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Abstract

There is increasing need for methods that aid interpretability and explainability in Machine

Learning (ML). In this thesis, inspired by recent studies calling for an increase in usage

of Sensitivity Analysis (SA) methods, we explore interfaces between SA and ML. In

particular, in our first work we use the notion of mean dimension to characterize the

internal structure of complex modern neural network architectures. We exploit this notion

with an innovative estimation routine which allows to calculate the mean dimension from

data and we compare different architectures, comprising LeNet, ResNet and DenseNet.

In a second work, we analyze the difference between two trained neural networks

using the notion of mean dimension and a new method for gaining interpretability on a

dataset level, the so-called Xi-method. The networks arise from two different optimization

routines, namely the standard stochastic gradient descent (SGD) and the recent replicated

stochastic gradient descent (rSGD). The rSGD algorithm is designed to find flat minima in

the loss landscape. The results, exploiting explainability tools, confirm findings of previous

studies that suggest that the rSGD method is connected to better generalization.

Finally, we go on and ask the question if neural networks ’see’ statistical dependence,

and we offer a comparison between specific methods devised to understand the decision of

neural networks and global sensitivity measures.

Overall, the thesis finds useful tools for investigation and shading light into modern

black-box models.
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Chapter 1

Introduction

Machine learning tools, such as deep neural networks, have become the foremost method for

a wide range of tasks. In applications such as image classification, speech recognition and

natural language processing, neural networks show astonishing performance, i.e. predictive

accuracy.

In 2016, Google Deep Mind’s Alpha Go beat a top 10 ranked player in Go. The 26th

move was the key to the later victory, though during the match it was not clear why this

move could be advantageous. An expert stated

"It’s not a human move. I’ve never seen a human play this move."

(Fan Hui, 2016).

This increase in performance is due to improvement of models and architectures, more

and better data and higher computational power, mainly by the use of GPU’s and parallel

computing. But this increase in performance is not for free, usually these high-performing

models come with a lack of interpretability and transparency.

Breiman (2001) emphasizes the trade-off between performance and interpretability.

Since then it is a common belief that simpler models are easier to interpret but on cost of

lower performance. This thesis will work towards weakening this statement by presenting

and applying methods that bring light into the black-box algorithms. The goal of this
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8 Introduction

thesis is to present methods that maintain high performance but simultaneously provide

explainability. I start with highlighting the need for interpretability. In many tasks such as

playing Go, the key point is performance, while interpretability is a minor goal. However,

there are many fields and applications where providing interpretability and explainability

is inevitable (Samek et al., 2017). I present four key reasons highlighting the need for

explainability.

Knowledge discovering

As these algorithms scan through masses of data, they might detect patterns unknown

to humans. This learning from the system might be of special interest for example for

physicists and chemists. They might get insight into hidden laws of nature. Or as earlier

mentioned, Go players have now incorporated the move done by Alpha Go in their reper-

toire.

Model improving

Interpreting a model may also unveil its weaknesses, e.g. where the model fails, or

where a decision suggested by the model is correct but said decision is based on wrong

arguments or facts. Furthermore, interpreting might reveal some biases in the system.

Knowing these weaknesses is the first step in trying to improve the model. This is especially

important in preparation against adversarial attacks, where someone tries to fool the

algorithm on purpose, for example in order to bypass spam-filters.

Verification & Trust

Interpretation goes hand in hand with trust. A decision maker cannot blindly trust

predictions when she has no idea how the results came about. This is especially true in

delicate fields such as medicine, where it is crucial to know why a certain diagnosis was

made by the machine. A physician needs to verify the black-box output, such that she
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understands how and why the output came about, and can follow the suggestion by the

machine.

Legal Issues

With the omnipresence of artificial intelligence (AI) algorithms comes the demand

for regulation. Decision makers are often obliged to be able to justify decisions. This

plays a special role in fields of sensible information such as bank lending. For example,

algorithms might learn some form of racism, hence persons with a specific name might

have a much lower probability of getting a loan. The European Union adopted the ’right

to explanation’, a new regulation that allows users to ask for the reasoning of decisions

made about her or his request.

Furthermore, and also related to trust, we still lack a proper uncertainty quantification.

Take again the example of the field of medicine as pointed out by Begoli et al. (2019). The

authors stress that these modern data rich black-box guise need to develop a principled

and formal uncertainty quantification (UQ) discipline and refer to the success/develop-

ment of uncertainty quantification in fields such as nuclear stockpile stewardship and risk

management.

Fig. 1.1 illustrates the data science rationale. The first relationship represents the true

one; found in nature. This is the relationship of interest that we want to make inference

on or gain a better understanding of the behavior. The second layer represents the data

level. In order to understand the nature and learn a model, one needs to collect data.

Finally, the last part shows the machine learning algorithm. This algorithm is optimized

or learned on the collected data. The goal is to train a model that resembles the behavior

of nature as close as possible. But if the analyst’s goal goes beyond prediction and she

hasn’t applied a white-box model, one that is interpretable by construction, she needs to
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Figure 1.1: Data Science Rationale: From a conceptual model (layer 1), to the data level
(layer 2) to the machine learning algorithm (layer 3).

fall back on methods that explain the model’s decision.

In this PhD thesis, I explore, evaluate and develop such methods to explain and discover

what is happening inside black-box models.

As we mainly focus on the model class of neural networks in the research works that

form this thesis, I provide a concise introduction to this model class focusing on topics

relevant for this thesis. Goodfellow et al. (2016) provides a thoroughly introduction to

neural networks and deep learning.

Neural Networks are amongst the most common machine learning models. They are

used for a great variety of tasks, such as classification, regression, or unsupervised learning.

In particular, we will focus on a specific family of neural networks, namely deep learning

models.

The famous Universal Approximation Theorem by Cybenko states that for any con-

tinuous function f on a compact set K (usually Rn), there exists a feedforward neural

network, having just one hidden layer, which uniformly approximates f within an arbitrary

precision ε ¡ 0 on K. Hence, neural networks were traditionally built with only a single

layer, arguing that if this layer is wide enough it can provide an accurate model.

However, a one layer model is characterized by a high bias, and sufficient training data
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is required which capture all of the variations of the function. This fact and other beneficial

properties for training a neural network made researchers starting to stack hidden layers.

Stacking many of these hidden layers is then referred to as deep learning.

The data flow is typically from the input to the output layer, passing through the

hidden ones - this procedure is known as forward propagation. There is a weight matrix

Wl and a bias bl (both combined in a parameter matrix wl) associated to each layer l, as

well as an activation function σl.

The parameters of a neural network are learned through the backpropagation algorithm,

which is based on Gradient Descent Learning and is one of the main tools in Machine

Learning optimization.

Learning a model requires to choose some hyperparameters, such as the architecture

of the network, including how many layers the network should contain, how these layers

should be connected to each other, how many units should be in each layer, and which

activation functions should be employed. The backpropagation method requires the

setting of some additional hyperparameters such as the learning rate and the optimizer for

example.

The most common choices for activation functions are the sigmoid function, the

hyperbolic tangent (TanH) and the Rectified Linear Unit (ReLU):

sigmoidpxq � 1
1� e�x

P r0, 1s (1.1)

TanHpxq � ex � e�x

ex � e�x
P r�1, 1s (1.2)

ReLUpxq � maxp0, xq P r0,8s (1.3)

Different types of layer form a deep neural network. The following provides a concise

description of popular layer types.
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Fully Connected Layer These are identical to classical layers in standard neural

networks. Each unit in a fully connected layer is densely connected to all the units of

the previous one. The transformations applied to the data are a matrix multiplication

(plus eventually a bias term) followed by the application of an element-wise nonlinear

activation function σ, which results in X l � σlpWlX
l�1 � blq. Since such a network is

prone to overfit, several regularizers can be applied to its parameters including penalizing

parameters during training (such as weight decay) or trimming connectivity (skipped

connections, dropout, etc.).

Convolutional Layer These layers are designed to extract features from input data.

They are often applied as first layers. In an image classification task, they preserve the

relationship between pixels by learning image features using small squares of input images.

They rely on the heuristic fact that the initial layers of a network detect low level features

(for example, just vertical and horizontal edges) which are given as input to the next

ones, while the deeper layers are able to capture more complex structures (like parts of

the objects). Based on this, neurons in convolutional layers are not fully connected to

every single pixel in their input (like they would be in standard neural networks), but

only to localized areas, made of pixels with a limited spatial extent called Local Receptive

Fields. For this aim, so-called convolution kernels (or filters) slide along input features

and provide responses known as feature maps.

Mathematically the discrete convolution operation of input I using filter K of size

2h1 � 1� 2h2 � 1 can be written as

pK � Iqi,j �
h1̧

u��h1

h2̧

v��h2

Ku,vIi�u,j�v,
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where the filter K has the following form

K �

$''''&''''%
K�h1,�h2 . . . K�h1,h2

. . . K0,0 . . .

Kh1,�h2 . . . Kh1,h2

,////.////- .

For each layer l, one chooses how many filters to apply. The chosen number ml
1

is equivalent to the depth of the volume of output feature maps. The number of input

channels and output channels are hyper-parameters. Moreover, convolutional filters/kernels

are defined by a certain width and height. The idea is that each filter should detect a

particular feature at every location on the input. The output X l
i of layer l consists of ml

1

feature maps of size ml
2 �ml

3. The ith feature map, denoted X l
i , is computed as

X l
i � Bl

i �
ml�1

1̧

j�1
K l
i,jX

l�1
j ,

where Bl
i is a bias matrix and K l

i,j is the filter connecting the jth feature map in layer

l � 1 with the ith feature map in layer l.

See Goodfellow et al. (2016) for a description of the additional hyperparameters of the

convolution operation such as padding, stride, and dilation. They are omitted, since they

are not needed for the conceptual understanding of the convolution operation.

Three main ideas lead to the use of convolutions: sparse interactions, parameter sharing

and equivariance to translation. I provide a quick description here. Detecting low level

features such as edges does not require the possible millions of interactions of pixels but

only pixel interactions of locally connected ones; this sparse connectivity is represented

using the convolution with a kernel smaller than the input. This leads to the storage of

fewer parameters, reducing memory requirements and statistical efficiency of the model

(preventing the model from overfitting).

Parameter sharing is the second advantage, which in turn leads directly to equivariance
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of translation. In a traditional neural network a single weight is used exactly once, in

CNNs each member of the (same) kernel is used at every position of the input, removing

the needs of estimating one set of parameters for every location. A function fpxq is said
to be equivariant to g if fpgpxqq � gpfpxqq. Hence in an image classification problem, this

translates to the detection of an object no matter its position.

Pooling Layer A pooling layer operates on blocks of the input feature map and combines

the feature activations locally by means of a pooling function. Common choices are the

average or the max function. As the names suggest, with max pooling operation, the

maximum activation is taken from the selected block of values, while with mean pooling

the choice is the mean of the activations. The size of the pooled region and the stride

must be specified as hyperparameters, similarly to the convolution layer. The window is

then slided across the input feature maps with a step size defined by the stride. Pooling

layers reduce the dimensions of data by effectively downsampling the input feature map.

The obtained compact feature representation is invariant to moderate changes in object

scale, pose, and translation in an image for example.

In this thesis, we mainly focus on convolutional neural networks (CNNs). In a typical

CNN, convolutional layers are usually placed in the beginning and fully connected layers

are placed at the end of the architecture. CNNs take a different approach towards

regularization compared to standard neural network architectures: they take advantage of

the hierarchical pattern in the data and assemble patterns of increasing complexity using

smaller and simpler patterns embossed in their filters. Therefore, CNNs have much less

connections as fully connected layers and can be seen as regularized versions of multilayer

perceptrons.

The underlying and common frame of my thesis projects is to develop and extend

methods based on global sensitivity analysis (GSA) for the purpose of explaining decisions

by complex machine learning models.
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These methods are usually post-hoc explanations as defined by Murdoch et al. (2019),

as such explanation methods are applied to the already trained machine learning models.

Thus, post-hoc explanation methods aim to explain models decision where the inner

structure is already fixed.

There are arguments against such post-hoc explanations. For example, Rudin (2019)

argues to use interpretable models instead of trying to explain the decision of black-box

models as post-hoc explanations are often not reliable, and can be misleading.

While an interpretable model is indeed the better choice for many applications, there are

applications where interpretable models reach a level of accuracy far from the one of black-

box models, such as deep neural networks. One such application is image classification.

Since the recent advances in computational power and architecture designs, convolutional

neural networks are the most common and most successful method for classifying images.

In this thesis, I focus mainly on image classification examples.

I intend to demonstrate the usefulness of sensitivity analysis (SA) employed and

embedded in methods to increase interpretability of black-box models. A concise overview

of the related literature in this framework is given here. In the most general sense, SA is

the study of how the outputs of a system are related to, and are influenced by, its inputs.

While SA is becoming more and more an integral part of mathematical modeling, the

following paragraph focuses on SA in the context of machine learning. There is a wide

research field that applies SA to feature and structure selection. Though this is indeed a

very interesting research stream, see Razavi et al. (2021) for an overview, we concentrate

here to its application for its use in interpretability and explainability of ML-models. I do

not claim completeness here and only describe few works in this context, mainly referring

to literature that is not mentioned in the chapters of this thesis but have contributed

noticeable to the field.

The robustness of decision boundaries for classification with respect to data and/or

model hypotheses can be explained and examined using SA. A sensitivity index developed
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by Lemaître et al. (2015) is applied by Bachoc et al. (2020) for robustness analysis of

decision boundaries in classification. Moreover, Spagnol et al. (2019) and Molnar (2019)

identify influential inputs regarding the occurrence of critical events, again related to the

robustness analysis of decision boundaries. Owen (2014) and Lundberg and Lee (2017)

have independently developed importance measures being able to deal with dependent

inputs/features using Shapley values (Shapley, 1953). In Lundberg et al. (2019), an

efficient method for estimating Shapley values for regression trees is developed.

Model explanation methods can broadly be categorized into three categories: Explana-

tions on the individual input level, explanations on the dataset level, and methods for trend

identification. Representatives of the first category are Layerwise Relevance Propagation

(LRP) (Bach et al., 2015) and Local Interpretable Model-agnostic Explanations (LIME)

(Ribeiro et al., 2016). LRP is an explanation method designed for neural networks and

is described in greater detail in the last chapter, while LIME is model-agnostic and so

compatible with many different classifiers. LIME manipulates the input data and creates

a series of artificial data containing only a part of the original attributes. The new data

is then evaluated by the model and weighted by their proximity to the original example.

Then, an interpretable model is learned on the perturbed data points and the associated

prediction. It can be used with text, image and tabular data. To the second group belong

works such as Feature Permutation Importance of (Breiman, 2001) or the Shapley-value

based method of Lundberg and Lee (2017). We provide a new method to this category in

Chapter 3. Noteable studies on the third group of literature include partial dependence

function of Friedman (2001), ICE plots (Goldstein et al., 2015), and ALE plots (Apley

and Zhu, 2020) form the category of trend identification.

A popular tool to get insight in the behavior of a black-box model is the partial

dependence plot. For the purpose of illustration, this paragraph presents an empirical

analysis of the use of partial dependence plots and the so-called "one-way functions"

from Borgonovo et al. (working paper 2019+) in order to gain insights in black-box
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models. Originally presented in Friedman’s 2001 paper Greedy Function Approximation:

A Gradient Boosting Machine, partial dependence plots are applicable to all kind of

supervised prediction models. Let pxi, yiq with i � 1, ..., N be the training data and

g : X Ñ R the learned predictive model, mapping from input space X to R. Formally, a

partial dependence function is defined as

hipxiq �
»

X�i

gpxi, x�iqdFx�i
px�iq, (1.4)

where pxi;x�iq is a point in X � Xi

�
Xi and x�i denotes all variables but xi. The

probability distribution of X is denoted by FX .

Borgonovo et al. (working paper 2019+) study the properties of partial dependence

functions formally, to understand whether partial dependence functions preserve properties

such as monotonicity and convexity present in the original input-output mapping. Moreover,

they disaggregate partial dependence plots by introducing the so-called "one-way functions"

that work in a similar way as the "ICE curves" by Goldstein et al. (2015). Both show why

these additional curves help understand the model behavior when inputs are dependent.

Considering the average partial relationship between the input variable and the output

(averaging over all other inputs) can misguide the decision maker to wrong conclusions.

When considerable interaction effects are present, the partial dependence plots might not

capture heterogeneous relationships due to averaging over all inputs. Formally, a one-way

sensitivity function is a curve of the type

w0
i pxiq � gpxi, x0

�iq; w0
i : Xi Ñ R. (1.5)

Thus, a one-way sensitivity function, instead, examines the impact on the output

while changing the value of the specified input and holding all other inputs constant at a

specific/observed configuration x0
�i.

My PhD thesis is structured into four chapters beginning with this introduction. The
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other chapters are stand alone research projects. They are not necessarily related but have

all the common aim of shading light into black-box models. The chapters present research

works that are or will be submitted to peer-reviewed journals.

Chapter 2 presents the work The Mean Dimension of Neural Networks and what

it reveals which is joint project with my supervisor Emanuele Borgonovo and Christoph

Feinauer. The generalization performance of artificial neural networks is increasing their

success in several complex tasks. However, the lack of a theoretical explanation of their

inner mechanisms forces us to regard them as black boxes. A crucial information about

their inner structure is the size of interactions a neural network detects in the data. Recent

works argue that the notion of mean dimension provides us with a relevant tool to open up

a neural network black box and facilitate cross comparisons among network architectures.

We show that we can estimate the mean dimension from a given dataset, without the need

of resampling from a hypothesized distribution. We then use the mean dimension to follow

the evolution of interactions during training, to analyse how interactions propagate layer

by layer in a network and to understand how the type of activation function impacts the

magnitude of interactions once the network structure is fixed. We carry out experiments

on synthetic datasets as well as experiments on the CIFAR-10 image dataset, analysing

LeNet and more modern and complex architectures like ResNet and DenseNet.

Another joint project with my supervisor Emanuele Borgonovo and Christoph Feinauer

is the work with the title Using Tools for Interpretability for a Comparison of

Neural Network Optimization Routines presented in the Chapter 3. The high

dimensional parameter space of deep neural networks makes its optimization a non-trivial

task. Recent research suggests that flat minima in the empirical risk landscape of neural

networks possess better generalization capabilities with respect to sharp ones. We are

comparing neural networks trained using a standard stochastic gradient and the so-called

replicated stochastic gradient method from a sensitivity analysis angle. The latter algorithm

is particularly developed to find flat minima. The experiments are based on different
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well-known architectures (LeNet, ResNet and DenseNet) applied to an image classification

task using the CIFAR-10 database. We introduce a modified version of the Xi-method

for black-box model explanations on a dataset level and exploit the recent methodology

of mean dimension of neural networks for further insights in the differences between the

models trained with the two optimization algorithms. Our results show that although

the accuracy of the used models is quite similar, there are significant differences in the

model sensitivities indicating indeed a better generalization of the models trained with

the replicated stochastic gradient optimization algorithm.

Chapter 4 asks the question: Neural Networks and Statistical Dependence:

Does it Matter?. This is a collaboration with Emanuele Borgonovo, Elmar Plischke,

Christoph Feinauer and Valentina Ghidini. Deep neural networks have become the most

popular method for many complex prediction tasks such as image classification and natural

language processing. Although the functional form of a single neuron is quite simple, the

huge number of neurons and graph-like structure of neural networks make them become

black-box models. Hence the inner mechanics of such models are unknown to its user.

In particular, which pixels drive a neural network’s decision in an image classification

task is concealed. We ask if features that are statistically important for the output are

also relevant for the neural network’s decision. We introduce probabilistic sensitivity

measures designed for classification tasks that give importance to pixels solely on the

input-output mapping. An aggregated version of the well-known Layerwise Relevance

Propagation provides importance scores for the pixel based on their importance for the

network’s decision. We introduce further methods of ’feature importance’ for comparison.

The findings are evaluated using degradation plots. The results suggest that what is

statistically relevant for the input-output mapping is also relevant for the neural network

classification.
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Chapter 2

The Mean Dimension of Neural

Networks and What it Reveals

2.1 Introduction

While successes of machine learning models based on deep neural networks have revolu-

tionized fields like computer vision (Voulodimos et al., 2018), natural language processing

(Young et al., 2018) and reinforcement learning (Li, 2017), there is currently no theory that

can explain their empirically observed generalization performance or give a satisfactory

answer to the question on how it is achieved (Sejnowski, 2020).

Exacerbating the problem is the growing diversity of architectures, optimization

techniques and data preprocessing pipelines: While the variety of different design choices

that neural networks allow for gives researchers many possibilities for tinkering and should

be considered an advantage if the only goal is predictive performance, it is often not

clear what contribution of the single parts to the final model is. In addition, the large

computational resources needed for training and inference of state-of-the-art networks

often prohibit ablation studies, hinder comparison of models and render the application of

standard machine learning tools like cross-validation difficult.

23
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In classification, the central result presented is typically the accuracy of predictions.

While this metric allows for competitive comparison between models, it says nearly nothing

about how other properties, like differential sensitivity to inputs or the richness of internal

representations, might compare between the models. In this work, we argue that other

metrics for assessing the properties of different models, and also of the same model during

the training trajectory, are needed.

