
Olympiads in Informatics, 2016, Vol. 10, 177–194
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.11

177

Distributed Tasks: Introducing Distributed
Computing to Programming Competitions

Adam KARCZMARZ1, Jakub ŁĄCKI2, Adam POLAK3
Jakub RADOSZEWSKI1,4, Jakub O. WOJTASZCZYK5

1Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland
2Department of Computer, Control, and Management Engineering Antonio
Ruberti at Sapienza University of Rome
via Ariosto 25, 00185 Roma, Italy
3Department of Theoretical Computer Science, Faculty of Mathematics and
Computer Science, Jagiellonian University
ul. Łojasiewicza 6, 30-348 Kraków, Poland
4King’s College London
Strand, London WC2R 2LS
5Google Warsaw
Emilii Plater 53, 00-113 Warsaw, Poland
e-mail: a.karczmarz@mimuw.edu.pl, j.lacki@mimuw.edu.pl, polak@tcs.uj.edu.pl,
jrad@mimuw.edu.pl, onufry@google.com

Abstract. In this paper we present distributed tasks, a new task type that can be used at pro-
gramming competitions. In such tasks, a contestant is supposed to write a program which is then
simultaneously executed on multiple computing nodes (machines). The instances of the program
may communicate and use the joint computing power to solve the task presented to the contes-
tant. We show a framework for running a contest with distributed tasks, that we believe to be ac-
cessible to contestants with no previous experience in distributed computing. Moreover, we give
examples of distributed tasks that have been used in the last two editions of a Polish programming
contest, Algorithmic Engagements, together with their intended solutions. Finally, we discuss the
challenges of grading and preparing distributed tasks.

Keywords: programming contests, distributed tasks.

1. Introduction

When looking at major programming competitions, it is easy to notice that a large num-
ber of them are very similar in design. To name a few, the IOI, the ACM ICPC, Google
Code Jam, TopCoder’s algorithmic track, Facebook Hacker Cup, the CodeForces com-
petitions and many more, are all focused on small, self-contained tasks, with automated

A. Karczmarz et al.178

judging based on testing a program on a judge-provided set of testcases and mostly
algorithmic in nature.

This model seems attractive both to the organizers and the participants. The organiz-
ers appreciate the very clear, non-subjective mechanism of judging and the automation
of judging, which means the competition can scale out easily to a larger number of
competitors. The participants also appreciate the automated judging (which means fast
results) and the objective judgment criteria (which makes the competition more fair); ad-
ditionally the entry barrier to such contests is pretty low, as the introductory-level tasks
can be very simple.

If we consider programming competitions a way of educating future computer sci-
entists and professional programmers, the model has its strengths, but also weaknesses.
Some of these weaknesses come from the very nature of the small, self-contained tasks
(which are a large part of the model’s attractiveness): the participants do not learn about
code maintainability and extensibility, they also do not learn anything about larger-scale
system design. These weaknesses seem to be intrinsic to the model itself; and competi-
tions that abandon the model moving to larger or less clear-cut tasks are frequently less
successful (for example, TopCoder’s Marathon Match track has over 10 times less reg-
istered participants than the Algorithm track).

However, there are also areas of programming expertise that the existing competi-
tions do not teach, which are less intrinsically tied to the model of these competitions. In
particular, the focus on algorithmic problems is not crucial to the model of the competi-
tion itself. Indeed, multiple authors already explored extending this classical model of
competitions to other fields of computer science, for example visualization and precom-
putation (Kulczyński et al., 2011), online algorithms (Komm, 2011), computer graphics
and cryptography (Forišek, 2013).

1.1. Distributed Programming

Distributed (and cloud) computing has gained importance quickly in the recent years.
The computing giants of today – Google, Amazon, Facebook and others – do not operate
on the enormous mainframes that dominated computing in the past, but on networked
farms of smaller servers. This is a model of computing that is not inherently in conflict
with the algorithmic programming contest model, but is not taught by the dominant
competitions of today; students that gained most of their programming skills through
programming competitions will be totally unfamiliar with even the basic paradigms of
distributed computing like the MapReduce framework (Dean and Ghemawat, 2008) or
the CAP theorem (Fox and Brewer, 1999).

In this article we present a framework for running a contest focusing on distributed
algorithms, developed by engineers in Google’s Warsaw office in collaboration with
the University of Warsaw, and show sample problems used in the Algorithmic Engage-
ments (Potyczki Algorytmiczne in Polish) contest ran by the University of Warsaw. The
same framework is used at the recently introduced Google’s Distributed Code Jam
competition.

Distributed Tasks: Introducing Distributed Computing to ... 179

1.2. Designing a Distributed Programming Contest

The primary focus of our design was simplicity from the contestant’s point of view. The
introduction of a new programming paradigm, likely unfamiliar to most participants, is
clearly a challenge for the contestants, and we aimed at making the transition as smooth
as possible.

Thus, the basic interface is similar to a programming contest like IOI. The participant
submits a single program, which is compiled and executed by the framework. The same
program is run on every node (computer) available to the participant.

