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Preface

Semiparametric regression models are widely theoretically studied, but are much

underused in the applications. Indeed, in comparison with the linear regression model

Y = θ′X+ε, semiparametric techniques are theoretically sophisticated and often require

substantial programming experience. These models are of interest for statistically ori-

ented scientist as biostatisticians, econometricians or epidemiologist who usually have

a good working knowledge of linear models but desire to use more flexible semipara-

metric models.

In this thesis we discuss estimation in special models of multivariate semiparametric

regression: the single-index models Y = r(θ′X) + ε, which applies a nonparametric

function to the linear single-index θ′X. This regression model is a natural extension to

the linear model Y = θ′X + ε. It allows greater flexibility and overcomes the problem

of the “curse of dimensionality” that we have in nonparametric regression with the in-

clusion of multiple explanatory variables. We will study the special single-index model

in which the regression function is such that its second derivative is square integrable

and is subject to the monotonicity constraint.

The theory of the procedures in semiparametric estimation is necessarily based on

asymptotic approximations, while actual performance for finite sample sizes is often

gauged best by simulations. Therefore our focus is, first of all, on asymptotic theory.

We limit ourselves to models for independent, identically distributed observations, the

basic building blocks of most models for data.

xi



xii

We begin by explaining the reasons that lead to a choice of semiparametric regres-

sion, such as non flexibility of parametric regression and the “curse of dimensionality”

in nonparametric regression. Continuing in the description of the single-index model,

we illustrate that, as a compromise between parametric and nonparametric models, it

overcomes the problems that the other approaches present. Moreover, we present a

review of the main estimation procedures known in the literature.

Chapters 2 and 3 are devoted to give a background about some notions of semipara-

metric and nonparametric theory, needed in the study of the proposed estimator, in

the single-index model.

For the model, object of study in this thesis, chapter 4 introduces the penalized maxi-

mum likelihood estimator (θ̂, r̂). Theoretical results are illustrated about the existence

of this estimator (θ̂, r̂), when the regression function r to be estimated, is restricted to

be a monotone function. Moreover some properties of consistency for (θ̂, r̂) and (θ̂ and

r̂) separately investigated and the asymptotic efficiency of the Euclidean parameter θ̂

are shown.

Chapter 5 explains the role of the smoothing spline estimators in nonparametric re-

gression and how it is possible to use them in the case of penalized single index models

when the regression function is supposed to be monotone. We will see that, surprisingly,

these estimators minimizing the penalized maximum likelihood criterion over infinite-

dimensional classes of smooth functions, can be obtained by solving finite-dimensional

optimization problems.

In the chapter 6, the attention is focused in computational studies and numerical re-

sults. Indeed an algorithm is described, that gives an approximated value for the

estimator (θ̂, r̂) and some simulation studies illustrate how this algorithm works. Fi-

nally, it is exposed an example with real data for an investigation in an environmental

study on how the concentration of the air pollutant ozone depends on three other me-

teorological variables.
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Chapter 1

Single-Index Models

1.1 Introduction

Regression analysis concerns the relationship between two random vectors Y ∈ Rk and

X ∈ Rm where Y is a vector of response variables and X is a vector of explanatory

variables. Statistical inference in parametric, nonparametric and finally semiparametric

regression are particular aspects of regression analysis.

Considering one-dimensional response variable Y ∈ R, we can explicitly summarize

the estimation in parametric, nonparametric and semiparametric regression, in the

estimation of the regression function r : Rm → R when the relationship between the

outcome Y and the vector of regressors X is stated in the form

Y = r(X) + ε, (1.1.1)

where ε is, for example, a random variable with zero mean and finite variance. It is

clear that the regression function is equal to E(Y |X = x) provided that E(ε|X = x) is

zero, which is in general assumed.

It is well known that several approaches can be considered to tackle the prob-

lem, in fact the determination of a suitable inferential methodology for model (1.1.1)

will hinge on the assumptions it is possible to make about r.
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When the form of r and the distribution of ε are known except for finitely many un-

known parameters, the model (1.1.1) is a parametric regression model. In this case , it

is considered a vector of parameters θ ∈ Θ ⊆ RM , M > 0 and a parametric regression

model inference about r is therefore tantamount to inference about θ.

Regression analysis techniques for parametric models represent one approach to con-

ducting inference about r. Using an appropriate estimation methodology, such as

least-squares or maximum likelihood methods, it is possible to utilize the data to esti-

mate the parameters θ and thereby estimate the regression function r. The result is a

fitted curve that has been selected from the family of curves allowed under the model

and conforms to the data in some fashion.

Parametric regression model is undoubtedly the most relevant approach to regression

analysis because of the easiness that this model presents in terms of computation and

interpretation of the results, but it admits an important drawback in the lack of flex-

ibility. This is one of the reasons for which we use other methods of fitting curve of

data. One collection of procedures that can be used for this purpose are nonparamet-

ric techniques. These methods give estimates of r that allow great flexibility in the

possible form of the regression curve and, in particular, make no assumptions about a

parametric form. In fact, in some situations, to force the regression function to belong

to a parametric family of functions can be too restrictive and this can lead to an im-

portant modeling bias and wrong conclusions about the link function between Y and

X. On the other hand, the nonparametric approach releases such restrictive functional

hypothesis about r.

A nonparametric regression model generally only assumes that the regression curve

belongs to some infinite-dimensional collection of functions. For example, r may be

assumed to be differentiable or differentiable with a square integrable second deriva-

tive or with constraints of monotonicity. Assumptions of this type are concerned with
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qualitative properties of r and are in contrast to the assumptions used in parametric

modeling that entails a much greater level of specificity about the regression function.

Note that the concepts of smoothing and monotonicity are central ideas in statistics.

Theirs role is to extract structural elements of variable complexity from patterns of ran-

dom variation. The nonparametric smoothing concept and the concept of monotonicity

are designed to simultaneously estimate and model the underlying structure. This in-

volves high-dimensional objects, like regression surfaces. Such objects are difficult to

estimate for data sets with mixed, high-dimensional and partially unobservable vari-

ables. Moreover in nonparametric regression, smoothness conditions (in particular, the

existence of bounded derivatives) play a central role in ensuring consistency of the

estimator. They are also critical in determining the rate of convergence as well as

certain distributional results. Additionally, with sufficient smoothness, derivatives of

the regression function can be estimated consistently, sometimes by differentiating the

estimator of the function itself. About constraints such as monotonicity or concavity,

we have that they do not improve the (large sample) rate of convergence if enough

smoothness is imposed in the model. They can improve performance of the estimator

chosen, if strong smoothness assumptions are not made or if the data set is of moderate

size.

The greater flexibility in nonparametric estimation has nevertheless, a high cost that

is when the number of the regressors is increasing, these methods get very demanding

with respect to the number of the observations. Specifically, from Stone (1980) we

have that the larger the number of the regressors, the larger the dimension of data

samples needed in order to achieve reasonable estimates. For sample sizes that we have

to face in practice, this is translated into critically bad estimates once the number of

the regressors is greater than two or three. This phenomenon that is known as the

curse of dimensionality and that motivates the need of dimension reduction methods,
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is explained in more detail in the following section.

Consequently, researchers have tried to develop models and estimators which offer more

flexibility than standard parametric regression but overcome the curse of dimensional-

ity by employing some form of dimension reduction. Examples of dimension reduction

methods are the semiparametrics methods.

An important difference between parametric and nonparametric regression methodolo-

gies is then their respective degree of reliance on the information about r obtained

from the experimenter and from the data. Indeed with the purpose to specify a non-

parametric regression model, an appropriate function space that is believed to contain

the unknown regression curve, will need to be chosen. Is the experimenter that usually

motivates this choice only by smoothness or of monotonicity properties, the regression

function can be assumed to possesses. The data is then utilized to determine an el-

ement of this function space that is representative of the unknown regression curve.

In contrast, under a parametric model, the experimenter chooses one possible family

of curves, from the collection of all curves, and inputs this choice into the inferential

process. The information the data can supply concerning model development is then

restricted to what can be extracted from the data under this assumed parametric form.

Then, nonparametric regression techniques rely more heavily in the data for informa-

tion about r than their parametric counterparts, where the choice of the experimenter

predominates.

If it is selected in an appropriate way, parametric models have some definite advan-

tages. The corresponding inferential methods usually have nice efficiency properties.

Also, the parameters may have physical meaning which makes them interpretable and

of interest in their own right.

Unfortunately parametric models are often used when there is a little available infor-

mation concerning the functional form of r. In these cases, the function r is assumed
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to have some exact parametric representations with little or no knowledge concerning

the accuracy of the assumptions. Therefore, if the assumed parametric model is in

error, we don’t have the mentioned advantages of the parametric approach. The use

of an inappropriate parametric model can be quite dangerous in the sense that it can

produce misleading or incorrect inference about the regression curve. This happens in

particular, when there is little that is known about regression function. In such cases,

the information about r lies in the data rather than in the subjective assumptions. Ac-

cordingly, it seems more reasonable to use inferential techniques which rely heavily on

the data. For this reason, the nonparametric techniques are ideally suited to problems

of inference when the available knowledge about r is limited.

Nonparametric regression overcomes the difficulty with parametric techniques that re-

quire that the functional form of r must be known. But, generally, nonparametric

estimators are less efficient than the parametric variety when the parametric model is

valid.

For most parametric estimators the risk, or expected squared error of estimation, will

decay to zero at a rate of n−1. On the other hand, the corresponding rate for nonpara-

metric estimators is usually n−δ, for δ ∈ (0, 1) that depends on the smoothness of r. For

example, if r is twice differentiable n−4/5 is an often quoted rate. Thus, nonparametric

regression techniques suffer a loss of efficiency when compared to parametric methods.

Then, nonparametric estimators become candidates for estimation of r only when there

is some question about an appropriate parametric form for r.

The result of a nonparametric regression analysis is a curve fitted to a set of data.

Since this curve is produced without assuming a parametric form for r there will be

some loss in the interpretability of estimators obtained. Indeed, in this case there

will no longer be quantities such as estimated regression coefficients to be interpreted.

However, the fitted curve itself is an estimate of the infinite-dimensional parameter r
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and any functional of r is also a parameter which can be estimated using an estimate

of the regression curve. This type of parameters can be estimated and interpreted

from either a nonparametric or parametric viewpoint. Thus, there are regression curve

based parameters, such as functionals of r, about which inference can be made and

interpretations can be drawn using either parametric or nonparametric techniques.

To summarize, parametric methods require very specific, quantitative information

about the form of r and place restrictions on what the data can tell us about the regres-

sion function. In contrast, nonparametric regression techniques rely only on qualitative

information about r and let the data speak for itself concerning the actual form of the

regression curve. These methods are best suited for inference in situations where there

is little or no prior information available about regression curve.

Semiparametric estimation is, first of all, about estimation in situations when we be-

lieve we have enough knowledge to model some features of the data parametrically, but

are unwilling to assume anything for other features, then the semiparametric modeling

technique compromises the two aims, flexibility of nonparametric theory and simplicity

of statistical procedures, by introducing partial parametric components. Further ad-

vantages of semiparametric methods are the possible inclusion of categorical variables

(which can often only be included in a parametric way) and an easy interpretation of

the results, besides the possibility of a part specification of a model.

Then semiparametric models propose a mix of parametric and nonparametric ap-

proaches, which permits to compensate for their respective drawbacks. They are char-

acterized by a twofold parametrization, say δ and s, where δ lies in a finite-dimensional

space ∆ and s lies in an infinite-dimensional space. For example, it should be the case

if r belong to a parametric family and the distribution of ε was totally unknown in

model (1.1.1) or in the case of the single-index model, object of interest in this thesis.
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1.2 The curse of dimensionality

A problem that occurs with nonparametric regression and smoothing methods is the

curse of dimensionality, a term usually attributed to Bellman (1961). For an extensive

discussion on the curse of dimensionality, see Hastie et al. (2001).

Roughly speaking, this means that estimation gets harder very quickly as the dimen-

sion of the observations increases.

There are at least two versions of this curse. The first is the computational curse of

dimensionality. This refers to the fact that the computational burden of some methods

can increase exponentially with dimension. Our focus here is however, with the second

version, which we call the statistical curse of dimensionality : if the data have dimen-

sion m, then we need a sample size n that grows exponentially with m.

To gain an appreciation of the problem, we begin with a deterministic framework. The

objective is obviously approximate the regression function r. If it is known to be linear

in one variable, two observations are sufficient to determine the entire function precisely.

Three are sufficient if r is linear in two variables. If r is of the form r(X, θ), where

r is known and θ is an unknown m-dimensional vector, then m judiciously selected

points are usually sufficient to solve for θ. No further observations on the function are

necessary.

Let us turn to the pure nonparametric case and suppose r, defined on the unit interval,

is known only to have a first derivative bounded by a constant K. If we sample r at

n equidistant points and approximate r at any point by the closest point at which we

have an evaluation, then the approximation error cannot exceed K/2n. Increasing the

number of the points reduces the approximation error at a rate O(n−1).

Now suppose r is a function on the unit square and that it has derivatives bounded in

all directions by K. To approximate the function, we need to sample throughout its
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domain. If we distribute n points uniformly on the unit square, each will occupy an area

1/n, and the typical distance between points will be n−1/2 so that the approximation

error is now O(n−1/2). If we repeat this argument for function in m variables, the typ-

ical distance between points becomes n−1/m and the approximation error is O(n−1/m).

In general , this method of approximation yields errors proportional to the distance to

the nearest observation.

Indeed the mean squared error of any nonparametric estimator of a smooth (for exam-

ple, twice differentiable) curve has typically mean squared error of the form

MSE ≈ c

n4/(4+m)

for some c > 0. If we want the MSE to be equal to some small number δ, we can set

MSE = δ and solve for n. We find that

n ∝
(c
δ

)m/4

which grows exponentially with the dimension m.

The reason for this phenomenon is that smoothing involves estimating a function r(x)

using data points in a local neighborhood of x. But in high-dimensional problem, the

data are very sparse, so local neighborhoods contain very few points. However, even if

we can overcome the computational problems, we are still left with the statistical curse

of dimensionality. You may be able to compute a smooth nonparametric estimator but

it will not be accurate.

It is possible consider different type of restrictions that substantially reduce approx-

imation error, such as partial linear structure, additive separability or smoothness

assumptions and the index model specification.
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1.3 The Single-Index Model

In this thesis we are therefore interested in a special topic of regression analysis that is

in the estimation in one of the most important regression model and one of the most

referred semiparametric regression models in the literature: the single-index model

(Stoker (1986), Härdle and Stoker (1989), Li (1991), Ichimura (1993)).

Ichimura (1993) gives the following definition of a single-index model:

Definition 1.3.1. Let m and M be positive integers. The model

Y = r[h(X, θ)] + ε

where

- the random vector (X ′, Y ) is such that Y ∈ R and X ∈ Rm;

- ε ∈ R is an unobserved random disturbance, with E(ε|X) = 0;

- θ ∈ RM is an unknown parameter vector to be estimated;

- the function h : S ×Θ → R, for some subset S ×Θ ⊂ Rm × RM , is known up to the

parameter θ;

- the function r : R → R is not known

is a single-index model.

Note that the model defined like above is indeed semiparametric: θ lies in a finite-

dimensional space and the link function r belongs to a functional space so that it can

be seen as an infinite-dimensional parameter and has to be estimated via nonparamet-

ric techniques. Moreover, the conditional probability of ε is not specified, except for

E(ε|X) = 0.

Great simplifications in most of the results can be obtained by fixing

h(X, θ) = θ′X =
m∑

k=1

θkXk
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where θk and Xk represent the kth components of vectors θ and X.

Ichimura calls such a model a “linear single-index model”, but by sake of simplicity and

as it is frequently referred in the literature, “single-index model” will always refer to

linear single-index model in this thesis.

By reducing the dimensionality from multivariate predictors to a univariate index

(θ′X), single-index models avoid the curse of dimensionality while still capturing impor-

tant features in high-dimensional data. Because a nonlinear link function r is applied to

the index (θ′X), interactions between the covariates can be modeled. Thus single-index

models are a useful alternative to additive models, which also reduce dimensionality

but do not incorporate interactions.

Single-index model therefore relaxes some of the restrictive assumptions of parametric

models, thus ensuring some flexibility and mitigating the risk of misspecifying the link

function, while avoiding the curse of dimensionality. Horowitz and Härdle (1996) have

shown that misleading results are obtained if a binary probit model is estimated by

specifying the cumulative normal distribution function as the link function rather than

estimating r by nonparametric methods.

The motivation, importance, and a broad potential applications of single-index model

are widely discussed in the literature. Härdle and Stoker (1989) and Ichimura (1993)

have given examples of classical regression, discrete regression, and censored regression

that can be classified as single-index models. Single-index model can be seen as a gen-

eralization of linear regression models by replacing the linear combination (θ′X) with a

nonparametric component, r(θ′X). Also, the single-index model generalizes both the

generalized linear model (GLIM) (McCullagh and Nelder (1983)) and the missing-link

problem in GLIM (Weisberg and Welsh (1994)).
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We can summarize the remarks of Li (1991) in this three points:

1. In practice, lowering dimensionality before fitting data is important and in many

cases crucial for further analysis.

2. If r is monotone, as in the case of this thesis, then θ has the same general interpre-

tation as effect parameters as in ordinary linear models.

3. Given an estimated value of θ, the multivariate model fitting is reduced to a more

manageable low-dimensional modeling problem.

Applications of single-index models lie in a variety of fields, such as discrete choice

analysis in econometrics and dose-response models in biometrics studies (Härdle et al.

(1993)) as a reasonable compromise between fully parametric and fully nonparametric

modeling. They are also extensively used in projection pursuit regression (Friedman

and Stuetzle (1981) and Hall (1989)).

1.4 Identification conditions

Restrictions must be imposed in order to make the finite-dimensional vector of parame-

ters θ and the regression function r uniquely determined by the population distribution

of (Y,X). It is quite clear that such conditions are needed. Suppose for example that

r is a constant function on R; in this case, any vector of Rm should be acceptable as

estimator of θ. Moreover, as in linear model, no identification is possible if there is an

exact linear relation among the components of X.

