching from alterna-
tive ay to alternative ag. We can also compute the Vol of p (either from the sample or
analytically), which results equal to 0.128. This value is relatively small if compared to the
optimal expected payoff of alternative ay (which, we recall, equals 83%). This result might
be interpreted as indicating that uncertainty in p might not be an issue despite the 11.4%
chance of change. However, if we rely solely on the magnitude of Vol we do not obtain any
insight into the fact that p needs to decrease below the threshold p...; = 0.6, in order for
the preferred alternative to change. This directional information s, instead, delivered by
the one-way sensitivity plot. Thus, Vol itself does not allow us to determine the directions
of concern in a sensitivity analysis. However, for this test case, it is possible to derive the
information density of p analytically. The resulting graph is reported in Figure taken
from Hazen et al (2022).
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FI1GURE 11. Information density for p and direction of concern, from Hazen

et al (2022) [1]
The information density in Figure[I] evidences that information about p has its highest

value when p is comprised between 0.3 and 0.6. Also it clearly indicates that the direction
of concern for p is at the left of its base-case value. In particular, it is the part of the
support of p below the threshold that makes p informative. Conversely, If p falls at the
right of the threshold, the preferred alternative is not going to change.

The region of maximal information density as well as the direction of concern can also be
sought in a two-dimensional setting. Consider that not only p but also v become uncertain,
with base-case values (p,01) = (0.80,80%), and assign vy = 653 with certainty. Suppose p
and vy are regarded as independent and assigned the following distributions: p is beta with
mean 0.80 and standard deviation 0.0026 (beta(48,12)), and vy is normal with mean 80%
and standard deviation 408. See the left panel of Fz'gure taken from Hazen et al (2022).
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FIGURE 12. Information density for (p,v1) and direction of concern, Hazen et al (2022) [I]
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The dashed line in the graphs of Figure marks the border between the regions where
a* = ay (above the line in this case) and a* = agy (below the line in this case) are, respec-
tively, optimal.

The left and right graphs in Figure also present contour plots of the joint probability
density fp., (p,v1) and the joint information density iy, , respectively. We recall that the
joint value of information of (p,v1) equals 12.243%, which is of the same order of the problem
payoffs. Therefore, joint information about (p,vy) is significant for the decision maker. Let
us compare the contour plots in the left and right graphs in Figure[I3. The region in which
the joint density of (p,v1) is different from zero covers wvalues included in the rectangle
[0.65,0.9] x [0,150]. This region overlaps with both the regions where ay or aq is preferred.
In the right graph, however, we have a null information density only in the region where a,
1s preferred, as a consequence of the fact that the information gain is non-null only in this
region. The right graph also shows that the contour lines reveal a mode of the information
density at about the point (0.82,$120). This is the region where information about (p,v;)
has its highest value. The arrow from the baseline (p,01) = (0.80,$80) to the mode of the
information density evidence the direction of concern. Note that (0p,dvy) = (0.02,$40), so
that for both p and vy, the direction of concern involves an increase (right of the current

values).

9. ESTIMATION

In the previous example, information density can be found analytically. However, in
order to use information density in practical applications, we need efficient estimation
methods. Before this work, in Hazen et al (2022) a double-loop approach is used to
calculate information density numerically. Such an approach works as follows. To fix
ideas, consider a one-dimensional setting and let X; be the parameter of interest. In a
double-loop design, the first step is to preselect a set of values (called a grid) on which
to compute information density. Let Ng be the number of points in the grid and let z¥
denote a point in the grid (k =1,2,...,G). Then, once Xj is fixed at any of these values,
we re-evaluate the model through Monte Carlo propagation obtaining a sample of N¢onq

points from which to compute the conditional expected utility of each alternative. From
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knowledge of the conditional expected utility one computes the information gain at a given
point (Cx, (z1)).

The computational cost for each input is then equal to Ng - Ncona model evaluations.
In the case the model is characterized by long running times, then this cost becomes
prohibitive. Conversely, we have seen that there are computationally convenient algorithms
to estimate information value and, in the previous chapter, we have also discussed new
alternatives. We argue that these algorithms can be modified to yield information density
as well.

As a first method, we propose an adaptation of the Vol estimation algorithm developed

by Strong and Oakley [37].

Algorithm 4 Strong and Oakley (2014) [37] adaptation
INPUT: Input data set {U(via), Ti}icq g
OUTPUT: Information density of X;

where z; € R?, for d € N

1: For each a € A fit a machine learning regression model g,(Z) to the input data set
{U(via), z:}

2: Evaluate the kernel density estimator fx,(x;) of fx,(z;) using the input data set
3: for each z; in the input data set do

compute

iy (@) = (max go(2:) — ga» (1)) fx (2:),

where a* = argmax, + SV ()

4: end for

5: return (x;, 0¥ (x;)) and visualize it

The idea is the same as for Algorithm and is to treat the model output as noisy. Step
1 is the same as Step 1 of Algorithm . Step 2 foresees rsees the use of a kernel density
estimator to determine X. Notice that this step becomes redundant if the probability
density function of X is known. In that case, the value of fy,(z;) can be assigned directly
in the density estimator.

In Step 3, the results of Steps 1 and 2 are inserted into the information density formula to

obtain the final estimate. The algorithm finally returns all pair of points (x;, i{(x;)). These
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can be used to obtain a visual display. Notice that, potentially, it is not needed to calculate
the pair (z;,i%(x;)) for all points in the dataset, but the analyst can also pre-determine a
grid of selected points. The reason for selecting a subset of lower cardinality could be to
reduce computational time. (However, in our experiments no issues have emerged in this
respect).

A second proposal is the modification of the nearest neighbor approach based on Algo-
rithm ([3)).

Algorithm 5 Information density estimate for continuous input features X based on

nearest neighbour algorithm
INPUT: Input data set ( U(via), ¥i)ic1:N aca
PARAMETERS:

e K - number of folds in the validation procedure
® kax - maximal number of nearest neighbours to consider
® Njpayes - Number of steps for Bayesian search
® Kpgyes - maximal number of nearest neighbors to consider during Bayesian search
OUTPUT: information density for X at x;
13: Steps 1-13 are the same as in Algorithm ((3))
14: for each i€ 1: K do
15:  Fit the LassoLars model or other another regression model to the (C'y- , U(vja))jer:n
and compute the predictions ([7 “(vj,a))je1:n On training inputs Cﬁhk; 1_7
16: end for |

17: Compute

K
U(vje) = E U'(vj.4)

18: Evaluate the kernel density estimator f x,(x;) of fx,(z;) using the input data set
19: The final estimate i{(x) at input data point z; is given by

05 (2:) = (max U (vja) — U (v0)) fxc (),

where a* = argmax, Zfij U (v).0)

20: return (z;, .5 (x;)) and visualize it
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Up to step 13, the algorithm foresees the same steps as of Algorithm . Then, differ-
ently from Algorithm , the algorithm foresees storing the value of the information gain
at each location, multiply it by the input density and return the value of the information

density as such location.

