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“We are like sailors who on the open sea must reconstruct their ship but are never

able to start afresh from the bottom. Where a beam is taken away a new one must

at once be put there, and for this the rest of the ship is used as support. In this

way, by using the old beams and driftwood the ship can be shaped entirely anew, but

only by gradual reconstruction.”

Otto Neurath



Abstract

My doctoral research focused on two specific topics: i) models for the analysis of

multi-state time-to-event data; and ii) decision-theoretic approaches for the design

of clinical trials with a survival endpoint. For the first, I developed stochastic pro-

cesses useful for the Bayesian non-parametric analysis of follow-up studies where

patients may experience multiple events relevant to their prognosis. For the second,

I developed an approach that uses data from early clinical trials to specify the sta-

tistical test used in a confirmatory survival study, accounting for the possible failure

of standard assumptions. In this thesis, I describe 3 research papers that report my

contributions. Part of my work has been conducted while a visiting researcher at the

Dana-Farber Cancer Institute, Boston, Massachusetts (United States of America).
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Chapter 1

Introduction

My research interests focus on the development of Bayesian methods for biomedical

studies. Both the design and analysis phase of such studies are fundamental for their

success (Fisher et al., 1997; Cox and Donnelly, 2011). The Bayesian paradigm pro-

vides a great practical advantage in both, thanks to its intrinsic ability to combine

information from multiple sources (Ashby and Smith, 2000; Dunson, 2001; Spiegel-

halter et al., 2004). In addition, powerful computational tools permit to estimate

and check complicated Bayesian models in many applications (Gelman et al., 2013).

In my doctoral research, I developed novel approaches for the design and analysis

of complex survival studies. Specifically, I proposed new Bayesian non-parametric

models for the analysis of follow-up studies whose participants may experience mul-

tiple events relevant to their prognosis (Topic 1). I also proposed a new framework

- based on Bayesian decision-theory - for the design of randomized clinical trials

with a survival end-point. (Topic 2). My contributions are described in 3 papers

- 1 accepted for publication, 1 with invited revisions, and 1 under review.

For Topic 1, I developed stochastic processes useful for the Bayesian non-

parametric analysis of follow-up studies where i) there may be multiple competing

endpoints (Paper 1) or ii) patients may progress through several disease states

(Paper 2). Compared to parametric models, non-parametric models are less tied

to restrictive assumptions that may give a false sense of posterior certainty (Hjort

et al., 2010; Phadia, 2013; Ghosal and van der Vaart, 2017).

Instead, for Topic 2 I developed a decision-theoretic procedure to specify the

statistical test to be used the final analysis of a confirmatory survival study. The



3

procedure accounts for the possible failure of standard assumptions by leveraging

data from past early-stage trials (Paper 3). Here, decision theory provides a coher-

ent framework to both i) incorporate prior data in the design of a new experiment

(Lindley, 1997; DeGroot, 2005; Parmigiani and Inoue, 2009) and ii) satisfy the re-

quirements of pharmaceutical regulatory agencies (Ventz and Trippa, 2015).

The reminder of the thesis is structured as follows. In Section 2 I provide a

preliminary overview of the theoretical concepts used in Papers 1-3. In Section

3, I summarize the motivation and significance of the 3 research manuscripts, high-

lighting my contributions to each. In Sections 4-6 I report the full text of Papers

1-3, respectively. Finally, in Section 7 I provide some concluding remarks and de-

scribe future research. In the Appendix, I summarize 3 additional manuscripts

(1 accepted for publication, 2 under review) related to other applied research

projects (which thus I do not report here in full). I contributed to these works while

a visiting researcher at the Data Science Department, Dana-Farber Cancer Institute,

Boston, Massachusetts (U.S.A.).
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Chapter 2

Bayesian nonparametrics,

semi-Markov processes, and

decision theory for experimental

designs: a brief overview

2.1 The Bayesian non-parametric approach

Contrary to the classic parametric case, which only deals with finite dimensional

parameters (Berger, 2013; Gelman et al., 2013), the Bayesian non-parametric ap-

proach relies on prior probability distributions with an infinite dimensional support

(Ferguson, 1973; Müller and Mitra, 2013; Ghosal and van der Vaart, 2017).

From an abstract point of view, a Bayesian non-parametric prior distribution is

a probability measure on M(X ), the space of all probability measures on the sample

space X (typically a metrizable Polish space) (Ghosal and van der Vaart, 2017).

Historically, the construction of one such prior was regarded as mathematically

intractable, as it requires the definition of a random probability measure. This is

a stochastic process with index set B, the Borel σ-algebra of X , and sample paths

that form elements of M(X ).

Ferguson’s seminal 1973 paper (Ferguson, 1973) represented a turning point for

this research area. There, Ferguson introduced the Dirichlet process, a random

probability measure that has since become widely used in Bayesian applications
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(Ghosal and van der Vaart, 2017).

Definition 2.1.1 (Ferguson (1973)). Fix P0 ∈ M(X ) and k > 0. A stochastic

process (P (A) : A ∈ B) with values in [0, 1] is called a Dirichlet process Dir(k, P0)

if, for all measurable partitions A1, . . . , An of X , it is

(P (A1), . . . , P (An)) ∼ Dirichlet (kP0(A1), . . . , kP0(An)) .

In his paper, Ferguson (1973) shows that the Dirichlet process is well-defined

by appealing to conditions related to Kolmogorov’s Extention Theorem (Çinlar,

2011, Theorem 4.18). He also shows that i) E[P (A)] = P0(A) for all A ∈ B, and

ii) Var(P (A)) is a decreasing function of k. He also shows that the distribution

Dir(k, P0) is conjugate: if P ∼ Dir(k, P0) and X1, . . . , Xn is an independent and

identically distributed sample from P , then the conditional distribution of P given

X1, . . . , Xn is P ∼ Dir(k+n, P0 +
∑n

i=1 δXi) (where δx is the point-mass measure at

x).

Building on Ferguson’s work, Doksum (1974) introduced the following general

definition of a random probability measure.

Definition 2.1.2 (Doksum (1974)). A stochastic process (P (A) : A ∈ B) is a

random finitely additive probability measure if

1. P (A) ∈ [0, 1] almost surely for all A ∈ B;

2. P (X ) = 1 almost surely;

3. for all n ≥ 1 and all collections of disjointed sets (Ai,j : 1 ≤ j ≤ mi), i =

1, . . . , n, the random vector(
P
(
∪m1
j=1A1,j

)
, . . . , P

(
∪mnj=1An,j

))
has the same distribution as(

m1∑
j=1

P (A1,j), . . . ,
mn∑
j=1

P (An,j)

)
.

If P also satisfies the following condition, then it is called a random (σ-additive)

probability measure:
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4. if Ak ∈ B for all k ≥ 1 and Ak ↓ ∅, then P (Ak)→ 0 in distribution.

If X = (a, b) ⊆ R is an interval (−∞ ≤ a < b ≤ +∞), a random probability

measure can be equally characterized by a random distribution function, another

concept introduced by Doksum (1974).

Definition 2.1.3 (Doksum (1974)). A stochastic process (F (t) : t ∈ (a, b)) is a

random distribution function if, with probability 1,

1. the function t 7→ F (t) is non-decreasing and right-continuous;

2. limt→a+ F (t) = 0 and limt→b− F (t) = 1.

Since the contributions of Ferguson (1973) and Doksum (1974), the number of

such processes introduced in the literature has grown substantially. For an review

that covers diverse areas of application, see Hjort et al. (2010); Müller and Mitra

(2013); Phadia (2013); Müller et al. (2015); Mitra and Müller (2015), and Ghosal

and van der Vaart (2017).

2.2 Neutral-to-the-right processes

Here, I will focus on random probability measures defined on the sample space

X = (0,+∞). This are fundamental in the Bayesian non-parametric analysis of

time-to-event or survival data (Ghosal and van der Vaart, 2017, Chapter 13). Here,

observations are the (possibly censored) times elapsed before the onset of an event,

such as the death of a patient in a clinical trial (Kalbfleisch and Prentice, 2002; Aalen

et al., 2008), or the breakdown of a machine in an engineering study (Singpurwalla,

2006).

More specifically, I will focus on Neutral-to-the-right processes, a broad family of

random distribution functions first introduced by Doksum (1974).

Definition 2.2.1 (Doksum (1974), Definition 3.1). The random distribution func-

tion F (t) (t > 0) is neutral-to-the-right if for all n ≥ 1 and real numbers 0 < t1 <

t2 < · · · < tn < +∞ the quantities

F (t1),
F (t2)− F (t1)

1− F (t1)
, . . . ,

F (tn)− F (tn−1)

1− F (tn−1)

are independent (with the convention that 0/0 = 0).
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Neutral-to-the-right distributions can be characterized by means of stochastic

processes with independent increments, also know as additive (Sato, 1999) or Lévy

processes (Doksum, 1974):

Definition 2.2.2. A real-valued stochastic process (Z(t) : t ∈ (0,+∞)) is called a

Lévy process if, with probability 1,

1. the function t 7→ Z(t) is non-decreasing and right-continuous;

2. Z(0) = 0 and limt→+∞ Z(t) = +∞;

3. Z(t) has independent increments, i.e. for all 0 < t1 < · · · < tn, the quantities

Z(t1), Z(t2)− Z(t1), . . . , Z(tn)− Z(tn−1) are independent.

Intuitively, a distribution F (t) is neutral-to-the-right if it has independent nor-

malized increments. Indeed, Doksum (1974) showed that neutral-to-the-right pro-

cesses are transformations of Lévy processes, which have independent increments.

Theorem 2.2.1 (Doksum (1974), Theorem 3.1). A random distribution function

F (t) is neutral to the right if and only if F (t) = 1−exp(−Z(t)), where (Z(t) : t ∈ R)

is a Lévy process.

Any Lévy process (Z(t) : t ∈ R) can be decomposed in a deterministic component

and two independent jump process (Sato, 1999):

Z(t) = d(t) + Zf (t) + Zr(t),

Zf (t) =
∑
tj∈J

Zf,jI {tj ≤ t} ,

Zr(t) =
∑
j

Zr,jI {Tj ≤ t} ,

where: d(t) is a deterministic non-decreasing, right-continuous function; Zf has

jumps only at a countable number of fixed discontinuities J = {t1, t2, . . .}; the size

of the jump at tj is random and equal to Zr,j; instead, Zr(t) has a countable number

of jumps, which occur at random locations Tj and have random size Zr,j. All the

Zf,j, Zr,j, and Tj are independent.

The distribution of Zr(t) is characterized by the log-Laplace transform

logE [exp(−λZr(t))] = −
∫ +∞

0

[1− exp(−λs)] νt(ds) (2.1)
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for all t ∈ R and λ > 0, where νt is the Lévy measure of Zr(t). This is a measure

on (0,+∞) such that ∫ +∞

0

min(s, 1)νt(ds) < +∞

for all t > 0 (Sato, 1999).

As a consequence, to specify a neutral-to-the-right prior on a distribution func-

tion F (t), it is sufficient to specify i) the deterministic component d(t), ii) the

position tj of each fixed jump of Zf (t), together with the distribution of its size Zf,j;

and iii) the Lévy measure νt of Zr(t).

Example 2.2.1 (Dirichlet process prior). Let P be a probability measure on (0,+∞)

with distribution function F (t). Then Dirichlet prior distribution P ∼ Dir(k, P0) can

be obtained as follows (Walker and Muliere, 1997, Remark 1; Ghosal and van der

Vaart, 2017, Example 13.11). First, F (t) is assumed a neutral-to-the-right process

with d(t) ≡ 0. Second, if J = {t1, t2, . . . , } are the atoms of P0, 0 < t1 < t2 < . . .,

the distribution of the jump Zf,j = F (tj)− F (tj−) is determined by

1− exp(−Zf,j) ∼ Beta (kP0({tj}), kP0((tj,+∞))) .

Third, the Lévy measure of Zc(t) is

dνt(v) = dv
k

1− e−v

∫ t

0

exp (−vkP0((s,+∞))) dP0,c(s),

where P0,c is the non-atomic component of P0.

The moments E[F (t)k], k ≥ 1, all exist finite and can be obtained from the

distributions of the Zf,j and from the Lévy measure νt. For example, if Z(t) has no

fixed jumps, then

E[F (t)] = 1− exp

(
−
∫ +∞

0

[1− exp(−s)] νt(ds)
)
.

For neutral-to-the-right processes without fixed jumps, Epifani et al. (2003) also

show how to compute the moments of a functional I =
∫ +∞

0
g(t)dF (t), where g(t)

is a increasing function of t, from the Lévy measure νt.

The relevance of neutral-to-the-right processes in the Bayesian non-parametric

framework is due to the results of Ferguson (1974) and Ferguson and Phadia (1979).
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They establish that neutral-to-the-right prior processes are conjugate: if F (t) is

neutral-to-the-right and X1, . . . , Xn is an independent and identically distributed

sample from F (t), then F (t) is neutral-to-the-right also conditional on X1, . . . , Xn.

In addition, this is true also when some observations are (right) censored: if F (t) is

neutral-to-the-right and X has distribution F (t), then F (t) is neutral-to-the-right

conditional on X > x for all fixed x > 0.

The conjugacy of neutral-to-the-right prior processes makes them very appealing

for the analysis of survival data (Ghosal and van der Vaart, 2017, Chapter 13). In

practice, neutral-to-the-right processes can be simulated by means of Monte Carlo

procedures such as those of Damien et al. (1995), Walker and Damien (1998a), and

Walker and Damien (1998b). See also Lee (2007).

From the predictive perspective, neutral-to-the-right processes can be fully char-

acterized through an extension of Johnson’s sufficientness postulate (Zabell et al.,

1982). Johnson discovered that the Dirichlet distribution and process are fully char-

acterized by a set of predictive distributions on discrete cells of the form P (Xn+1 =

k|X1, . . . , Xn) = fk(nk), where nk is the number of observations X1, . . . , Xn in the

k-th cell. Walker and Muliere (1999) show neutral-to-the-right processes are charac-

terized by an extension of Johnson’s construction that distinguishes between exact

and censored. For a different characterization, see Muliere and Walker (2000).

To conclude this section, note that any Lévy processe Z(t) on X = (0,+∞)

can be interpreted as the cumulative distribution function of a Completely Random

Measure (c.f. Kingman, 1967; Ghosal and van der Vaart, 2017, Appendix J1) on

the same sample space. From this perspective, James (2002, 2006) generalizes the

notion of neutral-to-the-right processes to arbitrary Polish sample spaces.

2.3 The beta-Stacy process prior

The beta-Stacy process of Walker and Muliere (1997) is an important neutral-to-

the-right process prior widely used for the analysis of time-to-event data. Some

applications and generalizations include the works of Amerio et al. (2004); Muliere

et al. (2005); Bulla and Muliere (2007); Bulla et al. (2009); Rigat and Muliere (2012),

and Peluso et al. (2017).

Definition 2.3.1 (beta-Stacy process prior). Let c(t) > 0 for all t > 0 and let
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F0(t) a fixed distribution on (0,+∞). A neutral-to-the-right process F (t) = 1 −
exp(−Z(t)), Z(t) = d(t) + Zf (t) + Zc(t), is a beta-Stacy process BS(c, F0) if: i)

the deterministic part d(t) is null, i.e. d(t) ≡ 0; ii) if J = {t1, t2, . . . , } are the

atoms of F0, 0 < t1 < t2 < . . ., the distribution of the jump Zf,j = F (tj) − F (tj−)

is determined by

1− exp(−Zf,j) ∼ Beta (c(tj)(F0(tj)− F0(tj−)), c(tj)(1− F0(tj))) ;

and iii) the Lévy measure of Zc(t) is

dνt(v) = dv
1

1− e−v

∫ t

0

c(s) exp (−vc(s)(1− F0(s))) dF0,c(s),

where F0,c is the continuous component of F0.

Note that if F0 is purely atomic, then F (t) is a beta-Stacy process if and only if

F (t) = 1−
∏
tj≤t

exp(−Zf,j) = 1−
∏
tj≤t

(1− Uj),

where U1, U2, . . . are independent and such that

Uj ∼ Beta (c(tj)(F0(tj)− F0(tj−)), c(tj)(1− F0(tj))) .

In this case, Walker and Muliere (1997) call F (t) a discrete-time beta-Stacy process.

For every k ≥ 1, the joint distribution of the jumps F (tj) − F (tj−), j = 1, . . . , k,

is a Generalized Dirichlet distribution of Connor and Mosimann (1969), also called

the beta-Stacy distribution by Mihram and Hultquist (1967).

A consequence of Definition 2.3.1 is that, if F (t) ∼ BS(c, F0), then, infinitesi-

mally,
dF (t)

1− F (t−)
∼ Beta(c(t)dF0(t), c(t)(1− F0(t))). (2.2)

Informally, this implies that E[dF (t)/(1− F (t−))] = dF0(t)/(1− F0(t−)), so

E[F (t)] = 1−
∏
s∈(0,t]

(
1− E

[
dF (s)

1− F (s−)

])
= F0(t),

where
∏

s∈(0,t] is the product integral operator (Gill et al., 1990). Additionally,

Var(dF (t)/(1 − F (t−)) is a decreasing function of c(t) such that Var(dF (t)/(1 −
F (t−)))→ 0 as c(t)→ +∞. Hence, c(t) controls the variance of F (t)/(1− F (t−))
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at time t, i.e. the variability of F (t)/(1−F (t−)) around its mean F0(t)/(1−F0(t−))

(Walker and Muliere, 1997).

Equation 2.2 also provides a link between the beta-Stacy process and the beta

process of (Hjort, 1990). Indeed, if F (t) is a beta-Stacy process, then its cumulative

hazard function

H(t) =

∫
(0,t]

dF (t)

1− F (t−)

is a beta process. The converse is also true; see Walker and Muliere (1997, Remark

2), Ghosal and van der Vaart (2017, Chapter 13).

The beta-Stacy process generalizes the Dirichlet process, as can be seen by

comparing Definition 2.3.1 with Example 2.2.1. Specifically, assume that i) P ∼
Dir(k, P0), where P0 is a probability measure on (0,+∞); and ii) F0(t) = P0((0, t]),

F (t) = P ((0, t]) for all t > 0. Then F ∼ BS(c, F0), where c(t) = k for all t > 0

(Walker and Muliere, 1997).

From the results of Ferguson (1974) and (Ferguson and Phadia, 1979) on neutral-

to-the-right processes, Walker and Muliere (1997) characterize the posterior distri-

bution of F ∼ BS(c, F0) conditional on a sample of possibly right-censored obser-

vations:

Theorem 2.3.1 (Theorem 4, Walker and Muliere 1997). Suppose F ∼ BS(c, F0)

and, given F , let X be an observation from F . Then, conditional on X = x (exact

observation) or X > x (right-censored observation), it is F ∼ BS(c∗, F ∗0 ), where:

1. if X > x,

F ∗0 (t) = 1−
∏
s∈(0,t]

(
1− c(s)dF0(s)

c(s)dF0(s) + I{x ≥ s}

)
c∗(t) =

c(t)(1− F0(t−)) + I{x ≥ s}
1− F ∗0 (t)

;

2. if X = x,

F ∗0 (t) = 1−
∏
s∈(0,t]

(
1− c(s)dF0(s) + I{x = s}

c(s)dF0(s) + I{x ≥ s}

)
(2.3)

c∗(t) =
c(t)(1− F0(t−)) + I{x > s}

1− F ∗0 (t)
; (2.4)
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More generally, the posterior distribution of F conditional on an independent sample

of exact or right-censored observations can be obtained by repeated application of (i)

or (ii).

A consequence of Theorem 2.3.1 is that the Bayes estimate of F (t) under a

quadratic loss functions, F̂ (t) = E[F (t)|data], converges to the classical Kaplan-

Meier estimate (Kalbfleisch and Prentice, 2002, Section 1.4) as c(t)→ 0; see Walker

and Muliere (1997, Section 4.3).

From Theorem 2.3.1, it is also possible to compute the predictive distribution

of a new set of uncensored observations Xn+1, . . . , Xn+k given past data X1, . . . , Xn

(which may be censored). Specifically, let F ∗0,h(·|Xn+1, . . . , Xn+h) be the posterior

mean of F given X1, . . . , Xn+h for all h = 0, . . . , k (for simplicity X1, . . . , Xn are

suppressed from the notation). These functions can be computed similarly as F ∗ in

Equation 2.3. The following proposition shows that they determine the predictive

distribution of Xn+1, . . . , Xn+k.

Proposition 2.3.1. The law of Xn+1, . . . , Xn+k given X1, . . . , Xn is the probability

measure
∏k

h=1 F
∗
0,h−1(dxh|xn+1, . . . , xn+h).

Proof. Proceeding by induction, suppose first that k = 1. Then the law of Xn+1

given X1, . . . , Xn is F ∗0,0, since for any any y > 0 it is

P(Xn+1 ≤ y|X1, . . . , Xn) = E[P(Xn+1 ≤ y|X1, . . . , Xn, F )|X1, . . . , Xn]

= E[F (y)|X1, . . . , Xn]

= F ∗0,0(y),

where the last equality follows from Theorem 2.3.1.

Suppose now that the thesis is true for k ≥ 1. With a similar argument as above,

it is seen that the law of Xn+k+1 given X1, . . . , Xn+k is F ∗0,k(dxn+k+1|Xn+1, . . . , Xn+k).

By the inductive hypothesis, the law of Xn+1, . . . , Xn+k given X1, . . . , Xn is

k∏
h=1

F ∗0,h−1(dxh|xn+1, . . . , xn+h).

Thus, the law of Xn+1, . . . , Xn+k, Xn+k given X1, . . . , Xn is

F ∗0,k(dxn+k+1|xn+1, . . . , xn+k) ·
k∏

h=1

F ∗0,h−1(dxh|xn+1, . . . , xn+h),

as needed.
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2.4 Predictive constructions based on reinforced

urn models

The characterization of models and priors through a predictive approach is a fun-

damental, long studied problem in Bayesian statistics. Indeed, as often underlined

by de Finetti, one can only express a subjective probability on observable facts, and

probabilistic models are just a way to link past past experience with potential future

observations. For a discussion, see Cifarelli and Regazzini (1982), Geisser (1993),

Wechsler (1993), Bernardo and Smith (2000, Chapter 4), and Kallenberg (2010).

These fundamental problems have often been thought as mainly theoretical,

with little practical applications. However, in the recent years they have received a

renewed interested motivated by applications in Bayesian non-parametrics (Fortini

and Petrone, 2012). Muliere et al. (2003) note how predictive constructions may even

allow to implement Bayesian non-parametric inference without explicit knowledge

of the prior.

From this perspective, many non-parametric prior processes available in the lit-

erature have been characterized from using urn models (Mahmoud, 2008). This

are the prototypical example of stochastic processes with reinforcement, i.e. of pro-

cesses where occurrence of an event increases the probability of future similar events

(Coppersmith and Diaconis, 1986; Pemantle, 2007).

A seminal paper in this area of research is due to Blackwell and MacQueen (1973),

who characterized the Dirichlet process Dir(k, P0) using a (generalized) Pólya urn.

This is an urn that contains k coloured balls, where each x ∈ X is interpreted as a

different “color”. For all (measurable) A ⊆ X , P0(A) is the proportion of balls in

the urn of color x ∈ A.

The urn evolves in the following steps, which can be repeated indefinitely: a

ball is randomly extracted, its color is noted, and then it is replaced in the urn; the

extracted color is then reinforced by introducing another ball of the same color in

the urn.

As an example, at the first draw the probability of obtaining a color in A ⊆ X
is P0(A). If the color x is extracted, the number of balls in the urn becomes k + 1,

while the number of balls of color in A becomes kP0(A) + δx(A). At the second

draw, the probability of observing a color in A is (kP0(A) + δx(A))/(k + 1). If the

color y is extracted, this probability becomes (kP0(A) + δx(A) + δy(A))/(k+ 2), and
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so on.

Definition 2.4.1 (Blackwell and MacQueen (1973)). If Xn is the n-th color ex-

tracted from the urn as described above, then the sequence (Xn : n ≥ 1) is called a

Pólya sequence with parameters k and P0.

The main result of Blackwell and MacQueen (1973) is the following:

Theorem 2.4.1 (Blackwell and MacQueen (1973)). If (Xn : n ≥ 1) is a Pólya

sequence with parameters k and P0, then it is exchangeable and its associated de

Finetti measure is the law of a Dir(k, P0) process. In other words, there exists a

random probability Q ∼ Dir(k, P0) on X such that, conditional on Q, the Xn are

independent, all with distribution Q.

Following the contribution of Blackwell and MacQueen (1973), many other non-

parametric prior processes were characterized using urn models, including Pólya

trees (Mauldin et al., 1992), mixtures of Dirichlet processes (Fortini et al., 2016),

the Enriched Dirichlet Process (Wade et al., 2011), the Pitman-Yor process Pitman

(1996), and the time-varying Pitman-Yor process Caron et al. (2017). In particular,

(Muliere et al., 2000) provide a construction of general neutral-to-the-right processes

in discrete time.

The characterization of the discrete-time beta-Stacy process provided by (Muliere

et al., 2000), which extends a previous construction by (Walker and Muliere, 1997),

will play a special role in the sequel. Briefly, suppose that F0 is a purely-atomic

distribution on (0,+∞) with atoms 0 < t1 < t2 < · · · < tj < · · · . Also suppose that

c(tj) > 0 for all j = 1, 2, . . .. Associate every tj with a Pólya urn Vj that contains

c(tj)(F0(tj)−F0(tj−)) black balls and c(tj)(1−F0(tj)) white balls. Starting from V1,

for k ≥ 1 sample a ball from Vk. If its color is white, continue sampling from Vk+1,

otherwise set X1 = tk and return to V1 after reinforcing all visited urns. Restarting

from V1, the process is repeated to generate X2, X3, X4, and so on (see Figure 2.1 for

an illustration). Under these conditions, the results of Muliere et al. (2000) imply

that i) the sequence (Xn : n ≥ 1) is exchangeable and ii) its de Finetti measure is

the BS(c, F0) distribution.
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Figure 2.1: Illustration of the urn process characterizing the discrete-time beta-Stacy

distribution. At the start of the process (line 1), the first black ball is extracted from

the urn V2, generating the first observation X1 = t2. After reinforcing the all urns

(line 2), the process is repeated. The first black ball is extracted from urn V4, gen-

erating the observation X2 = t4. The process the repeats again (line 3), generating

the observation X3 = t3. Repeating this an infinite number of times generates an

exchangeable sequence (Xn : n ≥ 1) with beta-Stacy de Finetti measure.

Timet1 t2 t3

0
1

3)

2)

1)

t4

V1 V2 V3 V4

V1 V2 V3 V4

V1 V2 V3 V4

X1 = t2

X2 = t4

X3 = t3
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Figure 2.2: Representation of the sample paths of a Semi-Markov process. The

process changes value only at the jump times 0 < τ1 < τ2 < . . ..

Time 

State space 

S0 

S1 

S3 

S2 

T0 T1 T2 

Sk: k-th visited state 

Tk: k-th holding time 

 

𝜏1 𝜏0 𝜏2 𝜏3 

𝜏𝑘: k-th jump time 

2.5 Semi-Markov processes and competing risks

A (discrete state) semi-Markov process is a stochastic process (St)t≥0 with a count-

able state space E = {e0, e1, e2, ...} and piecewise-constant trajectories with jumps

at random times 0 < τ1 < τ2 < . . . (see Figure 2.2). Its defining property is that the

sequence of values Sτj at the jump times must form a homogeneous Markov Chain.

However, in contrast with a Markov Chain, the holding times Tk = τk − τk−1 (i.e.

the times spent in each visited state) can have an arbitrary distribution (Çinlar,

1969).

Because of their flexibility, semi-Markov processes are widely used to predict the

evolution of phenomena that progress through different discrete states. They have

been applied in research areas as diverse as longitudinal and time-series (Bulla and

Bulla, 2006), Finance and actuarial sciences (Janssen and Manca, 2007), Biology

(Barbu et al., 2004), and reliability analysis (Mitchell et al., 2011). In applications,

interest is typically on estimating the probability that the process performs specific

transitions or the distribution of the holding times and predict its future evolution.
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Figure 2.3: Examples of simple semi-Markov models from the biomedical setting:

(a) illness-death model; (b) progressive model for a 3-stage degenerative disease; (c)

competing risks model for melanoma patients after radical resection. Boxes represent

the possible states of the process, arrows represent the possible state transitions.

(a) Illness-death model

(b) Progressive model for a 3-stage degenerative disease

(b) Competing risks model for the melanoma example

Healthy Dead

Ill

Stage 1 Stage 2 Stage 3 Dead

At risk after 

surgery

Death due to 

melanoma

Death due to 

other causes

In biomedical fields, semi-Markov models are used to model many multi-state

disease processes (Andersen and Keiding, 2002; Meira-Machado et al., 2009). Here,

two common semi-Markov models are the illness-death model, which is used to eval-

uate whether previously diseased patients have the same mortality risk as those who

have been healthy (c.f. Figure 2.3, Panel a), and the progressive disease model, which

is used to evaluate the prognosis of patients affected by a multi-stage disease, e.g.

cancer patients, whose tumour may progress through 4 stages of increasing severity,

or patients affected by a degenerative disease (c.f. Figure 2.3, Panel b).

In my work, I focused on another, widely used, semi-Markov model: the com-

peting risks model (Kalbfleisch and Prentice, 2002; Andersen et al., 2002; Huber

et al., 2004; Lau et al., 2009; Crowder, 2012). A competing risk is an event that



18

hinders the observation of another event of interest. For example, melanoma pa-

tients that undergo a radical resection of the tumour typically have a long survival.

Consequently, in a follow-up study which aims to understand the impact of radical

resection on survival, deaths due to melanoma may not be observed only because

some other cause of mortality (e.g. death due to cardiovascular disease) has occurred

first. To understand the impact of radical resection, it thus becomes necessary to

account death due to melanoma and death due to other causes as competing risks

(c.f. Figure 2.3, Panel c) (Shen et al., 2016).

2.6 Constrained decision problems for experimen-

tal designs

Consider the problem of planning a confirmatory clinical trial whose goal is to test

whether an experimental drug is superior to a standard therapy. The design d of

the experiment includes a description of all the analyses that will be performed in

the study to generate a final recommendation.

To solve this problem, in the Bayesian decision-theoretic approach one would

roughly proceed as follows (Parmigiani and Inoue, 2009; Berger, 2013). First, one

would specify a probability model f(Y |θ, d) for the data Y generated by the ex-

periment, together with a prior distribution π(θ) for the parameter set θ. A utility

function u(Y, θ, d) would then be specified to measure the preference assigned to

each possible outcome of the study. Finally, one would choose the optimal Bayesian

(OB) design dOB, i.e. the design d that maximizes the expected utility

U(d) =

∫ ∫
u(Y, θ, d)f(Y |θ, d)π(θ)dY dθ.