More formally, let α be any constant and β be any non-zero constant. Define the

function r∗ by

r∗(α+ βt) = r(t)
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for all t in the support of θ′X. We have

E(Y |X = x) = r(θ′x) (1.4.1)

= r∗(α+ βθ′x). (1.4.2)

Models (1.4.1) and (1.4.2) are equivalent: they could not be distinguished, even if

the whole population (Y,X) was known. Indeed, the use of the vector βθ′ and of the

rescaled link function rβ(t) = r(t/β) leads to the same regression function r. Therefore,

restrictions on α (location) and β (scale) have to be imposed in order to make θ and r

uniquely defined. In the remainder, X will contain no intercept (location restriction)

and θ needs to be with the first component equal to one or with Euclidean norm equal

to one (scale restriction).

Besides, r must be differentiable. Indeed, note that the single-index hypothesis imposes

that E(Y |X = x) remains constants if x changes in such a way that θ′x stays constant.

However, if θ′X is continuously distributed, the set of X values on which θ′X = c has

probability zero for any c, so that no identification is possible. But, as in the case of

this thesis, if r is differentiable then r(θ′X) is close to r(c) provided that θ′X is close to

c. Therefore, the set of X values on which θ′X is within any specified non-zero distance

of c has non-zero probability and identification of θ gets possible through approximate

constancy of θ′X.

Based on the observation in Ichimura (1993), it can be stated:

Theorem 1.4.1. θ and r are identified if:

- r is differentiable and not constant in the support of θ′X;

- X admits at least one continuously distributed component;

- The support of X is not contained in any proper linear subspace of Rm;

- θ ∈ Θ, with Θ = {θ ∈ Rm : ‖θ‖m = 1}.
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1.5 Survey of the main known estimation procedures

1.5.1 Estimating the link function r

Suppose at first that θ is known. Then r can be estimated by classical means of

univariate nonparametric regression of Y on θ′X. Many various methods are proposed

in Härdle (1990). Although it is well known that it is not the more efficient one, the

Naradaya-Watson kernel estimator is used in many situations because of its easiness of

implementation and interpretation and its mathematical tractability.

Of course, these estimators r̂(θ) cannot be implemented since θ is not known. Then, if

an estimator θ̂ of θ is known, r is estimated by r̂(θ̂) obtained using θ̂ in place of θ.

Methods of estimating θ will be described in the next section. It will be shown that θ can

be estimated with n−1/2 rate of convergence in probability, i.e. there exist estimators

θ̂ such that

(θ̂ − θ) = OP

(
n−1/2

)
,

which is the typical rate of convergence for parametric estimators. Besides, it is well

known that no nonparametric estimator of regression functions can achieve this rate.

The convergence of θ̂ is thus faster than the fastest possible rate of convergence of

any nonparametric estimator of r. Therefore, it is intuitively clear that the difference

between the estimators r̂(θ) and r̂(θ̂) is asymptotically negligible namely root-n es-

timation of θ has non effect on the asymptotic distribution of the Naradaya-Watson

estimator. See Horowitz (1998) for a complete argument of this result. Hence, the

estimation of r is direct via standard methods once an estimator of θ is known, so no

more will be explicitly developed in the next sections.
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1.5.2 Estimating the Euclidean parameter

Many methods of estimating θ have been proposed in the literature. We resume most

of them in this section. First, notice that estimators of θ can be classified in two main

groups, according to whether they require solving nonlinear optimization problem (M-

estimators) or not (direct estimators).

M-estimators

If r was known, a M-estimator of θ should typically have the form

θ̂ = arg max
θ∈Θ

1

n

n∑
i=1

Ψ(Yi, r(θ
′X i)),

where Ψ : R2 → R is a function verifying some mild regularity conditions. In the single

index model context, we substitute the unknown r for its leave-one-out estimator.

Delecroix and Hristache (1999) give sufficient conditions on Ψ in order to make the

estimator θ̂ a.s. consistent and asymptotically normal, for any joint law of (X, Y ).

They show that it is the case if Ψ is equal to the log-likelihood of a density belonging

to the exponential family.

• Semiparametric Least Squares (SLS)

As in a parametric least squares problem, the idea is to minimize the mean square

distance between the observed values Yi and the values given by the model r(θ′X i). If

r was known, we should have the classical least squares estimator given by

θ∗ = arg min
θ∈Θ

1

n

n∑
i=1

w(X i)[Yi − r(θ′X i)]
2,

where w is a positive bounded weight function. Under some regularity conditions, least

squares theory shows that this estimator θ∗ is root-n consistent (see Amemiya (1985)).

In the single-index context, the least squares criterion to minimize uses the leave-one-

out Naradaya-Watson estimator instead of r, as a trite function of θ. Ichimura (1993)
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studied this method in details.

The choice of the weight function w affects the efficiency of the estimator. Newey and

Stoker (1993) found the efficiency bound for semiparametric models. In a single-index

context, the SLS estimator achieves this bound if

w(x) = 1/σ2(x),

where σ2(x) = var(Y |X = x). If σ2(x) is unknown, a consistent estimator of σ2(x) has

to be used.

• Semiparametric Maximum Likelihood (SML)

Another optimization based method is inspired by the parametric maximum likelihood

methods. If r was known, the maximum likelihood estimator of θ should be given by

the following maximization problem

θ∗ = arg max
θ∈Θ

1

n

n∑
i=1

log lr,θ(Yi|θ′X = θ′X i)), (1.5.1)

where lr,θ(·|·) is the conditional density of Y given X.

Standard theory of maximum likelihood estimation implies that θ∗ is root-n consistent,

efficient and asymptotically normal, under regularity conditions.

Nevertheless, since r is unknown, θ∗ is not feasible. If the conditional distribution of

Y given X is known up to r and θ, we overcome the problem by replacing r in prob-

lem (1.5.1) with its Naradaya-Watson leave-one-out estimator, thus forming a pseudo-

likelihood.

If the conditional distribution of Y given X is not known, we estimate it in a fully

nonparametric way. Delecroix et al. (2003) show that the estimator obtained with the

kernel estimator of the joint distribution of (θ′X, Y ) divided by the classical kernel

estimator of the marginal density of θ′X, is asymptotically efficient.
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• Bandwidth selection

In order to construct these estimators via kernel estimators, a bandwidth h is needed.

The choice of that bandwidth is crucial, because practical performance of the method

can depend significantly on it. Delecroix et al. (2003) propose an empirical rule for se-

lecting it. Actually, they extend the methodology first introduced by Härdle et al.

(1993) for the SLS estimator. This rule can be brought back to the usual cross-

validation criterion.

Direct estimators

Although their many advantages (efficiency, asymptotic normality, automatic selection

of the bandwidth), M-estimators admit an important drawback: they require solving

an intricate optimization problem in a high dimensional space. In spite of slightly

worst theoretical properties, direct estimators are highly attractive, as they provide

the estimator on an analytic form.

• Average Derivative Estimator (ADE)

If we set u = θ′x and m(x) = r(θ′x), average derivatives method rests on the fact that

∇m(x) =
∂r

∂u
(θ′x)θ,

which induces that

δw=̇E[w(X)∇m(X)] = E[w(X)
∂r

∂u
(θ′X)]θ

for any bounded continuous weight function w. The quantity δw is called a weight

average derivative of r with weight function w. From the last expression, we can see

that δw is proportional to θ , provided E[w(X) ∂r
∂u

(θ′X)] is not zero. This condition is

in particular violated if w = 1, r is an even function and X is symmetrically distrib-

uted. Moreover, considering the gradient of m, this implies that X is a continuously
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distributed random vector. However, Horowitz and Härdle (1996) show an extension

of the method to the case where some components of X are discrete is possible.

Stoker (1986) and Härdle and Stoker (1989) take w = 1 and use a nonparametric esti-

mation of the marginal density of X. They show that δ̂ is a consistent estimator of δ

and
√
n(δ̂ − δ)

d→ N(0,Σu), under some regularity conditions.

Note that the method is based on a fully nonparametric estimation of the multivariate

density of X, which is severely subject to the curse of dimensionality. Hence, we loose

the main advantage of the single-index modeling.

The previous method requires the estimation of both the density f and its gradient. To

avoid this twofold estimation, Powell et al. (1989) have proposed to set w(x) = f(x). In

this way, only the gradient of f has to be estimated. Also in this case, δ̂f is a consistent

estimator of δf and
√
n(δ̂f − δf )

d→ N(0,Σf ), under some regularity conditions.

As previously, this result implies that θ̂ is a
√
n-consistent estimator of θ, with asymp-

totic normal distribution.

The major drawback of the previous two procedures is the need to estimate the density

of X and its gradient in a fully nonparametric way, what can lead to very poor per-

formance due to the curse of dimensionality. Hristache et al. (2001) introduced a new

type of direct estimator of the index coefficient that can be viewed as an iterative im-

provement of the average derivative estimator. They showed that ||θ̂− θ|| = O(n−1/2),

where ‖·‖ is the squared Euclidean norm. Thus θ̂ is a
√
n-consistent. The asymptotic

distribution of the estimator is not mentioned, but it is stated that
√
n(θ̂ − θ) is close

in distribution to a gaussian vector.
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• Sliced Inverse Regression (SIR)

In a dimension reduction purpose, Li (1991) proposed a simple and easy to implement

algorithm. Duan and Li (1991) adapted this method in the single-index context. It is

based on the relationship between θ and the inverse regression E(X|Y = y). Unfortu-

nately, their results require an important design condition, not always satisfied.

Other estimators

The four previous ideas (SLS, SML, ADE, SIR) are historically the most popular ones

in order to estimate θ. Nevertheless, this list is far to be exhaustive. There are much

more estimators which have been proposed in the literature. Naik and Tsai (2000) ex-

tend the method of Partial Least Squares to the case of single-index models. Xia et al.

(2002) propose an adaptive approach for dimension reduction. This is a kind of M-

estimation method, inspired by the SIR method and the idea of local linear smoothers,

but with fewer restrictions on the distribution of the covariates. A drawback is that

no asymptotic distribution for the estimator is provided. Huh and Park (2002) derive

an extension of ADE. A problem is that the method requires the maximization of lo-

cally weighted log-likelihood, that is it looses the main advantage of direct estimators.

Finally, Han (1987) proposes an estimator based on the rank correlation between the

observed values and the values fitted by the model. Asymptotic theory for this esti-

mator is completed in Sherman (1993) and a generalization is given in Cavanagh and

Sherman (1998). In particular, this last method cited, requires the link function to be

strictly monotonic.
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1.6 Single Index Model studied and estimation pro-
cedure proposed

The single-index model studied in this thesis is of the form:

Y = r(θ′X) + ε, ε ∼ N(0, σ2), (1.6.1)

where Y is a scalar response variable, X is a m-dimensional explanatory variable and

ε is the error variable assumed to be standard normal distributed, with finite variance.

We are interested in the estimation of the finite-dimensional vector of parameters

θ ∈ Θ ⊂ Rm and the univariate regression function r : R → R, that is completely

unknown except for monotonicity and smoothness assumptions. Single-index models

will be then studied in semiparametric context.

In the previous section, we showed a large number of methods to estimate the link

function r and the parameter θ. Because of its easiness of implementation and in-

terpretation and its mathematical tractability, the link function is usually estimated

by Naradaya-Watson kernel estimator, although it is well known that it is not the

more efficient one. In the majority of these methods, θ is proved to be root-n consis-

tent, efficient and asymptotically normal, under regularity conditions, that is under the

assumption that the link function is twice o three times differentiable with bounded

second derivative.

In this thesis, we study the couple (θ, r) that will be estimated by penalized maximum

likelihood estimator in order to take into account and exploit the conditions of the ex-

istence and boundness of the second derivative of r. Note that for the model described

in (1.6.1), this estimator coincides with the penalized version of the nonlinear least

squares estimator.

Moreover, we decided to make this study imposing the constraint of monotonicity for
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the regression function r because of the importance of monotonicity in a variety of

statistical models. In the particular case of single-index model, we have also that when

the regression function r is assumed to be monotone, the role of the parameters θ is

unchanged with respect to the role in the linear regression model. In this way, an

easy interpretation of the meaning of the parameters is preserved. On the other hand,

with the introduction of the function r in the linear regression model, we have a more

flexible model. Withal, because this nonparametric estimation is done on a univariate

index, the curse of dimensionality is avoided. Besides, we would liked to impose a

restriction in the class of functions to be estimated, with the intent to obtain a faster

rate of convergence for the regression function estimator, which usually is stated in

n−4/5, when the link function is supposed to be twice differentiable.

For a computational study of the performance for finite sample size, smoothing spline

estimation is proposed, for linear single-index models. This approach may be classi-

fied as an M-estimation problem. Indeed, we will model the regression function r by

smoothing splines and the parameter θ minimizing the penalized maximum likelihood

criterion, as we will see later.



Chapter 2

Theory for Euclidean Parameters in
Infinite-Dimensional Models

2.1 Introduction and overview

When we have observations that are random sample from a common distribution P , a

model is the set P of all possible values of P , that is a collection of probability measures

in the sample space.

The nonparametric model is that model in which we observe a random sample from

a completely unknown distribution. Are interesting, intermediate models that are

not parametrized by a Euclidean parameter as in parametric models, but do restrict

the distribution in important ways. Such models are often parametrized by infinite-

dimensional parameters, such as distribution functions or densities or regression func-

tions, that express the structure under study. Many aspects of these parameters are

estimable by the same order of accuracy as classical parameters, and efficient estima-

tors are asymptotically normal.

These models may have a natural parametrization (θ, r) → Pθ,r where θ is the Euclid-

ean parameter and r runs through a nonparametric class of functions. This give a

semiparametric model in which we aim at estimating θ and consider r as a nuisance

parameter. More generally, we focus on estimating the value ψ(P ) of some function
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ψ : P → Rm on the model.

To set up the semiparametric regression model, the model of interest in this the-

sis, suppose (Y,X) is distributed as Pθ,r, indexed by a finite dimensional parameter

θ ∈ Θ ⊂ Rm and an infinite dimensional parameter r belonging to some class of func-

tions R. The semiparametric model is then

P = {Pθ,r : θ ∈ Θ, r ∈ R} .

The finite dimensional parameter θ is usually called the regression parameter, which

measures the influence of the explanatory variable X on the response variable Y .

2.2 Tangent spaces and information bounds

Harking to the general theory of semiparametric models, suppose that we observe a

random sample X1, . . . , Xn from a distribution P that is known to belong to a set P

of probability measures on the sample space (X ,A). In this section it is given a notion

of information for estimating ψ(P ) given the model P , which extends the notion of

Fisher information for parametric models.

To estimate the parameter ψ(P ) given the model P is harder than to estimate this

parameter given that P belongs to a submodel P0 ⊂ P. For every smooth parametric

submodel P0 = {Pθ : θ ∈ Θ} ⊂ P, we can calculate the Fisher information for esti-

mating ψ(Pθ). Then the information for estimating ψ(P ) in the whole model is not

bigger than the infimum of the informations over all submodels. Then we shall define

the information bound for the whole model as this infimum. A submodel for which the

infimum is taken, is called least favorable submodel.

In most situations, it suffices to consider one-dimensional submodels P0. These should

pass through the true distribution P of the observations and be differentiable in quadratic

mean at P . Thus, we consider maps t → Pt from a neighborhood of t ∈ [0,∞) to P
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such that, for some measurable function g : X → R,∫ (
dP

1/2
t − dP 1/2

t
− 1

2
gdP 1/2

)2

−→ 0.

Then, the parametric submodel {Pt : 0 < t < ε} is differentiable in quadratic mean

at t = 0 with score function g. Letting t → Pt range over a collection of submodels,

we obtain a collection of score functions, called tangent set of the model P at P and

denoted by ṖP . The tangent set is often a linear space, in which case is called tangent

space.

Usually, we construct the submodels t→ Pt such that, for every x,

g(x) =
∂

∂t |t=0
log dPt(x).

For defining the information for estimating ψ(P ), only those submodels t → Pt along

which the parameter t→ ψ(Pt) is differentiable are of interest. Thus, we consider only

submodels t → Pt such that t → ψ(Pt) is differentiable at t = 0. Then we define

ψ : P → Rm to be differentiable at P relative to a given tangent set ṖP if there exist a

continuous linear map ψ̇P : L2(P ) → Rm such that for every g ∈ ṖP and a submodel

t→ Pt with score function g,

ψ(Pt)− ψ(P )

t
→ ψ̇Pg.

This requires that the derivative of the map t → ψ(Pt) exists in the ordinary sense,

and also that it has a special representation.

By the Riesz representation theorem for Hilbert space, the map ψ̇P can always be

written in the form of an inner product with a fixed vector-valued, measurable function

ψ̃P : X → Rm,

ψ̇Pg =

∫
ψ̃PgdP.

Here the function ψ̃P is not uniquely defined by the functional ψ and the model P .

However, it is always possible to find a candidate ψ̃P whose coordinate functions are
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contained in linṖP , the closure of the linear span of the tangent set. This function is

unique and is called efficient influence function. It can be found as the projection of

any other influence function onto the closed linear span of the tangent set.

As usual, an estimator Tn is a measurable function Tn(X1, . . . , Xn) of the observations.

An estimator Tn is called regular at P for estimating ψ(P ) (relative to ṖP ) if there

exists a probability measure L such that

√
n(Tn − ψ(P1/

√
n,g))

P1/
√

n,g
; L, for every g ∈ ṖP .

We shall say that an estimator sequence is asymptotically efficient at P , if it is regular

at P with limit distribution L = N(0, P ψ̃P ψ̃
T
P ).

The efficient influence function ψ̃P plays the same role as the normalized score function

in parametric models. In particular, a sequence of estimators Tn is asymptotically

efficient at P if

√
n(Tn − ψ(P )) =

1√
n

n∑
i=1

ψ̃P (X i) + oP (1).

This justifies the name “efficient influence function”.

2.3 Efficient score functions

A function ψ(P ) of particular interest is the parameter θ in a semiparametric model

{Pθ,r : θ ∈ Θ, r ∈ R}, where Θ is a subset of Rm and R is an arbitrary set, typically

of infinite dimension. The information bound for the functional of interest ψ(Pθ,r) = θ

can be expressed in an efficient score function.