Obviously, the nodes need to be able to communicate in order to collaborate in com-
puting. We decided on a protocol based on simple message-passing (“send this array of
bytes to this node”). The message passing methods are available to the program through
a library that is common for all problems, and provided by the framework.

We also considered using an RPC-style interface. This, however, is more complex on
an API level. A standard approach to RPC is that the programmer has to declare an inter-
face (which will contain the remotely-callable methods). The server will just implement
the methods of this interface. On the client side, the infrastructure needs to provide a way
to generate a “stub” connected to some particular server; this stub will automagically have
the method calls autogenerated. The language would have to provide some way to anno-
tate that the interface is to be treated as a “remote” interface, increasing the complexity of
the infrastructure implementation, and meaning more “magic” happening under the hood,
which – in our perception – decreases the comprehensibility of the system. For instance,
the “stub implementation” would need to make a choice of deep versus shallow copying
of the arguments, each choice potentially leading to confusion for the participants.

Let us now present the functions of our library, together with their declarations in
C++.

First, the library provides a function that returns the number of nodes  on which
the solution is running, and the index (in the range [0  − 1]) of the node on which
the calling process is running.

int NumberOfNodes();

int MyNodeId();

The library maintains in each node a message buffer for each of the  nodes, which
represents messages that are to be sent to this node. Messages are added to the buffer
through the Put-methods.

// Append “value” to the message that is being prepared for
// the node with id “target”. The “Int” in PutInt is
// interpreted as 32 bits, regardless of whether the actual
// int type will be 32 or 64 bits.
void PutChar(int target, char value);

void PutInt(int target, int value);

void PutLL(int target, long long value);

A. Karczmarz et al.180

There is also a method that sends the message that was accumulated in the buffer for
a given node and clears this buffer. This method is non-blocking, that is, it does not wait
for the receiver to call Receive, but returns immediately after sending the message.

void Send(int target);

The following function is used for receiving messages.

int Receive(int source);

The library has a receiving buffer for each remote node. When you call Receive
and retrieve a message from a remote node, the buffer tied to this remote node is over-
written. You can then retrieve individual parts of the message through the Get-meth-
ods. This method is blocking – if there is no message to receive, it will wait for the
message to arrive.

You can call Receive(-1) to retrieve a message from any source, or set source
to a number from [0  − 1] to retrieve a message from a particular source. Receive
returns the number of the node which sent the message, which is equal to source, unless
source is -1.

Finally, for reading the buffer of incoming messages, the following three methods
are provided.

// The “Int” in GetInt is interpreted as 32 bits, regardless
// of whether the actual int type is 32 or 64 bits.
char GetChar(int source);

int GetInt(int source);

long long GetLL(int source);

Each of these methods returns and consumes one item from the buffer of the ap-
propriate node. You must call these methods in the order in which the elements were
appended to the message (so, for instance, if the message was created with PutChar,
PutChar, PutLL, you must call GetChar, GetChar, GetLL in this order). If you call
them in a different order, or you call a Get-method after consuming all the contents of
the buffer, the behaviour is undefined.

The serialization we decided to use is very basic, compared to models like Java’s
serialization mechanisms, Python’s “pickle” or even Google’s protocol buffer language.
Again, we preferred to err on the side of simplicity, to minimize the entry barrier – this
simple language turns out to be easy enough for the simple concurrency required to solve
our problems, and is more straightforward to understand, both in terms of “how big will
be the serialized message”, and “what is actually serialized” (this, again, is the deep vs
shallow copy question).

For correctness of execution, we chose what seemed the most natural model. The
backend guarantees failure-less execution on all nodes, and requires all the instances of
the program to execute correctly, within the specified time and memory limits. Note that
the time used by the program is measured from the moment when the instances start until

Distributed Tasks: Introducing Distributed Computing to ... 181

all instances have finished execution. This assumption is justified with the following ex-
ample involving two machines. The first one spends second of CPU time and then sends
a message to the second one. The second machine first waits for a message from the first
machine and then uses one second of CPU time. The total time used by the solution is
then roughly two seconds, although each instance used only one second of CPU time.

In most of programming competitions, the programs access the input data by read-
ing from standard input. (TopCoder’s Algorithm contest breaks out of this by providing
the input as an argument to the function the contestant is supposed to write.) How-
ever, a large fraction of the interesting distributed problems admit a solution that runs in
() time, where  is the size of the input, and  is the number of nodes available
to the contestant. This implies, in particular, that no node can afford to read the whole
input (since that alone would take () time). Standard input is only accessible in a
linear fashion, so it is not feasible for providing very large input data.

The approach we chose is what is typically done for interactive tasks on competi-
tions like IOI (see, e.g., Chávez, 2015) – each problem with large inputs defines a set of
input-access methods that are available to the program, similarly to the message-passing
interface. These methods are guaranteed to return the same values on all nodes (so, each
node has access to the same view of the input). Additionally, we provide upper bounds
on the execution time of a single call to the input-providing methods.

