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Abstract. In recent years statistical physics has proven to be a valuable tool
to probe into large dimensional inference problems such as the ones occurring
in machine learning. Statistical physics provides analytical tools to study funda-
mental limitations in their solutions and proposes algorithms to solve individual
instances. In these notes, based on the lectures by Marc Mézard in 2022 at the
summer school in Les Houches, we will present a general framework that can be
used in a large variety of problems with weak long-range interactions, including
the compressed sensing problem, or the problem of learning in a perceptron.
We shall see how these problems can be studied at the replica symmetric level,
using developments of the cavity methods, both as a theoretical tool and as an
algorithm.
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1. Introduction

Equilibrium statistical physics that explores high-dimensional probability distributions,
has significantly evolved over the past fifty years due to advances in the theory of dis-
ordered systems. This has led to its application across a wide spectrum of problems.
Our discussion will initially focus on two illustrative examples: one from the field of
machine learning and the other from information processing, both of which exemplify
this category. Subsequently, we will describe a broader class of problems that not only
incorporate the above examples, but also a variety of other scenarios involving numerous
variables engaging in weak long-range interactions. We will systematically detail how
this inclusive set of problems can be examined at replica symmetric level. This examina-
tion employs the cavity method, alternatively known as belief propagation (BP), which
gives rise to a suite of algorithms referred to as approximate message passing (AMP).
We will provide an in-depth discussion on how numerous problems, which typically
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require an exponential computational expense relative to the number of variables, can
be addressed more efficiently with polynomial complexity using these techniques.

1.1. An example from machine learning: the generalized perceptron in ridge regression
setting

How can one address some issues of machine learning problems using techniques inspired
by physics? We first give a simple example of that in an emblematic setting: the gen-
eralized perceptron solving a ridge regression task. The problem can be summarised as
follows: assume you have a dataset D of P samples D = {yµ,Fµ}µ=1,...,P , being Fµ the
N -dimensional data while yµ the set of labels for these. The generative recipe according
to which data are labelled can be enforced by introducing some ‘teacher’ structure. In
practice, for each data point Fµ, the teacher generates the label according to the rule

yµ = ϕ(Fµ ·x*)+ ηµ (1)

where ϕ(·) is called activation function while x* are the parameters that characterize
the teacher. We have also incorporated some random Gaussian noise in the expression
by adding ηµ ∼N (0,∆2), which models the situation in which it is possible for the
student to infer the teacher rule even if it is corrupted independently of the examples.
A simple way to rephrase the problem is that the student network with parameters x
would like to recover the parameters x* of the teacher by minimising an error function
E(x,D)

min
x
E (x,D) = min

x

[∑
µ

(yµ−ϕ(Fµ ·x))2+V (x)

]
(2)

which measures the average squared difference between the actual and predicted values
of the labels for each patterns. Precisely, in the expression (2), the first term pushes the
student vector x to learn the generative process while the second one, commonly called
regularisation, restricts the space of parameters that x can take. The function ϕ(·) is
usually non-linear and depending on the task may reduce to commonly used versions:
the sign(x) in the standard perceptron case, while generalised variations can account
for smoother version like tanh(·) or sparsity-enhancing functions like the rectified linear
unit ReLU(x) = max(0,x). We refer to [1] for an introduction to perceptrons with a
statistical physics perspective.

Given the prescription, we can reformulate the learning problem in a probabilistic
setting as Bayesian estimation: extract Fµ ∼ PF, x*∼ P x and generate {yµ} through
the process (1), then given D the objective is to recover x that minimises on average
the error function E(x,D) using the posterior probability

P (x |D) = lim
β→∞

1

Z
e−βE(x,D) (3)

and given some prior distribution that is factorized on the parameters
∏

i Px(xi).
Resorting to a statistical mechanics formulation of the problem, this is the well-known

https://doi.org/10.1088/1742-5468/ad292e 3
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Figure 1. A binary alloy crossed by a measurement ray.

Boltzmann distribution and we can think of the parameters of our model as the ‘spin’
variables while the β parameter is the inverse of temperature. In practice, β controls
the distribution over the parameters, that in the limit β→∞ will concentrate on the
values that minimise the error function for a fixed instance of the problem. We will
typically study the high-dimensional regime where Fµ is of dimension N ≫ 1. The ther-
modynamic limit is defined by taking a large number of samples P ≫ 1, keeping the
density of constraints α= P/N finite.

The dataset plays the role of the quenched disorder in the system, and motivates the
use of techniques from spin glass physics to deal with the problem setting, e.g. replica
or cavity methods [2, 3]. Precisely, the typical questions in machine learning are then
equivalent to questions one asks in physics: computing the optimal error is equivalent to
finding the ground state energy and finding an efficient algorithm to reach the optimal
configuration is equivalent to having an efficient sampling procedure.

1.2. An example from information theory: compressed sensing

Compressed sensing [4, 5] is another interesting problem in information theory and sig-
nal processing where we can apply the standard workflow of statistical physics [6]. It has
found numerous applications, including image and video compression, medical imaging
or spectral analysis and it is based on the simple idea that, through optimization, the
sparsity of a signal can be exploited to recover it from far fewer samples than required
by the Nyquist-Shannon sampling theorem. Indeed, in many practical applications, sig-
nals are sparse or compressible in a known basis or dictionary, meaning that they can
be accurately represented with only a few non-zero coefficients.

With that insight in mind, let us start by a simple physical example which is a
problem of tomography. Imagine you are studying a 2D binary alloy like the one in
figure 1 which would be a slice of a three-dimensional material. This is an object that
is made of two materials: A and B. We can give a geometrical description of the alloy
by defining it as a compact region such that to each point in the interior is given a
binary value in {0,1} that will tell whether it is made of material A or B. The task is
to describe the interior of the alloy non-destructively.

To do so we can use synchrotron light: if we shine a ray of light across the material
we can measure how much the intensity decreases between the entrance and exit points
of the ray in the alloy. We assume that yhe light is absorbed differently by the two
materials, each measurement will essentially give a ratio of portions of material A over
B along the ray.

https://doi.org/10.1088/1742-5468/ad292e 4
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The alloy we are going to study will have typical size L and let us suppose our light
device is able to see pixels of size a≪ L. This means there will be a total of N ∝ (L/a)2

pixels, so the maximal entropy, defined as the number of possible alloys that our device
can measure is in principle S ∝N log2 given that the model is binary. We thus expect
to fully recover our information about the alloy by doing approximately a number N
measurements, for example by measuring in parallel L/a parallel rays, each for L/a
different orientations. This is the standard way of analysing a sample: we measure the
absorption along (L/a)2 rays, and reconstruct the composition by a Radon transform.

However, having some information on the alloy allows to devise some more clever
strategies. If for example the alloy is made of mostly material A with some spots of
material B with characteristic length ζ, we know that the number of possible samples
is much reduced and the entropy is of order (L/ζ)2 which is much less than (L/a)2. In
such a case we can proceed with the measurements in a more efficient way.

It should therefore be clear that the length ζ indicates the difficulty of our problem:
if ζ ≈ a the spots are too small to be seen and we are in the case without information, so
the object is hard to analyse but we cannot do better than the naive procedure. Instead,
if ζ ≈ L the object is almost homogeneous so the problem is easy. The intermediate case
a≪ ζ ≪ L is the most interesting.

This problem of tomography can be studied (see [7]), but it is somewhat complicated
and requires some approximations. So we will introduce here a simplified version which
can be solved in all detail. This will allow us to understand the basic mechanisms of
compressed sensing. We now have N variables xi, generated with a factorized prior
measure Px(x) =

∏
i Px(xi) which would have the role of describing our sample of alloy.