As submodels, we use paths of the form t → Pθ+ta,rt , for given paths t → rt in the

parameter set R. The score functions for such submodels typically have the form of a

sum of partial derivative with respect to θ and r. If ˙̀
θ,r is the ordinary score function
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for θ in the model in which r is fixed, then we expect

∂

∂t |t=0
log dPθ+ta,rt = aT ˙̀

θ,r + g.

The function g has the interpretation of a score function for r if θ is fixed and runs

through an infinite-dimensional set if we are concerned with a “true” semiparametric

model. We refer to this set as the tangent set for r and denote it by rṖPθ,r
.

The parameter ψ(Pθ+ta,rt) = θ + ta is differentiable with respect to t in the ordinary

sense but is, by definition, differentiable as a parameter on the model if and only if

there exists a function ψ̃θ,r such that

a =
∂

∂t |t=0
ψ(Pθ+ta,rt) =

〈
ψ̃θ,r, a

T ˙̀
θ,r + g

〉
Pθ,r

, a ∈ Rm, g ∈r ṖPθ,r
.

Setting a = 0, we see that ψ̃θ,r must be orthogonal to the tangent set rṖPθ,r
for the

nuisance parameter. Define Πθ,r as the orthogonal projection onto the closure of the

linear span of rṖPθ,r
in L2(Pθ,r).

The function defined by

˜̀
θ,r = ˙̀

θ,r − Πθ,r
˙̀
θ,r

is called the efficient score function for θ, and its covariance matrix Ĩθ,r = Pθ,r
˜̀
θ,r

˜̀T
θ,r

is the efficient information matrix. The efficient score function for θ is then the score

function for θ minus its projection on the set of nuisance score functions. Therefore,

as a consequence, we refer to
1

n

n∑
i=1

l̃θ,r(X i) = 0

as the efficient score equation.

Lemma 2.3.1. Suppose that for every a ∈ Rm and every g ∈r ṖPθ,r
there exists a path

t→ rt in R such that∫ (
dP

1/2
θ+ta,rt

− dP
1/2
θ,r

t
− 1

2

(
aT ˙̀

θ,r + g
)
dP

1/2
θ,r

)2

−→ 0.
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If Ĩθ,r is nonsingular, then the functional ψ(Pθ,r) = θ is differentiable at Pθ,r relative to

the tangent set ṖPθ,r
= lin ˙̀

θ,r +r ṖPθ,r
with efficient influence function ψ̃θ,r = Ĩ−1

θ,r
˜̀
θ,r.

Consequently, an estimator sequence is asymptotically efficient for estimating θ if

√
n (Tn − θ) =

1√
n

n∑
i=1

Ĩ−1
θ,r

˜̀
θ,r(X i) + oPθ,r

(1).

2.4 Score and information operators

The method to find the efficient influence function of a parameter given in the preceding

section is the most convenient method if the model can be naturally partitioned in

the parameter of interest and the nuisance parameter. For many parameters such a

partition is not possible or not natural. We can then give another useful description of

the tangent set for the nuisance parameter, in term of a score operator.

Consider first the situation that the model P = {Pr : r ∈ R} is indexed by a parameter

r that is itself a probability measure on some measurable space. We are interested in

estimating a parameter of the type ψ(Pr) = χ(r) for a given function χ : R → Rm on

the model R.

The model R gives rise to a tangent set Ṙr at r. If the map r → Pr is differentiable

in an appropriate sense, then its derivative maps every score b ∈ Ṙr into a score g for

the model P . To be precise, we assume that a smooth parametric submodel t → rt

induces a smooth parametric submodel t→ rt are related by

g = Arb.

Then ArṘr is a tangent set for the model P at Pr. Because Ar turns scores for the

model R into scores for the model P it is called score operator.

So far, we have assumed that the parameter r is a probability distribution, but we
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can consider the more general case of a model P = {Pr : r ∈ R} indexed by a parame-

ter r running through an arbitrary set R. In this general setting, let Rr be a subset of

a Hilbert space that indexes direction b in which r can be approximated within R.

We can now illustrate the particular case of a semiparametric model {Pθ,r : θ ∈ Θ, r ∈ R},

where the pair (θ, r) plays the role of the single r and Rk × Rr plays the role of the

earlier Rr. The two parameters can be perturbed independently, and the score operator

can be expected to take the form

Aθ,r(a, b) = aT ˙̀
θ,r +Bθ,rb.

Here Bθ,r : Rr → L2(Pθ,r) is the score operator for the nuisance parameter. The domain

of the operator Aθ,r : Rk × linRr → L2(Pθ,r) is a Hilbert space relative to the inner

product
〈
(a, b), (α, β)

〉
η

= aTa+
〈
b, β
〉

Rr
.

The efficient influence function for estimating θ is expressed in the efficient score func-

tion for θ in Lemma 2.3.1, which is defined as the ordinary score function minus its

projection onto the score-space for r. Presently, the latter space is the range of the op-

erator Bθ,r. Denoted by B∗
θ,r the adjoint score operator of Bθ,r, if the operator B∗

θ,rBθ,r

is continuously invertible, then the operator Bθ,r(B
∗
θ,rBθ,r)

−1B∗
θ,r is the orthogonal pro-

jection onto the nuisance score space, and

˜̀
θ,r =

(
I −Bθ,r(B

∗
θ,rBθ,r)

−1B∗
θ,r

)
˙̀
θ,r.

This means that b = −Bθ,r(B
∗
θ,rBθ,r)

−1B∗
θ,r

˙̀
θ,r is a least favorable direction in R, for

estimating θ.

2.5 Efficient score equations

The most important method of estimating the parameter in a parametric model is the

method of maximum likelihood, and it can be reduced to solving the score equations
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∑n
i=1

˙̀
θ(X i) = 0. A natural generalization to estimating the parameter θ in a semi-

parametric model {Pθ,r : θ ∈ Θ, r ∈ R} is to solve θ from the efficient score equation

n∑
i=1

˜̀
θ,r̂(X i) = 0.

Here we use the efficient score function instead of the ordinary score function, and we

substitute an estimator r̂ for the unknown nuisance parameter.

A disadvantage of this method is that it requires an explicit form of the efficient score

function. In general the efficient score function is defined only implicitly as an orthog-

onal projection.

A variation of this approach is then to obtain an estimator r̂(θ) of r for each given

value of θ, and next to solve θ from the equation

n∑
i=1

˜̀
θ,r̂(θ)(X i) = 0.

If θ̂ is a solution, then it is also a solution of the preceding display, for r̂ = r̂(θ̂). The

asymptotic normality of θ̂ can therefore be proved by the same methods as applying to

this estimating equation. Due to our special choice of estimating function, the nature

of the dependence of r̂(θ) on θ should be irrelevant for the limiting distribution of
√
n(θ̂ − θ).

For simplicity, we shall adopt the notation as in the first estimating equation, even

though for the construction of θ̂ the two-step procedure, which profile out the nuisance

parameter, may be necessary.

Often the nuisance parameter r, which is infinite-dimensional, cannot be estimated

within the usual order O(n−1/2) for parametric models. Then the classical approach to

derive the asymptotic behavior of Z-estimators is impossible. Instead, we utilize the

notion of a Donsker class.
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The auxiliary estimator for the nuisance parameter should satisfy

Pθ̂,r
˜̀̂
θ,r̂ = oP

(
n−1/2 +

∥∥∥θ̂ − θ
∥∥∥

m

)
(2.5.1)

and

Pθ,r

∥∥∥ ˜̀̂
θ,r̂ − ˜̀

θn,r

∥∥∥2

→P 0, Pθ̂,r

∥∥∥ ˜̀̂
θ,r̂

∥∥∥2

= OP (1). (2.5.2)

This last condition requires that the plug-in estimator ˜̀
θn,r̂ is a consistent estimator

for the true efficient influence function. Because Pθ,r
˜̀̂
θ,r = 0, the first condition (2.5.1)

requires that the bias of the plug-in estimator, due to estimating the nuisance parame-

ter, converge to zero faster than n−1/2.

A first theorem that we can enunciate about the asymptotic efficiency of the Euclidean

parameter θ̂ is as follows

Theorem 2.5.1. Suppose that the model {Pθ,r : θ ∈ θ} is differentiable in quadratic

mean with respect to θ at (θ, r) and let the efficient information matrix Ĩθ,r be non-

singular. Assume that (2.5.1) an (2.5.2) hold. Let θ̂ satisfy
√
nPn

˜̀̂
θ,r̂ = oP̂ (1) and be

consistent for θ. Furthermore, suppose that there exists a Donsker class with square-

integrable envelope function that contains every function ˜̀̂
θ,r̂ with probability tending to

one. Then the sequence θ̂ is asymptotically efficient at (θ, r).

An improvement of this theorem will be stated and applied in chapter 4 to prove

the asymptotic efficiency of the parameter θ̂.
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Chapter 3

Some Concepts of Nonparametric
Theory

The basic idea of nonparametric inference is to use data to infer an unknown quantity

while making as few assumptions as possible or keeping the number of underlying as-

sumptions as weak as possible. Usually, this means using statistical models that are

infinite-dimensional.

The estimation of the distribution function, density estimation, nonparametric regres-

sion or curve estimation are examples of problem that frequently occur in nonparamet-

ric inference. Typically, we will assume that the distribution function, the density or

the regression function r, lies in some large set R called statistical model. For example,

we might assume that

r ∈ R =

{
f :

∫ (
f
′′
(x)
)2

dx ≤ ρ

}
, ρ ≥ 0,

which is the set of functions that are not too wiggly, or we might assume that

r ∈ R =

{
f : f is monotone and

∫ (
f
′′
(x)
)2

dx ≤ ρ

}
, ρ ≥ 0,

which is the set of functions that are not too wiggly and monotone. These are, actually,

the restrictions in which we are interested in this thesis. In the next section we review

some basic concepts on empirical processes that are used repeatedly in the later chapter.
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3.1 Overview of the basic theory

Empirical processes, main tool of nonparametric theory, are applied to the study of

nonparametric aspect of the single index model.

Let F a class of functions f : X → R defined on the probability space (X ,A, P ).

Suppose that X1, . . . , Xn are i.i.d. P on X . Then the empirical measure

Pn =
1

n

n∑
i=1

δXi

is the discrete random measure that puts mass 1/n at every observation. Thus for any

Borel set A ⊂ R

Pn(A) =
1

n

n∑
i=1

1A(X i) =
] {i ≤ n : X i ∈ A}

n
.

Moreover, for f : X → R, we write the empirical measure evaluated at f

Pn(f) =

∫
fdPn =

1

n

n∑
i=1

f(X i).

The empirical process Gn =
√
n(Pn − P ) evaluated at the function f is

Gn(f) =
1√
n

n∑
i=1

(
f(X i)−

∫
fdP

)
.

If F is a class of functions for which

‖Pn − P‖F = sup
f∈F

|Pn(f)− P (f)| −→a.s. 0

then we say that F is a P -Glivenko-Cantelli class of functions.

The class F is called Donsker class if the empirical process {Gn(f) : f ∈ F} converges

in distribution in the metric space l∞(F) of all bounded function z : F → R, which is

equipped with the supremum norm, that is

l∞(F) =

{
z : F → R : ‖z‖F = sup

f∈F
|z(f)| <∞

}
.
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When a class of functions F is a P -Glivenko-Cantelli class and when it is a P -Donsker

class? Answers to these questions began during the 1970’s especially with Vapnik and

Červonenkis (1971) and Dudley (1978) and continued with contributions from Pollard,

Giné and Zinn, and Gaenssler.

Statements about Glivenko-Cantelli and Donsker classes are frequently phrased in

terms of bracketing numbers and covering numbers for a class F of functions f : X → R.

The covering number N(ε,F , ‖·‖) is the minimal number of balls {g : ‖g − f‖ < ε} of

radius ε needed to cover F . The centers of the balls need not belong to F , but they

should have finite norms.

Given a pair of functions l ≤ u the bracket [l, u] consist of all functions f with l ≤ f ≤ u.

An ε-bracket is a bracket [l, u] with ‖u− l‖ < ε. The bracket number N[](ε,F , ‖·‖) is

the minimum number of ε-brackets needed to cover F . The upper and lower bounds u

and l of the brackets need not belong to F themselves but are assumed to have finite

norms.

The entropy with bracketing is the logarithm of the bracketing number.

A sufficient condition for a class F to be a P -Glivenko-Cantelli class is that the brack-

eting numbers N[](ε,F , L1(P )) are finite for every ε > 0.

According to a theorem of Ossiander (1987) a sufficient condition for F to be a P -

Donsker class is that ∫ ∞

0

√
logN[](ε,F , L2(P ))dε <∞.

Important examples of classes such that this last inequality is satisfied are classes of

smooth functions on Euclidean spaces.
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Chapter 4

Theoretical Properties of Index and
Regression Function Estimators

4.1 Introduction

Two estimation problems in single-index models are intensively discussed in the liter-

ature. As is explained in section 1.5, the first consists of estimation of the unknown

regression function r : R → R and the objective of the second, more intensively prob-

lem studied, is to recover the index vector θ ∈ Θ ⊂ Rm. In this thesis instead, we will

study the estimation of the couple of parameters (θ, r) in the single-index model

Y = r(θ′X) + ε, (4.1.1)

where Y is the one-dimensional response variable, X is an observed m-dimensional

vector of independent variables.

We suppose that ε ∼ N(0, σ2) is an unobserved error with finite variance and that the

regression function r is completely unknown, except for monotonicity and qualitative

smoothness assumptions.

Several methods to estimate (θ, r) have been developed in the theory of semiparametric

estimation.
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In the M-estimation approach the estimator (θ̂, r̂) of (θ, r), constructed by minimization

of an M-functional with respect to (θ, r), could be expressed in the form

(θ̂, r̂) = arg min
θ,rθ,λ

n∑
i=1

ψ
(
yi, rθ,λ(θ

′xi)
)

where rθ,λ(t) = E[Y |θ′X = t], λ is a smoothing parameter for the regression function

and ψ is a so called contrast function. Typical examples are the semiparametric max-

imum likelihood estimator, with −ψ being the log-likelihood of the errors ε, and the

semiparametric least squares estimators, with ψ(y, r) = |y − r|2. With the hypothesis

of standard normality for the error variable, these two methods are coincidental.

In this thesis we study a particular case of these two methods, where the smoothing

parameter is introduced by addition of a penalization term with which it is possible to

take into account the assumptions of smoothness for the regression function r. More-

over, if the regression function r is supposed to be monotone, then the estimator r̂ is

constrained to belong to a class of monotone functions.

4.2 Discussion on the assumptions of smoothing and
monotonicity

Data smoothing, consisting in fitting a smooth function to filter out noise in data,

is one of the basic tools in statistical applications. This has been reflected by the

large amount of recent literature on nonparametric regression estimation. A num-

ber of smoothing techniques have been proposed, including kernel smoothing, nearest

neighbors, smoothing splines, local polynomials and B-splines approximations. The

statistical theory, often asymptotic, and computational issues have been rather exten-

sively studied by supporters of each method.
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In this thesis the attention is focused on the less-discussed problem of estimating re-

gression curves that are known or required to be monotone. In many applications,

monotonicity is an integrated part of the function being fitted and it is natural to

expect a monotonic relationship between a response variable and an associated index.

For a simple example, growth curves describing weight or height of growing objects

over time, are known to be increasing. We expect wages to be increasing in an index

of human capital. In the item response theory, the item characteristic curve, which

measures probability of getting a correct answer for an examine with given latent abil-

ity parameter, is generally believed to be monotone. Such example are abound in

economics, medical sciences and psychometrics. Considerations of both efficiency and

interpretability would lead us to constrained smoothing. The articles by Friedman and

Tibshirani (1984), Hawkins (1994), and Ramsay (1988) include several other examples

where monotone smoothing is useful.

While it may be reasonable to assume a monotonic relationship between a response

and a linear index, it is usually difficult to specify the exact nature of the monotonicity.

It is therefore desirable to develop estimators of (θ, r), for semiparametric monotonic

linear index models.

Arguably, in nonparametric context, the best known method for preserving monotonic-

ity is isotonic regression, which provides the fitted values at the observed predictor with

monotonicity. However, this method undersmoothes the data and is very sensitive to

outlying observations at the endpoints of the design space. One natural idea is to

combine smoothing with isotonic regression. In theory it is possible to incorporate the

monotonicity in every smoothing method, but a satisfactory solution is not always easy

to come by. Friedman and Tibshirani (1984) used this approach with local averaging.

Mammen (1991), Mukerjee (1988) and Wright (1982) investigated the asymptotic rates
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of convergence for kernel estimators in conjunction with isotonic regression. Smooth-

ing can be done before or after isotonization. However, if we isotonize before, it is not

guaranteed that the estimate is monotone and if we isotonize after smoothing, it is not

guaranteed that for the estimated curve is preserved the initial degree of smoothness.

Monotonicity can also be imposed on smoothing splines (Villalobos and Wahba (1987)).

An important article by Ramsay (1988) proposed using I-splines defined on a suitably

chosen set of knots. I-splines are obtained by integrating B-splines with positive coeffi-

cients to ensure monotonicity. B-splines have long been known to have computational

efficiency and great approximation power. But it is not difficult to see that the class

of I-splines is relatively small compared to the class of all monotone splines, and that

there is always a possibility that the fit to the data could be improved by allowing more

general monotone splines. A different method based on a characterization of monotone

functions through differentiation operators was recently studied by Ramsay (1998).

In this thesis we propose a penalized maximum likelihood estimator (θ̂, r̂), searched in

the class of the monotone functions. We will prove that (θ̂, r̂) exists, that it is consis-

tent, that the rate of convergence for θ̂ is n−1/2 as in parametric context and for r̂ is

n−4/5 as in nonparametric context when the assumption of bounded second derivative

is made, but without the constraint of monotonicity of the regression function r. Fi-

nally we will prove the efficiency and asymptotic normality for the first estimator of

the couple (θ̂, r̂).

About the computational implementation of this monotone and penalized maximum

likelihood estimator, we propose a simple but effective monotone smoothing method

based on B-splines with which construct the searched estimator that is the maximizer,

in the class of monotone functions, of a penalized likelihood, introduced in the next

section. Indeed, a monotone B-spline is obtained by forcing the spline coefficients

to be monotone. In this way, the estimator is monotone and maintains the required
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smoothness properties.