Beyond this simple example, the Bayesian decision-theoretic approach has been

used to develop designs for a variety of clinical experiments; see for example Berry

and Ho (1988); Muliere and Petrone (1993); Stallard et al. (1999); Ding et al. (2008);

Trippa et al. (2012); Cellamare et al. (2016), and Ventz et al. (2018). Berry and

Kadane (1997) discuss the use of randomization in clinical trials from the perspective

of decision theory. Carlin et al. (1998) and Müller et al. (2007) instead discuss

computational methods to select optimal designs.
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The decision-theoretic framework is very appealing for the design of clinical trials.

This is because: i) it facilitates the use of past data to plan a new experiment

(Spiegelhalter et al., 2004); ii) it satisfies the likelihood principle, which makes trial

data interpretation unrelated to preplanned stopping rules and interim analyses

(Cornfield, 1966; Berry et al., 2010); and iii) it allows to use utility functions to

design experiments that explicitly take in consideration the need of researchers to

reach a decision on the basis of the generated data (Lindley, 1994; Anscombe, 1963).

Despite the usefulness of Bayesian approaches, most studies are designed from a

frequentist perspective (Chevret, 2012). Concepts such as the Type I and II error

rates are required to be part of the design in order to be approved by pharmaceu-

tical regulatory agencies, such as the E.U. European Medicines Agency, or the U.S.

Food and Drug Administration (Phillips and Haudiquet, 2003; US Food and Drug

Administration, 1998).

For example, consider an experimental design that is proposed by an Investi-

gator, and a Regulator that either approves or rejects the design. The Regulator

requires that the design d proposed by the Investigator must satisfy a set of op-

erating characteristics, say V . For instance, in the confirmatory randomized trial

example, the Regulator might require the control of the type I error at a suitable

α level (e.g. 5%), and a power larger than some threshold 1 − β (e.g. 80%). In

this case, V = [0, α] × [1 − β, 1]. The operating characteristics of d relevant to the

Regulator, denoted by oc(d) are thus type I error rate α(d) and power 1 − β(d) of

the design d, i.e. oc(d) = (α(d), 1−β(d)). The Regulator only accepts study designs

such that oc(d) ∈ V .

Bayesian designs do not require considerations of frequentist operating charac-

teristics. Indeed, it may well be oc(dOB) 6∈ V , so the optimal Bayesian design dOB

could be rejected by the Regulator. In practice, simulations are commonly used to

estimate the operating characteristics of Bayesian designs. If necessary, the Inves-

tigator then adjusts tuning parameters to obtain a design that with a pre-specified

type I error probability. This approach is discussed for instance by Lewis and Berry

(1994), who use an iterative adjustment of the utility function to obtain designs

with pre-specified frequentist properties.

The constrained decision approach to experimental design provides an alternative

paradigm that combines aspects of the frequentist and Bayesian paradigms (Ventz

and Trippa, 2015; Ventz et al., 2017). In this approach, a fixed utility function is
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used to represent the preferences of the Investigator, which is used to quantify the

utility of different study designs. The selected design must then both i) maximize

the expected utility of the experiment and ii) satisfy a set of constraints defined by

a set of frequentist characteristics.

Formally, let D be the set of all possible designs d. In the constrained decision

approach, the Investigator selects constrained optimal design dCO, which is deter-

mined by

dCO = arg max{U(d) : d ∈ D such that oc(d) ∈ V },

the solution to a constrained optimization problem. Indeed, the optimum dCO has

the highest expected utility U(d) for the Investigator among the set of designs that

the Regulator allows to implement. Moreover, if oc(dBO) ∈ V , then dCO = dBO.

The constrained optimal design can be interpreted as the Bayesian optimal design

with respect to a utility function which obeys the requirements of the Regulator.

Specifically, assume for simplicity that u(Y, θ, d) is bounded from below by umin >

−∞. Consider the utility function

u∗(Y, θ, d) = umin + (u(Y, θ, d)− umin)I{oc(d) ∈ V }.

With this utility function, any design d ∈ D that violates the Regulator’s con-

straints has minimal utility umin for the Investigator, whereas u∗(Y, θ, d) = u(Y, θ, d)

if oc(d) ∈ V . Additionally, if

U∗(d) =

∫ ∫
u∗(Y, θ, d)f(Y |θ; d)π(θ)dY dθ,

it can be easily shown that

dCO = arg max{U∗(d) : d ∈ D}.

Note that, in the this approach, the Investigator is not required to give up the

utility function u(Y, θ, d), model f(Y |θ; d), or prior distribution π(θ). Contrary to

other approaches to control the frequentist operating characteristics of Bayesian

designs, the constrained decision approach allows the Investigator to make use of

genuine representations of his or her preferences and prior knowledge (Ventz and

Trippa, 2015).
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Chapter 3

Summary of manuscripts

Here I report a summary of the 3 papers presented in the remainder of this thesis,

along with a description of my original contributions.

Paper 1 (Topic 1): Reinforced urns and the subdistribution beta-Stacy process

prior for competing risks analysis. (With Pietro Muliere and Stefano Peluso; Scan-

dinavian Journal of Statistics 2019; 46:706-734).

In clinical prognostic research with a time-to-event outcome, the occurrence of

one of several competing risks often precludes the occurrence of another event of

interest (Kalbfleisch and Prentice, 2002, Chapter 8). In such cases it is typically

of interest to assess i) the probability that one of the considered competing risks

occurs within some time interval and ii) how this probability changes in association

with predictors of interest (Wolbers et al., 2009; Fine, 1999; Putter et al., 2007).

In contrast with the frequentist literature (Andersen et al., 2012), the Bayesian

literature on competing risks is still sparse.

In Paper 1 (Section 4), I introduce the subdistribution beta-Stacy process, a

generalization of the beta-Stacy process prior (c.f. Section 2.3) useful for the anal-

ysis of competing risks data (c.f. Section 2.5). In particular, I i) characterize the

process from a predictive perspective by means of an urn model with reinforcement

(c.f. Section 2.4), ii) show that it is conjugate with respect to right-censored data,

and iii) highlight its relations with other prior processes for competing risks data.

Additionally, I consider the subdistribution beta-Stacy process prior in a regression
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model for competing risks data that, contrary to most others available in the liter-

ature, is not based on the proportional hazards assumption. I provide code in the

R statistical language to implement the proposed model.

Contributions. I defined the subdistribution beta-Stacy process and proved all

related theoretical results (e.g. conjugacy and predictive characterization). I also

specified the regression model for competing risks presented in the paper and con-

ducted the applied analyses. I collaborated with Stefano Peluso to develop the R

code used to implement the models introduced in the paper. I wrote all drafts of

the manuscript and curated its revisions in collaboration with Stefano Peluso and

Pietro Muliere.

Paper 2 (Topic 1): The semi-Markov beta-Stacy process: a Bayesian non-

parametric prior for semi-Markov processes. (With Pietro Muliere and Stefano

Peluso. Submitted manuscript)

Because of their flexibility, Discrete-time semi-Markov processes (a generalization

of Markov chains; Çinlar, 1969) are widely used to predict many phenomena that

evolve through a sequence of discrete states. Applications include time-series and

longitudinal data analysis (Bulla and Bulla, 2006), survival analysis and reliability

(Barbu et al., 2004; Mitchell et al., 2011), finance and actuarial sciences (Janssen and

Manca, 2007), and biology (Barbu and Limnios, 2009). Despite their usefulness, and

in contrast with their continuous-time counterparts (Phelan 1990; Bulla and Muliere

2007; Zhao and Hu 2013), the literature on inferential or predictive approaches for

discrete-time semi-Markov process is sparse (Barbu and Limnios, 2009, Chapter 4).

Extending the work in Paper 1, in Paper 2 (Section 5) I introduce the semi-

Markov beta-Stacy process, a stochastic process useful for the Bayesian non-parametric

analysis of semi-Markov processes (c.f. Section 2.5). I show that the semi-Markov

beta-Stacy process is conjugate with respect to data generated by a semi-Markov

process. In addition, I characterize the predictive distributions of the semi-Markov

beta-Stacy process as a reinforced random walk on a system of urns (c.f. Section

2.4). I also explore two generalizations of the semi-Markov beta-Stacy process.

Contributions. I defined the semi-Markov beta-Stacy process and proved all re-



23

lated theoretical results (e.g. conjugacy). I also introduced and studied all urn-based

characterizations presented in the paper. I developed the R code used to implement

the simulation study presented in the manuscript. Finally, I wrote all drafts of the

manuscript and curated its revisions in collaboration with Stefano Peluso and Pietro

Muliere.

Paper 3 (Topic 2): Bayesian optimality of testing procedures for survival data

in the non-proportional hazards setting. (With Brian Alexander and Lorenzo Trippa.

Submitted manuscript)

Researchers often use data generated by exploratory clinical studies to specify the

protocol of randomized confirmatory phase III trials (Lindley, 1997; Gómez et al.,

2014; Lee and Wason, 2018; Brody, 2016). Still, in most cases prior information

is not used to specify in the protocol, as mandated by pharmaceutical regulatory

agencies (US Food and Drug Administration, 1998), which hypothesis testing pro-

cedure will be used in the final analyses to provide evidence of treatment effects.

Most standard tests for treatment effects used in randomized clinical trials with sur-

vival outcomes are based on the proportional hazards assumption. This often fails

in practice, impairing the study’s power (Royston and Parmar, 2013). Data from

early exploratory studies may provide evidence of non-proportional hazards which

can guide the choice of alternative tests in the design of confirmatory trials.

In Paper 3 (Section 6) I study a test to detect treatment effects in a late-

stage trial which accounts for the deviations from proportional hazards suggested by

early-stage data. I derive the test as the solution of a constrained decision problem

(c.f. Section 2.6): conditional on early-stage data, the test maximizes the predicted

finite-sample power among all tests that control the frequentist Type I error rate

of the late-stage study at a prespecified α level (as required by regulatory agencies;

US Food and Drug Administration, 1998). More precisely, the test maximizes the

Bayesian predictive probability of correctly rejecting the null hypothesis at the end

of the confirmatory trial. I provide R code to implement the proposed test.

Contributions. Brian Alexander introduced me and Lorenzo Trippa to the prob-

lem of delayed treatment effects in clinical trials of immuno-oncology treatments -

the motivating application of this work. I defined the testing procedure introduced
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in the paper and proved all related theoretical results, with an important contribu-

tion from Lorenzo Trippa in checking the logic of the proofs. I developed all R code

used to implemented the proposed approach and performed all applied analyses in

the paper. I wrote all drafts of the manuscript and curated its revisions in collabo-

ration with Brian Alexander and Lorenzo Trippa.
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Chapter 4

Reinforced urns and the

subdistribution beta-Stacy process

prior for competing risks analysis

With Stefano Peluso and Pietro Muliere.

Scandinavian Journal of Statistics 2019; 46:706-734.

ArXiv manuscript: https: // arxiv. org/ abs/ 1811. 12304

4.1 Introduction

In the setting of clinical prognostic research with a time-to-event outcome, the oc-

currence of one of several competing risks may often preclude the occurrence of

another event of interest (Kalbfleisch and Prentice, 2002, Chapter 8). In such cases

it is typically of interest to assess i) the probability that one of the considered com-

peting risks occurs within some time interval and ii) how this probability changes

in association with predictors of interest (Wolbers et al., 2009; Fine, 1999; Putter

et al., 2007). For example, in a study of melanoma patients who received radical

surgery such as that of Drzewiecki et al. (1980), interest may be on the risk of

melanoma-related mortality or melanoma-unrelated mortality and their potential

predictors. Here, melanoma-related and melanoma-unrelated death act as compet-

ing risks, since onset of one necessarily precludes the onset of the other (Andersen

et al., 2012, Chapter 1).

https://arxiv.org/abs/1811.12304
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Competing risks data has received widespread attention in the frequentist liter-

ature. It suffices to recall the comprehensive textbooks of Kalbfleisch and Prentice

(2002), Pintilie (2006), Aalen et al. (2008), Lawless (2011), Andersen et al. (2012)

and Crowder (2012). Putter et al. (2007), Wolbers et al. (2009), and Andersen et al.

(2002) provide an introductory overview of standard approaches for competing risks

data. Classical approaches to prediction in presence of competing risks focus on the

subdistribution function, also known as the cumulative incidence function, which

represents the probability that a specific event occurs within a given time period.

Kalbfleisch and Prentice (2002, Chapter 8) describe a frequentist nonparametric es-

timator for the subdistribution function, while Fine and Gray, in their pivotal 1999

paper, introduced a semiparametric proportional hazards model for the subdistribu-

tion function. Fine and Gray (1999) and Scheike et al. (2008) considered alternative

semiparametric estimators, whilst Larson and Dinse (1985), Jeong and Fine (2007),

and Hinchliffe and Lambert (2013) considered parametric regression models for the

subdistribution function.

In contrast with the frequentist literature, the Bayesian literature on competing

risks is still sparse, although several relevant contributions can be identified. Ge

and Chen (2012) introduced a semiparametric model for competing risks by sepa-

rately modelling the subdistribution function of the primary event of interest and

the conditional time-to-event distributions of the other competing risks. They mod-

elled the baseline subdistribution hazards and the cause-specific hazards by means

of a gamma process prior (see Nieto-Barajas and Walker, 2002 and Kalbfleisch and

Prentice, 2002, Section 11.8). De Blasi and Hjort (2007) suggested a semiparametric

proportional hazards regression model with logistic relative risk function for cause-

specific hazards. For inference, they assign the common baseline cumulative hazard

a beta process prior (Hjort, 1990). With the same approach, Hjort’s extension of

the beta process for nonhomogeneous Markov Chains (Hjort, 1990, Section 5) may

be considered as a prior distribution on the set of cause-specific baseline hazards in

a more general multiplicative hazards model (see Andersen et al., 2012, Chapter III

and Lawless, 2011, Chapter 9). In the beta process for nonhomogeneous Markov

Chains the individual transition hazards are necessarily independent (Hjort, 1990,

Section 5). The beta-Dirichlet process, a generalization of the beta process intro-

duced by Kim and Gray (2012), relaxes this assumption by allowing for correlated

hazards. Kim and Gray (2012) use the beta-Dirichlet process to define a semipara-
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metric semi-proportional transition hazards regression model for nonhomogeneous

Markov Chains which, in the competing risks setting, could be used to model the

cause-specific hazards. With the same purpose, Chae et al. (2013) proposed a non-

parametric regression model based on a mixture of beta-Dirichlet process priors.

In this paper we introduce a novel stochastic process, a generalization of Walker

and Muliere’s beta-Stacy process (Walker and Muliere, 1997), which represents

a nonparametric prior distribution (i.e. a probability distribution on an infinite-

dimensional space of distribution functions; see Ferguson (1973); Hjort et al. (2010);

Müller and Mitra (2013)) useful for the Bayesian analysis of competing risks data.

This new process, which we call the subdistribution beta-Stacy process, is conjugate

with respect to right-censored observations, greatly simplifying the task of perform-

ing probabilistic predictions. We will also use the subdistribution beta-Stacy process

to specify a Bayesian competing risks regression model useful for making prognostic

predictions for individual patients. Contrary to most available regression approaches

for competing risks, ours is not based on the proportional hazards assumption. As

an illustration, we implement our model to analyse a classical dataset relating to

survival of patients after surgery for malignant melanoma (Andersen et al., 2012,

Chapter 1). Throughout the paper, our perspective is Bayesian nonparametric be-

cause: i) the Bayesian interpretation of probability is especially suited for represent-

ing uncertainty when making predictions (de Finetti, 1937; Singpurwalla, 1988); ii)

Bayesian nonparametric models typically provide a more honest assessment of pos-

terior uncertainty than parametric models, as the formers are less tied to potentially

restrictive and/or arbitrary parametric assumptions which may give a false sense of

posterior certainty (Müller and Mitra, 2013; Hjort et al., 2010; Phadia, 2013; Ghosal

and van der Vaart, 2017).

To characterize the subdistribution beta-Stacy process we adhere to the pre-

dictive approach, a framework championed by de Finetti (1937) which is receiving

renewed attention in statistics and machine learning as a useful tool for constructing

Bayesian nonparametric priors (Fortini and Petrone, 2012; Orbanz and Roy, 2015).

In the predictive approach, both the model and the prior are implicitly characterized

by first specifying the predictive distribution of the observable quantities and then

by appealing to results related to the celebrated de Finetti Representation Theo-

rem (Walker and Muliere, 1999; Muliere et al., 2000; Epifani et al., 2002; Muliere

et al., 2003; Bulla and Muliere, 2007; Fortini and Petrone, 2012). In our context,
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the predictive distribution represents a specific rule prescribing how probabilistic

predictions for a new patient should be performed after observing the experience

of other similar (exchangeable) patients. This makes the predictive approach espe-

cially suited for our purposes: as our focus is on making prognostic predictions for

individual patients, it seems natural to focus directly on the predictive distribution

and its properties. Additionally, the predictive approach avoids some conceptual

difficulties arising when specifying prior distributions for unobservable quantities

(such as cause-specific hazards or other finite- or infinite-dimensional parameters).

In fact, as often underlined by de Finetti and others, one can only express a sub-

jective probability on observable facts; the role of unobservable quantities is just to

provide a link between past experience and the probability of future observable facts

(de Finetti, 1937; Singpurwalla, 1988; Wechsler, 1993; Cifarelli and Regazzini, 1996;

Bernardo and Smith, 2000, Chapter 4; Fortini and Petrone, 2012).

The predictive rule underlying the subdistribution beta-Stacy process will be

described in terms of the laws determining the evolution of a reinforced urn process

(Muliere et al., 2000). Urn models have been used to characterize many common

nonparametric prior processes. Classic examples include the use of a Pólya urn

for generating a Dirichlet process (Blackwell and MacQueen, 1973), Pólya trees

(Mauldin et al., 1992), and a generalised Pólya-urn scheme for sampling the beta-

Stacy process (Walker and Muliere, 1997); Fortini and Petrone (2012) provide ref-

erences to other modern examples. From this perspective, reinforced urn processes

provide a general framework for building such urn-based characterizations. In fact,

Muliere et al. (2000) and Muliere and Walker (2000) showed how reinforced urn

processes can be used to characterize Pólya trees, the beta-Stacy process, and even

general neutral-to-the-right processes (Doksum, 1974). Reinforced urn processes

have also been applied for Bayesian nonparametric inference in many contexts, from

survival analysis (Bulla et al., 2009) to credit risk (Peluso et al., 2015), thanks to

their flexibility in modelling systems evolving through a sequence of discrete states.

The main idea behind reinforced urn processes is that of reinforced random walk,

introduced by Coppersmith and Diaconis (1986) for modeling situations where a

random walker has a tendency to revisit familiar territory; see also Diaconis (1988)

and Pemantle (1988, 2007). In detail, a reinforced urn process is a stochastic process

with countable state-space S. Each point x ∈ S is associated with an urn containing

coloured balls. The possible colors of the ball are represented by the elements of
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the finite set E. Each urn x ∈ S initially contains nx(c) ≥ 0 balls of color c ∈ E.

The quantities nx(c) need not be integers, although thinking them as such simplifies

the description of the process. For a fixed initial state x0, recursively define the

process as follows: i) if the current state is x ∈ S, then a ball is sampled from the

corresponding urn and replaced together with a fixed amount m > 0 of additional

balls of the same color; hence, the extracted color is “reinforced”, i.e. made more

likely to be extracted in future draws from the same urn (Coppersmith and Diaconis,

1986; Pemantle, 1988, 2007); ii) if c ∈ E is the color of the sampled ball, then the

next state of the process is q(x, c), where q : S × E → S is a known function,

called the law of motion of the process, such that for every x, y ∈ S there exists a

unique c(x, y) ∈ E satisfying q(x, c(x, y)) = y. For our purposes, the sequence of

colors extracted from the urns will represent the history of a series of sequentially

observed patients. The “reinforcement” of colors will then correspond to the notion

of “learning from the past” that allows predictions to be performed and which is

central in the Bayesian paradigm (Muliere et al., 2000, 2003; Bulla and Muliere,

2007; Peluso et al., 2015).

Before continuing, we must remark on the choice between continuous versus

discrete time scales in the modelling of time-to-event distributions. In many, if not

all, real applications, event times are not observed or available on a continuous time

scale. Rather, they are either i) intrinsically discrete or ii) they are discrete because

they arise from the coarsening of continuous data due to imprecise measurements

(Kalbfleisch and Prentice, 2002, Chapter 2; Tutz and Schmid, 2016, Chapter 1;

Allison, 1982; Guo and Lin, 1994). For this reason, throughout the paper we assume

that the time axis has been pre-emptively discretized according to the fixed partition

(0, τ1], (τ1, τ2], . . ., (τt−1, τt], . . . (representing, say, successive days, months, years,

etc.) implied by the measurement scale of event times in the considered application.

Specifically, we assume that events can only occur at the times τ1 < τ2 < . . ., in case

(i), or that it is only possible to known in which intervals among (0, τ1], (τ1, τ2], . . .,

(τt−1, τt], . . . they occur, in case (ii). For notational simplicity, and without loss of

generality, we also assume that any time-to-event variable T > 0 takes values in the

set of positive integers t ≥ 1: the observation that T = t represents either the fact

that the event occurred at time τt, in case (i), or during (τt−1, τt], in case (ii).
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4.2 The subdistribution beta-Stacy process

Suppose that the positive discrete random variable T ∈ {1, 2, . . .} represents the

time until an at-risk individual experiences some event of interest (e.g. time from

surgery for melanoma to death). If the distribution of T is unknown, then, in

the Bayesian framework, it may be assigned a nonparametric prior to perform in-

ference. In other words, it may be assumed that, conditionally on some random

distribution function G defined on {0, 1, 2, . . .}, T is distributed according to G

itself: P (T ≤ t|G) = G(t) for all t ≥ 0, or also P (T = t|G) = ∆G(t), where

∆G(0) = G(0) = 0 and ∆G(t) = G(t) − G(t − 1) for all integers t ≥ 1. Thus the

random distribution function G assumes the role of an infinite-dimensional parame-

ter, while its distribution corresponds to the nonparametric prior distribution. The

beta-Stacy process of Walker and Muliere (1997) is one of such nonparametric priors

which has received frequent use. Specifically, a random distribution function G on

{0, 1, 2, . . .} is a discrete-time beta-Stacy process with parameters {(βt, γt) : t ≥ 1},
where

lim
t→+∞

t∏
u=1

γu
βu + γu

= 0, (4.1)

if: i) G(0) = 0 with probability 1 and ii) ∆G(t) = Ut
∏t−1

u=1(1 − Uu) for all t ≥ 1,

where {Ut : t ≥ 1} is a sequence of independent random variables such that

Ut ∼ Beta(βt, γt) for all integers t ≥ 1. Condition (4.1) is both necessary and suffi-

cient for a random function G(t) satisfying points i) and ii) to be a cumulative distri-

bution function with probability one. The beta-Stacy process prior is conjugate with

respect to right-censored data, a property that makes it especially suitable in sur-

vival analysis applications. Moreover, if G is a discrete-time beta-Stacy process with

parameters {(βt, γt) : t ≥ 1}, then the predictive distribution G∗ of a new, yet un-

seen observation from G is determined by ∆G∗(t) = E[∆G(t)] = βt
βt+γt

∏t−1
u=1

γu
βu+γu

,

the probability that a new observation from G will be equal to t.

To generalize this approach to competing risks, we introduce the following defi-

nitions:

Definition 4.2.1. A function F : {0, 1, 2, . . .}× {1, . . . , k} → [0, 1], k ≥ 1, is called

a (discrete-time) subdistribution function if it is the joint distribution function of

some random vector (T, δ) ∈ {0, 1, 2, . . .} × {1, . . . , k}: F (t, c) = P (T ≤ t, δ = c)

for all t ≥ 0 and c ∈ {1, . . . , k}. A random subdistribution function is defined as
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a stochastic process indexed by {0, 1, 2, . . .} × {1, . . . , k} whose sample paths form a

subdistribution function almost surely.

Suppose now that T represents the time until one of k specific competing events

occurs and that δ = 1, . . . , k indicates the type of the occurring event. For instance,

for k = 2, T may represent time from surgery for melanoma to death, while δ may

represent the specific cause of death: δ = 1 for melanoma-related mortality, δ = 2

for death due to other causes. As before, if the distribution of (T, δ) is unknown,

then in the Bayesian nonparametric framework it is assumed that, conditionally on

some random subdistribution function F , (T, δ) is distributed according to F itself:

P (T ≤ t, δ = c|F ) = F (t, c) for all t ≥ 0 and c = 1, . . . , k.

Remark 4.2.1. Conditionally on F , ∆F (t, c) = F (t, c)−F (t−1, c) is the probability

of experiencing an event of type c at time t: ∆F (t, c) = P (T = t, δ = c|F ). Addition-

ally, if G(t) =
∑k

d=1 F (t, d), ∆G(t) = G(t) − G(t − 1), and Vt,d = ∆F (t, d)/∆G(t),

then: G(t) = P (T ≤ t|F ) is the cumulative probability of experiencing an event by

time t, ∆G(t) = P (T = t|F ) is the probability of experiencing an event at time t,

and Vt,c = P (δ = c|T = t, F ) is the probability of experiencing an event of type c

at time t given that some event occurs at time t. Moreover, it can be shown that

F (t, c) =
∑t

u=1 S(u−1)∆Ac(u), where S(t) = 1−G(t) and Ac(t) = ∆F (t, c)/S(t−1)

is the cumulative hazard of experiencing an event of type c by time t (Kalbfleisch

and Prentice, 2002, Chapter 8).

To specify a suitable prior on the random subdistribution function F , we now

introduce the subdistribution beta-Stacy process:

Definition 4.2.2. Let {(αt,0, . . . , αt,k) : t ≥ 1} be a collection of (k+1)-dimensional

vectors of positive real numbers satisfying the following condition:

lim
t→+∞

t∏
u=1

αu,0∑k
d=0 αu,d

= 0. (4.2)

A random subdistribution function F is said to be a discrete-time subdistribution

beta-Stacy process with parameters {(αt,0, . . . , αt,k) : t ≥ 1} if:

1. F (0, c) = 0 with probability 1 for all c = 1, . . . , k;

2. for all c = 1, . . . , k and all t ≥ 1,

∆F (t, c) = Wt,c

t−1∏
u=1

(
1−

k∑
d=1

Wu,d

)
, (4.3)
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with the convention that empty products are equal to 1, and where {Wt =

(Wt,0, . . . ,Wt,k) : t ≥ 1} is a sequence of independent random vectors such that

for all t ≥ 1, Wt ∼ Dirichletk+1(αt,0, . . . , αt,k).

If in particular the αt,d are determined as

αt,c = ωt∆F0(t, c) and αt,0 = ωt

(
1−

k∑
d=1

F0(t, d)

)
for some fixed subdistribution function F0 and sequence of positive real numbers

(ωt : t ≥ 1), then we write F ∼ sBS(ω, F0).

Remark 4.2.2. In Section 4.3, Remark 4.3.1, it will be shown that condition (4.2) is

both necessary and sufficient for a random function F (t, c) satisfying points 1 and 2

of Definition 4.2.2 to be a subdistribution function with probability 1. This justifies

the consideration of the subdistribution beta-Stacy process as a prior distribution on

the space of subdistribution functions. Also note that if F ∼ sBS(ω, F0), then condi-

tion (4.2) is automatically satisfied since
∑k

d=0 αt,d = ωt(1−
∑k

d=1 F0(t−1, d)) and so∏+∞
t=1 [αt,0/

∑k
d=0 αt,d] = limt→+∞(1−

∑k
d=1 F0(t, d)) = 0, as limt→+∞

∑k
d=1 F0(t, d) =

1 (provided occurrence of at least one of the k events is inevitable).

The following lemma (which can be proven by taking expectations of Equation

(4.3) and using the fact that the Wt are independent Dirichlet random vectors)

characterizes the moments of the subdistribution beta-Stacy process.

Lemma 4.2.1. Let F be a subdistribution beta-Stacy process with parameters

{(αt,0, . . . , αt,k) : t ≥ 1}. Then

E[∆F (t, c)] =
αt,c∑k
d=0 αt,d

t−1∏
u=1

αu,0∑k
d=0 αu,d

, (4.4)

E[∆F (t, c)2] = E[∆F (t, c)]
1 + αt,c

1 +
∑k

d=0 αt,d

t−1∏
u=1

1 + αu,0

1 +
∑k

d=0 αu,d
(4.5)

for all t ≥ 1 and c = 1, . . . , k.

Remark 4.2.3. Using Theorem 2.5 of Ng et al. (2011) it is possible to show that

the vector of random probabilities (1 −
∑k

d=1 ∆F (t, d), ∆F (t, 1), . . ., ∆F (t, k)) is

completely neutral in the sense of Connor and Mosimann (1969). Consequently,

Equations (4.4) and (4.5) also follow from formulas (4) and (9) of Connor and

Mosimann (1969).
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Remark 4.2.4. Note that the previous Lemma 4.2.1 also characterizes the predictive

distribution associated to a subdistribution beta-Stacy process: if F is a subdis-

tribution beta-Stacy process with parameters {(αt,0, . . ., αt,k) : t ≥ 1}, then the

predictive subdistribution function F ∗ of a new, yet unseen observation from F is

determined by ∆F ∗(t, d) = E[∆F (t, d)], which is given by Equation (4.4) (∆F ∗(t, d)

is the probability that a new observation from F will be equal to (t, d)).

Remark 4.2.5. Let F ∼ sBS(ω, F0). It can be shown from Equation (4.4) that

E[∆F (t, c)] = ∆F0(t, c) for all t ≥ 1 and c = 1, . . . , k, implying both that i) F is

centered on F0 and ii) F0 is equal to the predictive distribution associated to F .

From Equations (4.4) and (4.5) it can be further shown that Var (∆F (t, c)) is a de-

creasing function of ωt, with Var (∆F (t, c))→ 0 as ωt → +∞ and Var (∆F (t, c))→
F0(t, c)(1 − F0(t, c)) as ωt → 0. Thus ωt can be used to control the prior precision

of the sBS(ω, F0) process.

4.3 Predictive characterisation

Muliere et al. (2000) described a predictive construction of the discrete-time beta-

Stacy process by means of a reinforced urn process {Yn : n ≥ 0} with state space

{0, 1, 2, . . .}. The urns of this process contain balls of only two colors, black and

white (say), and reinforcement is performed by the addition of a single ball (m = 1).

