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Abstract
As one of the three main pillars of fine-grained complexity theory, the 3SUM problem explains
the hardness of many diverse polynomial-time problems via fine-grained reductions. Many of
these reductions are either directly based on or heavily inspired by Pătraşcu’s framework involving
additive hashing and are thus randomized. Some selected reductions were derandomized in previous
work [Chan, He; SOSA’20], but the current techniques are limited and a major fraction of the
reductions remains randomized.

In this work we gather a toolkit aimed to derandomize reductions based on additive hashing.
Using this toolkit, we manage to derandomize almost all known 3SUM-hardness reductions. As
technical highlights we derandomize the hardness reductions to (offline) Set Disjointness, (offline)
Set Intersection and Triangle Listing – these questions were explicitly left open in previous work [Ko-
pelowitz, Pettie, Porat; SODA’16]. The few exceptions to our work fall into a special category of
recent reductions based on structure-versus-randomness dichotomies.

We expect that our toolkit can be readily applied to derandomize future reductions as well. As
a conceptual innovation, our work thereby promotes the theory of deterministic 3SUM-hardness.

As our second contribution, we prove that there is a deterministic universe reduction for 3SUM.
Specifically, using additive hashing it is a standard trick to assume that the numbers in 3SUM have
size at most n3. We prove that this assumption is similarly valid for deterministic algorithms.
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1 Introduction

In this paper we revisit the famous integer 3SUM problem, which involves checking for
a given set A of n integers whether there is a triple a, b, c ∈ A with a + b = c. It is well-
known that the 3SUM problem can be solved in deterministic time O(n2) by a classic
textbook algorithm, and it is an infamous open problem whether the running time can
be substantially improved beyond quadratic time. While recent improvements only scored
log-shavings [14, 38, 34, 36, 40, 20], it became a popular conjecture that there is no truly
subquadratic algorithm (i.e., an algorithm running in time O(n2−ϵ) for some ϵ > 0).
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49:2 Deterministic 3SUM-Hardness

Over the course of the last decades, this conjecture has evolved into one the three main
pillars of fine-grained complexity, explaining the hardness of a diverse set of polynomial-time
problems via fine-grained reductions from the 3SUM problem. This trend was initiated in the
1990’s by Gajentaan and Overmars [35] leading to a series of quadratic-time lower bounds
for various geometric problems [35, 29, 12, 16, 32, 8, 15, 50, 11, 33, 25, 13]. Later, in 2010,
Pătraşcu achieved another breakthrough [48]. Based on earlier ideas due to Baran, Demaine
and Pătraşcu [14], Pătraşcu realized that the interplay between 3SUM and additive hashing
can be exploited to derive randomized reductions from 3SUM to the related Convolution
3SUM and Triangle Listing problems. This result inspired an even bigger wave of 3SUM-
based lower bounds for various combinatorial problems. Today it is known that the class of
3SUM-hard problems encompasses graph problems [4, 52, 3, 2, 39], string problems [5, 9],
dynamic problems [48, 44, 28, 7, 24] and many more.

Randomized versus Deterministic. As noted before, many of these reductions (for non-
geometric problems) use Pătraşcu’s seminal reduction as a stepping stone, or at least reuse
it’s ideas. Consequently, a major fraction of the 3SUM-based hardness results are only
achieved via randomized reductions. These reductions thus imply lower bounds only if we
are willing to assume that the 3SUM problem requires quadratic time also for randomized
algorithms.

Chan and He [22] took a first step in understanding the role of randomness in 3SUM-based
hardness reductions. They proposed to replace the hash function in Pătraşcu’s reduction
from 3SUM to Convolution 3SUM with a deterministic (and simpler) one. This implied that
Convolution 3SUM is hard even for deterministic reductions, and entails that there is no
deterministic subquadratic algorithm for Convolution 3SUM under the following hypothesis:

▶ Hypothesis 1 (Deterministic 3SUM). For any ϵ > 0 there is a constant c, such that there
is no deterministic algorithm for the 3SUM problem over [nc] in time O(n2−ϵ).

While their result entails derandomizations for some reductions [18, 21, 9, 52], for technical
reasons it fails to address the full range of problems. Let us describe the issue in a few
words. In essence, Chan and He propose to select a hash function h(x) = x mod m, where m

is the product of small primes, and to select these primes one by one using the method of
conditional expectations. With this idea one can easily construct a hash function h with
few collisions (h(a) = h(b)) since the number of collisions is easily computable. However, for
the majority of reductions we need the stronger property that there are few false positives
(h(a) + h(b) = h(c)) which is more difficult to test. In the overview in Section 3 we elaborate
on this in more detail.

Theory of Deterministic 3SUM-Hardness. Nevertheless, Chan and He’s result marks an
important first step towards a theory of deterministic 3SUM-hardness. Aiming at a more
complete theory, in this work we study the following wide-open question:

Question 1: Can we derandomize all reductions from 3SUM?

Understanding the power of randomness is one of the central goals in theoretical computer
science. However, in fine-grained complexity (and also parameterized complexity) it is
common to neglect this aspect and allow for randomized algorithms and reductions by
default. In light of Question 1 it would be exciting to see whether at least for 3SUM-hard
problems we could gain some foundational knowledge about the necessity of randomness.
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Answering Question 1 would also be particularly important if there turned out to be
faster randomized than deterministic algorithms for 3SUM. This is very well possible – in fact,
in the history of state-of-the-art 3SUM algorithms (with mildly subquadratic running times)
the gap between randomized and deterministic algorithms was only recently closed [20].

Of course the net of 3SUM-based reductions is vast, so where should we begin to tackle
Question 1? A reasonable starting point is the aforementioned Triangle Listing problem, which
is one of the bottlenecks for the many still-randomized reductions. Recall that Pătraşcu [48]
proved that Triangle Listing is hard under randomized reductions, and this reduction was later
refined by Kopelowitz, Pettie and Porat [44]. They proposed, as appropriate intermediate
problems, the (offline) Set Disjointness and (offline) Set Intersection problems, and proved
that these problems are 3SUM-hard under randomized reductions. In order to answer
Question 1, we should therefore focus on Set Disjointness and Set Intersection. In their
paper [44], Kopelowitz et al. remark that “it would be surprising if [their] construction could
be efficiently derandomized”.

We also consider another question related to the role of randomness for the 3SUM problem:
universe reductions. It is well known that for randomized algorithms we can assume without
loss of generality that the input is over the universe [O(n3)] (simply replace each input a ∈ A

by h(a) where h : Z→ [O(n3)] is an appropriate additive hash function). For deterministic
algorithms, on the other hand, there are no similar bounds. Chan and He [22] end their
paper with the following open problem:

Question 2: Can 3SUM for arbitrary integers be reduced deterministically
to 3SUM for integers bounded by nO(1)?

Besides being an interesting question in its own right, obtaining a deterministic universe
reduction would also constitute a handy tool in the design of deterministic 3SUM-based
reductions, and thus contribute to our dream goal of a complete theory of deterministic
3SUM-hardness.

1.1 Our Results
Our main technical contribution is that we gather a toolset aimed to derandomize 3SUM-
based reductions. It consists of two major tools: A deterministic algorithm to compute
an additive hash function with few collisions (see Lemma 11), and a refined deterministic
self-reduction for 3SUM (see Lemma 12). We establish these tools in Section 3 and give a
short technical overview. Notably, none of these results use heavy black-box derandomization
machinery, but instead are rather simple algorithms tailored to the 3SUM problem.

To our great surprise, by a combination of these tools we can completely answer Question 2,
and answer Question 1 for almost all known 3SUM-based reductions.

Deterministic Universe Reduction. Let us start with our second driving question. We
prove that the universe size can indeed be reduced to nO(1):

▶ Theorem 2 (Deterministic Universe Reduction for 3SUM). If 3SUM over [n3] can be solved in
deterministic time O(n2−ϵ) for some ϵ > 0, then 3SUM over [U ] can be solved in deterministic
time O(n2−ϵ′ logc U) for some constants ϵ′, c > 0.