4.3 Description of the smoothing monotone estimator

In this section we introduce the penalized maximum likelihood estimator, with the

constraint of monotonicy, that we propose in this thesis in order to estimate (θ, r) in

single index models.

Suppose that n vectors of observations (yi, xi), i = 1, . . . , n are available to estimate the

monotone and smoothing regression function and in its argument, the finite-dimensional

vector of parameter in the single-index model (4.1.1), in order to summarize how the

response variable depends on X.

Because it will be assumed that X is independent of r, θ and ε, the response variable

is then distributed as Y ∼ N(r(θ′X), σ2) and the density of the random vector (Y,X)

is

fY X(y, x; θ, r, σ2) = fY |X(y|x; θ, r, σ2) · fX(x)

=
1√

2πσ2
e
− 1

2

�
y−r(θ′ x)

σ

�2

· fX(x), (4.3.1)

and its log-likelihood function is

ln(θ, r, σ2) =
1

n
log

n∏
i=1

fY X(yi, xi; θ, r, σ
2)

= −1

2
log(2πσ2)− 1

2n

n∑
i=1

(
yi − r(θ′xi)

)2
σ2

.

Here the distribution of X does not appear in the likelihood, because is assumed inde-

pendent on r, θ and ε. It is considered fixed throughout the dissertation, but need not

be known.

Note that maximizing ln(θ, r, σ2) w.r.t. (θ, r) is the same as consider the following
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maximization criterion from which obtain the maximum likelihood estimator

(θ̃, r̃) = arg max
θ,r

{
− 1

n

n∑
i=1

(
yi − r(θ′xi)

)2} ≡ arg max
θ,r

hn(θ, r).

It is possible that the (θ̃, r̃) estimator is suboptimal, perhaps even asymptotically,

particularly if r is a priori thought to be smooth. The roughness of the “profile”

function

θ → sup
r
hn(θ, r),

is caused by the fact that the estimator r̃ for r is “not smooth” and is the cause too of

the possible suboptimality of the estimator (θ̃, r̃). Then we must smooth the data in

some way and, for example, we can control for the roughness of r̃ by adding a penalty

term defined as

J2(r) =

∫
D

r′′(u)2du,

where the domain D of the integral is taken to be a finite interval in R, that contains

the support of (θ′X) for every θ ∈ Θ.

The addition of a penalty term to the criterion we are optimizing is sometimes called

regularization.

In this thesis, we investigate the penalized maximum likelihood estimator

(θ̂, r̂) = arg max
θ∈Θ,r∈R

[
− 1

n

n∑
i=1

(
yi − r(θ′xi)

)2 − λ̂2
nJ

2(r)

]
. (4.3.2)

For a future study in single index models where the error variable ε is suppose to have

mean zero e finite variance, but its distribution is unknown, it could be useful to note

that, in this case, because of the hypothesis of standard normality for the error ε, (θ̂, r̂)

is obviously equivalent to the penalized least squares estimator

(θ̂, r̂) = arg min
θ∈Θ,r∈R

[
1

n

n∑
i=1

(
yi − r(θ′xi)

)2
+ λ̂2

nJ
2(r)

]
. (4.3.3)



4.3 Description of the smoothing monotone estimator 41

In the expressions (4.3.2) and (4.3.3), we have that the smoothing parameter λ̂n ∈ R

and the set R = {r : D → R : r is monotone and J2(r) <∞}.

Of course, other penalty terms could be used as well, for instance the L2-norm of a

higher derivative, that is

J2(r) =

∫
D

r(p)(u)2du, p ∈ Z.

If certain smoothness properties are known or believed to hold for r, this can suggest

a value for p. Using the second derivative appears to yield the minimal smoothness

of the estimator r̂ needed to make our arguments go through. The standard choice of

p = 2 corresponds to the assumption that r is continuously differentiable with a square

integrable second derivative.

The parameter λ̂n in (4.3.2) or (4.3.3), governs the trade-off between smoothness

and goodness of fit and is referred to λ̂n as the smoothing parameter.

What is the meaning of the smoothing parameter? Note that when λ̂n is large a

premium is being placed on smoothness and potential estimators with large, in the

general case, pth derivatives are penalized. In the limiting case with λ̂2
n = ∞, the

estimator r̂ is an pth order polynomial regression fit to the data. In particular, when p =

2, r̂ converges to the least squares line. Conversely, a small value of λ̂n corresponds to

more emphasis on goodness-of-fit and λ̂n = 0 produces an estimator r̂ that interpolates

the data in that r(xi) = yi, i = 1, . . . , n. This corresponds to no smoothing the data

at all. Then, the size of the smoothing parameter λ̂n determines the importance of the

penalty.

The main challenge in smoothing is to determine how much smoothing to do, in order

moreover to find a solution for the called bias-variance trade-off problem. We have
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indeed that large values of λ̂n leads to an estimator with large bias and small variance,

called oversmoothing. On the other hand, small values of the smoothing parameter

leads to an estimator with small bias but large variance, called undersmoothing.

The smoothing parameter may be data-dependent, but as we will see later, it should

satisfy

λ̂2
n = o

P

(
1

n1/2

)
, λ̂−1

n = OP

(
n2/5

)
. (4.3.4)

Conditions (4.3.4) are needed to be valid the results of consistency and asymptotic effi-

ciency of the Euclidean parameter. As a matter of fact, Theorem 4.4.5 is demonstrated

provided that λ̂−1
n = OP

(
n2/5

)
. Moreover, in order to verify the equation (4.4.5) and

so have that Theorem 4.4.14 holds, we need that λ̂2
n = o

P

(
n−1/2

)
.

Note that condition (4.3.4) leaves some freedom in choosing λ̂n, that is λ̂n can be con-

veniently chosen such that C1n
−2/5 ≤ λ̂n ≤ C2n

−1/4, for positive constants C1, C2. Any

choice satisfying (4.3.4) will result in an asymptotically efficient estimator θ̂. The best

convergence rate for the estimator r̂ is obtained by choosing λ̂n exactly of the order

n−2/5, but this may not be optimal (in terms of higher order properties) for estimating θ.

4.4 Theoretical results

In this section some properties of the penalized maximum likelihood estimator (4.3.2)

or penalized least squares estimator (4.3.3) are investigated.

We begin recalling the single-index model in study, that is:

Y = r(θ′X) + ε, (4.4.1)

where ε ∼ N(0, σ2) is an unobserved error with finite variance and the regression

function r is completely unknown, except for the assumptions of monotonicity and of

boundness of its second derivative.
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The following assumptions are used:

Assumption A1. Let X be independent of r, θ and ε;

Assumption A2. Let the support of (θ′X) be strictly contained in the finite interval D

for every θ ∈ Θ.

Assumption A3. Let Θ be compact and θ0 be an interior point of Θ.

Assumption A4. Let the support of (θ′0X) be the closure of its interior.

Assumption A5. Let (θ′X) and X have densities uniformly bounded (also in θ).

Assumption A6. Let Θ = {θ ∈ Rm : ‖θ‖m = 1}.

Assumption A7. Let r be not constant in the support of (θ′X);

Assumption A8. Let the distribution of X be continuous and have compact support,

not contained in any proper linear subspace of Rm and that contains an interior point.

Assumptions A1. and A2. are made in order to individualize the single-index model

and the penalized criterion defining the estimator.

Assumptions A3.-A5. will be useful in the prof of the following theorems.

Finally, assumptions A6.-A8. are essentially the usual identification conditions for θ

and r, in single-index models.

The main results in this chapter are about existence and consistency of the estimator

(θ̂, r̂) and mainly about the asymptotic efficiency of the Euclidean estimator θ̂.

To do that, in the following, we shall use the particular notations:

- We shall use Pθ,r for the distribution of (Y,X) under (θ, r).

- Let abbreviate Pθ0,r0 to P0 and in particular, let P0f denote the mean of f = f(Y,X)

under the law of (Y,X) under (θ0, r0).

- Let ‖·‖2 denote the L2-norm under P Y,X , given by the product of the dominating
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measure for X and the conditional distribution of Y given X.

- Let Pn = 1
n

∑n
i=1 δXi

denote the empirical distribution and with Gn =
√
n(Pn − P0),

the empirical process and finally,

- ., & mean smaller than, bigger than, up to a constant. This constant may depend

on the true parameter of the model, but not on any other parameter values.

Later on, we shall prove the results only for monotone increasing function r. The same

results hold and can be proved in the same way for monotone decreasing function.

4.4.1 Existence of the estimator (θ̂, r̂)

In this section we shall attend to prove the existence of the estimator (θ̂, r̂) of (θ, r).

We begin with the statement and the proof of the following useful lemma.

Lemma 4.4.1. Let r : R → R be a monotone function with J(r) <∞. Then

(i) |r′(s)− r′(s0)| ≤ J(r) |s− s0|1/2 for every s, s0 ∈ D;

(ii) sups∈D |r′(s)| . 1 + J(r).

Proof. By the Cauchy-Schwarz inequality |r′(s)− r′(s0)| =
∣∣∣∫ s

s0
r′′(t)dt

∣∣∣ ≤ J(r) |s− s0|1/2

for every s, s0 ∈ D. Integrating this w.r.t. s we see that |r(s)− r(s0)− r′(s0)(s− s0)| ≤

J(r) |D|3/2. Since r is bounded, we conclude that |r′(s0)| and hence ‖r′‖∞ is bounded

by a multiple of 1 + J(r). �

Recalling that we defined R = {r : D → R : r is monotone and J2(r) <∞}, we can

enunciate the following

Theorem 4.4.2. If the assumptions A1. and A2. hold and if r ∈ R, then (θ̂, r̂) exists
(but it is not unique).

Proof. For a given θ and a given vector p ∈ Rn such that −∞ < p1 ≤ p2 ≤ . . . ≤

pn < ∞, let Rθ,p be the set of all functions r obtained by first ordering the points
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θ′ xi, yielding the points t1 ≤ t2 ≤ . . . ≤ tn, and next requiring that J(r) < ∞, that

r(ti) = pi, for every i, and that r is monotone on each of the intervals [ti, ti+1].

Then, the searched arg maxθ,r

[
hn(θ, r)− λ̂2

nJ
2(r)

]
is equal to

sup
θ

sup
p

sup
r∈Rθ,p

[
hn(θ, r)− λ̂2

nJ
2(r)

]
.

To see this, about the inner supremum, note that hn(θ, r) is constant on Rθ,p, and

suppose that rm ∈ Rθ,p is a sequence with

J2(rm) → G(θ, p) := inf
r∈Rθ,p

J2(r).

By the parallelogram law applied to the Hilbert space norm J(r), we have

J2(rm − rn) + J2(rm + rn) = 2J2(rm) + 2J2(rn).

Since 1
2
(rm + rn) ∈ Rθ,p, we have J2

(
1
2
(rm + rn)

)
≥ G(θ, p). Combined with the pre-

ceding display, this shows that J2(rm − rn) → 0. Thus r′′m is a Cauchy sequence and

hence has a converging subsequence.

By Lemma 4.4.1(ii) and the Ascoli-Arzela theorem, the sequence rm also has a sub-

sequence that converges uniformly to a function rθ,p. Conclude that rθ,p ∈ Rθ,p and

J2(rθ,p) = G(θ, p).

The function p 7→ J(rθ,p) is convex. Indeed, since 1
2

(
rθ,p

1
+ rθ,p

2

)
∈ Rθ,(p

1
+p

2
)/2 and

the semi-norm r 7→ J(r) is convex, we have

J
(
rθ,(p

1
+p

2
)/2

)
≤ J

(
1

2

(
rθ,p

1
+ rθ,p

2

))
≤ 1

2
J
(
rθ,p

1

)
+

1

2
J
(
rθ,p

2

)
.

We conclude that p 7→ J(rθ,p) is continuous in Rn and in particular on the compact set

−∞ < p1 ≤ p2 ≤ . . . ≤ pn < ∞. Therefore, the function p 7→ hn(θ, rθ,p) − λ̂2
nJ

2(rθ,p)

is continuous as well and hence attains its maximum. It follows that the supremum on

the right side of

g(θ) := sup
r

[
hn(θ, r)− λ̂2

nJ
2(r)

]
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is taken for some rθ.

Since hn(θ, r) ≤ 0 and infθ g(θ) > −∞ there must exist a finite constant M such that

g(θ) := sup
r:J(r)≤M

[
hn(θ, r)− λ̂2

nJ
2(r)

]
.

The function θ 7→ hn(θ, r) are equicontinuous when r satisfies J(r) ≤M , since

|r(θ′1 x)− r(θ′2 x)| ≤ ‖r′‖∞ |θ
′
1 x− θ′2 x| . (1 + J(r))

∣∣(θ1 − θ2)
′ x
∣∣

. K ‖θ1 − θ2‖m ,

in view of Lemma 4.4.1(ii). It follows that the functions θ 7→ g(θ) are continuous and

hence attains their maximum at some point θ̂. One can now conclude that
(
θ̂, rθ̂

)
maximizes the penalized likelihood. �

4.4.2 Results of consistency

In this section it is shown that, under some regularity conditions, the penalized maxi-

mum likelihood estimator (θ̂, r̂), with, as known, r̂ restricted to be monotone and with

bounded second derivative, is consistent. It is also shown that these estimators are

consistent separately.

We begin quoting the useful Lemma 3.5 in Murphy et al. (1999) that is in this thesis

renumerated in the following way:

Lemma 4.4.3. Let F be a class of functions f : D → R on a interval D ⊂ R such

that ‖f‖∞ ≤ M and such that the (k − 1)th derivative is absolutely continuous with∫
f (k)(x)2dx ≤M , for some constant M . Then there exists a constant C such that

logN[] (ε,F , ‖·‖∞) ≤ C

(
M

ε

)1/k

, 0 < ε ≤M.

Proof. See Birman and Solomjak (1967). �
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Let denote here by pθ,r the density of (Y,X) under (θ, r), with respect to P Y,X and

P = {pθ,r : θ ∈ Θ, r ∈ R}. With this notation, an expression for (θ, r), equivalent to

(4.3.2) is

(θ̂, r̂) = arg max
θ∈Θ,r∈R

[∫
log pθ,rdPn − λ̂2

nJ
2(r)

]
. (4.4.2)

Moreover, recalling that the Hellinger distance between two densities, p1 and p2, with

respect to a σ-finite measure µ, is defined as

h(p1, p2) =

(
1

2

∫ (
p

1/2
1 − p

1/2
2

)2

dµ

)1/2

,

we can now enunciate the

Lemma 4.4.4.

h2(pθ̂,r̂, pθ0,r0) + 4λ̂2
nJ

2(r̂) ≤ 16

∫
gpθ̂,r̂

d(Pn − P ) + 4λ̂2
nJ

2(r0),

where gp = 1
2
log

p+pθ0,r0

2pθ0,r0
.

Proof.

4

∫
gpθ̂,r̂

dPn − λ̂2
nJ

2(r̂) ≥
∫

log

(
pθ̂,r̂

pθ0,r0

)
dPn − λ̂2

nJ
2(r̂) ≥ −λ̂2

nJ
2(r0),

so ∫
gpθ̂,r̂

d(Pn − P )− 4λ̂2
nJ

2(r̂) ≥ −16

∫
gpθ̂,r̂

dP − 4λ̂2
nJ

2(r0)

≥ 16h2

(
pθ̂,r̂ + pθ0,r0

pθ0,r0

, pθ0,r0

)
− 4λ̂2

nJ
2(r0)

≥ h2
(
pθ̂,r̂, pθ0,r0

)
− 4λ̂2

nJ
2(r0).

�

The next theorem shows that, under some regularity conditions, the estimator (θ̂, r̂) is

consistent and it is given a rate of convergence.
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Theorem 4.4.5. Under the assumptions A1.-A8. listed previously, if r0 ∈ R and

pθ0,r0 ≥ η2
0 for a constant η0, then

h(pθ̂,r̂, pθ0,r0) = OP (λ̂n) (4.4.3)

and

J(r̂) = OP (1). (4.4.4)

Proof. Let PM = {pθ,r ∈ P : J(r) ≤M} and P
1
2
M =

{
p

1
2
θ,r =

√
pθ,r+pθ0,r0

2
: pθ,r ∈ PM

}
,

with M ≥ 1. Since pθ0,r0 ≥ η2
0, Theorem 2.4 of van de Geer (2000) implies for the

bracketing entropy in L2-norm

H[]

(
ε,P

1
2
M , L2

(
P Y,X

))
≤ A

(
M

ε

)
, M ≥ 1, ε > 0.

Then, if P ′
M = {pθ,r ∈ P : 1 + J(r) + J(r0) ≤ 2M}, we have that P ′

M ⊆ P2M and if

P ′
1
2
M =

{
p

1
2
θ,r =

√
pθ,r+pθ0,r0

2
: pθ,r ∈ P ′

M

}
, we have P ′

1
2
M ⊆ P

1
2
2M , then

H[]

(
ε,P ′

1
2
M , L2

(
P Y,X

))
≤ H[]

(
ε,P

1
2
2M , L2

(
P Y,X

))
≤ A′

(
M

ε

)
, M ≥ 1, ∀ε > 0.

Moreover, ∥∥∥p1/2
θ,r − p

1/2
θ0,r0

∥∥∥
2
≤ h(pθ,r, pθ0,r0), ∀p1/2

θ,r ∈ P ′1/2

M ,

in fact this inequality is satisfied iff∫ (
p

1/2
θ,r − p

1/2
θ0,r0

)2

dP Y,X ≤ 1

2

∫ (
p

1/2
θ,r − p

1/2
θ0,r0

)2

dP Y,X

that is verified iff∫ [
1

2

(
p

1/2
θ,r − p

1/2
θ0,r0

)2

− 1

2

(
(pθ,r + pθ0,r0)

1/2 − (2pθ0,r0)
1/2
)2]

dP Y,X ≥ 0.

The last inequality holds because of the first inequality in exercise 4, page 337 of van der

Vaart and Wellner (1996).
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In order to apply Lemma 5.14 of van de Geer (2000) with GM = P ′
1
2
M , I(g) = 1+J(r)+

J(r0), d(p
1
2
θ,r, p

1
2
θ0,r0

) = h(pθ,r, pθ0,r0) and α = 1
2
, β = 0, we have still to verify that there

exists a constant c0 > 0 such that for all M ≥ 1 we have

sup
p
1/2
θ,r ∈P ′

1/2
M

d(p
1/2
θ,r , p

1/2
θ0,r0

) ≤ c0M.