To intuitively describe this process, suppose that each patient in a series is observed

from an initial time point until the onset of an event of interest. The process

{Yn : n ≥ 0} starts from Y0 = 0, signifying the start of the observation for the first

patient, and then evolves as follows: if Yn = t and a black ball is extracted, then the

current patient does not experience the event at time t and Yn+1 = t+1; if instead a

white ball is extracted, then the current patient experiences the event at time t and

Yn+1 = 0, so the process is restarted to signify the start of the observation of a new

patient. With this interpretation, the number Tn of states visited by {Yn : n ≥ 0}
between the (n− 1)-th and n-th visits to the initial state 0 correspond to the time

of event onset for the n-th patient. If the process {Yn : n ≥ 0} is recurrent (so

the times Tn are almost surely finite), a representation theorem for reinforced urn

processes implies that the process {Yn : n ≥ 0} is a mixture of Markov Chains. The

corresponding mixing measure is such that the rows of the transition matrix are

independent Dirichlet processes (Muliere et al., 2000, Theorem 2.16; see Ferguson,
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1973 for the definition of a Dirichlet process). Using this representation, Muliere

et al. (2000) showed that the sequence {Tn : n ≥ 1} is exchangeable and that there

exists a random distribution function G such that i) conditionally on G, the times

T1, T2, . . . are i.i.d. with common distribution function G, and ii) G is a beta-Stacy

process (Muliere et al., 2000, Section 3).

In this section, we will generalize the predictive construction of Muliere et al.

(2000) to yield a similar characterization of the subdistribution beta-Stacy process.

To do so, consider a reinforced urn process {Xn : n ≥ 0} with state space S =

{0, 1, 2, . . .} × E, set of colors E = {0, 1, . . . , k} (k ≥ 1), starting point X0 = (0, 0),

and law of motion defined by q((t, 0), c) = (t + 1, c) and q((t, d), c) = (0, 0) for all

for all integers t ≥ 0 and c, d = 0, 1, . . . , k, d 6= 0. Further suppose, for simplicity

of presentation, that reinforcement is performed by the addition of a single ball

(m = 1) as before (but see Remark 4.3.2 below for the case where m ∈ (0,+∞)).

The initial composition of the urns is given as follows: i) n(t,0)(c) = αt+1,c for all

integers t ≥ 0 and c = 0, 1, . . . , k; ii) n(t,d)(0) = 1, n(t,d)(c) = 0 for all integers t ≥ 0

and c, d = 1, . . . , k, d 6= 0. Now, define τ0 = 0 and τn+1 = inf{t > τn : Xt =

(0, 0)} for all integers n ≥ 0. The process {Xn : n ≥ 0} is said to be recurrent

if P (∩+∞
n=1{τn < +∞}) = 1. Additionally, let T ((t, c)) = t and D((t, c)) = c for

all (t, c) ∈ S. For all n ≥ 1, set Tn = T (Xτn−1), the length of the sequence of

states between the (n − 1)-th and the n-th visits to the initial state (0, 0), and

Dn = D(Xτn−1), the color of the last ball extracted before the n-th visit to (0, 0).

The process {Xn : n ≥ 0} can be interpreted as follows: a patient initially at risk

of experiencing any of k possible outcomes is followed in time starting from time

t = 0; at each time point t, the color of the extracted ball represents the status of

the patient at the next time point t+ 1; if a ball of color 0 is extracted, the patient

remains at risk at the next time point; if instead a ball of color c ∈ {1, . . . , k} is

extracted, then the patient will experience an outcome of type c at the next time

point. The process returns to the initial state after such an occurrence to signify

the arrival of a new patient. With this interpretation, the variable Tn represents the

time at which the n-th patient experiences one of the k events under study, while Dn

encodes the type of the realized outcome. These concepts are illustrated in Figure

4.1. Moreover, note that, although slightly different, the reinforced urn process used

to construct the beta-Stacy process by Muliere et al. (2000) is essentially equivalent

to the process {Xn : n ≥ 0} in the particular case where k = 1, with color 0 being
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black and color 1 being white in the above description.

Continuing, in accordance with Diaconis and Freedman (1980) we say that the

process {Xn : n ≥ 0} is Markov exchangeable if P (X0 = x0, . . . , Xn = xn) = P (X0 =

y0, . . . , Xn = yn) for all finite sequences (x0, . . . , xn) and (y0, . . . , yn) of elements of

S such that i) x0 = y0 and ii) for any s1, s2 ∈ S, the number of transitions from s1

to s2 is the same in both sequences.

Lemma 4.3.1. The process {Xn : n ≥ 0} is Markov exchangeable. Consequently,

if {Xn : n ≥ 0} is recurrent, then it is also a mixture of Markov Chains with state

space S. In other words, there exists a probability measure µ on the space M of all

transition matrices on S × S and a M-valued random element Π ∼ µ such that for

all n ≥ 1 and all sequences x0, . . . , xn ∈ S with x0 = (0, 0),

P (X0 = x0, . . . , Xn = xn|Π) =
n−1∏
i=0

Π(xi, xi+1),

where Π(x, y) is the element on the x-row and y-th column of Π. Additionally, for

each x = (t, c) ∈ S, let Nx(·) be the measure on S (together with the Borel σ-algebra

generated by the discrete topology) which gives mass n(t,c)(d) to q((t, c), d) for all

d = 0, 1, . . . , k, and null mass to all other points in S. Then, the random probability

measure Π(x, ·) on S is a Dirichlet process with parameter measure Nx(·).

Proof. The thesis follows immediately from Theorem 2.3 and 2.16 of Muliere et al.

(2000) and Theorem 7 of Diaconis and Freedman (1980).

Lemma 4.3.2. The process {Xn : n ≥ 0} is recurrent if and only if {(αt,0, . . . , αt,k) :

t ≥ 1} satisfies condition (4.2).

Proof. First observe that

P (τ1 = +∞) = lim
n→+∞

P (τ1 > n)

= lim
n→+∞

P (X0 = (0, 0), X1 = (1, 0), . . . , Xn−1 = (n− 1, 0))

= lim
n→+∞

n−1∏
t=0

n(t,0)(0)∑k
d=1 n(t,0)(d)

= lim
n→+∞

n∏
t=1

αt,0∑k
d=1 αt,d

.



36

time0 1 2

0
1
2 0

1
2 0

1
2

0
0 0

X0=(0,0) X1=(1,0) X2=(2,0)

(0,1) (1,1) (2,1)

0
0 0

(0,2) (1,2) (2,2)

Color 0

Color 1

Color 2

3

0
1
2

0

(3,0)

(3,1)

0

X3=(3,2)

a) Patient 1

0 0 2

0

time0 1 2

0
1
2 0

1
2 0

1
2

0
0 0

X4=(0,0) X5=(1,0) (2,0)

(0,1) (1,1) X6=(2,1)

0
0 0

(0,2) (1,2) (2,2)

Color 0

Color 1

Color 2

3

0
1
2

0

(3,0)

(3,1)

0

(3,2)

b) Patient 2

0 1

0 0 2

0

0

Figure 4.1: Illustration of the reinforced urn process characterizing the subdistri-

bution beta-Stacy process assuming k = 2. In both panels, the horizontal axis

measures the time since the last visit to the urn representing the state (0, 0). The

process starts from the (0, 0) urn in Panel a, in which all urns are represented at

their initial composition. In this example, balls of colors 0, 0, and 2 are successively

extracted from the urns visited by the process, respectively at times 0, 1, and 2. At

time 3 the process visits the (3, 2) urn, from which only balls of color 0 can be ex-

tracted. The process then returns to the (0, 0) urn and continues as shown in Panel

b, where the composition of the urns has been updated by reinforcement. Suppose

now that each visit to (0, 0) represents the arrival of a new melanoma patient at

the moment of surgery. If color 1 represents death due to melanoma and color 2

represents death due to other causes, then the sequence of urns visited in Panel a

corresponds to the history of an individual (Patient 1) who dies of causes not related

to melanoma after 3 time instants since surgery (T1 = 3, D1 = 2), while Panel b

represents the history of a subsequently observed individual (Patient 2) who dies

due to melanoma after 2 time instants since surgery (T2 = 2, D2 = 1).
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Consequently, if {Xn : n ≥ 0} is recurrent, then P (τ1 =∞) = 0 and so condition

(4.2) must hold. Conversely, suppose that condition (4.2) is satisfied. Then P (τ1 <

+∞) = 1. By induction on n ≥ 1, suppose that P (∩ni=1{τi < +∞}) = 1. Then

P (τn+1 = +∞) =

∫
∩ni=1{τi<+∞}

P (τn+1 = +∞|T1, . . . , Tn)dP.

Given T1, . . . , Tn, if τn+1 = +∞ then the process must visit all states (t, 0) with

t ≥ 0 starting from time τn. Since the states (t, 0) for t > L := max(T1, . . . , Tn) + 1

correspond to previously unvisited urns, the probability of this event is bounded

above by

lim
n→+∞

n∏
i=L

n(i,0)(0)∑k
d=1 n(i,0)(d)

= lim
n→+∞

n∏
i=L+1

αi,0∑k
d=1 αi,d

.

Hence

P (τn+1 = +∞) ≤
∫
∩ni=1{τi<+∞}

lim
n→+∞

n∏
i=L+1

αi,0∑k
d=1 αi,d

dP = 0,

where the last equality follows from condition (4.2). Consequently,

P (∩n+1
i=1 {τi < +∞}) = 1.

This argument shows that P (∩+∞
i=1 {τi < +∞}) = 1 and so the process must be

recurrent, as needed.

Theorem 4.3.1. Suppose that the process {Xn : n ≥ 0} is recurrent. Then there

exists a random subdistribution function F , such that, given F , the (Tn, Dn) are

i.i.d. distributed according to F . Moreover, i) F is determined as a function of

the random transition matrix Π from Lemma 4.3.1, and ii) F is a subdistribution

beta-Stacy process with parameters {(αt,0, . . . , αt,k) : t ≥ 1}.

Proof. Let Π be the random transition matrix on S × S provided by Lemma 4.3.1

and define F (t, c) = P (T1 ≤ t,D1 = c|Π), which is clearly a random subdistribution

function. Moreover, for all c = 1, . . . , k,

F (0, c) = P (T1 = 0, D1 = c|Π) ≤ P (T (Xτ1−1) = 1|Π) = P (τ1 = 1|Π) = 0.
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Instead, for all c = 1, . . . , k and all t ≥ 1,

∆F (t, c) = P (T1 = t,D1 = c|Π)

= P (X0 = (0, 0), . . . , Xt−1 = (t− 1, 0), Xt = (t, c)|Π)

= Π((t− 1, 0), (t, c))
t−2∏
u=0

Π((u, 0), (u+ 1, 0)).

Now, for all t ≥ 1 and d = 0, 1, . . . , k,

N(t−1,0)({(t, d)}) = N(t−1,0)({q((t− 1, 0), d)}) = n(t−1,0)(d) = αt,d.

Then, from Lemma 4.3.1 again and from the properties of the Dirichlet process

(Ferguson, 1973), for all t ≥ 1,
(
Π((t − 1, 0), (t, 0)), . . . ,Π((t − 1, 0), (t, k))

)
∼

Dirichletk+1 (αt,0, . . . , αt,k). Hence, Lemma 4.3.2 implies that F is subdistribution

beta-Stacy with parameters {(αt,0, . . . , αt,k) : t ≥ 1}.
To show that, given F , the (Tn, Dn) are i.i.d. distributed according to F , it

suffices to note that for all (t1, d1), . . . , (tn, dn) ∈ S such that ti ≥ 1 for all i =

1, . . . , n, it holds that

P ((T1, D1) = (t1, d1), . . . , (Tn, Dn) = (tn, dn)|Π)

=
n∏
i=1

{
Π((ti − 1, 0), (ti, di))

ti−1∏
t=0

Π((t, 0), (t+ 1, 0))

}

=
n∏
i=1

∆F (ti, di).

Since F is a function of Π, this concludes the proof.

Remark 4.3.1. Suppose that F is a random function satisfying points 1 and 2 of

Definition 4.2.2. The proof of Theorem 4.3.1 also shows that, if condition (4.2) is

satisfied, then F is a random subdistribution function. This is because condition

(4.2) coincides with the recurrency condition in Lemma 4.3.2. Suppose instead that

F is a subdistribution function with probability 1. Then F̃ (t, c) = E[F (t, c)] is a

subdistribution function and

P (T1 ≤ t,D1 = c) = F̃ (t, c) =
αt,d∑k
c=0 αt,c

t−1∏
u=1

αu,0∑k
c=0 αu,c
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for all t ≥ 0 and c = 1, . . . , k. Hence it must be

0 = P (T1 = +∞)

= lim
t→+∞

P (X0 = (0, 0), . . . , Xt = (t, 0))

= lim
t→+∞

t∏
u=1

αu,0∑k
c=0 αu,c

.

Thus condition (4.2) must hold. Therefore, condition (4.2) is both necessary and

sufficient for F to be a random subdistribution function, justifiying the claim antic-

ipated in Remark 4.2.2.

Another immediate consequence of Theorem 4.3.1 is the following:

Corollary 4.3.1. The sequence of random variables {(Tn, Dn) : n ≥ 1} induced by

the reinforced urn process {Xn : n ≥ 0} is exchangeable.

This fact could also have been proven directly through an argument similar to

that at the end of Section 2 of Muliere et al. (2000). To elaborate, suppose that

{Yn : n ≥ 0} is a recurrent stochastic process with countable state space S and

such that X0 = x0 ∈ S with probability one. Then a x0-block is defined as any

finite sequence of states visited by process which begins from x0 and ends at the

state immediately preceding the successive visit to x0. Diaconis and Freedman

(1980) showed that if {Yn : n ≥ 0} is also Markov exchangeable, then the sequence

{Bn : n ≥ 1} of its x0-blocks is exchangeable. Now, consider the reinforced urn

process {Yn : n ≥ 0} used by Muliere et al. (2000) for constructing the beta-Stacy

process and described at the beginning of this section. This process is Markov

exchangeable and so, under a recurrency condition, its sequence of 0-blocks {Bn :

n ≥ 1} is exchangeable. Consequently, so must be the corresponding sequence of

total survival times {Tn = f(Bn) : n ≥ 1}, where f(B) is the length of the 0-block B

after excluding its initial element. Each 0-block Bn must have the form (0, 1, . . . , t)

for some t ≥ 1 and f((0, 1, . . . , t)) = t for all t ≥ 1.

In our setting, it can easily be seen that the (0, 0)-blocks of the reinforced urn

process {Xn : n ≥ 0} introduced in this section are finite sequences of states of the

form ((0, 0), (1, 0), . . . , (t − 1, 0), (t, c)) for some t ≥ 1 and c = 1, . . . , k. Any such

(0, 0)-block represents the entire observed history of an individual at risk of develop-

ing any one of the k considered competing risks. For example, the history of Patient



40

1 in Figure 4.1(a) is represented by the (0, 0)-block B1 = ((0, 0), (1, 0), (2, 0), (3, 2)),

while that of Patient 2 in Figure 4.1(b) is represented by the (0, 0)-block B2 =

((0, 0), (1, 0), (2, 1)). If {Xn : n ≥ 0} is recurrent, by Lemma 4.3.1 its sequence

of (0, 0)-blocks {Bn : n ≥ 1} is exchangeable. Hence, so must be the sequence

{(Tn, Dn) = f(Bn) : n ≥ 1}, as claimed, where f(B) is the last state in the

(0, 0)-block B. For the example in Figure 4.1, f(B1) = (T1, D1) = (3, 2) and

f(B2) = (T2, D2) = (2, 1).

Remark 4.3.2. Throughout this section, we have assumed for simplicity that each

extracted ball is reinforced by only by single ball of the same color, i.e. m = 1.

In general, a number m > 0 could be considered. It is possible to show (see for

example Amerio et al., 2004 or Mezzetti et al., 2007) that Theorem 4.3.1 would

still hold with F distributed according a subdistribution beta-Stacy process with

parameters {(αt,0/m, . . . , αt,k/m) : t ≥ 1}. In particular, if αt,c = ωt∆F0(t, c) and

αt,0 = ωt(1 −
∑k

d=1 F0(t, d)), then F ∼ sBS(ω/m,F0). Hence, the number of balls

m used for reinforcement can be used to control concentration of the prior around

its mean.

4.4 Posterior distributions and censoring

Suppose that (Ti, Di) is distributed according to some subdistribution function F

and Ti > 0 with probability 1 for all i = 1, . . . , n. If the value (Ti, Di) can be po-

tentially right-censored at the known time ci ∈ {0, 1, 2, . . .} ∪ {+∞}, then instead

of observing the actual value (Ti, Di) one is only able to observe (T ∗i , D
∗
i ), where

(T ∗i , D
∗
i ) = (Ti, Di) if Ti ≤ ci and (T ∗i , D

∗
i ) = (ci, 0) if Ti > ci (if ci = +∞, then

(Ti, Di) is not affected by censoring). The following theorem shows that the sub-

distribution beta-Stacy process has a useful conjugacy property even in presence of

such right-censoring mechanism.

Theorem 4.4.1. Suppose that (T1, D1), . . ., (Tn, Dn) is an i.i.d. sample from a

subdistribution function F distributed as a subdistribution beta-Stacy process with

parameters {(αt,0, . . . , αt,k) : t ≥ 1}. If (T1, D1), . . ., (Tn, Dn) are potentially right-

censored at the known times c1, . . . , cn, respectively, then the posterior distribution

of F given (T ∗1 , D
∗
1),. . ., (T ∗n , D

∗
n) is a subdistribution beta-Stacy with parameters

{(α∗t,0, . . . , α∗t,k) : t ≥ 1}, where α∗t,0 = αt,0 + lt + mt,0, α∗t,d = αt,d + mt,d for all
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integers t ≥ 1 and for d = 1, . . . , k, where

lt =
n∑
i=1

I {T ∗i > t}

and

mt,d =
n∑
i=1

I {T ∗i = t,Di = d}

for all t ≥ 1 and d = 0, 1, . . . , k.

Proof. To prove the thesis, it suffices it is true for n = 1, as the general case

will then follow from an immediate induction argument. To do so, first note that,

with reference to the renforced urn process {Xn : n ≥ 0} of Section 4.3, condition

(4.2) implies that F can be seen as a function of some random transition matrix

Π as in the proof of Theorem 4.3.1. Assume now that (T ∗1 , D
∗
1) = (t, d) for some

t ≥ 1 and d = 0, 1, . . . , k. Since observing (T ∗1 , D
∗
1) is equivalent to observing

X0 = (0, 0), . . . , Xt−1 = (t− 1, 0), Xt = (t, d), Corollary 2.21 of Muliere et al. (2000)

implies that, conditionally on (T ∗1 , D
∗
1) = (t, d), the rows of Π are independent and,

for all x ∈ S, the parameter measure of the x-th row of Π assigns mass n(0,0)(0) +

1, . . . , n(t−2,0)(0)+1, n(t−1,0)(d)+1 to the states (1, 0), . . . , (t−1, 0), (t, d), respectively,

and mass n(t′,d′)(c) to all other states q((t′, d′), c) 6= (1, 0),. . ., (t − 1, 0), (t, d) in S.

Since αt,d = n(t−1,0)(d) for all t ≥ 1 and d = 0, 1, . . . , k, it can now be seen that,

conditionally on (T ∗1 , D
∗
1), F must be subdistribution beta-Stacy with parameters

{(α∗t,0, . . . , α∗t,k) : t ≥ 1} defined by α∗t,0 = αt,0 + I {T ∗1 > t} + I {T ∗1 = t,D∗1 = 0},
α∗t,d = αt,d + I {T ∗1 = t,D∗1 = d} for all integers t ≥ 1 for d = 1, . . . , k.

The following corollary is now a direct consequence of Equation (4.4) in Lemma

4.2.1.

Corollary 4.4.1. The predictive distribution F ∗(t, d) of a new (non-censored) ob-

servation (Tn+1, Dn+1) from F having previously observed (T ∗1 , D
∗
1), . . . , (T ∗n , D

∗
n) is

determined by

∆F ∗(t, d) = P ((Tn+1, Dn+1) = (t, d)|(T ∗1 , D∗1), . . . , (T ∗n , D
∗
n))

= E [∆F (t, d)|(T ∗1 , D∗1), . . . , (T ∗n , D
∗
n)]

=
α∗t,d∑k
c=0 α

∗
t,c

t−1∏
u=1

α∗u,0∑k
c=0 α

∗
u,c

.

for all t ≥ 1 and d = 1, . . . , k.
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The following result instead follows from Corollary 4.4.1 and Remark 4.2.5.

Corollary 4.4.2. Assume that F ∼ sBS(ω, F0) a priori. Then, the posterior dis-

tribution of F given the observed values of (T ∗1 , D
∗
1), . . . , (T ∗n , D

∗
n) is sBS(ω∗, F ∗),

where

F ∗(t, c) =
t∑

u=1

S∗(u− 1)∆A∗c(u),

A∗c(t) =
t∑

u=1

ωu∆F0(u, c) +mu,c

ωu(1−
∑k

d=1 F0(u− 1, d)) + lu +
∑k

d=0mu,d

,

S∗(t) =
t∏

u=1

(
1− ωu

∑k
d=1 ∆F0(u, d) +

∑k
d=1mu,d

ωu(1−
∑k

d=1 F0(u− 1, d)) + lu +
∑k

d=0 mu,d

)
,

and

ω∗t =
ωt

[
1−

∑k
d=1 F0(t, d)

]
+ lt +mt,0

1−
∑k

d=1 F
∗(t, d)

.

Remark 4.4.1. As maxu=1,...,t(ωu)→ 0, S∗(t) converges to the discrete-time Kaplan-

Meier estimate

Ŝ(t) =
t∏

u=1

(1− [
k∑
d=1

mu,d]/[lu +
k∑
d=0

mu,d]),

while A∗c(t) converges to the Nelson-Aalen estimate

Âc(t) =
t∑

u=1

mu,c/(lu +
k∑
d=0

mu,d)

for all times t ≥ 1 for which Ŝ(t) and the Âc(t) are defined (i.e. such that lt +∑k
d=0mt,d] > 0). All in all, F ∗(t, c), which coincides with the optimal Bayesian

estimate of F under a squared-error loss, converges to

F̂ (t, c) =
t∑

u=1

Ŝ(u− 1)∆Âc(u),

the classical non-parametric estimate of F (t, c) of Kalbfleisch and Prentice (2002,

Chapter 8), for all times t ≥ 1 for which this is defined. Conversely, if minu=1,...,t(ωu)→
+∞, then S∗(t) converges to 1−

∑k
d=1 F0(t, d), Ac(t) converges to the corresponding

cumulative hazard of F0, and therefore F ∗(t, c) converges to the prior mean F0(t, c)

for all times t ≥ 1 and c = 1, . . . , k.
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Remark 4.4.2. (Censored data likelihood) Given a sample (t∗1, d
∗
1), . . ., (t∗n, d

∗
n) of

censored observations from a subdistribution function F (t, c), define zi = I {d∗i 6= 0}
for all i = 1, . . . , n. It can then be shown that the likelihood function for F is

L(F ) = P ((T ∗1 , D
∗
1) = (t∗1, d

∗
1), . . . , (T ∗n , D

∗
n) = (t∗n, d

∗
n)|F )

=
n∏
i=1

∆F (t∗i , d
∗
i )
zi

[
1−

k∑
d=1

F (t∗i , d)

]1−zi

.
(4.6)

So far the censoring times c1, . . . , cn have been considered fixed and known.

Theorem 4.4.1 however continues to hold also in the following more general set-

ting in which censoring times are random: let the censored data be defined as

T ∗i = min(Ti, Ci) and D∗i = I {Ti ≤ Ci} for all i = 1, . . . , n, where i) C1, . . . , Cn are

independent random variable with common distribution function H(t), ii) condi-

tional on F and H, (T1, D1), . . . , (Tn, Dn) and C1, . . . , Cn are independent, and iii)

F and H are a priori independent. Adapting the terminology of Heitjan and Rubin

(1991; 1993), in this case the random censoring mechanism is said to be ignorable.

Theorem 4.4.2. If censoring is random and ignorable and F is a priori a subdis-

tribution beta-Stacy process, then the marginal likelihood for F is proportional to the

likelihood L(F ) defined in Equation (4.6). Consequently, the posterior distribution

of F given (T ∗1 , D
∗
1), . . ., (T ∗n , D

∗
n) is the same as that described in Theorem 4.4.1.

Proof. The likelihood function for F and H given a sample (t∗1, d
∗
1),. . ., (t∗n, d

∗
n) of

observations affected from ignorable random censoring is

L∗(F,H) = P ((T ∗1 , D
∗
1) = (t∗1, d

∗
1), . . . , (T ∗n , D

∗
n) = (t∗n, d

∗
n)|F,H)

= L(F )
n∏
i=1

∆H(t∗i )
1−zi [1−H(t∗i )]

zi

= L(F )L∗(H),

where L and the zi are defined as in Equation 4.6. Therefore, the marginal likelihood

for F is Lmarginal(F ) = L(F )EH [L∗(H)] ∝ L(F ), where the constant of proportion-

ality only depends on the data and EH [·] represents expectation with respect to the

prior distribution of H. As a consequence, the posterior distribution of F can be

computed ignoring the randomness in the censoring times C1, . . . , Cn by considering

their observed values as fixed and their unobserved values as fixed to +∞. Hence,
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if F is a priori a subdistribution beta-Stacy process, then its posterior distribution

is the same as in Theorem 4.4.1.

Remark 4.4.3. The update-rule of Theorem 4.4.1 could be shown to hold under

even more general censoring mechanisms. In fact, the marginal likelihood for F

remains proportional to L(F ) as long as i) the distribution H of censoring times is

independent of F and ii) censoring only depends on the past and outside variation

(Kalbfleisch and Prentice, 2002).

4.5 Relation with other prior processes

4.5.1 Relation with the beta-Stacy process

By construction, the subdistribution beta-Stacy process can be regarded as a direct

generalization of the beta-Stacy process. In fact, the two processes are linked with

each other, as highlighted by the following theorem:

Theorem 4.5.1. A random subdistribution function F is a discrete-time subdis-

tribution beta-Stacy process with parameters {(αt,0, . . . , αt,k) : t ≥ 1} if and only

if i) G(t) =
∑k

d=1 F (t, d) is a discrete-time beta-Stacy process with parameters

{(
∑k

d=1 αt,d, αt,0) : t ≥ 1} and ii) ∆F (t, c) = Vt,c∆G(t) for all t ≥ 1 and c = 1, . . . , k,

where {Vt = (Vt,1, . . . , Vt,k) : t ≥ 1} is a sequence of independent random vectors in-

dependent of G and such that Vt ∼ Dirichletk(αt,1, . . . , αt,k) for all t ≥ 1 (where, if

k = 1, we let the distribution Dirichlet1(αt,1) be the point mass at 1).

Proof. Before proceeding, first observe that {(αt,0, . . . , αt,k) : t ≥ 1} satisfies the

recurrency condition of Equation (4.2) if and only if

{(
k∑
d=1

αt,d, αt,0) : t ≥ 1}

satisfies the recurrency condition for the beta-Stacy process, i.e. Equation (4.1) with

βt =
∑k

d=1 αt,d and γt = αt,0.

Now, to prove the “if” part of the thesis, suppose that the random subdistri-

bution function F is subdistribution beta-Stacy with parameters {(αt,0, . . . , αt,k) :

t ≥ 1}. Let G(t) =
∑k

d=1 F (t, d) for all integers t ≥ 0 and define Ut =
∑k

d=1Wt,k
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and Vt,c = Wt,c/Ut for all t ≥ 1 and c = 1, . . . , k. From these definitions it is

easy to check that ∆F (t, c) = Vt,c∆G(t) for all t ≥ 1. Additionally, by standard

properties of the Dirichlet distribution (Sivazlian, 1981, Propriety 1B) and by the

independence of the Wt, {Ut : t ≥ 1} is a sequence of independent random vari-

ables such that Ut ∼ Beta(
∑k

d=1 αt,k, αt,0). Moreover, from Theorem 2.5 of Ng

et al. (2011) it follows that {Vt = (Vt,1, . . . , Vt,k) : t ≥ 1} is a sequence of in-

dependent random vectors such that Vt ∼ Dirichletk(αt,1, . . . , αt,k) for all t ≥ 1,

independently of {Ut : t ≥ 1}. Moreover, G(0) = 0 with probability one because

G(0) =
∑k

d=1 F (0, d) and F (0, d) = 0 with probability 1 for all d = 1, . . . , k. Con-

tinuing, since ∆G(t) =
∑k

d=1 ∆F (t, d) for all t ≥ 1, it follows that

∆G(t) =
k∑
d=1

{
Wt,d

t−1∏
u=1

(
1−

k∑
c=1

Wu,c

)}
= Ut

t−1∏
u=1

(1− Uu)

for all t ≥ 1. Thus G is a beta-Stacy process with parameters

{(
k∑
d=1

αt,k, αt,0) : t ≥ 1}.

To prove the “only if” part of the thesis, suppose instead that G is a beta-Stacy

process with parameters {(
∑k

d=1 αt,d, αt,0) : t ≥ 1} and that {Vt = (Vt,1, . . . , Vt,k) :

t ≥ 1} is a sequence of independent random vectors satisfying conditions (a) and

(b). Since 0 = G(0) =
∑k

d=1 F (0, d) with probability 1, and since it must also

be F (t, d) ≥ 0 with probability 1 for all t and d, it follows that F (0, d) = 0 with

probability 1 for all d. To continue, define Wt = (Wt,0,Wt,1, . . . ,Wt,k) = (1 −
Ut, UtVt,1, . . . , UtVt,k) for all t ≥ 1. It can be seen that the Wt are independent.

Moreover, since Ut and Vt are independent and since 1−Ut ∼ Beta(αt,0,
∑k

d=1 αt,d),

from Theorem 2.2 of Ng et al. (2011), it follows that Wt has the same distribution

as (
Yt,0, Yt,1(1− Yt,0), . . . , Yt,k−1

k−2∏
d=0

(1− Yt,d),
k−1∏
d=0

(1− Yt,d)

)
where the Yt,c are independent random variables with

Yt,c ∼ Beta

(
αt,c,

k∑
d=c+1

αt,d

)
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for all c = 0, . . . , k. Again from Theorem 2.2 of Ng et al. (2011) it thus follows that

Wt ∼ Dirichletk+1(αt,0, . . ., αt,k) for all t ≥ 1. Since ∆F (t, c) = Vt,c∆G(t) for all

t ≥ 1, from the definition of a beta-Stacy process it now follows that

∆F (t, d) = Vt,dUt

t−1∏
u=1

(
1−

k∑
c=1

Vt,cUu

)
= Wt,d

t−1∏
u=1

(
1−

k∑
c=1

Wt,c

)
.

Hence, F is subdistribution beta-Stacy with parameters {(αt,0, . . . , αt,k) : t ≥ 1}.