It is satisfactory that the precise polynomial bound is n3, which matches what is known
in terms of randomized algorithms precisely. Interestingly though, we obtain our universe
reduction not as a preprocessing step, but rather as a fine-grained reduction from 3SUM
with large universe to 3SUM with small universe.

ITCS 2024
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Let us note that Chan and He’s original motivation to this question was replacing
the dependence on U by a dependence on n (in a reduction from 3SUM to Convolution
3SUM) [22], which our result fails to achieve, because it involves log U factors in the running
time. However, it is a typical assumption in fine-grained complexity theory that the problems
involve weights in [−nc, nc] (for some constant c), and in this setting the overhead is only
polylogarithmic in n. In particular, Theorem 2 implies that unless the deterministic 3SUM
hypothesis (Hypothesis 1) fails, there is no deterministic subquadratic-time algorithm for
3SUM over [n3]. In all deterministic 3SUM-hardness reductions we can thus assume without
loss of generality that the given 3SUM instance is over [n3]. And indeed, for some problems [1]
this assumption is necessary to recover the same lower bounds that are known via randomized
reductions.

Derandomizing Almost All 3SUM-Based Reductions. Let us turn to our driving Question 1.
Up to very few exceptions, we indeed manage to derandomize all remaining randomized
3SUM-based reductions. Our flagship result here is that we derandomize the reductions to
Set Disjointness and Set Intersection, originally due to Kopelowitz, Pettie and Porat [44]:
▶ Problem 3 (Set Disjointness). Given sets S1, . . . , SN ⊆ [U ] each of size at most s and a
set of q queries Q ⊆ [N ]2, report for each query (i, j) ∈ Q whether Si ∩ Sj = ∅.

▶ Theorem 4 (Deterministic Set Disjointness Hardness). Let 0 ≤ α < 1. Unless the determin-
istic 3SUM hypothesis fails, there is no deterministic algorithm for (offline) Set Disjointness
with parameters |U | = O(n2−2α), N = O(n), s = O(n1−α) and q = O(n1+α) that runs in
time O(n2−ϵ), for any ϵ > 0.

▶ Problem 5 (Set Intersection). Given sets S1, . . . , SN ⊆ [U ] each of size at most s and
a set of q queries Q ⊆ [N ]2, report for each query (i, j) ∈ Q the set intersection Si ∩ Sj .
Occasionally we specify a size threshold up to which the algorithm is supposed to list elements.

▶ Theorem 6 (Deterministic Set Intersection Hardness). Let 0 ≤ α < 1 and 0 ≤ β ≤ 1− α.
Unless the deterministic 3SUM hypothesis fails, there is no deterministic algorithm for
(offline) Set Intersection with parameters |U | = O(n1+β−α), N = O(n 1

2 + α
2 + β

2 ), s = O(n1−α)
and q = O(n1+α) that in total lists up to O(n2−β) elements and runs in time O(n2−ϵ), for
any ϵ > 0.

As announced before, Theorems 4 and 6 immediately entail various deterministic lower
bounds for e.g. Triangle Listing [44], which in turn implies deterministic lower bounds e.g.
for many database problems [47, 43, 17, 42].

We remark that the range of parameters for which our deterministic reduction to Set
Intersection applies is limited in comparison to the original randomized reduction. While we
can only treat cases where we expect to list at least Ω(1) elements per queried intersection
(on average), Kopelowitz et al.’s reduction also applies to the setting where the number of
listed elements is much smaller. For all tight follow-up reductions based on Set Intersection,
our parameterization suffices though.
An answer to Question 1 does not only involve considering selected problems though – there
are many scattered 3SUM-based reductions in the literature that have to be considered. We
have made the effort to check for all these reductions (that we are aware of) whether our
derandomization ideas apply. The number of papers is overwhelming – thus, in order to
limit the scope of our project, we have only considered tight reductions. In the following
subsection we summarize the landscape of 3SUM-based reductions, and summarize which
reductions admit derandomizations in what way.
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1.2 The Landscape of 3SUM-Based Reductions
We have depicted the complete landscape of 3SUM-based reductions (that we are aware
of) in Figure 1 on Page 6. In this figure, we draw a solid arrow from P to Q if there
is a deterministic (tight) reduction from P to Q, and a dotted arrow if the reduction is
randomized. We have segmented the space of problems into seven regions depending on
whether and how derandomizations are known. The light blue regions are deterministic prior
to our work, our contribution is that we derandomize all problems in the yellow regions, and
the dark blue region remains randomized.

(O) Originally Deterministic Reductions. Only a minority of 3SUM-based hardness results
is deterministic out of the box – most problems rely directly or indirectly on a randomized
reduction. This minority includes in particular the numerous geometric problems [35, 29,
12, 16, 32, 8, 15, 50, 11, 33, 25, 13]. These reductions usually build on simple algebraic
transformations of the input. For instance, the reduction from 3SUM to the problem of
finding a triple of colinear points simply creates point (a, a3) for each input number a ∈ A.
As a consequence all these reductions are deterministic.

Other two examples of similarly simple deterministic constructions are reductions to
Hamming Pattern Matching under Polynomial Transformation [19], and to fully retroactive
3SUM data structures [24].

(C) Reductions via Convolution 3SUM. As mentioned before, the next wave of 3SUM-
hard problems often involved reductions via the Convolution 3SUM problem. Except for
the randomization in the reduction to Convolution 3SUM, many of these reductions were
deterministic, and were thus fully derandomized by [22]. This list of problems includes Zero
Triangle [52], Jumbled Indexing [9], Subset Sum for k-Enclosing Rectangle [21], and Hausdorff
Distance under translation [18]. The Zero Triangle problem was then deterministically
reduced to the Matching Triangle and Triangle Collection problems [7], which in turn led to
deterministic reductions to a number of dynamic problems [7, 28].

(S) Reductions Based on the Self-Reduction. Another class of reductions that was already
deranomized prior to our work is reductions that rely on an efficient self-reduction for 3SUM
(i.e., a reduction that reduces 3SUM on n numbers to n2α instances on n1−α numbers each,
for any α ∈ [0, 1]). The first 3SUM self-reduction was given implicitly by Patrascu [48],
and it was randomized. Later, deterministic self-reductions were proposed [46, 38]. Based
on these deterministic self-reductions, one can immediately derandomize the reductions to
All-Numbers 3SUM [51], and to detecting a 3-star or a 3-matching of total weight zero in
edge-weighted graphs [4].

(D) Reductions via Set Disjointness, Set Intersection, and Triangle Problems. Another
major class of reductions, as announced before, is via the Set Disjointness or Set Intersection
problems. There are deterministic reductions from Set Intersection to Triangle Listing (in
various parameterizations, also involving the arboricity of the given graph) [44], and via
Triangle Listing to Dictionary Matching with one gap [10] and exists-connectivity queries in
graph timelines [41]. Besides, Triangle Listing reduces to several database problems [47, 43, 17,
42]. The Set Disjointness problem reduces trivially to the All-Edges Triangle problem which
in turn reduces to several range-query problems [31]. As a consequence of our Theorems 4
and 6, we have successfully derandomized all these reductions.

ITCS 2024
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Figure 1 Fine-grained reductions from 3SUM. Solid edges depict deterministic reductions, and
dotted edges depict randomized reductions. Our contribution is that we derandomize all yellow
regions.
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(U) Reductions Relying on Small Universe Size. Other reductions are not inherently
randomized, but rather rely on a randomized universe reduction. We can derandomize
all such reductions by replacing the randomized universe reduction with our deterministic
one (Theorem 2). Reductions of this type have been established for 3-Linear Degeneracy
Testing [30]1 and grammar-compressed variants of vector inner product and matrix-vector
multiplication [1]. Similarly, the Dynamic k-Mismatch problem [26] relies on a quadratic-size
universe reduction for All-Numbers 3SUM, and the Odd Abelian Square problem [49] relies
on a quadratic-size universe reduction for Convolution 3SUM. To additionally derandomize
these problems we extend our universe reduction for 3SUM to also cover these two cases
(Lemmas 17 and 18).