As before, we do not know the variables but we perform P independent measurements
obtaining different results {yµ} derived from the protocol

yµ =
∑
i

Fµixi + ηµ = Fµ ·x+ ηµ. (4)

So, in the simplified version of the problem, we know the apparatus Fµ = {Fµi} that
is a N -component vector such that the measurement number µ is the projection onto
Fµ being i the index of the pixels, and ηµ ∼N (0,∆2) the white noise corrupting the
information to be recovered. Then, the probability of obtaining a measurement yµ given
a certain alloy configuration x is simply

P (yµ|x) = 1√
2π∆2

exp

{
−(yµ−Fµ ·x)2

2∆2

}
. (5)

In a Bayesian approach, we must combine this probability, obtained from the meas-
urements, together with a prior that describes our a-priori knowledge (for instance, it
could be a binary distribution in the binary alloy setting). Using Bayes theorem we get
the posterior probability or Boltzmann measure

P (x|{yµ}) = 1

Z
Px (x) exp

{
− 1

2∆2

P∑
µ=1

(yµ−Fµ ·x)2
}
. (6)

https://doi.org/10.1088/1742-5468/ad292e 5
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We have thus written the compressed sensing problem in a way that is amenable
to statistical physics tools. Given a measurement device Fµ, and the results of the
measurements yµ, we need to study the probability (6) over the possible compositions
x of the variables. We could aim either at sampling from this probability, or at finding
the most probable composition x. Note that this is a complicated problem as we are
looking at a probability in a large dimensional space. Furthermore it is a disordered
system, since the probability depends on a number of parameters Fµ and yµ which is
of order N.

For practical reconstruction we need to address the algorithmic problem of studying
the probability (6) for a given set of Fµ and yµ. On the other hand, in order to gain some
insight, we might want to study analytically cases in which Fµ is obtained from a random
ensemble. This will allow us to study the ultimate information-theoretic reconstruction,
as well as the performance of classes of algorithms, for typical cases of Fµ. For instance,
it is natural to consider Fµ as sparse random vectors extracted independently from a
distribution PF.

Let us focus first on the noiseless ∆→ 0 case, in which

yµ = Fµ · s. (7)

In this limit the compressed sensing is simply a problem of linear algebra, i.e. from
the P measurements {yµ} one wishes to recover the vector s by assuming the vector
of measurements {Fµ} to be linearly independent, which is a weak requirement when
dealing with random vectors in high dimension. If P <N then the problem is impossible:
it is equivalent to trying to solve a system of P equations in N variables when it is
under-determined. If P ⩾N the problem instead is solvable: the linear system is over-
complete, so we can simply choose N equations and use linear algebra techniques to
find x (note that the system always has a solution, which is the sample from which the
measurements were obtained).

If we do not have any information on x we thus need at least P =N measurements,
and if we have them the problem is easy. As before instead, if there is a prior information
on x we expect to need less measurements. Consider the case in which only R= ρN
elements of x are non-zero, so that we have some sparsity measured by ρ. If we also
knew which elements of x are non-zero the problem would be equivalent to one with
R pixels, so the reconstruction is for sure impossible when P <R. On the other hand,
having P =R we can list all the

(
N
R

)
vectors of dimension N and sparsity ρ, try to solve

all of these linear systems and in the end one of the choices will give us the solution
(while the others will generically have no solution). Thus the sparsity information made
the problem solvable for P ⩾R.

So far, we have limited ourselves to considerations of whether or not the problem
can be solved in certain regimes, but in practice this is certainly not enough: we want
also to have an algorithm that solves the problem efficiently. More precisely we work in
the P ,N ,R→∞ with α= P/N and ρ=R/N finite and hope to find an algorithm that
(when possible) solves the problem with polynomial complexity in N. Our reasoning
from before shows the problem is impossible for α < ρ, and if α⩾ 1 we are essentially
inverting a matrix, so we have efficient algorithms for it. The region ρ⩽ α < 1 is more

https://doi.org/10.1088/1742-5468/ad292e 6
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interesting, as we would like to find the algorithm which allows us to solve the prob-
lem with the lowest α. The enumerative procedure above solves the problem, but it is
exponentially expensive in N, as(

N

R

)
=

(
N

ρN

)
∝ eN [−ρ logρ−(1−ρ) log(1−ρ)]. (8)

One can instead construct a non-optimal but polynomial algorithm by minimising
an error function with L1 regularisation, such as

min
s

P∑
µ=1

(yµ−Fµ · s)2+λ|s| (9)

since the L1 constraint reduces the effective allowed configurations for the problem.
This is a convex function that can be minimized with efficient algorithms. Indeed, for
fixed ρ this procedure allows for perfect recovery for α > αL1(ρ) [8–10] but it turns
out that αL1(ρ)> ρ, meaning that this algorithm obtained from a convex relaxation is
sub-optimal. There exists an intermediate phase αL1(ρ)> α > ρ where we know that
we have enough information to reconstruct the sample fully, using exponential time
enumeration, but the polynomial algorithm based on convex relaxation fails.

In the next sections we will give a procedure to describe the optimal error of the
problem as a function of α, ρ, as well as an algorithm that is derived as a consequence
of the data model. But let us first put these preliminary examples in a broader context
of inference, that encompasses some of the standard problems of machine learning.

2. A general model

In what follows we will study a general model of N variables {xi}i∈N with a factorised

prior measure P x(x) =
∏N

i=1P
x
i (xi), interacting through couplings Ψµ(·) that can be

seen as a set of µ= 1, . . . ,P constraints, where Ψµ is a positive function of a linear
combination of all the variables. The joint probability of that model for a given choice
of F turns out to be

PF (x) =
1

Z

N∏
i=1

P x
i (xi)

P∏
µ=1

Ψµ (Fµ ·x) . (10)

We assume Ψµ(·)⩾ 0 while the measurement coefficients Fµi are as usual quenched
random variables drawn from a i.i.d. distribution with first two moments

E [Fµi] = 0, E
[
F 2
µi

]
=

1

N
. (11)

This ensures Fµi ∼O( 1√
N
) and, as a consequence,

∑
i Fµixi ∼O(1). The analysis will

be carried on in the thermodynamic limit N ,P →∞, with α= P/N finite.

https://doi.org/10.1088/1742-5468/ad292e 7

https://doi.org/10.1088/1742-5468/ad292e


Sparse representations, inference and learning

J.S
tat.

M
ech.(2024)

104001

Typically we will be interested in computing properties of this measure. For instance
in computing the marginal probability of a single variablemi(xi) =

∑
{xj},j ̸=iP (x) or the

free entropy density Φ = limN→∞
1
NE[logZ], where the average is taken over the choice

of the F coefficients. The marginal probability will allow us to do a point estimation,
meaning what we can find the best guess for xi in our problem. As an example, with L2

error the best estimation is obtained by averaging over the posterior

x̂opti = ⟨xi⟩=
ˆ
xmi (x) dx . (12)

The free entropy instead can give useful information on the complexity of the problem in
the typical case since it concentrates in the N →∞ limit if Fµi are generated with such
an ensamble. It helps understand the phase diagram and it gives us exact asymptotics for
the typical error [11, 12], even if we will mostly focus on the marginals in the treatment.
Before proceeding, it is instructive to identify specific problems that we can examine as
special instances of this overarching model. Notably, the initial two examples discussed
in our introduction represent such special cases within this broader framework.