This inequality holds seeing that h2(p, q) = 1 −
∫ √

pqdµ = 1 − ρ(p, q) ≤ 1 since

0 ≤ ρ(p, q) ≤ 1.

Now, from Lemma 5.14 of van de Geer (2000) we have

sup
h(pθ,r,pθ0,r0

)>n−
2
5 [1+J(r)+J(r0)]

∫
gpθ,r

d(Pn − P )

h3/4(pθ,r, pθ0,r0)[1 + J(r) + J(r0)]
= OP (n−

1
2 ),

sup
h(pθ,r,pθ0,r0

)≤n−
2
5 [1+J(r)+J(r0)]

∫
gpθ,r

d(Pn − P )

1 + J(r) + J(r0)
= OP (n−

2
5 ).

Thus, proceeding as in Theorem 10.6 of van de Geer (2000), for m=2, we find (4.4.3)

and (4.4.4), in view of (4.3.4). �

By theorem 4.4.5, the density pθ̂,r̂ is consistent for pθ0,r0 also for the ‖·‖2-norm and

J(r̂) = OP (1). Here we prove that these statements carry over into the consistency of

θ̂ and r̂ separately, using for θ̂, the Euclidean norm in Rm.

Since the true hn(θ, r) evaluates the functions r only at the points θ′0 x, we do not

control over r off the support of the variable θ′0X. To assert that r is consistent, we

may use the norm ‖·‖D for D the support of θ′0X, and, for a given set D,

‖r‖D = sup
z∈D

|r(z)|+ sup
z∈D

|r′(z)| .

For the consistency of the derivative r̂′, we avail ourself of the assumption A4., letting

D be the closure of its interior, which is true, for instance, if D is an interval.
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Let, first of all, enunciate some lemmas, remarkable for their own importance and, above

all, for their usefulness in the proof of the main following theorem in this section, about

the separate consistency of the estimators θ̂ and r̂.

Lemma 4.4.6. For every fixed M , the set of the restrictions r|D of the monotone

functions r with J(r) ≤M is precompact relatively to ‖·‖D.

Proof. By Lemma 4.4.1 (i) the class of functions r′|D is uniformly Lipschitz of order

1/2, hence equicontinuous, and
∥∥∥r′|D∥∥∥∞ is uniformly bounded, as soon as J(r) is uni-

formly bounded. Applying the Ascoli-Arzela theorem, we see that every sequence of

function rn with J(rn) = O(1) has a subsequence such that both rn and r′n converge

uniformly on D to limits. The limit of r′n must necessarily be the derivative of the limit

of rn. �

Lemma 4.4.7. If
∥∥pθ,r − pθ0,r0

∥∥
2

= 0 for r such that J(r) < ∞, then θ = θ0 and

r = r0 on the support of θ′0X.

Proof. By hypothesis and by equality (4.3.1) we have that r(θ′ x) = r0(θ
′
0 x) almost

surely under the distribution of (Y,X). By continuity and by the assumptions for the

identifiability of the estimators, it is possible conclude that the functions must be equal

on the support of X. Differentiating partially the identity with respect to x, we find

θir
′
i(θi xi) = θ0ir

′
0i(θ0i xi), for i = 1, . . . , n.

These identities are valid on the interior of the support of X. Once more, by the as-

sumptions for identifiability of the parameters, since r′0 is nonzero, one can conclude

that θ = θ0. Next conclude that r = r0 almost surely under the distribution of θ′0X

and hence r = r0 on the support of θ′0X. �
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Lemma 4.4.8. θ̂ P→ θ0 and ‖r̂ − r0‖D

P→ 0.

Proof. Suppose that pθm,rm → pθ0,r0 in ‖·‖2 and J(rm) = O(1). By Lemma 4.4.6, every

subsequence of (θm, rm) has a further subsequence such that θm → θ and ‖rm → r‖D →

0 for some θ and r. Then
∥∥pθm,rm − pθ,r

∥∥
2
→ 0 by the continuity of the map (θ, r) 7−→

pθ,r. Thus,
∥∥pθ,r − pθ0,r0

∥∥
2

= 0 and hence θ = θ0 and r = r0 on the support of θ0X

by the Lemma 4.4.7. Under the assumption that D is the closure of its interior, this

implies that r′ and r′0 agree on D as well. It follows that rm → r0 and r′m → r′0 uni-

formly on D. Combined with the preceding lemmas and Theorem 4.4.5, this yields the

lemma. �

It is now formulate the main theorem of consistency, in this section.

Theorem 4.4.9. Under the assumptions A1.-A8. listed previously, if the conditional

distribution of X given θ′0X is nondegenerate, then this implies that both
∥∥∥θ̂ − θ0

∥∥∥
m

and ‖r̂(θ′0 x)− r0(θ
′
0 x)‖2 are OP (λ̂n).

Proof. To see that the rate of convergence of r̂(θ̂
′
x) in the ‖·‖2-norm carries over

into a rate for r̂ in the L2(P
θ′0 X)-distance, we prove, first of all , the differentiability of

r(θ′ x) in (θ, r), as it is shown in the following Lemma 4.4.10.

Moreover, since
∥∥∥θ̂ − θ0

∥∥∥
m

P→ 0, that P0(r̂
′ − r′0)

2 (θ0x)
P→ 0 and that J(r̂) is bounded,

we see that

P0

[
r̂
(
θ̂
′
x
)
− r0 (θ′0x)

]2
& P0

[
−
(
θ̂ − θ0

)′
x r′0 (θ′0x) + (r̂ − r0) (θ′0x)

]2

− o
P
(1)
∥∥∥θ̂ − θ0

∥∥∥2

m
.

By the assumptions that the conditional distribution of X given θ0X is nondegenerate

and r′0 is nonzero, the expectation on the right is bounded (below) by a constant times
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∥∥∥θ̂ − θ0

∥∥∥2

m
+ P0 (r̂ − r0)

2 (θ0x) by Lemma 4.4.11 applied with g1 =
(
θ̂ − θ0

)′
x r′0 (θ′0x)

and g2 = (r̂ − r0) (θ′0x). Indeed, by the Cauchy-Schwartz inequality, for any function

g, we have

(P0x r
′
0 (θ′0x) g(θ

′
0x))

2
= (E0E0(X|θ′0X)r′0(θ

′
0X)g(θ′0X))

2

≤ E0

[
E0(X|θ′0X)2(r′0)

2(θ′0X)
]
E0g

2(θ′0X))2.

The first term on the right is strictly smaller than E0X
2(r′0)

2(θ′0X) unless Xr′0(θ
′
0X) is

a function of θ′0X, which is excluded by our assumptions. This concludes the proof of

the theorem. �

Lemma 4.4.10.

P0

[
r (θ′x)− r0 (θ′0x)−

(
− (θ − θ0)

′ x r′0 (θ′0x) + (r − r0) (θ′0x)
)]2

. ‖θ − θ0‖
5/2
m J(r) + ‖θ − θ0‖

2
m P0(r

′ − r′0)
2 (θ0x) .

Proof. The left side is equal to

P0

[
r (θ′x)− r (θ′0x) + (θ − θ0)

′ x r′0 (θ′0x)
]2

= P0

[
r (θ′x)− r (θ′0x)− (θ − θ0)

′ x r′ (θ′0x) + (θ − θ0)
′ x (r′ + r′0) (θ′0x)

]2
= P0

[
(θ − θ0)

′∇θ r(θ̃
′
x)− (θ − θ0)

′ x r′ (θ′0x) + (θ − θ0)
′ x (r′ + r′0) (θ′0x)

]2
= P0

[
(θ − θ0)

′ xr′(θ̃
′
x)− (θ − θ0)

′ x r′ (θ′0x) + (θ − θ0)
′ x (r′ + r′0) (θ′0x)

]2
. ‖θ − θ0‖

2
m ‖x‖

2
∞ P0

[
r′(θ̃

′
x)− r′ (θ′0x) + (r′ + r′0) (θ′0x)

]2
. ‖θ − θ0‖

2
m ‖x‖

2
∞

{
P0[r

′(θ̃
′
x)− r′ (θ′0x)]

2 + P0(r
′ − r′0)

2 (θ′0x)
}

for θ̃ in the line segment L(θ, θ0).

Now
∣∣∣r′(θ̃ x)− r′ (θ0x)

∣∣∣ . J(r)
∥∥∥θ̃ − θ0

∥∥∥1/2

m
‖x‖∞ and ‖x‖∞ is bounded. The result fol-

lows. �
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We write up here Lemma 5.7 of Murphy et al. (1999) that is now renumerated in the

following way:

Lemma 4.4.11. Let g1 and g2 be measurable functions such that (Pg1g2)
2 ≤ cPg2

1g
2
2

for a constant c < 1. Then

P (g1 + g2)
2 ≥ (1−

√
c)(Pg2

1 + Pg2
2).

4.4.3 Asymptotic efficiency for the Euclidean parameter

In this section we show that the first component of the estimator (θ̂, r̂) is asymptot-

ically normal with covariance matrix equal to the inverse of the efficient information

matrix, that is it is asymptotically efficient in the semiparametric sense. It is obviously

assumed that the efficient information matrix is nonsingular.

Before to enunciate the main theorem of this section, it is illustrated the general setting

in which the following Proposition 4.4.12 (van der Vaart (1996)) works.

Suppose that the observations are i.i.d. sample from a density pθ,η indexed by a Euclid-

ean parameter θ and an arbitrary parameter η. For every parameter (θ, η) let l̃θ,η be

an arbitrary measurable vector-valued function such that l̃θ0,η0 is the efficient score

function for the parameter θ at (θ0, η0). We consider estimators (θ̂n, η̂n) such that

1

n

n∑
i=1

l̃θ̂n,η̂n
(Xi) = o

P

(
1

n1/2

)
. (4.4.5)

Therefore, such estimators need not necessarily satisfy the efficient score equation in

its full strength. Really, note that the equation (4.4.5) may be satisfied even if the

efficient score function is not an actual score function, in which case the approach

still holds. A further note is that the estimators (θ̂n, η̂n) need not be the maximum
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likelihood estimators. As this in our case, any consistent estimators for which (4.4.5)

is valid could be used.

The following proposition yields the asymptotic normality of the sequence
√
n(θ̂n− θ0)

under regularity conditions and structural “no bias”-condition

Pθ̂n,η0
l̃θ̂n,η̂n

= o
P

(
1

n1/2

)
. (4.4.6)

It is formulated in terms of empirical process theory reviewed in the preceding chapter.

Proposition 4.4.12. Suppose that the model θ 7→ pθ,η0 is differentiable in quadratic

mean at θ0, that (Pθ0,η0 + Pθ,η0)
∥∥∥l̃θ,η

∥∥∥2

= O(1), and that (θ, η) 7→ l̃θ,η is continuous

in Pθ0,η0-probability at (θ, η0). Furthermore, suppose that the class of functions l̃θ,η is

Pθ0,η0-Donsker for (θ, η) ranging over a neighborhood of (θ0, η0). If (θ̂n, η̂n) is consistent

for (θ0, η0) and (4.4.5) and (4.4.6) are satisfied, then the sequence
√
n(θ̂ − θ0) is as-

ymptotically m-variate Gaussian with mean zero and covariance matrix the inverse of

the efficient information matrix Ĩθ0,η0 = Eθ0,η0

[
l̃θ0,η0 l̃

′
θ0,η0

]
, where l̃θ0,η0 is the efficient

score function at (θ0, η0).

Proof. See van der Vaart (1996). �

Lemma 4.4.13. For every M ≥ 1,

logN[] (ε, {r (θ′ x) : θ ∈ Θ, J(r) ≤M} , L2(P0)) .

(
M

ε

)1/2

.

Proof. Let r|D be the restriction of r to D and using Lemmas 4.4.1 and 4.4.3, we have

logN[]

(
ε,
{
r|D : J(r) ≤M

}
, ‖·‖∞

)
.

(
M

ε

)1/2

.

Now we may construct a net over the class of functions of interest, by first choosing

an ε/M -net θ1, . . . , θp over Θ (for the Euclidean distance in Rm), next choosing an
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ε-net r1, . . . , rq over the functions r|D (for the supremum metric), and finally forming

all functions ri(θj x). Then for every (θ, r) there exists (θj, ri) such that

∣∣r(θ x)− ri(θj x)
∣∣ ≤ ‖r′‖∞

∥∥θ − θj

∥∥
m
‖x‖∞ +

∥∥r|D − ri

∥∥
∞ . M

ε

M
+ ε . ε.

If B > 0 is such that Θ ⊆ [−B,B]m, then we need at most
(

2BM
ε

)m points θj to get∥∥θ − θj

∥∥
m
< ε/M , for some θj and we need at most exp

(
C (M/ε)1/2

)
points ri for

some C. Thus, the entropy for the uniform norm of the class of function in the lemma

is bounded by a multiple of (M/ε)1/2 +m log(M/ε). Consequently, the bracketing en-

tropy for the L2-norm is bounded similarly. �

Theorem 4.4.14. Suppose that the assumptions A1.-A8. listed previously hold, that

r0 is a monotone function (e.g. increasing), that the functions u 7→ E(X|θ′X = u) can

be chosen three times continuously differentiable and form a P0-Donsker class when

θ range over Θ, and that r0 is three times continuously differentiable on the interval

D with nonzero derivative. Then
√
n(θ̂ − θ0) is asymptotically m-variate Gaussian

with mean zero and covariance matrix the inverse of the efficient information matrix

Ĩθ0,r0 = Eθ0,r0

[
l̃θ0,r0 l̃

′
θ0,r0

]
, for l̃θ,r given by (4.4.7).

Proof. We shall apply the proposition 4.4.12 with (θ, η) = (θ, r) and l̃θ,η the efficient

score function for the model, for every (θ, r), that we denote with l̃θ,r. We construct

suitable m-dimensional submodels in order to show that the efficient score equation

(4.4.5) is satisfied. For this choice of functions l̃θ,r, the bias condition (4.4.6) is satisfied

trivially, with the left side vanishing, as will follow from the direct calculation later in

this section.

We begin with the construction of the efficient score function for θ, l̃θ,r. The ordinary



56 Theoretical Properties of Index and Regression Function Estimators

score function for θ of the model is the function

l̇θ,r(y, x) =
1

σ2
(y − r (θ′x)) r′ (θ′x)x.

The score function for the submodel given by rt = r + t′B is equal to

Aθ,rB(y, x) =
1

σ2
(y − r (θ′x))B (θ′x)

Of course, the surface rt = r + t′B defines a true submodel only for perturbations

B such that rt is nondecreasing and Bi(−∞) = Bi(∞) = 0 for i = 1, . . . ,m. If we

restrict the model by requiring that J(r) < ∞, then Bi should also have J(Bi) < ∞

for i = 1, . . . ,m. Comparing the formulas l̇θ,r and Aθ,rB, we see that minimizing

Pθ,r

(
l̇θ,r − Aθ,rB

)2

over B is a weighted least squares problem that is solved by

Bθ,r(u) = r′(u)hθ(u),

for

hθ(u) = E [X|θ′X = u] .

Then the efficient score function for θ is given by

l̃θ,r(y, x) =
1

σ2
(y − r (θ′x)) r′ (θ′x) (x− E [X|θ′X = θ′x]) . (4.4.7)

Note, however, that the present functions Bθ,r satisfy J(Bθ,r) < ∞ only if r is three

times differentiable, which is more than we initially assume for every r in the model.

Therefore, we will construct and use a more complicated type of surface rt, which is

well defined as soon as J(r) < ∞. From this it is clear that l̃θ,r is the efficient score

function already under the condition that J(r) <∞. The construction of this surface

is necessary because our proof of asymptotic normality of θ̂ uses a perturbation of r̂,

for which the finiteness of J(r̂) is guaranteed by definition, but possibly not a smooth

third derivative.
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By assumption the support Dθ of the variables θ′X (under P0) is contained strictly

within the interval D, for every θ. Therefore, for every (θ, t) such that ‖θ − t‖m is

sufficiently close to zero, there exists a strictly increasing , infinitely often differentiable

function u 7→ ψθ,t(u) with

ψθ,t(u) = u, u ∈ Dθ,

ψθ,t(u+ (θ − t)′hθ(u)) = u, u ∈ δD.

Moreover, we can ensure that (u, t) 7→ ψθ,t(u) is infinitely often differentiable at u ∈

D, t = θ as well. The second identity in the preceding display ensures that ψθ,t(D) = D

and will be used to control the partial derivative of J(rt(θ, r)) with respect to t in the

argument below.

For a given pair (θ, r), we now define a least favorable submodel as

rt(θ, r)(u) = r ◦ ψθ,t(u+ (θ − t)′hθ(u)).

Then rθ(θ, r)(θ
′x) = r(θ′x) for every x in the support of X, and, with a dot denoting

differentiation with respect to t,

rt(θ, r)
′(u) = r′ ◦ ψθ,t(u+ (θ − t)′hθ(u))

× ψ′θ,t(u+ (θ − t)′hθ(u))(1 + (θ − t)′h′θ(u)),

ṙt(θ, r)(u) = r′ ◦ ψθ,t(u+ (θ − t)′hθ(u))

×
[
ψ̇θ,t(u+ (θ − t)′hθ(u))− ψ′θ,t(u+ (θ − t)′hθ(u))hθ(u)

]
,

∂

∂t
log pt,rt(θ,r)(y, x) =

1

σ2
(y − rt(θ, r) (t′x)) (xrt(θ, r)

′(t′x) + ṙt(θ, r)(t
′x)) .

Evaluated at t = θ this yields to the efficient score function l̃θ,r. Next, with φθ,t(u) =

ψθ,t(u+ (θ − t)′hθ(u)),

rt(θ, r)
′′(u) = r′′ ◦ φθ,t(u)φ

′
θ,t(u)

2 + r′ ◦ φθ,t(u)φ
′′
θ,t(u).
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For sufficiently small ‖θ − t‖m the map φθ,t is a strictly increasing, three times differ-

entiable bijection on D. Therefore,

J2(rt(θ, r)) =

∫
D

[
r′′(v)(φ′θ,t ◦ φ−1

θ,t (v))
2 + r′(v)(φ′′θ,t ◦ φ−1

θ,t (v))
]2 dv

φ′θ,t ◦ φ
−1
θ,t (v)

.