10. NUMERICAL EXPERIMENTS

In this section, we analyse the performance of the algorithms presented in Section [J
through a series of numerical experiments. We rely on the same case studies as in Section
[6l The first step is the generation of a sample from the input distributions. This step is
followed by an uncertainty propagation, so that to obtain the unconditional distribution of
all the alternatives. We generate samples of sizes N=500, 1000, 10000, 25000 and 50000.
In Section [10.1] we presents results for the toy model, for which the analytical values of the
information gain, information density and Vol are available. In Section [10.2] we present
results for the first case study in [37]. In Section we present results for the second
case study in [37].

We observe that analytical expressions for these two case studies are not available. Then,

it becomes of interest to compare the estimates produced by the alternative algorithms.

10.1. Results for the Analytical Example. In this section, we report results for the
numerical estimation of the information density for the univariate and bivariate cases
discussed in Section [8 with reference to the toy model in Hazen at al (2022). Results are
summarized in Figure

On the horizontal axis of each graph of each graph in Figure we report the support
of the input and on the vertical axis we display the corresponding information density. In
each graph, the green curve indicates the analytical information density.

The first row in Figure repors the estimates of the information density of p with
Algorithm [ in which MARS is used as an emulator. We note that starting at N=10000
numerical estimates are close to analytical ones. Thus, the MARS estimator shows an
asymptotically consistent behavior. The second row in Figure [13|displays results when the
GAM is used in Algorithm [4] One notes that this algorithm is not as effective as MARS.
For instance, at N = 1000, N = 10000 and N = 25000 one would obtain a visual impression
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FIGURE 13. Result of information density estimates for p by different algo-

rithms.
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of a bimodal information density, which does not coincide with the analytical one. The

impression still remains at N = 50000 either. The third row in Figure [13| displays results

when the GDP is used in Algorithm [4 One notes that this choice visually as effective

as MARS for small sample sizes. However, at large sample sizes the execution time of

the algorithm prevents its utilization. The fourth and the fifth rows in Figure [13] display

results for the Algorithm [5 with weights and without LassoLars weights, respectively.

The graphs show that the estimates are highly volatile and the user will not get accurate

information about the information density event at the largest sample sizes.

In this respect, as an additional information on the algorithm performance, it is also

useful to take into account also the value of the Vol estimate corresponding to a given
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information density plot. Figure displays in the legende of each plot the estimated
value of €.

The estimates of Algorithm [5| are less accurate then the estimates of the other al-
gorithms, confirming the volatility impression generated by the plot. For instance at
N = 50000, the GAM algorithm attains €, = 0.12, which coincides with the analytical
value, while Algorithm [5| exhibits ¢, = 0.10, still with a 16% error.
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"FIGURE 14. Result of information U(:ﬁien;ity estimation for the (p,v1) by dif-

ferent algorithms

Figure [14] displays results for the estimation of the joint information density of (p,v1).
In this respect, the results in Figure are the numerical counterpart of the bivariate
calculations performed for the toy model in Example 9.1. The graphs in rows 1-5 of Figure
display estimates obtained by the same algorithms as in Figure Also, in each graph,

the green shadow indicates the true information density.
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We note that in this case the LassoLars algorithm exhibits the best performance: the
information value estimates are close to the analytical value of ¢,,, = 12.24 across all
samples. Algorithm [@ with GAM produces slightly less accurate estimates and the MARS
algorithm follows. Algorithm [5| without weights produces unreliable information value
estimates, while the GP algorithm shows the worst performance in this case, with large
errors in the Vol estimates. We then focus on the information density indications produced
by the three best performing algorithms. All graphs concur in indicating the active region
as comprised within the rectangle [0.65,1] x [100,200], basically at all sample sizes, with
the indications becoming more precise as N increases. Also the direction of concern is
correctly represented in the majority of the graphs. An exception is registgered by the
GAM algorithm at N=500 and N=1000. In this case, the maximal information density is
registered in a region that does not coincide with the one obtained analytically. However,
if one considers the indications of Algorithm {4 with MARS and GAM as well as of
Algorithm [5| at sample sizes starting at N = 10000, one obtains a correct indication
about the region in which (p, v;) are active and about the direction of concern.

In the next two subsections, we examine the performance of the algorithms in estimating
information density for the two case studies in [37]. For these case studies analytical results
for the information density and Vol are not available and therefore an analyst needs to rely
on the comparison of the graphs and estimates produced by the alternative algorithms. We

start with Case Study 1 in [37].

10.2. Case Study 1.[37]. Figure presents results for the information density of Xg,
the input associated with the largest individual value of information. Similarly, to Figure
the graphs in the first row display estimates produced by Algorithm [ with MARS,
with sample sizes from N = 500 to N = 10000, the second row with Algorithm 4| with
GAM, and similar.
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X is at the left of Xg = 0.38. All algorithms concur in this indication, with two exceptions.
Algorithm E| with GP fails at large sample sizes due to computational time (as in the
previous cases). Algorithm with and without wrights, produces noisy estimates, which

are difficult to interpret at small sample sizes. Also, all algorithms agree in indicating that
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FIGURE 15.

algorithms

The graphs in the first and second rows of Figure[15|show that the direction of concern for
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Result of information density estimation for the X4 by different

the maximum information density occurs at a value of Xg ~ 0.42.

estimates of the joint information density of the two most important variables (X5, Xg).

In order to assess the performance in the bivariate case, we use the same dataset to obtain

Figure displays the results.
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FIGURE 16. Result of information density estimation for the (X5, Xs) by

different algorithms
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The graphs in Figure show that all algorithms produce stabile visualizations start-

ing from N 10000 observations. We also find that the information density estima-
tor given by Algorithm @ (in each tested version) gives significantly smoother results
with respect to Algorithm (5). At the same time, starting from a sample size above
N=10000 observations, all graphs allow us to draw the same conclusions about the max-
imum information density, as well as about the areas where it is null. The area in which
[0.3,0.6]

The direction of concern is evidenced in each graph by the red ar-

the pair (X5, Xg) becomes informative is contained in the rectangle [0.5,0.9] x
at all sample sizes.

rows that start at the baseline value (the population mean in our case) and end at the
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point of maximal value. For instance, if we take the fifth graph in the first row, the ar-
row originates at (E(X5), E(Xg)) = (0.7,0.3) and ends at (0.68,0.41), with a length of
(Ax, = 0.02, Ax, = 0.11). Note that the arrow is almost aligned with the direction of X,
showing that information on Xjg is more relevant than X5. This is, indeed, in line with the

corresponding information value: we have ex, ~ 500, while ex, =~ 30.