2.1. Perceptron

Let us consider again the problem of perceptron learning, as described in the intro-
duction. Considering the description that we derived in (3), we see that, whenever the
regularization term is additive, V (x) =

∑
i v(xi), the perceptron problem can be cast

into a special case of the general model, with

P x
i (xi) = e−βV (xi) (13)

Ψµ (Fµ ·x) = e−β(y
µ−Φ(Fµ·x))2. (14)

The minimisation problem will be recovered in the zero-temperature limit β→∞
once sending N ,P →∞. One can study the phase diagram for learning random clas-
sifications (for instance yµ =±1 with probability 1/2) [13–15], or for learning from an
underlying ‘teacher’s’ rule where the yµ are generated from a teacher perceptron with
its own weights x = t, as mentioned in the introduction [16].

2.2. Compressed sensing

The model of compressed sensing that we described in the introduction is obviously an
example of our general model, with

Ψµ (Fµ ·x) = e−
1

2∆2 (y
µ−Fµ·x)2. (15)

The distribution P x
i should impose a level of sparsity. For instance one can use a Gauss–

Bernoulli prior of the form

P x
i (xi) = (1− ρ)δ (xi)+ ρ

e−
x2i
2

√
2π

. (16)

https://doi.org/10.1088/1742-5468/ad292e 8
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2.3. Generalized linear regression

This is a simple generalization of compressed sensing. Imagine you have P patients
and patient µ has a level of expression of a disease yµ. On the other hand, for each
of them one has measured the values of N parameters, like the age, the concentration
of some molecules etc; the set of measurements being summarized in a P ×N matrix
F. One might want to do some regression and find the best linear combination of the
parameters that fits the data y. An exact fit would be found if there exists a set of values
xi, i ∈ {1, . . .,N} such that ∀µ : yµ = Fµ ·x. In general, one can expect that the measured
yµ is a noisy version of Fµ ·x. This can be expressed by assuming the existence of a
noisy channel Pc(y

µ|Fµ ·x). Then the generalized linear regression amounts to finding
the most probable value of the xi where the probability law is

P (x) =
1

Z

∏
i

P x
i

∏
µ

Pc (y
µ|Fµ ·x) (17)

where P x
i includes our prior knowledge on xi.

2.4. The Hopfield model

Hopfield’s model of associative memory [17] is based on a set of binary spins (cor-
responding to neuron activities) interacting by pairs, with an energy function E[x] =
−1

2

∑
i,j Jijxixj. It depends on a symmetric matrix of coupling constraints J ij with zero

diagonal elements (Jii = 0), aaimplying there are no self-interactions). In that setting,
one can store as stable fixed points a number P of random patterns ξµ, which are binary
spin configurations ξµ = {ξµ1 , . . .,ξ

µ
N}, by choosing the J ij as

Jij =
1

N

P∑
µ=1

ξµi ξ
µ
j (18)

that is called the Hebb rule. In practice, once defined the time evolution rule of the
system

xi (t+∆t) = sign

∑
j

Jij xj (t)

 (19)

one can verify the stability of each stored patterns as fixed points of the dynamics
if the state of the system is in perfect coincidence with the pattern µ at time t, i.e.
xi(t) = ξµi ∀i. For what is of interest to us in the discussion, however, the probability
distribution of the spins at inverse temperature β is

PJ (x) =
1

Z
∏
i

ρ(xi)e
(β/2)

∑N
i,j=1 J

µ
ijxixj =

1

Z
∏
i

ρ(xi)e
β
2N

∑N
µ=1(ξ

µ.x)2 (20)

https://doi.org/10.1088/1742-5468/ad292e 9
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where ρ(x) is the Ising measure, enforcing x=±1 with probability 1/2. This is again of

our general type with a function Ψ(t) = e(β/2)t
2
. Recent generalizations of the Hopfield

model, with a larger storage capacity, use rather Ψ(t) = e(β/N
k−1) tk with k > 2 [18], or

even exponential functions [19–21].
Note that in the large P limit the elements of the coupling matrix become inde-

pendent and one recovers the well-known Sherrington–Kirkpatrick model [22], which is
thus a limiting case of our general model.

2.5. Code division multiple access (CDMA)

In wireless communication, one uses a communication system from the user devices to a
base station where the information is coded in order to share the same communication
medium. In CDMA, this sharing is represented as

y = Fx0+η , (21)

where x0 ∈ RN are the information symbols to be sent by N devices, F ∈ RP×N is
the mixing matrix, and y ∈ RP is the signal received at the base station. Each device
i ∈ {1, . . .,N} uses its own mixing vector Fi = {Fµi} that characterizes what it sends
through each channel µ. Here we have supposed that the communication between the
user and the base has an additive noise η, but more general models can be considered.

Having received y, the base must infer from the received messages y and the know-
ledge of the mixing matrix F, what where the information symbols xi sent by each of the
users. If these information symbols are generated i.i.d. from a probability distribution
p(x) =, and the P components of the noise are i.i.d. distributed with a distribution ρ,
the Bayesian inference of the xi amounts to studying the posterior probability

p(x | y,F ) = 1

Z (y,F )

N∏
i=1

p(xi)
P∏
µ=1

ρ

(
yµ−

∑
i

Fµixi

)
(22)

which is again an instance of our general model. The statistical physics formulation and
solution of CDMA is due to Tanaka [23, 24] and Kabashima [25]. A nice review can be
found in [26].

3. BP: general introduction

In this section we give a short introduction to the study of general graphical models using
mean field equations called BP (for a more extensive presentation, see [27]). Consider
a set of random variables xi ∈ χ where χ is a finite space. We define a factor graph,
that is a bipartite graph whose nodes are either variable nodes associated to variables
xi or factor nodes associated to the probability factors ψa . If a factor acts on a variable

https://doi.org/10.1088/1742-5468/ad292e 10
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Figure 2. Pictorial representation of the messages.

the corresponding nodes are connected as in figure 2. In formulas we are asking that x
obeys the joint probability distribution

P (x) =
1

Z

M∏
a=1

ψa (x∂a) (23)

being x∂a = {xi | i ∈ ∂a} the set of variables appearing in the factor ψa which is a positive
function of the the variables {xi}, i ∈ ∂a to which it is connected. Of course the graph
does not represent the full value of the probability distribution (23) but it says what
variables appear in what factors and complemented with the information about the
kind of function implemented in each factor completely characterize the problem.

For the derivation of the mean field equations we suppose the factor graph to be
a tree, so our computation will be exact. This means the graph is acyclic, i.e. there is
no way to start at a node, move along the edges, and return to the same node without
retracing your steps. There are several examples where this occurs: in coding theory, for
instance, linear block codes like Hamming codes can be represented as a tree-structured
factor graph. In that case the variables are the code symbols, and the factors represent
the parity-check relations between the symbols. In any case, these equations can be used
in more general settings, and their validity can be controlled when the factor graph is
locally-tree like (modulo possible effects of ‘replica symmetry breaking’).

Now, suppose we are interested in computing the marginal mj(x)

mj (x) =
∑

{xi}i ̸=j

P (x) . (24)

A priori, to compute this quantity, supposing we are dealing with a binary system
{xi}Ni=1 =±1, we need to implement a number 2N−1 of sums. The claim is that there
is a smarter way to do that which instead of an exponential operation is just linear in
the size of the system. To explain how, let us define messages, or beliefs, on the factor
graph. They are probability distributions with support on χ associated to the edges of

https://doi.org/10.1088/1742-5468/ad292e 11

https://doi.org/10.1088/1742-5468/ad292e


Sparse representations, inference and learning

J.S
tat.