(A) Reductions via Ad-Hoc Derandomizations. Fortunately, most hardness results have
been derandomized using our general toolset. There are however a couple of reductions
that required additional tailored arguments on top of that. The randomized reduction to
Monochromatic Convolution [45] relies, among other things, on a trick of adding random
offsets to merge several sparse sets into a dense one without (too many) collisions. We
provide a deterministic variant of this trick, and successfully derandomize the reduction.
Next, to derandomize the reduction to Local Alignment [6] we follow the approach of Chan
an He [22] of controlling the number of collisions, and add the trick of Abboud, Lewi, and
Williams [5] of replacing numbers with multidimensional vectors with small entries. Finally,
the reduction to Convolution Witnesses [37] can be derandomized by plugging in our method
for selecting a hash function with few false positives.

(R) Reductions that Remain Randomized. Unfortunately the list of known 3SUM-based
reductions includes three more results which we did not manage to derandomize [3, 2, 39].
These papers rely on the recent “short cycle removal” technique that was originally proposed
in [3] and optimized in [2, 39], and led to tight lower bounds for 4-Cycle Listing, Approximate
Distance Oracles with stretch close to 2 or 3, and for 4-Linear Degeneracy Testing. At the heart
of short cycle removal lies a structure-versus-randomness dichotomy which involves, in [2, 39],
finding structured subsets via the algorithmic Balog-Szemerédi-Gowers (BSG) theorem [23].
Derandomizing the BSG algorithm constitutes the major challenge in derandomizing these
reductions (though not the only one – the reductions also rely on a specialized kind of
additive hashing which we have not attempted to derandomize here). We leave it as an
important open problem to derandomize these few remaining reductions.

1.3 Outline

In Section 2 we fix some preliminaries. In Section 3 we introduce our derandomization toolkit
– this section starts with a high-level technical overview before diving into the proofs. In
Section 4 we combine our tools to obtain the deterministic universe reduction, and in Section 5
we provide the deterministic hardness results for Set Disjointness and Set Intersection. In
the full version of the paper we provide even more derandomizations: for the Monochromatic
Convolution, Local Alignment and Convolution Witness problems.

1 In [30] the authors define 3SUM and the class of 3-Linear Degeneracy Testing problems over a universe
of cubic size n3, and thereby implicitly rely on a universe reduction.

ITCS 2024
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2 Preliminaries

We use the standard notation [n] := {1, . . . , n} and Õ(T ) = T (log T )O(1). Throughout this
paper, we consider the 3SUM problem (and its variants) formally defined as follows:

▶ Problem 7 (3SUM). Decide whether in a given set A ⊆ [U ] there is a triple a, b, c ∈ A

with a + b = c.

▶ Problem 8 (All-Numbers 3SUM). Given a set A ⊆ [U ], decide for each c ∈ A whether
there is a pair a, b ∈ A with a + b = c.

▶ Problem 9 (Convolution 3SUM). Given a vector X ∈ [U ]n, decide for each k ∈ [n] whether
there is a pair i, j ∈ [n] with i + j = k and X[i] + X[j] = X[k].

While we have stated the problems in a monochromatic form (i.e., for a single set A

where we select a, b, c ∈ A), it is well-known and easy to check that they are equivalent to
their trichromatic variants of these problems (i.e., for three sets A, B, C where we select
a ∈ A, b ∈ B, c ∈ C) (by deterministic reductions). We occasionally rely on this statement
in our proofs.

3 Our Toolkit

In this section we develop the toolkit that is necessary to prove our main derandomizations.
We will start with a technical overview of the two tools in Sections 3.1 and 3.2, and provide
the missing formal proofs in Section 3.3.

3.1 Tool 1: Deterministic Additive Hashing
A hash function h is additive if there is some modulus m, such that h(a)+h(b) = h(a+b) mod m

for all inputs a, b. Many 3SUM-hardness reductions involve additive hash functions (or pseudo-
additive functions, which have the slightly weaker property that h(a) + h(b)− h(a + b) takes
only a constant number of values), and one of the simplest randomized constructions is the
family of functions h(x) = x mod m where m is a random prime of prescribed size.

In our setting we are required to select an additive hash function h deterministically.
Previous work [23, 22] has already faced the same challenge, and provided the following
simple solution. The insight is that function h(x) = x mod m is still an effective hash function
even if m is the product of several smaller primes m = p1 · . . . · pR, pi ≈ m1/R. In order
to select m, one can follow the method of conditional expectations: Instead of picking all
primes at the same time, we will fix p1, . . . , pR step by step. In each step, we pick a prime
pi which is at least as good as what we would expect from a random prime. In particular,
it suffices to pick a locally optimal prime. To this end, we can exhaustively enumerate all
primes of size ≈ m1/R and test which one suits us best. All in all, this approach works to
deterministically construct hash functions for all properties that can be efficiently tested.

Additive Hashing with Few Collisions. One such example is Chan and He’s deterministic
reduction from 3SUM to Convolution 3SUM [22]. Specifically, they require a hash function
which has few collisions (i.e., pairs a, b ∈ A with h(a) = h(b)). Since it is easy to count the
number of collisions for a given hash function in linear time, the above recipe leads to the
following derandomization:
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▶ Lemma 10 (Deterministic Additive Hashing with Few Collisions [23]). Let 0 ≤ µ ≤ 2, δ > 0.
There is a deterministic algorithm that, given a set A ⊆ [U ] of size n, finds a modulus
m ∈ [nµ, 2nµ) such that

#{(a, b) ∈ A2 : a ≡ b (mod m)} ≤ n2−µ(log U)O(1/δ).

The algorithm runs in time O(n1+δ).

Additive Hashing with Few False Positives. Unfortunately, for most 3SUM-based reduc-
tions, bounding the number of collisions is not sufficient though. The property that most
reductions rely on is that the number of triples a, b, c ∈ A with a + b ≡ c (mod m) is small –
we often refer to such a triple as a pseudo-solution or a false positive. Unfortunately, counting
the number of false positives is in general a hard problem – it is in fact another 3SUM
instance {a mod m : a ∈ A} which cannot be expected to be solvable in subquadratic time.

To circumvent this barrier, we exploit a simple observation: Note that the universe size
of the reduced 3SUM instance is only m, hence we can count the 3SUM solutions in time
Õ(m) using the Fast Fourier Transform. Building on that insight, we establish the following
new lemma.

▶ Lemma 11 (Deterministic Additive Hashing with Few False Positives). Let 0 ≤ µ < 3, δ > 0.
There is a deterministic algorithm that, given 3SUM instances A1, . . . , Ag ⊆ [U ] of size O(n),
either finds a positive modulus m ∈ [nµ, 2nµ) such that

g∑
i=1

#{(a, b, c) ∈ A3
i : a + b ≡ c (mod m)} ≤ gn3−µ+δ(log U)O(1/δ),

or decides that at least one instance is a yes-instance. The algorithm runs in Õ(gnmax(µ,1)+δ)
time.

We remark that while we state this lemma in a slightly more general form, in almost all
applications we only need the lemma for the special case g = 1.

3.2 Tool 2: Deterministic Self-Reduction
As our second major tool we rely on a deterministic self-reduction for 3SUM. Here by a
self-reduction we mean an algorithm that reduces a 3SUM instance A to some other 3SUM
instances A1, . . . , AN with the property that A is a yes-instance if and only if there is a
yes-instance Ai. This reduction is considered efficient only if

∑
i |Ai|2 ≤ Õ(|A|2) (i.e., if the

brute-force running times match).
Self-reductions for 3SUM are known based on two very different approaches. The first

approach relies on additive hashing. The second approach, originally due to [46, 38] (with
ideas borrowed from [27]), is conceptually simpler and also deterministic. The idea is to
bucket A into smaller sets in such a way that only few triples of buckets can contain a
solution. For our purposes we need a slightly stronger version than what was stated in the
previous papers, where we also consider the universe size of the constructed subinstances:

▶ Lemma 12 (Deterministic Self-Reduction). Let A ⊆ [U ] be a set of size n, and let g ≥ 1.
We can deterministically construct a partition of A into subsets A1, . . . , Ag, and a set of
triples R ⊆ [g]3 of size O(g2) such that:

Each set Ai has size O(n/g) and can be covered by an interval of length O(U/g).
For all triples a, b, c ∈ A with a + b = c, there is some (i, j, k) ∈ R with a ∈ Ai, b ∈
Aj , c ∈ Ak.