10.3. Case Study 2.[37]. Figure displays the results of estimating the information
density by different algorithms for a single feature Xg.
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F1GURE 17. Result of information density estimation for the Xy by different

algorithms

All variants of Algorithm (EI) give consistent results starting from sample size N= 1000
although the values of the estimated Vol vary slightly around N=500. In the case of the

two versions of Algorithm we can also observe stabilization of the estimates starting
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from sample size N = 10000. However, Algorithm gives a relatively noisy estimator
of the information density, the same as for first study case.

Based on Algorithm and at all sample sizes, we conclude that is informative for
values smaller than X¢=0.3. A similar conclusion is drawn based on the results of Algo-

rithm , but the value threshold is noisy. Also, all algorithms at all sample sizes concur

in indicating that information density is maximal at Xg = 0.2.
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F1GURE 18. Result of information density estimation for the (X5, X¢) by

different algorithms

Figure shows that all algorithms produce stabile visualizations starting from N =
10000 observations. At N=10000, 25000 and 50000, we have that most algorithms concur
in indicating an estimate of the joint Vol of about € x; x4) = 518 with some exceptions.
Specifically, Algorithm ({5) with GP at N=1000 and N=10000 gives estimates of € x;, x;) ~
543 and €(x;, x4) =~ 528, respectively; also, Algorithm without LassoLars weights tends
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yields upward biased estimates with €x; x;) ~ 538 and €x; x,) =~ 561 at N = 25000 and
N = 50000, respectively. However, all graphs show that the region where information
about the pair (X35, Xg) is active is a region enclosed in the rectangle [0.5,0.9] x [0,0.3] at
all sample sizes. The direction of interest marked by the red arrow becomes relatively stable
above N=1000 observations. In this case, it takes its origin at (E(X3), E(Xs)) = (0.7,0.3)
and ends at the pont (0.69,0.2), with a length of (Ax, = 0.01,Ax, = —0.1) (0.4,0.5).
This clearly indicates that the shift in the direction of Xjg is greater than the one in the
direction of Xj.

Let us now look at further insights about other inputs. We consider N = 50000 and

study information density for additional individual inputs as well as input pairs. Figures
and [20] report results using Algorithm [5| with MARS.
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F1GURE 19. Result of information density estimation for individual inputs

by Algorithm @(MARS) for N=50000

The first graph in Figure shows that the direction of concern for X5 is left of its
current base case. The second graph shows that the direction of concern for X4, instead,
is right of its current base case value. The input X4 becomes active for values X4 > 0.9
and information on this input is most valuable for values of X4 at about 0.95. Similarly,
also for X5 the direction of concern is right of its current base case value. The region
of maximum information value is concentrated around the value X;5 = 0.37. The most

informative feature in terms of Vol is Xg, for which €x, = 509. Moreover, the direction of
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F1GURE 20. Result of information density estimation for different grups of
variables by Algorithm (MARS) for N=50000

interest is to the left of the current base value, and the information density itself takes a
maximum value around Xg = 0.18.

The graphs in Figure show the information density estimates for two-dimensional
cases. The first two graphs show the estimates for (X5, X14) and (X5, Xg), respectively.
The activation area for the first graph is contained in the [0.4, 0.8] x [0.7, 1] area, while that
for the second graph is contained in [0.4,0.8] x [0, 0.3]. The direction of concern for the first
graph is characterized by length (Ax,,Ax,,) = (—0.2,0.14), and for the second graph by
(Ax,,Ax,,) = (0.01,—0.1). Intuitively, the direction of the arrows shows also the direction
of greater informativeness. For instance, the arrow in the second graph is almost vertical,
indicating that information on Xg is more valuable than information on X5. This fact is in
agreement with the corresponding information values, as we have €x, = 509 and €x, = 36.
The direction of concern is towards lower values of X4. Similarly, last graph of Figure
the direction of concern is characterized by a length of (Ax,,, Ax,,) = (—0.03,0.003).
Thus, we can conclude that the informativeness of Xy, is very low in comparison with Xss.

The direction of concern is towards lower values of Xo3.
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11. SUMMARY

We have presented theoretical proof of the central limit theorem for the nearest neighbors
estimator of the Value of the Information. We further proposed an improvement for the
nearest neighbors algorithm by the weights derived from a model from the class of linear
models. To test our claims we performed many experiments using two test cases widely
used in the literature. Results confirmed that using weights in the nearest neighbors
algorithm can increase the accuracy of the final estimate. The best algorithm to use when
computing Vol estimate, based on our experiments is the MARS algorithm which suffers
less than other algorithms from the curse of dimensionality and can be used for large data
sets. We have also used the MARS algorithm to find the most important features for both
case studies which can have a crucial impact on understanding the decision problem which
is being solved.

We have then modified the algorithms to estimate information density, a recently pre-
sented quantity that enriches the Vol through a graphical method of sensitivity analysis.
In this case, for the estimation of information density, we recommend using several algo-
rithms at the same time, as we have observed in experiments that depending on the input
data, different solutions may turn out to be more or less performing. Therefore, relying
on multiple algorithms in the absence of closed-form expressions is the best guarantee for

analysts to have robust conclusions to be then communicated to decision-makers.



51

REFERENCES

[1] G B. Hazen , E Borgonovo and X. Lu. Information density in decision analysis. 2022.

[2] N S. Altman. An introduction to kernel and nearest-neighbor nonparametric regres-
sion. American Statistician, 46(3):175-185, August 1992.

[3] G. Baio and A P. Dawid. Probabilistic sensitivity analysis in health economics. Sta-
tistical Methods in Medical Research, 24(6):615-634, 2015. PMID: 21930515.

[4] J M. Bernardo and A F. M. Smith. Bayesian Theory. Wiley&Sons, New York, NY,
USA, second edition, 2000.

[5] E Borgonovo. A New Uncertainty Importance Measure. Reliability Engineering and
System Safety, 92(6):771-784, 2007.

[6] R B. Bratvold, J E. Bickel, and H P. Lohne. Value of information in the oil and
gas industry: Past, present and future. SPE Reservoir Fvaluation and Engineering,
12(4):630-638, 20009.

[7] H Chen and Y Xia. A normality test for high-dimensional data based on the nearest
neighbor approach. Journal of the American Statistical Association, 0(0):1-13, 2021.

[8] W S. Cleveland and S J. Devlin. Locally weighted regression: An approach to re-
gression analysis by local fitting. Journal of the American Statistical Association,
83:596-610, 1988.

[9] D. Coyle and J. Oakley. Estimating the expected value of partial perfect information:
a review of methods. Fur. J. Health Econ., 9(3):251-259, August 2008.