Output is much simpler to handle (as it is often much smaller), so we went with the
standard programming contest practice of expecting the output to be provided via stan-
dard output. We expect exactly one node to produce the output, while the others should
not produce anything. This is a somewhat arbitrary decision (we could equally well
have all the nodes output the exact same data to the standard output), however, as many
solutions in practice have some sort of a “master” node that aggregates the work of the
other nodes, it is convenient to the contestant to have one node output the result of the
computation, and for the infrastructure not to prescribe which of the nodes it is.

As for the number of nodes we run the contestants’ solutions on, we chose  = 100.
This is large enough that a speedup by a factor of  is big enough to offset the extra time
needed for inter-node communication, and yet small enough that providing that many
nodes for judging is actually feasible.

The final issue that needs to be considered is the amount of data sent during the
communication between the nodes, both in terms of the number of individual messages
sent, and the size of those messages. Obviously, the limits here will be dependent on the
infrastructure we run the contest on. Benchmarks on our framework show that a single
message will take roughly 3–5ms (split between the processing time in the sender, the
actual network latency and the processing time on the receiver). This number will be
constant for messages from negligible to tens of kilobytes, and start growing linearly
when the message size goes into hundreds of kilobytes.

While in the end, to fine-tune a solution the contestant will need to understand these
patterns (for this purpose we provided the results of a few benchmarks to the contes-
tants), we wanted the basic usecase not to require dealing with the calculations. To this
end, we introduced an upper limit on the total number (around 1000) and size (a few
megabytes) of messages a single node can send within the time limit, which roughly

A. Karczmarz et al.182

corresponds to the total throughput it could achieve if it spent all its time on communica-
tion. This is a clear and concise way of informing the participants that if their solution
stays well within those bounds, its performance should not be significantly affected by
the communication overhead.

1.3. Distributed Contest Judging Infrastructure

From a research perspective, the most interesting challenge in preparing such a distribut-
ed programming contest is defining the exact programming model from the contestants’
point of view. However, when doing it in practice, there is also a considerable amount of
engineering effort involved in providing the infrastructure to run such a contest.

In the process of preparing problems the most interesting new challenge is writing a
library that provides the input data. While in a standard programming contest the input
is just a text file, and can be generated offline in an arbitrary fashion and almost arbi-
trary time, in the distributed contests the requirements are much more strict. The input-
providing library needs to satisfy the following requirements:

Access to an arbitrary element.●●
Consistency across nodes, and across accesses.●●
Access times on the order of 100ns.●●
Ability to serve data with total size on the order of 10GB or more.●●

The requirements stem from the input model we chose. In particular, if we want to
allow  ()-time solutions, with runtimes on the order of 1–5 seconds, we need the
input read by one node to be on the order of at least 107 items (which means 109 items
in total – if each item is, say, two 64-bit integers, we get a total of 16GB), and we need
the node to be able to read these 107 items within 1 second (so that the input reading does
not dominate the computation).

The access times coupled with the data size mean it is infeasible to pregenerate all
the input data – 10GB is too much to conveniently store in memory, while disk ac-
cess (and even SSD access) is too slow. Thus, the input data is generated on the fly.
This requires using pseudo-random generators that generate a sequence of numbers, and
provide consistent and fast access to each element of the sequence (e.g., the CityHash
family of functions).

In the judging system, the challenge is the scale. Judging a single testcase for a single
solution requires, typically, 100 virtual machines. So, as an example, a deployment of
900 virtual machines on Google Compute Engine were used as the backend for the
Online Round of Google’s Distributed Code Jam. We think it is interesting that cloud
computing, which is making distributed computing important as a topic of programming
competitions, is also making distributed programming competitions much easier to or-
ganize: instead of buying physical hardware to support such a competition, it is easy to
rent virtual machines and pay by the minute.

However, the real challenge in setting up a new competition type is in finding attrac-
tive problems: ones that challenge the contestants’ creativity and problem-solving skill,

Distributed Tasks: Introducing Distributed Computing to ... 183

without requiring significant domain knowledge (in this case – knowledge of distributed
programming paradigms), and that are fun, but not tedious, to implement, once you have
the correct set of ideas. In the rest of this paper, we provide examples of problems that –
in our opinion – satisfy these requirements.

We start with a simple task which lets us demonstrate the basics of the framework
from the contestant’s point of view. The remaining tasks were presented during the Al-
gorithmic Engagements contest; their authors are: Jakub Łącki, Jakub Wojtaszczyk (task
“Workshop”); Jakub Łącki (task “Assistant”); Adam Karczmarz (task “Sabotage”).

2. Sample Task “Divisors”

In this task we are to count the number of divisors of a given positive integer  ≤ 1018.

Input
In this task the input data is provided via the standard input. The only line of the standard
input contains .

Output
Your program should print exactly one line to the standard output containing one integer:
the number of divisors of .

2.1. Solution

The easiest (sequential) solution that we can come up with is to check all candidates for a
divisor  up to  and their counterparts of the form 


. A sample C++ code follows.

int main() {

  long long n;

  int divisors_num = 0;

  cin >> n;

  for (long long d = 1; d * d <= n; ++d) {

   if (n % d == 0) {

    ++divisors_num;

    if (n / d != d)

     ++divisors_num;

   }

  }

  cout << divisors_num << endl;

}

Probably this is not the fastest sequential solution for this problem. We will, however,
focus on how to speed it up by performing the computations using  nodes (machines).