M
ech.(2024)

104001

the graph. In the following we will write j → a to indicate that we cut the edge (j, a)
from the graph. Define the messages mj→a, m̂a→j from the variables to the factor and
from the factor to the nodes. They are the marginal probability distributions of the
variable xj in the ‘cut’ factor graph from the variable and the factor side respectively. In
tree factor graphs, it is possible to write self-consistent relations between the messages,
commonly called BP equations (figure 2)

mj→a (xj)∝
∏

b∈∂j\a

m̂b→j (xj)

m̂a→j (xj)∝
∑

{x∂a\j}
ψa (x∂a)

∏
k∈∂a\j

mk→a (xk)
(25)

where the symbol ∝ means ‘proportional to’ (all messages are probabilities and should
thus be normalised). If ∂j \a is the empty we have

mj→a (xj) =
1

|χ |
, (26)

similarly, for an empty ∂a\j:

m̂a→j (xj)∝ ψa (xj) . (27)

The marginal probability mj has a simple expression in terms of the messages

mj (x)∝
∏
b∈∂j

m̂b→j (xj) . (28)

It is also possible to derive the following expression for the free entropy [27]

Φ = logZ =
∑
a

logZa+
∑
i

logZi−
∑

(i,a)∈E

logZia (29)

where

logZa =
∑
{x∂a}

∏
j∈∂a

mj→a (xj) ψa (x∂a)

logZi =
∑
{xi}

∏
a∈∂i

m̂a→i (xi)

logZia =
∑
{xi}

mi→a (xi) m̂a→i (xi) .

(30)

Clearly Φi = lnZi is a site term, that measures the free energy change when the site i
and all its edges are added; Φa = logZa instead is a local interaction term that gives
the free energy change when the function node a is added to the factor graph. Finally
Φia = logZia is an edge term, which takes into account the fact that in adding vertex i

https://doi.org/10.1088/1742-5468/ad292e 12
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and a, the edge (i, a) is counted twice. The BP equations can be used as a fixed point
scheme: we start by randomly sampling the initial messages m̂0

a→i and then we iterate

mt+1
j→a (xj) =

∏
b∈∂j\a

m̂t
b→j (xj)

m̂t+1
a→j (xj) =

∑
{x∂a\j}

ψa (x∂a)
∏

k∈∂a\j

mt+1
k→a (xk) .

(31)

If the factor graph is a tree the number of iterations to converge from the leaves towards
the centre is exactly the diameter of the tree.

4. BP for the general model: ‘Reduced-BP’

Let us write the BP equations for the general model (10), that is a fully connected
graph in which each interaction involve all the variable nodes as in figure 3. There are
two kinds of factors: P x

i (xi), that depends only on a single variable, and Ψµ(Fµ ·x), that
couples different variables. We rewrite the BP equations as

mi→µ (xi) = P x
i (xi)

∏
ν( ̸=µ)

m̂ν→i (xi) (32)

m̂µ→i (xi) =

ˆ ∏
j (̸=i)

[dxjmj→µ (xj)]Ψ
µ

Fµixi +∑
j( ̸=i)

Fµjxj

 . (33)

There are two main differences between these equations and the ones in the previous
section: one is the use of continuous variables instead of discrete ones, the other one is
the fact that the interacting factors Ψµ typically involve a linear combination of many
variables. It would seem that these equations are not tractable anymore, as they involve
high-dimensional integrals which are hard to compute in practice. However, it turns out
that, in some cases, the messages can be simplified in the large N limit, using the central
limit theorem. For this we basically need that the number of variables appearing in each
factor Ψµ diverges in the large N limit, and that the coefficients F µ

i be balanced, i.e. all
of the same order and with balanced signs. We shall reason here for simplicity in the
case where F µ

i are i.i.d. random values with mean zero and variance 1/N .
In this case, equation (32) contains the sum uµ→i =

∑
j ̸=iFµjxj, in which the vari-

ables xj are independent, each one being distributed according to mj→µ. When N →∞
becomes a Gaussian random variable.

In order to characterize it, let us introduce the first and second moments of messages
mi→µ

ai→µ =

ˆ
dxmi→µ (x) x

vi→µ =

ˆ
dxx2mi→µ (x)− a2i→µ.

(34)

https://doi.org/10.1088/1742-5468/ad292e 13
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Figure 3. The general model of a fully-connected graph.

Then the mean and variance of uµ→i , denoted respectively ωµ→i and Vµ→i, are given by

ωµ→i = E [uµ→i] =
∑
j ̸=i

Fµjaj→µ

Vµ→i = E
[
u2µ→i

]
−E [uµ→i]

2 =
∑
j ̸=i

F 2
µjvj→µ .

(35)

The messages m̂µ→i(xi) then simplify to

m̂µ→i (xi)∝
ˆ

duµ→i√
2πVµ→i

e−(uµ→i−ωµ→i)
2/2Vµ→iΨµ (Fµixi +uµ→i) . (36)

As Fµi =O(1/
√
N), this equation can be expanded to second order in Fµixi and re-

exponentiated. An easy way to perform this step is to introduce the Fourier transform
Ψ̃µ(k) of the factor Ψµ

Ψ̃µ (k) =

ˆ
dxΨµ (x)e−ikx. (37)

Then one gets

m̂µ→i (xi)∝
ˆ
dk

2π

ˆ
duµ→i√
2πVµ→i

e−[(uµ→i−ωµ→i)
2]/[2Vµ→i]Ψ̃µ (k)eik(Fµixi+uµ→i)

∝
ˆ
dk

2π
e−Vµ→ik2/2+ik(Fµixi+ωµ→i)Ψ̃µ (k) . (38)
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https://doi.org/10.1088/1742-5468/ad292e


Sparse representations, inference and learning

J.S
tat.

M
ech.(2024)

104001

We can now expand this expression to second order in Fµi (which is of order 1/
√
N),

and re-exponentiate it. This shows that the message takes a Gaussian form in the large
N limit, a consequence of the central limit theorem. Precisely, one gets

m̂µ→i (xi)∝ exp

[
FµixiG

µ
1 (Vµ→i,ωµ→i)+

1

2
F 2
µix

2
iG

µ
2 (Vµ→i,ωµ→i)

]
(39)

where we have introduced the functions

Gµ
0 (V ,ω) =

ˆ
dk

2π
e−V k

2/2+ikωΨ̃µ (k)

Gµ
1 (V ,ω) =

1

Gµ
0 (V ,ω)

dGµ
0 (V ,ω)

dω

Gµ
2 (V ,ω) =

dGµ
1 (V ,ω)

dω
=

1

Gµ
0 (V ,ω)

d2Gµ
0 (V ,ω)

dω2
− [Gµ

1 (V ,ω)]
2

(40)

we finally arrive at

m̂µ→i (xi) =
1

Ẑµ→i

eBµ→ixi− 1
2
Aµ→ix2i (41)

with

Aµ→i =−F 2
µiG

µ
2 (Vµ→i,ωµ→i)

Bµ→i = FµiG
µ
1 (Vµ→i,ωµ→i)

. (42)

Inserting this expression into the equation for the message mi→µ we find

mi→µ (xi) =
1

Zi→µ
P x
i (xi)e

xi
∑

ν ̸=µBν→i−(x2i /2)
∑

ν ̸=µAν→i. (43)

For convenience we rewrite mi→µ as

mi→µ (xi) =
1

Zi→µ
P x
i (xi)e

− (Ri→µ−xi)
2

2Σi→µ (44)

where we defined Σi→µ, Ri→µ:

Σi→µ =

∑
ν ̸=µ

Aν→i

−1

, Ri→µ =

∑
ν ̸=µ

Aν→i

−1∑
ν ̸=µ

Bν→i

 . (45)

The equations (41) and (44), where Zi→µ, Ẑµ→i are normalisation constants, provide
a set of self-consistent equations for the messages Aµ→i, Bµ→i and ωµ→i, Vµ→i. We can
try to solve them by iteration; we thus have a fixed point scheme in term of the moments
of the messages.
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The equations were first written in the case of the perceptron in [28]. They are actu-
ally the cavity equations obtained by applying the cavity method (initially introduced
to deal with the SK model [29], to the perceptron, following the strategy developed for
Hopfield’s model [2]). As an algorithm, these equations have been introduced for CDMA
in [25], and developed under the name of reduced BP (r-BP) in many works [30, 31].
While r-BP is surely much more effective than applying the BP equations blindly, for
many applications it is still an ‘expensive’ algorithm, as it uses O(N 2) messages as the
number of edges in the graph. In the next part we will show how it can be simplified
into an algorithm on the nodes, which will have complexity O(N). This is the step that
one takes when going from the cavity equations (which use ‘cavity messages’, i.e. mag-
netizations defined in absence of a neighboring site) to TAP equations (which use the
standard magnetizations).