It follows that J(rt(θ, r)) < ∞ whenever J(r) < ∞ and ‖θ − t‖m is sufficiently close

to zero. Furthermore, this quantity is partially differentiable with respect to t in a

neighborhood of θ, with derivative at t = θ bounded in absolute value by a multiple

of
∫

D
(r′′(v)2 + r′(v)2)dv . J2(r). Since θ̂, r̂ maximizes the likelihood and rθ̂(θ̂, r̂) = r̂,

the value θ̂ maximizes the function t 7→ log
∏
pt,rt(θ̂,r̂)(yi, xi)− λ̂2J2(rt(θ̂, r̂)). It follows

that
1

n

n∑
i=1

l̃θ̂,r̂(Yi, X i)− λ̂2 ∂

∂t |t=θ̂

J2
(
rt(θ̂, r̂)

)
= 0.

In view of (4.3.4) and the fact that J(r̂) = OP (1), the condition (4.4.5) is verified, that

is
1

n

n∑
i=1

l̃θ̂,r̂(Yi, X i) = o
P
(n−1/2).

Moreover, the condition (4.4.6) is also verified and we have

Pθ̂,r0
l̃θ̂,r̂ = o

P

(
1

n1/2

)
.

In order to verify the regularity conditions of Proposition 4.4.12, note first, by Lemma

4.4.1, that

|r̂′(θ̂x)− r̂′(θ̂0x)| . J(r̂)
∥∥∥θ̂ − θ0

∥∥∥1/2

m
,

|r̂(θ̂x)− r̂(θ̂0x)| . (1 + J(r̂))
∥∥∥θ̂ − θ0

∥∥∥
m
.

By Lemma 4.4.8, since θ̂ P→ θ0, the right sides converge to zero in probability. Combined

with the convergence r̂ P→ r0 with respect to the uniform norm on the closure of the

support of θ0X, and the assumption that r0 is bounded, the functions (1/σ2)(y−r̂(θ̂
′
x))
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are seen to be bounded with probability tending to one. Furthermore, the functions

r̂′(θ̂
′
x) are uniformly bounded. Since also the functions hθ̂ are uniformly bounded,

it follows that the functions l̃θ̂,r̂(y, x) are uniformly bounded with probability tend-

ing to one. Thus (Pθ0,r0 + Pθ,r0)||l̃θ,r||2 = O(1) is bounded trivially. Furthermore,

l̃θ̂,r̂(y, x) → l̃θ̂0,r̂0
(y, x) for Pθ0,r0-almost every (y, x).

It is straightforward to check that the model θ 7→ pθ,r0 is differentiable in quadratic

mean at θ0 with score function l̇θ0,r0 as given previously.

By Lemma 4.4.13 and the bracketing-central-limit-theorem of Ossiander (Cf. Theorem

2.5.6 of van der Vaart and Wellner (1996)), the class of functions r(θ′x), with r ranging

over the monotone (e.g. increasing) function with J(r) ≤M and θ ∈ Θ, is P0-Donsker.

For the functions r(θ′x) restricted to be bounded, the functions (1/σ2)(y − r(θ′x)) are

Lipschitz transformations of the functions (r(θ′x), y). Thus, under this restriction, this

class is P0-Donsker by Theorem 2.10.6 of van der Vaart and Wellner (1996). It is also

uniformly bounded.

By Lemma 4.4.15 (below) and the bracketing-central-limit-theorem, the class of func-

tions r′(θ′x) with J(r) ≤M is P0-Donsker. It is also uniformly bounded.

The class of function x− hθ(θ
′x) is P0-Donsker by assumption.

Combining these results, we conclude by Theorem 2.10.6 of van der Vaart and Wellner

(1996) that the class of functions l̃θ,r with θ ranging over Θ and r over the monotone

functions such that J(r) ≤ M and such that ‖r − r0‖D is sufficiently small, is P0-

Donsker. �

Lemma 4.4.15. For every M ≥ 1,

logN[] (ε, {r′(θ′x) : θ ∈ Θ, J(r) ≤M} , L2(P0)) .

(
M

ε

)
.

Proof. By Lemma 4.4.1 the class of derivative r′ of functions r with J(r) ≤ M is
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uniformly bounded by a multiple of 1 + J(r) . M on D. Clearly,
∫

D
(r′)′2(u)du =

J2(r) ≤M2. Therefore, by Lemma 4.4.3

logN
(
ε,
{
r′|D : J(r) ≤M

}
, ‖·‖∞

)
.

(
M

ε

)
.

Furthermore, by Lemma 4.4.1 |r′(s)− r′(s0)| ≤ |s− s0|1/2J(r) for every s, s0 ∈ D.

Now we can construct a net over the class of functions of interest, by first choosing

an (ε/M)2-net θ1, . . . , θp over Θ (for the Euclidean distance in (R)m) next choosing an

ε-net s1, . . . , sq over the functions r′|D (for the supremum metric), and finally forming

all functions si(θj x). Then for every (θ, r) there exists (θj, si) such that

∣∣r′(θ x)− si(θj x)
∣∣ ≤M

∥∥θ − θj

∥∥1/2

m
‖x‖∞ + ||r′|D − si||∞ . M

ε

M
+ ε . ε.

If B > 0 is such that Θ ⊆ [−B,B]m, then we need at most
(

2BM2

ε2

)m

points θj to

get
∥∥θ − θj

∥∥
m
< (ε/M)2, for some θj and we need at most a power of (M/ε) points

si. Thus, the entropy for the uniform norm of the class of function in the lemma is

bounded by a multiple of (M/ε) +m log(M/ε). Consequently, the bracketing entropy

for the L2-norm is bounded similarly. �

From these theorems, we argue that, under the regularity conditions listed previ-

ously, θ0 can be estimated with a n−1/2 rate of convergence in probability, which is the

typical rate of convergence achieved by parametric estimators under i.i.d. sampling.

The n−1/2 convergence rate of the estimator θ̂ implies that the estimator is not infi-

nitely inefficient compared with conventional parametric approaches even though the

model is not restricted within a finite-dimensional space.

This rate of convergence for θ̂ and its efficiency, is not a surprise in fact, as we saw in

section 1.5, a lot of the exposed estimators of θ achieve the same rate of convergence,

under, more o less, similar assumptions as these made in the study of the penalized
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maximum likelihood estimator.

Particular attention and a special comment we owe to the paper of Yu and Ruppert

(2002). They studied partially linear single-index models, a generalization of single-

index models examinated in this thesis, even without assumptions of monotonicity for

the link function and of normality for the error variable ε. In their work, they focused

the attention in the estimation of θ by means of penalized least squares and by means

a P-splines estimation which is a generalization of smoothing splines, allowing a more

flexible choice of knots and penalty. As a direct least squares fitting method this ap-

proach is computationally stable and, unlike our estimation in the following chapters,

by natural cubic splines, their approach has the benefit to be rapid. About the asymp-

totic properties, they proved consistency and asymptotic normality for their penalized

least squares estimator of θ. The only drawback in that paper is in the strong assump-

tion that the regression function r to be estimated, is supposed to be a spline function.

The contribution of this thesis with respect to the article of Yu and Ruppert (2002) is

in a similar study, but about any regression function provided that it is monotone, as a

sentence written in this work explain: “Moreover asymptotic results with an increasing

number of knots (i.e. when the link function is not supposed to be a spline function)

are limited to rates of convergence; at least this is true of all results of which we are

aware.”

An interesting generalization of the study in this thesis, could be then removing the

assumptions of normality for the error variable and of monotonicity for the regression

function.

About the rate of convergence of the estimator r̂, this is also not completely a surprise,

even if usually in literature, we don’t care about consistency and rate of convergence

for the estimator of the regression function in single-index models. Anyway, our study

in this thesis, is about the couple (θ, r) and we investigated also in the properties of r̂.
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Our aim and our hope were that, imposing the constraint of monotonicity, it could have

been possible to obtain a faster rate of convergence than n−4/5, which is the rate of non-

parametric estimators of r, when the regression function r is only supposed to be twice

differentiable. Indeed, in solely nonparametric regression context, it happens that if the

true regression function is strictly monotone (e.g. if the first derivative is bounded away

from zero), then with sufficient smoothness assumptions, the monotonicity restrictions

become nonbinding as the sample size increases. The constrained estimator then has

the same convergence rate as the unconstrained estimator (see Utreras (1985)). This

negative finding, however, does not imply that monotonicity will be uninformative in

small samples. Indeed, one could argue that, given the paucity of a priori information

present in nonparametric estimation, any additional constraints should be exploited as

far as possible particularly in moderately sized samples.



Chapter 5

Nonparametric Regression with
Smoothing Splines

5.1 Introduction

There are a lot of methods to study nonparametric regression functions such as lo-

cal regression methods and penalization methods or series-based smoothers, including

wavelets (Tarter and Lock (1993), Ogden (1996)). The former includes kernel regres-

sion(Wand and Jones (1995)) and local polynomial regression(Fan and Gijbels (1996)).

Penalization methods lead to methods based on splines (Eubank (1988, 1999a), Wahba

(1990), Friedman (1991), Green and Silverman (1994), Stone et al. (1997) and Hansen

and Kooperberg (2002)). All these estimators are linear smoothers, in the sense as it

is explained later.

In this chapter we will present some of the known theory on smoothing spline estima-

tors for the nonparametric regression curve, useful for our purposes. Smoothing splines

are indeed used when we wish to fit a data set using a function that reflects the key

features of the data but retains some degree of smoothness.

Let us suppose that observations are taken on the random variable Y at n predeter-

mined values of the independent variable X. Let (yi, xi), i = 1, . . . , n, be the values of
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Y and X and assume that yi and xi are related by the regression model

yi = r(xi) + εi i = 1, . . . , n (5.1.1)

where εi ∼ N(0, σ2), i = 1, . . . , n and r(xi) are values of some unknown function

r ∈ W p
2 [a, b], with a, b ∈ R, at the design points x1, . . . , xn. Without loss of generality,

we will assume here, that a ≤ x1 ≤ · · · ≤ xn ≤ b.

A natural measure of smoothness associated with a function r ∈ W p
2 [a, b] is

∫ b

a
(r(p)(x))2dx

while a standard measure of goodness-of-fit to the data is the average residual sum-of-

squares ARSSn(r) = n−1
∑n

i=1[yi − r(xi)]
2. Thus, a good estimator of r could then be

obtained by the function r̂ that minimizes

1

n

n∑
i=1

[yi − r(xi)]
2 + λ̂n

∫ b

a

(r(p)(x))2dx, λ̂n > 0, (5.1.2)

over r ∈ W p
2 [a, b]. Note that this minimization problem can be led back to that in the

preceding chapter when we consider the one-dimensional case with m = 1.

The result of the minimization of (5.1.2), is the smoothing spline estimator of the

nonparametric regression function to be studied.

5.2 Meaning of the penalization term

In chapter 4 a first explanation of the use of the penalized criterion (5.1.2) is given.

To have a better insight into the meaning of the penalization, we provide now another

motivation that can be obtained from polynomial regression. Using Taylor’s theorem,

we can write the model (5.1.1) as

yi =

p∑
j=1

αjx
j−1
i +Rem(xi) + εi i = 1, . . . , n

for constants α1, . . . , αp and where

Rem(xi) =
1

(p− 1)!

∫ b

a

r(p)(x)(xi − x)p−1
+ dx.
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From the Cauchy-Schwarz inequality we have

max
1≤i≤n

Rem(xi)
2 ≤ Jp(r)

(2p− 1)[(p− 1)!]2
,

where

Jp(r) =

∫ b

a

r(p)(x)2dx

is the smoothness measure from the criterion (5.1.2). The value of Jp(r) can be viewed

as providing a bound on how far (5.1.1) departs from a polynomial model.

If we knew, for example, that

Jp(r) ≤ ρ , ρ ≥ 0, (5.2.1)

then this would provide us with information on how far the regression curve could

depart from a polynomial form and we could input this information into the estimation

process. One way of accomplishing this would be to estimate r by the minimizer of

RSSn(r) =
n∑

i=1

(yi − r(xi))
2 (5.2.2)

over all functions r ∈ W p
2 [a, b] which satisfy (5.2.1). This is equivalent to minimizing

(1/n)RSSn(r) + λ̂n(Jp(r) − ρ), where λ̂n is now the Lagrange multiplier for the con-

straint. But this is essentially the criterion (5.1.2) and produces the same estimator of

r as (5.1.2). The relationship between the estimators obtained from (5.2.1)-(5.2.2) and

(5.1.2) is made precise in the following theorem of Schoenberg (1964).

Theorem 5.2.1. Assume that n ≥ p and let r(·, ρ) the minimizer of (5.2.2) in W p
2 [a, b]

subject to the constraint (5.2.1). Let rλ̂n
denote the minimizer of (5.1.2) in W p

2 [a, b].

Then, there is a computable constant ρ0 such that the sets {r(·, ρ) : 0 ≤ ρ ≤ ρ0} and{
rλ̂n

(·) : 0 ≤ λ̂n ≤ ∞
}

are identical in that for any value of λ̂n there is a unique ρ such

that rλ̂n
(·) = r(·, ρ) and conversely. If ρ ≤ ρ0, then J(r(·, ρ)) = ρ.
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Theorem 5.2.1 has the consequence that, as we will see later, the solution to the con-

strained minimization problem posed by (5.2.1)-(5.2.2) is a smoothing spline estimator

of r corresponding to some value of λ̂n. On the other hand, the choice of a particular

value for λ̂n corresponds to the assumption that Jp(r) ≤ ρλ̂n
with ρλ̂n

= Jp(r) reflecting

the beliefs about the magnitude of the remainder terms Rem(xi), i = 1, . . . , n. Since

the choice ρ = 0 produces a polynomial regression estimator, it follows that smooth-

ing splines give an extension of polynomial regression that attempts to guard against

departures from an idealized polynomial regression model.

5.3 Smoothing splines

Smoothing splines are a popular and effective technique for data smoothing. The origin

of smoothing splines appears to lie in work on graduating data by Whittaker (1923).

However, spline smoothing techniques were generally regarded as numerical analysis

methods until extensive research by Grace Wahba demonstrated their utility for solv-

ing a host of statistical estimation problems. It has now become clear that smoothing

splines provide extremely flexible data analysis tools. Indeed piecewise polynomials or

smoothing splines extend the advantages of polynomials to include greater flexibility,

local effects of parameter changes and the possibility of imposing useful constraints on

estimated functions. Among these constraints is monotonicity, which can be an impor-

tant property in many curve estimation problems. As a result, smoothing splines have

become quite popular and have found applications in such diverse areas as the analy-

sis of growth data, medicine, remote sensing experiments and economics. Extensive

developments of spline smoothing methods and related techniques can now be found

in several books including Schumaker (1981), de Boor (2001), Wahba (1990), Green

and Silverman (1994) and Ruppert et al. (2003). The review of splines in statistics by
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Wegman and Wright (1983) is particularly recommended. Silverman (1985) provides a

very readable review of the application of spline smoothing in nonparametric regression

estimation.

Polynomial, r(x) =
∑k

i=1 αix
i−1, owe their central role in practical mathematics to two

features: they are linear in the parameters αi to be estimated, and the functions xi−1

that are linearly combined are easy to manipulate algebraically and numerically, espe-

cially with respect to differentiation and integration. However, polynomials do have

one serious limitation: a lack of flexibility in the sense that changing the behavior of

r near to one value x1 has radical implications for its behavior for any other value x2.

This poses the problem of how to retain flexibility where it is needed, while leaving the

function elsewhere either relatively unaffected or constrained as desired.

We want now give a definition and some properties of smoothing splines and in par-

ticular of natural splines. First of all, let us define a spline of order k with knots at

x1, . . . xn to be any function s of the form

s(x) =
k−1∑
j=0

αjx
j +

n∑
j=1

βj(x− xj)
k−1
+ (5.3.1)

for some set of coefficients α0, . . . , αk−1, β1, . . . , βn, called spline coefficient vector. Here

(x − xj)
k−1
+ means {max (x− xj), 0}k−1. Let Sk(x1, . . . xn) denote the vector space of

all functions of the form (5.3.1).

The functions 1, x, x2, . . . , xk−1, (x− x1)
k−1
+ , . . . , (x− xn)k−1

+ form a basis for the set of

splines of order k at the knots x1, . . . xn, called truncated power basis. Although the

simplicity of this basis makes it attractive for statistical work, and Smith (1979) and

others have used it effectively in applications, it has the rather serious disadvantage of

generating considerable rounding error except for very low values of k.
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The expression in (5.3.1) is then a particular form for splines expressed in term of trun-

cated power basis. We will see that it is possible rewrite that same spline in relation

to other basis as, for example, B-splines basis.

This definition in (5.3.1), of spline of order k with knots at x1, . . . xn, is equivalent to

saying that

1) s is a piecewise polynomial of order k on any subinterval [xi, xi+1);

2) s has k − 2 continuous derivatives and;

3) s has a discontinuous (k − 1)st derivative with jumps at x1, . . . xn.

According to this definition, a spline is a piecewise polynomial whose different polyno-

mial segments have been joined at the knots in such a way that are ensured certain

continuity properties. Notice, in particular, that a spline is the smoothest possible

piecewise polynomial which still retains a segmented nature.

In this thesis, it is of interest the set of spline functions that are natural splines of order

2p with knots at x1, . . . xn. These are splines of order 2p with knots at x1, . . . xn that,

in addition to the properties 1)-3), satisfies the further property

4) s is a polynomial of order p outside of [x1, xn].

The name “natural spline” stems from the fact that, as a result of the property 4), s

satisfies the natural boundary condition

r(p+j)(a) = r(p+j)(b) = 0, j = 1, . . . , p− 1.