Connected to the difficulty of comparing neural network models is their infamous

black-box nature: While the single neuron is mathematically simple, the input-output

relationship that results from the combination of millions of such units is a highly complex

function. This, in turn, makes the interpretation and explanation of neural network

decisions hard (Montavon et al., 2018), a problem that is not helped by the observation

that there is no consensus on what qualifies as an explanation (Lipton, 2018).

This fundamental lack of transparency and comparative metrics has practical im-

plications: First, additional ways of analysing and comparing models might lead to a

more principled approach to improving them. Secondly, the adaption of neural networks

might be delayed due to a hesitation to accept advice from a model that is fundamentally

unexplainable (London, 2019), and for which even an analysis of possible failure modes is

lacking.

In this work, we present two novelties that were, to the best of our knowledge, not

introduced so far: We exploit the concept of the effective mean dimension of interaction

(Owen, 2003a) as a metric for comparing different architectures of neural networks and

also apply it to analyze in which layer interactions occur. The mean dimension metric

is rooted in the domain of global sensitivity analysis and describes the average size of

interaction terms in a functional decomposition of the input-output relationship of the

neural network. The second novelty is the inverse PCA neural network layer, which can

be used with any method that requires decorrelated inputs. This layer can be added after

the neural network has been trained, and does not change the predictions.
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Recently, Hoyt and Owen (2020b) investigate routines for computing the mean dimen-

sion of neural networks. We demonstrate how the notion sheds light into the black-boxes

of common neural network architectures. We are interested in using the mean dimension

to answer the following questions: what is the expected size of interactions that a neural

network looks at? Where do interactions arise in neural networks? How does the interac-

tion size evolves during the layers? What are the effects of different activation functions

on the size of interactions in a neural network?

The work is structured as follows: In Section 2.2, we review the related literature. In

Section 2.3.1, we present the notion of mean dimension and some related concepts. In

Section 2.3.2, we are presenting our adaption of the methodology for neural networks.

In Section 2.4 and 2.5, we present our numerical results, starting with a layer by layer

analysis of the development of mean dimension and continuing with an analysis of the

evolution during training in an image classification task. In Section 2.6, we discuss them

and point for further research directions.

2.2 Related Literature

In recent years, neural networks have become the state of the art in many machine

learning applications. Deep neural networks show astonishing performance on complex

tasks such as speech recognition, visual object recognition and many other domains such

as computational biology. We refer to Lecun et al. (2015) for a review. However, the

complex architectures needed to solve such problems make the interpretation of single

decisions/predictions of neural networks difficult and they need to be regarded as black-box

models. Interpretability of neural networks is a topical subject of investigation. The review

of Guidotti et al. (2018) analyzes various needs and forms for interpretability in complex

machine learning tasks. Others, such as Begoli et al. (2019), emphasize the necessity of

uncertainty quantification in deep learning and the lack of theory in the new data-driven
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methods. They also argue for the development of a principled and formal uncertainty

quantification discipline for deep learning, for example in medical applications. This is

echoed by Rudin (2019) who favors for this reason simple and interpretable models when

possible. Breiman (2001) is among the first to emphasize the trade-of between performance

and interpretability.

Numerous approaches have appeared in the literature to provide explanations in neural

network decisions. Methods for interpretability can be broadly divided into three categories:

The first category is on the individual prediction level. Methods such as "LIME" proposed

in Ribeiro et al. (2016) or such as "Layerwise Relevance Propagation" in Bach et al. (2015)

belong to this category. The second category is at the dataset level. To this group belong

methods based on permutation, such as Feature Permutation Importance of (Breiman,

2001) or the Shapley-value based method of Lundberg and Lee (2017). The third category

comprises trend identification methods, such as partial dependence function of Friedman

(2002), ICE plots (Goldstein et al., 2015), and ALE plots (Apley and Zhu, 2020).

Closely connected to the explainability of input-output mappings is the analysis of

interactions. Broadly speaking, this refers to the idea that the output can be explained by

assigning the input variables to interacting groups of different sizes and calculating the

output based on these groups. In statistics such intuition originates back in the 1920s,

when Fisher introduced the two-way ANOVA. One can perform either individual tests

for interaction such as in Fishers two-way table and additive groves or one explicitly

specifies the interaction of interest and runs a lasso approach (Tibshirani, 1996) to find

the important interactions. The specific problem of the detecting pairwise interactions

is closely connected to the problem of inferring the edge topology of graphs and has

important applications in physics (Nguyen et al., 2017) and biology (Cocco et al., 2018).

It is natural to ask whether interaction analysis methods can help us obtaining insights

on the structure of deep learning models. However, most standard methods for the

calculation of interactions are out of reach due to the exponential number of interaction



2.2. RELATED LITERATURE 27

terms. Recent research tackles this problem for example by interpreting the learned weights

of a feed-forward neural network in order to detect interactions (Tsang et al., 2018). Tsang

et al. (2018) find that interactions between input features stem from the non-additive

effect generated by the presence of nonlinear activation functions. The main question

posed in these works is which features are part of which interactions.

At the same time, methods to understand the structure of a multivariate input-output

mapping have been developed in the machine learning literature using the functional

Anova expansion (see Rabitz and Aliş (1999) for a review). Using the functional Anova

decomposition, one can expand a multivariate mapping into 2N terms, in which second

order and higher order terms account for the residual level of interaction. Building on that

representation, the classical results of Efron and Stein (1981) and Sobol’ (1993) allow us

to decompose the prediction variance as a sum of variance contribution by all subgroups

of indices. In Caflisch et al. (1997) and Owen (2003b), the functional Anova expansion is

exploited for introducing the notion of dimension distribution of a function, which in turn

leads to the notion of mean dimension. The mean dimension provides an indication about

the average magnitude of interactions in a neural network, and can help to shed light on

its inner structure and facilitate cross comparisons.

The interest in computing the mean dimension is reflected in the recent work of (Hoyt

and Owen, 2020b) that addresses several computational aspects. However, the notion has

not yet been fully explored. The goal of this paper is to fill this gap, providing a new way

of calculating the mean dimension and presenting several experiments that highlight a

summary of insights that can be obtained from the mean dimension of a neural network.
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2.3 Methods

2.3.1 The Mean Dimension

The notion of mean dimension is introduced in Caflisch et al. (1997) and based on

a central result in statistics, the functional ANOVA expansion. Let pΩ,BpΩq,Pq be

a reference probability space. We consider features as a multi-variate random vector

X � tX1, X2, . . . , Xdu on pΩ,BpΩq,Pq with cumulative distribution function FXpxq. We

also consider the target Y a random variable (or vector) as produced by a predictive model,

g : Rd Ñ R, with Y � gpXq.
Assuming that g is square integrable, and that FXpxq is a product measure, Efron and

Stein (1981) prove the classical functional ANOVA representation (Sobol’, 1993; Rabitz

and Aliş, 1999; Owen, 2003b):

gpxq �
¸

u�t1,2,...,du
gupxuq, (2.1)

where the component functions gupxuq are called functional ANOVA effects and are

computed from

gupxuq �
»
X�u

gpxqdF�upx�uq �
¸
v�u

gvpxvq, (2.2)

where the symbol � u represents the set of all indices with exclusion of the ones in u. We

set gH � ErgpXqs. Correspondingly, Fu is the cumulative distribution function of the

inputs with indices in u and F�u is the cumulative distribution function of all inputs but

the ones in u. It is possible to prove that the component functions are orthogonal, that is,

given two subset of indices u and v,
³
gupxuqgvpxvqdx � 0 as long as u � v, and that their

mean value is null, i.e.,
³
gudxu � 0. One can then decompose the variance of gpXq, σ2, in

2d � 1 terms, writing:

σ2 �
¸

u�t1,2,...,du
σ2
u, (2.3)
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where

σ2
u �

»
Xu

�
gupxuq

�2
dFupxuq. (2.4)

The effects σu in Equation 2.4 are directly related to the variance of the corresponding

effect functions, and capture the contribution of the residual interactions among the

features whose indices are in u to the overall variance σ2.

One defines an auxiliary probability mass function over all subsets u of indices whose

values are given by

Su � σ2
u

σ2 . (2.5)

Then, the mean dimension is defined as ((Caflisch et al., 1997), (Owen, 2003b))

Dg �
¸

u�t1,2,...,du
|u|σ

2
u

σ2 , (2.6)

where |u| is the cardinality of u. Thus the value of Dg is the average of the cardinality of

the subsets of all indices weighted by their fractional contribution to the variance. Note

that the mean dimension is a single number providing an average information about the

size of interactions: It does not deliver detailed information of what specific interactions

are important.

There are two general results that we employ in this work to define our estimation

procedure. The first is the relationship between the mean dimension and the total order

variance-based sensitivity indices of Homma and Saltelli (1996), proven by Owen (2003b).

These indices are defined as

τ 2
i �

¸
v:iPv

σ2
v , . (2.7)

The total index τ 2
i represents the overall fraction of the variance of the target contributed by

Xi. Owen (2003b) shows that the numerator ofDg equals the sum of τ 2
i over all features that

is
°
u |u|σ2

u �
°d
i�1 τ

2
i . The second is the following. Let X0 � tX0

1 , X
0
2 , . . . , X

0
i , . . . , X

0
du

and X1 � tX0
1 , X

0
2 , . . . , X

1
i , ..., X

0
du be two points in the input space that differ only in the
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ith feature dimension. Then, take the finite difference ΦipX1
i q � gpX1q � gpX0q. Consider

then the evaluation of such finite difference at randomized locations in the feature space. It

is possible to show (Borgonovo and Rabitti, 2020), that half the variance of this population

is equal to the total index of Xi, that is

τ 2
i �

VrΦipX1
i qs

2 , (2.8)

where VrAs stands for the variance of A. Then, it follows that

Dg �
°d
i�1 VrΦipX1

i qs
2σ2 . (2.9)

The above equations can then be translated into estimators for the mean dimension from

given data. We discuss these aspects in the next sections.

2.3.2 Estimating the Mean Dimension from a Given Dataset

Suppose we have a labelled dataset of inputs x and a neural network trained on this data.

Let xk � pxk1, ..., xkdq denote the kth input with k � 1, 2, . . . , N , where N is the sample

size. Let also yk � gpxkq be the network prediction corresponding to input xk. We then

consider modified samples where a single feature value has been replaced with the same

feature value from a different input. We denote such modified inputs as

pxli;xk�iq � pxk1, . . . , xki�1, x
l
i, x

k
i�1, . . . , x

k
dq, (2.10)

where the sequence pxli;xk�iq is created by replacing xki with xli in xk. The finite change

with respect to this modification is then defined as

φkli � gpxli;xk�iq � gpxkq. (2.11)
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These finite changes are computed for r pairs of inputs, xk and xl, uniformly sampled

from the dataset. This yields an r� d-matrix of finite differences, with r finite changes for

each input feature.

We now consider that we have trained a neural network g for the input-output mapping.

The previous equality results in the following estimator for the total index τ 2
i :

pτ 2
i �

pσ2rφipX1
i qs

2 �
ŗ

k�1

pφk,li � µ̂φi
q2

2pr � 1q , (2.12)

where pσ2rφipX1
i qs is an estimator of VrΦipX1

i qs and µ̂φi
is an estimator of the mean of

the population of the finite differences Φ. In Borgonovo and Rabitti (2020), it is shown

that this population has zero mean. Thus, one expects this quantity to be close to zero at

sufficiently large sample sizes. Then, by Equation (2.9), we obtain the following estimator

for the mean dimension:

pDg �
ḑ

i�1

pτ 2
ipσ2 �

ḑ

i�1

#
ŗ

k�1

pφk,li � µ̂φi
q2

2pr � 1qpσ2

+
, (2.13)

where pσ2 is an estimator of the output variance σ2. That is, computing a set of N � 1

finite differences of network predictions and taking their variance, we obtain an estimate

of the total index of Xi. Then, summing these estimates and dividing by the estimated

output variance, we obtain an estimate of the mean dimension of g.

2.4 Experiments with Synthetic Data

In this section, we propose a series of experiments on a test case of small dimensionality to

illustrate the key concepts and some inferences that can be made with the mean dimension.
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2.4.1 An Analytical Test Case: Ishigami

The first experiments are centered around a regression problem with a scalar output. We

use a dataset generated from the well known Ishigami function (Ishigami and Homma,

1990):

gpx1, x2, x3q � sinpx1q � 7 sin2px2q � 0.1 x4
3 sinpx1q.

The features xj are uniformly and independently distributed between �π and π for

j � 1, 2, 3. This function is often used as a test for uncertainty and sensitivity analysis

methods.

The mean dimension is known analytically for this model (Kucherenko et al., 2015)

and is equal to Df � 1.24. We used a small feed-forward neural network with two layers

for the following experiments. We refer to the appendix for details on the experimental

settings.

The estimation routine from Section 2.3.2 yields a very precise estimate of the mean

dimension for any of the used activation functions. Using a mean of 20 replicates, we obtain

an average mean dimension of 1.241 with a standard deviation of 6.6 � 10�3 using the

Rectified Linear Unit (ReLU) activation function. Thus, in terms of the mean dimension,

the learned neural network is a very accurate meta-model of the Ishigami function.

Fig. 2.1 shows the estimated mean dimension and mean squared error at increasing

sample sizes. The mean dimension approaches 1.24 already at a sample size of about

N � 200. — N here refers, on the one hand, to the sample size used to train the model,

and on the other hand to the number of pairs used to estimate the mean dimension (r in

Section 2.3.2), as in our experiments we use r � N � 1. —

We stress these findings in two ways. First, we repeated the experiments using the

hyperbolic tangent (TanH) activation function, obtaining very similar results. Then, we

added noise to the data by augmenting the feature set with 7 dummy variables, for a total

input dimension d � 10. The additional features are random replicates of the three true
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Figure 2.1: Mean dimension estimate (MD) and mean square error (loss) as the sample
size increases for a small feed-forward neural network with ReLU activation function,
trained on the Ishigami function. Note that the number of finite differences used for
estimating the mean dimension scales linearly with the sample size.

inputs, drawn uniformly between �π and π and independent of the output y. We keep the

original output in the dataset. Retraining the network on these noisy data and estimating

the mean dimension leads to results again similar to the ones we just illustrated.

2.4.2 Where Do Interactions Occur?

To study how the mean dimension changes throughout the network, we regard each node

in the network as an output and calculate the mean dimension for each neuron. Fig. 2.2

provides a visualization of the results and a sketch of the architecture. Each neuron in

Fig. 2.2 has a corresponding mean dimension. In the table below the network architecture,

however, we report the layer average mean dimension (LAMD). Also, for each layer we

consider the mean dimension before and after activation (to illustrate the numbers 1.008

and 1.1891 refers to the LAMD of the first layer without and with activation, respectively).

We perform this layer-by-layer analysis for a neural network trained on the Ishigami data

(Section 2.4.2.1) and for a random neural network using random data as input (Section

2.4.2.2).
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Figure 2.2: Sketch of the neural network architecture used for the Ishigami experiments
(Section 2.4.1 and 2.4.2.1) & the random model and random data experiment (2.4.2.2).
Below: Table with average of 20 replicates of the per layer average of mean dimension
for different experiment set ups and different activation function (ReLU and TanH). The
layer architecture has the following structure: fully-connected layer, activation function,
fully-connected layer, activation function, fully-connected layer.

2.4.2.1 Neural Network Trained on Ishigami Data

The table in Fig. 2.2 shows the average over 20 replicates of the LAMD. The first two rows

show the LAMD values using the Ishigami data for a network with ReLU activation and

with TanH activation, respectively. The even columns report results without activation,

the odd columns after activation. One notes the strong increase in LAMD following an

activation. For instance going from column 1 to column 2 in the first row (with ReLU

activation), we observe a systematic increase in the LAMD of the first layer. The same

holds for the second application of activation function, (column 3 to column 4). While

this is consistent for both activation functions, the ReLU activation gives a higher increase

in the LAMD of the first layer, while TanH does so in the LAMD of the second layer.
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There, note that the mean dimension of the second layer on the Ishigami data with TanH

activation is higher than the output mean dimension. Because the output mean dimension

is the same with both activation functions, the LAMD has then to decrease in order to

get to the correct estimate.

Overall, interactions seem to arise due to the non-linear activation functions, while

fully-connected layers (pre-activation) do not lead to increases in the mean dimension. We

also get a mean dimension very close to 1 for each pre-activation neuron in the first layer,

because the first layer without activation is a linear transformation of the inputs.

2.4.2.2 Random Neural Network & Random Input

In the next experiments, we are interested in determining the mean dimension of a random

neural network with random inputs and different activation functions. We use the default

Kaiming initialization of Pytorch (He et al., 2015) for the weights and draw the inputs as

i.i.d. samples from a standard normal distribution. We generate a sample of size 60.000

with an input dimension of 200. The neural network architecture differs from the previous

section only in the size of the incoming connections from the input layer (see Fig. 2.2).

Activation either with ReLU or TanH increases the mean dimension with respect to the

non-activated case. The third row of the table in Fig. 2.2 shows that the mean dimension

of g with ReLU activation functions is 1.86 when averaging over 20 replicates. The average

mean dimension of the same experiment using TanH activation function is 1.05. This

indicates that when using random data, the ReLU activation function induces higher

average interaction size than the TanH activation function. These results are in line with

the experiments performed in Section 2.4.2.1.
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2.5 Image Classification

We now apply the analysis to an image classification problem using neural networks. We

use the CIFAR-10 data set (Krizhevsky, 2009), which contains 60.000 labeled images with

10 different labels. The images consist of 32� 32 pixels with 3 color channels. Two issues

arise when trying to estimate the mean dimension following the routine in Section 2.3.2.

First, the estimation of the mean dimension requires a scalar output, while a classification

problem usually yields a set of probabilities, one for each class. Second, as remarked in

Section 2.3.2, the estimation procedure requires independent features. The correlation

matrix for real world images shows very high correlations, especially between neighboring

pixels. Thus, we cannot estimate the mean dimension of an image classification task using

the original inputs.

To address this second issue, we consider now PCA-transformed images as inputs,

creating a set of uncorrelated features, and we extend the network architecture by inserting

an inverse-PCA transformation layer at the beginning of the network structure. This

can be done after training the network. This layer does not contain learnable weights.

This means that after this insertion, we can use PCA-transformed images as inputs to

the extended network. While this procedure does not yield the mean dimension on the

original data, it allows one to carry out relative comparisons, across alternative network

architectures. (See the Appendix for greater details).

We are left to address the first issue mentioned above: The final layer of neural network

for classification is usually a softmax layer, leading to a number of outputs equal to the

number of classes. The resulting probabilities are natural functions of interest: They need

to be sensitive to features in the input that relate to the classes to be predicted and are

typically the direct input to the objective function that is used to train the network. While

we could analyze the single outputs independently, as is done in Hoyt and Owen (2020a),

and also in the layer-by-layer analysis of the work, we would like to have a single number
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characterizing the mean dimension of the neural network. When using the cross-entropy

for training the neural network, the objective function for a single input-output pair is

the negative log-probability of the true class for the input. This quantity depends on

all neurons in the last layer before the softmax and is the value being minimized during

training. We therefore set the output Y equal to the negative log-probability of the true

class.

2.5.1 Where Do Interactions Occur?

In this subsection, we report results for a layer-by-layer analysis of interaction studying a

LeNet-5 like architecture (LeCun et al., 2015) trained on the CIFAR-10 image classification

data set. We refer to the appendix.

Table 2.1 shows the LAMD of the trained network using the ReLU (mid column) and

TanH (right column) activation functions. The left column shows the corresponding layer

type to the LAMD. The final average mean dimension of the network with the TanH is

larger than with the ReLU activation function. However, looking at the individual steps

comparing the LAMD before and after activations, the increase of the LAMD is larger all

three times for ReLU than TanH. See for example the increase in LAMD from row 1 to

row 2, row 4 to 5 and row 7 to row 8.

2.5.2 When Do Interactions Arise During Training?

We now focus on evaluating the difference of neural network architectures and on the

evolution of the mean dimension during training on CIFAR-10. We consider the following

well known neural network architectures: LeNet-5 (LeCun et al., 2015), ResNet-101 (He

et al., 2016) and DenseNet-121 (Huang et al., 2017). We refer to the appendix for training

details. After training each network for 120 epochs, the estimated mean dimension for

LeNet-5, ResNet-101 and DenseNet-121 are 2.97, 7.91 and 5.55. The training errors for
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LAMD
Layer Type
Conv2d 0.9991 0.9992
ReLU/TanH 1.2382 1.1842
MaxPool2d 1.0977 1.2396
Conv2d 0.9019 1.1179
ReLU/TanH 1.7292 1.7165
MaxPool2d 3.2240 2.0922
Linear 0.7864 1.1820
ReLU/TanH 2.3429 1.3971
Linear 0.8875 1.1484
NLL 2.6912 3.1786

Table 2.1: LAMD of LeNet-5 type architecture trained on CIFAR-10 dataset using ReLU
activation function (mid column) and hyperbolic tangent activation function (right column).
The left column shows the corresponding layer type to the LAMD, where Conv2d is a 2D
convolution layer, MaxPool2D is a 2D max pooling layer, linear is a fully-connected layer
and Relu/TanH is the layer where we apply the activation function. NLL is the negative
loglikelihood loss.

all three models are zero and test errors for LeNet-5, ResNet-101 and DenseNet-121 are

29.55, 19.18 and 21.58, respectively.