A. Karczmarz et al.184

A natural idea is to partition the set of possible divisors and let each of the machines look
through each of the parts.

One way of performing this partition is as follows: machine 0 gets to check the
candidates 1 1 +  1 + 2     machine 1 gets to check the candidates 2 2 + 

2 + 2     etc. To make it work, it suffices to change the for-loop from the above
code to:

for (long long d = 1 + MyNodeId(); d * d <= n; d +=

  NumberOfNodes()) {

In the end we need to aggregate the partial results. Let us select any of the machines
(say, machine 0) as an aggregator. We just need to add code to be executed on each of
the machines that sends the partial results from machines with positive numbers to the
machine number 0.

  if (MyNodeId() > 0) {

   PutInt(0, divisors_num);

   Send(0);

  } else { // MyNodeId == 0
   for (int node = 1; node < NumberOfNodes(); ++node) {

    Receive(node);

    divisors_num += GetInt(node);

   }

   cout << divisors_num << endl;

  }

}

The final solution works in  ( ) time, i.e., this is the maximum of the time
complexities of the instances running on each of the machines.

3. Task “Workshop” (2014)

During an algorithmic workshop students are sitting in a circle and solving problems.
Whenever someone comes up with a solution to a problem, he or she shares the idea with
his or her two neighbours (which takes exactly one minute), and then they pass it to their
neighbours (which also takes exactly one minute), and so on.

If Johny comes up with a brilliant solution at quarter to twelve, what time will Chris
hear about it? How many minutes does it take for a solution to reach from Kate to Tom?
That is the kind of queries your program has to answer.

Input
The input data is provided by an interactive library. Your program can call six functions
from the library:

Distributed Tasks: Introducing Distributed Computing to ... 185

int ●● NumberOfStudents(): returns the number  of students participating in
the workshop (3 ≤  ≤ 109). The students are numbered with consecutive integers
from 1 to .
int ●● FirstNeighbour(int i): returns the number of the first neighbour of the
-th student (1 ≤  ≤ ). The students have a hard time distinguishing left from
right, therefore they prefer to call their neighbours in the order of their numbers.
That is, the first neighbour of a given student always has a number smaller than his
of her second neighbour.
int ●● SecondNeighbour(int i): returns the number of the second neighbour of
the -th student (1 ≤  ≤ ).
int ●● NumberOfQueries(): returns the number  of queries your program has to
answer (0 ≤  ≤ 200). The queries are numbered with consecutive integers from
1 to .
int ●● QueryFrom(int i): for the -th query (1 ≤  ≤ ), returns the number of the
student who came up with a solution.
int ●● QueryTo(int i): for the -th query (1 ≤  ≤ ), returns the number of the
student willing to know when he or she is going to hear the solution.

Output
Your program should print exactly  lines to the standard output. The -th line should
contain the answer to the -th query, i.e., the number of minutes it takes for a solution to
reach from one student to the other.

3.1. Solution

In the problem a cycle is specified using an oracle which for a given vertex returns its
two neighbours. The neighbours are returned in an order that is not necessarily con-
sistent with the order of the vertices on the cycle. A number of queries are given, each
consisting of two vertices, and the task is to compute for each query the length of the
shortest path between the two vertices.

The first step of the model solution is to select a subset of vertices, which we call
checkpoints. The checkpoints include all the vertices which are part of any query and ad-
ditionally some number of randomly selected vertices. Later we discuss how to choose
this number. After the checkpoints have been selected, each checkpoint is randomly as-
signed to some machine (node). All the random choices are made with a deterministic
pseudorandom number generator so that all machines select the same checkpoints with-
out needing to communicate.

In the second step each machine processes the checkpoints assigned to it. Starting
from a checkpoint the process running on the machine traverses the cycle in both direc-
tions until it reaches (at both ends) any other checkpoints (they might be assigned to a
different machine). While traversing the cycle, the process counts the number of visited
vertices. Finally, it sends to the first machine a list of statements of the following form:
the distance between the checkpoints  and  equals  and there is no other checkpoint
between them.

A. Karczmarz et al.186

The third step is run only on the first machine. First, it receives messages from all the
other machines. Using information from the messages, the machine computes the order
of checkpoints on the cycle and the distance between each two neighboring checkpoints.
After linear-time processing of this information, it is easy to answer each query in con-
stant time.

We are left with the problem of choosing the number of checkpoints. Recall that 

denotes the number of machines. Each machine processes a random fraction of 1
 of the

checkpoints which makes the expected running time of each machine  (


). However,
from a theoretical point of view, this kind of a statement is worthless. Consider an imagi-
nary situation in which we need to perform computations that take £() total time, and
we pick a random machine to perform all of it. Then each machine spends £() time
with probability 1

 , which gives exactly  £() expected time for each machine,
just like in the case of our solution. At the same time, we are interested in the running
time of the slowest machine, which is clearly still £() .