Denoting by NS2p(x1, . . . xn) the set of all natural splines of order 2p with knots at

x1, . . . xn, we have that NS2p(x1, . . . xn) ⊂ S2p(x1, . . . xn), in fact NS2p(x1, . . . xn) is

obtained from S2p(x1, . . . xn) taking only the splines in S2p(x1, . . . xn) satisfying the

property 4). About the dimension of these spaces, we have that the dimension of

S2p(x1, . . . xn) is n+ 2p and the dimension of the vector space NS2p(x1, . . . xn) is n. In
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particular, we see that in order to be s a natural spline, we must have in (5.3.1)

α0 = · · · = α2p−1 = 0

since s must be a polynomial of order p for x < x1. The estimation of the regression

function r is then led back from an infinite dimensional estimation problem, to a finite

dimensional estimation problem: the number of parameter to estimate is n + 2p for

splines of order 2p and n for natural splines with knots at x1, . . . xn.

We can now enunciate a known theorem (see, for example, Wahba (1990)) in spline

regression theory, that relates natural splines and the estimator obtained from the

minimization of the the penalized maximum likelihood function or average residual

sum-of-squares in (5.1.2).

Theorem 5.3.1. If n ≥ p, the function r̂ that minimizes

1

n

n∑
i=1

[yi − r(xi)]
2 + λ̂n

∫ b

a

(r(p)(x))2dx, λ̂n > 0,

over r ∈ W p
2 [a, b], is a natural spline of order 2p with knots at the data points x1, . . . xn.

The estimator r̂ is called smoothing spline.

We have that r̂ is then a 2pth order piecewise polynomial with 2p − 2 continuous

derivatives that consists of different polynomial segments over each of the intervals

[xi, xi+1], i = 1, . . . , n − 1, and is a polynomial of order p outside of [x1, xn]. As a

matter of fact, for any function r ∈ W p
2 [a, b] criterion (5.1.2) can only become smaller

if we replace r by the natural spline which agrees with r at the design points.

Cubic splines are the most common splines used in practice. They arise naturally in

the penalized regression framework when in the penalization term we consider p = 2.

The theorem above does not give an explicit form for r̂. We will study this aspect of

the smoothing splines in the next section.
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5.4 Form of the estimator

In this section we will recall how to obtain an explicit expression for the smoothing

spline estimator.

As we remarked at the start of this chapter, the smoothing spline estimators are linear

smoothers. So, to begin, we provide some definitions.

Definition 5.4.1. An estimator r̂ of r is a linear smoother if, for each x, there exists

a vector `(x) = (`1(x), . . . , `n(x))T such that

r̂(x) =
n∑

i=1

`i(x)Yi.

Define the vector of fitted values

r̂ = (r̂(x1), . . . , r̂(xn))T

where Y = (Y1, . . . , Yn)T . It then follows that

r̂ = LY

where L is an n × n matrix whose ith row is `(xi)
T ; thus, Lij = `j(xi). The entries of

the ith row show the weights given to each Yi in forming the estimate r̂(xi).

Definition 5.4.2. The matrix L is called the smoothing matrix or the hat matrix and

the effective degrees of freedom is usually defined by

ν = tr(L).

Now, we can start with the search of the form of the smoothing spline estimator.

We will consider the case where the xi are distinct. Also we will assume that a value

for λ̂n has been selected so that the smoothing parameter value is fixed. In Section

5.6, we will show how to obtain a right value for λ̂n, completely automatically from the
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data.

Since the solution of the minimization of (5.1.2) over all functions in W p
2 [a, b] is a

natural spline r̂, we have then a reduction of complexity of the problem, from a infinite-

dimensional to the finite-dimensional problem of minimization over the n dimensional

set of natural splines. A closed form for the estimator can be derived from the following

theorem (see, for example, Eubank (1988)).

Theorem 5.4.3. Let b1, . . . bn be a basis for the set of natural splines of order 2p with

knots at x1, . . . xn and define B = bj(xi)i,j=1,n. Then, if n ≥ p the unique minimizer of

(5.1.2) is

r̂ =
n∑

j=1

αjbj, (5.4.1)

where α is the unique solution with respect to γ of the equation system(
BTB + λ̂nΩ

)
γ = BTy (5.4.2)

where

Ω =

{∫ b

a

b
(p)
i (x)b

(p)
j (x)dx

}
i,j=1,n

. (5.4.3)

Then the smoothing spline estimators are actually linear estimators and the vector of

fitted values corresponding to the smoothing spline estimator is

r̂ = Sλ̂n
y (5.4.4)

where, in analogy with linear regression, the hat matrix is

Sλ = B
(
BTB + λ̂nΩ

)−1

BT . (5.4.5)

The problems are now in the choice of a suitable basis for the set of natural splines

of order 2p with knots at x1, . . . xn and, in particular, of a suitable basis with which

one can construct natural cubic splines (that is of fourth order, for p = 2) at which
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it could be possible to impose the monotonicity constraint of the regression function.

Moreover, it remains the problem of the selection of a right value for the smoothing

parameter λ̂n.

5.5 Natural cubic splines with B-spline basis

In this section we will see how to construct natural cubic spline estimator. For the

moment, let’s assume that the value of λ̂n has been specified and that the interest is now

in the evaluation of the corresponding vector of fitted values r̂ = (r̂(x1), . . . , r̂(xn))T .

From the preceding theorem 5.4.3 and equations (5.4.1) and (5.4.2) we have that r̂ is

given by the expression

r̂ = B
(
BTB + λ̂nΩ

)−1

BTy.

In order to accomplish these calculations efficiently, in the literature is suggested to use

the natural spline basis functions such that B and the system (5.4.2) are band limited

and thereby allow the fitted values to be computed in O(n) calculations.

In his book, de Boor (2001), using a piecewise polynomial representation of the es-

timator, provides a code which implements an efficient approach that gives a O(n)

algorithm for computing r̂.

We now introduce a different basis for the set of splines called the B-spline basis that

is particularly well suited for computation. These are defined as follows.

Let x0 = a and xn+1 = b. Define new knots τ1, . . . , τp such that

τ1 ≤ τ2 ≤ · · · ≤ τp ≤ x0,

τj+p = xj for j = 1, . . . , n, and

xn+1 ≤ τn+p+1 ≤ · · · τn+2p.
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The choice of extra knots is arbitrary; usually one takes τ1 = · · · = τp = x0 and

xn+1 = τn+p+1 = · · · = τn+2p. We define the basis functions recursively as follows. First

we define

Bi,1 =

 1 if τi ≤ x ≤ τi+1

0 otherwise

for i = 1, . . . , n+ 2p− 1. Next, for q ≤ p we define

Bi,q =
x− τi

τi+q−1 − τi
Bi,q−1 +

τi+q − x

ti+q − τi+1

Bi+1,q−1

for i = 1, . . . , n+2p−q. It is understood that if the denominator is 0, then the function

is defined to be 0.

Theorem 5.5.1. The functions {Bi,4, i = 1, . . . , n} are a basis for the set of cubic

splines. They are called the B-spline basis functions.

The advantage of the B-spline basis functions is that they have compact support which

makes it possible to speed up calculations. See Hastie et al. (2001) for details.

Figure 5.1 shows the cubic B-splines basis using nine equally spaced knots on (0, 1).

According to Theorem 5.3.1, r̂ is a natural cubic spline. Hence we can write

r̂(x) =
n∑

j=1

α̂jBj(x)

where B1, . . . , Bn are basis for the natural splines (such as the B-splines). Thus, we

only need to find the coefficients (α̂1, . . . , α̂n)T . By expanding r in the basis we can

rewrite the problem in the minimization of:

(Y −Bα)T (Y −Bα) + λ̂nα
T Ωα (5.5.1)

where Bij = Bj(Xi) and Ωjk =
∫
B′′

j (x)B′′
k(x)dx.

The value of α that minimizes (5.5.1) is then

α̂ = (BTB + λ̂nΩ)−1BTY .
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Figure 5.1: Cubic B-spline basis using nine equally spaced knots on (0, 1).

Cubic B-splines are then an example of linear smoothers, indeed we can rewrite that for

the cubic B-spline spline r̂(x) there exist weights `(x) such that r̂(x) =
∑n

i=1 Yi`i(x).

In particular, the smoothing matrix L is

L = B(BTB + λ̂nΩ)−1BT (5.5.2)

and the vector r̂ of fitted values is given by

r̂ = LY .

If we had done ordinary linear regression of Y on B, the hat matrix would be L =

B(BTB)−1BT and the fitted values would interpolate the observed data. The effect

of the term λ̂nΩ in (5.5.2) is to shrink the regression coefficients toward a subspace,

which results in a smoother fit. As before, we define the effective degrees of freedom

by ν = tr(L) and we choose the smoothing parameter λ̂n by minimizing either the

cross-validation score CV or the generalized cross-validation score GCV.
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5.6 Selection of the smoothing parameter λ

The spline smoothers depend on some smoothing parameter λ and we will need some

way of choosing λ.

In this section we will show how in literature is suggested to select a value for λ in (5.1.2)

and solve the problem to select a suitable level of smoothing for a set of data. It is

possible to find formulas, definition and theorems written in this section, in Wasserman

(2006).

There are a lot of ways to choose a value for the smoothing parameter, even to try

the estimation with arbitrary values of λ until one is found which gives a visually

satisfactory fit. This can be time consuming and it may be preferable to use some data

driven value that can be used subsequently for the estimation by the suitable chosen

splines basis. We would not expect the same value of λ to work for every value data

set.

We begin thus defining the risk

R(λ) = E

(
1

n

n∑
i=1

(r̂(xi)− r(xi))
2

)
.

As one can understand, we would like to select that value of λ which minimizes R(λ).

From this, it is clear that a good choice of the smoothing parameter depends both on

the unknown true regression curve as well as the inherent variability of the estimator.

The minimization of R(λ) is however not possible because it depends on the unknown

function r(x). Because of this inconvenient, we choose to minimize an estimate R̂(λ)

of R(λ). The risk R(λ) is then estimated using the leave-one-out cross-validation score

which is defined as follows.

Definition 5.6.1. The leave-one-out cross-validation score is defined by

CV (λ) = R̂(λ) =
1

n

n∑
i=1

(
Yi − r̂(−i)(xi)

)2 (5.6.1)



76 Nonparametric Regression with Smoothing Splines

where r̂(−i) is the estimator obtained by omitting the ith pair (xi, Yi).

In this definition, we need to say that

r̂(−i)(x) =
n∑

j=1

Yj`j,(−i)(x)

where

`j,(−i)(x) =

 0 if j = i
`j(x)P

k 6=i `k(x)
if j 6= i.

In other words we set the weight on xi to 0 and renormalize the other weights to sum

to one.

Note that, since E(R̂) ≈ R+σ2, the cross-validation score is nearly an unbiased estimate

of the risk.

The estimation of R̂(λ) by means of the expression (5.6.1), is not convenient since we

need to recompute the estimator every time that each observation is dropped out. We

will use, in the implementation of the algorithm in the next chapter, a modification of

the following, more practical formula for computing R̂ for linear smoothers.

Theorem 5.6.2. Let r̂n be a linear smoother. Then the leave-one-out cross-validation

score R̂(λ) can be written as

R̂(λ) =
1

n

n∑
i=1

(
Yi − r̂(xi)

1− Lii

)2

(5.6.2)

where Lii = `i(xi) is the ith diagonal element of the smoothing matrix L.

The smoothing parameter λ can be now chosen by minimizing R̂(λ).

The method that, actually, has been chosen in order to be applied in this thesis is the

generalized cross-validation criterion. Indeed rather than minimize the cross-validation

score, we will minimize an approximation, that is the generalized cross-validation in

which each Lii is replaced with its average n−1
∑n

i=1 Lii = ν/n where ν = tr(L) is the
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effective degree of freedom. Thus, we would minimize

GCV (λ) =
1

n

n∑
i=1

(
Yi − r̂(xi)

1− ν/n

)2

. (5.6.3)

As one can expect, the bandwidth that minimize the generalized cross-validation score

is close to the bandwidth that minimizes the cross-validation score.

The evaluation of the GCV(λ) function, implies then the computation of the residual

sum of squares and the trace of the smoothing spline hat matrix, corresponding to

any particular value of λ. The residual sum of squares can be evaluated on O(n)

operations once rλ is available. About the trace of the hat matrix, it is possible to

find several algorithms for the calculation of the trace, in an exact or approximated

way. Suggestions for these calculations are given, for example, in Utreras (1981) or in

Silverman (1984a).

It is sometimes feasible to conduct the minimization of the quantities on (5.6.2) or in

(5.6.3) through a global search by evaluating the criterion of interest, over a grid of λ.

We will choose that value of λ in the grid, that minimize the CV or GCV criterion.

With the use of the grid, it is easy to produce plots of the criterion function and then

find its local minima.

The values of λ selected from (5.6.2) or (5.6.3) provide estimators of the smoothing

level that minimizes the loss L(λ) = (1/n)
∑n

i=1 (r(xi)− rλ(xi))
2 or the risk E[L(λ)]

corresponding to rλ. Results about consistency properties of λ̂n, the data driven value

of λ estimated in these ways, in relation to the loss and the risk functions can be found

in works as Craven and Wahba (1979), Cox (1983), Nychka (1991) or in Li (1986) where

is proved, for example, that

L(λ̂n)

infλ>0 L(λ)
−→P 1 as n→∞,

where λ̂n could be the GCV estimator of the smoothing parameter.
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5.7 The constraint of monotonicity

A typical example of shape restriction in nonparametric estimation of a regression func-

tion r is the monotonicity constraint. Standard reference in monotonicity constraints

are Barlow et al. (1972) and Robertson et al. (1988).

Our study is about monotone smoothing based on spline functions. We now confine the

discussion to cubic splines, solution of the main minimization problem in this thesis.

The B-splines are a convenient basis for the space of splines of interest, indeed, as it is

known, such spline function s(x) can be uniquely expressed as a liner combination of

the B-splines Bj(x) in the form

s(x) =
n∑

j=1

αjBj(x).

The B-splines coefficients αj have the interesting properties that there are no more

sign changes in s(x) than there are in the sequence αj. Then, if the αj are nonneg-

ative, so is s(x); if αj is a nondecreasing sequence, s(x) is not decreasing. This is

exactly that kind of restriction in study. The basic idea is to use a spline function

for smoothing and to enforce the monotonicity constraints by placing constraints in

the B-splines coefficients. For smoothing a set of data subject to the constraint that

the curve be nondecreasing, for example, the smoothing function that we use is then,

the natural cubic spline function with knots at the design points and with coefficient

α1 ≤ α2 ≤ . . . ≤ αn.

In order to have an increasing sequence of the coefficient and then an estimated

monotone regression function, we use the pooled-adjacent-violator (PAV) algorithm

in order to obtain the greatest convex minorant of the coefficients of the spline. Let

P0 = (0, 0) and Pj = (j,
∑j

i=1 αi), for j=1,. . . ,n. The greatest convex minorant G(x)

is the supremum of all convex functions that lie below the points P0, . . . , Pn. The left

derivative of G gives the searched monotone sequence of coefficient.
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These function G(x) can be found quickly using the PAV algorithm. This algorithm

starts by joining all the points P0, P1, . . . with line segments. If the slope between P0

and P1 is greater than the slope between P1 and P2, replaces these two segments with

one line segment joining P0 and P2. If the slope between P0 and P2 is greater than the

slope between P2 and P3, the algorithm replaces these two other segments with one

line segment joining P0 and P3. The process is continued in this way and the result is

the function G(x).
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Chapter 6

Computational Studies and Numerical
Results

6.1 Introduction

In this chapter we will investigate the computational aspect of the semiparametric

estimation of the single-index model. We are then interested in the implementation of

an algorithm with which to find a good approximation of the estimate of the monotone

regression function r with finite second derivative and the Euclidean parameter θ of

the single-index model

Y = r(θ′X) + ε, (6.1.1)

where the unobserved error is assumed to be ε ∼ N(0, σ2), where thevariance σ2 is

finite.

In order to find these quantities, we search that values of (θ̂, r̂) such that

(θ̂, r̂) = arg min
θ∈Θ,r∈R

[
1

n

n∑
i=1

(
yi − r(θ′xi)

)2
+ λ̂2

nJ
2(r)

]
. (6.1.2)

We suppose at first that θ0 is known. Then r can be estimated by classical means of

univariate nonparametric regression of Y on T = θ′0X. The method that we will use

to estimate r, is by cubic splines estimator with knots at θ′0x1, . . . , θ
′
0xn, explained in
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the preceding chapter. We will use this estimator because the easiness of implemen-

tation and interpretation, because with these spline estimators is possible to construct

a monotone regression estimator that preserve the required hypothesis of smooth-

ness and because essentially, (6.1.2) is the definition of the cubic spline with knots

at θ′0x1, . . . , θ
′
0xn. It is possible to obtain the searched estimator, choosing B-spline

basis as basis for the spline estimator and then monotonizing the spline coefficients.

Of course, these estimators cannot be implemented since θ0 is not known. If an estima-

tor θ̂ of θ is known, we will find r̂ by cubic splines estimator with knots at θ̂
′
x1, . . . , θ̂

′
xn.

Many methods of estimating θ have been proposed in the literature. The resulting es-

timators of θ can be classified in two main groups, according to whether they require

solving nonlinear optimization problem, such as M-estimator or not, with direct esti-

mators. Although their many advantages such as efficiency and asymptotic normality,

M-estimators require solving an intricate optimization problem in a high dimensional

space. On the other hand, in spite of slightly worst theoretical properties, direct esti-

mator are highly attractive, as they provide the estimator on an analytic form.

In this thesis, denoting by r̂θ the estimate of the regression function r relative to the

fixed value of θ, we will find θ̂ as solution of the minimization problem:

θ̂ = arg min
θ∈Θ

[
1

n

n∑
i=1

(
yi − r̂θ(θ

′xi)
)2

+ λ̂2
nJ

2(r̂θ)

]
, (6.1.3)

where the smoothing parameter λ̂2
n is chosen by generalized cross-validation, as ex-

plained in the next section.

6.2 The estimation algorithm

In this section we explain the steps of the algorithm used for calculating, by means of

cubic splines, the penalized least-squares estimator (θ̂, r̂) in (6.1.2) with the constraints

that r is monotone and
∥∥∥θ̂∥∥∥

m
= 1.
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Step 1. We start choosing randomly k points θ̂i for i = 1, . . . , k, in the unit m-

dimensional sphere by generating independent standard normal components and then

normalizing in order to obtain vectors with norm equal to one. These points are the

possible values that the vector of the parameters θ can take.