[10] L Devroye, L Gyorfi, A Krzyzak, and G Lugosi. On the Strong Universal Consistency of
Nearest Neighbor Regression Function Estimates. The Annals of Statistics, 22(3):1371
— 1385, 1994.

[11] D B. Dunson. Statistics in the Big Data Era: Failures of the Machine. Statistics and
Probability Letters, 136:4-9, 2018.

[12] J C. Felli and G B. Hazen. Sensitivity Analysis and the Expected Value of Perfect
Information. Medical Decision Making, 18:95-109, 1998.

[13] J C. Felli and G B. Hazen. A Bayesian Approach to Sensitivity Analysis. Health
Economics, 8:263-268, 1999.



52

[14]

[15]
[16]

[17]
18]

[19]

[20]

[23]

[24]

[25]

[26]

E Fix and J L. Hodges. Discriminatory Analysis: Nonparametric Discrimination:
Consistency Properties. USAF School of Aviation Medicine, 1951.

J H. Friedman. Multivariate adaptive regression splines. Ann. Statist, 1991.

B E. Fristedt and Lawrence F G. A modern approach to probability theory. Springer,
1997.

T Hastie and R Tibshirani. Generalized additive models. Wiley Online Library, 1990.
G B. Hazen. Sensitivity analysis via information density. 2014.

A Heath, I Manolopoulou, and G Baio. A Review of Methods for Analysis of the
Expected Value of Information. Medical Decision Making, 37(7):747-758, 2017.

C C. Holmes and N M. Adams. A probabilistic nearest neighbour method for statistical
pattern recognition. Journal of the Royal Statistical Society. Series B: Statistical
Methodology, 64(2):295-306, 2002.

J M. Keisler, Z A. Collier, E Chu, N Sinatra, and I Linkov. Value of information
analysis: The state of application, 2014.

H Millwater, G Singh, and M Cortina. Development of a localized probabilistic sen-
sitivity method to determine random variable regional importance. Reliability Engi-
neering €9 System Safety, 107:3-15, 2012.

P K. Mondal, M Biswas, and A K. Ghosh. On high dimensional two-sample tests
based on nearest neighbors. Journal of Multivariate Analysis, 141:168-178, 2015.

H O. V. Myklebust, J Eidsvik, I B. Sperstad, and D Bhattacharjya. Value of informa-
tion analysis for complex simulator models: Application to wind farm maintenance.
Decision Analysis, 17(2):134-153, 2020.

J E. Oakley. Decision-theoretic Sensitivity Analysis for Complex Computer Models.
Technometrics, 51(2):121-129, 2009.

J E. Oakley, A Brennan, P Tappenden, and J Chilcott. Simulation sample sizes for
Monte Carlo partial EVPI calculations. Journal of Health Economics, 29(3):468-477,
2010.

J E. Oakley and A O’Hagan. Probabilistic Sensitivity Analysis of Complex Models: a
Bayesian Approach. Journal of the Royal Statistical Society, Series B, 66(3):751-769,
2004.



53

28] J W. Pratt, H Raiffa, and R Schlaifer. Introduction to Statistical Decision Theory.
MIT Press, Cambridge Massachusetts (USA), 1995.

[29] H. Raiffa and R. Schlaifer. Applied Statistical Decision Theory. Harvard University
Press, Boston, 1961.

[30] F P. Ramsey. Weight or the Value of Knowledge. The British Journal for the Philos-
ophy of Science, 41(1):1-4, 1990.

[31] C E. Rasmussen and C K. I. Williams. Gaussian processes for machine learning. The
MIT Press, 2006.

[32] Mohsen Sadatsafavi, Nick Bansback, Zafar Zafari, Mehdi Najafzadeh, and Carlo
Marra. Need for speed: An efficient algorithm for calculation of single-parameter
expected value of partial perfect information. Value in Health, 16(2):438-448, 2013.

[33] A Saltelli and S Tarantola. On the Relative Importance of Input Factors in Mathemat-
ical Models: Safety Assessment for Nuclear Waste Disposal. Journal of the American
Statistical Association, 97(459):702-709, 2002.

[34] F Santosa and W W. Symes. Linear inversion of band-limited reflection seismograms.
SIAM Journal on Scientific and Statistical Computing, 7(4):1307-1330, 1986.

[35] M Strong and J E. Oakley. An efficient method for computing partial expected value
of perfect information for correlated inputs. Medical Decision-Making, 33:755-766,
2013.

[36] M Strong and J E. Oakley. An efficient method for computing single-parameter partial
expected value of perfect information. Medical Decision Making, 33(6):755-766, 2013.
PMID: 23275450.

[37) M Strong, J E. Oakley, and A Brennan. Estimating multiparameter partial ex-
pected value of perfect information from a probabilistic sensitivity analysis sample: A
nonparametric regression approach. Medical Decision Making, 34(3):311-326, 2014.
PMID: 24246566.

[38] M Strong, J E. Oakley, A Brennan, and P Breeze. Estimating the Expected Value
of Sample Information Using the Probabilistic Sensitivity Analysis Sample: A Fast,
Nonparametric Regression-Based Method. Medical Decision Making, 35(5):570-583,
2015.



54

[39] W W. Sun, X Qiao, and G Cheng. Stabilized nearest neighbor classifier and its
statistical properties. Journal of the American Statistical Association, 111(515):1254—
1265, 2016.

[40] R Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267-288, 1996.

[41] A Zabeo, J M. Keisler, D Hristozov, A Marcomini, and I Linkov. Value of information
analysis for assessing risks and benefits of nanotechnology innovation. Environmental

Sciences Furope, 31(1), 2019.



55

12. APPENDIX A

During the thesis, several more experiments were performed, in excess of the ones de-
scribed in the main text of the thesis. In these appendices, we present additional ones,
starting with experiments performed for Vol estimation for the first case study[6.1} Figures

and 25| report Vol estimates yielded by Algorithm [2 and Algorithm [3] at
N =500, N = 1000, N = 10000, N = 25000 and N = 50000, respectively.
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gorithm 2| and Algorithm [3| for N=500