For this reason, we study the performance of our solution experimentally. Luck-
ily, the running time depends mostly on the size of the input data, not on its structure.
Our simulations show that with  randomly selected checkpoints, the longest running
machine uses  (lg 


) time, compared to  (

) expected time, which is consistent
with a theoretical analysis in (David and Nagaraja, 2003, p. 135). It is possible to reduce
the variation between machines by increasing the number of checkpoints. In practice,
our solution which always selects 10 000 checkpoints is about 15–2 times faster than
the one that selects  checkpoints.

3.2. Tests

It seems that virtually any nontrivial test is sufficient to distinguish solutions based on
an incorrect algorithm. However, a bit more care is required to distinguish solutions
that are correct but may be too slow – e.g. a variant of the model solution that selects
as the checkpoints only the queries endpoints and the vertices 1 2      instead of
randomly selected vertices. To make such solutions exceed the time limit we need to pay
attention to keep large contiguous fragments of the cycle without any query vertex and
leave a large fragment of the initial 1 2      cycle around the vertex 1 unaltered.
The remaining part of the cycle is permuted either by performing a circular shift on the
binary representations of vertex numbers or by xor-ing them with some fixed number.
This method allows  (1)-time calculation of vertex neighbours and produces a cycle
looking sufficiently random to make it difficult to come up with a clever incorrect solu-
tion exploiting this particular structure of the test.

4. Task “Assistant” (2014)

The life of an assistant is not easy. Not only did the professor order him to write a terribly
long review, she also requested some corrections today.

Distributed Tasks: Introducing Distributed Computing to ... 187

Pushing keys of a keyboard is very tiring, so the primary goal of the assistant is to
push keys as few times as possible, while correcting the review. The keyboard that he is
using with a single click allows him to delete a character in the review, change a charac-
ter to a different one or insert one character anywhere in the review.

To make things worse, the assistant has a very peculiar sense of esthetics. He likes
letters from the beginning of the alphabet (like a, b or c), but is disgusted by the let-
ters from the end of the alphabet (in particular, y and z). Each time he presses a key
and changes a letter that comes earlier in the alphabet to a letter that comes later (for
example, m to p), he suffers an esthetic shock, which is devastating for him. Because of
that, the secondary goal of the assistant is to minimize the number of such changes.

Input
The first line of the standard input contains two integers  and  (1 ≤   ≤ 100 000),
that specify the lengths of the first and the second version of the review. The following
two lines contain the two versions themselves. Each review consists only of lowercase
letters.

Output
Your program should output a single line containing the minimal number of keyboard
presses that the assistant has to perform in order to correct the review, followed by the
minimal number of esthetic shocks that he will suffer.

4.1. Solution

The problem considered in this task is a variant of the well-known edit distance problem.
Our solution will refer to the classical dynamic programming approach to this problem,
which has been described in a number of textbooks (see, e.g., Cormen et al., 2009). The
solution that we obtain can be easily extended with minimizing the number of esthetic
shocks. In short words, it suffices to, instead of storing only the edit distances, store inte-
ger pairs that describe the edit distance and the number of esthetic shocks, and compare
them lexicographically.

Denote by 1      the characters in the first version of the review and by
1      the characters in the second version. Our goal is to compute a two dimen-
sional  £  matrix , where  ( ) contains the minimum number of changes that
the assistant has to perform in order to change 1      into 1      . Just like
in the edit distance problem, the values  (1 ·) and  (· 1) can be computed in a
straightforward way, whereas for 2 ≤  ≤  and 2 ≤  ≤ ,  ( ) can be computed in
constant time, given  ( − 1 ),  (  − 1) and  ( − 1  − 1).

Assume that the topmost row of matrix  contains elements  (1 ·) and the left-
most column contains  (· 1). Partition the matrix into  stripes consisting of 

consecutive columns (for simplicity, we assume that  is divisible by ), where  is the
number of machines available. Each machine is responsible for filling in the entries of
 in one stripe. Let the -th machine (for  2 f1     g) be responsible for the -th
stripe from the left. See Fig. 1 for illustration.

A. Karczmarz et al.188

The first machine fills in the first (leftmost) stripe, starting from the topmost row.
Consider the rightmost column in the first stripe. Observe that the contents of this col-
umn is everything the second machine needs to know, in order to fill in its stripe. The en-
tries in the rightmost column of the first stripe are filled in by the first machine from top
to bottom, and as they are being computed, the first machine sends them to the second
machine. The second machine then fills in its stripe and sends the contents of the cells in
the rightmost column of its stripe to the third machine, and so on.

The correctness of this approach should be clear. However, we need to improve it a
little bit, in order to make it efficient. Clearly, each machine requires  () time to
fill in its cells. However, all machines (except for the last one) send  messages, each
containing a single number. This may be very inefficient, but can be fixed easily, as a
machine may send the contents of cells in batches, each containing  numbers, thus
reducing the number of messages to de. This obviously does not impact the running
time of each machine.

However, there is one more efficiency aspect that we should take care of. Namely,
we need to assure that the machines do not wait long for the numbers they need to have
in order to perform computation. If each machine sends the contents of the rightmost
column after filling in its entire stripe (i.e. sends batches of  =  messages), then our
solution becomes essentially sequential. On the other hand, we know that  = 1 is also
not a good choice, for performance reasons.