4.5.2 Relation with the beta process

Suppose A(t) = (A1(t), . . . , Ak(t)) collects the cumulative hazards of the subdistri-

bution function F (t, c) and let ∆A(t) = (∆A1(t), . . . ,∆Ak(t)), A0(t) =
∑k

d=1Ad(t).

Then, following Hjort (Hjort, 1990, Section 2), a discrete time beta-process prior for

non-homogeneous Markov Chains with parameters {(αt,0, . . . , αt,k) : t ≥ 1} could be

specified for A(t) by independently letting (1 − ∆A0(t),∆A1(t), . . . ,∆Ak(t)) have

a Dirichlet(αt,0, . . ., αt,k) distribution for all t ≥ 1. In such case, from Definition

4.2.2 it would follow that F is subdistribution beta-Stacy with the same set of pa-

rameters. The converse is also true, since if F is subdistribution beta-Stacy then

it can be easily seen from Definition 4.2.2 that (1−∆A0(t),∆A1(t), . . . ,∆Ak(t)) =

(Wt,0,Wt,1, . . . ,Wt,k). Thus, if interest is in the subdistribution function F (t, c)

itself, one should consider the subdistribution beta-Stacy process, whereas if in-

terest is in the cumulative hazards A(t), one should consider the beta process for

non-homogeneous Markov Chains. This equivalence parallels an analogous relation

between the usual beta-Stacy and beta processes (Walker and Muliere, 1997).

4.5.3 Relation with the beta-Dirichlet process

The subdistribution beta-Stacy process is also related to the discrete-time version of

the beta-Dirichlet process, a generalization of Hjort’s beta process prior (Hjort, 1990)

introduced by Kim and Gray (2012). The cumulative hazards {A(t) : t ≥ 1} are

said to be a beta-Dirichlet process with parameters {(βt,1, βt,2, γt,1, . . . , γt,k) : t ≥ 1}
if i) the ∆A(t) are independent, ii) ∆A0(t) ∼ Beta(βt,1, βt,2) for all t ≥ 1, and iii)

∆A(t)/∆A0(t) ∼ Dirichletk(γt,1, . . . , γt,k) independently of ∆A0(t) for all t ≥ 1.

From Definition 4.2.2 it is clear that if F (t, c) is subdistribution beta-Stacy with

parameters {(αt,0, . . . , αt,k) : t ≥ 1}, then from (1−∆A0(t),∆A1(t), . . . ,∆Ak(t)) =



47

(Wt,0,Wt,1, . . . ,Wt,k) and Theorem 2.5 of Ng et al. (2011), then the corresponding

cumulative hazards A(t) must be beta-Dirichlet with parameters βt,1 =
∑k

d=1 αt,d,

βt,2 = αt,0, and γt,d = αt,d for all d = 1, . . . , k and t ≥ 1. The converse is not true

unless βt,1 =
∑k

d=1 γt,d for all t ≥ 1.

4.6 Nonparametric cumulative incidence regres-

sion

In this section, we will illustrate a subdistribution beta-Stacy regression approach for

competing risks. We consider data represented by a sample of possibly-right censored

discrete survival times and cause-of-failure indicators (t∗1, d
∗
1), . . ., (t∗n, d

∗
n). Each

observation (t∗i , d
∗
i ) is associated with a known vector wi of predictors. We assume

that, as described in the Introduction, the time axis has been discretized according

to some fixed partition 0 = τ0 < τ1 < τ2 < · · · representing the measurement scale

of event times. Hence, (t∗i , d
∗
i ) = (t, d) for some d = 1, . . . , k if an event of type d

has been observed in the time interval (τt−1, τt]. Instead, (t∗i , d
∗
i ) = (t, 0) if no event

has been observed during (τt−1, τt] and censoring took place in the same interval.

Our starting point is the assumption that individual observations are exchange-

able within each level of the predictor variables wi. This leads us to consider a

hierarchical modelling approach akin to that adopted by Lindley and Smith (1972),

Antoniak (1974), and Cifarelli and Regazzini (1978). In this approach, the obser-

vations (t∗1, d
∗
1), . . . , (t∗n, d

∗
n) are assumed to be independent, each generated by a

corresponding subdistribution function F (t, c;wi) under some censoring mechanism

(as described in Section 4.4). Then a joint prior distribution is assigned to all the

F (t, c;wi) for i = 1, . . . , n. In the usual parametric approach these would simply be

assigned a specific functional form F0(t, c|θ;wi) by letting F (t, c;wi) = F0(t, c|θ;wi)
for all i = 1, . . . , n, then assigning a prior distribution to the common parameter

vector θ. Consequently, in the parametric approach the only source of uncertainty

is that on the value of θ and not on the functional form of F0(t, c|θ;wi). Thus, to

incorporate this uncertainty in the model and gain more flexibility in representing

the shape of the F (t, c;wi), we instead adopt a nonparametric perspective (Müller

and Mitra, 2013; Hjort et al., 2010; Phadia, 2013; Ghosal and van der Vaart, 2017).

Specifically, we consider the following modelling approach: first, a specific functional
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form F0(t, c|θ;wi) is chosen; second, letting w(1), . . . , w(L) denote the distinct values

of w1, . . . , wn, the subdistribution functions F (·;w(i)) are assumed to be independent

and distributed as F (·;w(i)) ∼ sBS(ω(θ, w(i)), F0(·|θ, w(i))) for all i = 1, . . . , L, where

ω(θ, w(i)) = (ωt(θ, w(i)))t≥1; finally, the parameter vector θ is assigned its own prior

distribution. The use of weights ωt(θ, w(i))) dependent on the time location t, the

covariate values w(i), and the parameter θ allows the local control of the uncertainty

on the functional form of F0(·|θ, w(i)) by determining the concentration of the sub-

distribution beta-Stacy prior around the increments ∆F0(t, c|θ, w(i)), c = 1, . . . , k

(c.f. Remark 4.2.5). Additionally, the presence of the parameter vector θ in the

model allows borrowing of information across different covariate levels w(i), as in

Cifarelli and Regazzini (1978), Muliere and Petrone (1993), and Mira and Petrone

(1996).

Many options are available in the literature for specifying the functional form of

the centering parametric subdistribution F0(t, c|θ, wi) when adopting our modelling

approach. In general, following Larson and Dinse (1985), a useful strategy consists

in starting from the decomposition

F0(t, c|θ, wi) = F
(1)
0 (c|θ1, wi)F

(2)
0 (t|θ2, c, wi),

and then separately modelling the probability F
(1)
0 (c|θ1, wi) of observing a failure

of type c and the conditional distribution F
(2)
0 (t|θ2, c, wi) of event times given the

specific failure type c. For example, F
(1)
0 (c|θ, wi) can be specified to be any model

for multinomial responses, such as the familiar multinomial logistic regression model

F
(1)
0 (c|θ1, wi) =

exp(w′ibc)

1 +
∑k−1

d=1 exp(w′ibd)
,

F
(1)
0 (k|θ1, wi) =

1

1 +
∑k−1

d=1 exp(w′ibd)
,

(4.7)

where c = 1, . . . , k − 1 and θ1 = (b1, . . . , bc−1) (Agresti, 2003, Chapter 7). The

time-to-event distribution F
(2)
0 (t|θ2, c, wi) can instead be specified by discretizing a

continuous-time distribution (e.g. Weibull or log-normal) with cumulative distribu-

tion function G0(·|θ2, c, w) by letting F
(2)
0 (t|θ2, c, wi) = G0(τt|θ2, c, wi). For example,

in the Weibull case one could let

G0(t|θ2, c, wi) = 1− exp(−tuc exp(w′ivc)) (4.8)
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and θ2 = (v1, . . . , vk, u1, . . . , uk), yielding a discrete-time version of the common

parametric Weibull regression model (Aalen et al., 2008, Chapter 5). Alterna-

tively, F
(2)
0 (t|θ2, c, wi) may be specified as the Grouped Cox model (Kalbfleisch

and Prentice, 2002, Section 2.4.2), the logistic regression model of Cox (1972), or

other discrete-time models (Schmid et al., 2016; Tutz and Schmid, 2016; Berger and

Schmid, 2017).

The weights ωt(θ, w(i)) can be calibrated in order to account for the degree

of uncertainty attached to the chosen parametric functional form of F0(·|θ, wi).
In fact, by Remark 4.2.5, conditionally on θ as the weights increase the prior

sBS(ω, F0(·|θ, w(i))) becomes more concentrated on

F0(·|θ, w(i))), giving more importance to the parametric component of the model.

To exploit this fact, we consider weights ωt defined as ωt(θ, w(i)) = ω0,t(θ, w(i))/m,

where

ω0,t(θ, w(i)) =
τt − τt−1∑k

d=1 F0(τt, d|θ, w(i))−
∑k

d=1 F0(τt−1, d|θ, w(i))
.

Extending the approach of Rigat and Muliere (2012), this choice allows the model

to rely more on its parametric component over the times where observations are less

likely to be available (high ω0,t), whereas it allows for more flexibility over the times

where most data is expected (low ω0,t). The parameter m can be further used to

control the standard deviations

σm(t, c;w(i)) =
√

Var
(
∆F (t, c|w(i))−∆F0(t, c|θ, w(i))

)
(computed from the joint distribution of F (t, c|w(i)) and θ), which together measure

how much the subdistribution function F (·;w(i)) can deviate from the parametric

model F0(·|θ, w(i)). More precisely, by Remark 4.2.5, for all fixed t ≥ 1 and c =

1, . . . , k, is a decreasing function of m. In particular, σm(t, c;w(i))→ 0 for all t and

c as m → 0, implying that for m ≈ 0 the model becomes essentially equivalent to

the centering parametric model. Conversely, σm(t, c;w(i)) increases to its maximum

value

σ∞(t, c;w(i)) =
√
E[∆F0(t, c|θ, w(i))(1−∆F0(t, c|θ, w(i)))] (4.9)

for all t and c as m → +∞. Hence, for large m the model becomes more flexible

and is allowed to deviate more freely from the centering parametric model.

Remark 4.6.1. Conditionally on θ, the predictive structure of such model can be

characterized as by associating an urn system like that described in Section 4.3 to
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each distinct value of w(i). The initial composition of these urns is determined by

αt,c(θ, w(i)) = ω0,t(θ, w(i))∆F0(t, c|θ, w(i))

and

αt,0(θ, w(i)) = ω0,t(θ, w(i))

(
1−

k∑
d=1

F0(t, d|θ, w(i))

)
.

If each extracted ball is reinforced by m similar balls, then by Theorem 4.3.1 and

Remark 4.3.2, the distributions associated to the same value of w(i) are independent

and each distributed according to some

F (·|w(i)) ∼ sBS((ωt(θ, w(i)))t≥1, F0(·|θ, w(i))),

where ωt(θ, w(i)) = ω0,t(θ, w(i))/m as above.

4.6.1 Sampling from the posterior distribution

To fix notations, let t∗ = (t∗1, . . . , t
∗
n), d∗ = (d∗1, . . . , d

∗
n), w = (w1, . . . , wn), and

F = (F (·;w(1)), . . ., F (·;w(L))). Also, let nj =
∑n

i=1 I
{
wi = w(j)

}
and for all

i = 1, . . . , nj let (t∗j,1, d
∗
j,1), . . ., (t∗j,nj , d

∗
j,nj

) be the set of observations corresponding

to the value w(j). Lastly, let zj,i = I {dj,i 6= 0} for all possible j and i. Finally, let

t∗j = (t∗j,i : i = 1, . . . , nj) and d∗j = (d∗j,i : i = 1, . . . , nj) for all j = 1, . . . , L.

Theorem 4.6.1. Assuming ignorable right censoring, the marginal likelihood of θ

is

P (t∗, d∗|θ, w) =
L∏
j=1

nj∏
i=1

∆F ∗j,i−1(t∗j,i, d
∗
j,i|θ, w(j))

zj,iS∗j,i−1(t∗j,i|θ, w(j))
1−zj,i ,

where:

S∗j,i−1(t∗j,i|θ, w(j)) = 1−
k∑
d=1

F ∗j,i−1(t∗j,i, d|θ, w(j)),

F ∗j,i(t, d|θ, w(j)) is the predictive distribution of a new observation from F (·|w(j))

given (t∗j,1, d
∗
j,1), . . ., (t∗j,i, d

∗
j,i), obtained from Corollaries 4.4.1 and 4.4.2, and

F ∗j,0(t, d|θ, w(j)) = F0(t, d|θ, w(j)).
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Proof. First assume that censoring is fixed. In this case, the marginal likelihood of

θ can be obtained from conditional likelihood

P (t∗, d∗|θ, w,F) =
L∏
j=1

P (t∗j , d
∗
j |θ, w(j), F (·;w(j)))

=
L∏
j=1

P (t∗j , d
∗
j |F (·;w(j)))

by taking its expectation with respect to the distribution of F conditional on θ.

Since the F (·;w(j)) are independent conditionally on θ, the marginal likelihood is

thus

P (t∗, d∗|θ, w) =
L∏
j=1

P (t∗j , d
∗
j |θ, w(j))

=
L∏
j=1

nj∏
i=1

P (T ∗j,i = t∗j,i, D
∗
j,i = d∗j,i|t∗j,h, d∗j,h, h < i; θ, w(j)),

where P (T ∗j,i = t∗j,i, D
∗
j,i = d∗j,i|t∗j,h, d∗j,h, h < i; θ, w(j)) is the conditional predictive

distribution of (t∗j,i, d
∗
j,i) given all (t∗j,h, d

∗
j,h) with h < i and θ. If z∗j,i = 1, this can

be derived from Corollaries 4.4.2 and 4.4.1 and it is equal to ∆F ∗j,i−1(t∗j,i, d
∗
j,i|θ). If

instead z∗j,i = 0, then this is equal to

P (Tj,i > t∗j,i|(T ∗j,h, D∗j,h) = (t∗j,h, d
∗
j,h), h < i; θ, w(j)) = S∗j,i−1(t∗j,i|θ, w(j)).

This justifies the thesis if censoring is fixed. By similar arguments as those in

Section 4.4, the same likelihood can be assumed to hold also in presence of ignorable

censoring, as needed.

Using the above result, the joint posterior distribution P (F , θ|t∗, d∗, w) of F and

θ can be obtained as

P (F , θ|t∗, d∗, w) ∝ P (θ)P (t∗, d∗|θ, w)
L∏
j=1

Pj(F (·;w(j))|θ, w), (4.10)

where P (θ) represents the prior distribution of θ (which is independent of w) and

the term Pj(F (·;w(j))|θ, w) represents the posterior distribution of F (·;w(j)) ∼
sBS(ω, F0(·|θ, w(j))) obtained (for fixed θ) from the data Dj = {(t∗i , d∗i ) : wi =
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w(j), i = 1, . . . , n} using the update rule described in Theorem 4.4.1. Now, al-

though the posterior distribution for θ is not available for exact sampling, Equation

(4.10) suggests the use of a Markov Chain Monte Carlo strategy such as the fol-

lowing to perform approximate posterior inferences. First, a sample {θi}Si=1 from

the marginal posterior distribution of θ is obtained, after discarding an appropriate

number of burn-in iterations, via a Random Walk Metropolis-Hastings algorithm

(Robert and Casella, 2004, Section 7.5). A multivariate Gaussian distribution can

be considered after the reparametrization induced by a logarithmic transformation

of each shape parameter uc (to account for their positive support). Second, hav-

ing obtained a sample {θi}Si=1 as just described, the conditional posterior distribu-

tion of F (·;w(j)) given θi and the data Dj is obtained by direct simulation for all

i = 1, . . . , S and j = 1, . . . , L. Specifically, the parameters of the conditional poste-

rior distribution Pj(F (·;w(j))|θ, w) of F (·;w(j)) given θi and Dj are obtained using

Theorem 4.4.1. Then a sample Fi(·;w(j)) from Pj(F (·;w(j))|θ, w) is obtained using

Definition 4.2.2 by sampling from the relevant Dirichlet distributions. The sample

{(θi, Fi(·;w(1)), . . . , Fi(·;w(L)))}Si=1 so obtained then represents a sample from the

joint posterior distribution of Equation (4.10).

4.6.2 Estimating the predictive distributions

Let Tn+1 and Dn+1 be the unknown uncensored survival time and type of realized

outcome, respectively, for a new individual with covariate profile wn+1. The objec-

tive is to estimate the predictive distribution of (Tn+1, Dn+1) given the data (t∗1, d
∗
1),

. . ., (t∗n, d
∗
n). We distinguish two cases: i) wn+1 = w(j) for some j = 1, . . . , L, and

ii) wn+1 6= w(1), . . . , w(L). In the first case, simply obtain a sample {Fi(·;wn+1) =

Fi(·;w(j))}Si=1 from the posterior distribution of F (·;w(j)) using the output of the

procedure described above. The predictive distribution of (Tn+1, Dn+1) is then esti-

mated as S−1
∑S

i=1 Fi(·;wn+1). In the second case it is still possible to estimate the

predictive distribution of (Tn+1, Dn+1) by recycling the sample {θi}Si=1. Specifically,

for each θi, Fi(·;wn+1) is simulated directly from the sBS(ω, F0(·|θi, wn+1)) distri-

bution. The predictive distribution of (Tn+1, Dn+1) is then estimated as the average

of the sampled subdistribution functions, as before.
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4.7 Application: analysis of the melanoma dataset

4.7.1 Data description and analysis objectives

To illustrate our modelling approach, we analyse data collected by

Drzewiecki et al. (1980) on 205 stage I melanoma patients who underwent surgical

excision of the tumor during 1962-1977 at the Odense University Hospital, Den-

mark. This dataset (which includes only data for those 205 patients for which an

histological examination was carried out, out of the 225 originally participating in

the study) has been previously used to illustrate several survival analysis methods

(Andersen et al., 2012, Example I.3.1) and is freely available online as part of the

timereg R library (Scheike and Zhang, 2011). Each considered patient was followed

from the date of surgery to the time of death for melanoma (event of type 1), death

due to other causes (event of type 2), or censoring (e.g. study drop-out or end of

the study, defined at the end of 1977). Event times are only known discretized at

the day level, so that τt = t for all t ≥ 0 can be assumed. (the time-interval (τt−1, τt]

represents the t-th day of follow-up). In summary, 126 (61%) of the study partic-

ipants were women and 79 (39%) were men. Overall, a total of 57 (28%) patients

died due to melanoma during follow-up, while 14 (7%) died due to other causes,

overall accumulating 441,324 person-days of follow-up (maximum follow-up: men,

4,492 days; women, 5,565 days). Using these data, we implement a competing-risks

regression model to assess the long-term prognosis of melanoma patients following

surgical excision of the tumor with respect to the risk of death due to melanoma.

In doing so, we account for death due to other causes as a competing event and

consider gender as a potential predictor.

4.7.2 Model specification and prior distributions

We consider a regression model specified as explained in Section 4.6. For illustration,

we specify the centering parametric model F0(t, c|θ, wi) by consider the multinomial

logistic model (4.7) for F
(1)
0 (c|θ1, wi) and the discrete Weibull regression model (4.8)

for F
(2)
0 (t|θ2, c, wi), as these correspond to models widely used in applications. In

these models, for all subjects wi = (wi,1, wi,2) includes an intercept term (wi,1 = 1)

and the indicator variable for gender (wi,2 = 0 for women, wi,2 = 1 for men). Conse-

quently, in the notations of Section 4.6, θ1 = (b1), where b1 = (b1,1, b1,2) is the vector
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of the two regression coefficients in model (4.7) (b1,1 for the intercept, b1,2 for the

gender indicator). Instead, θ2 = (v1, v2, u1, u2), where vc = (vc,1, vc,2) is the vector of

the two regression coefficients for the cause-specific Weibull regression model (4.8)

for c = 1, 2 (vc,1 for the intercept, vc,2 for the gender indicator), while u1, u2 > 0 are

the two corresponding shape parameters. We assign independent prior distributions

to all parameter as follows. Noting that Drzewiecki et al. (1980) estimated that the

overall 10-years survival probability was about 50% (estimated via the Kaplan-Meier

method) in a previous analysis of a larger dataset, we calibrate the priors for v1 and

v2 in such a way so as to center the curves F
(2)
0 (t|θ2, c, wi) around a model with a

median survival of 3,650 days. To do so, we assigned N(log(− log(0.50)/3, 650), 1)

priors to v1,1 and v2,1, and N(0, 1) to v1,2 and v2,2. We assign a N(0, 1) prior distri-

butions to b1,1, b1,2 and a gamma distribution Gamma(g1, g2) with shape parameter

g1 = 11 and rate parameter g2 = 10 distribution to u1 and u2 (thus centering the

corresponding Weibull distributions on an exponential model). Numerical simula-

tions reported in the Appendix Subsection 4.9.1 suggest that these choices yield a

fairly diffuse prior distribution for the subdistribution function of the model. As

a sensitivity analysis, in the Appendix Subsection 4.9.3, we report the results ob-

tained from a similar model but considering a discrete log-normal distribution for

the centering parametric subdistribution function.

4.7.3 Calibrating the prior concentrations

To illustrate the behaviour of our model as m varies, Figure 4.2 shows, for the

prior distributions specified in the previous section, the values of the prior standard

deviations σm(t, c;w(i)) for increasing values of m, computed by simulating from the

priors described in the previous setting and focusing on the subdistribution of death

due to melanoma (c = 1) among women (w(i) = (1, 0)). Qualitatively identical

results (data not shown) can be obtained for death due to other causes (c = 2)

or men (w(i) = (1, 1)). From these results show how, for small m (e.g. m = 1

in Figure 4.2), the nonparametric prior sBS(ω(θ, w(i)), F0(·|θ, w(i))) for F (t, c;w(i))

is practically fully concentrated on its parametric component (as σm(t, c;w(i)) ≈ 0

for most t ≥ 1). This implies that for small m the subdistribution F (t, c;w(i)) will

tend to be almost equal to the parametric centering subdistribution F0(t, c|θ;w(i))

a priori. However, as m increases, so does σm(t, c;w(i)), representing increasing
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levels of prior uncertainty on the functional form of F (t, c;w(i)). For sufficiently

large values of m (e.g. m = 105 in Figure 4.2), the σm(t, c;w(i)) achieve values

close to their upper bound σ∞(t, c;w(i)), which represents a situation of maximum

uncertainty on the functional form of F (t, c;w(i)). Regardless of the value of m,

the σm(t, c;w(i)) decrease as t ≥ 1 increases, showing how the parametric model

F0(t, c|θ;w(i)) is given more and more weight in determining the form of F (t, c;w(i))

over the later portions of follow-up (i.e. over times where less data is expected a

priori). These observations both illustrate the consideration of Section 4.6 but also

suggest that plots like Figure 4.2 may be useful in practice to calibrate the prior

concentration.

4.7.4 Posterior analysis

Posterior inference was performed by a Random Walk Metropolis-Hastings algorithm

with a multivariate Gaussian proposal distribution as suggested in Section 4.6, by

means of the MCMCpack R package (Martin et al., 2011). The proposal distribution

was centered at the current sampled value, with a proposal covariance matrix equal

to the negative inverse Hessian matrix of the log-posterior distribution, evaluated at

the posterior mode and scaled by (2.4)2/d, where d is the dimension of θ, as suggested

by Gelman et al. (2013, Section 12.2). To improve mixing, all predictors were

standardized before running the algorithm. The parameter vector was initialized

with the corresponding value obtained by numerically maximizing the log-posterior

distribution. In all cases, the Metropolis-Hastings algorithm was run for a total of

26000 iterations: the first 1000 were discarded as burn-in, while the remaining 25000

were thinned by retaining only one generated sample every 25 iterations. The trace

plots of generated Markov Chain Monte Carlo chains did not raise any issue of non-

convergence according to both Geweke’s test (Geweke, 1992) and visual inspection

(data not shown). Additionally, the obtained posterior distributions were found to

be much more concentrated than the considered prior distributions, as shown in the

on-line Appendix Subsection 4.9.1.

Figure 4.3 shows the posterior predictive distributions, i.e. the posterior expecta-

tions of the subdistribution functions F (t, 1;w(i)), for death due to melanoma among

men (panel a) and women (panel b), for m = 100, 103, or 106. For comparison, Fig-

ure 4.3 also reports i) the estimates obtained from the classical Kalbfleish-Prentice
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Figure 4.2: Prior standard deviations σm(t, c;w(i)) =√
Var

(
∆F (t, c|w(i))−∆F0(t, c|θ, w(i))

)
corresponding to the model of Section

4.7.2 for m = 100, 101, . . . , 105, together with its upper bound σ∞(t, c;w(i)) from

Equation 4.9. Results are for the subdistribution of death due to melanoma

(c = 1) among women (w(i) = (1, 0)). The quantity σm(t, c;w(i)) measures the

concentration of the subdistribution beta-Stacy prior for the subdistribution

function F (t, c;w(i)) around the parametric subdistribution F0(t, c|θ, w(i)). Values

of σm(t, c;w(i)) ≈ 0 signify that F (t, c;w(i)) ≈ F0(t, c|θ, w(i)) with high priori

probability, while increasing values of σm(t, c;w(i)) > 0 signify that functional forms

different than F0(t, c|θ, w(i)) are more likely a priori.
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(a) Cumulative incidence of death due to melanoma, men.
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(b) Cumulative incidence of death due to melanoma, women.

Figure 4.3: Posterior summaries for the cumulative incidence of death due to

melanoma among (a) men and (b) women, i.e. posterior summaries for the sub-

distribution functions F (t, 1;w(i)) for the model of Section 4.7 with (a) w(i) = (1, 1)

and (b) w(i) = (1, 0), computed for reinforcement parameters m = 100, 103, and 106.

Solid black lines: Kalbfleish-Prentice classical estimators. Solid gray lines: poste-

rior means of the subdistribution function, i.e. posterior predictive distributions,

with upper and lower 95% pointwise credibility limits. Dashed black lines, posterior

means and 95% pointwise credibility limits for the multinomial-Weibull model of

Section 4.6.
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estimator and ii) the posterior estimates obtained from the centering multinomial-

Weibull parametric model F0(t, c|θ, wi) of Section 4.7.2 (using the same parametric

prior distributions for comparability). In general, the results are compatible with

the observation that men are subject to a higher risk of death due to melanoma than

women (Thörn et al., 1994). Additionally, from Figure 4.3 it is apparent how the

classical estimators have a limited usefulness for evaluating long-term prognosis, as

these are undefined beyond the range of the observed data. On the other hand, by

relying more on its parametric component, our subdistribution beta-Stacy model can

provide an extrapolated risk estimate. Risk extrapolations could also be obtained

from the centering parametric model, but these would require absolute confidence

in its assumed functional form. Oppositely, our model may deviate more or less

flexibly from the centering parametric model according to the chosen value of m. In

fact, the results obtained from the subdistribution beta-Stacy model for m = 1 are

essentially equivalent to those obtained from centering parametric model. However,

as m increases the subdistribution beta-Stacy predictive distributions better approx-

imate the classical estimators of the subdistribution function. For m = 106 it can

also be seen that the posterior variance of the subdistribution function may be very

large beyond the range of the observed data, as seen in Figure 4.3 for men (panel

a), i.e. the group that required the most extrapolation for computing the predictive

distribution over the considered time period. This behaviour is consistent with the

observations of Section 4.7.3: for large m the model allows more uncertainty on the

functional form of the centering model.

Additional results are provided in the Appendix Subsections 4.9.2 and 4.9.3.

Specifically, in Appendix 4.9.2 we report the results of graphical posterior predictive

checks for the goodness of fit of our model, in the style of Gelman et al. (2013,

Section 6.3). These checks do not raise any concern regarding the fit of our model.

In Appendix 4.9.3, we report the results obtained in the sensitivity analysis based on

the discrete log-normal model. The corresponding results are essentially equivalent

to the ones obtained here.

4.7.5 Simulation study

To further explore how much our model can adapt to deviations from the corre-

sponding centering parametric functional form, we conducted a simulation study as
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follows. First, on the basis of the melanoma data of Section 4.7.1, we computed

the maximum likelihood estimates θ̂ = (̂b1,1, v̂1,1, v̂2,1, û1, û2) for the multinomial-

Weibull model F0(t, c|θ) of Section 4.7.2, ignoring covariates for simplicity by includ-

ing only an intercept term as predictor (w(i) ≡ 1). We thus obtained b̂1,1 = −0.640,

v̂1,1 = −11.927, v̂2,1 = −7.244, û1 = 1.597, and û2 = 0.639. Second, we gener-

ated 100 datasets of sample size n = 100, n = 500, and n = 1000 by simulating

event times and event types from the subdistribution function F0(t, c|θ̂), with a

fixed censoring time at 7000 days since surgery. Third, in each simulated dataset,

we implemented two Bayesian models: i) a multinomial-Weibull parametric model

akin to that in Section 4.7.2 but where all Weibull shape parameters where fixed as

u1, u2 ≡ 1 (all other prior distributions taken as in Section 4.7.2); this corresponds

to incorrectly modelling the event times as exponentially distributed given the type

of occurring event, incompatibly with the data-generating mechanism; ii) a nonpara-

metric subdistribution beta-Stacy model centered on the parametric model of point

(i) for all values of m = 100, 103, 106. Fourth and last, for each replicated dataset

we computed the Kolmogorov-Smirnov distance maxt∈[0,7000]

∣∣∣F̂ (t, c)− F0(t, c|θ̂)
∣∣∣ be-

tween the fixed data-generating subdistribution function F0(t, c|θ̂) and its posterior

estimate F̂ (t, c), obtained from model (i) or (ii).

Figure 4.4 reports the distribution of Kolmogorov-Smirnov distances obtained

in the described simulation study. As expected, for all sample size the misspeci-

fied parametric model produces the highest median Kolmogorov-Smirnov distances

between the posterior estimates of the subdistribution function and the true data-

generating subdistribution function. In agreement with previous observations, for

m = 1 the nonparametric subdistribution beta-Stacy model tends to agree with its

parametric component, producing similar results as those obtained from the para-

metric model. For increasing m, however, the subdistribution beta-Stacy model

attains a greater flexibility to deviate from its misspecified parametric centering

model and adapt to the data, thus producing lower Kolmogorov-Smirnov distances.

This phenomenon, which is consistent with the observations of Section 4.7.3, is ev-

ident for all considered sample sizes, but especially for n = 1000. For this sample

size, even the subdistribution beta-Stacy model with m = 1 is associated with a

lower median Kolmogorov-Smirnov distance from the data-generating model than

its centering parametric model: despite a large prior weight was assigned to the cen-

tering mispecified model, the sample size was large enough for the subdistribution
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Figure 4.4: Box-plots reporting the distributions of Kolmogorov-Smirnov distances

between the data-generating subdistribution function and its posterior estimates

generated in the simulation study of Section 4.7.5 for sample sizes n = 100, n = 500,

or n = 1000 (considering 100 simulated datasets per sample size). Kolmogorov-

Smirnov distances are shown separately for the parametric model described in Sec-

tion 4.7.5 and the nonparametric subdistribution beta-Stacy model, centered on the

same parametric model, for reinforcement parameters of m = 100, 103, 106.

beta-Stacy model to be more driven by its nonparametric component and adapt to

the data.