5. ‘TAPification’: from reduced-BP to AMP

Let’s be tempted for a moment by the following, very intriguing, approximation ωµ→i ≈
ωµ, Vµ→i ≈ Vµ

ωµ→i =
∑
j ̸=i

Fµjaj→µ ≈
∑
j

Fµjaj→µ = ωµ

Vµ→i =
∑
j ̸=i

F 2
µjvj→µ ≈

∑
j

F 2
µjvj→µ = Vµ.

(46)

This would be enough to obtain a O(N) algorithm, as we can redefine Σi→µ, Ri→µ as
Σi, Ri, hence the messages mi→µ will just depend on the nodes and be replaced by mi,
which are then also the marginals

mi (x) =
1

Zi
P x
i (x)e

− (x−Ri)
2

2Σi . (47)

It is in fact possible to do this simplification, but we need to be careful. By keeping
correctly the leading terms in 1/N we will obtain a correction, called Onsager reaction
term. Let’s look at how this reaction term appears. We first consider Σi→µ

Σi→µ =

−∑
ν ̸=µ

F 2
νiG

ν
2 (Vν→i,ων→i)

−1

≈

[
−
∑
ν

F 2
νiG

ν
2 (Vν ,ων)

]−1

. (48)

We thus define Σi

Σi =

[
−
∑
µ

F 2
µiG

µ
2 (Vµ,ωµ)

]−1

. (49)
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Notice that at order 1/N we have

Bµ→i = FµiG
µ
1 (Vµ→i,ωµ→i)≈ FµiG

µ
1 (Vµ,ωµ)−F 2

µiai
dGµ

1 (Vµ,ωµ)

dω
. (50)

We can now expand Ri→µ to leading order

Ri→µ =

−∑
ν ̸=µ

F 2
νiG

ν
2 (Vν→i,ων→i)

−1 ∑
ν ̸=µ

FµiG
µ
1 (Vµ→i,ωµ→i)−F 2

µiai
dGµ

1 (Vµ,ωµ)

dω


≈ ai +Σi

∑
ν

FνiG
ν
1 (Vν ,ων) (51)

so we have that

Ri = ai +Σi

∑
µ

FµiG
µ
1 (Vµ,ωµ) . (52)

It is convenient to introduce the first two moments of mi at leading order:

ai =

ˆ
dxmi (x) x≈

ˆ
xDmi (Ri,Σi)

vi =

ˆ
dxx2mi (x)− a2i ≈

ˆ
x2Dmi (Ri,Σi)− a2i ≈ Σi

∂ai
∂Ri

(53)

where Dmi(Ri,Σi) is the message measure:

Dmi (Ri,Σi) =
1

Zi (Ri,Σi)
dxP x

i (x)e
− (x−Ri)

2

2Σi . (54)

We can finally write the leading order of ai→µ, vi→µ

ai→µ ≈ ai −FµiG
µ
1 (Vµ,ωµ)Σi

∂ai
∂Ri

= ai −FµiG
µ
1 (Vµ,ωµ)vi

vi→µ ≈ vi.

(55)

As a consequence we obtain the relations

ωµ =
∑
j

Fµjaj −Gµ
1 (Vµ,ωµ)

∑
j

F 2
µjvj

Vµ =
∑
j

F 2
µjvj.

(56)

This concludes the derivation of the TAP equations, which are a set of auto-coherent
equations relating the variables ai,vi,Σi,Ri and ωµ,Vµ given in (53), (49) and (56).
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These are site variables, and therefore the total number of variables (and of equations)
scales linearly with N.

One can try to solve these equations above by iteration, which can be done in the
following way

V t+1
µ =

∑
j

F 2
µjv

t
j

ωt+1
µ =

∑
j

Fµja
t
j −Gµ

1

(
V t
µ ,ω

t
µ

)∑
j

F 2
µjv

t
j

Σt+1
i =

[
−
∑
µ

F 2
µiG

µ
2

(
V t+1
µ ,ωt+1

µ

)]−1

Rt+1
i = ati+Σi

∑
µ

FµiG
µ
1

(
V t+1
µ ,ωt+1

µ

)
at+1
i =

ˆ
xDmi

(
Rt+1
i ,Σt+1

i

)
vt+1
i =

ˆ
x2Dmi

(
Rt+1
i ,Σt+1

i

)
−
(
at+1
i

)2
.

(57)

This is a O(N) algorithm for solving compressed sensing, usually called AMP
[8, 30]. The specific choice of time indexes is crucial for convergence [32].

6. State evolution and phase transitions

We shall present this section in the specific case of compressed sensing, as we believe it
paints a clearer picture. In the compressed sensing case the r-BP equations read

m̂µ→i (xi) =
1

Ẑµ→i

eBµ→ixi− 1
2
Aµ→ix2i (58)

with:

Aµ→i =
F 2
µi

∆2+Vµ→i

Bµ→i =
Fµi (yµ−ωµ→i)

∆2+Vµ→i

(59)

ωµ→i and Vµ→i are the first two moments of
∑

j ̸=iFµjxj averaged over the messages, as

defined in (35). We would like to analyse the asymptotic performance of AMP in the
N →∞ limit. In particular, we would like to study the asymptotic error E

E = lim
N→∞

1

N

N∑
i=1

(x̂i − si)
2 , (60)
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where x̂ is the estimator obtained by running the algorithm. As a matter of fact the
tracking of this metric is already embedded in the equations, but we need to exploit the
way in which yµ is generated. First, we define zµ→i =

∑
j ̸=iFµjsj in analogy with uµ→i.

Then we have:

yµ = zµ→i+Fµisi + ηµ. (61)

In fact we can take the r-BP equations and notice that

E
[
(zµ→i−ωµ→i)

2
]
=
∑
j ̸=i
k ̸=i

E [FµjFµk] (aj→µak→µ− 2sjak→µ+ sjsk)

=
1

N

∑
j ̸=i

(
a2j→i− 2sjaj→i+ s2j

)
=

1

N

N∑
i=1

(
x̂2i − 2six̂i + s2i

)
=

1

N

N∑
i=1

(x̂i − si)
2

(62)

where we used that ai→µ and vi→µ are, up to small corrections, the mean and variance of
the estimates x̂i, as well as the weak coupling hypothesis on Fµi. In the N →∞ limit the

quantity above will converge to the error E. In particular, (zµ→i−ωµ→i)
2 will concentrate

on E in the limit of large N, as the variance is subleading. It will be convenient in the
following to introduce another parameter of interest, namely the squared distance of
two components of x̂

v =
1

2N 2

N∑
i,j=1

(x̂i − x̂j)
2 . (63)

In particular Vµ→i will concentrate on v

E [Vµ→i] =
∑
j ̸=i

E
[
F 2
µj

]
vj→µ =

1

N

∑
j ̸=i

vj→µ ≈ v . (64)

We are ready for the main calculation. Let’s look at the asymptotics of
∑

µAµ→i,∑
µBµ→i:

∑
µ

Aµ→i =
∑
µ

F 2
µi

∆2+Vµ
=

α

∆2+ v
(65)

∑
µ

Bµ→i =
∑
µ

Fµi (yµ−ωµ→i)

∆2+Vµ→i
≈
∑
µ

Fµi (yµ−ωµ→i)

∆2+ v
. (66)

https://doi.org/10.1088/1742-5468/ad292e 19

https://doi.org/10.1088/1742-5468/ad292e


Sparse representations, inference and learning

J.S
tat.