Let us analyze how to pick a good value of . For the analysis, assume that all the
machines are perfectly synchronized, that is, in each time unit a machine can fill in ex-
actly one cell of its stripe (or wait for the data it needs to continue working). Consider
now a phase of exactly  time units. Since each stripe has width , the first ma-
chine sends the first message to the second machine exactly after the first phase. In the
second phase, the second machine starts working (fills in the first  rows of its stripe)
while the first one keeps on working on the following rows. From the second phase, the
second machine no longer needs to wait, as it receives the necessary data exactly the
moment when it needs it. In general, the -th machine starts to work in the -th phase
after ( − 1)  =  () time units. Thus, the -th machine starts after  ()

time units and then works for  () time units. Hence, all the machines finish
within  ( + ) time units and send  () messages each.

Assume that the topmost row of matrix D contains elements D(1, ·) and the
leftmost column contains D(·, 1). Partition the matrix into M stripes consisting
of l/M consecutive columns (for simplicity, we assume that l is divisible by M),
where M is the number of machines available. Each machine is responsible for
filling in the entries of D in one stripe. Let the i-th machine (for i ∈ {1, . . . ,M})
be responsible for the i-th stripe from the left. See Fig. ?? for illustration.

Figure 1: The process of computing the matrix D. Stripes assigned to different
machines have been marked with different shades of gray. The numbers inside
the matrix specify the phase number, when the respective part of the matrix is
computed (see below).

The first machine fills in the first (leftmost) stripe, starting from the topmost
row. Consider the rightmost column in the first stripe. Observe that the con-
tents of this column is everything the second machine needs to know, in order to
fill in its stripe. The entries in the rightmost column of the first stripe are filled
in by the first machine from top to bottom, and as they are being computed,
the first machine sends them to the second machine. The second machine then
fills in its stripe and sends the contents of the cells in the rightmost column of
its stripe to the third machine, and so on.

The correctness of this approach should be clear. However, we need to
improve it a little bit, in order to make it efficient. Clearly, each machine
requires O(kl/M) time to fill in its cells. However, all machines (except for the
last one) send k messages, each containing a single number. This may be very
inefficient, but can be fixed easily, as a machine may send the contents of cells
in batches, each containing b numbers, thus reducing the number of messages
to k/b. This obviously does not impact the running time of each machine.

However, there is one more efficiency aspect that we should take care of.
Namely, we need to assure that the machines do not wait long for the numbers
they need to have in order to perform computation. If each machine sends

12

Fig. 1. The process of computing the matrix . Stripes assigned to different machines have
been marked with different shades of gray. The numbers inside the matrix specify the phase
number, when the respective part of the matrix is computed (see below).

Distributed Tasks: Introducing Distributed Computing to ... 189

By setting  = bc we assure that the waiting time is dominated by the computing
time, which means that our solution parallelizes the single-machine solution in a perfect
way. At the same time, the total number of messages sent is moderate ( ( 2)).

5. Task “Sabotage” (2015)

The city of Megabyteopolis was built upon a large lake and consists of a number of isles
connected with bridges. The bridges may run above other bridges.

A group of saboteurs wants the current president Byteasar not to be reelected. They
plan to impact the public opinion by exposing Byteasar’s administration’s helplessness
in the case of a major emergency. Specifically, they decided to blow up one of the bridg-
es (they cannot afford blowing up more). The sabotage could be considered successful
only if there was no other way between the isles previously connected by the destroyed
bridge. Your task is to find the number of bridges that the saboteurs should consider
when working out the details.

Input
int ●● NumberOfIsles(): returns  (1 ≤  ≤ 200 000) – the number of isles consti-
tuting the city of Megabyteopolis. The isles are numbered 0 through  − 1.
int ●● NumberOfBridges(): returns  (1 ≤  ≤ 108 ) – the number of bridges in
the city. The bridges are numbered 0 through  − 1.
int ●● BridgeIntA(int i): returns the first isle connected by the bridge .
int ●● BridgeIntB(int i): returns the second isle connected by the bridge .

Output
The output should contain a single integer – the number of bridges whose blowup could
result in the sabotage being considered successful.

5.1. Solution

In this task we are asked to solve a basic graph problem: for a given undirected graph
 = ( ) we need to compute the number of bridges. A bridge is defined here as an
edge of  whose removal results in an increase of the number of connected components
of . Denote by  () the set of bridges of . A textbook algorithm (e.g., Sedgewick,
2002) for computing  () is based on an extension of the depth-first search (DFS) al-
gorithm and runs in  ( + ) time. The number of vertices in our graph is quite small,
i.e., the bound on the order of 105 is typical for graph tasks even in the traditional, non-
distributed setting. The number of edges  in our case can be, however, much larger.

Unfortunately, DFS is not an algorithm that can be parallelized easily. Nevertheless,
we do not need to entirely abandon the idea of using DFS: our strategy is to use the mul-
tiple machines to reduce our problem instance to an instance with only  () edges. In
such a reduced instance, we use DFS to find the bridges.