Figure 2.3 displays the mean dimension estimates during training epoch by epoch

from 10 to 120 epochs, as well as the train and test errors. We observe that the mean

dimension increases as the epochs increase. The increase in mean dimension is steeper

for early epochs for the LeNet-5 architecture. The other two architectures do not seem

to exhibit this pattern. Deeper networks such as ResNet-101 and DenseNet-121 have a

higher mean dimension with respect to the more shallow ones like LeNet-5. This difference

between architectures is visible from the beginning of training. We recall that there is

one order of magnitude of difference in parameter size between the networks used in our

experiment, with ResNet-101 having the largest number of layers followed by DenseNet-121

and then by LeNet-5. On average, the mean dimension is more than 2.5 times higher

in ResNet-101 than in LeNet-5 according to our estimates. Thus, the mean dimension

seems to be positively correlated with the complexity of the network, with larger networks
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(a) LeNet-5 (b) DenseNet-121

(c) ResNet-101

Figure 2.3: Mean dimension (MD, blue), training (green) and test error (red) evolution
during training of 120 epochs using different architectures. The mean dimension is
estimated every 10th epoch of training. Errors are the percentage of misclassified images
in the training and test set respectively.



40 The Mean Dimension of Neural Networks and what it reveals

having larger mean dimension.

The graphs in Figure 2.3 may seem to indicate that the mean dimension converges

more rapidly in the LeNet-5 model than in the other models. However, this is only due to

the truncation at 120 epochs. We performed additional experiments with a higher number

of epochs and the final mean dimension does not change substantially as the number

of epochs increases also for ResNet-101 and DenseNet-121. That is, the least complex

architecture LeNet-5 learns most of the interactions during the first epochs of training,

while the other two architectures learn these interactions later on.

It is often true for computer vision tasks that a better accuracy can be achieved with

bigger networks and more training, but for some problems these highly complex models

might not be useful, for example due to overfitting. The mean dimension might give

indications about when this is the case by showing that from a certain complexity on-wards

the average interaction size stops increasing. How general this assertion is requires further

experiments. These will be part of future research of the authors.

In the next series of experiments, we estimate the mean dimension for the image

classification task of CIFAR-10 using different versions of the ResNet architecture. In

Fig. 2.4, we show the evolution of the mean dimension as well as training and test error

for ResNet-18, ResNet-34, ResNet-50, and ResNet-152 as the number of epochs increases.

The corresponding plot for ResNet-101 is in Fig. 2.3. In accordance with the results of the

previous experiments, we obtain larger mean dimension estimates for models with a higher

number of layers. After 120 epochs these are 6.14, 6.29, 7.65, 8.06 and 7.80, respectively,

for ResNet-18, ResNet-34, ResNet-50, ResNet-101 and ResNet-152.

The analysis of the different depth versions of the ResNet architecture confirms that

with increasing number of layers and neurons, a neural network has a higher estimated

mean dimension. However, it is interesting to observe that after 50 layers, the mean

dimension varies only slightly. The mean dimension of ResNet-101 is slightly higher

and the mean dimension of ResNet-152 is even lower than the one of ResNet-101. A
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(a) ResNet-18 (b) ResNet-34

(c) ResNet-50 (d) ResNet-152

Figure 2.4: Mean dimension (blue), training (green) and test error (red) evolution during
training of 120 epochs using the ResNet architecture with 18 (a), 34 (b), 50 (c) and 152
(d) number of layers. The results using 101 layers (ResNet-101) is in Fig. 2.3. The mean
dimension is estimated every 10th epoch of training.

similar behavior is observed in the test error, which is 22.43, 21.47, 20.98, 21.19, 22.20 for

ResNet-18, ResNet-34, ResNet-50, ResNet-101 and ResNet-152, respectively. One might

conclude that ever increasing complexity does not lead to ever increasing mean dimension.

There seems to be natural bound for the mean dimension using the same architecture.

Again this might indicate which complexity could be needed for a certain problem at hand.

Another insight could be that once we stop seeing an increase in mean dimension with

increasing depth size, we start overfitting and the test error stops decreasing or even starts

increasing. This is a natural question for future investigations.
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2.6 Discussion

Understanding the structure of a neural network is crucial for increasing interpretability,

and understanding interactions plays an important role. However, determining exactly

what interactions occur in neural networks used in realistic applications can be infeasible.

Relying on the notion of mean dimension, we have proposed a methodology that provides

an estimate of the average interaction size in a neural network. We are providing an

algorithmic approach that makes it possible to estimate the mean dimension from a

given dataset. Moreover we would like to highlight the difference to other methods from

the explainability literature such as Layerwise Relevance Propagation (LRP), which is a

technique at the individual prediction level, while the mean dimension is based at the

dataset and model levels.

We have tested convergence on a test case for which the mean dimension was analytically

known. We have then used the mean dimension to study the impact of alternative activation

functions, on the synthetic dataset as well as using completely unstructured data.

Our image classification experiments have shown consistently that the mean dimension

increases with the complexity of architectures and, within the same architecture, with

number of layers. Interestingly, however, from a certain number of layers on-wards the

mean dimension stagnates.

Overall, the analyst is equipped with a new tool and algorithmic procedure that allows

one to synthesize neural network complexity in a single statistic permitting comparisons

of alternative network architectures, activation functions and more.

The work also opens to future research directions. There are of course current limitations

connected to, for example, computational power available for our experiments. Repeating

the experiments for a larger ensemble of networks and analyzing the mean dimension in

relation to generalization, similarly to the idea of Jiang et al. (2019), are avenues of future

research.
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Appendices

2.A Experimental Details

2.A.1 Inverse-PCA Layer

The network is trained on the original data. This data is then PCA transformed, keeping

all components, and used as the input to the neural network after it has been extended

with the inverse-PCA layer (see below). We use this extended network for the calculation

of the mean dimension, which means that we calculate the mean dimension with respect

to the PCA transformed features. The purpose of this additional layer is that we can

estimate the mean dimension on uncorrelated features while using a neural network that

has been trained with correlated features.

The inverse-PCA layer can be implemented by calculating the matrix of principal

components, c, the means of the original features x̄orig and the standard deviation of the

original features σorig.

The inverse-PCA layer then corresponds to the operation

h1 � px � cT � x̄origq � σorig, (2.14)

where x is an input and h1 is the output of the inverse PCA layer. Notice that the

output of the original neural network applied to an input is equal to the output of the

extended neural network when applied to a PCA transformed version of the same input.

This extended neural network is used for calculating the finite differences of Equation

(2.11) in the main text. The basis for the calculation of finite differences are pairs of inputs

where one feature has been exchanged, see Equation (2.10) and Equation (2.11) of the

main text. When combining finite differences with the inverse PCA layer, we exchange

these features in the PCA transformed inputs.
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Then, to estimate the mean dimension, we can follow the algorithmic procedure

introduced in the main paper using the PCA-transformed images as inputs and the

extended neural network as model.

Note that the purpose of the additional PCA layer is not dimensionality reduction.

We keep the number of dimensions invariant before and after the inverse-PCA layer. The

inverse-PCA layer allows us to use inputs that are linearly uncorrelated.

2.A.2 Image Classification

Except where specified otherwise, all neural networks in this section are trained for 120

epochs, with a learning rate of 0.001 using the Adam optimizer (Kingma and Ba, 2015).

The weights and biases are initialized by the default Kaiming initialization in Pytorch (He

et al., 2015).

We train the neural networks on the original images as inputs. We then apply a PCA-

transformation to the images and extend the trained neural network with an inverse-PCA

layer. We then apply the mean dimension estimation routine on the extended network

with the inverse-PCA layer.

The LeNet-5 architecture consists of an input layer, 2 convolutional layers with pooling

and a final linear layer. The 10 dimensional output layer with a node for each of the 10

classes is then transformed using a softmax layer and the negative log-likelihood loss serves

as a scalar output.

2.A.3 Ishigami Function

We use PyTorch (Paszke et al., 2019) for training the neural network. We generate a

dataset consisting of 60,000 instances. One instance is composed of the randomly drawn

input features and the Ishigami function evaluation at these inputs as corresponding

output. The data is then split into 48, 000 samples for training and 12, 000 samples for
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testing. We use 300 nodes in the first layer and 50 nodes in the second one. We train for

100 epochs with the learning rate set to 0.01. Weights and bias are initialized according to

Pytorch default Kaiming initializiation (He et al., 2015). We report results for experiments

with both the Rectified Linear Unit (ReLU) and the hyperbolic tangent (TanH) activation

functions.

2.B Code

The code for reproducing the experiments in the paper is printed in the final appendix of the

thesis. The code for training the networks is a modified version of the code accompanying

the paper Pittorino et al. (2020). Estimating the mean dimension for LeNet-5, ResNet-101

and DenseNet121 takes 0h:29min, 2h:55min and 6h:49min wall-clock time on a single

NVIDIA TITAN RTX. Thus to estimate the mean dimensions using the ResNet-101

architecture for every 10th epoch of a total of 120 training epochs takes 35h on a single

NVIDIA TITAN RTX.
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Chapter 3

Using Tools for Interpretability for a

Comparison of Neural Network

Optimization Routines

3.1 Introduction

There is a growing literature highlighting the need to increase interpretability and ex-

plainability of results generated by complex artificial intelligence architectures. New

developments and methods are leading to ever improving performances on benchmarks.

While the theoretical ground that explains these improvements is not yet settled, it is

widely recognized that a key breakthrough in deep learning has been brought by the

availability of new and efficient optimization methods.

The standard method of optimizing the loss function in neural networks is stochastic

gradient descent (SGD), which uses a low loss as the only metric for evaluating a solution.

While leading often to a very good performance, the method may be trapped in sharp

local minima, which are less robust towards perturbations of the parameters of the neural

network. These sharp minima have been connected to overfitting and there is evidence

51
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that wide, flat minima have better generalization properties overall (Keskar et al., 2016).

The idea of seeking flat minima has a long history in machine learning (Hochreiter and

Schmidhuber, 1997; Hinton and Van Camp, 1993).

Replicated SGD (rSGD), a so-called entropic algorithm, has been proposed as a way to

address this problem (Pittorino et al., 2020). The method consists of running standard

SGD on several replicas of the same neural network in parallel and adding an interaction

term that keeps the parameters of the replicas close to each other. In Pittorino et al. (2020),

this interaction is the squared Euclidean distance between the parameters of the replicas

and the mean of their parameters. The method can also be seen as an approximation

to another entropic algorithm, Entropy-SGD (Chaudhari et al., 2019), which evaluates a

point in the space of parameters not only by the loss value associated to this point, but

also by the loss values in a region around the point (Baldassi et al., 2016).

Since this method of learning is designed to avoid overfitting, it is interesting to ask how

the resulting input-output mapping implied by these solutions differs from the input-output

mapping of standard SDG and if such a difference can be interpreted with a view to the

different generalization properties of the resulting artificial neural networks.

One line of research is to compare the robustness of the ordinary trained network and

the replica trained network by (random) pixel attacks analysis.

We contribute to this research trend by providing a comparison methodology developed

in the global sensitivity analysis literature that allow an efficient and thorough comparison

of network structures. We use two methods from the interplay of sensitivity analysis and

machine learning that answer feature importance and interaction quantification questions.

For feature importance we rely on probabilistic sensitivity measures that can be directly

estimated from the available dataset. For this task, we frame the analysis in the context

of the Xi-method (Borgonovo, E. and Ghidini, V. and Hahn, R. and Plischke, E., 2021).

For interaction quantification, we rely on the notion of mean dimension (Hoyt and Owen,

2020; Hahn et al., 2021).
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We focus mainly on two questions for models trained on computer vision tasks: Do

the two resulting networks rely on different areas in the picture to make their predictions?

Do they differ in the size of interactions between pixels that are important for the output?

The remainder of the work is organized as follows. We present related literature in

Section 3.2, while the methods are introduced in Section 3.3. In Section 3.4 we present

the results, and conclude with a discussion in Section 3.5.

3.2 Related Literature

This section combines the literature from three different research streams. We start by

providing the related literature leading to the replica training methodology. Then we

present works that focus on feature importance and try to crystallize the important pixels

in an image classification task from the explainable artificial intelligence (XAI) and the

global sensitivity analysis (GSA) communities. Lastly we introduce the notion of mean

dimension and point out its development.

The idea to bias the training towards flat minima has been a topic of interest in machine

learning and statistics for several decades (Hochreiter and Schmidhuber, 1997; Hinton and

Van Camp, 1993) and recently been investigated for example in their connection to the

observation that large-batch methods tend to produce a lower generalization performance

than small-batch methods (Keskar et al., 2016). Flatness has also been shown to correlate

with generalization in more large-scale studies (Jiang et al., 2019).

One idea that has been explored in this context is to directly optimize a quantity called

the local entropy (Chaudhari et al., 2019), which is based on the loss value of a complete

region instead of a single point and has been conceived in analogy with entropy measures

in statistical physics (Baldassi et al., 2015). While several closely related algorithms have

been discussed in the literature (e.g. Elastic Average SGD (Zhang et al., 2014) and Parle

(Chaudhari et al., 2017)), we focus in this work on rSGD, which has recently been tested
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with success in the deep learning setting (Pittorino et al., 2020). In Pittorino et al. (2020),

the authors show an improved generalization performance on several modern architectures

and datasets.

Having trained two networks with the two different optimization routines (rSGD and

standard SGD), a natural question is whether the networks look at different areas or pixels

in an image and if this is connected to a difference in accuracy between the two networks.

Finding the most important areas in images with respect to classification using neural

network models is a problem that recently has received a lot of interest and falls into the

broader category of feature importance and feature selection methods. We provide here an

overview but do not claim to be complete. Works such as Hastie et al. (1994), Boehmke

et al. (2020) give a broader review.

When it comes to artificial intelligence applications, as mentioned in Murdoch et al.

(2019), techniques can be divided into two main families: individual prediction methods

and dataset methods. In the first class of methods are popular techniques such as the

Randomized Input Sampling for Explanation (RISE) (Petsiuk et al., 2019), which is a

specific algorithm to explain image classifiers. With this technique, a single input image

is perturbed by means of randomly generated binary masks, allowing the computation

of a score for each pixel, which evaluates the consequent drop in the accuracy and thus

is proportional to its importance according to the model. The RISE technique is model

agnostic, but it is data aware (it can only be applied to images).

A similar idea is employed by the authors of the Local Interpretable Model-agnostic

Explanations (LIME) method (Ribeiro et al., 2016): in this case, the single data input

is first preprocessed (i.e. divided into superpixels in the case of images), and then the

modified input is perturbed, obscuring one partition of the data at a time; then the

consequences on the output of the black-box are measured using a local interpretable

model as approximation (e.g. linear regression or tree). LIME is a very flexible technique,

since it can be used with any kind of data or black-box.
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Recently model-aware techniques on the individual prediction level became more

popular. These exploit some characteristics of the respective model structures and so can

only be applied to a specific model.

Some of such model-aware techniques for Neural Networks, which make use of the

gradient characterisation, are: GradCAM (Selvaraju et al., 2017), Vanilla Gradient (Erhan

et al., 2009) and Layerwise Relevance Propagation (LRP) (Bach et al., 2015; Binder et al.,

2016). The latter one may provide a very useful tool to explain decisions on an individual

image level highlighting the important pixels in an image by propagating importance

backward through a neural network.

Notice that all the mentioned techniques create so-called post-hoc explanations (defined

in Murdoch et al. (2019)), which provide an understanding of the reasons behind the

classification of a certain data instance, after fixing the model structure and parameters.

The comparison of the two networks requires such a post-hoc explanation and hence,

we deal with black-box interpretability (as defined in Rudin (2019)), which means that we

treat each model as a fixed black-box and we provide explanations without intervening on

the architecture of the classifier.

We strive for a "global" comparison of two networks; comparing individual image

explanations can be very tedious or even intractable due to the large number of data

points needed to train deep neural networks. Therefore we rely on the recently introduced

Xi-method of Borgonovo, E. and Ghidini, V. and Hahn, R. and Plischke, E. (2021) for

explanation, which is based on probabilistic importance measures from the field of global

sensitivity analysis (GSA). The Xi-method is a post-hoc explanation method that works

in the context of supervised classification. It is composed of the following ingredients.

First, a measure of statistical dependence which is computed on the data (train or test);

second a supervised machine learning model. The steps of the method are as follows: the

measure of statistical dependence is computed on the original data, without the training

of the ML model. Then, the most important pixels according to the measure of statistical
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dependence are recorded. Second, an ML model is fitted to the data. If the performance

is deemed sufficiently accurate, then the ML algorithm is asked to produce forecast on the

same dataset on which the measure of statistical dependence has been computed. Third,

the measures of statistical dependence are computed on the forecasts. Fourth, the resulting

quantitative results are compared with the results for the measures computed on the data,

before the ML model was trained.

Regarding the ingredients of the Xi-method, we recall that in the GSA literature,

importance measures were developed to reveal the dependence of a target variable on its

inputs. There is a common rationale underlying most of these GSA importance measures

(Borgonovo et al., 2016). There are, among others, variance-based sensitivity measures

(Iman and Hora, 1990; Saltelli, 2002), sensitivity measures based on the value of information

(Oakley, 2009), density-based sensitivity measures (e.g. (Borgonovo, 2007)) and more

general distribution based sensitivity measures (e.g. (Baucells and Borgonovo, 2013)). We

work with a recent measure of the toolbox of the common rationale that relies on the

intuition of exploiting the empirical cumulative distribution function of the model output

(Plischke and Borgonovo, 2020). The details are presented in Section 3.3.3.

Our second approach of comparing and analysing the single and the replicated network

is based on the mean dimension. The mean dimension is a notion that gives the average

interaction size in an input-output pair which has its foundation in the functional Anova

expansion (see Rabitz and Aliş (1999) for a review).

The functional Anova decomposition allows to expand a multivariate mapping of the

function of interest into 2d terms, in which second order and higher order terms account

for the residual level of interaction (Efron and Stein, 1981; Sobol’, 1993). Here, d is the

number of arguments of the function.

This representation is exploited in Caflisch et al. (1997) and Owen (2003) for introducing

the notion of mean dimension that indicates the average interaction size. Thus, using the

notion of mean dimension to compare two networks reveals structural differences between
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them. There is recent interest in estimating the mean dimension of neural networks. We

recall the work of Hoyt and Owen (2020), where the focus is mainly on different estimation

routines of the mean dimension of neural networks, while Hahn et al. (2021) exploits this

concept to compare different architectures and show how the mean dimension evolves

during training.

3.3 Methods

In this section, we describe the methods used in this work. The optimization methods

are described in Section 3.3.1. We introduce the mean dimension and its estimation in

Section 3.3.2. In Section 3.3.3, we define global importance measures and outline their

estimation. We then describe the modified Xi-method in Section 3.3.4, which provides

model explanations on different granularity levels. Lastly, Section 3.3.5 shortly presents

correlation metrics, that are used to obtain a quantitative comparison of sensitivity results.

3.3.1 Optimization Methods

In this work, we compare two optimization methods for neural networks, SGD with Adam

and rSGD, which we will call single and replicated network, henceforth. We refer to

Pittorino et al. (2020) for details on rSGD and review here only the basic idea. While SGD

is based on the loss function Lpθq for a single neural network with parameters θ, in rSGD

the network is replicated y times, which means that we can represent that parameters

of the replicated system as the set Θ � tθruyr�1. The loss function LR for the replicated

system is then defined as

LRpΘq �
y̧

r�1
Lpθrq � γ

y̧

r�1
|θ̄ � θr|2, (3.1)

where |θ̄ � θr|2 is the squared Euclidean distance between the parameters θr for the
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replica r and the average parameters over all replicas,

θ̄ � 1
y

y̧

r�1
θr. (3.2)

While in SGD, one mini-batch of size B is sampled and the gradient of L is calculated

based on this single mini-batch, in rSGD one mini-batch is sampled independently for

every replica and the gradient of the replicated loss LRpΘq is calculated with respect

to all replica parameters. The replicas are initialized independently and the interaction

parameter γ is increased during training, leading to a collapse of the replicas at the end of

training. Then, the average θ̄ can be used as a single neural network for prediction.

The reasoning behind this approach has deep connections to statistical mechanics

(Baldassi et al., 2016). It can be derived as an approximation to the local entropy loss,

which evaluates a single point in parameter space θ by integrating the loss with respect

to a second point θ1 over the whole parameter space, weighing every point θ1 with the

distance to θ. In this way, the point θ is evaluated by quantifying how much low-loss

volume close to θ is.

The loss in Equation (3.1) can be interpreted in a more intuitive way: The stochasticity

inherent in SGD drives the replicas apart, which is countered by the attraction term.

This will lead to some typical distance between the replicas for a fixed γ, and it becomes

unlikely that all of them get stuck in the same sharp minima at the same time.

3.3.2 Definition of Mean Dimension and Its Estimation

The well-known functional Anova decomposition allows us to expand a multivariate

mapping into 2d terms, where d is the dimension of the feature space. Let X denote the

support of X. Let also g : X Ñ R be a square integrable mapping with respect to PX .