M
ech.(2024)

104001

The expression we just derived has a hidden dependence on Fµi inside yµ, so to proceed
we insert its definition:∑

µ

Fµi (yµ−ωµ→i) =
∑
µ

Fµi (zµ→i+Fµisi + ηµ−ωµ→i)

=
∑
µ

F 2
µisi +

∑
µ

Fµi (zµ→i+ ηµ−ωµ→i)
. (67)

The first piece concentrates to a deterministic value:

E

[∑
µ

F 2
µisi

]
=

1

N

∑
µ

si = αsi. (68)

The second one converges to a Gaussian variable. Let’s compute its mean and variance:

E

[∑
µ

Fµi (zµ→i+ ηµ−ωµ→i)

]
=
∑
µ

E [Fµi]E

∑
j ̸=i

Fµjsj + ηµ−ωµ→i

= 0 (69)

E

[∑
µ

F 2
µi (zµ→i+ ηµ−ωµ→i)

2

]
=

1

N

∑
µ

E
[
(ηµ)

2
]
+E

[
(zµ→i−ωµ→i)

2
]

=
1

N

∑
µ

(
∆2+E

)
= α

(
∆2+E

)
.

(70)

We conclude that the messages mi(xi) are sampled from randomly distributed
Gaussian variables, with mean Ri and variance Σi:

Ri = si + z

√
∆2+E

α
, Σi =

∆2+ v

α
(71)

where z ∼N (0,1) is a normal Gaussian variable. We can finally obtain an expression
for the order parameters. Calling Dz the normal Gaussian measure:

Dz = dz√
2π
e−

z2

2 (72)

and Dm(v,E) the belief measure:

Dm(v,E) =
Dz dxdsP x (x)P s (s)

Z (s,v,E)
exp

− α

2(∆2+ v)

(
x− s− z

√
∆2+E

α

)2
. (73)
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Figure 4. Asymptotic performance of noiseless ∆→ 0 compressed sensing solved
using AMP. On the right: asymptotic error as a function of the sparsity ρ and the
sample complexity α. White is zero error. On the left: free energy as a function
or the error for ρ=0.4 and several values of the sample complexity. The dot is
the value where AMP would converge from a random initialisation. This figure is
reproduced independently from [6].

By using the definitions of the order parameters we have:

v =

ˆ [
x−

(ˆ
xDm(v,E)

)]2
Dm(v,E)

E = ρE
[
s2
]
+

ˆ (
x2− 2xs

)
Dm(v,E)

. (74)

Equation (74) can again be turned into an algorithm called state evolution, which
can be used to reveal the expected performace of AMP. In fact, state evolution can be
seen as a gradient ascent method in the two-dimensional space v,E, trying to reach
the maximum of a free-entropy function Φ(v,E). This free-entropy can be derived from
the equations, but, interestingly, it can also be obtained by the replica analysis of the
next section. We give an example of this in figure 4, where we analysed the noiseless
∆→ 0 limit of compressed sensing. From the free energy plotted as a function of E we
can clearly see that for each ρ there is a minimal sample complexity αAMP(ρ) above
which the problem is solved exactly by AMP, as the gradient ascent state evolution
flows towards E → 0. Notably, this AMP threshold is αAMP(ρ)> ρ: the algorithm is
suboptimal, it is not able to find the zero error state when ρ < α < αAMP(ρ), even if we
know that the problem is solvable in that regime by exponential algorithms. The free
energy tells us why this is not happening: for values of α that are too low a local maxima
appears. This prevents a randomly initialised AMP to reach zero error, generating a
hard region. This is how αAMP(ρ) is computed
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It is possible to derive the state evolution of AMP for the general model in a very
similar way to what shown above. First, with the same argument as in equation (62)
we find that zµ→i and ωµ→i converge jointly to a Gaussian distribution:(

zµ→i

ωµ→i

)
≈
(
z
ω

)
∼N

([
0
0

]
,

[
ρE
[
s2
]
m

m q

])
(75)

with m and q defined as:

m=
1

N

N∑
i=1

six̂i

q =
1

N

N∑
i=1

x̂2i

. (76)

As before Vµ→i will concentrate on v. In the general model the asymptotics of
∑

µAµ→i

is ∑
µ

E [Aµ→i] =−α

P

∑
µ

Gµ
2 (Vµ→i,ωµ→i)≈ αEω,G2 [−G2 (v,ω)] = v̂ (77)

where the last expectation is taken over ω and all sources of randomness inside G2,
as for example yµ in the perceptron or compressed sensing case. We thus include the
dependence on z in G1 and G2, leading to the definition:

v̂ = αEω,z [−G2 (v,ω,z)] . (78)

Similarly, we can look at
∑

µBµ→i∑
µ

E [Bµ→i] = Fµi
∑
µ

Gµ
1 (Vµ→i,ωµ→i,zµ→i+Fµisi)

≈ Fµi
∑
µ

Gµ
1 (Vµ→i,ωµ→i,zµ→i)+ siF

2
µi

∑
µ

∂Gµ
1

∂z
(Vµ→i,ωµ→i,zµ→i)

≈ ζ
√
q̂+ si m̂

(79)

with ζ ∼N (0,1) and

m̂= αEω,z
[
∂G1

∂z
(v,ω,z)

]
q̂ = αEω,z

[
G1

2 (v,ω,z)
] . (80)

The messages mi(xi) have mean Ri and variance Σi with:

Ri = ζ

√
q̂

v̂2
+ si

m̂

v̂
, Σi =

1

v̂
. (81)
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We can finally close the equations by recalling the measure (54)

m= Es,ζ
[
s

ˆ
xDm(R,Σ)

]
q = Es,ζ

[(ˆ
xDm(R,Σ)

)2
]

v = Es,ζ
[ˆ

x2Dm(R,Σ)

]
− q

. (82)

So for the general model we would iterate equations (78), (80) and (82) until conver-
gence, then the observables would be written as a combinations of m, q and v.

7. Replica method for the general model

It is possible to obtain equivalent expressions for the overlaps derived though state
evolution by using the replica method. Recall the partition function of the general
model (10):

Z =

ˆ
dx

N∏
i=1

P x
i (xi)

P∏
µ=1

Ψµ (Fµ ·x) . (83)

We will assume here for simplicity that all matrix elements F µ
i are chosen independently

from a Gaussian distribution with mean zero and variance 1/N (in fact all our reasoning
applies to any i.i.d. distribution with these first and second moment, provided higher
moments are well defined). Our goal will be to compute the free entropy by using the
replica method:

lim
N→∞

1

N
E [logZ] = lim

n→0

limN→∞
1
NE [Zn]− 1

n
(84)

where E denotes the average with respect to the distribution of F.
Let’s thus compute the n-th moment of the partition function by considering n

independent replicas of the system indexed by a ∈ {1, . . .,n}:

E[Zn] = E

(ˆ n∏
a=1

N∏
i=1

[dxaiP
x
i (x

a
i )]

ˆ n∏
a=1

P∏
µ=1

[
dzaµΨ

µ
(
zaµ
)
δ
(
zaµ−Fµ ·xa

)
]
])