4.8 Concluding remarks

In this paper we introduced a novel stochastic process, the subdistribution beta-

Stacy process, useful for the Bayesian nonparametric regression analysis of compet-

ing risks data. We showed how the subdistribution beta-Stacy process is completely

characterized from a specific predictive structure, which we described in terms of the

urn-based reinforced stochastic process of Muliere et al. (2000). The practical value

of similar reinforced stochastic processes is that they potentially allow to undertake

Bayesian predictive inference without explicit knowledge of the prior. That is, as

noted by Muliere et al. (2003), they allow to update the predictive distributions

from past information from a sequence of exchangeable observable without neces-

sarily being able to compute the underlying de Finetti measure of the observations,

i.e. the prior. In this paper, we were actually able to characterize the prior, which we

identified as the subdistribution beta-Stacy. Although this process may have been
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defined solely in terms of a sequence of independent Dirichlet random vectors (as in

our Definition 2.2), the corresponding predictive construction still greatly simplifies

the understanding of its properties.

In this paper we also proposed a Bayesian nonparametric approach for competing

risks regression based on the subdistribution beta-Stacy process. This provides sev-

eral advantages with respect to other available techniques when making predictions

in presence of competing risks. For instance, classical nonparametric estimators

are typically undefined beyond the last observation time if this is censored, thus

limiting their usefulness when making predictions. Parametric models circumvent

this issue by assuming a specific functional form for the subdistribution function,

thus providing risk extrapolations at the cost of more rigidity when adapting to

the data. Conversely, by balancing both a nonparametric and a parametric com-

ponent, our approach allows risk extrapolations beyond the range of the observed

data without losing flexibility in adapting to available data. Additionally, contrary

to most approaches available in the literature, our does not require the proportional

hazards assumption, thus increasing its flexibility in capturing complex patterns of

subdistribution functions when making predictions.

To conclude, we remark that more general reinforced urn processes may lead

to interesting novel approaches for performing Bayesian inference in presence of

competing risks or more general settings. In fact, we are currently investigating

the following possible generalizations. First, akin as in Muliere et al. (2006), each

extracted ball may be reinforced by a positive random number of new similar balls.

This may depend on both the color of the ball extracted from the urn and the

state represented by the urn itself. Such construction could be useful to represent

allow uncertainty on the strength of belief to be granted to the initial composition

of the urns. Second, a continuous-time version of the subdistribution beta-Stacy

process could be obtained by embedding a discrete-time reinforced urn process like

that of Section 4.3 into a reinforced continuous-time arrival process (representing the

predictive distribution of the event times) as in the approach of Muliere et al. (2003).

Third, the reinforced urn process considered in Section 4.3 could be generalized

to characterize a process prior on the space of transition kernels of a Markovian

multistate process, with application to the analysis of event-history data (Aalen

et al., 2008). The conceptual difficulty here is that such processes may not be

recurrent, complicating the use of representation theorems like those of Diaconis
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and Freedman (1980).

4.9 Appendix

4.9.1 Prior and posterior samples

(a) Cumulative incidence of death due to melanoma, men.

(b) Cumulative incidence of death due to melanoma, women.

Figure 4.5: Plots of 50 samples from the prior and posterior distribution for the

cumulative incidence of death due to melanoma among (a) men and (b) women, i.e.

prior and posterior subdistribution functions F (t, 1;w(i)) for the model of Section

7 of the main paper with (a) w(i) = (1, 1) and (b) w(i) = (1, 0). Solid black lines:

posterior samples. Solid gray lines: prior samples.

Figure 4.5 shows the graphs of 50 samples from the prior and posterior distribu-

tion for the cumulative incidence of death due to melanoma among (a) men and (b)

women. The simulated curves show how the prior distribution for the subdistribu-

tion function is much more diffuse than the posterior distribution.
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4.9.2 Posterior predictive checks

To assess the fit of the model of Section 7, we implemented some graphical posterior

predictive checks. The idea is to display replicated data simulated from the posterior

predictive distributions of the model alongside the original data and to look for

systematic discrepancies between real and simulated datasets. If the model fits,

then replicated data generated under the model should look similar to observed

data. (Gelman et al., 2013, Section 6.3). To implement this, first we simulate

replicated uncensored data from the posterior predictive distributions obtained from

the model of Section 7 for m = 100, 103, and 106. Second, we apply censoring by

simulating random censoring times from the empirical distribution of the observed

censored observations. Third, we plot the classical Kalbfleish-Prentice estimator of

the subdistribution function on the replicated censored data and compare it with

that obtained from the original data. Results are reported in Figure 4.6. No alarming

issue of lack of fit is raised from these results for the model of Section 7 for the

considered values of m.

4.9.3 Analysis based on the discrete log-normal model

As a sensitivity analysis, we consider a modification of the model of Section 7 by con-

sidering a discrete log-normal distribution for the centering parametric subdistribu-

tion function F0(t, c|θ, wi). In more detail, we specify the centering parametric model

F0(t, c|θ, wi) by consider a multinomial logistic model for F
(1)
0 (c|θ1, wi) and a discrete

log-normal regression model, obtained by letting F
(2)
0 (t|θ2, c, wi) = G0(τt|θ2, c, wi),

where

G0(t|θ2, c, wi) = LogN(t;w′ivc, uc), (4.11)

where LogN(t;µ, σ) is the cumulative distribution function of a log-normal distri-

bution with location parameter µ and scale parameter σ. Similarly as in the model

of Section 7, for all subjects wi = (wi,1, wi,2) includes an intercept term (wi,1 = 1)

and the indicator variable for gender (wi,2 = 0 for women, wi,2 = 1 for men). Conse-

quently, in the notations of Section 7, θ1 = (b1), where b1 = (b1,1, b1,2) is the vector

of the two regression coefficients in the multinomial logistic model model (b1,1 for

the intercept, b1,2 for the gender indicator). Instead, θ2 = (v1, v2, u1, u2), where

vc = (vc,1, vc,2) is the vector of the two regression coefficients for c = 1, 2 (vc,1 for the

intercept, vc,2 for the gender indicator), while u1, u2 > 0 are the two corresponding
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(a) Cumulative incidence of death due to melanoma, men.

(b) Cumulative incidence of death due to melanoma, women.

Figure 4.6: Plots of 100 replicates of the Kalbfleish-Prentice estimator of the sub-

distribution function for death due to melanoma obtained by simulating replicated

datasets from the posterior predictive distributions of the model of Section 7 and on

the original dataset. Panel a: men. Panel b: women. Black solid curves: replicated

datasets. Red solid curve: original dataset.
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scale parameters. As also done in Section 7, we assign independent prior distribu-

tions to all parameter as follows. Noting that Drzewiecki et al. (1980) estimated that

the overall 10-years survival probability was about 50% (estimated via the Kaplan-

Meier method) in a previous analysis of a larger dataset, we calibrate the priors for

v1 and v2 in such a way so as to center the curves F
(2)
0 (t|θ2, c, wi) around a model

with a median survival of 3,650 days. To do so, we assigned N(log(3, 650), 1) priors

to v1,1 and v2,1, and N(0, 1) to v1,2 and v2,2. We assign a N(0, 1) prior distributions

to b1,1, b1,2 and a gamma distribution Gamma(g1, g2) with shape parameter g1 = 2

and rate parameter g2 = 1 distribution to u1 and u2. Numerical simulations sug-

gest that these choices yield a fairly diffuse prior distribution for the subdistribution

function of the model (data not shown).

Figure 4.7 shows the obtained posterior predictive distributions, i.e. the posterior

expectations of the subdistribution functions F (t, 1;w(i)), for death due to melanoma

among men (panel a) and women (panel b), letting m = 100, 103, or 106. For

comparison, Figure 4.7 also reports the classical nonparametric estimators of the

subdistribution functions. The results are qualitatively similar to those obtained in

Section 7.

4.10 Available code

I developed R functions to implement the Weibull-SBS and lognormal-SBS regres-

sion models described in Sections 4.6 and Appendix Section 4.9.3, respectively. Com-

putations are performed according to the strategy described in Sub-section 4.6.1.

The random walk Metropolis-Hastings step of the algorithm is implemented using

the MCMCmetrop1R function in the R library MCMCpack Martin et al. (2011). The

functions are available at https://github.com/andreaarfe/subdistribution-

beta-stacy, with R code to reproduce the analyses of Sections 4.7 and 4.9.

https://github.com/andreaarfe/subdistribution-beta-stacy
https://github.com/andreaarfe/subdistribution-beta-stacy
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(a) Cumulative incidence of death due to melanoma, men.
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(b) Cumulative incidence of death due to melanoma, women.

Figure 4.7: Posterior summaries for the cumulative incidence of death due to

melanoma, obtained using a discrete log-normal centering subdistribution function,

among (a) men and (b) women, i.e. posterior summaries for the subdistribution

functions F (t, 1;w(i)) for the model of Section 7 with (a) w(i) = (1, 1) and (b)

w(i) = (1, 0). Solid dark lines: Kalbfleish-Prentice classical estimators, computed

for reinforcement parameters m = 100, 103, and 106. Solid gray lines: posterior

means of the subdistribution function, i.e. posterior predictive distributions. Dot-

ted gray lines: upper and lower 95% pointwise credibility limits.
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Chapter 5

The semi-Markov beta-Stacy

process: a Bayesian

non-parametric prior for

semi-Markov processes

With Stefano Peluso and Pietro Muliere.

Manuscript under review.

ArXiv manuscript: https: // arxiv. org/ abs/ 1812. 00260

5.1 Introduction

Discrete-time Semi-Markov processes generalize Markov chains by allowing the hold-

ing times, the times spent in each visited state, to have arbitrary distributions other

than the geometric (Çinlar, 1969). In this paper, we address how to perform infer-

ences and predictions for these processes from a Bayesian non-parametric perspec-

tive.

Because of their flexibility, discrete-time semi-Markov processes are used to pre-

dict many phenomena that evolve through a sequence of discrete states. Appli-

cations include time-series and longitudinal data analysis (Bulla and Bulla, 2006),

survival analysis and reliability (Barbu et al., 2004; Mitchell et al., 2011), finance

and actuarial sciences (Janssen and Manca, 2007), and biology (Barbu and Limnios,

https://arxiv.org/abs/1812.00260
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2009).

Despite their usefulness in applications, and in contrast with their continuous-

time counterparts (Phelan 1990; Bulla and Muliere 2007; Zhao and Hu 2013), the

literature on inferential or predictive approaches for discrete-time semi-Markov pro-

cess is sparse (Barbu and Limnios, 2009, Chapter 4).

The available literature focuses on processes with a finite state space. From

the frequentist perspective, Satten and Sternberg (1999) and Barbu and Limnios

(2009) construct non-parametric estimators of the transition probabilities or the

distributions of the holding times and study their asymptotic properties. From the

Bayesian perspective, specific parametric models have been used in different settings

(Patwardhan et al., 1980; Schiffman et al., 2007; Masala, 2013; Mitchell et al., 2011),

but no general non-parametric approach has been developed.

In the sequel we will introduce the semi-Markov beta-Stacy process, a stochastic

process useful for the analysis of semi-Markov models with a finite or, extending the

available literature, countably infinite state space. Our perspective is both Bayesian

and non-parametric because i) the Bayesian interpretation of probability is natu-

rally suited for representing predictive uncertainty (de Finetti, 1937; Singpurwalla,

1988), and ii) non-parametric models provide a more honest assessment of poste-

rior uncertainty than parametric models, as the formers are less tied to potentially

restrictive or arbitrary parametric assumptions which may give a false sense of pos-

terior certainty (Müller and Mitra, 2013; Hjort et al., 2010; Phadia, 2013; Ghosal

and van der Vaart, 2017).

The semi-Markov beta-Stacy process is a generalization of the beta-Stacy process

of Walker and Muliere (1997). Its law represents a prior distribution for the law of a

discrete-time semi-Markov process. We will show below that this prior is conjugate

with respect to i) the accumulating observations generated by a single process and

ii) the finite histories of other similar (i.e. exchangeable) processes. This property

makes it is particularly easy to perform inferences and predictions for a semi-Markov

process.

In particular, the predictive distributions associated to the semi-Markov beta-

Stacy process are available in closed form. These prescribe how to perform prob-

abilistic predictions for the next state of a semi-Markov process given its observed

history.

More precisely, we will show that these predictive distributions correspond to
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the transition kernels of a reinforced semi-Markov process. This is a novel kind of

reinforced stochastic process which can be regarded as the discrete-time analogue

of the reinforced continuous-time processes of Muliere et al. (2003) and Bulla and

Muliere (2007). Here, the concept of “reinforcement” coincides with that of Cop-

persmith and Diaconis (1986) and Pemantle (1988, 2007): a process is reinforced

if, whenever it visits a state, the same becomes more likely to be visited again in

the future. Thus, reinforcement corresponds to a notion of learning from the past, a

central idea in the Bayesian paradigm (Muliere et al., 2000, 2003; Bulla and Muliere,

2007; Peluso et al., 2015; Arfè et al., 2018).

To gain a deeper insight into the semi-Markov beta-Stacy process, we will char-

acterize it using a reinforced urn process, i.e. a random walk over a system of

reinforced urns. In the prototypical reinforced urn process, whenever a random

walk visits an urn, a ball is extracted from the same. After noting its color, the

extracted ball is replaced in the originating urn together with an additional ball

of the same color (so the extracted color is reinforced, i.e. made more likely to

be extracted in future draws from the same urn). Then, the random walk jumps

to another urn determined by the extracted color. Similar urn-based processes are

receiving increasing attention in Statistics and Machine Learning to construct and

understand nonparametric prior distributions for a wide range of stochastic models

(Blackwell and MacQueen, 1973; Doksum, 1974; Mauldin et al., 1992; Walker and

Muliere, 1997; Muliere et al., 2000, 2003; Bulla and Muliere, 2007; Ruggiero and

Walker, 2009; Fortini and Petrone, 2012; Bacallado et al., 2013; Peluso et al., 2015;

Caron et al., 2017; Arfè et al., 2018).

In more detail, below we show how a reinforced semi-Markov process can be

interpreted as a particular reinforced urn process. By appealing to the representation

theorems of Muliere et al. (2000) and Blackwell and MacQueen (1973), we also show

the following characterization: if the future of a recurrent process (i.e. a process

visiting all its states infinitely often) is predicted through the transition kernels of a

reinforced semi-Markov process, then it will be as if i) the process being predicted

is semi-Markov and ii) a semi-Markov beta-Stacy process prior is assigned to its

probability law.

Before proceeding, we introduce some notational conventions. First, for conve-

nience, if F is a non-decreasing function on the integers (adjoined with the σ-algebra

of all subsets), then the symbol F will also be used to represent the corresponding
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induced measure. Hence, for example, F (b)− F (a) = F ((a, b]) for all a < b, where

the interval (a, b] must be interpreted as the set of all integers x such that a < x ≤ b.

Second, if x = (x1, x2, . . .) is a finite or infinite sequence, we denote with xa:b either

the subsequence (xa, . . . , xb) of length b − a + 1 if a ≤ b or, with some abuse of

notation, the empty sequence of length 0 if a > b. Third and last, we adopt the

standard conventions so that empty sums and products are respectively equal to 0

and 1.

The reminder of the paper is structured as follows. In Section 5.2 we define

discrete-time semi-Markov processes and introduce several key notations. In Sec-

tion 5.3 we introduce the semi-Markov beta-Stacy process prior. In Section 5.4 we

derive the corresponding posterior distributions and show that this process prior is

conjugate. In Section 5.5 we introduce reinforced semi-Markov process and show

that these correspond to the predictive distributions obtained from the semi-Markov

beta-Stacy process prior. In Section 5.6 we characterize the semi-Markov beta-Stacy

process using a system of reinforced urns. In Section 5.7, we illustrate several gener-

alizations, each based on alternative urn constructions. In Section 5.8 we illustrate

the semi-Markov beta-Stacy process prior in a simulation study. Lastly, in Section

5.9 we provide some concluding remarks and point to possible applications of our

work.

5.2 Semi-Markov processes: definition and basic

properties

In the sequel, let E be a non-empty finite or countably infinite set, adjoined with

the discrete topology E of all its subsets.

Definition 5.2.1. Let P = (P i,j)i,j∈E be a transition matrix on E such that P i,i = 0

for all i ∈ E and let F = (F i(·) : i ∈ E) be a collection of probability distribution

functions with support on the set of positive integers. Fixed l0 in E, let the stochastic

process (L, T ) = (Ln, Tn)n≥0 be such that P (L0 = i|(P,F)) = I {i = l0} and

P (Ln+1 = j, Tn ≤ t|Ln = i, L0:n−1, T0:n−1, (P,F)) = F i(t)P i,j

almost surely for all integers n ≥ 0, t ≥ 1, and all i, j ∈ E. Then (L, T ) will

be called a discrete-time Markov renewal process starting at l0 with characteristic
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couple (P,F). Suppressing the dependence on l0, we write (L, T ) ∼MR(P,F).

Remark 5.2.1. In Definition 5.2.1, the holding time Tk depends only on the current

state Lk and not on the following state Lk+1. More generally, Tk may depend

on both Lk and Lk+1 (Barbu and Limnios, 2009). This can be represented by

substituting the distribution F i in Definition 5.2.1 with one of the form F i,j and

letting F = (F i,j(·) : i, j ∈ E, i 6= j). Each alternative may be more or less

appropriate for different applications. For simplicity, we focus on the specification

of Definition 5.2.1. In Section 5.7, we will describe how to generalize our results to

cover the other case.

Definition 5.2.2. If (L, T ) ∼ MR(P,F), define τ0 = 0 and τn+1 =
∑n

h=0 Th

for all n ≥ 0. Then, the process (St)t≥0 defined by St = LN(t), where N(t) =∑+∞
n=1 I {τn ≤ t} for all integers t ≥ 0, is the (discrete-time) semi-Markov Process

associated to (L, T ), S = (St)t≥0 ∼ SM(P,F) in symbols. The times (τn)n≥1 are

the jump times of S.

A semi-Markov process (St)t≥0 describes the evolution in time of some system as

it goes through different discrete states. The elements of E represent the possible

states. Additionally, St is the state occupied at time t, N(t) is the number of state

changes occurred up to time t, τn is the time of the n-th state change, and Tk is the

length of time the system spends in its k-th state (so the system first visits its k+1-

th state at time τk +Tk). These interpretations are possible because the assumption

that P i,i = 0 for all i ∈ E implies that Lk 6= Lk+1 for all k with probability 1.

Example 5.2.1. Mitchell et al. (2011) use a semi-Markov process with state-space

E = {“infected”, “not infected”} to model the time changes in the Human Papilloma

Virus status of patients who may go through several infection periods. Here St ∈ E
is the infection status of an individual at time t, N(t) is the number changes in the

infection status that an individual experienced by time t, τk is the time of the k-th

change in the infection status of a patient, Tk is the length of time occurring between

the k-th and k+ 1-th changes in infection status, and Lk ∈ E is the infection status

of a patient after this changes for the k-th time. For example, if at time τk the

patient becomes infected (Lk = “infected”), then Tk is the length of time before the

patient will become infection-free again (Lk+1 = “not infected”).
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Example 5.2.2. Barbu and Limnios (2009, Sections 3.4) consider a semi-Markov

model to describe the operation of a textile factory. To reduce pollution, the factory

waste is treated in a disposal unit before being eliminated. To avoid stopping the

factory, if the disposal unit fails, waste is temporarily stored in a tank. If the disposal

unit is repaired before the tank is full, the factory continues operating and the tank

is immediately purged. Otherwise, the whole factory must stop and a certain time

is necessary to restart it. The state space of the process is thus E = {1, 2, 3}: 1

represents the state where the factory if fully operational and the tank is empty, 2

represents the state where the disposal unit is malfunctioning but the factory is still

operational (i.e. the tank is not full), and 3 represents the state where the factory is

stopped. Additionally, it is P 1,3 = P 3,2 = 0. The distribution the time until the next

disposal unit failure (i.e. the holding time of the state 1) is F 1(·), the distribution

of the time until a malfunctioning disposal unit is either restored or when it fully

breaks down (i.e. the holding time of state 2) is F 2(·), while the distribution of the

time required to restart the factory after the tank fills up (i.e. the holding time of

the state 3) is F 3(·).

To highlight the relation between Semi-Markov and Markov chains, suppose

S ∼ SM(P,F) is such that F i({t}) = pi(1 − pi)
t−1 for all integers t ≥ 1 and

some pi ∈ (0, 1) (i.e. the holding times of the state i ∈ E are geometrical dis-

tributed with parameter pi). Then S is a (homogeneous) Markov chain such that

P (St+1 = j|S0:t−1, St = i) = piP
i,j for all j ∈ E, j 6= i and P (St+1 = i|S0:t−1, St = i) =

1 − pi for all t ≥ 1. Conversely, if S is a Markov chain with transition matrix

(pi,j)i,j∈E, then S ∼ SM(P,F) with P i,j = pi,j/(1− pi,i) for all j 6= i, P i,i = 0, and

F i(t) = (1− pi,i)pt−1
i,i for all t ≥ 1.

Note that, since P i,i = 0 and F i has support on the positive integers for all i ∈ E,

the semi-Markov process S cannot have absorbing states, i.e. states such that St = i

for all sufficiently large t ≥ 0 with positive probability. This assumption simplifies

our analysis, although it might be restrictive for some applications. The presence of

an absorbing state i could be allowed by letting P i,i = 1 and F i({+∞}) = 1. With

additional effort, the results in the following sections could be extended to this case

as well.

Remark 5.2.2. Knowing S0:t is equivalent to knowing the values of N(t), L0:N(t),

τ1:N(t), and that τN(t)+1 > t. Furthermore, denote l(t) = t − τN(t) = max{k =
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0, 1, . . . , t : St = St−1 = · · · = St−k} the time spent by S in the state St just prior

to time t. Then knowing S0:t is the same as knowing the values of N(t), L0:N(t),

T0:N(t)−1, and that TN(t) > l(t).

Example 5.2.3. To exemplify, note that observing S0:5 = (i0, i0, i1, i2, i2, i2) for

some distinct i0, i1, i2 ∈ E is equivalent to observing N(5) = 2, L0 = i0, L1 = i1,

L2 = i2, τ1 = 2, τ2 = 3, τ3 > 5, l(5) = 2, T0 = 2, T1 = 1, and T2 ≥ 3, i.e.

T2 > 2 = l(5).

5.3 The semi-Markov beta-Stacy prior

From a Bayesian nonparametric perspective (Ferguson, 1973; Hjort et al., 2010;

Müller and Mitra, 2013), a prior distribution on the law of a semi-Markov process

S ∼ SM(P,F) is the law of a stochastic process whose sample paths are char-

acteristic couples (P,F) with probability 1. The semi-Markov beta-Stacy process

is one such stochastic process. Our strategy to define it is to separately assign a

nonparametric prior distribution to i) each holding time distribution F i and ii) the

transition matrix P.

As a starting point, we consider the discrete-time beta-Stacy process of Walker

and Muliere (1997), a common Bayesian nonparametric prior for time-to-event dis-

tributions (Singpurwalla, 2006; Bulla and Muliere, 2007; Rigat and Muliere, 2012;

Arfè et al., 2018). The beta-Stacy process will be used as the prior for the holding

time distributions F i.

Definition 5.3.1 (Walker and Muliere (1997)). Let c(t) be a positive real number

for all integer t > 0. Also let F0 be a probability distribution function with support

on the set of positive integers. A random cumulative distribution function F with

support on the set of positive integers is said to be a beta-Stacy process BS(c, F0) if

there exists a sequence (Ut)t≥1 of independent random variables such that i) for all

integers t ≥ 1,

Ut ∼ Beta(c(t)F0({t}), c(t)F0((t,+∞)));

ii) F ((t,+∞)) =
∏t

k=1(1− Uk) for all integers t ≥ 0.

Remark 5.3.1. If F ∼ BS(c, F0), then E [F (t)] = F0(t) and Var (F (t)) is a decreasing

function of c(t) such that Var (F (t)) → 0 as c(t) → +∞. Hence F0 is the mean of

the process, while c controls its dispersion (Walker and Muliere, 1997).
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The beta-Stacy process is especially useful thanks to its conjugacy property,

which implies that the posterior distribution of F ∼ BS(c, F0) conditional on a

sample of exact observations from F is again a beta-Stacy process. The beta-Stacy

process is also conjugate with respect to an observation which has been censored, i.e.

whose value is only known to exceed some known constant (Kalbfleisch and Pren-

tice, 2002; Singpurwalla, 2006). These properties are summarized in the following

Proposition, which is a specific case of the more general Theorem 1 of Walker and

Muliere (1997).

Proposition 5.3.1 (Walker and Muliere (1997)). If, conditionally on F ∼ BS(c, F0),

T1, . . . , Tn are independently distributed according to F , then the posterior distri-

bution of F given T1, . . . , Tn is BS(c∗, F∗), where

F∗((t,+∞)) =
t∏

s=1

[
1− c(s)F0({s}) +N({s})

c(s)F0([s,+∞)) +N([s,+∞))

]
c∗(t) =

c(t)F0((t,+∞)) +N((t,+∞))

F∗((t,+∞))
.

where N(t) =
∑n

i=1 I {Ti ≤ t}. Instead, the posterior distributions of F given Tn >

t∗ (i.e. a censored observation), where t∗ is a fixed constant, is BS(c∗, F∗), where

now

F∗((t,+∞)) =
t∏

s=1

[
1− c(s)F0({s})

c(s)F0([s,+∞)) + I {t∗ ≥ s}

]
,

c∗(t) =
c(t)F0((t,+∞)) + I {t∗ ≥ s}

F∗((t,+∞))
.

To specify a prior on the transition matrix P we will take advantage of the

Dirichlet process of Ferguson (1973), a fundamental non-parametric process prior

for probability measures (Hjort et al., 2010). Since the i-the row P i = (P i,j)j∈E of

P is the probability measure P i(·) on (E, E) defined by P i({j}) = P i,j for all j ∈ E,

this can be assigned a Dirichlet process prior.

Definition 5.3.2 (Ferguson (1973)). Let m be a measure on (E, E) such that 0 <

m(E) < +∞. A random probability measure P on (E, E) is a Dirichlet process with

base measure m, or P ∼ Dir(m) in symbols, if for every partition A1, . . . , An ∈ E
of E it holds that

(P (A1), . . . , P (An)) ∼ Dirichlet(m(A1)/m(E), . . . ,m(An)/m(E)).
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Remark 5.3.2. If P ∼ Dir(m), then P (A) ∼ Beta(m(A),m(Ac)) for all A. In

particular, E [P (A)] = m(A)/m(E) and Var (P (A))→ 0 as m(E)→ +∞, so m(E)

controls the dispersion of P (·) around its mean m(·)/m(E). Additionally, if A ∈ E
is such that m(A) = 0, then P (A) ∼ Beta(0,m(E)) and so P (A) = 0 almost surely.

The Dirichlet process is a particular case of the beta-Stacy process. In particu-

lar, since in our setting E is countable, this can be identified with a set of the form

E = {1, 2, . . . , k} for some k ≤ +∞. With this identification, let m be a measure

on (E, E) such that 0 < m(E) < +∞ and let P ∼ Dir(m). The probability mea-

sure P is entirely determined by its distribution function F (t) =
∑

x∈E: x≤t P ({x}).
Following the same reasoning as in Walker and Muliere (1997, Remark 5), it can

be shown that F ∼ BS(c, F0), where c(t) = m(E) for all integers t > 0 and F0 is

determined by F0({t}) = m({t})/m(E) for all integers t such that 0 < t ≤ k, and

F0({t}) = 0 for t > k.

Akin as the beta-Stacy process, the Dirichlet process is also conjugate, as high-

lighted by the following proposition. This could be proved either by representing

the Dirichlet process as a specific case of the beta-Stacy process, or by appealing to

Theorem 1 of Ferguson (1973) and the facts that E is countable and E is its power

set.

Proposition 5.3.2 (Ferguson (1973)). Suppose that P ∼ Dir(m) and, conditionally

on P , X1, . . . , Xn are independently distributed with common law P . Then the

posterior distribution of P given X1, . . . , Xn is Dir(m∗), where m∗ is the measure

on E determined by

m∗({i}) = m({i}) +
n∑
j=1

I {Xj = i}

for all i ∈ E.

Having introduced all required elements, we are finally ready to define the semi-

Markov beta-Stacy process. To do so, let mi(·) be a measure on (E, E) such that

0 < mi(E) < +∞ and mi({i}) = 0 for all i ∈ E. Let ci(t) be a positive real number

for any integer t > 0. Also let F i
0 be a distribution function with support on the

set of positive integers for all i ∈ E. Lastly, let m = (mi)i∈E, c = (ci)i∈E, and

F0 = (F i
0)i∈E.

Definition 5.3.3. A random characteristic couple (P,F) has a semi-Markov beta-

Stacy distribution with parameters (m, c,F0), or (P,F) ∼ SMBS(m, c,F0), if:
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1. P and F are independent;

2. the rows P i(·), i ∈ E, of P are independent;

3. the distributions F i, i ∈ E, in F are independent;

4. P i(·) is a Dirichlet process with base measure mi for all i ∈ E: P i(·) ∼
Dir(mi);

5. for all i ∈ E, F i is a beta-Stacy process with precision parameters ci and

centering distribution F i
0: F i ∼ BS(ci, F i

0).

Note that each realization of (P,F) ∼ SMBS(m, c,F0) is a valid characteristic

couple, justifying the use of the law of a semi-Markov beta-Stacy process as a prior

distribution for a characteristic couple (P,F).

More precisely, if (P,F) ∼ SMBS(m, c,F0), then with probability 1, i) F i(·)
is a cumulative distribution function with support on the positive integers and ii)

P is a transition matrix on E such that P i,i = 0 for all i ∈ E. The first point

follows directly from the properties of the beta-Stacy process. The second point

instead follows because each realization of the Dirichlet process is almost surely a

probability measure. This implies that 0 ≤ P i,j = P i({j}) ≤ 1 and
∑

j∈E P
i,j =∑

j∈E P
i({j}) = P i(E) = 1 for all i, j ∈ E with probability 1. Since mi({i}) = 0

for all i ∈ E, it must also be P i,i = 0 almost surely by Remark 5.3.2.