The algorithm runs in time Õ(n + g2).

ITCS 2024
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3.3 Proofs
We finally provide the missing proofs of Lemmas 11 and 12.

Proof of Lemma 11. For a modulus m, we call a triple (a, b, c) ∈ A3
i satisfying a + b ≡

c (mod m) a pseudo-solution of m. Let us write

S(m) =
g∑

i=1
#{(a, b, c) ∈ A3

i : a + b ≡ c (mod m)}

to denote the number of pseudo-solutions of m; our goal is to compute a modulus m that
with few pseudo-solutions, S(m) ≤ gn3−µ(log U)O(1/δ). As outlined before, our strategy is
to let m be the product of several small primes, each of size roughly nδ. These primes are
selected one by one, such that each next prime narrows down the number of false positives
by an appropriate amount. Specifically, consider the following process: We initialize m← 1
and P ⊆ [nδ, 2nδ) to be the subset of primes of size roughly nδ, and run the following three
steps:
1. For each prime p ∈ P , compute S(m · p) using FFT.
2. Select the prime p ∈ P that minimizes S(m · p). Update m← m · p and P ← P \ {p}.
3. If m ≥ 1

2 nµ−δ, then update m← m · ⌈nµ/m⌉ and stop. Otherwise, go to step 1.

Running Time. The easier part of the proof is to bound the running time of this process.
Note that we increase m by a factor of at least nδ in each step. Hence, after at most O(1)
iterations we have increased m beyond the threshold 1

2 nµ−δ and the process stops. The
running time is dominated by step 1: For each prime p, we compute S(m · p) using the
Fast Fourier Transform. More precisely, for each 3SUM instance Ai we first prepare the
(multi-)set Ai mod (mp) obtained by hashing all numbers modulo mp. We can compute the
number of 3SUM solutions in this reduced instance in time O(mp log(mp)) = Õ(n + nµ)
(using that m ≤ nµ−δ and p ≤ nδ). Repeating this call for all g instances and all O(nδ)
primes amounts for time Õ(nδ · g · (n + nµ)) = Õ(gnmax(1,µ)+δ).

Correctness. It remains to bound S(m), where is m is the modulus computed by the above
process. Let mi denote the modulus at the i-th step of the process (with m0 = 1) and assume
that all given 3SUM instances are unsatisfiable. We prove by induction that

S(mi) ≤
gn3

niδ
· (2 log U)i.

For i = 0, this is clearly true. So let i > 0 and assume that the induction hypothesis
holds for i− 1. Our strategy is to show that for a random prime p ∈ [nδ, 2nδ), with good
probability we have

S(mi−1 · p) ≤ gn3

niδ
·O(log U)i.

Consider an arbitrary triple a, b, c ∈ [U ] with a + b ≠ c. The event a + b ≡ c mod p is
equivalent to p being a divisor of the number a + b − c ∈ [−U .. 2U ], which happens with
probability at most

lognδ (2U)
Ω(nδ log−1(n))

= O(n−δ log U),
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since lognδ (2U) is the maximum number of divisors of size at least nδ of a + b − c, and
since there are Ω(nδ log−1(n)) primes in [nδ, 2nδ) by the Prime Number Theorem. Therefore,
among the pseudo-solutions modulo mi−1, only an expected O(n−δ log U)-fraction is also
a pseudo-solution modulo mi−1 · p. Therefore, by Markov’s inequality with probability at
least 1

2 we have that

S(mi−1 · p) ≤ 2 · S(mi−1) ·O(n−δ log U)

≤ gn3

n(i−1)δ
·O(log U)i−1 ·O(n−δ log U)

= gn3

niδ
·O(log U)i.

It follows that there is a successful prime p ∈ [nδ, 2nδ) with S(mi−1 · p) ≤ gn3

niδ ·O(log U)i.
Recall that the algorithm selects the prime that minimizes the number of pseudo-solutions
S(mi−1 · p) and so indeed we have S(mi) ≤ gn3

niδ ·O(log U)i.
Finally, recall that the process terminates no sooner than mi ≥ 1

2 nµ−δ. Since nδ ≤ mi <

(2nδ)i, it follows that the final iteration count is at least i ≥ µ
δ − O(1) and at most i ≤ µ

δ .
Hence, for the final modulus m we have indeed

S(m) ≤ gn3

nµ−O(δ) ·O(log U)
µ
δ = gn3−µ+O(δ) · (log U)O(1/δ).

By decreasing δ by a constant factor, we obtain the claimed bound. Recall that this bound
is conditioned on the assumption that the given 3SUM instances are no-instances. However,
if our algorithm computes a modulus m with unexpectedly many pseudo-solutions (which we
can verify in time Õ(gnmax(1,µ)+δ)), we can infer that at least one of the given instances is a
yes-instance.

As a final detail, we show that the algorithm produces a modulus m in the range [nµ, 2nµ).
Indeed, in line 3, we execute the final update m← m · ⌈nµ/m⌉ only after we have increased m

to be in the range 1
2 nµ−δ ≤ m < nµ. It follows that then m · ⌈nµ/m⌉ ≤ m · (nµ/m + 1) <

2nµ. ◀

This completes the treatment of the deterministic additive hashing tool. Let us next
prove the refined deterministic self-reduction.

Proof of Lemma 12. Our goal is to partition A into subsets A1, . . . , Ag with the following
two properties:
|Ai| ≤ 2n/g, and
max(Ai)−min(Ai) ≤ 2U/g (i.e., Ai can be covered by an interval of length 2U/g).

By constructing this partition greedily, by scanning over the elements in A in sorted order
including all elements until one of the two conditions is violated, it is easy to see that both
rules lead to at most g/2 stops and therefore g groups suffice in total. We assume that the
groups constructed in this way are ordered in the natural way (i.e., max(Ai) < min(Ai+1)
for all i).

The next step is to construct the set R ⊆ [g]3. Naively, including all g3 triples (i, j, k)
would be correct, if there is a 3-sum in the original instance it is certainly contained in one
of the subinstance (Ai, Aj , Ak). However, many of these instances are trivial in the sense
that either
1. min(Ai) + min(Aj) > max(Ak), or
2. max(Ai) + max(Aj) < min(Ak);
both conditions make it impossible for (Ai, Aj , Ak) to contain a 3-sum. To improve the
reduction, we will therefore include in R only triples that are not trivial.
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We argue that the number of remaining instances (that is, the number of instances
that falsify both previous conditions) is at most O(g2). To see this, consider the partially
ordered set ([g]3,≺) where we let (i, j, k) ≺ (i′, j′, k′) if and only if max(Ai) < min(Ai′),
max(Aj) < min(Aj′) and max(Ak) < min(Ak′). With this definition, if (i, j, k) ≺ (i′, j′, k′),
then (i, j, k) or (i′, j′, k′) must be a trivial no-instance. Indeed, suppose that (i, j, k) and
(i′, j′, k′) both falsify the conditions (1) and (2). Then:

0 ≤ max(Ai) + max(Aj)−min(Ak) (since (i, j, k) falsifies (2))
< min(Ai′) + min(Aj′)−max(Ak′) (since (i, j, k) ≺ (i′, j′, k′))
≤ 0. (since (i′, j′, k′) falsifies (1))

More generally, on any chain in the lattice there can be at most one nontrivial instance.
Therefore, in order to bound the number of nontrivial instances, it suffices to cover [g]3
by O(g2) chains. This cover is easy to construct: For all a, b ∈ {−g, . . . , g}, take the
chain {(i, i + a,−i + b) : i ∈ [g]}. Any triple (i, j, k) is covered by the chain for a = j − i

and b = k + i.
It remains to analyze the running time. Construction the partition of A takes linear time

after sorting A in time O(n log n). We can construct the set R by enumerating all (i, j) ∈ [g]2,
and enumerating for each such pair only the subset of k’s with min(Ai)+min(Aj) ≤ max(Ak)
and max(Ai) + max(Aj) ≥ min(Ak). By preprocessing A with a range query data structure
in near-linear time, this step runs in time Õ(g2 + |R|) = Õ(g2). ◀

This lemma immediately implies the following deterministic self-reductions for 3SUM
and the all-numbers variant of 3SUM. (Here, the running time increases to Õ(ng) since we
explicitly write down all constructed instances, instead of concisely describing the instances
via subsets of the original instance.)