(85)

were we introduced the P ×n auxiliary variables zaµ. The average in this case is over Fµ.
In some cases there is another source of randomness like the labels in the perceptron
or the data in the compressed sensing case. We can account for it by considering it an
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extra replica with index a =0. Now, using the central limit theorem we find that zaµ are
joint Gaussian variables with mean and covariance:

E

[
N∑
i=1

F µ
i x

a
i

]
= 0,

E

∑
i,j

F µ
i F

ν
j x

a
ix

b
j

=
δµν
N

N∑
i=1

xaix
b
j = δµνQ

ab ,

(86)

where Qab = (1/N)
∑

i x
a
ix

b
i is going to be our order parameter. Notice that while the

replicas were independent they all became coupled after averaging over the disorder.
We can now write:

E [Zn] =
∏

1⩽a⩽b⩽n

ˆ
dQab Iprior (Q)Icoupling (Q) (87)

where:

Iprior (Q) =

ˆ n∏
a=1

N∏
i=1

[dxaiP
x
i (x

a
i )]
∏
a⩽b

δ

(
Qab− 1

N

∑
i

xaix
b
i

)
(88)

Icoupling (Q) =
P∏
µ=1

[ˆ n∏
a=1

[
dzaµΨ

µ
(
zaµ
)] 1√

2πdetQ
e−

1
2

∑
a,bQ

−1
ab z

a
µz

b
µ

]
. (89)

Notice that the quantity Icoupling(Q) is a product of P independent integrals. As for
Iprior(Q), it can also be written as N independent integrals if one first introduces integral
representations of the δ functions. Neglecting prefactors that are non-exponential in N,
we get

Iprior (Q) =

ˆ ∏
a⩽b

dQ̂abe−
N
2

∑
a,b Q̂

abQab
N∏
i=1

[ˆ n∏
a=1

dxaP x
i (x

a) e
1
2

∑
a,b Q̂

abxaxb

]
(90)

in order to keep notations simple, let us assume that P x
i is independent of i and Ψµ

is independent of µ (the results can be easily extended to the more general case). We
obtain:

E [Zn] =

ˆ ∏
a⩽b

[
dQabdQ̂ab

]
eNΦ(Q̂,Q) (91)

where

Φ
(
Q̂,Q

)
=−1

2
Tr
(
Q̂Q

)
+Φprior

(
Q̂
)
+αΦcoupling (Q) (92)

Φprior

(
Q̂
)
= log

(ˆ n∏
a=1

[dxaP x (xa)] e
1
2

∑
a,b Q̂

abxaxb

)
(93)
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Φcoupling (Q) = log

(ˆ n∏
a=1

[dzaΨ (za)]
1√

2πdetQ
e−

1
2

∑
a,bQ

−1
ab z

azb

)
(94)

and α= P
N . The form (91) gives the expression of the average of Zn for the general

model. At large N, it can be computed with the saddle point method: one needs to find
two n ×n symmetric matrices Q̂ and Q which are a stationary point of the function
Φ(Q̂,Q).

In the ‘replica symmetric Ansatz’, one restricts the search to matrices which are
symmetric under permutation of the replicas. Then

Qab = rδab+ q (1− δab) , Q̂ab =−r̂δab+ q̂ (1− δab) . (95)

Essentially we traded an optimisation over the entire matrices Q and Q̂ for one over
four scalar quantities. It is a good exercise to check that this general formalism gives
back the known replica symmetric expressions for the various applications of the general
model described previously. For instance, in the Hopfield model where xi are Ising spins
and Ψµ(z) = eβz

2/2, one can check that our general formalism gives back the standard
replica symmetric formulation of the glassy phase found by Amit et al.

We might of course take much more general ansatz [33], this one will be sufficient
for the problem at hand. All the quantities above simplify. Starting with the trace term
we have:

Tr
(
Q̂Q

)
=−nr̂r+n(n− 1) q̂q. (96)

To compute the determinant of Q we notice that

Q= q+(r− q)δab. (97)

The eigenvalues of Q are thus r+(n− 1)q with multiplicity 1 and r − q with multiplicity
n − 1, leading to:

detQ= (r+(n− 1)q)(r− q)n−1 . (98)

Noticing that 12 = n1, where 1 is the matrix with all ones, we get:

Q−1 =− q

(r− q)(r+ q (n− 1))
+

1

r− q
δab. (99)

The prior integral becomes

Φprior

(
Q̂
)
= log

ˆ n∏
a=1

[dxaP x (xa)]

exp
− r̂+ q̂

2

n∑
a=1

(xa)2+
q̂

2

(
n∑
a=1

xa

)2



(100)

= n log

(
Ex,ζ

[
exp

{
− r̂+ q̂

2
x2+

√
q̂ xζ

}])
(101)
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where we used the identity Eζ [exp(
√
cζ)] = e

c
2 . The constraint integral is done similarly.

At the saddle point we can take the limit n→ 0, giving the free entropy Φ:

Φ =
q̂q

2
+
r̂r

2
+Φprior (q̂, r̂)+αΦcoupling (q,r) (102)

Φprior (q̂, r̂) = Eζ log
(
Ex
[
exp

{
− r̂+ q̂

2
x2+

√
q̂xζ

}])
(103)

Φcoupling (q,r) = Eζ log

([ˆ
dz

Ψ(z)√
2π (r− q)

exp

{
−
(
z+

√
qζ
)2

2(r− q)

}])
(104)

evaluated at the solutions of the following system:

q =−2
∂Φprior

∂q̂
, q̂ =−2α

∂Φcoupling

∂q
(105)

r =−2
∂Φprior

∂r̂
, r̂ =−2α

∂Φcoupling

∂r
. (106)

Including the a =0 replica will just change the procedure above slightly. The replica
ansatz in this case will be:

Q=


r0 m .. . m
m r . . . . . .
· · · · · · · · · q
m · · · q r

 , Q̂=


−r̂0 m̂ . . . m̂
m̂ −r̂ . . . . . .
· · · · · · · · · q̂
m̂ · · · q̂ −r̂

 . (107)

The auxiliary quantities are:

Tr
(
Q̂Q

)
=−r̂0r0−nm̂m−nr̂r+n(n− 1) q̂q (108)

detQ= (r− q)n−1 [r0 (r+(n− 1)q)−nm2
]

(109)

and for the inverse matrix Q−1:

Q−1 =


r̃0 m̃ . . . m̃
m̃ r̃ . . . . . .
· · · · · · · · · q̃
m̃ · · · q̃ r̃

 (110)

with:

r̃0 =
r+(n− 1)q

r0 (r+(n− 1)q)−nm2
(111)

m̃=− m

r0 (r+(n− 1)q)−nm2
(112)

q̃ =− q

(r− q)(r+ q (n− 1))
− mm̃

r+ q (n− 1)
(113)

https://doi.org/10.1088/1742-5468/ad292e 26

https://doi.org/10.1088/1742-5468/ad292e


Sparse representations, inference and learning

J.S
tat.

M
ech.(2024)

104001

r̃ =
1

r− q
− q

(r− q)(r+ q (n− 1))
− mm̃

r+ q (n− 1)
. (114)

The prior and coupling integrals become:

Φprior (m̂, q̂, r̂) = Eζ log
(
Ex,x*

[
exp

{
− r̂0

2
(x*)2+ m̂x *x− r̂+ q̂

2
x2+

√
q̂xζ

}])
(115)

Φcoupling (m,q,r)

= Eζ log
(ˆ

dzdz*
Ψ(z)Ψ(z*)√

2πdetQ
exp

{
− r̃0

2
(z*)2− m̃z * z− (r̃− q̃)

z2

2
+
√
q̃zζ

})
.