56

Xs X& X1a
| | | |
? ) R I | | o e I |
@Q"‘i&%’_&a\ ol P\Q,U‘:\p{;'l [y || P\qﬂ& \p"'sag;\ | .
et R [
o - >° - o o
2 i 1 I I 2 I
A I | I PR o | |_‘ | @ao oo 2 . o
M&;“" | & | s .ff-g\ I el I ngeﬁ"%,;\ | ] |
as® 21 .
: ] 1 1] i
o[- S | . | S0 o] D]—p,
pe® e et k_‘f;"‘ l ! ﬁ“&\f‘ 2
M @ e 050'“"
8o | 1 e | N | o fo  of | oo
o o | P @ Ll | pm“‘f\;’? o3 L 1]
o oy ey
o 2® 99"‘
— € — v —
2 — [ = oo g1 d (1] e et — 1] E
,‘e}%ﬁ‘ L Pa%":e;\@::f’ L o ueﬂ‘i:p“' | |
P o ¥ 2
\;‘:‘}9&‘ L @eﬁﬂ:ﬂ“": \ps-a"‘ﬁ'ﬁ ®
Vo ] [ e o T etk = [ ] RPN | | B
S50 L] S L] S L L
el ; ; : - : o , : ; ot : - \ : - : : :
W0 20 40 60 80 100 Ve 540 560 580 600 620 640 660 s@&@ 160 180 200 220 240 260 280 300
X1s X5.X14 X7.X186
‘godﬂ‘ﬁ‘;‘\ I I_|_| I o " ::_.,\ I |_" _] I oo ;r;_a o |—_ —lm
o N gﬂ(&‘éz T
e Ll R e
e o 5"‘6%
@ 2 : el _—
2 | | | | | -
Mﬁﬂ.\ o Ll I N I | | e N L 2
: A E g !
o5 ‘)3(:'} ko”q.\'
ik — [ S &
2 1
ey — —| D 1 e T e |— —| |— & o N - ‘ — o
e - e | =2 | g l - |
P N 5\".‘
@'t as™ I 3
A aol b o B} N }—m—{o o M N a 4—'1}—'03@
S P AP A
_,;\'} }3'." 5&)‘."
O‘IP t:l,’!fil B
£l | | | o | [ | o | [ | |
a o o s [=5 - 3 (-]
s | L] s L Crasen| CT LLIT
L P“sqe’l,:]}- P‘suex:f)-
T i \f&%}u
© 3 ————
e g g P
® EU\;?:}" P\Q'O‘s‘{;}“:‘ C—— w ‘}5?:\.;11‘1
el . 3 o
e 270 240 260 280 300 320 BeCH 200 zzo 240 z60 280 300 320 WD p 475 sS00 525 550 575 600 625 G50 675
Xs5,X6.X14 X5,X6.X14.X15 X5.X6,X14,%15.X19
7 I 1 1 T 1
wSa e L] | esa || [ oo Lo b [t e
W L. | WO o A Al
@.3, 5&'-3 s T}b.'l
01'9- & |__| @"& s Il et - \Bg‘lp
Y L] b wa | X | i
4 — w 12 — @@\“ D — o
R S+ 3 i b \'\,b G "
v —T R i
Sl | I s BN s &
Mgﬁa\ R \if:;ﬁ\ I " T
46" o P — |
e A
e T o] i [+ e
g}«“ ) I |: { w@oo 5 2 4{ | |— gl
pey ¢,m“‘ (g 1 Pgﬂ‘\@\'&_ﬁ'ﬂ L] Lo
A o
@ef‘ @,x-" ;,0"&;:‘2\ | ‘ | |
= | i | T
| T —la I =
E e B !
vt R W
PR e —
i —— el s ] £ |
X W | oo | 1 | s == |
N xq.ﬁ& L1l | Pﬁig‘s“".fnpb e F??’a o
o pot e
e 660 680 700 720 740 760 780 : 750 200 250 900 950 woo 735 7% 775 800 825 850 875 80

F1GURE 23. Vol estimation results for different groups of variables by Al-
gorithm 2| and Algorithm [3| for N=10000



57

X5 X6 Xis
Wi 4 | 4 |
- — £ oo — — o a £ o -] t——="o
—{ [} S [ | S i
i i
o v
O | 4 (i
- Sl T LT -
T g | 2 |
S| ‘@‘\Q?fyﬁ =0 é@\l_?.“k ......
"P‘} A
& v
[ &) = )
|_ _! I— *:u g © @i&é"&- |— — ‘ |— —| 066:_\@@ = |_ - \; ‘ {0 LR}
=i ﬁf@é¢‘9 e 3 g‘,@o
e P Hada
5 e nPb’IPP-
| o % & )
|—i ‘ —|woo © _‘\\,(;‘\‘?‘%'\ CR- ‘ ‘ - |0 a é’p‘;‘:ﬁ:&‘ o|— —|
4, 4,9 RS, e |
o -}
10 20 30 40 50 60 70 g0 e 580 380 600 610 520 630 64D 650 © % 200 220 240 260 280 300
X1s5 X5.X14 X7.X16
o— [ F—F N o e =
s So% ! S 0¥
a7
& &
v A i
-] | —_— ‘ ‘ —'oo aao -‘\\'(5;‘1“’\-\) 13 '—‘] ‘ —|D .{\3;\_‘9 o | —I ‘ —| a
‘@ & ..\9'-" — wéﬁ}-_@. |
B 2
o A
O el
6
a oa |— —‘ ‘— _ | -] {“6\3’\0 |—| : — —| oo a -6‘&:’9‘) a |— _ _— —|w m ooo
B gy |_ .... "‘é\&}h‘? |_!_
A5 AT
B Koo
z{"’n\ kK 'rf’ge‘ i
— o o
| | | | = | | » | | | |
I | T |° _{(;i“‘;,\n i ‘ | e ] ‘.\6‘;}9 ] I | | m o
L] S e |
ki d"f‘:} TR
] L~ o b
240 250 260 270 280 200 300 310 3208 e 200 220 240 260 280 300 320 340 3ad o 500 520 540 560 580 600
X5,X6.X14 X5.Xe,X14.X15 X5.X6,X14.X15.X19

| — e | e I « |
o 1 |

& L

kSt w“éi.;vu

o o

& &
T g

— T & e IR BN [

& o ! ‘ff"'k o

it e

&ﬁb- @:"\

| rs — | | | |

e o

fSo® ! S |

&

P‘D"‘)

=
3
-

A g R
. . L5 & . -
BED o0 120 Ta0 TEQ = 80 00 820 B840 BED A1 T80 8OO 820 B840 BED 20

FI1GURE 24. Vol estimation results for different groups of variables by Al-
gorithm 2| and Algorithm [3| for N=25000
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Here we present the results of further the experiments performed for Vol estimation
for the second case study [6.2] Figures and [30] report results yielded by
Algorithm 2] and Algorithm [3] at sample sizes of N=500, N=1000, N=10000, N=25000
and N=50000, respectively.
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13. APPENDIX B

Here we present the rest of the experiments performed for information density estimation

for the first case study

Figures

estimates yielded by Algrithm [f] and Algrithm

report information density

for different groups of variables.
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variables by AlgorithmEl (MARS)
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F1GURE 32. Result of information density estimation for different grups of
variables by AlgorithmEl (GAM)
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FIGURE 33. Result of information density estimation for different variables
by AlgorithmH (GP)
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F1GURE 34. Result of information density estimation for different grups of

variables by Algorithm

(without LassoLars weights)
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Here we present the rest of the experiments performed for information density estimation

| [34] and

for different groups of variables.

for the second case study

estimates yielded by Algrithm [4 and Algrithm
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FIGURE 36. Result of information density estimation for different grups of
variables by AlgorithmEl (MARS)
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F1GURE 37. Result of information density estimation for different grups of

variables by AlgorithmEl (GAM)
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Appendix C

Here we present the codes (Python 3.7) that implement the original algorithms for Vol
estimation developed in this thesis.