Under the assumption that PX is a product measure, in Efron and Stein (1981) it is proved

that g can be decomposed in the following expansion:
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gpxq �
¸

u�t1,2,...,du
gupxuq, (3.3)

where the functional ANOVA effects gupxuq are computed from

gupxuq �
»
X�u

gpxqdF�upx�uq �
¸
v�u

gvpxvq. (3.4)

The symbol � u represents the set of all indices with exclusion of the ones in u.

Building on this decomposition the classical results of Efron and Stein (1981); Sobol’

(1993) allow us to decompose the prediction variance as a sum of variance contributions

by all subgroups of indices:

σ2 �
¸

u�t1,2,...,du
σ2
u, (3.5)

where the variance contribution of a subgroup u is defined as

σ2
u �

»
Xu

�
gupxuq

�2
dFupxuq. (3.6)

Then, the mean dimension is defined as (Caflisch et al., 1997; Owen, 2003)

Dg �
¸

u�t1,2,...,du
|u|σ

2
u

σ2 , (3.7)

where |u| is the cardinality of u.

The terms σ
2
u

σ2 serve as a discrete probability mass function. The last equation can

then be interpreted as the average of the cardinality of the subsets of all indices weighted

by their fractional contribution to the variance.

For a detailed description of its estimation from a given dataset we refer the reader to

Hoyt and Owen (2020); Hahn et al. (2021). We provide a condensed description here. As

is shown in Borgonovo and Rabitti (2020), and exploiting results from Owen (2003) , the
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mean dimension can be written as

Dg �
°d
i�1 VrΦipX1

i qs
2σ2 , (3.8)

where VrΦipX1
i qs is the variance of the finite differences ΦipX1

i q � gpX1q � gpX0q. X0 �
tX0

1 , X
0
2 , . . . , X

0
i , . . . , X

0
du and X1 � tX0

1 , X
0
2 , . . . , X

1
i , ..., X

0
du are two random points in

the input space that differ only in the ith feature dimension.

Then we can estimate the mean dimension from a given data set of inputs x, labels L,

sample size N and a neural network trained on this data. Let xk � pxk1, ..., xkdq denote the

kth input with k � 1, 2, . . . , N . Let also yk � gpxkq be the network prediction corresponding

to input xk. We then consider modified samples where a single feature value has been

replaced with the same feature value from a different input. We denote such modified

inputs as

pxli;xk�iq � pxk1, . . . , xki�1, x
l
i, x

k
i�1, . . . , x

k
dq, (3.9)

where the sequence pxli;xk�iq is created by replacing xki with xli in xk. The finite change

with respect to this modification is then defined as

φkli � gpxli;xk�iq � gpxkq. (3.10)

Now, suppose we compute r finite differences for each feature i, yielding in a r � d

matrix of finite difference. We then compute the sample variance pVrφis of these finite

differences for each feature i. Then, by Equation 3.8, the mean dimension estimate follows

as

pD �
ḑ

i�1

pVrφis
2pσ2 , (3.11)

where pσ2 is an estimator of the output variance σ2.

This routine requires independent features. Images, as well as many other real word



3.3. METHODS 61

data, do not fulfill this requirement. In Hahn et al. (2021), a work-around is suggested.

The Principal Component Analysis (PCA) transformation of the images is computed and

the transformed images are considered to be the new inputs. Then, the model is extended

by a inverse PCA transfromation layer before the first layer. As the name suggests, this

layer does not contain learnable weights but performs an inverse PCA transformation

of the images. The remaining layers remain unchanged. Thus, the mean dimension can

be computed on the space of PCA transformed images, which is sufficient for comparing

different neural networks.

3.3.3 Importance Measure from Global Sensitivity Analysis and

Its Estimation

Let X and Y be random vector on pΩ,BpΩq,Pq, with probability measures PY and PX ,

respectively. Let P denote the set of all probability measures on the same probability

space and let dp�, �q : P � P Ñ R denote a distance between distributions. Several global

sensitivity measures can be defined through the common rationale (Borgonovo et al., 2016):

ξX � ErdpPY,PY |Xqs, (3.12)

where PY |X is the conditional probability measure of Y given X. The intuition at the basis

of a probabilistic sensitivity measure is to quantify the degree of statistical dependence

between the target Y and one or more covariates (features) X. The symbols PY and PY |X

in Equation (3.12) have a rather generic meaning. In this work, we consider directly the

cumulative distribution function (CDF) FY and the conditional CDF FY |X . Thus, the

global sensitivity importance measures of ith feature is defined by:

ξi � ErdpFY , FY |Xi
qs, (3.13)
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where FY is the marginal CDF of Y and FY |Xi
is the conditional CDF of Y given that

we learn Xi; that is FY |Xi
py|xq � PrpY ¤ y|Xi � xq. d is a separation measure defined

to measure the distance between two CDFs. The expectation goes over Xi. Different

proposals for dp�, �q can be found in the literature.

In this work, we apply the Kolmogorov-Smirnov distance between two CDFs, dKSi �
supy |FY pyq�FY |Xi

pyq|. Therefore, the reference probabilistic sensitivity measure becomes

ξKSi � Ersup
y
|FY pyq � FY |Xi

pyq|s. (3.14)

We omit the superscript ’KS’ in the following. This sensitivity measure is transforma-

tion invariant, and is readily estimated from the knowledge of the empirical cumulative

distribution functions (Borgonovo et al., 2014).

For detailed information of the estimation routine, we refer to Plischke and Borgonovo

(2020) and provide a concise description here. In the case ofXi being continuous, the routine

requires to define a partition. The key intuition lies in replacing the point-conditional CDF

FY |Xi�x with the class-conditional CDF FY |XiPX k
i
. Let Xi denote the support of feature

Xi, i � 1, 2, ..., nX , where nX is the feature dimension. Let also Ki � tX 1
i ,X 2

i , . . . ,XK
i u

denote a partition of Xi, i.e., a finite or countable collection of subsets of Xi such that

Xi � YK
k�1X k

i and such that X k
i X X j

i � H, for k � j and i � 1, 2, ..., nX .

In the case of Xi being a discrete variable, then the partition is immediately given by

the discrete set of realizations of Xi.

For the sensitivity measure in Equation (3.13), the following expression represents the

equation of a given data estimator given partition Ki (Plischke and Borgonovo, 2020):

pξipKiq �
Ķ

k�1

xPrpXi P X k
i qdp pFY , pFY |XiPX k

i
q, (3.15)

where FY |XiPX k
i
pzq � PrpY   z|Xi P X k

i q denotes the conditional CDF of Y given Xi P X k
i

for i � 1, 2, ..., nX . pFY and pFY |XiPX k
i
are the estimators of FY and FY |XiPX k

i
. Obtaining
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consistent CDF estimators is the first step for calculating the estimator in Equation (3.15).

A natural candidate for this purpose is the empirical CDF of Y . Given n realizations

pyjq, j � 1, 2, ..., n of the random variable Y , the empirical CDF of Y evaluated at y is

defined by counting the number of realizations below or equal to y and dividing by the

sample size, pFY pyq � 1
n

#tyj : yj ¤ yu, (3.16)

where #A denotes the number of elements in the set A. The estimation of the conditional

CDF follows analogously.xPrpXi P X k
i q is the estimated probability that Xi falls into X k

i . Let us denote as nki
the number of realizations where the ith feature Xi falls in X k

i , then we get the estimated

probability by dividing this count by the number of all realizations n; xPrpXi P X k
i q � nk

i

n
.

Hence we have: pξipKiq �
Ķ

k�1

nki
n
dp pFY , pFY |XiPX k

i
q. (3.17)

3.3.4 The Xi-Method

In this section we describe a modified version of the Xi-method introduced in Borgonovo, E.

and Ghidini, V. and Hahn, R. and Plischke, E. (2021). The modified Xi-method provides

explanations of a trained model in a classification setting with nL different target labels

`1, . . . , `nL
. Specifically, the modified Xi-method requires the definition of an appropriate

scalar output representation of the classification problem. The definition of the modified

Xi-method follows in Section 3.3.4.1 and the estimation aspects in Section 3.3.4.2.

3.3.4.1 Definition

The Xi-method applies the probabilistic sensitivity measures that were previously defined

to obtain post-hoc explanations for a model at different granularity levels. This is achieved

by applying the importance measures not to the true target level but to the model output
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and by that revealing the dependencies of the trained model on the inputs. It provides

insight into the network’s decision on a dataset and at a target class level respectively

described in Paragraphs a) and b). Furthermore it can highlight differences between

misclassified and correctly classified images, see Paragraph c), and a combination of the

mentioned granularities.

In the case of a classification problem, we need to define a scalar model output . We

consider the negative loglikelihood loss (NLL) Z, that is the negative loglikelihood of the

correct class probability, as output. Other choices are possible, such as the predicted

label or even all class probabilities that result from the softmax layer. With the choice of

the NLL as output, the Xi-method applies to the importance measures using CDFs for

Equation (3.13).

a) Explanation at the dataset level Based on Equation (3.12), we can define the

explanation at a dataset level based on the separation measure dp�, �q of a ML model whose

output is

ξZX � ErdpFZ ,FZ|Xqs.

Observe that ξZX depends on the separation measure dp�, �q: in this way, we can obtain

explanations inheriting different properties from dp�, �q.
The quantity defined above is particularly useful for the purpose of understanding the

most important covariates for the general prediction task. But sometimes we may need to

retrieve the most important features for a singular response class, or perhaps to visualize

what the machine learning model is actually seeing in unstructured data such as images, in

order to predict a specific target label. For this, we resort to explanations at a class level.

b) Explanation at a class level In this case, we may be interested in retrieving an

explanation for each target class, answering the question What is important for the model
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when it evaluates inputs from class `r?

To this aim, we consider only inputs falling into the class of the target label `r. Then,

the explanation based on the separation measure dp�, �q for the target class `r will be given

by

ξrX � ErdpFrZ ,FrZ|Xqs,

where FrZ is the CDF of Z on inputs with label `r and FrZ|X is conditional CDF of Z

given X on the same inputs.

c) Explanation depending on the "correctness" of the prediction Another inside

is provided by a further level of granularity. The GSA importance measures can be

computed on either correctly classified or misclassified inputs. We denote the importance

measures on correctly classified inputs as

ξcX � ErdpF c
Z , F

c
Z|Xqs,

and on misclassified images as

ξwX � ErdpFw
Z , F

w
Z|Xqs.

Here F c
Z is the CDF of Z on inputs that were correctly classified and F c

Z|X is the

conditional CDF of Z given X on the same set of inputs. Analogously for the CDFs in

the misclassified case.

d) Combination a), b) and c) A natural extension of Paragraphs b) and c) is a

combination of the respective granularities. Thus we denote the GSA importance measures

of correctly classified images with label `r as
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ξc,rX � ErdpF c,r
Z , F c,r

Z|Xqs,

and misclassified images with label `r as

ξw,rX � ErdpFw,r
Z , Fw,r

Z|Xqs,

where F c,r
Z is the CDF of Z on inputs of class `r that were correctly classified and F c,r

Z|X

is the conditional CDF of Z given X on the same set of inputs. Analogously for the CDF

in the misclassified case.

3.3.4.2 Estimation

The estimation of the modified Xi-method follows the estimation routine of GSA importance

measures from Section 3.3.3. The data used to estimate the empirical CDFs now varies

with the choice of the granularity of the analysis. The estimation of the Xi-method

explanation then follows the estimation routine of GSA importance measures in Section

3.3.3 using as data a subdataset, which depends on the chosen granularity level. For

the estimation of the Xi-method explanation of the full data (Paragraph a) in Section

3.3.4.1), we apply the estimation routine to the full dataset D. Estimating the Xi-method

explanations from inputs with target label `r (Paragraph b) in Section 3.3.4.1) requires

filtering the dataset to inputs with label `r. This subdataset is called Dr and is then used

to estimate the importance measures. Similarly, for the granularity level that separates

correctly classified and misclassified input, the dataset is split into correctly classified

inputs and misclassified ones. We denote these subsets Dc and Dw, respectively. The

filtered dataset of a combination of the target level and the correctness is denoted as Dc,r

in the case of correctly classified inputs from class `r and Dw,r in the case of misclassified

inputs from class `r.
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3.3.5 Correlation Metrics

We are comparing quantitatively the explanations from the modified Xi-method of the

single and the replicated network using some correlation metrics. This section provides a

concise introduction of these metrics. The first one is the very well-known Spearman’s

rank correlation. Second, we compute the Pearson correlation of the Savage scores of the

importance measures (Iman and Conover, 1987). The Savage scores correlation does not

compute the correlation between the ordinary rank orders, but of quantities related to the

rank that give more weight to influential features. The reasoning behind this choice is that

the exact order of the less important pixels in the ordering of the most important features

is decisive for understanding what drives a network decision, while the exact order of the

less important features is subjacent. Let ri be the rank of feature i. Then, the Savage

score of feature i is defined as si �
°d
j�ri

1
j
, where d is the total number of features. The

correlation of Savage scores is a concordance measure that is more sensitive to agreement

on the top rankings.

3.4 Experiments and Results

In this section we present our results of analysing the differences between the single and

the replicated network using explanations of the Xi-method (Section 3.4.2) and the notion

of mean dimension (Section 3.4.1). We train the well-known convolutional neural network

architectures on the CIFAR-10 database (Krizhevsky, 2009). CIFAR-10 is a dataset of

natural images such as airplanes and horses. It consists of 6� 104 color images with 32x32

pixels and 3 color channels. The images are evenly divided into 10 classes.

We use 104 images for testing and the rest for training. We train the models using

both SGD and rSGD with 3 replicas. These models will be referred to as single network

and replicated network, henceforth.
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3.4.1 Comparison Using Mean Dimension

The average interaction size is a distinguishing property of neural networks. We exploit

the notion of mean dimension to compare networks trained by the standard approach

with networks having the same architecture design trained by the replicated optimization

method. We are comparing three different network architectures: LeNet-5, DenseNet-121

and ResNet-101.

The LeNet architecture (LeCun et al., 2015) is a 7 layer neural network consisting of the

input layer, two convolutional layers followed by pooling layers and another convolutional

layer followed by the output layer. ResNet-101 (He et al., 2016) and DenseNet-121 (Huang

et al., 2017) are two deep convolutional neural networks. The ResNet-101 architecture

comprises 101 layers featuring residual connections. It has about 42 million learnable

parameters. In the DenseNet-121 architecture, each layer uses the feature maps of all

preceding layers as inputs. All models in this section are trained for 120 epochs. The

learning rate is set to 0.001 and Adam is used as optimizer (Kingma and Ba, 2015). The

weights and biases are initialized by the default Kaiming initialization in Pytorch (He

et al., 2015).

LeNet-5 returns an test error of 26.68% for the replicated network and 29.54% for

the single network. The train error of the replicated is almost zero. For all other trained

networks, the train error is exactly zero. The test error of the ResNet-101 architecture is

19.23% for the replicated network and 21.58% for the single network. While DenseNet-121

returns an test error of 17.20% for the replicated network and 19.17% for the single one.

We are aware that there are networks achieving better accuracy on the CIFAR-10 data,

but for our purposes it is already good enough.

For each network architecture we compare the models resulting from the two different

optimization approaches. We estimate the mean dimension of the different pairs of neural

networks using the estimators from Equation (3.11). Since pixels of images are highly
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correlated, we work on the space of PCA-transformed images and extend the network by

adding an inverse PCA-layer as described in Section 3.3.2.

The routine requires the definition of a scalar output. We consider the negative

loglikelihood loss as a natural choice in this setting.

Let us start with analyzing the average interaction size for the LeNet-5 architecture.

The single network has an estimated mean dimension of about 2.97, while the replicated

network has a mean dimension of 2.56. We have replicated this experiment several times

using the same architecture on CIFAR-10 and the results remained the same up to a

deviation of 0.1. Thus, this difference between the single and replicated method is coherent

and does not depend on the random initialization of the networks.

The model using the ResNet-101 architecture has a mean dimension of 7.91 for the

single network and 8.55 for the replicated network. While the estimation procedure using

the DenseNet-121 architecture yields a mean dimension of 5.55 for the single network and

7.24 for the replicated network.

Though the notion of mean dimension clearly shows a difference between the models,

there does not seem to be a systematic relationship: a single network does not necessarily

have a smaller mean dimension than the replicated network. The single network using

LeNet-5 architecture has a higher mean dimension than the replicated one, while for the

more complex architectures, ResNet-101 and DenseNet-121, this relationship is reversed.

However, this result suggests that these models differ in terms of the average interaction

size.

Since the two optimization methodologies basically change the way the two networks

move through the parameter space during training, it is of interest to analyse the develop-

ment of the mean dimension with increasing number of epochs.

Fig. 1 shows such a development of the mean dimension for the single and the replicated

network using the LeNet-5 architecture. We also plot the training and test error behavior

during training in green and blue, respectively. The errors are calculated every second
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(a) LeNet-5, single (b) LeNet-5, replicated

Figure 1: Mean dimension (MD, blue), training (green) and test error (red) evolution
during training of 120 epochs once with the standard approach and once with replicated
method using LeNet-5 architecture. The mean dimension is estimated every 10th epoch
of training. Errors are the percentage of misclassified images in the training and test set
respectively.

epoch.

The overall behavior during training is similar for the two networks but the mean

dimension increases more smoothly for the replicated network. Fig. 2 and Fig. 3 show

the same analysis for the ResNet-101 and the DenseNet-121 architectures comparing the

two optimization algorithms. The overall picture is again quite similar between the single

network and the replicated network. But again for both architectures, the mean dimension

of the replicated network increases more smoothly.

3.4.2 Comparison Using Modified Xi-Method Explanations

We now apply the modified Xi-method introduced in Section 3.3.4. The prediction C of a

well trained neural network should show dependence on features Xi that are important

for the network’s decision. In an image classification task, the Xi-method explanations ξi

should reflect the dependence of the network’s decision on the pixels.

Using the CIFAR-10 database, we get 3,072 explanations from the modified Xi-method,

one for each pixel indicating its importance to the neural network.

We train a single network and a replicated network for 60 epochs using the LeNet
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(a) ResNet-101, single (b) ResNet-101, replicated

Figure 2: Mean dimension (MD, blue), training (green) and test error (red) evolution
during training of 120 epochs once with the standard approach and once with replicated
method using ResNet-101 architecture. The mean dimension is estimated every 10th epoch
of training. Errors are the percentage of misclassified images in the training and test set
respectively.

(a) DenseNet-121, single (b) DenseNet-121, replicated

Figure 3: Mean dimension (MD, blue), training (green) and test error (red) evolution
during training of 120 epochs once with the standard approach and once with replicated
method using DenseNet-121 architecture. The mean dimension is estimated every 10th
epoch of training. Errors are the percentage of misclassified images in the training and
test set respectively.
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architecture. For both networks, the training errors reach zero. Errors are the percentages

of misclassified images. The final error on the test set is 27.73% for the single network

and 25.34% for the replicated network.

One major advantage of the explanation provided by the modified Xi-method is the

ample opportunities it offers to gain interpretability insights. Following the modified Xi

methodology presented in Section 3.3.4, we can gain interpretability on different granularity

levels by filtering the dataset accordingly. Either the data is filtered for a specific class, for

misclassified or correctly classfied images or a combination of the two. We then progress

with calculating modified xi explanation on the filtered dataset.

We mainly focus on explanations on the training data, since the smaller test dataset

may weaken the validity of the estimation procedure. We also show results for the test

set, however. In this particular setting of zero training error, the analysis of misclassified

images is omitted for the training set analysis, but can still provide meaningful insight in

other settings.

The modified Xi-method explanations are visualized as heatmaps in the following section

and for a more quantitative comparison of the networks, we also give two correlation

metrics introduced in Section 3.3.5, computed between the explanations of the single and

the replicated neural network.

3.4.2.1 Heatmaps and Rankcorrelation of Importance Measures

One problem that arises with such a high feature dimensionality, as it is usual in models

using images, is the illustration of the feature importance explanations. We decide to

use heatmaps to highlight the different regions where the two networks ‘look at’. In the

particular case of color images with three channels, we elaborate two ways of plotting

heatmaps:

1. For each color channel (red, green, blue), we provide an individual plot. These

heatmaps show the explanation value of the pixels of that channel (note that the
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Figure 4: Aggregated heatmap of Xi-method explanations using all images. (left): single
network. (right): replicated network

estimation of the modified Xi-method was done on all pixels at the same time). This

approach is called channel heatmap, henceforth.

2. We provide one aggregated heatmap for the image, which aggregates explanations of

the three color channels at the same position. Hence, this yields an explanation for

the position of the pixel in the image, by taking the mean of the channel importance

values. This approach is called aggregated heatmap, henceforth.

We start with the most general case considering the full dataset, training and test data

combined. Fig. 4 shows the heatmaps of the Xi-method explanations for the single and

the replicated networks.

Though the overall highlights seem to be quite similar, one can clearly see differences

between the two plots. The transitions of neighboring Xi-method explanations seem to be

more smoothly for the replicated network. For both networks the centre and the upper part

are the most important regions of the image. However, there is an important difference.

The heatmaps place importance measures on a relative scale. The scales in the heatmaps

of the left and the right panel in Fig. 4 are different. The importance measures in the left

panel range from � 0.062 to � 0.070; the ones in the right panel from � 0.02 to � 0.055.

Thus, the replicated network seems to have a more distributed view of the image.