▶ Corollary 13 (Deterministic Self-Reduction for 3SUM). For any g ≥ 1, a given 3SUM
instance of size n over the universe [U ] can deterministically be reduced to O(g2) 3SUM
instances of size O(n/g) over the universe [O(U/g)]. The running time of the reduction is
Õ(ng).

▶ Corollary 14 (Deterministic Self-Reduction for All-Numbers 3SUM). For any g ≥ 1, a given
AN-3SUM instance of size n over the universe [U ] can deterministically be reduced to O(g2)
AN-3SUM instances of size O(n/g) over the universe [O(U/g)]. The running time of the
reduction is Õ(ng).

4 Deterministic Universe Reduction for 3SUM

In this section we combine the tools established in Section 3 to deduce a deterministic
universe reduction for 3SUM (Theorem 2). We later extend the universe reduction also to
All-Numbers 3SUM and Convolution 3SUM (Lemmas 17 and 18). We start with a trivial
reduction which we need in the proof of Theorem 2.

▶ Observation 15 (Trivial Universe Reduction for 3SUM). Let U ≥ U ′. A 3SUM instance
over [U ] can be reduced to O(( U

U ′ )3) many 3SUM instances over [U ′] (of the same size n)
such that the solutions are in 1-to-1 correspondence. The reduction runs in time O(n · ( U

U ′ )3).

Proof. Chop the given set A into ⌈ U
U ′ ⌉ subsets that can be covered by an interval of length U ′.

In this way we construct at most ⌈ U
U ′ ⌉3 triples each of which can be viewed as a 3SUM

instance over the universe [U ′]. (In fact the number of relevant 3SUM solutions is only
O(( U

U ′ )2), but we do not need this improvement here.) ◀
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▶ Theorem 2 (Deterministic Universe Reduction for 3SUM). If 3SUM over [n3] can be solved in
deterministic time O(n2−ϵ) for some ϵ > 0, then 3SUM over [U ] can be solved in deterministic
time O(n2−ϵ′ logc U) for some constants ϵ′, c > 0.

Proof. Assume that 3SUM over the universe [n3] can be solved in time O(n2−ϵ) for some
ϵ > 0. We are designing a subquadratic algorithm for a given 3SUM instance A ⊆ [U ]. Our
reduction runs in four steps:
1. Let µ, δ > 0 be parameters to be determined later. We use the deterministic additive

hashing lemma (Lemma 11 with parameters µ, δ and g = 1) to find a modulus m

with m = Θ(nµ) and

S := #{(a, b, c) ∈ A3 : a + b ≡ c (mod m)} ≤ n3−µ+δ(log U)O(1/δ).

Alternatively, if Lemma 11 reports that the instance contains a solution, we can im-
mediately stop here. As before let us refer to triples (a, b, c) with a + b ≡ c (mod m)
as pseudo-solutions. Our strategy is to design a subquadratic algorithm that lists all
pseudo-solutions. Afterwards, it is easy to check if a genuine solution is among them.
Note that the pseudo-solutions stand in 1/̄to/̄O(1)-correspondence to the solutions of the
3SUM instance

A′ := {a mod m, (a mod m) + m : a ∈ A},

hence in the following steps it suffices to list all solutions in A′.
2. Let α be a parameter to be determined. We apply the deterministic self-reduction

(Corollary 13 with parameter g = nα) to A′ to construct O(n2α) 3SUM instances A′
i,

each of size O(n1−α) and over a universe of size O(m/nα) = O(nµ−α).
3. Using the trivial universe reduction (Observation 15 with parameters U = Θ(nµ−α)

and U ′ = Θ(n3−3α)) we can further reduce each instance A′
i to max(1, ( nµ−α

n3−3α )3) 3SUM
instances of the same size O(n1−α) and over a universe of cubic size O(n3−3α). We solve
each such instance using the fast algorithm in time O(n(1−α)(2−ϵ)). (Here we only detect
whether A′

i contains a solution, but do not list all solutions.)
4. For each set A′

i for which we have detected a solution in the previous step, we exhaustively
enumerate all solutions in time O(|A′

i|2) = O(n2−2α).

Running Time. The correctness is clear, but it remains to analyze the running time. In
what follows we choose the parameters δ = ϵ

32 > 0, µ = 2− 2δ, α = 1
2 + 2δ and analyze the

contributions step-by-step:
1. Running Lemma 11 takes time O(nmax(1,µ)+δ) = O(n2−δ).
2. Running Corollary 13 takes time Õ(ng) = Õ(n3/2+2δ).
3. The overhead due to Observation 15 is negligible, and this step is dominated by solving

the O(n2α · max(1, nµ−α

n3−3α )3) instances using the fast algorithm. Each call takes time
O(n(1−α)(2−ϵ)), hence in total this step takes time

O(n2α ·max(1, nµ−α

n3−3α )3 · n(1−α)(2−ϵ))

= O(n2−ϵ(1−α) ·max(1, n3/2−4δ

n3/2−6δ )3)

= O(n2−ϵ(1−α)+6δ)
= O(n2−2δ),

where in the last step we used that 1− α ≥ 1
4 .
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4. Recall that we only brute-force 3SUM solutions A′
i which contain a solution. Moreover,

since the solutions across the sets A′
i are in O(1)-to-1 correspondence to the at most S

pseudo-solutions, we brute-force at most O(S) instances in total time

O(S · n2−2α) = O(n3−µ+δ+2−2α(log U)O(1/δ)) = O(n2−δ(log U)O(1/δ)).

Summing over all contributions, the total running time is bounded by n2−δ(log U)O(1/δ),
which is as claimed. ◀

▶ Corollary 16 (3SUM over Cubic Universes). For any ϵ > 0, the 3SUM problem over a
universe of size n3 cannot be solved in deterministic time O(n2−ϵ), unless the deterministic
3SUM hypothesis fails.

4.1 Universe Reduction for All-Numbers 3SUM

For the All-Numbers 3SUM problem there exists an even better randomized universe reduction
– to a universe of quadratic size n2. To derandomize this universe reduction as well, we follow
the same ideas as in Theorem 2:

▶ Lemma 17 (All-Numbers 3SUM over Quadratic Universes). For any ϵ > 0, the AN-3SUM
problem over a universe of size n2 cannot be solved in deterministic time O(n2−ϵ), unless
the deterministic 3SUM hypothesis fails.

Proof. Suppose that AN-3SUM over quadratic universes can be solved in time O(n2−ϵ). We
design a 3SUM algorithm for A ⊆ [nc] in time O(n2−ϵ′). The reduction again runs in four
steps:
1. We first apply Lemma 11 (with parameters µ, δ > 0 to be determined later and g = 1) to

find a modulus m = Θ(nµ) such that

S := #{(a, b, c) ∈ A3 : a + b ≡ c (mod m)} ≤ n3−µ+δ(log n)O(1/δ) = Õ(n3−µ+δ).