(116)

Leading to the system:

q =−2
∂Φprior

∂q̂
, q̂ =−2α

∂Φcoupling

∂q
(117)

r =−2
∂Φprior

∂r̂
, r̂ =−2α

∂Φcoupling

∂r
(118)

m=
∂Φprior

∂m̂
, m̂= α

∂Φcoupling

∂m
. (119)

The order parameters found with this replica approach are simple functions of the
ones found in the state evolution section, upon setting v = r− q and v̂ = r̂+ q̂. The
equations for m, q and v are easily obtained by taking a derivative, the other three are
less immediate, and we just show as an example how to derive the equations in the case
without the a =0 replica, leaving the rest as an exercise.

The first step is to rewrite the channel integral in a more manageable form. Notice
that:

ˆ
dz

Ψ(z)√
2πV

e−
(z+

√
qζ)2

2V =
1

2π

¨
dzdk

Ψ̃(k)√
2πV

e−
z2

2V
+z(ik−√

qζ/V )−qζ2/(2V ). (120)

Upon integrating on z we find that the expression above is G0(r− q,
√
qζ). The coupling

integral thus becomes:

Φcoupling (q,r) = Eζ logG0 (r− q,
√
qζ) . (121)

We are ready to take the derivative with respect to r and q. Recall the identity:

dG0 (V ,ω)

dV
=

1

2

d2Gµ
0 (V ,ω)

dω2
. (122)

We thus have

∂Φprior

∂q
= Eζ

− 1

G0 (V ,ω)

dG0 (V ,ω)

dV

∣∣∣∣V=r−q
ω=

√
qζ

+
ζ

2
√
q

1

G0 (V ,ω)

dG0 (V ,ω)

dω

∣∣∣∣V=r−q
ω=

√
qζ

 . (123)
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To proceed we need Stein’s lemma. Let ζ ∼N (0,1) be a normal Gaussian variable,
then:

Eζ [f (ζ)ζ] = Eζ [f ′ (ζ)] (124)

hence:

Eζ [ζG1 (r− q,
√
qζ)] =

√
qEζ [G2 (r− q,

√
qζ)] . (125)

In conclusion we have:

q̂ = αEζ
[
G1

2 (r− q,
√
qζ)
]
. (126)

Similarly we have:

r̂ = αEζ [−G2 (r− q,
√
qζ)]− q̂. (127)

As anticipated we obtain exactly the state evolution equations by setting after a redefin-
ition v = r− q and v̂ = r̂+ q̂.

8. Outlook: dictionary learning and matrix factorisation

We conclude this exposition with a brief discussion on dictionary learning. Suppose you
have a M ×P matrix of samples yµs generated by:

yµs = F*µ · s*s+ ηµs (128)

where ηµs is i.i.d. noise, F*∼ PF, s*∼ P s. We wish to recover both F and x. We can
think of this problem as a generalisation of compressed sensing in which we also try to
recover the measurement matrix,t thus the case in which the apparatus is unknown. In
the noiseless case this is also a matrix factorisation problem. We could try to use the
same approach as before and write the posterior distribution P (s,F|y)

P (s,F|y) =
∏
µ,i

dP F (F µ
i )
∏
s,i

dPX (xsi )e
− 1

2∆2

∑
µ,s

(
yµs− 1√

N

∑
i F

µ
i x

s
i

)2

. (129)

If N is finite, while M ,P →∞ then this problem is extensively studied, see [34] and
references therein. Indeed, if yµs is a planted signal, my best estimate for the underlying
signal and the apparatus will be given by the expectation values ⟨xsi ⟩ and ⟨F µ

i ⟩. If
however also N is infinite, while

α=M/N , ψ = P/N (130)

are finite the naive AMP approach fails [35]. A number of approaches have been
attempted [36, 37], but at the present time extensive rank matrix factorisation remains
an open problem.
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[37] Barbier J and Macris N 2022 Phys. Rev. E 106 024136

https://doi.org/10.1088/1742-5468/ad292e 29

https://doi.org/10.1103/PhysRevLett.71.1772
https://doi.org/10.1103/PhysRevLett.71.1772
https://doi.org/10.1109/TIT.2005.858979
https://doi.org/10.1109/TIT.2005.858979
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1088/1742-5468/2012/08/P08009
https://doi.org/10.1088/1742-5468/2012/08/P08009
https://doi.org/10.1088/0266-5611/29/3/035003
https://doi.org/10.1088/0266-5611/29/3/035003
https://doi.org/10.1073/pnas.0909892106
https://doi.org/10.1073/pnas.0909892106
https://doi.org/10.1088/1742-5468/2009/09/L09003
https://doi.org/10.1088/1742-5468/2009/09/L09003
https://doi.org/10.1098/rsta.2009.0152
https://doi.org/10.1098/rsta.2009.0152
https://doi.org/10.1109/TIT.2005.844072
https://doi.org/10.1109/TIT.2005.844072
https://doi.org/10.1080/00018732.2016.1211393
https://doi.org/10.1080/00018732.2016.1211393
https://doi.org/10.1209/0295-5075/4/4/016
https://doi.org/10.1209/0295-5075/4/4/016
https://doi.org/10.1088/0305-4470/22/12/004
https://doi.org/10.1088/0305-4470/22/12/004
https://doi.org/10.1088/0305-4470/20/11/013
https://doi.org/10.1088/0305-4470/20/11/013
https://doi.org/10.1103/PhysRevA.41.7097
https://doi.org/10.1103/PhysRevA.41.7097
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1088/0305-4470/20/11/046
https://doi.org/10.1088/0305-4470/20/11/046
https://doi.org/10.48550/arXiv.2008.02217
https://doi.org/10.48550/arXiv.2008.02217
https://arxiv.org/abs/2304.14964
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1209/epl/i2001-00306-3
https://doi.org/10.1209/epl/i2001-00306-3
https://doi.org/10.1109/TIT.2002.804053
https://doi.org/10.1109/TIT.2002.804053
https://doi.org/10.1088/0305-4470/36/43/030
https://doi.org/10.1088/0305-4470/36/43/030
https://doi.org/10.1088/0305-4470/22/12/018
https://doi.org/10.1088/0305-4470/22/12/018
https://doi.org/10.1209/0295-5075/1/2/006
https://doi.org/10.1209/0295-5075/1/2/006
https://doi.org/10.1007/s00220-013-1862-3
https://doi.org/10.1007/s00220-013-1862-3
https://doi.org/10.1103/PhysRevLett.43.1754
https://doi.org/10.1103/PhysRevLett.43.1754
https://doi.org/10.1088/1742-5468/aa7284
https://doi.org/10.1088/1742-5468/aa7284
https://doi.org/10.1109/TIT.2016.2556702
https://doi.org/10.1109/TIT.2016.2556702
https://doi.org/10.1088/1742-5468/ac7e4c
https://doi.org/10.1088/1742-5468/ac7e4c
https://doi.org/10.1103/PhysRevE.106.024136
https://doi.org/10.1103/PhysRevE.106.024136
https://doi.org/10.1088/1742-5468/ad292e

	Sparse representations, inference and learning
	1. Introduction
	1.1. An example from machine learning: the generalized perceptron in ridge regression setting
	1.2. An example from information theory: compressed sensing

	2. A general model
	2.1. Perceptron
	2.2. Compressed sensing
	2.3. Generalized linear regression
	2.4. The Hopfield model
	2.5. Code division multiple access (CDMA)

	3. BP: general introduction
	4. BP for the general model: `Reduced-BP'
	5. `TAPification': from reduced-BP to AMP
	6. State evolution and phase transitions
	7. Replica method for the general model
	8. Outlook: dictionary learning and matrix factorisation
	References