This visual impression of dispersion is also confirmed by the wider range of importance
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Figure 5: Channel heatmap of Xi-method explanations using all images. (above): single
network. (below): replicated network

measures of the replicated model compared to the single model. The importance measures

of the latter one vary between � 0.062 and � 0.070, while the range of the replicated

model lies between � 0.02 and � 0.055.

The comparison between the single and the replicated model for each of the three

color channels are shown in Fig. 5. The ranges of the scale in the two legends display

the importance measures referring to individual pixels (and not the aggregated numbers

as in Fig. 4). Again, the visual impression of dispersion is also confirmed by the wider

range of importance measures of the replicated model compared to the single model. The

importance measures of the latter one vary between � 0.062 and � 0.070, while the range

of the replicated model lies between � 0.02 and � 0.06.

It is noticeable, that for both networks the upper part of the image, in particular

the green (2nd channel) and the blue (3rd channel) color channels are important. This

might indicate that the background plays an important role in classifying images for both

networks, which is not a very desirable property. Again, especially for the third channel,

it seems that the robust network looks more at the whole image.

Thus, one can visibly confirm that the two networks find different minima in the loss

landscape.

We now compare the rankings of the importance measure using the Spearman’s rank

correlation and the Savage score correlation. The correlation results corroborate the



3.4. EXPERIMENTS AND RESULTS 75

impressions from the visual analysis of the heatmaps. The Spearman’s rank correlation

gives 0.907 and the Savage score correlation 0.943, indicating that there is in particular a

high agreement on the most important pixels.

We now analyse the difference between the two networks considering only correctly

classified or misclassified images. We should note here that misclassfied images all fall

into the test set, since we have zero training error. The heatmaps of correctly classified

images resemble very much the ones using all images. Fig. 6 and Fig. 7 show the sum and

the channel heatmap respectively for all correctly classified images. The results confirm

the previous findings of the wider range of the importance measures of the replicated

model compared to the single model and slightly different areas of importance. Again the

difference in heatmaps generated by the importance measures for models using different

optimization methods is clearly visible. The correlation metrics are as well quite similar

to the ones considering all images; the Spearman’s rank correlation and the Savage score

yield 0.891 and 0.927.

Fig. 8 and Fig. 9 show the heatmaps for all misclassified images. Interestingly, in

contrast to the previous heatmaps, the importance measures do not show any form of a

structure. The heatmaps seem to be random noise and the importance measures computed

on these subdataset are more scattered through the whole image. Furthermore, the range

of the importance measures are now more similar than considering only correctly classified

images or the full data. This might have two reasons: the smaller sample size to estimate

the explanation values and the fact that all samples are from the test set.

As expected, the correlation metrics are quite low for the misclassified images, yielding

0.152 and 0.195 for the Spearman’s rank correlation and the Savage score correlation,

respectively.

Hence, to analyse if the source of the unstructured heatmaps of misclassified images

lies in the fact that they are misclassified or that they stem from from the test set, the

explanations of the modified Xi-method of the images from only the test set might provide
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Figure 6: Aggregated heatmap of Xi-method explanations for correctly classified images.
(left): single. (right): replicated

Figure 7: Channel heatmap of Xi-method explanations for correctly classified images.
(above): single. (below): replicated

Figure 8: Aggregated heatmap of Xi-method explanations for misclassified images. (left):
single. (right): replicated
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Figure 9: Channel heatmap of Xi-method explanations for misclassified images. (above):
single. (below): replicated

Figure 10: Aggregated heatmap of Xi-method explanations for images in the test set.
(left): single. (right): replicated

an answer.

Fig. 10 and 11 show the aggregated and channel heatmaps using only the test set, but

the heatmaps seem to be quite similar to the ones considering all data. Hence, the reason

for the unstructured heatmaps of misclassified images lies solely in the fact that they are

misclassified or in the small sample size, which is only around 1{4 of all images in the test

set.

Another interesting insight could be gained by looking at the difference in heatmaps

filtering the inputs to only specific classes. An interesting observation emerges for the

subdataset with label horse. Fig 12 shows the aggregated heatmaps for these images

using the full dataset: For the single network almost all areas of the image are equally

(un-)important and only a few pixels in the lower center as well as in the lower border

seem to stand out. For the replicated model we have some very bright areas in the center
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Figure 11: Channel heatmap of Xi-method explanations for all images in the test set.
(above): single. (below): replicated

and also the lower and upper end of the image highlighting their relative importance. This

could lead to the interpretation that especially for the single network pixels relating to the

ground are more relevant than pixels relating to the object itself, e.g. the green pasture

on which the horse grazes. The channel heatmap in Fig. 13 strengthens the presumption,

by showing that important pixels are at the bottom of the green channel. The other areas

and also the other channels are indicated as relatively equally (un-)important with the

exception of the lower end of the red channel where some relative importance is found.

These comparisons also illustrate a large difference between the single network and the

replicated network. The single network seems to make its decision based on the ground

while in the replicated network, the human eye may even recognize the contours of a horse.

Also, unsurprisingly, the Spearman and the Savage score correlations between expla-

nations from the single network and the replicated one are comparably low with 0.294

and 0.418. Compared to the results from the importance measures considering all correct

classified images, these numbers show that indeed there is a low correlation among the

explanations from the two networks. This analysis of the class horse reveals that the two

networks have indeed learned different mappings.

The heatmaps of considering only correctly classified horses are very close to the results

taking into account all images with label horse, see Fig. 14. Conversely, considering only

misclassified images with true label horse, the results resemble very much the ones of all



3.4. EXPERIMENTS AND RESULTS 79

Figure 12: Aggregated heatmap of Xi-method explanations for images with true label
horse. (left): single. (right): replicated

Figure 13: Channel heatmap of Xi-method explanations for images with true label horse.
(above): single. (below): replicated

Figure 14: Aggregated heatmap of Xi-method explanations for correctly to class horse
classified images. (left): single. (right): replicated
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Figure 15: Aggregated heatmap of Xi-method explanations for wrongly to class horse
classified images. (left): single. (right): replicated

misclassified images as shown by the scattered pixel importance throughout the heatmaps

in Fig. 15. Again caution is advised due to the small sample size of the misclassified

images with label horse.

These examples show that the modified Xi-method provides a tool for not only analyzing

differences in important areas of images but also for detecting possible biases and spurious

explanations that neural networks might learn. Further examples and heatmaps are added

in the appendix.

3.5 Discussion

We have compared convolutional neural networks trained on an image classification task

using two different optimization approaches, namely SGD and rSGD. We have exploited the

notion of mean dimension and introduced a new explanation tool, the modified Xi-method,

which is based on probabilistic sensitivity measures.

The notion of mean dimension, which provides an average interaction size, is a model

property that might uncover dissimilarities between networks trained with the two different

optimization approaches. We have run our experiments with the LeNet-5, ResNet-101 and

DenseNet-121 architectures and for each architecture we have obtained different mean

dimensions for the single and the replicated network. Though these differences are not

coherent with the choice of the optimization approach, meaning that the replicated network
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does not always have a higher mean dimension than the single network, this result still

shows that the networks learn different inner representations. Furthermore, the evolution

of the parameters in the loss landscape using the rSGD approach, which is specifically

designed to search for flat minima, seems to be reflected in the smoother increase of the

mean dimension during training.

The modified Xi-method is a tool for highlighting relevant regions in an image clas-

sification task. It is a model agnostic explanation method and can be used to increase

interpretibility of any black-box model. The explanations from the modified Xi-method

are visualized using heatmaps and clearly highlight differences in important areas for the

two networks. The replicated network distinguishes more between important and less

important pixels.

One major advantage of this tool is the granularity available to gain interpretability.

The Xi-method indicates a potential bias in the trained single network when analysing

the explanation for the class horse. The explanations show that the single network learns

to focus on the ground where the horse is standing instead of the horse itself. While the

explanations of the replicated network are more dispersed throughout the image and even

the contours of a horse are identifiable in the heatmap. The modified Xi-method provides a

quick model agnostic tool for black-box model insights and can be used in general settings,

not only for comparison of networks optimized with alternative methods. Hence, although

the accuracy of the models trained using the SGD method and the rSGD method are

quite similar, we show that these networks indeed have different properties such as average

interaction size and focus on different parts of the image.

Future research includes applying this method to different types of black-box models

and other tasks besides image classification as well as a deeper comparison with existing

tools used for interpretability of neural networks. An extension is also to deploy importance

measures that consider the multivariate nature of a network’s predictions, i.e., the fact

that the network produces not only a most likely label, but a vector of probabilities for
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each class. Here, one might assign a Dirichlet prior on this vector. Then, instead of

estimating the empirical CDF and the conditional empirical CDF, one fits a Dirichlet

distribution and a conditional Dirichlet distribution to the network predictions. Such an

explanation would take into account the full output vector. An appropriate separation

measure between Dirichlet distributions could be the Kullback-Laibler divergence. Such

an explanation would have incorporated the full output vector. An appropriate separation

measure between Dirichlet distributions could be the Kullback-Laibler divergence.

Appendices

3.A Estimation Details

As the choice of the partition size K in estimating importance measures from GSA in

Section 3.3.3 is important, we will give the details to the experiments in Table 3.A.1.

Xi-method explanations for ... Partition size K
all images 15
correctly classified images 10
misclassified images 5
images from one specific class 6
correctly classified images from one specific class 5
misclassified images from one specific class 4

Table 3.A.1: Partition sizes K for the Xi-method explanation estimation.

3.B Further Heatmaps

We are presenting here further Xi-method explanations of specific classes that were not

shown in the main text in order to not overload Section 3.4.2.

We start with the class automobile. Fig. 3.B.1 and Fig. 3.B.2 show the aggregated

and channel heatmaps for this class. The single network has a concentrated focus on
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Figure 3.B.1: Aggregated heatmap of Xi-method explanations for images with true label
automobile. (left): single. (right): replicated

Figure 3.B.2: Channel heatmap of Xi-method explanations for images with true label
automobile. (above): single. (below): replicated

the center and the ground of the image while the replicated one has its important pixels

more dispersed throughout the image. The different color channels do not have a specific

influence as the similar heatmaps for each channel show.

Furthermore, the heatmaps for the class deer are shown in Fig. 3.B.3 and Fig. 3.B.4.

Differently from the explanations for the class horse, the explanations here are quite similar

for the two networks. Interestingly for this class, both networks seem to have learned more

the background than the center of the image.
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Chapter 4

Neural Networks and Statistical

Dependence: Does it Matter?

4.1 Introduction

Identifying the features that determine the response of a model is a fundamental ingre-

dient for an interpretability analysis. It helps analysts with model simplification and

dimensionality reduction, as well as to understand whether predictions are at risk of unfair

discrimination (Dong and Rudin, 2020).

In a previous work by the authors, it was uncovered that probabilistic sensitivity

measures may be useful in understanding the features that are important for artificial neural

networks (ANNs) decisions (Borgonovo, E. and Ghidini, V. and Hahn, R. and Plischke, E.,

2021). However, such work opens the question of whether statistical dependence is, per se,

sufficient to explain an ANN behavior. In this chapter, we wish to explore the relationship

between measures of statistical dependence and the behavior of artificial neural networks.

Our goal is to investigate whether global sensitivity measures provide a sufficiently reliable

indication about what a neural network considers important in a dataset. To do this, we

investigate whether features that are considered statistically important at the dataset level
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are also important for the prediction accuracy of convolutional neural networks (CNNs).

We perform a set of experiments to compare results of dataset importance measures

with results of importance measures at the aggregate prediction level. We use two well-

known image datasets, MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al.,

2017). We test the effect of using alternative ways of pixel fixing and compare degradation

plots obtained with measures of statistical dependence vs. aggregate Layerwise Relevance

Propagation (LRP) vs. a deterministic structured deletion and vs. the selection of groups

of pixels using principal component analysis (PCA). The remainder of the work is organized

as follows. Section 4.2 presents the related literature. The elements and the results of

the experiments are illustrated in Section 4.3 and 4.4. We conclude with a discussion in

Section 4.5.

4.2 Related Literature

This section concisely reviews the two main research streams closer to our paper. Sub-

sections 4.2.1 and 4.2.2 discuss respectively feature importance techniques and global

statistical dependence. These research streams are vast and we do not claim exhaustiveness,

and refer to the monographs of Boehmke et al. (2020) or reviews such as Dunson (2018),

Begoli et al. (2019), Guidotti et al. (2018) and Rudin (2019) for broader overviews.

4.2.1 Feature Importance & Selection

Researchers have intensively investigated tools for the identification of important features

in the context of machine learning predictions. Some of the recently developed methods are

tailored to specific ML-models, some are ML-model independent. A notable representative

of the first category is the split count feature importance measures of Breiman et al.

(1984), tailored to regression trees. Representatives of the second category are methods

such as Shapley values (Lundberg and Lee, 2017) or permutation importance (Breiman,
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2001). However, permutation-based methods have come under intense scrutiny, recently.

The investigations of Hooker and Mentch (2019); Apley and Zhu (2020); Molnar et al.

(2020), show that, when features are strongly correlated, feature permutations can lead

to unreliable predictions of the ML-model due to extrapolation problems. In the class of

ML-method independent methods, we recall the important class of knockoffs (Barber and

Candés, 2015) and Model-X knockoffs (Candès et al., 2018) methods. These are based

on the intuition of constructing replicates of the original features for finding the smallest

subset of the independent variables such that the response is conditionally independent of

the remaining (other) independent variables. The most recent version allows application of

the knockoff method to high-dimensional settings (with p ¥ n; the number of parameters

p is larger than the sample size n). An alternative technique is the Sure Independence

Screening (SIS) (Fan and Lv, 2008), a feature selection procedure also aimed at identifying

a subset of covariates according after the application of a linear model.

Murdoch et al. (2019) divide explanation techniques into families of individual prediction

methods and families of dataset methods. To the first class belong methods such as

Randomized Input Sampling for Explanation (RISE) (Petsiuk et al., 2018) and Local

Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016). In RISE, the

importance is evaluated according to the magnitude of the drop in accuracy after a single

input image are perturbed by means of randomly generated binary masks. This allows

the computation of a score for each pixel. The RISE technique is data aware, since it can

only be applied to images, but is still model-agnostic. LIME employs a similar idea but

can be applied to text and tabular data besides image data. In an image classification

application, images are first divided into superpixels, and then the modified input is

perturbed, obscuring one partition of the image at a time. An interpretable model (e.g.

linear regression or tree) is learned using the binary vector of superpixels and the output of

the original classifier. The analysis of the interpretable model reveals then the important

patches in the image for the classifiers decision.
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Another family of explanation methods are model aware techniques: they can only be

applied to a specific model (in our case CNNs), since they exploit some characteristic of

its structure (e.g. the gradient). Among them, we cite GradCAM (Selvaraju et al., 2017),

Vanilla Gradient (Erhan et al., 2009), Guided Backpropagation (Springenberg et al., 2015)

and Layerwise Relevance Propagation (LRP)(Bach et al., 2015; Binder et al., 2016). All

these methods create heatmaps of importance scores for the pixels in an image.

In this work, we shall focus on LRP as representative of this class of methods. LRP is

mainly applied to computer vision tasks but also to the analysis of text documents (Arras

et al., 2016). As the name says, the idea is to propagate relevance backward through

the network. Relevance values are the magnitude of the contribution of each pixel or

intermediate neuron. The process starts at the activation values of the last layer and then

back-propagates the relevance values, R, up to the input layer. It is designed to be a

conservative technique, meaning that the magnitude of any output is conserved through

the backpropagation process.

Further widely used approaches to measure feature importance in classification are

based on "hiding" pixels and on evaluating the consequences on the prediction. However,

there are alternative ways to hide a pixel: some authors use pixel removal, a procedure in

which the pixel is taken out from the dataset (Hooker et al., 2019a). Others propose to

assign a new color to the pixel, e.g., setting it to black or white or gray or random (color

fixing, henceforth) (Petsiuk et al., 2018). In both cases (removal or color fixing) the CNN

is retrained. However, in the complete removal case, we are retraining the CNN on a space

of lower dimensionality, while in the fixing case we remain with the original dimensionality.

To evaluate explainability techniques (Hooker et al., 2019b) propose the RemOve And

Retrain (ROAR) method. ROAR essentially verifies the validity of the scores assigned to

features by sequentially removing proportions of pixels (according to the feature importance

measure of interest), generating synthetic data using this newly obtained distribution and

then studying the resulting degradation of the accuracy of the (retrained) model. If a
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method works well, it should rank first the most important features and their early removal

should lead to a significant drop in accuracy in predictions. The ROAR procedure involves

multiple retraining of the model on newly generated datasets at different degradation

levels (i.e. with a different proportion of obscured pixels).

4.2.2 Probabilistic Sensitivity Measures

Probabilistic, or global, sensitivity measures are a class of statistical methods devised

to measure the degree of statistical dependence between a target variable, say Y , and

one or more covariates (X1, X2, . . . , Xn). In the literature, we find alternative definitions.

Historically, we find regression-based approaches (Saltelli and Marivoet, 1990; Kleijnen and

Helton, 1999), in which the standardized regression coefficients or correlation coefficients

are used as measures of association. These approaches have been followed variance-based

approaches in which the importance of Xi is measured in terms of the contribution to the

variance of Y (Saltelli and Tarantola, 2002; Oakley and O’Hagan, 2004). There have been

also recent investigations on distribution-based approaches, which consider importance

without reference to any moment of the output distribution. These approaches involve

indicators based on alternative measures of separation between the model output, among

which the L1-norm, the Kuiper, the Cramer von Mises distances and the family of Csiszar

divergences (Da Veiga, 2015; Rahman, 2016).

Probabilistic sensitivity measures are part of the family of measures of statistical

association. The problem of defining and measuring statistical dependence is central in

statistics. For a thorough discussion of the conceptual aspects of the notion we refer

to Wermuth and Cox (2014), as we cannot give a detailed account here due to space

limitations. Nowadays, the appearance of big data has renewed interest in measures of

statistical dependence, as they may help in reducing problem dimensionality as well as in

increasing interpretability — see Pan et al. (2019), Pan et al. (2020), Shen et al. (2020),

and Chatterjee (2020). While there is no best measure of statistical dependence, Renyi
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(1959) and Mori and Szekely (2019) list a set of postulates aimed at pointing researchers

towards some minimal properties that a measure of association should possess in order

to be considered a solid measure of statistical dependence (see also the discussion in

Chatterjee (2020)). Specifically, postulate D of Renyi (1959) suggests that a measure of

statistical dependence should be null if and only if the random variable of interest, say Yj ,

is independent of Xi. Among measures that satisfy this axiom, we find Chatterjee (2020)

correlation coefficient, distance covariance (Szekely and Rizzo, 2017) and Hilbert Schmidt

Independence Criterion (HSIC) (Da Veiga, 2015). A further class of measures of statistical

dependence is based on a copula rationale (Plischke and Borgonovo, 2019). For further

details on global sensitivity analysis and uncertainty quantification methods, we refer to

works such as Saltelli et al. (2008) and Sullivan (2015). These techniques have been mostly

studied in the computer experiment literature. Note that their definition, in principle,

requires a double loop of Monte Carlo simulations, a design that cannot be applied to a

single dataset. However, the one-sample (or given data) estimation technique allows one

to compute these sensitivity measures also from available datasets. The key-intuition of a

given data approach dates back to Pearson (1905), and has been applied to the calculation

of variance-based sensitivity measures in Strong et al. (2012), of value of information

(Strong and Oakley, 2013) and of distribution-based sensitivity measures (Plischke et al.,

2013). We discuss this strategy in detail in Section 4.3.1.2.

This then has opened the use of global sensitivity measures also in machine learning and

data science applications. Recently, Taverniers et al. (2020) propose the use of the Mutual

Information for increasing interpretability in deep neural networks used in the context

of multiscale systems. The idea is to rank features based on a probabilistic sensitivity

measure that considers the entire realizations of the inputs. In Taverniers et al. (2020)’s

work, a deep neural network is used to emulate the behavior of a complex system in

a forecasting task. Taverniers et al. (2020)’s work offers a first direct bridge between

probabilistic sensitivity measures and deep neural networks (DNNs).
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4.3 Elements of the Experiments

We consider an image classification problem with a CNN as a classifier. The measures of

statistical dependence are introduced in Section 4.3.1. In Section 4.3.2, we explain the

neural network view and a concise description of the LRP method, the PCA approach, the

structured deletion (StruDel) and random removal follows in Sections 4.3.3, 4.3.4, 4.3.5

and 4.3.6. The meaning of removing a feature is presented in Section 4.3.7.

4.3.1 Defining and Computing Probabilistic Sensitivity Measures

for Supervised Classification

In Sections 4.3.1.1 and 4.3.1.2, we address the non-ordinal nature of the output and the

availability of datasets large enough for their estimation, respectively.