A. Karczmarz et al.190

Definition 1. Consider a graph  = ( ). We define a bridge certificate of  to be a
set  ⊆  such that for any  ⊆  ×  ,  ((  [)) =  ((  [)).

As a result, replacing a subset of edges of  with its bridge certificate does not affect
the set of bridges of . We are going to use the bridge certificates to detect and remove
edges of . The following lemma describes a construction of a bridge certificate. For
completeness we give its proof in the Appendix.

Lemma 1. Let  = ( ) and  = j j,  = jj. Then there exists a bridge certificate
 of  such that jj ≤ 2 which can be computed in  (+) time.

By Lemma 1, we can take any subset  0 of edges of , find a bridge certificate  of
(  0) and replace  0 in  with  ⊆  0 in  (+j 0j) time. We call this step a reduc-
tion with respect to  0.

It turns out that we can easily perform the reductions in a parallel fashion. For sim-
plicity, first assume that we have only two machines, i.e.,  = 2. We partition the
edge set  into two sets 0 1 of roughly equal size. The machine , for  = 0 1,
performs the reduction step on the set , obtaining a certificate  of size at most 2,
in  (+jj) time. Next, machine 1 sends the set 1 to machine 0. In the last step,
machine 0 runs DFS to find the set  (( 0 [1)). This, however, takes only  ()

time, as j0 [1j ≤ 4. By the definition of a certificate,

 () =  (( 0 [1)) =  (( 0 [1)) =  (( 0 [1))

This concludes that indeed this approach finds all the bridges of .
In order to develop a distributed algorithm using   2 machines, we perform

multiple reduction phases. In the first phase, the set of edges is partitioned among the
 machines, and each machine computes a certificate of the edges assigned to it. In
the following phases the certificates are merged in pairs: two certificates produced in
the previous phase are sent to a machine that takes their union and computes the cer-
tificate of the resulting graph.

Let us describe this process formally. Assuming that the machines are numbered 0

through  − 1, we split the input edge set  arbitrarily into  parts 0      − 1, each
of size  (). Our distributed algorithm runs in  = dlog2 e + 1 phases numbered
0 through  − 1. In the -th phase ( = 0      − 1) only the machines with identifiers
 divisible by 2 are active and actually do perform some work. With each active machine
 we associate two sets  ,  ( 

 ⊆ ) whose contents depend on the phase number
. Before the -th phase:

●●  is a bridge certificate of the graph

 = (  [+1 [   [+2 − 1)

In the above we set + = ; if  +  ≥ .
If ●●  = 0 then  =  . Otherwise, j j ≤ 4.

After the -th phase the set  is a bridge certificate of  and j j ≤ 2. Note that
it follows that after the phase  − 1, 0 is a bridge certificate of  and j0j =  ().

Distributed Tasks: Introducing Distributed Computing to ... 191

At that point the machine 0 runs DFS on ( 0) to compute the set of bridges of  in
 () time.

It remains to show how to implement the phases so that the invariants imposed on the
sets   are satisfied. Before the first phase we set  =  . Assume that the phase 
− 1 has been completed. We perform a reduction of Lemma 1 on the set  in order to
obtain the set  . This takes  ( + j j) time, which is  () for   0 and  ( +

) if  = 0. The last step is to initialize the sets  before the next, ( + 1)-th phase.
To do that, for each  divisible by 2+1, we set  =  [+2 if  + 2   and
 =  otherwise. As for all , jj ≤ 2, clearly we now have j j ≤ 4. To implement
this step, the machine  + 2 sends the entire set +2 to the machine . This requires a
single message of () bytes. Fig. 2 depicts the phases of our distributed algorithm.

In each phase every machine remains idle or sends  () bytes, or receives  ()

bytes. Consequently, the first phase takes  ( + ) time on each machine and
each of the  − 1 remaining phases runs in  () time on each machine. Thus, the time
complexity of this solution is  ( +  log).

5.2. Tests

The library providing the test data had to be robust enough to serve graphs with large
edge sets and nontrivial 2-edge-connected components (i.e., connected components of
 formed after removing all the bridges), given limited time and space. It seems that a
hard test case is a graph with a maximum number of edges and possibly large number
of bridges. In such a case at least some of the 2-edge-connected components should be
very dense.

Ph. 0

Ph. 1

Ph. 2

Ph. 3

E0

X0

E1

X1

E2

X2

E3

X3

E4

X4

E5

X5

E6

X6

Y0

X0

Y2

X2

Y4

X4

Y6

X6

Y0

X0

Y4

X4

Y0

X0

Figure 2: The phases of the distributed algorithm when M = 7. In this case
K = 4 phases are performed. The blue arrows illustrate the communication
between the machines in the corresponding phases.

components of G formed after removing all the bridges), given limited time and
space. It seems that a hard test case is a graph with a maximum number of
edges and possibly large number of bridges. In such a case at least some of the
2-edge-connected components should be very dense.