More generally, it will be P i({j}) = P i,j = 0 almost surely for all j ∈ E such

that mi({j}) = 0. In this case, each realization of a SMBS(m, c,F0) will be the

law of a semi-Markov process which cannot perform transition from i to j.

5.4 Posterior computations

We will now prove that the semi-Markov beta-Stacy process prior is conjugate. To

do so, we will need to introduce some additional notions.

Consider a finite sequence of states s0:t = (s0, . . . , st) ∈ Et+1. For each i ∈ E,

any maximal subsequences sa:b (0 ≤ a ≤ b ≤ t) such that sc = i for all a ≤ c ≤ b will

be called an i-block of s0:t. In particular, an i-block sa:b will be called terminal if

b = t, non-terminal otherwise. Suppose now that S ∼ SM(P,F). Moreover, N i,t(l)

will denote the number of non-terminal i-blocks of length ≤ l present in S0:t ∈ Et+1.
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Additionally, for all i, j ∈ E, i 6= j, let M i,j(t) =
∑t

k=1 I {Sk−1 = i, Sk = j} be the

number of transitions from state i to state j in S0:t.

Remark 5.4.1. As observed in Remark 5.2.2, knowing S0:t is equivalent to knowing

the values of N(t), L0:N(t), τ1:N(t), T0:N(t)−1, and that TN(t) > l(t). This implies that

the terminal block of S0:t is an LN(t)-block St−l(t):t of length x(t). Additionally, S0:t

contains exactly N(t) non-terminal blocks. For k = 0, . . . , N(t)− 1, the k + 1-th of

such non-terminal blocks is the Lk-block Sτk:τk+1
of length Tk. Consequently,

N i,t(l) =

N(t)−1∑
k=0

I {Tk ≤ l, Lk = i} .

Example 5.4.1. Going back to Example 5.2.3, the blocks of S0:5 = (i0, i0, i1, i2, i2,

i2) are the non-terminal i0-block S0:1 of length T0 = 2, the non-terminal i1-block S2:2

of length T1 = 1, and the terminal i2-block S3:5 of length 3 = l(5) + 1. Additionally:

N i0,5(1) = 0, N i0,5(2) = N i0,5(l) = 1 for all l ≥ 2; N i1,5(1) = N i1,5(l) = 1 for all

l ≥ 1; N i,5(l) = 0 for all l > 0 if i 6= i0, i1; and M i0,i1(5) = M i1,i2(5) = 1.

With these notations, we can now state the following theorem.

Theorem 5.4.1. Suppose that, given (P,F) ∼ SMBS(m, c,F0), it is S ∼ SM(P,F).

Then, the posterior distribution of (P,F) given S0:t = i0:t is SMBS(m∗, c∗,F∗),

where:

1. For all i ∈ E, mi
∗ is defined by mi

∗({j}) = mi({j}) +M i,j(t) for j ∈ E, j 6= i.

2. For all i ∈ E, i 6= it, F
i
∗ and ci∗ are determined by letting

F i
∗((u,+∞)) =

u∏
s=1

[
1− ci(s)F i

0({s}) +N i,t({s})
ci(s)F i

0([s,+∞)) +N i,t([s,+∞))

]
ci∗(u) =

ci(u)F i
0((u,+∞)) +N i,t((u,+∞))

F∗((u,+∞))

for each integer u > 0.

3. For i = it, F
i
∗ and ci∗ are instead determined by letting

F i
∗((u,+∞)) =

u∏
s=1

[
1− ci(s)F i

0({s}) +N i,t({s})
ci(s)F i

0([s,+∞)) +N i,t([s,+∞)) + I {l(t) ≥ s}

]
ci∗(u) =

ci(u)F i
0((u,+∞)) +N i,t((u,+∞)) + I {l(t) ≥ u}

F∗((u,+∞))
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for each integer u > 0.

Proof. To begin, note that by Remark 5.2.2 observing a sequence of states S0:t = i0:t

such that N(t) = n is equivalent to observing L0:n = l0:n, T0:n−1 = t0:n−1, and

Tn > l(t), where l0:n is the sequence of distinct states in i0:t (in the same order) and

the times t0:n−1 are determined uniquely by the position of the the state changes in

the sequence i0:t. Consequently, by Remark 5.4.1 the likelihood function associated

to the observation of S0:t = i0:t is given by

P (S0:t = i0:t|P,F) = P (L0:n = l0:n, T0:n−1 = t0:n−1, Tn > l(t)|P,F)

= F l0(t0)

[
n−1∏
k=1

F lk({tk})P lk−1,lk

]
·
[
F ln((l(t),+∞))

]
=

[∏
i∈E

t∏
s=1

F i({s})N i,t({s})F i((l(t),+∞))I{i=ln}

]
·∏

i,j∈E
i 6=j

P i({j})M i,j(t)


Since the likelihood can be factorized as the product of individual terms depending

only on F i or P i(·) for some i, by points 1-3 of Definition 5.3.3 it follows that,

conditionally on S0:t = i0:t, i) P and F are independent, ii) the rows P i(·), i ∈ E, of

P are independent, and iii) the distributions F i, i ∈ E, in F are independent.

It can now be seen that: i) the posterior distribution of F i, i 6= ln depends only

on the observed values of those Tk such that Lk = i and it is the same as if these

value were obtained as a random sample of independent and identically distributed

observations from F i; ii) the same is true for the posterior distribution of F ln except

that Tn is censored, as only Tn > l(t) is known; iii) the posterior distribution of

P i(·) depends only on each and only those lk in the sequence l0:n which are preceded

by the state i; the corresponding posterior distribution is the same as if these were

a random sample from P i(·). The thesis now follows from Propositions 5.3.1 and

5.3.2.

Theorem 5.4.1 allows to compute the posterior distribution of (P,F) associated

to the observation of the history S0:t up to time t of some semi-Markov process
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S ∼ SM(P,F). For example, in the context of Example 5.2.2, the history S0:t may

represent the (unreplicable) history of failures in the operation of the textile factory.

In some settings, however, multiple independent semi-Markov processes S1, . . .,

Sn ∼ SM(P,F) may be observed up to fixed time points t1, . . . , tn, generating data

S1
0:t1 , . . ., S

n
0:tn . For instance, in the context of Example 5.2.1, S1

0:t1 , . . ., S
n
0:tn may

represent the histories of infection status of n independent patients. In this case, the

posterior distribution of (P,F) is obtained by iteratively applying Theorem 5.4.1.

It could also be shown that Theorem 5.4.1 remains valid also if the the process S

is observed up to some stopping time τ , so that the posterior distribution of (P,F)

given S0:τ is the semi-Markov beta-Stacy process obtained by applying Theorem

5.4.1 after substituting S0:τ for S0:t. Following an argument similar as those pre-

sented by Heitjan and Rubin (1991), the same result also holds if τ is a random

variable a priori independent of S and (P,F).

5.5 Predictive distributions and reinforced semi-

Markov processes

We now address the problem of predicting the evolution of a process S ∼ SM(P,F).

Specifically, assuming (P,F) ∼ SMBS(m, c,F0), we derive the one-step-ahead

predictive distributions of S, i.e. the conditional distributions P (St+1 = ·|S0:t) for

t ≥ 0. These play an important role in applications. For instance, in Example 5.2.1

they allow to predict the future infection status of an individual patient given its

history of infections. Instead, in Example 5.2.2, they allow to quantify the future

risk that the textile factory will have to stop its operations.

Theorem 5.5.1. Suppose that, given (P,F) ∼ SMBS(m, c,F0), it is S ∼ SM(P,F).

Define for simplicity x(t) = l(t) + 1 for all integers t ≥ 0. Then, with probability

1, P (St+1 = ·|S0:t) = kt(S0:t; ·) for all integers t ≥ 0, where, letting St = i, kt is the
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transition kernel defined as follows:

kt(S0:t; i) =
ci(x(t))F i

0((x(t),+∞)) +N i,t((x(t),+∞))

ci(x(t))F i
0([x(t),+∞)) +N i,t([x(t),+∞))

kt(S0:t; j) =
ci(x(t))F i

0({x(t)}) +N i,t({x(t)})
ci(x(t))F i

0([x(t),+∞)) +N i,t([x(t),+∞))
·

mi({j}) +M i,j(t)

mi(E) +
∑

h6=iM
i,h(t)

,

for all j 6= i.

Proof. Suppose that, conditionally on (P,F) ∼ SMBS(m, c,F0), S ∼ SM(P,F).

To prove the thesis, observe that by Remark 5.2.2 it is

P (St+1 = j|S0:t,P,F) =

P
(
LN(t+1) = j|N(t), L0:N(t), T0:N(t)−1, TN(t) > l(t),P,F

)
almost surely. Consequently, on the event {N(t) = n, L0:n = i0:n, T0:n−1 = t0:n−1}
with j = in it is

P (St+1 = j|S0:t,P,F) =

P (Tn > x(t)|L0:n = i0:n, T0:n−1 = t0:n−1, Tn > l(t),P,F)

=
F in((x(t),+∞))

F in((l(t),+∞))
.

Since F in has a beta-Stacy distribution, by Theorem 5.4.1 conditionally on S0:t it is

F in((x(t),+∞)) =

x(t)∏
k=1

(1− Uk) = (1− Ux(t))F
in((l(t),+∞))

for independent U1, . . . , Ux(t) such that

Ux(t) ∼ Beta
(
cin∗ (x(t))F in

∗ ({x(t)}), cin∗ (x(t))F in
∗ ((x(t),+∞))

)
.
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Thus, from Theorem 5.4.1,

P (St+1 = j|S0:t) = E [P (St+1 = j|S0:t,P,F) |S0:t]

= E
[
1− Ux(t)|S0:t

]
=
F in
∗ ((x(t),+∞))

F in
∗ ([x(t),+∞))

= 1− cin(x(t))F in
0 ({x(t)}) +N in,t({x(t)})

cin(x(t))F in
0 ([x(t),+∞)) +N in,t([x(t),+∞)) + I {l(t) ≥ x(t)}

= kt(S0:t, j)

as needed.

Continuing, on the event {N(t) = n, L0:n = i0:n, T0:n−1 = t0:n−1} with j 6= in,

P (St+1 = j|S0:t,P,F) equals

P (Tn = x(t), Ln+1 = j|L0:n = i0:n, T0:n−1 = t0:n−1, Tn > l(t),P,F) =

=
F in({x(t)})

F in([x(t),+∞))
· P in,j

=

(
1− F in((x(t),+∞))

F in([x(t),+∞))

)
· P in,j

= Ux(t)P
in,j.

(5.1)

By Theorem 5.4.1, Ux(t) and P in,j ∼ Beta(min
∗ ({j}),min

∗ (E\{j})) are independent

given on S0;t. The thesis now follows by taking expectations conditionally on S0:t.

By the Ionescu-Tulcea Theorem (Çinlar, 2011, Theorem 4.7), the sequence of

predictive distributions kt defines the law of a new stochastic process:

Definition 5.5.1. A stochastic process S = (St)t≥0 with state space (E, E) is called a

reinforced semi-Markov process with parameters (m, c,F0), or S ∼ RSM(m, c,F0),

if P (S0 = l0) = 1 and P (St+1 = j|S0:t) = kt(S0:t; j) almost surely for all j ∈ E and

t ≥ 0.

With this definition, the following is a trivial corollary of Theorem 5.5.1:

Corollary 5.5.1. If, conditionally on (P,F) ∼ SMBS(m, c,F0), S ∼ SM(P,F),

then marginally it is S ∼ RSM(m, c,F0).
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Compatibly with the definition of Coppersmith and Diaconis (1986) and Peman-

tle (1988, 2007), the process S ∼ RSM(m, c,F0) is “reinforced” in the following

sense: if S performs a transition from a state i to a state j 6= i, this becomes more

likely in the future. More precisely, say that St = i and consider the probability

kt(S0:t, j) for some j 6= i. By Equations (5.1), kt(S0:t, j) is increasing in M i,j(t), i.e.

the number of times that a transition from i to j already occurred by time t.

5.6 Predictive characterization by reinforced urn

processes

A sequence (Ln)n ≥ 1 of random elements of E is said to be a Pòlya sequence

generated by a measure m(·) on E if it is the result of successive draws from a

generalized Pòlya urn whose initial composition is determined by m.

Specifically, this is a reinforced urn U which initially contains m({i}) balls of

color i ∈ E. Balls are repeatedly extracted from the urn and, after every draw,

the extracted ball is replaced together with another additional ball of the same

color. The color of the ball extracted at the n-th draw gives the value of Ln, so

P(L1 = i) = m({i})/m(E) and, for all n ≥ 1,

P(Ln+1 = i|L1:n) =
m({i}) +

∑n
h=1 I {Lh = i}

m(E) + n
.

The seminal results of Blackwell and MacQueen (1973) imply that (Ln)n≥1 is

exchangeable and its de Finetti measure is Dir(m). In other words, there exists

a random probability measure P ∼ Dir(m) such that the Ln are independent and

have common distribution P (·), conditionally on P (·).
Spurring from the work of Blackwell and MacQueen (1973), other urn models

have been used to characterize many other common nonparametric prior processes.

For example, using models based on Pòlya urns it is possible to generate Pòlya

trees (Mauldin et al., 1992) or the beta-Stacy process (Walker and Muliere, 1997).

Fortini and Petrone (2012) provide references to other modern examples. Many

of these constructions can be unified using the reinforced urn processes of Muliere

et al. (2000), which also provide a tool to characterize general neutral-to-the-right

processes (Doksum, 1974).
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Of particular interest to us is the following urn scheme characterizing the discrete-

time beta-Stacy process. Here, let c(t) be a positive real number for all integer t > 0

and F0 be a distribution function with support on the positive integers.

Suppose V1, V2, V3, . . ., Vk, . . . is an infinite sequence of Pòlya urns. Each urn Vk

contains c(t)F0({t}) black balls and c(t)F0((t,+∞)) white balls. As before, every

time a ball is extracted from an urn, it is replaced together with another ball of the

same color.

Starting from V1, for k ≥ 1 sample a ball from Vk. If its color is white, continue

sampling from Vk+1, otherwise set T1 = k and return to V1 after having reinforced

all visited urns. Restarting from V1 and repeating the process it is possible to

generate the variables T2, T3, T4, and so on. It is possible to show that the urn V1

is recurrent, i.e. it is visited infinitely often with probability 1. Consequently, this

scheme generates an infinite sequence (Tn)n≥1 of random variables such that

P(Tn+1 > t|T1:n) =
t∏

s=1

[
1− c(s)F0({s}) +N({s})

c(s)F0([s,+∞)) +N([s,+∞))

]
,

where N(t) =
∑n

i=1 I {Ti ≤ t} (the right-hand side is exactly F∗ from Proposition

5.3.1).

Here, Muliere et al. (2000) have shown that (Tn)n≥1 is exchangeable and its

de Finetti measure is the BS(c, F0) distribution. Hence, there exists a random

F (·) ∼ BS(c, F0) such that the Tn are independent and have distribution F (·),
conditional on F (·).

Definition 5.6.1. For simplicity, we will say that a generalized Pòlya urn U like the

one used above to characterize the Dir(m) process is a Dir(m)-urn. Similarly, we

say that a system V of reinforced urns V1, V2, V3, . . . like the one used to characterize

the BS(c, F0) process is a BS(c, F0)-system.

We can now describe an urn-based characterization of the semi-Markov beta-

Stacy process. To do so, associate every i ∈ E with a Dir(mi)-urn Ui and a

BS(ci, F i
0)-system Vi made up of the urns Vi,1, Vi,2, Vi,3, and so on. Generate a

sequence {(Lk, Tk)}k≥0 as follows. Set L0 = l0. Then, for all k ≥ 0, generate Tk

from VLk as above, and, independently, set Lk+1 to the color of the ball extracted

from ULk . This generative process is illustrated graphically in Figure 5.1

Continuing, define a process S = (St)t≥0 with state space E as follows. Define

τ0 = 0, τn+1 =
∑n

h=0 Th for all n ≥ 0, and N(t) =
∑+∞

n=1 I {τn ≤ t} for all integers
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Figure 5.1: Graphical illustration of the reinforced urn process of Section 5.6. In

the figure, the path of the process corresponds to the observation of (L0, T0) =

(1, 3), (L1, T1) = (3, 2), and L2 = 2. Specifically, the process starts from the urn

corresponding to the value T0 = 1 for the holding time of the state L0 = 1. The

BS(c1, F 1
0 )-system V11, V12, V13, . . . is traversed left to right until a black ball is

extracted from V13, determining the value T0 = 3. The process then jumps to the

Dir(m1)-urn U1, from which a ball of color “3” is extracted. Thus, L1 = 3 and the

process jumps to V31, the first urn of the BS(c3, F 3
0 )-system represented in the third

row of the graph. The process then resumes similarly to generate the values T1 = 2

and L2 = 2.
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t ≥ 0. Lastly, define the process S = (St)t≥0 by letting St = LN(t) for all integers

t ≥ 0. It is not hard to show that P(St+1 = ·|S0:t) = kt(S0:t, ·), where the kernel kt is

the same as in Theorem 5.5.1. This shows that S ∼ RSM(m, c,F0). Clearly, any

RSM(m, c,F0) process can be generated in this way.

Now, for all i ∈ E let vi,0 = −1 and, for all integers n ≥ 1, let vi,n = inf{k >
vi,n−1 : Lk = i} be the time of the n-th visit of the sequence (Lk)k≥0 to the state i.

The process S = (St)t≥0 just introduced will be said to be recurrent if

P

(⋂
i∈E

+∞⋂
n=1

{vi,n < +∞}

)
= 1. (5.2)

In other words, S is recurrent if it visits every state in E an infinite number of

times with probability 1. If S is recurrent, for each i ∈ E we can define the infinite

sequence {(Li,n, Ti,n) = (Lvi,n+1, Tvi,n)}n≥1. Note that Ti,n is the (finite) length of

the n-th i-block in S, which is immediately followed by a Li,n-block. In other words,

Ti,n the length of time S stays in i during the n-th visit to that state, while Li,n is

the state visited by S immediately after its n-th visit to i is over.

With these notions, we can now show the following partial converse of Corollary

5.5.1:

Theorem 5.6.1. Suppose S ∼ RSM(m, c,F0) is recurrent. Then there exists a

random characteristic couple (P,F) such that:

1. conditional on (P,F), S ∼ SM(P,F);

2. (P,F) ∼ SMBS(m, c,F0).

To show this result we will make use of the following lemma:

Lemma 5.6.1. Suppose S ∼ RSM(m, c,F0) is recurrent. Then:

1. the sequences {(Li,n, Ti,n)}n≥1 for i ∈ E are independent;

2. the sequences (Li,n)n≥1 and (Ti,n)n≥1 are independent for all i ∈ E;

3. there exists a random probability measure P i ∼ Dir(mi) such that the Li,n are

independent and have common distribution P i(·), conditional on P i(·);

4. there exists a random distribution F i(·) ∼ BS(ci, F i
0) such that the Ti,n are

independent and have common distribution F i(·), conditional on F i(·);
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5. all the P i(·) and F i(·) are independent.

Proof of Lemma 5.6.1. To show points (1)-(4) it suffices to note that: i) for all i ∈ E,

the sequence (Li,n)n≥1 is generated by Dir(mi)-urn Ui; ii) for all i ∈ E, (Ti,n)n≥1 is

generated by the BS(ci, F i
0)-system Vi; iii) the outcomes of the urns Ui, V1,i, Vi,2, . . .,

for all i ∈ E are independent of each other. To prove (5), since (Li,n)n≥1 and (Ti,n)n≥1

are exchangeable, by the de Finetti representation theorem P i(·) = P(Li,1 ∈ ·|Li)
and F i(·) = P(Ti,1 ∈ ·|Ti) with probability 1, where Li and Ti are, respectively, the

tail σ-fields of (Li,n)n≥1 and (Ti,n)n≥1 (Kallenberg, 2006, Chapter 1). The thesis now

follows because all σ-fields Li and Ti, i ∈ E, are independent by (1) and (2).

Proof of Theorem 5.6.1. Take P i(·) and F i(·) for i ∈ E as given by Lemma 5.6.1.

Define (P,F) by letting P = (P i({j}))i,j∈E (note that P i({i}) = 0 almost surely

since mi({i}) = 0) and F = {F i(·) : i ∈ E}. To prove the thesis it suffices to

show that, conditional on (P,F), {(Lk, Tk)}k≥0 is a Markov renewal process with

characteristic couple (P,F). To do so, note that P(L0 = l0|(P,F)) = 1 by definition.

Moreover, on the event {Ln = i, vi,k = n}, k ≤ n, it is

P(Ln+1 = j, Tn ≤ t|L0:n, T0:n−1, (P,F)) = P(Li,k = j, Ti,k ≤ t|(P,F))

= P i({j})F i(t).

This concludes the proof.

5.7 Generalizations of the semi-Markov beta-Stacy

process

As anticipated in Remark 5.2.1, here we illustrate how the semi-Markov beta-Stacy

process can be generalized to the setting where the distribution of the holding time

Tk is assumed to depend on both Lk and Lk+1:

P(Lk+1 = j, Tk ≤ t|Lk = i, L0:k−1, T0:k−1, (P,F)) = F i,j(t)P i,j (5.3)

for all i, j ∈ E and k ≥ 0, where now F = (F i,j(·) : i, j ∈ E, i 6= j), while

P = (P i,j : i, j ∈ E) as in Definition 5.2.1. This corresponds to the assumption that

the process {(Lk, Tk)}k≥0 evolves by first deciding which state Lk+1 ∼ PLk(·) will

be visited after leaving the current state Lk, and only then decide how much time
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Tk ∼ FLk,Lk+1(·) to spend in the current state Lk. Compared to the formulation

of Definition 5.2.1, the present one may be more appropriate in some applications

(Barbu and Limnios, 2009).

In this new setting, the definition of the semi-Markov beta-Stacy process can be

extended in two ways based on different prior assumptions. These generalizations

and the process of Definition 5.3.3 are all characterized by similar reinforced urn

models. These uniquely determine the predictive distributions associated to each

process.

5.7.1 A first non-conjugate generalization

The most natural approach consists in defining c = (ci,j : i, j ∈ E, i 6= j), F0 =

(F i,j
0 : i, j ∈ E, i 6= j) and then substituting the symbols ci and F i with ci,j and

F i,j in points 3 and 5 of Definition 5.3.3 (all other points remaining unchanged).

Despite its simplicity, this approach leads to a generalization of the semi-Markov

beta-Stacy process which does not retain all the properties shown in the previous

section. In particular, the natural generalization of Theorem 5.4.1 does not hold, as

now the process in not necessarily conjugate.

This lack of conjugacy is evident from the structure of the likelihood function of

(P,F) for data S0:t = i0:t, whose general form when N(t) = n is

P (S0:t = i0:t|P,F) = P (L0:n = l0:n, T0:n−1 = t0:n−1, Tn > l(t)|P,F)

=

∏
i,j∈E
i 6=j

t∏
s=1

F i,j({s})N i,j,t({s})



·

 ∑
ln+1∈E
ln+1 6=ln

P ln({ln+1})F ln,ln+1((l(t),+∞))



·

∏
i,j∈E
i 6=j

P i({j})M i,j(t)

 ,
where N i,j,t is the number of non-terminal i-blocks of length ≤ l which are immedi-

ately followed by a j-block in S0:t (N i,t(l) =
∑

j∈E N
i,j,t(l)).
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Here, if l(t) = 0, i.e. it 6= it−1, the second term in the square brackets is equal

to 1 (since F i,j((0,+∞)) = 1 for all i and j). In this case, the posterior distribution

of (P, F ) given the observation of the event {S0:t = i0:t} = {L0:n = l0:n, T0:n−1 =

t0:n−1} is again a semi-Markov beta-Stacy process, call it SMBS(l0:n, t0:n−1), whose

parameters can be obtained from obvious analogues of points 1-3 of Theorem 5.4.1.

On the other hand, if l(t) > 0, i.e. it = it−1, it can be shown that the posterior

distribution of (P, F ) given the observation of the event {S0:t = i0:t} = {L0:n =

l0:n, T0:n−1 = t0:n−1, Tn > l(t)} is the mixture of semi-Markov beta-Stacy processes

SMBS((l0:n, Ln+1), (t0:n−1, Tn)), where the mixing measure is the distribution of

(Ln+1, Tn) given L0:n = l0:n, T0:n−1 = t0:n−1, and Tn > l(t).

Although the posterior distribution associated to the generalized semi-Markov

beta-Stacy process is not immediately available, it is still possible to characterize its

associated predictive distributions using a new reinforced urn process.

Specifically, associate every state i ∈ E with a Dir(mi)-urn Ui and every pair

(i, j) ∈ E × E, i 6= j, with the BS(ci,j, F i,j
0 )-system Vi,j of urns Vi,j,1, Vi,j,2, Vi,j,3,

and so on. Generate a sequence {(Lk, Tk)}k≥0 as follows. First, set L0 = l0. Then,

for all k ≥ 0, generate Lk+1 from ULk and, independently, Tk from VLk,Lk+1
. Lastly,

denote with S = (St)t ≥ 0 the process with state space E induced by {(Lk, Tk)}k≥0

as in Section 5.6.

Additionally, for all (i, j) ∈ E×E, i 6= j, let vi,j,0 = −1 and, for all integers n ≥ 1,

let vi,j,n = inf{k > vi,j,n−1 : Lk = i} be the time the sequence (Lk)k≥0 performs its n-

th transition from the state i to the state j. Note that vi,n, the time of the n-th visit

to i, is related to the vi,j,n, j 6= i, by vi,n = min{vi,j,k : j 6= i, k ≤ n, vi,j,k > vi,n−1}.
We will consider the following strengthening of the recurrence condition of Equation

5.2:

P

 ⋂
(i,j)∈E×E

i 6=j

+∞⋂
n=1

{vi,j,n < +∞}

 = 1. (5.4)

This not only implies that (St)t≥0 is recurrent, but also that it performs every allow-

able transition an infinite number of times with probability 1. Hence, the sequences

(Li,k)k≥0 = (Lvi,k+1)k≥0 and (Ti,j,k)k≥0 = (Tvi,j,k)k≥0 are infinite with probability 1.

Importantly, under the condition of Equation (5.4), Theorem 5.6.1 still holds.

In fact, proceeding as in the proof of Lemma 5.6.1, under condition (5.4) it can

be shown that: i) the arrays of random variables {(Li,n, Ti,j,n : j 6= i)}n≥0, i ∈ E,
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are independent of each other; ii) the sequences (Li,n)n≥0, (Ti,j,n)n≥0, i 6= j, are all

independent of each other; iii) for all i ∈ E, the Li,n are independent and identically

distributed as P i(·) for some random P i(·) ∼ Dir(mi); iv) for all i 6= j, the Ti,j,n

are independent and identically distributed as F i,j(·) for some random F i,j(·) ∼
BS(ci,j, F i,j

0 ); and v) all the P i(·) and F i,j(·), i 6= j, are independent of each other.

Consequently, letting P = (P i({j}))i,j∈E and F = {F i,j(·) : i, j ∈ E, i 6= j}, it

is P(L0 = l0|(P,F)) = 1. Moreover, on the event {Ln = i, vi,k = vi,j,h = n} with

h ≤ k ≤ n, it is

P(Ln+1 = j, Tn ≤ t|L0:n, T0:n−1, (P,F)) = P(Li,k = j, Ti,j,h ≤ t|(P,F))

= P i({j})F i,j(t),

as desired.

5.7.2 An alternative conjugate generalization

To arrive at an alternative generalization, we consider the following approach. First,

note that Equation 5.3 can be equivalently expressed as

P(Lk+1 = j, Tk = t|Lk = i, L0:k−1, T0:k−1, (P,F)) = F i({t})P i,j
t (5.5)

where F i(t) =
∑

j 6=i F
i,j(t)P i,j and P i,j

t = F i,j(t)P i,j/F i(t), where now P = (P i,j
t =

P i
t ({j}) : i, j ∈ E, t ≥ 1), while F = (F i(·) : i ∈ E) as in Definition 5.2.1. In this

formulation, the process {(Lk, Tk)}k≥0 evolves by first deciding the time Tk ∼ FLk(·)
to spend in the current state Lk subsequently deciding the next state Lk+1 ∼ PLk

Tk
(·).

From this perspective, Definition 5.3.3 can be generalized by letting m = (mi
t :

i ∈ E, t ≥ 1) be a family of measures on E and then supposing that the P i
t (·) are

independent Dir(mi
t) processes on E for all i ∈ E and t ≥ 1 (all other assumptions

remaining as is).

Contrary to the previous case, this generalization of the semi-Markov beta-Stacy

process is easily seen to be conjugate. In fact, an immediate generalization of The-

orem 5.4.1 can be obtained by noting that the likelihood function of (P,F) for data
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S0:t = i0:t such that N(t) = n now takes the form

P (S0:t = i0:t|P,F) =

[∏
i∈E

t∏
s=1

F i({s})N i,t({s})F i((l(t),+∞))I{i=in}

]

·

∏
i,j∈E
i 6=j

t∏
s=1

P i
s({j})N

i,j,t({s})


(note that M i,j(t) =

∑t
s=1N

i,j,t({s}) for all i 6= j). Thus, the posterior distribution

of (P,F) given S0:t = i0:t is a SMBS(m∗, c∗,F∗), where c∗ and F∗ are defined

as in Theorem 5.4.1, while m∗ = (mi
∗,s : i ∈ E, s ≥ 1) is obtained by letting

mi
∗,s(·) = mi

s(·) +N i,j,t({s}) for all i ∈ E and s ≥ 1.

As before, this generalization of the semi-Markov beta-Stacy process can also be

characterized by another reinforced urn process. Specifically, associate every i ∈ E
with a BS(ci, F i

0)-system Vi as in Section 5.6 and every couple (i, t) ∈ E×{1, 2, 3 . . .}
with a Dir(mi

t)-urn Ui,t. Suppose that {(Lk, Tk)}k≥0 is generated first by letting

L0 = l0 and then by iteratively generating Tk from VLk and Lk+1 from ULk,Tk for

all k ≥ 0. In this set up, a generalization of Theorem 5.6.1 can be shown to hold

under an appropriate strengthening of the recurrence condition of Equation 5.2.

In particular, it suffices to require that every urn is visited infinitely often with

probability one.

5.8 Simulation study

To illustrate the semi-Markov beta-Stacy process in action, we conducted a simula-

tion study based on the textile factory scenario of Example 5.2.2.