[27]: from __future_

from __future_
import re

from joblib import Parallel, delayed

from lightgbm import LGBMRegressor

from pandas import DataFrame

from rpy2.robjects import pandas2ri

from sklearn.linear_model import LassoLarsCV, LassolLarsIC
from sklearn.model_selection import train_test_split

from sklearn.neighbors import NearestNeighbors

from tqdm import tqdm

import division
import print_function

pandas2ri.activate()

from rpy2.robjects.packages import importr
from bayes_opt import BayesianOptimization
from time import time

import numpy as np
import time
import logging

import pandas
def experiment_knn_ordinar_val(inputs2, nb, alpha, k_max,
~train_val_splits):
X = inputs2 * np.sqrt(list(alpha))
y = nb
all_diffs = []
for train_index, test_index in train_val_splits:
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = NearestNeighbors(n_neighbors=k_max).fit(X_train)



# clf = FaissKNeighbors()
# clf.fit(X_train, y_train)
dist, indices = clf.kneighbors(X_test, k_max)
predictions = np.array([np.average(y_train[indices([:, :k]][:, :,.
-0],
axis=1) for k in range(1,
~k_max + 1)])

difss = [np.abs(predictions[:, i] - y_test[i]) for i in
—~range(len(y_test))]

all_diffs.append(difss)
all_diffs_arr = np.vstack(all_diffs)
return np.expand_dims(np.mean(all_diffs_arr, 0), 1)

def grid_search(nb, i, k, skf_list, indices_skf):
fit_intercept = i[0]
positive = i[1]
norm = i[2]
all_diffs = []
for idx, (train_index, test_index) in tqdm(enumerate(skf_list)):
y_train, y_test = nb[train_index], nb[test_index]
skf2_train = np.random.choice(np.arange(len(indices_skf[0])),
~size=int(len(indices_skf[0]) * 0.75),
replace=False)
skf2_test = np.array(list(set(np.arange(len(indices_skf[0]))).
~difference(skf2_train)))

indices = indices_skf [idx]

estimator = LassoLarsCV(normalize=norm, n_jobs=-1, cv=5,,
—~fit_intercept=fit_intercept, positive=positive)

estimator.fit(y_train[indices[skf2_train, :k]],,
~y_test[skf2_train], )

predictions = estimator.predict(y_train[indices[skf2_test, :k]])

difss = np.abs(predictions - y_test[skf2_test])

all_diffs.append(difss)

all_diffs_arr = np.hstack(all_diffs)
return np.mean(all_diffs_arr)

def objective(inputs,



nb,
k_max, train_val_splits,
params, size_sample=10000):
alphas = tuple([params[key]
for key in params.keys() if len(re.findall("alpha",
~key)) > 0])

# idx_under = np.random.choice(a=np.arange(len(inputs)),
~size=size_sample, replace=False)
difss = experiment_knn_ordinar_val (inputs2=inputs,
nb=nb, alpha=alphas, k_max=k_max,,
~train_val_splits=train_val_splits)
if difss.shape[l] == 2:
loss = np.max([np.min(difss[:, 0]), np.min(difss[:, 1])]1)
elif difss.shape[l] == 1:
loss = np.min(difss[:, 0])
return -loss

def inf_val_knn_lasso(nb, inputs, parameters_indx, k_max, k_bayes,
~n_bayes_steps, n_bayes_sample, n_cv, init_points_bayes):
start_t_knn=time.time ()
if n_bayes_sample == 'all':
idx_bayes_search = np.arange(len(inputs))
else:
idx_bayes_search = np.random.choice(a=np.arange(len(inputs)),,
—replace=False, size=n_bayes_sample)

inputs2 = inputs[idx_bayes_search, :][:, parameters_indx].
—astype('float32")
inputs2 = np.ascontiguousarray(inputs2)
nb_bayes = nb[idx_bayes_search]
train_val_splits = []
for _ in range(n_cv):
X_train, X_test, y_train, y_test =,
~train_test_split(DataFrame(inputs2), DataFrame(nb_bayes[:, 0]),
test_size=0.1)
idx = X_train.index
idx2 = X_test.index
train_val_splits.append((idx, idx2))
if len(parameters_indx) > 1:
bounds = {
'alpha' + str(i): (0.00001, 1)



for i in range(O, inputs2.shapel[1])
}
optimizer0 = BayesianOptimization(
f=lambda **x: objective(inputs=inputs2,
nb=nb_bayes[:, [0]],
k_max=k_bayes,
~train_val_splits=train_val_splits,
params=x) ,
pbounds=bounds,
random_state=1,
)
optimizer(0.maximize(init_points=init_points_bayes,
~n_iter=n_bayes_steps)
alpha_0 = optimizer0.max['params'].values()
alpha_0 = tuple(alpha_0)
optimizerl = BayesianOptimization(
f=lambda **x: objective(inputs=inputs2,
nb=nb_bayes[:, [1]1],
k_max=k_bayes,
—train_val_splits=train_val_splits,
params=x) ,
pbounds=bounds,
random_state=1,
)
optimizerl.maximize(init_points=init_points_bayes,
—~n_iter=n_bayes_steps)
alpha_1 = optimizerl.max['params'].values()
alpha_1 = tuple(alpha_1)
else:
alpha_1
alpha_0

[1]
[1]

def find_neighbors(X, y, train_val_splits):

dists = []

indices_total = []

for train_index, test_index in train_val_splits:
X_train, X_test = X[train_index], X[test_index]
clf = NearestNeighbors(n_neighbors=k_max).fit(X_train)
dist, indices = clf .kneighbors(X_test)
dists.append(dist)
indices_total.append(indices)

return dists, np.array(indices_total)



def find_k_cross_validation(nb, k_max, train_val_splits,,
~ind_train_val):
y = nb
all_diffs = []
for idx, (train_index, test_index) in,
—~tqdm(enumerate (train_val_splits)):
y_train, y_test = y[train_index], y[test_index]
indices = ind_train_vall[idx]

stds=np.array([np.std(y_train[indices[:, :k]J][:, :, 0],
axis=1) .mean() for k in range(l, k_max +,
-1)1)
pandas.Series(index=range(1l, k_max + 1),data=stds).plot()
predictions = np.array([np.average(y_train[indices[:, :k]][:,.
e, O],

axis=1) for k in range(1,
~k_max + 1)])
predictions = np.expand_dims(predictions, 2)
difss = np.mean(np.abs(predictions - y_test), 1)
all_diffs.append(difss)
return all_diffs

estimates_knn = []
estimates_knn_lassolars = []