Step 2. For each θ̂i, we construct the B-spline basis functions B1, . . . , Bn with knots

at the design points θ̂
′
ix1, . . . , θ̂

′
ixn. To do that, I use the construction of natural cubic

splines, exposed in section 5.5.

With the obtained B-spline basis, we can find now the natural cubic spline by means

of

r̂(x) =
n∑

j=1

β̂jBj(x).

β̂ is estimated by

β̂ = (B′B + λ̂2
nΩ)−1B′Y (6.2.1)

where the matrices are Bij = Bj(xi) and Ωij =
∫
B′′

j (x)B′′
i (x)dx.

Step 3. Because we are interested in the estimation of monotone regression function,

the estimated monotone regression function r̂(x) is obtained monotonizing the sequence

of spline coefficients β̂ by an implementation of the pool adjacent violator (PAV) algo-

rithm, in a Matlab program available on the Web.

Step 4. In the expression (6.2.1) the only quantity unknown is the smoothing parame-

ter λ̂2
n. This is selected minimizing the generalized cross-validation score over a grid

of value of λ̂2
n. In the formula of the GCV score is then used the monotone function

r̂(x). The necessity to search a value for the smoothing parameter for each value of the
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single index, derives from the fact that the parameter λ̂2
n depends on the index values

estimated.

Step 5. Now we have an estimated regression function for each θ̂i. The best seven val-

ues among the θ̂i are chosen. The criterion used to do that is selecting the seven first

values minimizing the penalized sum of squares (6.1.3). A first approximated values of

the final estimate of θ̂ is obtained.

Step 6. The procedure in the points 1.-5. is repeated taking as initial points in the unit

sphere, 200 points chosen randomly from a m-dimensional normal distribution with

mean in the seven selected points and variance 0.1. Repeating the step 5., five points

are now selected and subsequently three points and finally one point. With that we

have then the estimate (θ̂, r̂).

6.3 Simulation study

In this section, we investigate with simulated data, the practical performance of the

methods analyzed so far in order to minimize (6.1.2).

We show at first, how the approximation by natural cubic splines works, in non-

parametric regression. Then the following figures give plots of natural cubic splines

that fit sets of data generated from the nonparametric regression model (5.1.1). The

error is ε ∼ N(0, 0.12) and the regression function is the logistic function r(x) =

[1/(1 + 6e−5x)] · I−1≤x≤1(x) for IA(x) the indicator function for x falling in the set A.

These functions find applications in a range of fields, from biology to economics.

We present results for the cases where the sample size is n = 20 and n = 111.

Figure 6.1, shows the curve fits to a random sample, of size n = 20, of the simulated
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data and each display corresponds to the increasing values λ̂2
n = 10−7, λ̂2

n = 10−6,

λ̂2
n = 10−5 for the smoothing parameter. In every graph it is possible to find drawed,

the simulated data, the real logistic function from which the data are extracted which

is plotted with a blue line, a red line that is the natural cubic spline, estimate of the

logistic function and the green line which is the cubic spline estimator with the restric-

tion of monotonicity. As we can see, this monotone function preserve the property of

smoothness imposed in the definition of the estimator by penalized sum of squares.

Moreover one can see that the algorithm described in the section 6.2 works effectively

in fitting the data, because the cubic splines fit is very close to the true mean function

even with a little sample of data.

As expected from our discussion above, the smaller value λ̂2
n = 10−7 (figure up) pro-

duces an estimator that is more subject to the data while the larger value λ̂2
n = 10−5

(figure down) gives a more smooth fit ignoring many of the features coming from the

data. With the first value of λ̂2
n, the line sketched overfits and with the latter underfits

the sample data. The value of λ̂2
n = 10−6, chosen by generalized cross-validation (GCV)

criterion, is a good compromise between the other two cases.

The figure 6.2 is analogous to the preceding figure, but in this case the sample size

is set to n = 111. Because of the bigger sample size, the value of the smoothing pa-

rameter suggested by generalized cross validation score is λ̂2
n = 5 · 10−7. As expected,

this value is smaller than that with smaller sample size.

As one can see, the curves are now more detailed giving a better approximation of the

true logistic function. The three graphs are respectively for λ̂2
n = 5 · 10−9 that overfits

the sample, for λ̂2
n = 5 · 10−7 and for λ̂2

n = 5 · 10−6 that underfits the simulated data

from the logistic regression function.
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Figure 6.1: Nonparametric natural cubic spline estimators for a logistic regression
function, for different values of the smoothing parameter. The n = 20 sample data
are represented by blue points and the blue curve is the true mean function. The red
curve is the spline estimate of the regression function and the green curve is the spline
estimate subject to the monotonicity constraints.
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Figure 6.2: Nonparametric natural cubic spline estimators for a logistic regression
function, for different values of the smoothing parameter. The n = 111 sample data
are represented by blue points and the blue curve is the true mean function. The red
curve is the spline estimate of the regression function and the green curve is the spline
estimate subject to the monotonicity constraints.
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Figure 6.3 shows the semiparametric estimation of the logistic function when the argu-

ment of the function is the single-index θ′x, where θ and x are 4-dimensional vectors.

In particular, for the simulation study, θ0 = ( 1 1 1 3 )′/
√

7 is fixed as the true value to

estimate, that is

θ0 =


0.3780

0.3780

0.3780

0.7559

 ,

Note that θ0 is chosen such that ‖θ0‖4 = 1. The graph at the top of the page is relative

to the sample size n = 20 and the other is given from the sample size n = 111.

The estimated value of θ̂, for n = 20 after 2000 replications in the first step of the

algorithm, is

θ̂ =


0.3529

0.3894

0.4393

0.7286


Generalized cross-validation criterion suggests a value for the smoothing parameter

λ̂2
n = 10−6.

The estimated value of θ̂, for n = 111 after 2000 replications in the first step of the

algorithm, is

θ̂ =


0.3554

0.3863

0.3364

0.7819


Generalized cross-validation criterion suggests a value for the smoothing parameter

λ̂2
n = 10−7.
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Figure 6.3: Semiparametric natural cubic spline estimators for a logistic regression
function. The sample data (n=20 above and N=111 below) are represented by blue
points and the blue curve is the true mean function. The green curve is the spline
estimate subject to the monotonicity constraints.
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6.4 An example from real data

In this section an application of monotone smoothing splines to real data analytic prob-

lem is presented. Here we consider an environmental study of how the concentration

Y of the air pollutant ozone depends on three meteorological variables: the wind speed

x1, the temperature x2 and the solar radiation x3 (Chambers and Hastie (1992) and

Yu and Ruppert (2004)). The data are daily measurements of the four variables for

n = 111 days. Because there are three predictor variables, a full nonparametric fit with

only 111 data points might not be desirable.

In order to understand the interaction of each singular predictor with the variable

response Y = ozone, in figure 6.4 there are three panels, one for each of the three

atmospheric variables. In each panel, the regressive lines are fitted

ozone = 0.0041 · radiation+ 2.4860

ozone = 0.0704 · temperature− 2.2260

ozone = −0.1498 · wind+ 4.7369.

From these, one can understand that the air pollutant ozone increases as the solar

radiation increases and more as the temperature increases and more strongly as the

wind speed decreases. The other curve in each panel is the curve estimates obtained

with natural cubic spline, by smoothing the variables separately against the variable

ozone.

In the figure 6.5 we find plotted the data relative to the estimated value of the single-

index parameter

θ̂ =


0.0252

0.5382

−0.8424


for λ̂2

n = 10−2 and it is shown also the natural cubic spline curve estimate of the data.



6.4 An example from real data 91

Note that the normalized value of θ̂lin = ( 0.0041 0.0704 − 0.1498 ), the vector of the

slopes in the line regressions for each of the three variables, is

θ̂
′
lin =


0.0248

0.4252

−0.9048

 .

This value is modified with respect that in our estimated value of θ̂ but reflects a similar

role of the three covariates in the interaction with the air pollutant ozone. In the figure

6.5 the presence of the curvature in r̂ is observed. Of course, this curvature can not be

caught by a linear model.



92 Computational Studies and Numerical Results

Figure 6.4: In each panel it is plotted the scatterplot, the regression line and the curve
estimates obtained with natural cubic spline, of the variables separately (temperature,
solar radiation and wind speed, respectively) against the variable ozone
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Figure 6.5: Curve estimates for the air pollution data. The data are represented
by points and the solid curve corresponds to the semiparametric natural cubic spline
estimator, with the constraint of monotonicity.



94 Computational Studies and Numerical Results



Bibliography

Abramovich, F. and Grinshtein, V. (1999). Derivation of equivalent kernel for general

spline smoothing: a systematic approach. Bernoulli, 5(2), 359–379.

Akhiezer, N. I. and Glazman, I. M. (1963). Theory of linear operators in Hilbert space.

Vol. II. Translated from the Russian by Merlynd Nestell. Frederick Ungar Publishing

Co., New York.

Amemiya, T. (1985). Advanced econometrics. Cambridge, MA, Harvard University

Press.

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E. (1955). An em-

pirical distribution function for sampling with incomplete information. Ann. Math.

Statist., 26, 641–647.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972). Statistical

inference under order restrictions. The theory and application of isotonic regression.

John Wiley & Sons, London-New York-Sydney. Wiley Series in Probability and

Mathematical Statistics.

Bellman, R. (1961). Adaptive control processes: A guided tour. Princeton University

Press, Princeton, N.J.

Bickel, P. J., Klaassen, C. A. J., Ritov, Y., and Wellner, J. A. (1998). Efficient and

adaptive estimation for semiparametric models. Springer-Verlag, New York. Reprint

of the 1993 original.



96

Billingsley, P. (1986). Probability and measure. Wiley Series in Probability and Mathe-

matical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc.,

New York, second edition.

Billingsley, P. (1999). Convergence of probability measures. Wiley Series in Probability

and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second

edition. A Wiley-Interscience Publication.

Birman, M. Š. and Solomjak, M. Z. (1967). Piecewise polynomial approximations of

functions of classes Wp
α. Mat. Sb. (N.S.), 73 (115), 331–355.

Carroll, R. J., Fan, J., Gijbels, I., and Wand, M. P. (1997). Generalized partially linear

single-index models. J. Amer. Statist. Assoc., 92(438), 477–489.

Cavanagh, C. and Sherman, R. P. (1998). Rank estimators for monotonic index models.

J. Econometrics, 84(2), 351–381.

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Pacific Grove,

Calif. : Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove,

California.

Cosslett, S. R. (1983). Distribution-free maximum likelihood estimator of the binary

choice model. Econometrica, 51(3), 765–782.

Cox, D. D. (1983). Asymptotics for M -type smoothing splines. Ann. Statist., 11(2),

530–551.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Esti-

mating the correct degree of smoothing by the method of generalized cross-validation.

Numer. Math., 31(4), 377–403.

de Boor, C. (2001). A practical guide to splines, volume 27 of Applied Mathematical

Sciences. Springer-Verlag, New York, revised edition.



97

Delecroix, M. and Hristache, M. (1999). M -estimateurs semi-paramétriques dans les

modèles à direction révélatrice unique. Bull. Belg. Math. Soc. Simon Stevin, 6(2),

161–185.

Delecroix, M., Härdle, W., and Hristache, M. (2003). Efficient estimation in conditional

single-index regression. J. Multivariate Anal., 86(2), 213–226.

Delecroix, M., Hristache, M., and Patilea, V. (2006). On semiparametric M -estimation

in single-index regression. J. Statist. Plann. Inference, 136(3), 730–769.

Duan, N. and Li, K.-C. (1991). Slicing regression: a link-free regression method. Ann.

Statist., 19(2), 505–530.

Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab.,

6(6), 899–929 (1979).

Eubank, R. L. (1988). Spline smoothing and nonparametric regression, volume 90 of

Statistics: Textbooks and Monographs. Marcel Dekker Inc., New York.

Eubank, R. L. (1999a). Nonparametric regression and spline smoothing, volume 157

of Statistics: Textbooks and Monographs. Marcel Dekker Inc., New York, second

edition.

Eubank, R. L. (1999b). A simple smoothing spline. II. J. Statist. Plann. Inference,

81(2), 229–235.

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications, vol-

ume 66 of Monographs on Statistics and Applied Probability. Chapman & Hall,

London.

Friedman, J. H. (1991). Multivariate adaptive regression splines. Ann. Statist., 19(1),

1–141. With discussion and a rejoinder by the author.

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer.

Statist. Assoc., 76(376), 817–823.



98

Friedman, J. H. and Tibshirani, R. (1984). The monotone smoothing of scatterplots.

Technometrics, 26, 243–250.

Green, P. J. (1987). Penalized likelihood for general semi-parametric regression models.

Internat. Statist. Rev., 55(3), 245–259.

Green, P. J. and Silverman, B. W. (1994). Nonparametric regression and general-

ized linear models, volume 58 of Monographs on Statistics and Applied Probability.

Chapman & Hall, London. A roughness penalty approach.

Groeneboom, P. and Wellner, J. A. (1992). Information bounds and nonparametric

maximum likelihood estimation, volume 19 of DMV Seminar. Birkhäuser Verlag,

Basel.

Hall, P. (1989). On projection pursuit regression. Ann. Statist., 17(2), 573–588.

Hall, P. and Opsomer, J. D. (2005). Theory for penalised spline regression. Biometrika,

92(1), 105–118.

Han, A. K. (1987). Nonparametric analysis of a generalized regression model. The

maximum rank correlation estimator. J. Econometrics, 35(2-3), 303–316.

Hansen, M. H. and Kooperberg, C. (2002). Spline adaptation in extended linear models.

Statist. Sci., 17(1), 2–51. With comments and a rejoinder by the authors.

Härdle, W. (1990). Applied nonparametric regression, volume 19 of Econometric Society

Monographs. Cambridge University Press, Cambridge.

Härdle, W. and Stoker, T. M. (1989). Investigating smooth multiple regression by the

method of average derivatives. J. Amer. Statist. Assoc., 84(408), 986–995.

Härdle, W., Hall, P., and Ichimura, H. (1993). Optimal smoothing in single-index

models. Ann. Statist., 21(1), 157–178.

Härdle, W., Spokoiny, V., and Sperlich, S. (1997). Semiparametric single index versus

fixed link function modelling. Ann. Statist., 25(1), 212–243.



99

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning.

Springer Series in Statistics. Springer-Verlag, New York. Data mining, inference, and

prediction.

Hawkins, D. (1994). Fitting monotonic polynomials to data. Computational Statistics

Quarterly, 9, 233–247.

He, X. and Shi, P. (1998). Monotone B-spline smoothing. J. Amer. Statist. Assoc.,

93(442), 643–650.

Heckman, N. E. and Ramsay, J. O. (2000). Penalized regression with model-based

penalties. Canad. J. Statist., 28(2), 241–258.

Horowitz, J. L. (1996). Semiparametric estimation of a regression model with an un-

known transformation of the dependent variable. Econometrica, 64(1), 103–137.

Horowitz, J. L. (1998). Semiparametric methods in econometrics, volume 131 of Lecture

Notes in Statistics. Springer-Verlag, New York.

Horowitz, J. L. and Härdle, W. (1996). Direct semiparametric estimation of single-index

models with discrete covariates. J. Amer. Statist. Assoc., 91(436), 1632–1640.

Hristache, M., Juditsky, A., and Spokoiny, V. (2001). Direct estimation of the index

coefficient in a single-index model. Ann. Statist., 29(3), 595–623.

Huh, J. and Park, B. U. (2002). Likelihood-based local polynomial fitting for single-

index models. J. Multivariate Anal., 80(2), 302–321.

Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation

of single-index models. J. Econometrics, 58(1-2), 71–120.

Kelly, C. and Rice, J. (1990). Monotone smoothing with application to dose-response

curves and the assessment of synergism. Biometrics, 46(4), 1071–1085.



100

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator

in the presence of infinitely many incidental parameters. Ann. Math. Statist., 27,

887–906.

Klein, R. W. and Spady, R. H. (1993). An efficient semiparametric estimator for binary

response models. Econometrica, 61(2), 387–421.

Li, K.-C. (1986). Asymptotic optimality of CL and generalized cross-validation in ridge

regression with application to spline smoothing. Ann. Statist., 14(3), 1101–1112.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist.

Assoc., 86(414), 316–342. With discussion and a rejoinder by the author.

Mammen, E. (1991). Estimating a smooth monotone regression function. Ann. Statist.,

19(2), 724–740.

Mammen, E. and Thomas-Agnan, C. (1999). Smoothing splines and shape restrictions.

Scand. J. Statist., 26(2), 239–252.

Mammen, E. and van de Geer, S. (1997). Penalized quasi-likelihood estimation in

partial linear models. Ann. Statist., 25(3), 1014–1035.

Mammen, E., Marron, J. S., Turlach, B. A., and Wand, M. P. (2001). A general

projection framework for constrained smoothing. Statist. Sci., 16(3), 232–248.

McCullagh, P. and Nelder, J. A. (1983). Generalized linear models. Monographs on

Statistics and Applied Probability. Chapman & Hall, London.

Mukerjee, H. (1988). Monotone nonparametric regression. Ann. Statist., 16(2), 741–

750.

Müller, H.-G. (1988). Nonparametric regression analysis of longitudinal data, volume 46

of Lecture Notes in Statistics. Springer-Verlag, Berlin.

Murphy, S. A., van der Vaart, A. W., and Wellner, J. A. (1999). Current status

regression. Math. Methods Statist., 8(3), 407–425.



101

Naik, P. and Tsai, C.-L. (2000). Partial least squares estimator for single-index models.

J. R. Stat. Soc. Ser. B Stat. Methodol., 62(4), 763–771.

Newey, W. K. and Stoker, T. M. (1993). Efficiency of weighted average derivative

estimators and index models. Econometrica, 61(5), 1199–1223.

Nychka, D. (1991). Choosing a range for the amount of smoothing in nonparametric

regression. J. Amer. Statist. Assoc., 86(415), 653–664.

Nychka, D. (1995). Splines as local smoothers. Ann. Statist., 23(4), 1175–1197.

Ogden, R. (1996). Essential Wavelets for Statistical Applications and Data Analysis.
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