5.8.1 Description of the simulation study

Following Barbu and Limnios (2009, Sections 4.3), we generated a single realization

s0:1,000 from the semi-Markov process (St)t≥0 describing the day-by-day status of

the factory from day 0 to day 1,000. The law of this process was determined by

assuming that: i) S0 = 1 (so the factory begins fully functional); ii) the transition
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matrix is

P =

 0 1 0

0.95 0 0.05

1 0 0

 ; (5.6)

iii) F 1(·) is the geometric distribution F 1({t}) = p(1− p)t−1, t ≥ 1, with parameter

p = 0.8; iv) F 2(·) is the first-type discrete Weibull distribution F 2(t) = 1 − qt
k
,

t ≥ 1, of Nakagawa and Osaki (1975) with parameters q = 0.3 and k = 0.5 (when

k = 1, this distribution reduces to the geometric distribution with parameter 1− q);
v) F 3(·) is the first-type discrete Weibull distribution with parameters q = 0.6 and

k = 0.9. The observed sequence s0:1,000 was considered as data to perform posterior

inferences.

5.8.2 Prior specification

We assign a semi-Markov beta-Stacy prior distribution SMBS(m, c,F0) to the

data-generating characteristic couple (P,F). We consider the measures m1(·), m2(·),
and m3(·) on E = {1, 2, 3} determined by the conditions mi({1, 2, 3}) = m1({2}) =

m2({1}) = m2({3}) = m3({1}) = 1 for all i ∈ E (in particular, this implies that both

P 2,1 and P 2,3 are marginally uniformly distributed over (0, 1)). For all i = 1, 2, 3,

F i
0(·) will be the geometric distribution with parameter p = 0.3 (a prior assumption

clearly incompatible with the data-generating mechanism). For all i ∈ E, we con-

sider ci(t) = c for all t ≥ 1 and some constant c > 0, successively considering the

values c = 0.1, 1, and 10.

5.8.3 Posterior distributions

Figure 5.2 shows the plots of the posterior mean of F 2(·), together with a sample

of 500 samples from the corresponding distribution. Posterior distributions were

obtained from Theorem 5.4.1 using data s0:M with M = 0 (so the posterior coincides

with the prior), M = 100, or M = 1000 (so whole simulated path is used). For

comparison, the figure also reports the data-generating distribution of the holding-

times of the state 2, i.e. of the time elapsed until either the tank is repaired or the

factory has to stop after a failure.

Figure 5.2 highlights how the posterior distribution obtained from the semi-

Markov beta-Stacy prior is able to recover the underlying data-generating distribu-
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Figure 5.2: Plot of the posterior distribution of F 2(·) for the semi-Markov process

priors of Section 5.8. Results are shown for different values of: i) the prior con-

centration parameter c, which specifies the weight assigned to the prior centering

distributions F 2
0 (·); ii) the length N of the observation period during which data

S0:N is collected (if N = 0, the posterior distribution coincides with the prior).

Blue lines: values of the true data-generating distribution F 2(·) (see Section 5.8.1).

Black lines: posterior mean of F 2(·). Orange lines: graph of 500 samples from the

posterior distribution of F 2(·).

tion by flexibly adapting to the observations, even when these deviate from prior

assumptions. This is true both for data reflecting a short (M = 100) or long

(M = 1, 000) period of observation. The figure also highlights the impact of the

concentration parameters c. As this increases, the dispersion of the distribution of

F 2(·) around its mean decreases.

5.8.4 Predictive distributions

Figure 5.3 reports the estimates of the predictive distributions Ph(j) = P(S1,000+h =

j|S0:1,000 = s0:1,1000) obtained from the semi-Markov beta-Stacy prior with c = 1 for
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all h = 1, . . . , 100 and all j = 1, 2, 3. These were obtained by simulating 105 future

paths (S1,000+h)h=1,...,100 conditional on the past observation of S0:1,000 = s0:1,000 by

sampling from the reinforced semi-Markov kernels of Corollary 5.5.1. Then, Ph(j)

was estimated as the proportion of simulations in which S1,000+h = j.

Figure 5.3 shows how the the Ph(j) adapt over time as h increases for all j =

1, 2, 3, whose values stabilize in the long run. Specifically, for large h the vector

(Ph(1), Ph(2), Ph(3)) remain close to the limiting distribution (ν1, ν2, ν3) of the data-

generating semi-Markov process. This is obtained from Proposition 3.9 of Barbu

and Limnios (2009) as νj = ejmj/
∑3

i=1 eimi, where (e1, e2, e3) = ( 1
2.05

, 1
2.05

, 0.05
2.05

)

is the equilibrium distribution of the transition matrix P in Equation 5.6, while

mj =
∑+∞

t=0 (1− F j(t)) is the expected sojourn time in the state j.

5.9 Concluding remarks

In this paper we introduced the semi-Markov beta-Stacy process, a Bayesian non-

parametric process prior for semi-Markov models, and some related generalizations.

Each was characterized from a predictive perspective by “piecing together” different

reinforced urn models characterizing simpler processes.

This approach is conceptually valuable, as it provides a fresh strategy for the

specification of Bayesian nonparametric models for the prediction of complex pro-

cesses. Importantly, as previously noted by Muliere et al. (2003), reinforced stochas-

tic processes can be used to perform predictions from a Bayesian nonparametric

perspective without requiring knowledge of difficultly obtained aspects of the prior

or posterior distributions (Ghosal and van der Vaart, 2017).

The semi-Markov beta-Stacy may be amenable to more generalization then the

ones considered here by modifying its underlying reinforced urn process. First, each

extracted ball may be reinforced by a fixed or random amount of multiple balls of

the same or different colors, akin as in Muliere et al. (2006). This could allow a finer

control of the level of uncertainty attached to the urns’ initial composition, i.e. to

the centering distribution of the prior (Arfè et al., 2018).

Second, a form of dependence across different components of the prior may be

introduced by reinforcing urns other than the one from which a ball was extracted.

This form of interaction among urns could lead to interesting models in which ob-

servations provide indirect information about distributions that have not generated
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Figure 5.3: Plot of the predictive probabilities Ph(j) = P(S1,000+h = j|S0:1,000 =

s0:1,1000) obtained from the semi-Markov beta-Stacy process of Section 5.8 with c = 1

for all h = 1, . . . , 100. The value Ph(j) is the probability that the factory will be in

state j = 1, 2, 3 after h days in the future given its past history S0:1000. The black,

red, and blue lines are, respectively, the values of Ph(1), Ph(2), and Ph(3). The

dashed lines represent the limiting distribution of the underlying data-generating

semi-Markov process.
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them directly (Paganoni and Secchi, 2004; Muliere et al., 2005).

From a more applied perspective, we are investigating different ways to exploit

the semi-Markov beta-Stacy process in more complex Bayesian non-parametric mod-

els based on semi-Markov processes. In particular, we are implementing a regression

model in which the distribution of the holding times and the transition matrices de-

pend on a vector of covariates. As in Arfè et al. (2018), this is done by letting the

initial composition of the urns be a function of both the covariates and some addi-

tional parameters, which are then assigned their own prior distribution. Such model

could be used for the analysis of multi-stage diseases in medical studies (Barbu et al.,

2004; Mitchell et al., 2011).

Additionally, we are applying the semi-Markov beta-Stacy process to perform

inference and predictions in Hidden Semi-Markov Models (HSMMs), in which the

sequence of visited states is observed only indirectly (Barbu and Limnios, 2009,

Chapter 6). As a specific application, we are developing a novel approach for

changepoint analysis in which the state of a semi-Markov process represents the

latent regimen of a time series (Smith, 1975; Muliere and Scarsini, 1985; Ko et al.,

2015; Peluso et al., 2018).
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Chapter 6

Bayesian optimality of testing

procedures for survival data in the

non-proportional hazards setting

With Brian Alexander and Lorenzo Trippa.

Submitted manuscript with invited revisions.

ArXiv manuscript: https: // arxiv. org/ abs/ 1902. 00161

6.1 Introduction

Researchers often use data generated by exploratory clinical studies to specify the

protocol of randomized confirmatory phase III trials. Data predictive of the con-

firmatory trial outcomes, including early estimates of treatment effects, are used to

choose the primary endpoints (Gómez et al., 2014), the sample size (Lindley, 1997),

the target populations (Lee and Wason, 2018), and other aspects of the study design

(Brody, 2016). Still, in most cases prior information is not used to specify in the

protocol, as mandated by regulatory agencies, which hypothesis testing procedure

will be used in the final analyses to provide evidence of treatment effects. Agencies

such as the U.S. Food and Drug Administration require the control of Type I and II

errors at acceptable, pre-specified rates (US Food and Drug Administration, 1998).

In Phase III trials, standard tests, such as Mantel’s log-rank, are often selected

even for studies where prior data suggests their underlying assumptions will be

https://arxiv.org/abs/1902.00161
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violated (Royston and Parmar, 2013; Alexander et al., 2018). For survival endpoints,

methods related to the log-rank test are prevalent. Asymptotically, this is the most

powerful test with a proportional hazards alternative (Fleming and Harrington,

2011). However, the proportional hazards assumption is often violated in practice,

contributing to false-negative findings (Royston and Parmar, 2013), invalidating

sample size calculations (Barthel et al., 2006), and affecting interim analyses (van

Houwelingen et al., 2005).

Data from early-stage studies can inform about deviations from the assumption

of proportional hazards, suggesting the use of alternative methods (Royston and

Parmar, 2013). Several extensions and alternatives are available to replace Mantel’s

test, such as weighted (Fleming and Harrington, 2011) or adaptive log-rank tests

(Yang and Prentice, 2010), and restricted mean survival tests (Royston and Parmar,

2013). Several of these procedures identify the most powerful test against specific

alternatives, which may not be representative of available estimates from early stage

analyses. Moreover, their optimality typically holds in a large-sample sense (e.g. in

the local limit for weighted log-rank tests; Fleming and Harrington 2011).

We develop a statistical test to detect treatments effects in late-stage trials,

accounting for deviations from the proportional hazards assumption indicated by

early-phase studies (e.g. phase II trials). The proposed test does not belong to

the weighted log-rank family or other common classes of tests. Starting from deci-

sion theory principles (Robert, 2007), we derive it as the solution to the following

constrained decision problem (Ventz and Trippa, 2015): conditional on early-stage

data, the test maximizes the predicted finite-sample power among all tests which

control the frequentist Type I error rate of the late-stage study at a fixed α level.

More precisely, the test maximizes the Bayesian predictive probability that the null

hypothesis will be correctly rejected at the end of the confirmatory trial. The test

therefore provides a useful benchmark for other procedures applicable in presence

of non-proportional hazards.

As a motivating example we consider the analysis of a randomized trial with de-

layed treatment effects on survival outcomes. This is a characteristic which occurs

when the treatment requires an induction period before it starts to exert thera-

peutic effects. When treatment effects are delayed, the hazard functions are not

proportional and they separate across arms only later during follow-up (Fine, 2007).

Initially overlapping survival curves (c.f. Figure 6.1a) are well documented in trials
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of cancer immunotherapies (Chen, 2013; Alexander et al., 2018). They can also be

observed in other settings, such as in studies of breast cancer (Mehta et al., 2012)

and melanoma (Robert et al., 2015) chemotherapies.

6.2 Example

We consider data on the survival times of the 361 patients with head and neck car-

cinomas that participated in CheckMate 141 study (Ferris et al., 2016), a Phase III

trial that randomized patients to receive nivolumab, a novel cancer immunotherapy,

or standard of care (SOC) in a 2:1 ratio. We reconstructed the individual-level data

of this trial from Figure 1a of Ferris et al. (2016) by means of the DigitizeIt (TM)

software (version 2.2) and the data extraction method of Guyot et al. (2012). Figure

6.1a shows the resulting Kaplan-Meier curves, which compare survival probabilities

between the two study arms. These do not clearly separate in the initial 3-4 months

of follow-up, a signal of delays in the treatment effects.

6.3 Planning a late-stage trial

We plan a late-stage randomized trial with a survival end-point and a sample size

of n patients. This will generate data x = (t, d, a) to test if the treatment has

positive effects on the primary outcome. Here, t = (t1, . . . , tn) are the observed

follow-up times, d = (d1, . . . , dn) are the corresponding censoring indicators (di = 1

if ti is censored, while di = 0 if an event was observed), and a = (a1, . . . , an) are

the study arm indicators (ai = 0 or ai = 1 if the i-th patient is randomized to the

control or treatment arm). Patients are assigned to arms with a fixed randomization

probability. We assume that censoring times are non informative in the sense of

Heitjan and Rubin (1991) and independent of treatment assignment.

For design purposes, we specify a model for the distribution that will generate

the data x. This is described by a density pθ(x) that depends on a parameters vector

θ ∈ Θ. Here θ may be infinite-dimensional if the model is semi- or non-parametric.

Typically, pθ(x) will have the form

pθ(x) =
n∏
i=1

rai(1− r)1−aihai(ti; θ)
1−diSai(ti; θ)gi(ti)

diGi(ti)
1−di , (6.1)
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Figure 6.1: Panel a, reconstructed Kaplan-Meier curves from the CheckMate 141

trial and posterior estimates obtained from the piecewise exponential model (Section

6.6). Panel b, Monte Carlo estimates of the rejection probability of selected tests

(Section 6.7.1). Panel c, results of the robustness analysis (Section 6.7.2). Legend:

permutation, maximum-BEP test of Section 6.5 based on the piecewise exponential

model (highlighted in red); adaptive, adaptive log-rank test of Yang and Prentice

(2010); mantel, classical Mantel’s log-rank test; G0,1, Fleming-Harrington weighted

log-rank test; lagged, lagged-log rank that ignores the first 10% of observed follow-up

times (Zucker and Lakatos, 1990), RMST, test of the difference in restricted mean

survival times (Huang and Kuan, 2018).
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where: r ∈ (0, 1) is the probability of assignment to arm a = 1, ha(t; θ) > 0

is the hazard function of arm a = 0, 1 (for example, in the exponential model,

h(t; θ) = θa, θ = (θ0, θ1) ∈ Θ = (0,+∞)2); Sa(t; θ) = exp
(
−
∫ t

0
ha(s; θ)ds

)
is

the corresponding survival function; finally, gi(t) and Gi(t) are the density and (left-

continuous) censoring function of the i-th patient. Here, the censoring mechanism is

taken as known, a common assumption when planning new experiments (Chow et al.,

2007). We will later discuss that this assumption is not used in the development of

the proposed testing procedure.

We consider the non-parametric null hypothesis H0 : P ∈ P0, where P is the

true data-generating distribution of x (i.e. P (A) is the probability that x ∈ A) and

P0 is the class of all distributions which are invariant with respect to permutations

of the treatment arm assignments. Hence, P ∈ P0 if its likelihood function p(x) is

such that p(t, d, a) = p(t, d, a′) for all a′ obtained by permuting the elements of a.

The alternative hypothesis is instead defined using model (6.1) as H1: P has

density pθ(x) for some θ ∈ Θ1, where Θ1 is a subset of Θ. For example, Θ1 may

include all θ such that h0(t; θ) 6= h1(t; θ), or such that the median of S1(t; θ) is

greater than that of S0(t; θ), or such that the restricted mean survival in arm a = 1

is greater than in arm a = 0 (Royston and Parmar, 2013).

According to this definition of the null hypothesis, regardless of whether the

model pθ(x) is correct or not, when treatment has no effect the treatment assign-

ments a1, . . ., an provide no information about the follow-up times t and censoring

indicators d. Hence, the distribution of the data does not change if these are arbi-

trarily permuted (c.f. Fisher, 1935; Dawid, 1988; Good, 2006; Pesarin and Salmaso,

2010).

This definition covers distributions in which the observations (t1, d1, a1), . . .,

(tn, dn, an) from individual patients cannot be considered independent and identi-

cally distributed. For example, this may happen when recruiters selectively enroll

patients in the trial based on interim analyses or results from other studies published

during the enrollment period, or when treatment effects are confounded by trends

in latent covariates, amendments of inclusion-exclusion criteria, and improvements

in adjuvant therapies (Tamm and Hilgers, 2014). In such cases, if treatment has no

effects we may still expect p(x) to remain invariant if the treatment arm indicators

are permuted.

It is now necessary to choose which α-level test ϕ(x) should be used in the late-
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stage trial. A (randomized) test of H0 is a function ϕ(x) ∈ [0, 1] such that if data x is

observed, thenH0 is rejected with probability ϕ(x) (Lehmann and Romano, 2006). A

test is non-randomized if it can only attain the values 0 and 1 (only non-randomized

tests are used in practice, but here we also consider randomized tests because of

their analytic advantages). The expected value EP [ϕ(x)] =
∫
Xn ϕ(x)dP (x) is equal

to the probability of rejecting H0 with data generated from the distribution P . If

α ∈ (0, 1) and EP [ϕ(x)] ≤ α for all P ∈ P0, then ϕ(x) is said to have level α.

6.4 Bayesian expected power

Different α-level tests are usually compared with respect to their power functions

πϕ(θ) =
∫
ϕ(x)pθ(x)dx or its asymptotic approximations. If ϕ1(x) and ϕ2(x) are

two α-level tests for H0 versus the simple alternative H1 : θ = θ1, for some fixed

θ1 ∈ Θ1, then ϕ1(x) is preferred to ϕ2(x) if πϕ1(θ1) ≥ πϕ2(θ1). Such comparisons

are difficult for composite alternative hypotheses. In fact, uniformly most powerful

α-level tests, i.e. tests achieving the maximum power across all alternative models

θ1 ∈ Θ1, do not necessarily exist (Lehmann and Romano, 2006).

To address this problem, some authors proposed to compare tests with respect to

their average power. Specifically, the average power of a test ϕ(x) is
∫

Θ1
πϕ(θ)p(θ)dθ,

where p(θ) is a distribution weighting each value of θ ∈ Θ based on pre-experimental

information (Spiegelhalter and Freedman, 1986; O’Hagan et al., 2005). With this

metric, two tests are always comparable. Additionally, α-level tests maximizing the

average power always exist, although these may be randomized (Chen et al., 2007).

To allow data xe = (te, de, ae) from an early-stage trial to inform comparisons

between tests, we consider a data-dependent prior p(θ|xe). Several approaches have

been proposed to incorporate historical data in a prior distribution, including power

priors (Ibrahim et al., 2015), meta-analytic priors (Schmid et al., 2016), and com-

mensurate priors (Hobbs et al., 2011). For simplicity, we define p(θ|xe) as the

posterior distribution p(θ|xe) ∝ L(θ;xe)p(θ), where, letting ne be the early-stage

trial sample size,

L(θ;xe) =
ne∏
i=1

hae,i(te,i; θ)
1−de,iSae,i(te,i; θ), (6.2)

while p(θ) is a prior distribution on Θ whose choice depend on the specific application
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context. In doing so, we implicitly assume identical treatment effects and survival

distributions in the early- and late-stage trials.

Extending the average power approach, the Bayesian expected power (BEP) of

ϕ(x) is defined as

BEPϕ =

∫
Θ1

πϕ(θ)p(θ|xe)dθ, (6.3)

a concept first introduced by Brown et al. (1987) and “rediscovered” by several au-

thors (Liu, 2018). It is simple to observe that BEPϕ = Pr(ϕ(x) rejects H0 and θ ∈
Θ1|xe), the probability, conditional on the early-stage data, that ϕ(x) will correctly

reject H0 at end of the late-stage trial. This is often called the probability of success

of the trial (Liu, 2018).

From the point of view of decision theory (Robert, 2007), the BEP is the expected

value of the utility function u(θ, ϕ, x) = I {θ ∈ Θ1}ϕ(x) (if H1 holds, then the utility

increases with the probability ϕ(x) of rejecting H0). Indeed,

BEPϕ =

∫ ∫
u(θ, ϕ, x)pθ(x)p(θ|xe)dxdθ. (6.4)

The problem of choosing which test to apply in the late-stage trial can thus be stated

as a constrained maximization problem (Ventz and Trippa, 2015): among α-level

tests we optimize the BEP.

6.5 Tests maximizing the expected power

We identify an α-level test with maximum Bayesian expected power. Explicit ex-

pressions have been obtained for the case where the set P0 which defines the null

hypothesis (H0 : P ∈ P0) is finite (Chen, 2013). Instead, our choice of H0 includes

all distributions that are invariant with respect to permutations of treatment as-

signment a1, . . ., an. We show that the maximum-BEP test is a permutation test.

This is obtained by computing or approximating the distribution of real-valued test

statistic T (x) across all permutations of the treatment assignments, while the values

of the follow-up times t and censoring indicators d are kept fixed at the observed

values.

To be more formal, for each permutation σ of (1, . . . , n), we denote with aσ =

(aσ(1), . . . , aσ(n)) the vector obtained by re-ordering the elements of a = (a1, . . . , an)

according to σ. Moreover, if T (x) is any real-valued statistics, for each x = (t, d, a)
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we let T (1)(x) ≤ · · · ≤ T (n!)(x) be the ordered values of T (t, d, aσ) as σ varies across

all n! permutations.

The α-level permutation test ϕ(x) of H0 based on the test statistic T (x) can now

be defined as follows. First, let kα = n!−bαn!c, so that, for each x, T (kα)(x) is the (1−
α)-level quantile of T (j)(x) for j = 1, . . . , n!. Second, let M+(x) =

∑n!
j=1 I{T (j)(x) >

T (kα)(x)} and M0(x) =
∑n!

j=1 I{T (j)(x) = T (kα)(x)} be the number of T (j)(x)’s

greater or equal to T (kα)(x), respectively. Then, the permutation test ϕ(x) is defined

by letting ϕ(x) = 1 when T (x) > T (kα)(x), ϕ(x) = 0 when T (x) < T (kα)(x), and

ϕ(x) = (αn!−M+(x))/M0(x) < 1 when T (x) = T (kα)(x). This satisfies the equality

EP [ϕ(x)] = α for all P ∈ P0 (Lehmann and Romano, 2006, Theorem 15.2.1).

Proposition 6.5.1. Let ϕ(x) be the α-level permutation test of H0 : P ∈ P0 based

on the test statistic T (x) = q(x), where q(x) is the density of Q 6∈ P0, Q(A) =∫
A
q(x)dµ(x) for every measurable A, and µ is invariant with respect to permutations

σ assignments a1, . . ., an. If ϕ′(x) is another α-level test of H0, then EQ[ϕ′(x)] ≤
EQ[ϕ(x)], i.e. ϕ(x) has higher power under the alternative H1 : P = Q.

Proof. Let Pµ ⊆ P0 be the set of all distributions dominated by µ that are invariant

with respect to permutations of treatment assignment (a non-empty set, since it

includes q′(t, d, a) =
∑

σ q(t, d, aσ)/n!). By Theorem 2 of Lehmann and Stein (1949),

for every test ϕ′(x) such that EP [ϕ′(x)] ≤ α for all P ∈ Pµ, ϕ(x) guarantees

EQ[ϕ′(x)] ≤ EQ[ϕ(x)]. Now, if ϕ′(x) is an α-level test of H0, then EP [ϕ′(x)] ≤ α for

all P ∈ Pµ and therefore EQ[ϕ′(x)] ≤ EQ[ϕ(x)].

To proceed, let P (H1|xe) =
∫

Θ1
p(θ|xe)dθ > 0 be the prior probability of the

alternative hypothesis H1. Also,

q(x) =

∫
Θ1

pθ(x)
p(θ|xe)
P (H1|xe)

dθ (6.5)

is the density of the predictive distribution of x conditional on θ ∈ Θ1 based on the

early-stage data xe, and Q(A) =
∫
A
q(x)dµ(x). Here, we assume that all densities

pθ(x) are taken with respect to the same dominating measure µ.

Proposition 6.5.2. For any test ϕ(x) of H0 we have BEPϕ = EQ[ϕ(x)], the power

of ϕ(x) against the simple alternative H1 : P = Q. Consequently, a test ϕ(x)

maximizes the BEP among all α-level tests if and only if it maximizes the power

EQ[ϕ(x)] among all α-level tests.
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Proof. By Fubini’s theorem, the BEP of a test ϕ(x) can be written as

BEPϕ =

∫
Θ1

πϕ(θ)p(θ|xe)dθ

=

∫
Θ1

[∫
ϕ(x)pθ(x)dµ(x)

]
p(θ|xe)dθ

=

∫
ϕ(x)

[∫
Θ1

pθ(x)p(θ|xe)dθ
]
dµ(x)

=

∫
ϕ(x)q(x)dµ(x) · P (H1|xe)

= EQ[ϕ(x)] · P (H1|xe).

Without loss of generality, to derive a maximum-BEP test we assume that µ is

invariant with respect to permutations of the treatment assignments.

Using Propositions 6.5.1 and 6.5.2, we can now prove that it is possible to con-

struct a maximum-BEP test which depends on the data x only through the marginal

likelihood

m(x) =

∫
Θ1

L(θ;x)p(θ|xe)dθ. (6.6)

Since m(x) does not depend on the censoring distribution functions Gi(t) which

appear in Equation 6.1, the censoring mechanism is irrelevant to identify the optimal

test. Note, however, that the censoring mechanism still determines the BEP.

Proposition 6.5.3. Given the early-stage data xe, the α-level permutation test based

on the marginal likelihood T (x) = m(x) maximizes the BEP among all α-level tests

of H0.

Proof. By Proposition 6.5.1, the α-level permutation test ϕ′(x) based on the test

statistic T ′(x) = q(x) maximizes the power EQ[ϕ(x)] among all α-level tests of H0.

By Proposition 6.5.2, ϕ′(x) has maximum BEP among all α-level tests of H0. It

now suffices to show that ϕ′(x) = ϕ(x) for all x such that q(x) > 0, where ϕ(x)

is the α-level permutation test based on T (x) = m(x). To do so, note that, by

Equation 6.1, if q(x) > 0, then m(x) > 0 as well, and the ratio q(x)/m(x) is

invariant with respect to permutations of the treatment arm assignments. Indeed,

censoring times and treatment assignments are independent. The thesis now follows

because q(t, d, aσ) ∝ m(t, d, aσ) for all permutations σ.
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Since randomized tests are not used in applications, we will consider the non-

randomized version ϕ′(x) = I
{
m(x) > m(kα)(x)

}
of the test ϕ(x) from Theorem

6.5.3. Since ϕ′(x) ≤ ϕ(x), ϕ′(x) is α-level for H0, although it may not achieve the

maximum BEP. Nevertheless, ϕ′(x) still provide a useful benchmark for other tests of

H0, as its BEP is close to optimal for large n. In fact, in the Appendix, Proposition

6.10.1, we show that, under mild conditions, 0 ≤ BEPϕ − BEPϕ′ ≤ f(α, r, n),

where the bound is a known function such that f(α, r, n) → 0 as n → +∞ for all

fixed levels α and randomization probabilities r. In such cases, a moderate size n is

sufficient to obtain a good approximation.

The non-randomized test ϕ′(x) coincides with the non-randomized procedure

which rejects H0 whenever when the permutation p-value

ppv(x) =
∑
π

I {m(t, d, aπ) ≥ m(t, d, a)} /n!,

is less or equal than α (Lehmann and Romano, 2006, Section 15.2.1). Although

n! will typically be too large to compute the ppv(x) exactly, the benchmark test

can be implemented by a conditional Monte Carlo approximation. Accordingly,

given data x, a large random sample of permutations π1, . . . , πB (B = 103, say) is

used to estimate the ppv(x) as p̂pv(x) =
∑B

i=1 I {m(t, d, aπi) ≥ m(t, d, a)} /B. The

hypothesis H0 is then rejected if p̂pv(x) ≤ α (Pesarin and Salmaso, 2010, Section

1.9.3).

6.6 The piecewise exponential model

To implement our maximum-BEP test, we use a piecewise exponential model (Beni-

chou and Gail, 1990). The hazard function ha(t; θ) is constant over a fixed par-

tition τ0 = 0 < τ1 < · · · < τk < +∞ = τk+1 of the time axis. In particular,

ha(t; θ) = θa,j if t ∈ [τj−1, τj) with j = 1, . . . , k + 1, t ∈ R+, arms a = 0, 1, and

θ = (θ0,1, . . . , θ0,k+1, θ1,1, . . . , θ1,k+1) ∈ Θ = (0,+∞)2(k+1).

The likelihood function of the piecewise exponential model depends on a simple

set of sufficient statistics. Given data x = (t, d, a), let sa,j =
∑n

i=1 max(0,min(τj −
τj−1, ti − τj−1))I{ai = a} be the total time at risk spent in the interval [τj, τj+1) by
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patients in arm a. Additionally, let ya,j =
∑n

i=1 diI{ai = a, τj−1 ≤ ti < τj} be the

number of events observed during [τj−1, τj) in arm a. Then, the likelihood is

L(θ;x) =
1∏

a=0

k+1∏
j=1

θ
ya,j
a,j exp(−θa,jsa,j).

For convenience, we use a conjugate prior p(θ). This is obtained by letting all θa,j

be independent and distributed as a gamma random variable with shape parameter

ua,j and rate parameter va,j. With this choice, the distribution p(θ|xe) presents

independent θa,j components which are gamma distributed with shape parameter

ua,j+ye,a,j and rate parameter va,j+se,a,j, where the ye,a,j and se,a,j are the sufficient

statistics of xe. The marginal likelihood m(x) needed to implement the maximum-

BEP test can thus be obtained explicitly from Equation 6.6:

m(x) =
1∏

a=0

k+1∏
j=1

(
va,j + se,a,j

va,j + se,a,j + sa,j

)ua,j+ye,a,j+ya,j
· Γ(ua,j + ye,a,j + ya,j)

Γ(ua,j + ye,a,j)
, (6.7)

where Γ(z) is the gamma function.

As an example, Figure 6.1a shows the posterior means of the survival probabil-

ities in the nivolumab or SOC arm of CheckMate 141 obtained from the piecewise

exponential model. For all j = 1, . . . , k = 4, we conveniently defined τj to be the j-

th quintile of the distribution of follow-up times in the SOC arm. In different words,

the prior model is chosen by peaking at the early stage trial. Additionally, we spec-

ify gamma priors on the θa,j with ua,j = va,j = 10−3 for all a and j. The posterior

estimates (Figure 6.1a) reflect the delayed separation in the Kaplan-Meier curves,

as the estimated survival probabilities diverge only after 4 months of follow-up.

6.7 Application: trials with delayed treatment ef-

fects

6.7.1 Simulation study

As an illustration, we use CheckMate 141 data to simulate a large number of phase

II and III trials with delayed treatment effects. In these simulations, we compare

different tests with respect to their probability of rejecting the hypothesis of no
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treatment effects at the end of the phase III trial. We consider Mantel’s log-rank

test and several others which account for delayed treatment effects: i) a lagged log-

rank test that ignores the first 10% of observed follow-up times (Zucker and Lakatos,

1990); ii) the Fleming-Harrington G0,1 test, which gives more weight to late events

(Fine, 2007); iii) the adaptive log-rank of Yang and Prentice (2010), which weights

events according to a preliminary estimate of the hazard functions; and iv) a test

of the difference in Restricted Mean Survival Times (RMSTs) across study arms

(Huang and Kuan, 2018). We also implement the maximum-BEP test (using the

conditional Monte Carlo approach of Section 6.5) based on phase II data. For all

tests, we consider α = 0.05 and a two-sided alternative hypothesis.