4.3.1.1 Definition

Let (Ω,BpΩq,P) be a reference probability space and let P be the set of all probability

measures on pΩ,BpΩqq. Consider a function ζ : P � P Ñ R and any two probability

measures P,Q P P. Following Glick (1975), we say that ζpP,Qq is a separation measure

between P and Q, if it satisfies the conditions that ζpP,Qq ¥ 0 and ζpP,Qq � 0 if

P � Q. Let also Y and X denote two random variables on (Ω,BpΩq,P), with cumulative

distribution function FY , FX . A probabilistic sensitivity measure of X with respect to Y

can be defined as (Borgonovo et al., 2013):

Definition 1 (Probabilistic Sensitivity Measure). We call the quantity

ξY
X � ErζpPY ,PY |Xqs (4.1)

the probabilistic sensitivity measure of X with respect to Y based on the separation measure

ζp�, �q.
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Equation (4.1) represents the average value of the separation between PY and PY |X

across all possible realizations of X. Definition 1 establishes a common rationale that

encompasses several probabilistic sensitivity measures. For instance, setting ζpVY ,VY |Xq �
pErY s�ErY |Xsq2

VrY s one obtains first order variance-based sensitivity measures that coincide with

Pearson’s correlation ratio. Or setting

ζKLpfY |Xpyq, fY |Xpyqq �
»
R
fY |Xpyq log

�
fY |Xpyq
fY pyq



dy,

one obtains as corresponding global sensitivity measure the mutual information of X, as

in Taverniers et al. (2020).

The choice of the inner separator ζp�, �q in Equation (4.1) determines the properties of

the dependence measure. In particular, we have the following:

Suppose the analyst wishes to understand the degree of dependence of the target

variable in a classification problem. The calculation of measures of statistical dependence

requires some consideration in this case. In a supervised classification setting, the target is

a set of labels with a set of discrete realizations as support. The elements of the support

are not necessarily members of a numerical space and therefore an ordering of these

elements may not be meaningful. This creates problems for the direct implementation of

measures of statistical association whose definition require that the realizations of Y are

in a partially ordered space.

We propose the following approach. Let L be the random variable denoting a label,

let L � t`1, `2, . . . , `nL
u denote its support, with nL number of labels. Let pL be the

probability mass function (pmf) of the labels and pL|X the conditional pmf given that

a feature or a feature group is fixed. (We recall that pL is a probability mass function

if p � rp1, p2, . . . , pnL
s, pi ¥ 0 and

°nL

i�1 pi � 1.) One can define the inner statistic

that measures the effect of conditioning on the features using a measure of separation

between the marginal and conditional pmfs. Let Ppmf denote the set of all probability
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mass functions on pL,BpLqq and let ζpmfp�, �q denote a separation measurement between

probability mass functions, ζpmf : Ppmf � Ppmf Ñ R. Then, we can write

Definition 2. We call a probabilistic sensitivity measure for classification, the quantity

ξClass
X � EXrζpmfppL,pL|Xqs. (4.2)

Formally, Equation (4.2) is a particular case of Equation (4.1). However, in Equation

(4.2), we explicitly consider the probability mass function (pmf) of the labels. This pmf

is, in fact, defined without ambiguity when inputs are categorical. To illustrate, the

probability that we extract an image with a house out of a set of 60,000 is the same,

independently of whether the house is assigned label 1 or 10. However, the corresponding

cumulative distribution function requires an additional convention, that is, we need to

order the labels and then stick to such order. If an alternative order is used, we get an

alternative cumulative distribution function. Using directly the pmf avoids the additional

step of setting such a convention.

Alternative choices are available for the separation measurement ζpmfp�, �q. We list a

few in Table 1.

Notation Formula Description

ζ1pp,qq °nL

l�1 |pl � ql| L1 distance

ζ2pp,qq °nL

l�1ppl � qlq2 L2 distance

ζKUpp,qq maxnL
l�1 ppl � qlq �minnL

l�1 ppl � qlq Kuiper distance

ζKLpp,qq °nL

l�1 ql log
�
ql

pl

	
Kullback-Leibler divergence

ζHLpp,qq 1�°nL

l�1
?
plql � 1

2
°nL

l�1
�?

pl �?
ql
�2 Hellinger distance

Table 1: Different choices for separation measurement ζpmfpp,qq. Here p and q are two
pmf’s of the same dimension, such that

°nL

l�1 pl � 1 and
°nL

l�1 ql � 1.

Note that the Hellinger and Kullback-Leibler separations above are special cases of the
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power divergence with λ � �1
2 and λÑ 0, respectively.

Proposition 3. Given L, ζpmfp�, �q defined above, if ζpmfp�, �q is a separation measurement

between mass functions, the following holds:

1. ξLX ¥ 0

2. ξLX � 0 if and only if L is independent of X.

Regarding the choice of the metric, we shall compare numerical experiments in the

reminder to guide the choice. As can be expected, our numerical experiments show that

alternative metrics produce quite similar ranking. Thus, while we shall focus on the metric

denominated with Kuiper in Table 1, alternative separation measurements can be adopted

by analysts.

4.3.1.2 Estimation

Let Prp�q denote the probability of an event and L be the random variable denoting

a random label. Let Xi denote the support of feature Xi, i � 1, 2, ..., nX and let also

Ki � tX 1
i ,X 2

i , . . . ,XK
i u denote a partition of Xi, i.e., a finite or countable collection of

subsets of Xi such that Xi � YK
k�1X k

i and X k
i X X j

i � H, for k � j � 1, 2, ..., K. For the

sensitivity measure in Equation (4.2), the following expression represents the equation of

a given data estimator given partition Ki:

pξipKiq �
Ķ

k�1
PrpXi P X k

i qζpmfppL,pL|XiPX k
i
q, (4.3)

where pL|XiPX k
i
� rp1

L|XiPX k
i
, p2

L|XiPX k
i
, ..., pnL

L|XiPX k
i
s denotes a conditional pmf where pr

L|XiPX k
i
�

PrpL � lr|Xi P X k
i q for i � 1, 2, ..., nX . In Equation (4.3), we have evidenced that the

value of this estimator, pξipKiq, depends on the choice of the partition. In the case Xi is a

discrete random variable, the partition is immediately given by the discrete set of realiza-

tions of Xi. Thus, in this case pξipKiq � ξi, provided that the marginal and conditional
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distributions are known. In the case Xi is continuous, following the intuition of Pearson

(1905), pξipKiq tends to ξXi
as Ki gets finer and finer. Equation (4.3) assumes the marginal

and conditional pmfs are given. In practice, however, these pmf’s need to be estimated

from the data. Let N be the number of images in the dataset and N r the number of those

observations labeled with `r. Then, the entries of the empirical pmf ppL are defined by

pprL � N r

N
, which is a consistent estimator of prL � PrpL � `rq by the law of large numbers.

Let KN
i � pX 1

i ,X 2
i , . . . ,X

KpNq
i q be a finite partition of the input space and set Nk

Xi
to the

number of input observations in X k
i and N r,k

Xi
to the corresponding number of observations

with label equal to `r in Nk
Xi
. Then, ppkXi

� Nk
Xi

N
is an estimator of pkXi

� PrpXi P X k
i q,

k � 1, 2, ..., KpNq, and
pprL|XiPX k

i
� N r,k

Xi

N

is an estimator of pr
L|XiPX k

i
� PrpL � `r|Xi P X k

i q. All these estimators are consistent by

the law of large numbers, and can be calculated from a given dataset. Then, the given

data estimator becomes

pξipKiq �
Ķ

k�1
ppkXi
ζpmfpppL, ppL|XiPX k

i
q. (4.4)

We say that the sequence KpNq is associated with a proper refining strategy if the

associated sequence of partition is a sequence of refining partitions and if KpNq is such
that limNÑ8KpNq � 8 and limNÑ8

N
KpNq

� 0. Consider now the given data estimator

pξipNq � KpNq¸
k�1

ppkXi
ζpmfpppL, ppL|XiPX k

i
q. (4.5)
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4.3.2 Deep Neural Networks: A Probabilistic Sensitivity View-

point

In a supervised learning setup, we want to learn an input-output mapping such that

L̂ � g�pX,wq, (4.6)

where g� denotes the model, that returns a predicted label L̂, and w a vector of parameters.

In our case, g� represents a neural network in particular.

Deep neural networks are the common model of choice for many complex tasks such as

classification; see Goodfellow et al. (2016) for an overview of deep neural networks.

From a general viewpoint, an artificial neural network for image classification can be

represented as a mapping similar to the type in Equation (4.6) with g : RnX �RnW Ñ RnL ,

where nX is the number of features, nW is the number of parameters, consisting of weights

and biases, and nL is the number of targets. Thus, the model g outputs a score or a

probability for each class of labels and g� simply returns the most likely label as prediction.

In an image classification problem, the number of features nX is equal to the number

of pixels in each image. Say that the image has a resolution nV � nH , where nV and nH

are the numbers of vertical and horizontal pixels, respectively. Then, in the case of a color

image, we have that nX � 3� nV � nH , where the first multiplier comes from the 3 RBG

channel.

The form of the mapping g is then learned from the data. The determination of the

input-output mapping is part of an optimization problem (Gambella et al., 2020).

The parameters w � tw1, w2, ..., wnW
u in supervised learning are the solution of a

data-driven optimization problem of the form:

min
w

ErCpL, gpX,wqqs, (4.7)
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where CpL, gpX,wqq is a suitably defined loss function, with C : R � RnL Ñ R. Let us

denote with w� the parameters that solve Problem 4.7. Please see Gambella et al. (2020),

Higham and Higham (2019) for ample discussions on techniques to solve Problem 4.7.

Once w is fixed at w�, we are dealing with the input-output mapping

Y � gpX,w�q. (4.8)

That is, in training a neural network, once we set structural elements such as the number

of neurons and layers and the activation functions, it is only after we assign specific values

to the weights that we determine the input-output mapping uniquely.

Coming to the problem of this chapter, we would argue that if a label L shows a

strong dependence on a feature Xi in the data, then also the prediction Ŷ of a well-trained

neural network model g� might evidence such dependence Xi. Thus, we wish to answer

the question of whether a feature which is statistically important for an input-output

mapping is also important for the machine learning model. Unfortunately, as it often

happens in machine learning, this assertion cannot be proven analytically or universally.

In particular, because the true underlying relationship is unknown, it is impossible to

prove that features which are ‘important’ in a dataset are also ‘important’ for a network.

However, the founding principle of using any machine learning model is that the model

(the network in this case) well approximates the true input-output mapping (if it did not,

why should it be used?). If this is true, then what is statistically important in the data

should not be so different from what is important for the net. We formulate a way to

verify/falsify this intuition in the reminder of the work.

4.3.3 Layerwise Relevance Propagation

LRP aims at finding the most important pixels of an image for a neural network prediction

(Bach et al., 2015). The methodology is based on the ‘graph-like’ architecture of CNN’s.
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The function for neuron j in layer l � 1 is of the form

al�1
j � σl�1p

¸
i

aliw
l�1
ij � bl�1

j q, (4.9)

where σl�1 is the activation function and the sum runs over all lower layer neurons

connected to neuron j. As the name suggests, the very same graph structure is used

to redistribute relevance of the model output backward through the net. The so-called

pixel-wise relevance scores can be found using the local redistribution rule:

Rl
i �

¸
j

zij°
i1 zi1j

Rl�1
j (4.10)

with zij � xliw
l�1
ij , where the sum in j runs over all upper-layer neurons to which neuron i

contributes. This rule is then applied in a step-wise fashion starting from the output and

ending in the input layer, giving a relevance score to each pixel.

The application of this rule in a backward pass produces a relevance map that satisfies

the desired conservation property
°
pR

1
p � gpxq, where gpxq is the model output. Hence,

the sum of the relevance scores of all pixels will be equal to the relevance score of the

model output.

The LRP provides a relevance score at the individual image level. Because we are

interested in ‘global’ properties of the neural networks, we aggregate the relevance score

per pixel over all images, by taking the mean. The dataset LRP feature importance of a

pixel is then given by its aggregated score.

4.3.4 Principal Component Analysis

Principal Components Analysis (PCA) (Hastie et al., 2001; James et al., 2013) is a

dimensionality reduction technique aimed at finding the best q components (where q ¤ d,

with d as original dimensionality of the input) which are orthogonal and that maximally

capture the variability in the original data. Consider an n � d data matrix, X, with
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column-wise zero empirical mean. The method transforms the data to a new coordinate

system such that the greatest variance by some scalar projection of the data comes to lie

on the first coordinate (called the first principal component), the second greatest variance

on the second coordinate, and so on. To do so, PCA solves the following optimization

problem to find the first component φ1 � pφ11, . . . , φd1q, which is constrained to be a unit

vector:

argmaxφ11,...,φd1t
1
n

ņ

i�1
pφ1xpiqq2u, (4.11)

where we n is the sample size, d the dimension of the feature space and xpiq is the i-th

row vector of X. Further components are found by subtracting the previous principal

components from the data and computing the weight vector which extracts the maximum

variance from this new data matrix. Hence the k-th component can be found by computing

the new data matrix

Xpkq � X �
k�1̧

s�1
Xφsφ

T
s (4.12)

and solving the optimization problem

argmaxφk
t 1
n

ņ

i�1
pφ1x

pkq
piq q2u. (4.13)

We exploit this popular method to gain another benchmark for feature importance.

Note that this importance is found by considering only the input, ignoring the output. The

‘feature importance’ methodology based on PCA takes the most important component,

which is the one that explains the highest ratio of the variability in the original data,

and extracts the 50 original feature that influence this component the most. The process

repeats similarly with the second most important component and then with the third

most important component and so on. For each component extract the 50 most influential

original features that were not yet previously extracted. This approach yields a ranking of
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original features according to the importance based on their order of appearance in the

PCA components.

4.3.5 Structured Deletion

This removal follows a simple deterministic path: Pixels are removed in a spiral pattern

starting from the very center of an image. The rationale of using this ad-hoc method is

based on the fact that we are dealing with centered images. We may imagine that, if

images are centered and portray digits, pixels at the center of the image may be more

informative that pixels in the outside parts. We refer to this approach as structured

deletetion (StruDel).

4.3.6 Random Removal

The random removal approach serves as a benchmark to compare the other approaches. A

pixel is drawn uniformly from all pixels of the image not drawn yet. This pixel is then

removed and the next pixel is drawn.

4.3.7 Feature Removal and Degradation Plots

This subsection describes how we ‘remove’ a feature and how we evaluate the importance.

A degradation plot visualizes the evolution of the model accuracy with increasing

number of masked/removed pixels starting with the most important ones. The vertical

axis shows the accuracy and the horizontal one the number of removed pixels. The steeper

the drop in accuracy, the better the feature importance measure in finding relevant pixels

for the network’s decision.

We use the degradation plots to analyze the question of whether neural networks

‘see’ statistical dependence by comparing degradation curves corresponding to different

importance measures. Degradation plots are often used to compare the goodness of feature
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importance methods (such as LRP, integrated Gradient, etc.). They help in evaluating

the robustness and stability of black-box models by revealing how much of the neural

network’s decision depends on only few inputs.

We compare rankings induced by the probabilistic sensitivity measures introduced in

Section 4.3.1 that are based solely on the input-output mapping with the rankings induced

by the dataset LRP feature importance measures from Section 4.3.3. As benchmarks

and for additional comparison we add the degradation curves of the PCA approach, the

StruDel approach and the random pixel removal.

Now, when we consider pixel removal, we would change the input space if the pixel

is actually completely removed. Necessarily we would deal with a different input-output

mapping as discussed before. The complete removal would require a retraining of the

model using a lower input dimensionality and by that we could not easily compare different

‘feature importance’ methods as needed in the next sections. To preserve dimensionality,

it is suggested that the pixel is not actually taken out but it is assigned an alternative

color. In this respect, we note that there is not a univocal way to choose the assignment

and four different approaches of ‘removing’ a pixel. Thus, rather than really removing

a pixel, we change its color to black, white, grey or a random greyscale. The idea is to

mask the information coming from this pixel. Masking a pixel allows one to use the same

trained model without changing the dimensionality (Petsiuk et al., 2018).

4.4 Numerical Experiments

In order to evaluate whether features that are statistically important are also important

for the decision made by the neural network, we perform a series of experiments on the

MNIST (LeCun et al., 1998) and FASHION-MNIST (Xiao et al., 2017) datasets. The

well-known MNIST dataset is a database of handwritten digits with a training set of

60,000 examples, and a test set of 10,000 examples. The FASHION-MNIST dataset from
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Zalando Research consists as well of a training set of 60,000 examples and a test set of

10,000 examples. It is thought of as a direct drop-in replacement for the original MNIST

dataset. So images in both databases are 28� 28 grayscale images, associated with a label

from 10 classes. The MNIST images have simply the digits from 0 to 9 as labels, while the

FASHION-MNIST labels are products from the fashion industry such as pullover, trouser,

bags, etc.

The classification models are trained using a convolutional neural network, LeNet

LeCun et al. (1998). The LeNet architecture is a 7 layer neural network consisting of

the input layer, 2 convolutional layers each followed by a pooling layer and another

convolutional layer followed by the output layer.

We proceed by performing experiments only with probabilistic sensitivity measures in

Section 4.4.1, and we add LRP, STRUDEL and RANDOM for the further comparison

using degradation plots in Section 4.4.2.

4.4.1 Comparison of the Ranking Using Alternative Distances

We start with analyzing feature importance measures coming from global sensitivity

analysis. The importance measures are introduced in Section 4.3.1. This first evaluation

aims at finding similarities or differences among these measures. We compare the methods

of feature importance using two correlation indices, namely the well-known Spearman’s

rank and the Savage scores correlation coefficients (Iman and Conover, 1987).

The Savage score of feature i is defined as si �
°d
j�ri

1
j
, where d is the total number of

features and ri is the rank of feature i. Hence, the Savage score correlation coefficient does

not compute the correlation between the ordinary ranks but places more weight on highly

ranked features. The intuition is that the Savage scores might provide a better basis for

quantifying agreement, when the analyst wishes to place emphasis on the most important

rather than on the least relevant features. In an image classification task, the exact order

of low ranked pixels should not be the focus of the analysis since they might have assigned
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a very similar (low) value of importance, while the order of the most important pixels is

crucial for understanding a network’s decision.

For each sensitivity measure we compare the corresponding ranks. Figure 1a presents

results for the MNIST database. The correlation coefficients are visualized using heatmaps.

The little squares below the diagonal line represent the Spearman’s rank correlation

coefficients, while the ones above the diagonal line are representing the Savage score

correlation coefficients. For example, the color of the square in the first column (L1-distance

based probabilistic sensitivity measure) and fourth row (Kullback-Leibler) indicates a

Spearman’s rank correlation coefficient around 0.85.

We observe that all probabilistic importance measures produce a quite similar ranking

of the features as the high correlation coefficients show. They are consistently greater

than 0.8 for both correlation scores. For comparison, we have also included the newly

defined PCA ranking criterion and the ranking according to LRP. The correlation between

rankings induced by PCA importance measure and probabilistic sensitivity measures is

significantly lower (around 0.6-0.7 for Spearman’s rank correlation and 0.3-0.5 for Savage

scores correlation). The comparison including LRP and PCA among others is discussed in

greater detail in Section 4.4.2.

Comparing the rankings induced by the probabilistic sensitivity measures, the large

values of Spearman’s rank correlation coefficients indicate a high agreement of the rankings

over all pixels and the high Savage score correlation coefficients assure a high agreement

of pixels that have been assigned a high feature importance score by the probabilistic

sensitivity measures.

Figure 1b displays the heatmap of the two correlation coefficients for the FashionMNIST

database. The Spearman’s rank correlation coefficients indicate a lower agreement on

the rankings induced by probabilistic sensitivity measures compared to MNIST, but still

the correlation coefficients are consistently larger than 0.8. The Savage score correlation

coefficients show a lower agreement compared to MNIST as well, but still with values
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(a) MNIST Database (b) FashionMNIST Database

Figure 1: Heatmaps of Spearman’s rank correlation coefficients (triangle below the main
diagonal) and Savage score correlation coefficients (triangle above the main diagonal) of the
presented ‘feature importance measures’ using the MNIST Database and FashionMNIST
database. GSA feature importance measures are based on Kuiper, L1, L2 and Hellinger
distance and Kullback-Leibler divergence. For further comparison, the aggregated LRP
and PCA are added to the analysis.

above 0.6. Hence, probabilistic sensitivity measures lead to similar ranking regarding the

most important pixels. For this reason, we decide to use the Kuiper-based sensitivity

measure for the further analysis as a representative for the class of probabilistic sensitivity

measures. We call it Kuiper importance measure, henceforth. Indeed we have checked

that the results do not change much using any of the other global sensitivity measures.

4.4.2 LRP vs. StruDel vs. GSA

In order to evaluate if inputs that have high statistically dependence with the output

are also important for the neural network’s decision, we start a comparison based on

degradation plots.

As a method to represent which pixels are important for the network, we choose the

well-known LRP in an aggregated form as described in Section 4.3.3. The rankings induced

by importance measures using LRP are compared to the ones induced by the Kuiper-

based probabilistic sensitivity measures. The Kuiper importance measure represents the

statistical dependence in the data and requires only the images and the corresponding
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labels; no model is required to compute it. For further comparison, we add degradation

curves based on the rankings induced by the PCA approach (Section 4.3.4), the StruDel

approach (Section 4.3.5) and the random removal approach (Section 4.3.6).