Let us again refer to all triples (a, b, c) with a + b ≡ c (mod m) as pseudo-solutions.
Then the pseudo-solutions of the original instance are in 1-to-O(1) correspondence to the
solutions of the 3SUM instance

A′ = {a mod m, (a mod m) + m : a ∈ A}.

2. We apply Lemma 12 with parameter g = nα to partition A′ into subsets A′
1, . . . , A′

g such
that each part has size at most O(n1−α), with only O(n2α) triples of parts that may
contain a 3-sum. (This reduction even reduces the universes of the subinstances by a
factor nα, but we don’t need this improvement here).

3. We apply the trivial universe reduction (Observation 15 with parameters U = Θ(nµ) and
U ′ = Θ(n2−2α)) to further reduce each instance A′

i to max(1, nµ

n2−2α )3 instances of the
same size over a universe of quadratic size O(n2−2α). We solve each new instance using
the fast AN-3SUM algorithm in total time O(n2α ·max(1, nµ

n2−2α )3 · n(1−α)(2−ϵ)).
4. For each relevant triple (i, j, k), and for each a ∈ A′

i that was found to be part of a
pseudo-solution, we explicitly list all pseudo-solutions in A′

i ∪A′
j ∪A′

k. As this step lists
all pseudo-solutions, we are guaranteed to find any proper 3-sum in this step.
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Running Time. It is easy to see that this algorithm is correct, but it remains to analyze
the running time. We choose the parameters δ := ϵ

16 , µ := 2− 2δ, and α = 4δ, and analyze
the running time step by step:
1. Running Lemma 11 takes time O(nmax(µ,1)+δ) = O(n2−δ).
2. Running Lemma 12 takes time Õ(n + g2) = Õ(n).
3. The trivial universe reduction is negligible, hence this step runs in total time

O(max(1, nµ

n2−2α )3 · n(1−α)(2−ϵ)) = O(n2−(1−α)ϵ+6δ) = O(n2−2δ),

using in the last step that 1− α ≥ 1
2 .

4. We brute-force S = Õ(n3−µ+δ) many instances of size O(n1−α), taking time Õ(n2−δ).
Summing over all contributions we obtain that the total running time is O(n2−δ) as claimed.

◀

4.2 Universe Reduction for Convolution 3SUM
Finally we also prove that by means of deterministic reductions, the Convolution 3SUM
problem is already hard over quadratic universes. This proof is essentially identical to [22],
except that we start with our deterministic universe reduction for 3SUM.

▶ Lemma 18 (Convolution 3SUM over Quadratic Universes). For any ϵ > 0, the Convolution
3SUM problem over a universe of size n2 cannot be solved in deterministic time O(n2−ϵ),
unless the deterministic 3SUM hypothesis fails.

Proof. Suppose that the Convolution 3SUM problem over a universe of size n2 can be solved
in deterministic time O(n2−ϵ) for some ϵ > 0. In order to falsify the deterministic 3SUM
hypothesis, it suffices to design a subquadratic algorithm for a given 3SUM instance A ⊆ [n3].
Using the deterministic additive hashing construction with few collisions (Lemma 10 with
parameters µ = 1 and δ = 1

2 , say), we can find a modulus m = Θ(n) such that

#{(a, b) ∈ A2 : a ≡ b (mod m)} ≤ Õ(n).

We continue with some terminology: Call an integer i is α-heavy if |{a ∈ A : a ≡
i (mod m)}| > α, and α-light otherwise.

▷ Claim 19. Let α > 1. The number of α-heavy elements a ∈ A is at most Õ(n/α).

Proof. The proof is by a simple calculation. We express the number of α-heavy elements in
A as ∑

i∈[m]
i is heavy

|{a ∈ A : a ≡ i (mod m)}|

≤
∞∑

ℓ=⌊log α⌋

∑
i∈[m]

i is 2ℓ-heavy
i is 2ℓ+1-light

|{a ∈ A : a ≡ i (mod m)}|

≤
∞∑

ℓ=⌊log α⌋

∑
i∈[m]

i is 2ℓ-heavy

2ℓ+1
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Now observe that each bucket i ∈ [m] which is 2ℓ-heavy contributes at least
(2ℓ

2
)

= Ω(22ℓ)
many collisions. Since the total number of collisions is bounded by Õ(n), there can be at
most Õ(n/22ℓ) many such heavy buckets, and thus

≤
∑

ℓ=⌊log α⌋

Õ(2ℓ · n
22ℓ )

≤ Õ(n/α). ◁

Coming back to the lemma, let us simply call i heavy if it is nδ-heavy for some para-
meter δ > 0 to be determined later, and light otherwise. We consider two cases, depending
on whether the 3SUM solution contains a 3SUM solution with a heavy element, or whether
all 3SUM solutions consist of light elements only. For the former case, since there are at most
Õ(n1−δ) many heavy elements a ∈ A, we can simply brute-force over all solutions involving
a heavy element in time Õ(n1−δ · n) = Õ(n2−δ). Hence, for the rest of the proof we focus on
the latter case and prove that we can detect 3SUM solutions involving only light elements.

Let (x, y, z) ∈ [nδ]3. For each such triple, we construct a trichromatic Convolution 3SUM
instance (Xx, Yy, Zz) of length 2m as follows. (Reducing that trichromatic instance further
to a monochromatic instance is standard.) For i ∈ [2m], let Xx[i] := a−i

m where a is the
x-th element in A with a ≡ i (mod m) (according to an arbitrary but fix order). Similarly,
let Yy[j] := b−j

m where b is the y-th element in A with b ≡ j (mod m) and let Zz[k] := c−k
m

where c is the z-th element in A with z ≡ k (mod m). If there happens to be no x-th (or
y-th or z-th) element, simply put a dummy value that cannot be part of any solution. It is
easy to verify that all entries are integers, and further have size at most n3/m = O(n2).

Moreover, there is a solution in any of the Convolution 3SUM instances
(Xx, Yy, Zz)x,y,z∈[nδ] if and only if the given 3SUM instance A has a light solution. For
the one direction, suppose that there are light elements a, b, c ∈ A with a + b = c. Let
i := x mod m, j := y mod m and k := i + j; clearly we have k ≡ x (mod m). Then there are
x, y, z ∈ [nδ] such that a is the x-th element in A with a ≡ i (mod m), b is the y-th element
in A with b ≡ j (mod m), and c is the z-th element in A with c ≡ k (mod m). By definition
we have that i + j = k and that

Xx[i] + Yy[j] = a− i + b− j

m
= c− k

m
= Zz[k].

The other direction is symmetric.
We have constructed n3δ many Convolution 3SUM instances over a quadratic universe,

and solving all of these takes time O(n3δ · n2−ϵ) by our initial assumption. The total time is
thus O(n2−δ + n2−ϵ+3δ) which is subquadratic by choosing δ = ϵ

4 > 0. ◀

4.3 Universe Reduction for 3SUM Listing
As a final simple corollary we include the following deterministic universe reduction for the
3SUM Listing problem (where the goal is to list all solutions):

▶ Lemma 20 (3SUM Listing over Small Universes). For any 1 < µ < 2 and ϵ > 0, there is no
deterministic algorithm that given a size-n 3SUM instance A ⊆ [nµ] with O(n3−µ) solutions
lists all solutions in time O(n2−ϵ), unless the deterministic 3SUM hypothesis fails.

Proof. This lemma is basically an immediate consequence of Lemma 11. The only minor
complication is how to remove the overhead δ.
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Let A ⊆ [nc] be a given 3SUM instance. Using Lemma 11 (with parameters µ, 0 < δ ≤ µ−1
to be determined, and g = 1) we can compute a modulus m ∈ [nµ, 2nµ] such that the number
of pseudo-solutions is bounded by

S := #{(a, b, c) ∈ A3 : a + b ≡ c (mod m)} ≤ Õ(n3−µ+δ).