X0 = inputs2 * np.sqrt(list(alpha_0))
X0 = X0[:, "np.all(X0 == 0, axis=0)]
X1 = inputs2 * np.sqrt(list(alpha_1))
X1 = X1[:, "np.all(X1 == 0, axis=0)]

y0 = nb_bayes[:, 0]
yl = nb_bayes[:, 1]

distsO, ind_val_nn_in_trainO
~train_val_splits)

find_neighbors (X0, yO,,

distsl, ind_val_nn_in_trainl = find_neighbors(X1, yi,,
—~train_val_splits)

exp_kO = find_k_cross_validation(nb=nb_bayes[:, [0]],
k_max=k_max,
—train_val_splits=train_val_splits,
ind_train_val=ind_val_nn_in_train0)



exp_k1 = find_k_cross_validation(nb=nb_bayes[:, [1]],
k_max=k_max,
~train_val_splits=train_val_splits,
ind_train_val=ind_val_nn_in_trainl)

k_ 0 = [1 + np.argmin(i[:, 0]) for i in exp_kO]

k_1 = [1 + np.argmin(i[:, 0]) for i in exp_k1]

# k_0 = [1 + np.argmin(np.concatenate(exp_k0, 1).mean(1))]
# k_1 = [1 + np.argmin(np.concatenate(exp_kl, 1).mean(1))]
print (£"KO {k_0} and K1 {k_1}")

inputs2 = inputs[:, parameters_indx].astype('float32')
inputs2 = np.ascontiguousarray(inputs2)

X0 = inputs2 * np.sqrt(list(alpha_0))
X0 = X0[:, "np.all(X0 == 0, axis=0)]
X1 = inputs2 * np.sqrt(list(alpha_1))
X1 X1[:, "np.all(X1 == 0, axis=0)]

clf = NearestNeighbors(n_neighbors=max(k_0)).fit (X0)
dist0O, indices_totalO = clf.kneighbors(X0)
clf = NearestNeighbors(n_neighbors=max(k_1)).fit(X1)
distl, indices_totall = clf.kneighbors(X1)

for i in range(len(k_0)):

I

smoothO = nb[indices_totalO, 0] [:, :k_0[i]] .mean(1)

smoothl = nb[indices_totall, 1][:, :k_1[i]] .mean(1l)

y_smooth = np.vstack((smoothO, smoothl)).T

final_inf = np.mean(np.max(y_smooth, 1)) - np.max(np.
—mean (y_smooth, 0))

estimates_knn.append(final_inf)

from sklearn.model_selection import GridSearchCV
parameters = {'normalize': (True, False),
'fit_intercept': (True, False)}

clf = GridSearchCV(LassolLarsIC(), parameters, verbose=4, cv=2,,
—scoring='neg_mean_absolute_error')

clf . fit(nb[indices_totalO, O] [:, 1:k_0[i]], nbl[:, 0])

smoothO = clf.predict(nb[indices_totalO, OJ[:, 1:k_0[i]])



clf2 = GridSearchCV(LassoLarsIC(), parameters, verbose=4, cv=2,,
—scoring="'neg_mean_absolute_error')

clf2.fit(nbl[indices_totall, 1][:, 1:k_1[i]], nb[:, 1])

smoothl = clf2.predict(nb[indices_totall, 1][:, 1:k_1[i]])

y_smooth = np.vstack((smoothO, smoothl)).T

final_inf = np.mean(np.max(y_smooth, 1)) - np.max(np.
~mean (y_smooth, 0))

estimates_knn_lassolars.append(final_inf)

return np.mean(estimates_knn), np.mean(estimates_knn_lassolars)

[28] : import pyearth
def alg2MARS(nb,inputs,parameters_indx) :
"""Algorithm 2 (MARS)'''

x=inputs[:,parameters_indx]
yi=nb[:, [0]]

y2=nb[:, [1]]
modell=pyearth.Earth()
modell.fit(x,yl)
predl=modell.predict(x)

model2=pyearth.Earth()
model2.fit(x,y2)
pred2=model?2.predict(x)

nb_smooth=np.vstack((predl,pred2)).T
inf_val=nb_smooth.max (1) .mean()-nb_smooth.mean(0) .max ()
return inf_val

[]:



[39]:

Appendix D

Here we present the codes (Python 3.7) that implement the original algorithms for infor-
mation density estimation developed in this thesis.

from __future_

from __future_
import re

from pandas import DataFrame

from rpy2.robjects import pandas2ri

from sklearn.linear_model import LassoLarsCV, LassolLarsIC

from sklearn.model_selection import train_test_split

from sklearn.neighbors import NearestNeighbors

from statsmodels.nonparametric.kernel_density import KDEMultivariate
from tqdm import tqdm

import pandas as pd

pandas2ri.activate()

from bayes_opt import BayesianOptimization

import numpy as np

import time

import division

import print_function

def experiment_knn_ordinar_val(inputs2, nb, alpha, k_max,
—~train_val_splits):

X = inputs2 * np.sqrt(list(alpha))

y = nb

all_diffs = []

for train_index, test_index in train_val_splits:
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = NearestNeighbors(n_neighbors=k_max).fit(X_train)
# clf = FaissKNeighbors()
# clf.fit(X_train, y_train)
dist, indices = clf .kneighbors(X_test, k_max)
predictions = np.array([np.average(y_train[indices[:, :k]]1[:, :,.

-0],



axis=1) for k in range(l,

~k_max + 1)])

difss = [np.abs(predictions[:, i] - y_test[i]) for i in
—~range(len(y_test))]

all_diffs.append(difss)
all_diffs_arr = np.vstack(all_diffs)
return np.expand_dims(np.mean(all_diffs_arr, 0), 1)

def objective(inputs,
nb,
k_max, train_val_splits,
params, size_sample=10000):
alphas = tuple([params[key]
for key in params.keys() if len(re.findall("alpha",

difss = experiment_knn_ordinar_val (inputs2=inputs,
nb=nb, alpha=alphas, k_max=k_max,
~train_val_splits=train_val_splits)

if difss.shape[l] == 2:

loss = np.max([np.min(difss[:, 0]), np.min(difss[:, 1])]1)
elif difss.shape[l] == 1:

loss = np.min(difss[:, 0])
return -loss

def inf_density_knn(nb, inputs, parameters_indx, k_max, k_bayes,
—-n_bayes_steps, n_bayes_sample, n_cv, init_points_bayes):
""'"Algorithm 5'"'
start_t_knn = time.time()
if n_bayes_sample == 'all':
idx_bayes_search = np.arange(len(inputs))
else:
idx_bayes_search = np.random.choice(a=np.arange(len(inputs)),,
—~replace=False, size=n_bayes_sample)