To simulate a trial of size n, we first sample with replacement n patients from

the CheckMate 141 data. Then, depending on patient’s membership arms, we gen-

erate the corresponding survival times from the Kaplan-Meier curves of Figure 6.1a.

Assuming a maximum follow-up of 15 months, we generate patient’s censoring times

by sampling independently from the empirical censoring distribution (Efron, 1981).

Using this approach, we iterate the following steps 10,000 times: i) we simulate

a phase II trial of approximately half the size of CheckMate 141 (ne = 180); ii)

using the simulated phase II data xe, we determine the marginal likelihood m(x)

for the piecewise exponential model (Equation 6.7); we fix the τjs at the quintiles

of the follow-up times in the SOC arm from xe and specify the same gamma prior

(ua,j = va,j = 10−3) for the parameters θa,j as in Section 6.6; iii) we simulate

a subsequent phase III study, generating a phase III dataset x with sample size

n = 361; iv) we apply the test to data x and record the corresponding accept-reject

decision. The proportion of rejections across iterations is the Monte Carlo estimate

of a test’s rejection probability.

Figure 6.1b reports the estimated rejection probabilities for each testing proce-

dure. The maximum-BEP permutation test based on phase II data has the highest

probability of rejecting the null hypothesis (approximately 0·90). The G0,1 test and

the lagged log-rank test have both estimated rejection probabilities of approximately

0·87. The adaptive log-rank and RMST tests have lower rejection probabilities, 0·77

and 0·66 respectively. Mantel’s log-rank test has the worst performance, with an

estimated rejection probability of 0·60, a third less than the one achieved by our test

and the nominal 90% power in the sample size calculations of CheckMate 141 (Fer-

ris et al., 2016). This finding is consistent with previous studies, which highlighted
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how the log-rank test may suffer a severe loss of power when treatment effects are

delayed (Fine, 2007; Chen, 2013; Alexander et al., 2018).

6.7.2 Robustness analysis

We consider 3 additional simulation scenarios in which the outcome distributions

in phase II and III are not identical. In all scenarios, the distribution of the phase

II data xe is the same as in Section 6.7.1, while the distribution of the phase III

data x is different. In Scenario 1, the dataset x is generated from the predictive

distribution q(x) (see Equation 6.5): a value θ′ is first sampled from p(θ|xe), then x

is generated from the distribution pθ′(x). Here we assume r = 2/3 as in CheckMate

141 and that censoring can only occur after 15 months of follow-up. Proposition 6.5.2

indicates that, in this scenario, our permutation test has the highest expected power.

Scenarios 2 and 3 instead represents two settings in which our test may suffer from a

loss of power. In Scenario 2, x is generated by a different piecewise exponential model

than the one used to construct the benchmark test. The phase III delay in treatment

effects is shorter than expected from phase II data. Specifically, x is generated by

a model with only one cut-point, fixed at τ1 = 2 months, whose parameters are

set equal to the maximum likelihood estimates obtain from CheckMate 141 data.

Scenario 3 is similar, but the cut-point is fixed at τ1 = 8 months to represent longer

phase III delays than those expected from phase II data.

Figure 6.1c shows the results of the robustness analysis. As expected, in Sce-

nario 1 our permutation test has a much higher rejection probability than all other

tests (0·98). Instead, its performance is sub-optimal in Scenario 2 and 3. Although

in Scenario 3 our permutation test may be considered comparable with the others

(rejection probability equal to 0·29), in Scenario 2 it has the lowest rejection prob-

ability (0·84, compared to 0·90 for the Mantel’s log-rank). These findings support

the intuition that the power of the maximum-BEP test depends on how well it is

possible to predict the phase III data on the basis of prior information. If the phase

II and III trial populations are markedly different, then a test specified using phase

II data may perform poorly in the phase III study.
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6.8 Generalization to stratified designs

Treatment effects are often expected to vary across patients’ groups defined, for

example, by gender or biomarkers. In such cases one can stratify patients with

respect to covariates measured before randomization. We focus on the primary goal

of testing whether the experimental treatment has no effects across all strata or if

it is effective at least in some of the strata (alternative hypothesis), for example in

one or multiple subgroups defined by a relevant biomarker (Freidlin et al., 2010).

The approach that we discussed can be easily generalized to this setting. For

simplicity, we consider the case where each patient i = 1, . . . , n is categorized by a

binary covariate zi = 0, 1, presence (zi = 1) or absence (zi = 0) of a specific marker.

Data x thus becomes x = (t, d, a, z), where z = (z1, . . . , zn) ∈ {0, 1}n. Similar to the

previous paragraphs we assume that censoring is non-informative and independent

of treatment assignments conditionally on z1, . . . , zn (Heitjan and Rubin, 1991).

To illustrate, we specify a piecewise-exponential model ha(t; θ, z) for the hazard

function in arm a = 0, 1 for patients with marker level z = 0, 1 (Freidlin et al.,

2010): ha(t; θ, z) = θa,z,j for all t ∈ [τj−1, τj). The prior remains nearly identical to

the previous sections. In particular, the marginal likelihood m(t, d, a, z), similar to

Equation 6.6, has a closed form expression.

We specify the null hypothesis H0 : P ∈ P ′0, where P ′0 is the class of all distribu-

tions which are invariant with respect to permutations of the treatment assignment

a within the two z groups. More precisely, P ∈ P ′0 if and only if p, the density of

P , satisfy p(t, d, a, z) = p(t, d, aσ, z) for all permutations σ of (1, . . . , n) such that

zσ(i) = zi for all i = 1, . . . , n.

With a simple modification, Proposition 6.5.3 still holds with this new defini-

tion of the null hypothesis. Previously, the maximum-BEP permutation test com-

puted the distribution of m(x) under H0 by considering all permutations of the

treatment arm indicators a1, . . . , an. In the stratified case, only permutations σ of

(1, . . . , n) such that zσ(i) = zi for all i = 1, . . . , n are considered. If Σ(z) is the

set of all such σ, then the permutation p-value associated to the maximum-BEP

test is given by ppv(x) =
∑

σ∈Σ(z) I{m(t, d, aσ, z) ≥ m(t, d, a, z)}/|Σ(x)|, where

|Σ(z)| = (
∑n

i=1 zi)!(n−
∑n

i=1 zi)!.

To provide an example, we simulate 10,000 phase II (ne = 180) and phase III

(n = 361) trials from CheckMate 141 data in a similar way as in Section 6.7.1.
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Differently than in Section 6.7.1, in every trial 50% of patients express (zi = 1) a

biomarker predictive of treatment effects (Patel and Kurzrock, 2015). The survival

time of a patient in arm a = 0 or with marker z = 0 is generated from the SOC

Kaplan-Meier curve in Figure 6.1a. Instead, the survival time of a patient in arm

a = 1 with marker z = 1 is generated from the nivolumab Kaplan-Meier curve in

Figure 6.1a. Censoring times are generated as in Section 6.7.1

In each simulated phase III trial, we tested H0 in three ways: i) we carried out

a test based on the stratified Cox proportional hazards model (a common approach

in this setting; c.f. Mehrotra et al., 2012); ii) we performed separate log-rank test

in the two marker strata and combined the results using the Bonferroni correction

(another common approach; c.f. Freidlin et al., 2014); iii) we implemented our

maximum-BEP test using the simulated phase II data. Respectively, the estimated

rejection probabilities are 0·18 for the stratified Cox model, 0·26 for the Bonferroni-

based test, and 0·49 for our permutation test. These results confirm a substantial

benefit in the use of prior data to optimize hypothesis testing.

6.9 Discussion

Data from previous studies should be routinely used to design of late-stage clinical

trials. This is especially relevant when standard assumptions, such as the propor-

tional hazards assumption, might not hold. Our approach allows to specify a test

for final analyses that accounts for the deviations from proportional hazards sug-

gested by prior data and satisfies the requirements of regulatory agencies (Ventz and

Trippa, 2015). The test maximizes a decision-theoretic criteria leveraging on prior

data and it is of α-level for an interpretable null hypothesis.

To implement our permutation test, it is necessary to compute the marginal

likelihood of the late-stage data. This may be complicated for non-conjugate models.

However, many computational methods are available to approximate it (Friel and

Wyse, 2012; Pajor et al., 2017).

Although we derived our test assuming a single early-stage dataset, the use of

multiple sources of prior data may provide better outcome predictions for late-stage

trials. Our approach can incorporate multiple prior datasets using power priors

(Ibrahim et al., 2000) or hierarchical models (Spiegelhalter et al., 2004).

Our simulations, based on data from the CheckMate 141 trial, confirm that
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weighted log-rank tests can outperform other tests in presence of delayed treatment

effects. However, these tests depend on a set of tuning parameters, such as the

duration of the lag time for lagged log-rank tests or the ρ and δ coefficients of the

Gρ,δ Fleming-Harrington family, which may be hard to tune. Instead, our approach

directly translates early-stage data into a test procedure for the late-stage trial.

Robustness analyses highlight how the performance of our approach is depen-

dent on the consistency of outcome data and the similarity of enrolled populations

between phase II and phase III trials. Ensuring the transportability of results to

subsequent trials remains a major concern in the design of exploratory clinical trials

(Wang et al., 2006).

6.10 Appendix

Denote with Π(x) the set of all
(

n∑n
i=1 ai

)
distinct datasets obtained from x = (t, d, a)

by permuting the elements of a in all possible ways. Here, we will assume that when

q(x) > 0 the inequality m(x1) 6= m(x2) holds for all x1, x2 ∈ Π(x) such that x1 6= x2.

Proposition 6.10.1. Let ϕ(x) be the α-level permutation test of Proposition 6.5.3

and ϕ′(x) its non-randomized version. Then

0 ≤ BEPϕ −BEPϕ′ ≤ f(α, r, n) =
(1− r)n

α

n∑
s=0

(
r

1− r

)s
Proof. By Proposition 6.5.2, 0 ≤ BEPϕ − BEPϕ′ = EQ[ϕ(x) − ϕ′(x)] ≤ Q(E),

where E is the set of all x such that m(x) = m(kα)(x). Proceeding as in Section 5.9

of Lehmann and Romano (2006),

Q(E) =

∫ ∑
σ I
{
m(t, d, aσ) = m(kα)(x)

}
q(t, d, aσ)∑

σ q(t, d, aσ)
dQ(x), (6.8)
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where both sums extend over all n! permutations σ of (1, . . . , n). If q(x) > 0, then∑
σ I
{
m(t, d, aσ) = m(kα)(x)

}
q(t, d, aσ)∑

σ q(t, d, aσ)
=

=

∑
σ I
{
m(t, d, aσ) = m(kα)(x)

}
m(t, d, aσ)∑

σm(t, d, aσ)

≤
∑

σ I
{
m(t, d, aσ) = m(kα)(x)

}
m(t, d, aσ)∑

σ I {m(t, d, aσ) ≥ m(kα)(x)}m(t, d, aσ)

≤
∑

σ I
{
m(t, d, aσ) = m(kα)(x)

}
m(kα)(x)∑

σ I {m(t, d, aσ) ≥ m(kα)(x)}m(kα)(x)

=

∑
σ I
{
m(t, d, aσ) = m(kα)(x)

}∑
σ I {m(t, d, aσ) ≥ m(kα)(x)}

=
#{j : m(j)(x) = m(kα)(x)}
#{j : m(j)(x) ≥ m(kα)(x)}

,

where the first equality follow because the ratio q(x)/m(x) is invariant with respect

to permutations σ of a. Now, by the definitions of m(kα)(x) and kα, the denumerator

of the last fraction is greater or equal than αn!. Instead, the numerator is equal to

n!/
(

n∑n
i=1 ai

)
, as i) m(kα)(x) = m(xα) for some xα ∈ Π(x), ii) for each x′ = (t, d, a′) ∈

Π(x) there are exactly n!/
(

n∑n
i=1 ai

)
permutations σ such that x′ = (t, d, aσ), and iii)

m(x) assumes distinct values on distinct points of Π(x), by assumption. Thus, by

Equation 6.8,

Q(E) ≤ EQ

[
1(
n∑n
i=1 ai

)
α

]
=

n∑
s=0

1(
n
s

)
α

(
n

s

)
rs(1− r)n−s = f(α, r, n).

This concludes the proof.

In general, the approximation provided by Proposition 6.10.1 will be fairly ac-

curate. For example, if α = 0.05 and r = 1/2, the difference f(α, r, n) between

BEPϕ and BEPϕ′ is 2−n(n + 1)/α < 10−3 for all n ≥ 15. For r 6= 1/2 it is

f(α, r, n) = [(1 − r)n+1 − rn+1]/α(1 − 2r); for r = 2/3, the value considered in

Section 6.7, f(α, r, n) < 10−3 for all n ≥ 25.

6.11 Available code

I developed R functions to implement the maximum-BEP test of Section 6.5 based

on the piecewise-exponential model of Section 6.6. The functions are available,
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together with code to reproduce the results of Section 6.7, at https://github.

com/andreaarfe/Bayesian-optimal-tests-non-PH.

https://github.com/andreaarfe/Bayesian-optimal-tests-non-PH
https://github.com/andreaarfe/Bayesian-optimal-tests-non-PH


114

Chapter 7

Concluding remarks

Both the design and data analysis phase are fundamental for the success of biomed-

ical research studies (Fisher et al., 1997; Cox and Donnelly, 2011). In my doctoral

research, I aimed to contribute to both phases. I developed novel Bayesian meth-

ods for the design and analysis of complex follow-up studies. My interest in the

Bayesian paradigm stems for its great usefulness in this setting (Berry and Stangl,

1996; Spiegelhalter et al., 2004; Johnson and de Carvalho, 2015).

During my PhD I developed novel Bayesian approaches to i) model competing

risks data, iii) analyze multi-state survival processes, and ii) design of clinical trials

with a survival endpoint. The Bayesian perspective was fundamental in each of this.

The Bayesian non-parametric paradigm provided me a fresh perspective on modeling

complex data without the need for restrictive parametric assumptions (Hjort et al.,

2010; Phadia, 2013; Ghosal and van der Vaart, 2017). In addition, the Bayesian

paradigm is a natural and effective approach to incorporate data from prior studies

in the design of new experiments (Spiegelhalter et al., 2004; Ventz and Trippa, 2015).

Like any Bayesian approach, the methods I developed in this thesis require the

specification of prior distributions for model parameters (e.g. the hyper-parameters

of the competing-risks regression model in Chapter 4). Ideally, their specification

should be based on past data (e.g. as done in Section 4.7.2 for the Weibull regression

coefficients), subject-matter knowledge, or expert opinion (Garthwaite et al., 2005;

Schmidli et al., 2014; Ibrahim et al., 2015; Kessler et al., 2015). In practice, however,

sometimes it may be useful to consider “reference” or “weakly informative” choices

(Kass and Wasserman, 1996; Evans and Jang, 2011; Gelman et al., 2013).
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In practice, it is often necessary to evaluate the sensitivity of the obtained results

with respect to the considered prior distributions, which may be hard to specify

precisely Berger, 2013, Section 4.7. Arbitrary or inaccurately specified priors may

have an unduly influence on the results (Senn, 2007). The sensitivity of inferences

can be assessed by repeating inferences using different prior distributions (Berger,

2013, Section 4.7). To this aim, Besag et al. (1995) detailed an importance-sampling-

based approach for assessing prior sensitivity.

I now provide a brief description of future work related to the papers presented

in this thesis. In Sections 4.8 and 5.9 above I have already highlighted some future

developments related to the papers in Chapters 4 and 5, so I consider them here

again only briefly.

With respect to Chapters 4 and 5, I am planning further simulation studies to

better appreciate the behavior of the proposed models in comparison with available

alternatives under different setups. Several regression models for competing risks

data are available in the literature (Crowder, 2012), while Barbu and Limnios (2009)

describe a frequentist approach for inference with discrete-time semi-Markov data.

In the simulations, methods will be compared with respect to different loss functions

(e.g. the classical square error loss; c.f. Berger, 2013) for the problem of estimating

relevant model quantities (e.g. the subdistribution function for competing risks, the

transition matrix for semi-Markov data).

In a similar vein, I am extending the simulation study of the third paper (Chap-

ter 6) to understand how the piecewise exponential model behaves in different con-

text other than the one characterized delayed treatment effects. Simulations will

compare the power of the proposed testing procedure under common patterns of

non-proportional hazards (e.g. crossing survival curves; Logan et al., 2008).

I am also generalizing the approach of Chapter 6 using Bayesian non-parametric

models in place of the piecewise exponential model. Conceptually, this is possible

because the results of Chapter 6 do not require a trial’s data-generating distribution

to be characterized by a finite-dimensional vector of parameters (c.f. Section 6.3).

The proposed approach hinges only the ability to compute the predictive distribution

of the new data x conditional on the past data xe and the truth of the alternative

hypothesis of interest. For example, this may be feasible (at least numerically) for

models based on the conjugate beta-Stacy process (c.f. 2.3) or Dirichlet Mixture

Processes (Antoniak, 1974; Kottas et al., 2005; Ishwaran and James, 2001). For
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the former, the predictive distributions can potentially be computed exactly (c.f.

Proposition 2.3.1 and the generalization in Section 4.6.1 for discrete competing risks

data). For the latter, the predictive distribution can be computed using an approach

similar to that of Maceachern and Muller (1998).

I addition, I am extending the procedure of Chapter 6 to other hypothesis test-

ing problems (including tests for non-survival outcomes). Motivated by the problem

of testing for treatment effects in a randomized clinical trial, there I considered a

non-parametric null hypothesis H0 defined by a condition of invariance (c.f. Section

6.3). For this specific H0, it was possible to identify a statistical test with maximum

Bayesian expected power using the results of Lehmann and Stein (1949). Results

analogous of those in Chapter 6 could potentially be obtained for some other hy-

potheses - e.g. based on a specific model pθ(x), with test for H0 : θ ∈ Θ0 - but

may require different proof techniques. I am currently developing analogous re-

sults for single-sample and multi-sample testing problems with general (survival or

non-survival) outcome variables.

I will also generalize the approach from Chapter 6 to the design of group-

sequential clinical trials based on alternative utility functions (Lewis and Berry,

1994; Bartroff et al., 2012). In this context, data from previous experiments can

inform the specification of early stopping rule to accelerate the course of a trial.

Evidence of non-proportional hazards from early-stage trials can be used to specify

stopping rules for futility or efficacy in confirmatory trials with a survival end-point,

a relevant issue for immuno-oncology trials with delayed treatment effects (Zhang

and Pulkstenis, 2016).

Finally, starting from developed code (c.f. Sections 4.10 and 6.11), I plan to

develop user-friendly R libraries to implement the proposed competing risks regres-

sion model (Chapter 4) and maximum-BEP piecewise exponential test for censored

data (Chapter 6). Free open-source code will be available on-line (e.g. at the Com-

prehensive R Archive Network; https://cran.r-project.org/web/packages/) to

promote the use of Bayesian methods in applications.

https://cran.r-project.org/web/packages/
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Chapter 8

Appendix: other research

During my doctoral studies, I have been working as a visiting research at the Data

Science Department of the Dana-Farber Cancer Institute, Boston, Massachusetts

(U.S.A.). There, I contributed to several applied research projects, some of which

led to the preparation of 3 manuscripts, 1 accepted for publication and 2

currently under review in biomedical journals. I describe them briefly below (I

omit their full texts here since these are applied works).

Rahman R, Fell G, Ventz S, Arfè A, Vanderbeek A, Trippa L, Alexander B. De-

viation from the proportional hazards assumption in randomised phase 3 oncology

clinical trials: prevalence, associations, and implications. (Clinical Cancer Research

2019, forthcoming. On-line pre-print: https: // clincancerres. aacrjournals.

org/ content/ early/ 2019/ 07/ 25/ 1078-0432. CCR-18-3999 )

Deviations from proportional hazards, which may be more prevalent in the era

of precision medicine and immunotherapy, can lead to under-powered trials or mis-

leading conclusions. We used a meta-analytic patient-level approach to estimate

deviations from proportional hazards across cancer trials, investigate associated fac-

tors, and evaluate alternative analytic approaches for future trial designs. From

152 oncology trials, we obtained data on 129,401 patients, which we re-analyzed

to evaluate Deviations from proportional hazards and specific alternative statisti-

cal procedures. Among the included trials, 75 (24.7%) exhibited evidence of non-

proportional hazards. We found non-proportional hazards were more common for

https://clincancerres.aacrjournals.org/content/early/2019/07/25/1078-0432.CCR-18-3999
https://clincancerres.aacrjournals.org/content/early/2019/07/25/1078-0432.CCR-18-3999
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cancer immunotherapy trials and trials with composite endpoints (e.g. progression

free survival). For the design and analysis of oncology trials, we provide quantitative

justification for the use of statistical methods that do not rely on the proportional

hazards assumption.

Arfè A, Fell G, Alexander B, Awad M, Rodig S, Trippa L. Pooled analysis of

Programmed Death Factor Ligand 1 expression as a predictive biomarker using in-

dividual data on 7,918 randomized study patients. (Submitted manuscript.)

Programmed Cell Death Factor Ligand 1 (PD-L1) expression is one of the most

studied biomarkers to predict the efficacy of immune checkpoint inhibitors (ICIs),

but its clinical significance is controversial. In this study, we reconstructed, pooled,

and analyzed individual-level data on 7,918 cancer patients from 14 randomized clin-

ical trials. We estimated i) the distribution of PD-L1 expression scores (i.e. tumor

proportion score or combined proportion score), and ii) the relationship between

PD-L1 levels and ICIs’ impact on overall survival (OS). ICIs’ effects were quantified

using differences in 24-months restricted mean survival times, i.e. the increase in

2-years life expectancy associated with ICI therapy. In a simulation study, we show

how estimates of the distribution of PD-L1 scores and PD-L1-specific treatment ef-

fects like ours can be used to improve future trials designs to detect ICIs’ benefits.

Our findings suggest that the practice of dichotomizing the range of PD-L1 expres-

sion scores is inadequate for patient stratification.

Spring LM*, Fell G*, Arfè A*, Sharma C, Greenup R,

Reynolds KL, Smith BL, Alexander B, Moy B, Isakoff SJ, Parmigiani G, Trippa

L, Bardia A. Pathological complete response after neoadjuvant chemotherapy and

impact on breast cancer recurrence and survival: a comprehensive meta-analysis.

*Co-primary author. (Submitted manuscript.)

This paper deals with the use of pathological complete response (pCR) as a sur-

rogate outcome to accelerate the clinical evaluation of breast cancer therapies in

the neo-adjuvant setting. While the prognostic significance of pathological complete

response (pCR) after neoadjuvant chemotherapy is relatively well established, the

impact of adjuvant therapy in modulating the relationship between pCR and long
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term outcomes is less clear. To assess the association between pCR and survival,

we extracted patient-level data for over 20,000 breast cancer patients from 52 ran-

domized clinical trials of novel neoadjuvant therapies. We quantified the association

between pCR and survival using Bayesian hierarchical models for censored data,

including pCR as a predictor. Our results suggest that achieving pCR following

neoadjuvant chemotherapy is associated with significantly improved survival, par-

ticularly for triple negative and HER2+ breast cancer. Our results also suggest that

adjuvant chemotherapy could potentially be abbreviated in certain circumstances.
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Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suarez, C. and Andersen, P. K.

(2009) Multi-state models for the analysis of time-to-event data. Statistical meth-

ods in medical research, 18, 195–222.

Mezzetti, M., Muliere, P. and Bulla, P. (2007) An application of reinforced urn

processes to determining maximum tolerated dose. Statistics & probability letters,

77, 740–747.

Mihram, G. A. and Hultquist, R. A. (1967) A bivariate warning-time/failure-time

distribution. Journal of the American Statistical Association, 62, 589–599.

Mira, A. and Petrone, S. (1996) Bayesian hierarchical nonparametric inference for

change-point problems. In Bayesian Statistics (eds. J. M. Bernardo, J. Berger,

A. Dawid and A. Smith), no. 5, 693–703. Oxford University Press.

Mitchell, C., Hudgens, M., King, C., Cu-Uvin, S., Lo, Y., Rompalo, A., Sobel, J. and

Smith, J. (2011) Discrete-time semi-Markov modeling of human papillomavirus

persistence. Statistics in medicine, 30, 2160–2170.

Mitra, R. and Müller, P. (2015) Nonparametric Bayesian Inference in Biostatis-

tics. Frontiers in Probability and the Statistical Sciences. Springer International

Publishing.

Muliere, P., Paganoni, A. M. and Secchi, P. (2006) A randomly reinforced urn.

Journal of Statistical Planning and Inference, 136, 1853–1874.

Muliere, P. and Petrone, S. (1993) A Bayesian predictive approach to sequential

search for an optimal dose: parametric and nonparametric models. Statistical

Methods & Applications, 2, 349–364.

Muliere, P. and Scarsini, M. (1985) Change-point problems: A and Bayesian non-

parametric approach. Aplikace Matematiky, 30, 397–402.

Muliere, P., Secchi, P. and Walker, S. (2000) Urn schemes and reinforced random

walks. Stochastic Processes and their Applications, 88, 59–78.

— (2005) Partially exchangeable processes indexed by the vertices of a k-tree con-

structed via reinforcement. Stochastic processes and their applications, 115, 661–

677.



133

Muliere, P., Secchi, P. and Walker, S. G. (2003) Reinforced random processes in

continuous time. Stochastic Processes and their Applications, 104, 117–130.

Muliere, P. and Walker, S. (2000) Neutral to the right processes from a predictive

perspective: a review and new developments. Metron, 58, 13–30.

Müller, P., Berry, D. A., Grieve, A. P., Smith, M. and Krams, M. (2007) Simulation-

based sequential bayesian design. Journal of statistical planning and inference,

137, 3140–3150.

Müller, P. and Mitra, R. (2013) Bayesian nonparametric inference–why and how.

Bayesian Analysis, 8, 269–302.

Müller, P., Quintana, F., Jara, A. and Hanson, T. (2015) Bayesian Nonparametric

Data Analysis. Springer Series in Statistics. Springer International Publishing.

Nakagawa, T. and Osaki, S. (1975) The discrete weibull distribution. IEEE Trans-

actions on Reliability, 24, 300–301.

Ng, K. W., Tian, G.-L. and Tang, M.-L. (2011) Dirichlet and related distributions:

Theory, methods and applications. Chichester, England: John Wiley & Sons.

Nieto-Barajas, L. E. and Walker, S. G. (2002) Markov beta and gamma processes

for modelling hazard rates. Scandinavian Journal of Statistics, 29, 413–424.

O’Hagan, A., Stevens, J. W. and Campbell, M. J. (2005) Assurance in clinical

trial design. Pharmaceutical Statistics: The Journal of Applied Statistics in the

Pharmaceutical Industry, 4, 187–201.

Orbanz, P. and Roy, D. M. (2015) Bayesian models of graphs, arrays and other

exchangeable random structures. IEEE transactions on pattern analysis and ma-

chine intelligence, 37, 437–461.

Paganoni, A. M. and Secchi, P. (2004) Interacting reinforced-urn systems. Advances

in applied probability, 36, 791–804.

Pajor, A. et al. (2017) Estimating the marginal likelihood using the arithmetic mean

identity. Bayesian Analysis, 12, 261–287.



134

Parmigiani, G. and Inoue, L. (2009) Decision Theory: Principles and Approaches.

Wiley Series in Probability and Statistics. Wiley.

Patel, S. P. and Kurzrock, R. (2015) Pd-l1 expression as a predictive biomarker in

cancer immunotherapy. Molecular cancer therapeutics, 14, 847–856.

Patwardhan, A. S., Kulkarni, R. B. and Tocher, D. (1980) A semi-Markov model

for characterizing recurrence of great earthquakes. Bulletin of the seismological

society of America, 70, 323–347.

Peluso, S., Chib, S., Mira, A. et al. (2018) Semiparametric multivariate and multiple

change-point modeling. Bayesian Analysis.

Peluso, S., Mira, A. and Muliere, P. (2015) Reinforced urn processes for credit risk

models. Journal of Econometrics, 184, 1–12.

Peluso, S., Mira, A., Muliere, P. et al. (2017) Learning vs earning trade-off with

missing or censored observations: The two-armed bayesian nonparametric beta-

stacy bandit problem. Electronic Journal of Statistics, 11, 3368–3406.

Pemantle, R. (1988) Random processes with reinforcement. Ph.D. thesis, Massachus-

sets Institute of Technology.

— (2007) A survey of random processes with reinforcement. Probabability Surveys,

4, 1–79.

Pesarin, F. and Salmaso, L. (2010) Permutation Tests for Complex Data: Theory,

Applications and Software. Wiley Series in Probability and Statistics. Wiley.

Phadia, E. G. (2013) Prior processes and their applications. New York: Springer.

Phelan, M. J. (1990) Bayes estimation from a Markov renewal process. The Annals

of Statistics, 18, 603–616.

Phillips, A. and Haudiquet, V. (2003) Ich e9 guideline ‘statistical principles for

clinical trials’: a case study. Statistics in medicine, 22, 1–11.

Pintilie, M. (2006) Competing risks: a practical perspective. Chichester, England:

John Wiley & Sons.



135

Pitman, J. (1996) Some developments of the blackwell-macqueen urn scheme. Statis-

tics, Probability, and Game Theory: Papers in Honor of David Blackwell, 30, 245.

Putter, H., Fiocco, M. and Geskus, R. (2007) Tutorial in biostatistics: competing

risks and multi-state models. Statistics in Medicine, 26, 2389–2430.

Rigat, F. and Muliere, P. (2012) Nonparametric survival regression using the beta-

Stacy process. Journal of Statistical Planning and Inference, 142, 2688–2700.

Robert, C. (2007) The Bayesian Choice: From Decision-Theoretic Foundations to

Computational Implementation. Springer Texts in Statistics. Springer New York.

Robert, C. and Casella, G. (2004) Monte Carlo Statistical Methods. Springer Texts

in Statistics. New York: Springer, 2nd edn.

Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A.,

Stroiakovski, D., Lichinitser, M., Dummer, R., Grange, F., Mortier, L. et al.

(2015) Improved overall survival in melanoma with combined dabrafenib and

trametinib. New England Journal of Medicine, 372, 30–39.

Royston, P. and Parmar, M. K. (2013) Restricted mean survival time: an alternative

to the hazard ratio for the design and analysis of randomized trials with a time-

to-event outcome. BMC Medical Research Methodology, 13, 152.

Ruggiero, M. and Walker, S. G. (2009) Bayesian nonparametric construction of the

fleming-viot process with fertility selection. Statistica Sinica, 707–720.
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