We construct the 3SUM Listing instance A′ = {a mod m, (a mod m) + m : a ∈ A} ∪
B, where B is a set of n1+δ dummy elements that cannot be part of a solution (e.g.,
B = {10m + i : i ∈ [n1+δ]}). Clearly the solutions in A′ stand in O(1)-to-1 correspondence
to the pseudo-solutions of A. Therefore, given a list of all O(S) solutions of A′ we can
decide the original instance by testing whether one of the pseudo-solutions is proper. Note
that n′ = |A′| = Θ(n1+δ), and thus A′ ⊆ [O(m)] ⊆ [(n′)µ] and the number of solutions is
O(S) = Õ(n3−µ+δ) = O((n′)3−µ). Applying the efficient listing algorithm takes subquadratic
time O((n′)2−ϵ) = O(n2+2δ−ϵ), by choosing δ := min{ ϵ

3 , µ− 1} > 0. ◀

5 Deterministic Lower Bounds for Set Disjointness and Set
Intersection

In this section we give our deterministic lower bounds for the (offline) Set Disjointness and
(offline) Set Intersection problems (Theorems 4 and 6). Let us recall their definitions first.

▶ Problem 3 (Set Disjointness). Given sets S1, . . . , SN ⊆ [U ] each of size at most s and a
set of q queries Q ⊆ [N ]2, report for each query (i, j) ∈ Q whether Si ∩ Sj = ∅.

▶ Problem 5 (Set Intersection). Given sets S1, . . . , SN ⊆ [U ] each of size at most s and
a set of q queries Q ⊆ [N ]2, report for each query (i, j) ∈ Q the set intersection Si ∩ Sj .
Occasionally we specify a size threshold up to which the algorithm is supposed to list elements.

The Set Disjointness has two “trivial” solutions: On the one hand, we can solve each
query in time O(s) thus taking time O(qs) in total. On the other hand, we can encode all
queries as a matrix multiplication problem of size N × s×N . If matrix multiplication is in
linear time (i.e., if ω = 2), this leads to an algorithm in time (N2 + Ns)1+o(1). While the
first approach works out of the box also for the Set Intersection problem, the latter algorithm
does not immediately apply.

Kopelowitz, Pettie and Porat [44] have proved that these algorithms are best-possible –
at least if 3SUM cannot be solved in randomized subquadratic time. In what follows, we
derandomize their reductions.2

We start with the following trivial reduction from Set Intersection (for small thresholds t)
to Set Disjointness. We will later rely on this reduction for t = nϵ.

▶ Observation 21 (Trivial Reduction from Set Intersection to Set Disjointness). If the offline Set
Disjointness problem is in deterministic time f(U, N, s, q), then the offline Set Intersection
problem with a threshold of t per query is in time O(f(U, Nt2, s

t2 , qt4) + qs
t ) = O(t6 ·

f(U, N, s, q) + qs
t ).

Proof. Given a Set Intersection instance S1, . . . , SN , let us arbitrarily partition each set Si

into t2 subsets Si,1, . . . , Si,t2 of size O(s/t2). We replace each original by t4 queries that
respectively compare all possible combination of subsets. In this way we clearly obtain an

2 Let us remark that in their paper [44] they even optimize their reductions with respect to logarithmic
factors; here, since we are only interested in subquadratic-time 3SUM-hardness, we consider a coarser-
grained view.

ITCS 2024



49:18 Deterministic 3SUM-Hardness

equivalent Set Intersection instance, with Nt2 many sets of size O(s/t2), over the same
universe size U and with qt4 many queries. We run the fast Set Disjointness algorithm
on that instance. Our task is to report, for each query (i, j) ∈ Q in the original Set
Intersection instance, up to t elements from the intersection Si ∩ Sj . The outcome of the
Set Disjointness call yields a subset Qi,j ⊆ [t2]2 of positions (i′, j′) such that Si,i′ ∩ Sj,j′ is
nonempty. Among these pairs in Qi,j , select up to t arbitrarily. For each selected pair (i′, j′)
we evaluate Si,i′ ∩ Sj,j′ by scanning through all elements of Si,i′ . Each such scan reveals at
least one element of the intersection Si ∩ Sj , and therefore indeed after t repetitions we have
achieved our goal.

The algorithm takes time f(U, Nt2, s
t2 , qt4) for the call to the Set Disjointness oracle.

Afterwards, we explicitly compute the set intersections of q · t sets of size O(s/t2) each, taking
time O(q · t · s/t2) = O( qs

t ) in total. ◀

▶ Theorem 4 (Deterministic Set Disjointness Hardness). Let 0 ≤ α < 1. Unless the determin-
istic 3SUM hypothesis fails, there is no deterministic algorithm for (offline) Set Disjointness
with parameters |U | = O(n2−2α), N = O(n), s = O(n1−α) and q = O(n1+α) that runs in
time O(n2−ϵ), for any ϵ > 0.

Let us remark that the case α = 0 is trivial, since the input size is already Ω(n2).

Proof. Suppose there is a Set Disjointness algorithm with parameters as specified in the
lemma statement. We will design a subquadratic algorithm for 3SUM. Given a 3SUM
instance A, we proceed in the following steps:
1. We apply the deterministic self-reduction for 3SUM. Specifically, we apply Lemma 12

to partition A into g = nα groups A1, . . . , Ag of size O(n1−α), such that only a subset
R ⊆ [g]3 of at most |R| = O(n2α) group triples is relevant.

2. We apply the deterministic hashing lemma to find a modulus m under which we have
only few false positives in the relevant groups. Specifically, we apply Lemma 11 for the
3SUM instances (Ai ∪ Aj ∪ Ak)(i,j,k)∈R (of size O(n1−α) each) and for µ = 2− 2δ and
some parameter δ > 0 to be specified later. This either reports that one of the instances
contains a 3SUM solution (in which case we can stop), or the lemma returns a modulus
m = O((n1−α)µ) = O(n2−2α) satisfying that∑

(i,j,k)∈R

#{(a, b, c) ∈ Ai ×Aj ×Ak : a + b ≡ c (mod m)}

≤ |R| · O((n1−α)1+3δ) · (log n)O(1/δ) = Õ(n1+α+3δ).

Let us for simplicity assume that
√

m is an integer; otherwise replace all the following
occurrences of

√
m with an appropriate rounding of

√
m.

3. We are ready to construct the Set Disjointness instance: For each i ∈ [g] and for
all x, y ∈ [

√
m], we construct the following two sets:

Bi,x = {(b + x
√

m) mod m : b ∈ Ai},
Ci,y = {(c + y) mod m : c ∈ Ai}.

The Set Disjointness instance consists of the sets {Bi,x}i,x ∪ {Ci,y}i,y. The queries are
defined as follows: For each (i, j, k) ∈ R and for each a ∈ Ai, we add a query. Namely, let
x, y ∈ [

√
m] be such that a ≡ x

√
m− y (mod m); then we query whether the intersection

Bj,x ∩ Ck,y is empty.
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Let us take a break here from the algorithm, and for now give an explanation of the Set
Disjointness instance. We claim that the elements in the queried set intersections Bj,x ∩Ck,y

are in one-to-one correspondence to the set of pseudo-solutions⋃
(i,j,k)∈R

{(a, b, c) ∈ Ai ×Aj ×Ak : a + b ≡ c (mod m)}.

Indeed, for any pseudo-solution (a, b, c) ∈ Ai × Aj × Ak, let x, y ∈ [
√

m] be such that a ≡
x
√

m− y (mod m). Then note that (b + x
√

m) mod m ∈ Bj,x and that (c + y) mod m ∈ Ck,y.
Moreover, since x

√
m− y + b ≡ a + b ≡ c (mod m), these two elements are in fact identical.

The converse direction is analogous.
With this in mind, our goal is to list all elements in the intersections Bj,x ∩ Ck,y of all

queries. In this way we obtain the set of all pseudo-solutions and we can easily check whether
a 3SUM solution is among them. However, the Set Disjointness algorithm is not required to
report the elements in the intersections. Instead, we proceed as follows:
4. Using the reduction from Observation 21 with threshold t = nρ (for some parameter ρ to

be determined later), we list up to t elements from each queried intersection.
5. For each query Bj,x ∩ Ck,y with |Bj,x ∩ Ck,y| ≥ t (i.e., for which we have exhausted

the threshold in the previous listing step), we explicitly enumerate all elements in the
intersection by scanning once through Bj,x.