Let us start with the analysis using the MNIST database. As we said in the previous

section, there are different ways pixels can be ‘removed’. We start with the case where

pixels are changed to white. Figure 2a shows the corresponding degradation plot for

rankings induced by the Kuiper, LRP, PCA, StruDel and random removal importance

measures. The abscissa shows how many pixels were changed and the ordinate gives

the accuracy in prediction after the pixels have been ‘removed’. The most important

pixel is changed first, followed by the others in accordance with the rank induced by

the corresponding importance measure. After the first 50 ‘removed’ pixels, we register a

similar drop of about 20% in accuracy for all methods with the exception of the aggregated

LRP, which drops only about 10%. As no surprise, the random removal is far off from

the other methods consistently for all plots. Randomly removing pixels does decrease the

accuracy very little until up to 200 ‘removed’ pixels. After the first 50 ‘removed’ pixels,

PCA seems to clearly outperform the other importance measures. Again, outperforming

here means that removing pixels according to our PCA criterion leads to a higher drop in

accuracy than removing them following the ranking induced by the other methods. After

‘removing’ 100 pixels, we loose around 65% in accuracy with the PCA method and 30-40%

with Kuiper, LRP and StruDel importance measures. The good performance of StruDel

through all of our experiments is no surprise since the images in MNIST are centered.
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(a) Changing pixels to white. (b) Changing pixels to black.

(c) Changing pixels to grey. (d) Changing pixels to random.

Figure 2: Degradation plots for MNIST dataset according to rankings induced by Kuiper,
aggregated LRP (LRP), PCA, StruDel and random removal ‘importance measures’. Pixels
are changed to (a) white, (b) black, (c) grey and (d) random greyscale.

Figure 2b shows the results when pixels are changed to black. In this case, PCA

performs worse than all other methods, with the exclusion of random removal, signaling

almost no drop at all in accuracy. StruDel performs best which is reasonable because

images are centered and turning pixels black in a spiral way starting from the center might

quickly deceive the network. After 50 ‘removed’ pixels, we register a decrease of about

20% in accuracy using the StruDel approach. The degradation curves of the LRP and the

Kuiper importance measure produce similar results in this case leading to an accuracy

drop of 10%.
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In general, changing pixels to black leads to a far smaller drop in accuracy compared

to the change to white after 100 ‘removed’ pixels. This indicates that the majority of the

most important pixels are black for all employed methods. This result is in accordance

with intuition because the images consist of black numbers on a white background.

Changing pixels to grey (Figure 2c) leads to similar results as changing them to black,

but with a much smaller magnitude of accuracy drop and a smaller difference between the

used methods. Indeed, the degradation curves according to the LRP, Kuiper and StruDel

importance measures follow a very similar course. After 50 ‘removed’ pixels, all methods

lead to a very little decrease in accuracy of only about a few percentage points, while after

100 pixels, the ‘removed’ pixels according to the rankings induced by LRP, Kuiper and

StruDel importance measures lead to a drop in accuracy of about 20% and the ranking

induced by the PCA method leads to a decrease of about 10% in accuracy.

Changing pixels to a random value gives a slightly different picture. As expected the

accuracy still drops with higher number of changed pixels but the curves are less smooth

compared to the previous removal techniques. Moreover, we observe some unexpected

behavior with the PCA method. After having changed 100 pixels, there is a strong increase

in accuracy instead of the expected decrease. Again the degradation curves according to

the LRP, Kuiper and StruDel importance measures follow a similar course.

Overall, global sensitivity measures seem to perform well in finding important pixels

for the network decision over the experiments with MNIST, although it is clear that other

aspects besides statistical dependence are important for the network decisions.

We now present results of similar experiments performed on the FASHION-MNIST

database (Figures 3a-3d). We register two main differences for all four pixel removing

techniques; a greater difference among the used degradation curves and better performance

of the degradation curve induced by the random removal compared to the experiments

with MNIST.

When changing pixels to white (Figure 3a), the StruDel method works surprisingly
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even worse than the random removal method in terms of induced drop in accuracy. The

LRP method induces the biggest drop in accuracy up to 80 changed pixels, but again the

degradation plot induced by the Kuiper importance measures follows very close the one

induced the LRP importance measures. After 80 ‘removed’ pixels, the loss in accuracy of

the LRP, PCA and Kuiper methods is about 20% and with further ‘removed’ pixels the

degradation curve induced by the Kuiper importance measure shows by far the steepest

drop.

The results differ when changing pixels to black (Figure 3b). StruDel is outperforming

other methods when only a small number of pixels is ‘blackened’. After 100 ‘removed’

pixels, LRP induces a drop in accuracy of about 35%, while the Kuiper importance measure

leads only to a reduction of about 10%.

Figure 3c displays the results when pixels are changed to grey. The degradation curve

induced by the LRP method leads to the strongest drop in accuracy when ‘removing’ up

to 170 pixels. The degradation curve induced by the Kuiper importance measure comes

closer and after ‘removing’ ca. 170 pixels, the two curves intersect and the latter one shows

a stronger drop in accuracy for further ‘removed’ pixels. We register a drop in accuracy

after 100 ‘removed’ pixels of about 25% for the LRP method and between 5% and 8% for

the Kuiper-based, PCA and StruDel method.

We register similar results from the random color change experiment (Figure 3d).

Again the LRP method leads to the strongest decrease in accuracy when ‘removing’ up

to 120 pixels according to the induced ranking. After 120 pixels, the degradation curve

induced by the Kuiper importance measure intersects with the one induced by the LRP

method. After 100 ‘removed’ pixels, the LRP, Kuiper, PCA, StruDel and random removal

importance measure lead to a drop in accuracy of about 25%, 15%, 10%, 5% and 2%.
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(a) Changing pixels to white. (b) Changing pixels to black.

(c) Changing pixels to grey. (d) Changing pixels to random greyscale.

Figure 3: Degradation plots for FASHION-MNIST dataset according to rankings induced
by Kuiper, aggregated LRP (LRP), PCA, StruDel and random removal ‘importance
measures’. Pixels are changed to (a) white, (b) black, (c) grey and (d) random greyscale.

4.5 Conclusions

We have investigated the question of whether neural networks ‘see’ statistical dependence.

For this aim, we have compared the drop in accuracy of a trained model when ‘removing’

pixels according to the rankings induced by different importance measures.

As a representative for feature importance of a neural network, we choose an aggregated

LRP approach, since LRP is specifically designed to explain neural network’s decision in

an image classification task. Further ‘importance measures’ were added as a benchmark

and for a broader comparison. We highlight the fact that our work is not aimed at feature
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selection: we want to study whether features that are strongly statistically correlated with

the target retain their relevance also for a black-box model.

There is no straightforward answer to give. The systematic analysis shows that results

vary according to the chosen pixel removal method and also depend on the dataset.

Although the rankings induced by the LRP and the Kuiper feature importance measures

do not coincide, it emerges that features having a strong statistical dependence with

the output are also important for the trained neural network. Overall the probabilistic

sensitivity measures and the importance scores of LRP lead in most cases to similar drops

in accuracy indicating a comparable success in finding the most important pixels for a

network’s decision.

A future research stream can apply our approach to the investigation of the so-called

artificial intelligence brittleness (AI brittleness, henceforth). AI brittleness refers to dataset-

independence (Seewald, 2012), i.e., the ability of a network trained on a dataset to perform

well on a similar, but different dataset. To fix ideas, Seewald (2012) registers AI brittleness

when considering alternative AI tools for classification in the MNIST and USPS (Hull,

1994) for the recognition of handwritten digits (e.g., a classifier well-trained on MNIST

does not perform as well on USPS). Our results aid in the interpretation of such findings.

These datasets differ substantially in terms of statistical dependence. Thus, pixels that

are important in MNIST or USPS may not be as important in the European digit dataset

for a neural network decision.
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Chapter 5

Appendix

5.1 Code: Estimating Mean Dimension of Neural

Networks

The code to train a model is printed in Section 5.1.1. Section 5.1.2 displays the code to

estimate the mean dimension given a trained model.

5.1.1 Training a Neural Network

import torch

import argparse

import torch . optim as optim

from torch . u t i l s . data import SubsetRandomSampler , DataLoader

import time

import os

from tqdm import tqdm

import pandas as pd

import numpy as np

125
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import t emp f i l e

from s h u t i l import c o p y f i l e

from sacred import Experiment

from sacred . commands import pr in t_con f i g

ex = Experiment ( ’RobustDNN ’ )

from sacred import SETTINGS

SETTINGS[ ’CAPTURE_MODE’ ] = ’ no ’

import pdb

# add s c r i p t ’ s parent f o l d e r to path

import os , sys

current_dir = os . path . basename ( os . path . dirname ( os . path . r ea lpa th (

__file__ ) ) )

sys . path . i n s e r t (0 , os . path . dirname ( current_dir ) )

# SacredDNN imports

from sacreddnn . models . robust import RobustNet , RobustDataLoader

from sacreddnn . parse_args import get_dataset , get_loss_funct ion ,

get_model_type , get_opt imizer

from sacreddnn . u t i l s import num_params , l2_norm ,

run_and_config_to_path , \

f i l e_obse rve r_d i r , to_gpuid_string ,

take_n_per_class

def t r a i n ( l o s s , model , device , t ra in_loader , opt imize r ) :

model . t r a i n ( )
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t = tqdm( t ra in_loader ) # progre s s bar i n t e g r a t i o n

t ra in_lo s s , accuracy , ndata = 0 , 0 , 0

for data , t a r g e t in t :

data , t a r g e t = data . to ( dev i ce ) , t a r g e t . to ( dev i c e )

opt imize r . zero_grad ( )

output = model ( data )

l = l o s s ( output , t a r g e t )

l += model . coup l ing_lo s s ( )

l . backward ( )

opt imize r . s tep ( )

t r a i n_ l o s s += l . item ( ) ∗ len ( data )

pred = output . argmax (dim=1, keepdim=True )

accuracy += pred . eq ( t a r g e t . view_as ( pred ) ) .sum( ) . item ( )

ndata += len ( data )

t . s e t_pos t f i x ( l o s s=t r a i n_ l o s s /ndata , e r r =100∗(1−accuracy

/ndata ) )

def eval_loss_and_error ( l o s s , model , device , l oade r ) :

# t0 = time . time ()

model . eval ( )

c en te r = model . get_or_build_center ( ) . to ( dev i c e )

c en te r . eval ( )

l , accuracy = np . z e r o s (model . y ) , np . z e r o s (model . y )

center_los s , center_accuracy = 0 . , 0 .



128 CHAPTER 5. APPENDIX

ensemble_loss , ensemble_accuracy = 0 . , 0 .

ndata = 0

with torch . no_grad ( ) :

for data , t a r g e t in l oade r . s i ng l e_ loade r ( ) :

data , t a r g e t = data . to ( dev i ce ) , t a r g e t . to ( dev i c e )

# s i n g l e r e p l i c a s

outputs = model ( data , sp l i t_ input=False ,

concatenate_output=False )

for a , output in enumerate ( outputs ) :

l [ a ] += l o s s ( output , target , r educt i on=’sum ’ ) .

item ( )

pred = output . argmax (dim=1, keepdim=True )

accuracy [ a ] += pred . eq ( t a r g e t . view_as ( pred ) ) .sum

( ) . item ( )

# ensemble

output = torch .mean( torch . s tack ( outputs ) , 0)

ensemble_loss += l o s s ( output , target , r educt i on=’sum

’ ) . item ( )

pred = output . argmax (dim=1, keepdim=True )

ensemble_accuracy += pred . eq ( t a r g e t . view_as ( pred ) ) .

sum( ) . item ( )

# center
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output = cente r ( data )

c en t e r_ lo s s += l o s s ( output , target , r educt i on=’sum ’ )

. item ( )

pred = output . argmax (dim=1, keepdim=True )

center_accuracy += pred . eq ( t a r g e t . view_as ( pred ) ) .sum

( ) . item ( )

ndata += len ( data )

l /= ndata

accuracy /= ndata

cen t e r_ lo s s /= ndata

center_accuracy /= ndata

ensemble_loss /= ndata

ensemble_accuracy /= ndata

return l , (1−accuracy ) ∗100 , center_los s , (1− center_accuracy )

∗100 ,\

ensemble_loss , (1−ensemble_accuracy ) ∗100

@ex . c on f i g # Conf i gura t ion i s de f ined through l o c a l v a r i a b l e s .

def c f g ( ) :

batch_size = 128 # input batch s i z e f o r t r a i n i n g

epochs = 100 # number o f epochs to t r a i n

l r = 0 .1 # lea rn ing ra t e

weight_decay = 5e−4 # weigh t decay param (=L2 reg . Good

va lue i s 5e−4)
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no_cuda = False # d i s a b l e s CUDA t r a i n i n g

nthreads = 2 # number o f th reads

save_model = False # save curren t model to path

save_epoch = 10 # save every save_epoch model

keep_models = False # keep a l l saved models

load_model = " " # load model from path

drop l r = 5 # lea rn ing ra t e drop f a c t o r ( use 0 f o r

no−drop )

opt = "adam" # opt imi ze r type

l o s s = " n l l " # c l a s s i f i c a t i o n l o s s [ n l l , mse ]

model = " l e n e t " # model type [ l ene t , densenet , . . . ]

datase t = " c i f a r 1 0 " # da ta s e t [ mnist , fash ion , c i f a r10 ,

c i f a r100 ]

datapath = ’~/data/ ’# f o l d e r con ta in ing the da t a s e t s ( e . g .

mnist w i l l be in " data /MNIST")

l ogt ime = 2 # repor t every l og t ime epochs

M = −1 # take only f i r s t M t r a i n i n g examples

Mtest = −1 # take only f i r s t Mtest t e s t examples

pc l a s s = −1 # take only p c l a s s t r a i n i n g examples f o r

each c l a s s

prep roc e s s = False # data norma l i za t ion

gpu = 0 # gpu_id to use

dropout = 0 # dropout ra t e

save_zero_epoch = False

alpha =1 # mu l t i p l y i n g softmax l a y e r e n t r i e s wi th

a lpha

# ROBUST ENSEMBLE SPECIFIC
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y=1 # number o f r e p l i c a s

use_center=False # use a c en t r a l r e p l i c a

g=1e−3 # i n i t i a l coup l ing va lue

gra te=1e−1 # coup l ing inc rea se ra t e

# S e n s i t i v i t y Choice Parameters

poo l ing = "max" # poo l ing type

ac t i va t i on_func t i on = " r e l u " # ac t i v a t i o n func t i on

os . env i ron [ "CUDA_VISIBLE_DEVICES" ] = to_gpuid_string ( gpu ) #

To be done b e f o r e any c a l l to torch . cuda

@ex . automain

def main (_run , _conf ig ) :

## SOME BOOKKEEPING

args = argparse . Namespace (∗∗ _conf ig )

p r in t_con f i g (_run) ; print ( )

l o g d i r = f i l e_obs e rv e r_d i r (_run)

i f not l o g d i r i s None :

from torch . u t i l s . tensorboard import SummaryWriter

wr i t e r = SummaryWriter ( log_dir=f " { l o g d i r }/{

run_and_config_to_path (_run , ␣_conf ig ) } " )

i f args . save_model : # make temp f i l e . In the end , the model

w i l l be s t o r ed by the ob s e r v e r s .
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save_pre f ix = temp f i l e .mkdtemp( ) + " /model "

use_cuda = not args . no_cuda and torch . cuda . i s_ava i l a b l e ( )

print ( "USING␣CUDA␣=" , use_cuda )

dev i ce = torch . dev i ce ( f " cuda " i f use_cuda else " cpu " )

torch . manual_seed ( args . seed )

torch . set_num_threads ( args . nthreads )

## LOAD DATASET

loader_args = { ’pin_memory ’ : True} i f use_cuda else {}

dtra in , d t e s t = get_dataset ( args )

i f args . p c l a s s > 0 :

t ra in_idxs = take_n_per_class ( dtra in , a rgs . p c l a s s )

else :

t ra in_idxs = l i s t ( range ( len ( d t ra in ) i f args .M <= 0 else

args .M) )

te s t_idxs = l i s t ( range ( len ( d t e s t ) i f args . Mtest <= 0 else

args . Mtest ) )

print ( f "DATASET␣{ args . datase t } : ␣{ l en ( t ra in_idxs ) }␣Train␣and␣

{ l en ( te s t_ idxs ) }␣Test ␣ examples " )

t ra in_loader = RobustDataLoader ( dtra in ,

y=args . y , concatenate=True ,

sampler=SubsetRandomSampler ( t ra in_idxs ) ,
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batch_size=args . batch_size , ∗∗ loader_args )

t e s t_ loade r = RobustDataLoader ( dtest ,

y=args . y , concatenate=True ,

sampler=SubsetRandomSampler ( t e s t_idxs ) ,

batch_size=args . batch_size , ∗∗ loader_args )

## BUILD MODEL

Net = get_model_type ( args )

model = RobustNet (Net , y=args . y , g=args . g , g ra te=args . grate ,

use_center=args . use_center )

model = model . to ( dev i c e )

i f args . load_model :

model . load_state_dict ( torch . load ( args . load_model + " . pt "

) )

ex . i n f o [ "num_params" ] = num_params(model )

print ( f "MODEL: ␣{ex . i n f o [ ’ num_params ’ ] } ␣params " )

## CREATE OPTIMIZER

opt imize r = get_opt imizer ( args , model )

i f args . d rop l r :

gamma_sched = 1/ args . d rop l r i f args . d rop l r > 0 else 1

s chedu l e r = optim . l r_schedu l e r . MultiStepLR ( opt imizer , \

mi l e s t one s =[ args . epochs //2 , args . epochs ∗3//4 ,

args . epochs ∗15//16 ] , gamma=gamma_sched)

## LOSS FUNCTION
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l o s s = get_loss_funct ion ( args )

## REPORT CALLBACK

def r epo r t ( epoch ) :

model . eval ( )

o = dict ( ) # s to r e s c a l a r o b s e r va t i on s

oo = dict ( ) # s to r e array ob s e r va t i on s

o [ " epoch " ] = epoch

oo [ " t r a i n_ l o s s " ] , oo [ " t r a in_er ro r " ] , o [ "

t ra in_cente r_ lo s s " ] , o [ " t ra in_cente r_er ro r " ] , \

o [ " tra in_ensemble_loss " ] , o [ " tra in_ensemble_error " ]

= \

eval_loss_and_error ( l o s s , model , device ,

t ra in_loader )

oo [ " t e s t_ l o s s " ] , oo [ " t e s t_e r r o r " ] , o [ " t e s t_cente r_ lo s s "

] , o [ " t e s t_cente r_er ro r " ] , \

o [ " test_ensemble_loss " ] , o [ " test_ensemble_error " ] =

\

eval_loss_and_error ( l o s s , model , device ,

t e s t_ loade r )

o [ " coup l_loss " ] = model . coup l ing_los s ( ) . item ( )

oo [ " d i s t an c e s " ] = np . sq r t (np . array ( [ d . item ( ) /model .

num_params ( ) for d in model . s qd i s t an c e s ( ) ] ) )
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oo [ " norms " ] = np . sq r t (np . array ( [ sqn . item ( ) /model .

num_params ( ) for sqn in model . sqnorms ( ) ] ) )

o [ "gamma" ] = model . g

print ( " \n " , pd . DataFrame ({k : [ o [ k ] ] for k in o}) , " \n " )

for k in o :

ex . l og_sca l a r (k , o [ k ] , epoch )

i f l o g d i r :

w r i t e r . add_scalar (k , o [ k ] , epoch )

for k in oo :

print ( f " {k } :\ t {oo [ k ] } " )

ex . l og_sca l a r (k , np .mean( oo [ k ] ) , epoch ) # Ref . h t t p s

:// g i t hu b . com/IDSIA/ sacred / i s s u e s /465

i f l o g d i r :

w r i t e r . add_scalar (k , np .mean( oo [ k ] ) , epoch )

print ( )

## START TRAINING

r epo r t (0 )

i f args . save_zero_epoch==True :

epoch_str = ’ 000 ’

model_path = save_pre f ix+" . pt "

torch . save (model . s t a t e_d i c t ( ) , model_path )

i f args . keep_models :

kept_model_path = save_pre f ix+"_epoch_{} . pt " . format (

epoch_str )

c o p y f i l e (model_path , kept_model_path )
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ex . add_art i f ac t ( kept_model_path , content_type="

app l i c a t i o n / octet−stream " )

ex . add_art i f ac t (model_path , content_type=" app l i c a t i o n /

octet−stream " )

for epoch in range (1 , a rgs . epochs + 1) :

epoch_str = str ( epoch ) . z f i l l ( 3 ) #crea t e s numbers l i k e :

001 , 002 , . . . , 010

print ( epoch_str )

t r a i n ( l o s s , model , device , t ra in_loader , opt imize r )

# torch . cuda . empty_cache ()

i f epoch % args . logt ime == 0 :

r epor t ( epoch )

i f epoch % args . save_epoch == 0 and args . save_model :

model_path = save_pre f ix+" . pt "

torch . save (model . s t a t e_d i c t ( ) , model_path )

i f args . keep_models :

kept_model_path = save_pre f ix+"_epoch_{} . pt " .

format ( epoch_str )

c o p y f i l e (model_path , kept_model_path )

ex . add_art i f ac t ( kept_model_path , content_type="

app l i c a t i o n / octet−stream " )

ex . add_art i f ac t (model_path , content_type="

app l i c a t i o n / octet−stream " )

model . increase_g ( )

i f args . d rop l r :

s chedu l e r . s t ep ( )
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# Save model a f t e r t r a i n i n g

i f args . save_model :

model_path = save_pre f ix+" _f ina l . pt "

torch . save (model . s t a t e_d i c t ( ) , model_path )

ex . add_art i f ac t (model_path , content_type=" app l i c a t i o n /

octet−stream " )