inputs2 = inputs[idx_bayes_search, :][:, parameters_indx].
—~astype('float32")

inputs2 = np.ascontiguousarray(inputs2)

nb_bayes = nb[idx_bayes_search]

train_val_splits = []



for _ in range(n_cv):
X_train, X_test, y_train, y_test =
~train_test_split(DataFrame(inputs2), DataFrame(nb_bayes[:, 0]),
test_size=0.1)
idx = X_train.index
idx2 = X_test.index
train_val_splits.append((idx, idx2))
if len(parameters_indx) > 1:

start = time.time()
print(f"Start time: {start}")
# Search for direction --- feature selection
bounds = {
'alpha' + str(i): (0.00001, 1)
for i in range(0O, inputs2.shapel[1])
}
try:
optimizer0 = BayesianOptimization(
f=lambda **x: objective(inputs=inputs?2,
nb=nb_bayes[:, [0]],
k_max=k_bayes,
~train_val_splits=train_val_splits,
params=x),
pbounds=bounds,
random_state=1,
)
optimizer(0.maximize(init_points=init_points_bayes,
~n_iter=n_bayes_steps)
alpha_0 = optimizer0.max['params'].values()
alpha_0 = tuple(alpha_0)
except ValueError:
alpha_0=(1,1)
optimizerl = BayesianOptimization(
f=lambda **x: objective(inputs=inputs2,
nb=nb_bayes[:, [1]1],
k_max=k_bayes,
~train_val_splits=train_val_splits,
params=x) ,
pbounds=bounds,
random_state=1,
)
optimizerl.maximize(init_points=init_points_bayes,,
—~n_iter=n_bayes_steps)
alpha_1 = optimizerl.max['params'].values()



alpha_1 = tuple(alpha_1)

end = time.time()

print (f"Time for metric learning : {end - start}")
else:

alpha_1 = [1]

alpha_0 = [1]

def find_neighbors(X, y, train_val_splits):

dists = []

indices_total = []

for train_index, test_index in train_val_splits:
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = yl[train_index], y[test_index]
clf = NearestNeighbors(n_neighbors=k_max).fit(X_train)
dist, indices = clf .kneighbors(X_test)
dists.append(dist)
indices_total.append(indices)

return dists, np.array(indices_total)

def find_k_cross_validation(nb, k_max, train_val_splits,,
—~ind_train_val):
y = nb
all_diffs = []
for idx, (train_index, test_index) in
—~tgdm(enumerate(train_val_splits)):
y_train, y_test = y[train_index], y[test_index]
indices = ind_train_val [idx]
predictions = np.array([np.average(y_train[indices[:, 1:k]][:
-, +, 0],
axis=1) for k in range(2,
~k_max + 1)])
predictions = np.expand_dims(predictions, 2)
difss = np.mean(np.abs(predictions - y_test), 1)
all_diffs.append(difss)
return all_diffs

estimates = []
estimates_knn = []

print (f"ALPHA1 {alpha_O} and alpha2 {alpha_1}")

X0 = inputs2 * np.sqrt(list(alpha_0))
X0 = X0[:, "np.all(X0 == 0, axis=0)]
X1 = inputs2 * np.sqrt(list(alpha_1))
X1 = X1[:, "np.all(X1l == 0, axis=0)]



nb_bayes[:, 0]
nb_bayes[:, 1]

yO
y1

distsO, ind_val_nn_in_train0 = find_neighbors(X0, yO0,,
—~train_val_splits)

distsl, ind_val_nn_in_trainl = find_neighbors(X1, yi,.
—~train_val_splits)

exp_kO = find_k_cross_validation(nb=nb_bayes[:, [0]],
k_max=k_max,
~train_val_splits=train_val_splits,
ind_train_val=ind_val_nn_in_trainO)

exp_k1 = find_k_cross_validation(nb=nb_bayes[:, [1]],
k_max=k_max,
~train_val_splits=train_val_splits,
ind_train_val=ind_val_nn_in_trainl)

e
o
Il

[2 + np.argmin(i[:, 0]) for i in exp_kO]
[2 + np.argmin(i[:, 0]) for i in exp_ki]
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[
I

print (£"KO {k_0} and K1 {k_1}")

inputs2 = inputs[:, parameters_indx] .astype('float32')
inputs2 = np.ascontiguousarray(inputs2)

X0 = inputs2 * np.sqrt(list(alpha_0))

X0 = X0[:, "np.all(X0 == 0, axis=0)]
X1 = inputs2 * np.sqrt(list(alpha_1))
X1 = X1[:, "np.all(X1 == 0, axis=0)]

clf = NearestNeighbors(n_neighbors=max(k_0)+1).fit(X0)
distO, indices_total0 = clf.kneighbors(X0)
clf = NearestNeighbors(n_neighbors=max(k_1)+1).fit(X1)
distl, indices_totall = clf.kneighbors(X1)

inf_val_den_lasso=[]

inf_val_den=[]

for i in range(len(k_0)):
smoothO = nb[indices_totalO, 0] [:, :k_0[i]-1] .mean(1)
smoothl = nb[indices_totall, 1][:, :k_1[i]-1] .mean(1)
y_smooth = np.vstack((smoothO, smoothl)).T



final_inf = np.mean(np.max(y_smooth, 1)) - np.max(np.
—~mean (y_smooth, 0))

estimates_knn.append(final_inf)

inf_val_den.append(y_smooth)

end_t_knn = time.time()

print (f"KNN {final_inf}", end_t_knn - start_t_knn)

from sklearn.model_selection import GridSearchCV

parameters = {'normalize': ( False,True),

'fit_intercept': ( False,True)}

clf = GridSearchCV(LassolLarsCV(), parameters, verbose=4, cv=5,
—scoring='neg_mean_squared_error')

clf . fit(nb[indices_totalO, O] [:, 1:k_0[il], nbl[:, 0])

smoothO = clf.predict(nb[indices_total0O, 0] [:, 1:k_0[i]])

clf2 = GridSearchCV(LassoLarsCV(), parameters, verbose=4, cv=5,,
—scoring='neg_mean_squared_error')

clf2.fit(nb[indices_totall, 1][:, 1:k_1[i]], nb[:, 1])

smoothl = clf2.predict(nbl[indices_totall, 1][:, 1:k_1[i]])

y_smooth_lasso_lars = np.vstack((smoothO, smoothl)).T

final_inf_lasso_lars = np.mean(np.max(y_smooth_lasso_lars, 1)) -
—np.max (np.mean(y_smooth_lasso_lars, 0))

inf_val_den_lasso.append(y_smooth_lasso_