After these two steps, we have clearly listed all elements in the queried intersections. As
argued before, this completes the 3SUM algorithm.

It remains to argue that the running time is subquadratic as claimed. Let us analyze the
five steps of the algorithm individually:
1. Takes time Õ(n + g2) = Õ(n + n2α) by Lemma 12.
2. Takes time Õ(g(n1−α)max(1,µ)+δ) = O(n2α(n1−α+δ + n(1−α)(2−δ))) = O(n1+α+δ +

n2−δ(1−α)) by Lemma 11.
3. The whole construction takes linear time in the size of the Set Disjointness instance. This

is negligible in comparison to step 4 (where we actually solve the instance).
4. To analyze the running time of this step, we first analyze the parameters of the constructed

Set Disjointness instance: Observe that

U = m = O(n2−2α),
N = 2g

√
m = O(nα+1−α) = O(n),

s = O(n1−α),
q = |R| ·O(n1−α) = O(n1+α).

Since these are exactly as claimed in the lemma statement, the efficient Set Disjointness
algorithm can solve this instance in time O(n2−ϵ) for some ϵ > 0. Due to the overhead of
Observation 21, this step runs in total time O(t6 · n2−ϵ + qs

t ) = O(n2−ϵ+6ρ + n2−ρ).
5. To analyze the running time of this step, first recall that there are at most Õ(n1+α+3δ)

many pseudo-solutions (modulo m). Moreover, the pseudo-solutions are in one-to-one
correspondence to the queried set intersections. Since we only query the intersections
containing at least t = nρ elements, there can be at most Õ(n1+α+3δ−ρ) that have not
been completely answered in the previous step. Each such remaining query takes time
O(s) = O(n1−α), hence this step takes time Õ(n2+3δ−ρ) in total.

Summing over all contributions, the total running time is

Õ(n + n2α + n1+α+δ + n2−δ(1−α) + n2−ϵ+6ρ + n2−ρ + n2+3δ−ρ).

Recall that 0 ≤ α < 1. Thus by picking e.g. ρ = ϵ
7 > 0 and δ = min{ 1−α

2 , ρ
4} > 0 this

running time becomes subquadratic, O(n2−ϵ′) for some ϵ′ > 0. ◀
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Next, let us turn to the analogous proof for Set Intersection. The idea is similar, but
requires some tweaks (as in the original paper [44]).

▶ Theorem 6 (Deterministic Set Intersection Hardness). Let 0 ≤ α < 1 and 0 ≤ β ≤ 1− α.
Unless the deterministic 3SUM hypothesis fails, there is no deterministic algorithm for
(offline) Set Intersection with parameters |U | = O(n1+β−α), N = O(n 1

2 + α
2 + β

2 ), s = O(n1−α)
and q = O(n1+α) that in total lists up to O(n2−β) elements and runs in time O(n2−ϵ), for
any ϵ > 0.

With this theorem we prove that Set Intersection has a deterministic matching lower bound
whenever the queries are expected to produce at least Ω(1) elements on average, possibly
much more. We remark however that there are some non-trivial cases which are covered by
the randomized reduction [44] which we cannot cover here – namely if 1− α < β ≤ 1. This
parameterization describes a setting where we expect the total size of the intersections to be
much smaller than the total number of queries.

Proof. This proof is overall very similar to the proof of Theorem 4. We will thus be more
concise here. Assume that Set Disjointness with parameters as specified in the lemma
statement is in subquadratic time; we design a subquadratic algorithm for a given 3SUM
instance A:
1. We apply the deterministic self-reduction for 3SUM. Specifically, we apply Lemma 12

to partition A into g = nα groups A1, . . . , Ag of size O(n1−α), such that only a subset
R ⊆ [g]3 of at most |R| = O(n2α) group triples is relevant.

2. We apply the deterministic hashing lemma to find a modulus m under which we have only
few false positives in the relevant groups. Specifically, we apply Lemma 11 for the 3SUM
instances (Ai ∪ Aj ∪ Ak)(i,j,k)∈R (of size O(n1−α) each) and for µ = 1−α+β

1−α − 2δ and
some parameter δ > 0 to be specified later. This either reports that one of the instances
contains a 3SUM solution (in which case we can stop), or the lemma returns a modulus
m = O((n1−α)µ) = O(n1−α+β) satisfying that∑

(i,j,k)∈R

#{(a, b, c) ∈ Ai ×Aj ×Ak : a + b ≡ c (mod m)}

≤ |R| ·O((n1−α)3−µ+δ) · (log n)O(1/δ) = Õ(n2α+3−3α−1+α−β+3δ) = Õ(n2−β+3δ).

Let us for simplicity assume that
√

m is an integer; otherwise replace all the following
occurrences of

√
m with an appropriate rounding of

√
m.

3. We construct the Set Intersection instance exactly as in Theorem 4: For each i ∈ [g] and
for all x, y ∈ [

√
m], we construct the following two sets:

Bi,x = {(b + x
√

m) mod m : b ∈ Ai},
Ci,y = {(c + y) mod m : c ∈ Ai}.

The Set Intersection instance consists of the sets {Bi,x}i,x ∪ {Ci,y}i,y. The queries are
defined as follows: For each (i, j, k) ∈ R and for each a ∈ Ai, we query the intersection
Bj,x ∩ Ck,y, where x, y ∈ [

√
m] are such that a ≡ x

√
m− y mod m. As before, there is a

natural one-to-one correspondence between the queried elements in the set intersections
and the pseudo-solutions modulo m.

4. This is where the proof diverges. We can simply solve the Set Intersection instance using
the oracle. For each reported element in a one of the set intersections, we test in O(1)
time whether the corresponding pseudo-solution is a proper 3SUM solution.



N. Fischer, P. Kaliciak, and A. Polak 49:21

This completes the description of the algorithm. The correctness is immediate from the given
in-text descriptions. It remains to bound the running time, for which we again analyze the
four steps individually:
1. Takes time Õ(n + g2) = Õ(n + n2α) by Lemma 12.
2. Takes time

Õ(g(n1−α)max(1,µ)+δ) = O(n2α(n1−α+δ +n(1−α)( 1−α+β
1−α −δ))) = O(n1+α+δ +n1+α+β−δ(1−α))

by Lemma 11.
3. The whole construction takes linear time in the size of the Set Intersection instance. This

is negligible in comparison to step 4 (where we actually solve the instance).
4. To analyze the running time of this step, we first analyze the parameters of the constructed

Set Intersection instance: Observe that

U = m = O(n1−α+β),

N = 2g
√

m = O(nα+ 1
2 − α

2 + β
2 ) = O(n 1

2 + α
2 + β

2 ),
s = O(n1−α),
q = |R| ·O(n1−α) = O(n1+α).

These are exactly as claimed in the lemma statement. Recall further that the total
number of elements in all set intersections (i.e., the output size) is exactly the number of
pseudo-solutions modulo m. By the second step, this number is bounded by Õ(n2−β+3δ).
This is slightly more than we have claimed in the lemma statement, however, we can
simply substitute n for n′ = n1+3δ; then the constructed Set Intersection instance has
the claimed parameters with respect to n′. The oracle thus takes time O((n′)2−ϵ) =
O(n(1+3δ)(2−ϵ)) = O(n2−ϵ+6δ) to solve the instance.

Summing over all contributions, the total running time is

Õ(n + n2α + n1+α+δ + n1+α+β−δ(1−α) + n2−ϵ+6δ).

Recall that 0 ≤ α < 1 and 0 ≤ β ≤ 1−α. Thus, by picking e.g. δ = min{ 1−α
2 , ϵ

7} the running
time becomes truly subquadratic, O(n2−ϵ′) for some ϵ′ > 0. ◀
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