5.1.2 Estimating the Mean Dimension

### Est imates mean dimension o f a neura l network

# d i f f e r e n t output op t i ons ( each node in the network , on ly l a s t

l a y e r + softmay layer , on nega t i v e l o g l i k e l i h o o d )

import torch

import argparse

import torch . optim as optim

from torch . u t i l s . data import SubsetRandomSampler , DataLoader ,

ConcatDataset , Subset

import time

import os , datet ime

from tqdm import tqdm

import pandas as pd

import numpy as np

import t emp f i l e

import pdb

import p i c k l e
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#import ma t p l o t l i b . p yp l o t as p l t

from sacred import Experiment

from sacred . commands import pr in t_con f i g

ex = Experiment ( ’RobustDNN ’ )

# from sacred . u t i l s import app ly_backspaces_and_l inefeeds # fo r

progre s s bar captured output

# ex . cap tu red_ou t_ f i l t e r = apply_backspaces_and_l inefeeds #

doesn ’ t work : sacred / i s s u e s /440

from sacred import SETTINGS

SETTINGS[ ’CAPTURE_MODE’ ] = ’ no ’ # don ’ t capture output ( avoid

progre s s bar c l u t t e r )

# my imports

from update_MD import update_MD

from sacreddnn . models . robust import RobustNet , RobustDataLoader

from sacreddnn . parse_args import get_dataset , get_loss_funct ion ,

get_model_type , get_optimizer , Dataset

from sacreddnn . u t i l s import num_params , l2_norm ,

run_and_config_to_path , \

f i l e_obse rve r_d i r , to_gpuid_string
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@ex . c on f i g # Conf i gura t ion i s de f ined through l o c a l v a r i a b l e s .

def c f g ( ) :

batch_size = 128 # input batch s i z e f o r t r a i n i n g

#epochs = 100 # number o f epochs to t r a i n

#l r = 0.1 # l ea rn ing ra t e

#weight_decay = 5e−4 # weigh t decay param (=L2 reg . Good

va lue i s 5e−4)

no_cuda = False # d i s a b l e s CUDA t r a i n i n g

nthreads = 2 # number o f th reads

#save_model = False # save current model to path

#save_epoch = 10 # save every save_epoch model

#keep_models = False # keep a l l saved models

load_model = " " # load model from path

#drop l r = 5 # l ea rn ing ra t e drop f a c t o r ( use 0 f o r

no−drop )

#opt = " nes t e rov " # op t imi ze r type

l o s s = " n l l " # c l a s s i f i c a t i o n l o s s [ n l l , mse ]

model = " l e n e t " # model type [ l ene t , densenet , . . . ]

datase t = " c i f a r 1 0 " # da ta s e t [ mnist , fash ion , c i f a r10 ,

c i f a r100 ]

datapath = ’~/data/ ’# f o l d e r con ta in ing the da t a s e t s ( e . g .

mnist w i l l be in " data /MNIST")

#log t ime = 2 # repor t every l og t ime epochs

M = −1 # take only f i r s t M t r a i n i n g examples

Mtest = −1 # take only f i r s t Mtest t e s t examples

pc l a s s = −1 # take only p c l a s s t r a i n i n g examples f o r

each c l a s s
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prep roc e s s = False # data norma l i za t ion

gpu = 0 # gpu_id to use

pca = True

alpha = 1

#la s t_ l a y e r =False

# ROBUST ENSEMBLE SPECIFIC

y=1 # number o f r e p l i c a s

use_center=False # use a c en t r a l r e p l i c a

g=1e−3 # i n i t i a l coup l ing va lue

gra te=1e−1 # coup l ing inc rea se ra t e

l a y e r=" n l l " # which node or output f o r mean

dimension . [ " n l l " , " la s t_ layer_+_sm" , " a l l_ l a y e r " ]

os . env i ron [ "CUDA_VISIBLE_DEVICES" ] = to_gpuid_string ( gpu ) #

To be done b e f o r e any c a l l to torch . cuda

@ex . automain

def main (_run , _conf ig ) :

## SOME BOOKKEEPING

torch . set_flush_denormal (True )

#torch . se t_de fau l t_dtype ( torch . doub l e )

args = argparse . Namespace (∗∗ _conf ig )

mydir = os . path . j o i n ( os . getcwd ( ) , a rgs . load_model [5 : −3 ] +"_"

+ datet ime . datet ime . now( ) . s t r f t ime ( ’%Y−%m−%d_%H−%M−%S ’ ) )
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os . makedirs (mydir )

p r in t_con f i g (_run) ;

l o g d i r = f i l e_obs e rv e r_d i r (_run)

i f not l o g d i r i s None :

from torch . u t i l s . tensorboard import SummaryWriter

wr i t e r = SummaryWriter ( log_dir=f " { l o g d i r }/{

run_and_config_to_path (_run , ␣_conf ig ) } " )

#i f args . save_model : # make temp f i l e . In the end , the

model w i l l be s t o r ed by the ob s e r v e r s .

# save_path = t emp f i l e . mkdtemp () + "/model . p t "

use_cuda = not args . no_cuda and torch . cuda . i s_ava i l a b l e ( )

print ( "USING␣CUDA␣=" , use_cuda )

dev i ce = torch . dev i ce ( f " cuda " i f use_cuda else " cpu " )

torch . manual_seed ( args . seed )

torch . set_num_threads ( args . nthreads )

## LOAD DATASET

loader_args = { ’pin_memory ’ : True} i f use_cuda else {}

DATAPATH = ’~/data/ ’
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dtra in , d t e s t = get_dataset ( args )

t ra in_idxs = l i s t ( range ( len ( d t ra in ) i f args .M <= 0 else args

.M) )

te s t_idxs = l i s t ( range ( len ( d t e s t ) ) )

print ( f "DATASET␣{ args . datase t } : ␣{ l en ( t ra in_idxs ) }␣Train␣and␣

{ l en ( te s t_ idxs ) }␣Test ␣ examples " )

t ra in_loader = RobustDataLoader ( dtra in ,

y=args . y , concatenate=True ,

sampler=SubsetRandomSampler (

t ra in_idxs ) ,

batch_size=args . batch_size ,

∗∗ loader_args )

t e s t_ loade r = RobustDataLoader ( dtest ,

y=args . y , concatenate=True ,

sampler=SubsetRandomSampler (

t e s t_idxs ) ,

batch_size=args . batch_size ,

∗∗ loader_args )

## BUILD MODEL

Net = get_model_type ( args )

model = RobustNet (Net , y=args . y , g=args . g , g ra te=args . grate ,

use_center=args . use_center )

model = model . to ( dev i c e )
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i f args . load_model :

model . load_state_dict ( torch . load ( args . load_model ,

map_location=’ cpu ’ ) )

ex . i n f o [ "num_params" ] = num_params(model )

print ( f "MODEL: ␣{ex . i n f o [ ’ num_params ’ ] } ␣params " )

## LOSS FUNCTION

l o s s = get_loss_funct ion ( args )

c en te r = model . get_or_build_center ( ) . to ( dev i c e )

c en te r = cente r . eval ( )

l o s s_ent r = torch . nn . CrossEntropyLoss ( r educt i on=’ none ’ )

sm = torch . nn . Softmax (dim=1)

alpha =args . alpha

model = cente r

# choose ou tpu t s f o r which to e s t imate mean dimension

agg={}

num=1

i f args . l a y e r==’ a l l_ l ay e r ’ :

for i in model . c h i l d r en ( ) :

layer_name = " layer_ " + str (num)

# agg : t u p l e ; ( t u p l e o f ( count , mean , M2) o f

a c t i v a t i o n s /nodes in mod , t u p l e o f ( count , mean ,



144 CHAPTER 5. APPENDIX

M2) o f f i n i t e changes f o r each input o f nodes in

mod)

agg [ layer_name ]=((0 , 0 , 0 ) , ( 0 , 0 , 0 ) )

num +=1

agg [ ’ n l l ’ ]=( (0 , 0 , 0 ) , ( 0 , 0 , 0 ) )

agg [ ’sm ’ ]=( (0 , 0 , 0 ) , ( 0 , 0 , 0 ) )

i f args . l a y e r==’ last_layer_+_sm ’ :

agg [ ’ l a s t_ l ay e r ’ ]=( (0 , 0 , 0 ) , ( 0 , 0 , 0 ) )

agg [ ’sm ’ ]=( (0 , 0 , 0 ) , ( 0 , 0 , 0 ) )

i f args . l a y e r==’ n l l ’ :

agg [ ’ n l l ’ ]=( (0 , 0 , 0 ) , ( 0 , 0 , 0 ) )

# ge t a l l data

da t a i t e r = i ter ( t e s t_ loade r )

input = torch . autograd . Var iab le ( torch . FloatTensor ( ) ) . to (

dev i ce )

output = torch . autograd . Var iab le ( torch . LongTensor ( ) ) . to (

dev i ce )

for data , t a r g e t in t e s t_ loade r . s i ng l e_ loade r ( ) :

data , t a r g e t = data . to ( dev i ce ) , t a r g e t . to ( dev i c e )
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input = torch . cat ( ( input , data . detach ( ) ) )

output = torch . cat ( ( output , t a r g e t . detach ( ) ) )

data = input . detach ( )

t a r g e t = output . detach ( )

#pr in t ( " data shape " + s t r ( data . shape ) )

N = data . shape [ 0 ] # number o f inpu t s

# trans forming to 2d matrix

xmat_all = data . view (N,−1) . detach ( )

# load data summary f o r pca t rans format ion

data_mean = torch . from_numpy(np . load ( "mean . npy " ) ) . to ( dev i ce )

data_std = torch . from_numpy(np . load ( " std . npy " ) ) . to ( dev i c e )

data_comp = torch . from_numpy(np . load ( " comps . npy " ) ) . to ( dev i c e

)

# pca trans format ion o f data

i f args . pca :

# trans forming to 2d matrix

xmat_all = data . view (N,−1) . detach ( )

xmat_all =((xmat_all − data_mean ) /data_std ) . detach ( )

xmat_all = torch . matmul ( xmat_all , data_comp . t ranspose

(0 , 1 ) ) . detach ( )
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k = xmat_all . shape [ 1 ] # ( images . shape [ 2 ] ) ∗ ( images . shape

[ 3 ] ) # vec to r l e n g t h o f a l l f e a t u r e s / inpu t s / p i x e l

pca=args . pca

batch_size = args . batch_size

x = xmat_all

y = ta r g e t

# run mean dimension es t ima t ion ( c o l l e c t i n g f i n i t e

d i f f e r e n c e s )

with torch . no_grad ( ) :

for j in range (N−1) : # N=number o f samples

agg= update_MD(x [ j ] , x [ j +1] , y [ j ] , y [ j +1] , model ,

pca , loss_entr , sm , args , data_mean , data_std ,

data_comp , device , batch_size , agg , args . l a y e r )

def f i n a l i z e ( ex i s t i ngAggrega t e ) :

( count , mean , M2) = ex i s t i ngAggrega t e

i f count < 2 :

return f loat ( " nan " )

else :

(mean , var iance , sampleVariance ) = (mean , M2 /

count , M2 / ( count − 1) )

return (mean , var iance , sampleVariance )

MD={}

i=0
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# f i n a l i z e mean dimension computation by us ing var iance

o f output and var iance o f f i n i t e d i f f e r e n c e s

for mod in agg . keys ( ) :

agg [mod]=( f i n a l i z e ( agg [mod ] [ 0 ] ) , f i n a l i z e ( agg [mod

] [ 1 ] ) )

MD[ str (mod) ]=( torch .sum( agg [mod ] [ 1 ] [ 1 ] , 0 ) /(2∗ agg [mod

] [ 0 ] [ 1 ] ) ) . cpu ( )

i+=1

# save mean dimension

MD_file = open(mydir+" /MD_train . pkl " , "wb" )

p i c k l e . dump(MD, MD_file )

MD_file . c l o s e ( )

Required ’Update Function’

# func t i on t ha t computes f i n i t e d i f f e r e n c e s f o r each f e a t u r e f o r

2 input ( x and x1 )

import numpy as np

import torch

import pdb

from sacreddnn . parse_args import Dataset

from torch . u t i l s . data import DataLoader #, Subse t

def update_MD(x , x1 , l abe l , l abe l 1 , center , pca , loss_entr , sm ,



148 CHAPTER 5. APPENDIX

args , data_mean , data_std , data_comp , device , batch_size , agg

, l a y e r ) :

model=cente r

dx = x1 − x

#pr in t ( torch . ge t_de fau l t_dtype ( ) )

n = x . shape [ 0 ] #number o f parameters

#################### genera t ing he l p e r matrix u

u1 =torch . z e r o s (n , 1 ) . to ( dev i c e )

u2 =torch . ones (n , 1 ) . to ( dev i ce )

u3= torch . d iag ( torch . ones (n , ) ) . to ( dev i c e )

u4 = abs ( u3−1) . to ( dev i c e )

u= torch . cat ( ( u1 , u2 , u3 , u4 ) , dim=1)

# genera t ing matrix DX: colums repre s en t v e c t o r i z e d ( changed

) images

k = u . shape [ 1 ] #width o f matrix (DX) # shou ld be 2n+2

ddx= (dx . repeat (k , 1 ) ) . t ranspose (0 , 1 ) . detach ( )

DX= ( torch . mul (ddx , u)+ (x . repeat (k , 1 ) ) . t ranspose (0 , 1 ) ) .
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detach ( )

# transpose to have f l a t t e n e d images in rows

DX = DX. t ranspose (0 , 1 ) . detach ( )

# l a b e l s f o r each image

t rue_labe l = torch . cat ( ( l a b e l . r epeat (1 ) , l a b e l 1 . r epeat (1 ) ,

l a b e l . r epeat (n) , l a b e l 1 . r epeat (n) ) ,0 ) . detach ( )

#PCA−i n v e r s e t rans format ion

i f pca==True :

DX= torch .mm(DX, torch . i n v e r s e (data_comp . t ranspose (0 , 1 ) )

) . detach ( )

DX= ( torch . mul (DX, data_std ) + data_mean ) . detach ( )

#trans forming data to r equ i r ed form

dx_view = DX. view ((−1 , 3 , 32 , 32) )

#crea t e da t a s e t

imgs =Dataset ( dx_view , torch . ones (10000) )

act={}

for mod in agg . keys ( ) :
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act [mod ]= [ ]

# choos ing proper output cho ice

i f l a y e r==’ a l l_ l ay e r ’ :

l=1

for mod in agg . keys ( ) :

for img , l b l in DataLoader ( imgs , batch_size ) :

img1 = img . to ( dev i c e )

# act i s a d i c t where each key has a va lue t ha t

con ta ins a l i s t o f node a c t i v a t i o n s (

dimension depends on l a y e r /mod)

act [mod ] . append (model [ 0 : l ] ( img1 ) . detach ( ) )

l+=1

i f l a y e r==’ n l l ’ :

for img , l b l in DataLoader ( imgs , batch_size ) :

img1 = img . to ( dev i c e )

# act i s a d i c t where each key has a va lue t ha t

con ta ins a l i s t o f node a c t i v a t i o n s ( dimension

depends on l a y e r /mod)

act [ ’ n l l ’ ] . append (model ( img1 ) . detach ( ) )

i f l a y e r==’ last_layer_+_sm ’ :

for img , l b l in DataLoader ( imgs , batch_size ) :

img1 = img . to ( dev i c e )

# act i s a d i c t where each key has a va lue t ha t

con ta ins a l i s t o f node a c t i v a t i o n s ( dimension

depends on l a y e r /mod)
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act [ ’ l a s t_ l ay e r ’ ] . append (model ( img1 ) . detach ( ) )

#with torch . no_grad () :

#updat ing mean and var iance o f f i n i t e changes ( thus we dont

need to save a l l data ; on ly t h e s e agg r e ga t e s )

def update ( ex i s t ingAggregate , newValue ) :

( count , mean , M2) = ex i s t i ngAggrega t e

count += 1

de l t a = newValue − mean

mean += de l t a / count

de l t a2 = newValue − mean

M2 += de l t a ∗ de l ta2

return ( count , mean , M2)

i f l a y e r==’ n l l ’ :

# ge t t i n g f i n i t e changes from n l l

act_temp=torch . cat ( act [ ’ n l l ’ ] ) . detach ( )

nll_temp=los s_ent r ( act_temp , t rue_labe l )

f i n i t e_change s = nll_temp [ 2 : ( n+2)]−nll_temp [ 0 ]

agg [ ’ n l l ’ ]=( update ( agg [ ’ n l l ’ ] [ 0 ] , nll_temp [ 0 ] ) , update (

agg [ ’ n l l ’ ] [ 1 ] , f i n i t e_change s ) )
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i f l a y e r==’ last_layer_+_sm ’ :

# ge t t i n g f i n i t e changes from l a s t l a y e r s core s

act_temp=torch . cat ( act [ ’ l a s t_ l ay e r ’ ] ) . detach ( )

act [ ’ l a s t_ l ay e r ’ ]=(act_temp [ 0 , : ] , act_temp [ 2 : ( n+2) , : ] −

act_temp [ 0 , : ] )

# agg : t u p l e ; ( t u p l e o f ( count , mean , M2) o f a c t i v a t i o n s

/nodes in mod , t u p l e o f ( count , mean , M2) o f f i n i t e

changes f o r each input o f nodes in mod)

agg [ ’ l a s t_ l ay e r ’ ]=( update ( agg [ ’ l a s t_ l ay e r ’ ] [ 0 ] , act [ ’

l a s t_ l ay e r ’ ] [ 0 ] ) , update ( agg [ ’ l a s t_ l ay e r ’ ] [ 1 ] , act [ ’

l a s t_ l ay e r ’ ] [ 1 ] ) )

# ge t t i n g f i n i t e changes from c l a s s p r o b a b i l i t i e s

sm_temp=torch . nn . f un c t i o n a l . softmax ( act_temp , dim=1)

act [ ’sm ’ ]=(sm_temp [ 0 , : ] , sm_temp [ 2 : ( n+2) , : ] −sm_temp [ 0 , : ]

)

# agg : t u p l e ; ( t u p l e o f ( count , mean , M2) o f a c t i v a t i o n s

/nodes in mod , t u p l e o f ( count , mean , M2) o f f i n i t e

changes f o r each input o f nodes in mod)
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agg [ ’sm ’ ]=( update ( agg [ ’sm ’ ] [ 0 ] , act [ ’sm ’ ] [ 0 ] ) , update ( agg

[ ’sm ’ ] [ 1 ] , act [ ’sm ’ ] [ 1 ] ) )

i=0

i f l a y e r==’ a l l_ l ay e r ’ :

# only f o r f o r modules in model ( w i thou t softmax and n l l

) :

modules_l i s t= l i s t ( agg . keys ( ) ) [ : −2 ]

for mod in modules_l i s t :

# cat o f the l i s t ( va l u e s o f d i c t are l i s t s )

act [mod]= torch . cat ( act [mod ] ) . detach ( )

# act : t u p l e o f dim 2; ( nodes/ a c t i v a t i o n s in l a y e r /

mod , f i n i t e changes f o r each input o f nodes in

mod)

act [mod]=( act [mod ] [ 0 , : ] , act [mod ] [ 2 : ( n+2) , : ] − act [mod

] [ 0 , : ] )

# agg : t u p l e ; ( t u p l e o f ( count , mean , M2) o f

a c t i v a t i o n s /nodes in mod , t u p l e o f ( count , mean ,

M2) o f f i n i t e changes f o r each input o f nodes in

mod)

agg [mod]=( update ( agg [mod ] [ 0 ] , act [mod ] [ 0 ] ) , update (
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agg [mod ] [ 1 ] , act [mod ] [ 1 ] ) )

# ge t t i n g f i n i t e changes from n l l

act_temp=torch . cat ( act [ ’ n l l ’ ] ) . detach ( )

nll_temp=los s_ent r ( act_temp , t rue_labe l )

f i n i t e_change s = nll_temp [ 2 : ( n+2)]−nll_temp [ 0 ]

agg [ ’ n l l ’ ]=( update ( agg [ ’ n l l ’ ] [ 0 ] , nll_temp [ 0 ] ) , update (

agg [ ’ n l l ’ ] [ 1 ] , f i n i t e_change s ) )

# ge t t i n g f i n i t e changes from c l a s s p r o b a b i l i t i e s

sm_temp=torch . nn . f un c t i o n a l . softmax ( act_temp , dim=1)

act [ ’sm ’ ]=(act_temp [ 0 , : ] , act_temp [ 2 : ( n+2) , : ] − act_temp

[ 0 , : ] )

# agg : t u p l e ; ( t u p l e o f ( count , mean , M2) o f a c t i v a t i o n s

/nodes in mod , t u p l e o f ( count , mean , M2) o f f i n i t e

changes f o r each input o f nodes in mod)

agg [ ’sm ’ ]=( update ( agg [ ’sm ’ ] [ 0 ] , act [ ’sm ’ ] [ 0 ] ) , update ( agg

[ ’sm ’ ] [ 1 ] , act [ ’sm ’ ] [ 1 ] ) )

return ( agg )
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