The infrastructure for generating test graphs provided a general graph in-
terface along with a few specialized implementations (a vertex, a path, a cycle,
a clique, a pseudorandom graph, a set of loops) that could serve the edges in
O(1) time with constant space consumption, regardless of the graph size. As
an example, a cycle on n vertices numbered 0 through n− 1 can be represented
with a single integer n: when asked for the cycle’s i-th edge, we just return
(i, (i+ 1) mod n).

Such graphs could be then combined into larger and more sophisticated
graphs by unions and direct sums and also extended by adding specified edges,
which were typically used to ensure the desired structural properties of the
served graph. For example, this allowed to easily generate a tree of size 100
with each vertex replaced with a random 2-edge-connected graph with 1000
vertices and between 100 000 and 500 000 edges. Such a graph had on the order
of 107 edges in total, 99 bridges and could be represented with the number
of bytes on the order of 102. At the highest level, the vertices were assigned
random identifiers, whereas the list of edges was randomly permuted.

The size of the in-memory representation of each test cases was O(n) per
machine and the sophistication level of the served graphs was limited only by

16

Fig. 2. The phases of the distributed algorithm when  = 7. In this case  = 4 phases are
performed. The blue arrows illustrate the communication between the machines in the cor-
responding phases.

A. Karczmarz et al.192

The infrastructure for generating test graphs provided a general graph interface along
with a few specialized implementations (a vertex, a path, a cycle, a clique, a pseudo-
random graph, a set of loops) that could serve the edges in  (1) time with constant
space consumption, regardless of the graph size. As an example, a cycle on  vertices
numbered 0 through  − 1 can be represented with a single integer : when asked for the
cycle’s -th edge, we just return ( ( + 1) mod ).

Such graphs could be then combined into larger and more sophisticated graphs by
unions and direct sums and also extended by adding specified edges, which were typi-
cally used to ensure the desired structural properties of the served graph. For example,
this allowed to easily generate a tree of size 100 with each vertex replaced with a random
2-edge-connected graph with 1000 vertices and between 100 000 and 500 000 edges.
Such a graph had on the order of 107 edges in total, 99 bridges and could be represented
with the number of bytes on the order of 102. At the highest level, the vertices were as-
signed random identifiers, whereas the list of edges was randomly permuted.

The size of the in-memory representation of each test cases was  () per machine
and the sophistication level of the served graphs was limited only by the need to return
the requested edge in time on the order of 100ns.

6. Conclusions

We described a novel format of programming competitions, aimed at familiarizing stu-
dents with an increasingly important area of computer science – design of distributed
algorithms. While there is a considerable engineering effort involved in preparing the
backend for such a competition, we hope that an increasing number of competitions
(maybe including IOI in the future) will feature tracks or problems of a distributed na-
ture, to reflect the industry’s shift toward cloud-based and distributed computing.

References

Chávez, L.H. (2015). libinteractive: a better way to write interactive tasks. Olympiads in Informatics, 9, 3–14.
Cormen, T.H., Leiserson, C.E., Rivest, R.L. Stein, C. (2009), Introduction to Algorithms. MIT Press.
David, H.A. Nagaraja, H.N. (2003). Order Statistics (3rd Edition). Wiley.
Dean, J. Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. Communications of the

ACM – 50th anniversary issue: 1958–2008, 51(1), 107–113.
Forišek M. (2013). Pushing the boundary of programming contests. Olympiads in Informatics, 7, 23–35.
Fox, A. and Brewer E. (1999). Harvest, yield and scalable tolerant systems. In: Proc. 7th Workshop Hot Topics

in Operating Systems (HotOS 99). IEEE CS, 174–178.
Komm D. (2011). Teaching the concept of online algorithms. Olympiads in Informatics, 5, 58–70.
Kulczyński, T., Łącki, J., Radoszewski, J. (2011). Stimulating students’ creativity with tasks solved using pre-

computation and visualization. Olympiads in Informatics, 5, 71–81.
Sedgewick, R. (2002). Algorithms in C++, Part 5: Graph Algorithms. Addison-Wesley Longman Publishing

Co., Inc., Boston.

Distributed Tasks: Introducing Distributed Computing to ... 193

A. Karczmarz (1990), PhD student at Faculty of Mathematics, Infor-
matics and Mechanics, University of Warsaw, Poland, jury member of
multiple programming contests organized by University of Warsaw,
coorganizer of Algorithmic Engagements 2015. In his research he fo-
cuses on algorithms and data structures.

J. Łącki (1986), postdoctoral researcher at Sapienza University of
Rome, Italy, IOI Scientific Committee elected member, appointed
chair for 2016, responsible for task selection at Algorithmic Engage-
ments for many years, former head organizer of Polish Training Camp.
In his research he focuses on graph algorithms.

A. Polak (1991), PhD student at Department of Theoretical Computer
Science, Faculty of Mathematics and Computer Science, Jagiellonian
University, Kraków, Poland, judge at the ACM Central Europe Re-
gional Contest in 2012, 2013, and 2014. His research interests lie in
algorithms, complexity theory, and computer vision.

J. Radoszewski (1984), assistant professor at Faculty of Mathemat-
ics, Informatics and Mechanics, University of Warsaw, Poland, and
Newton International Fellow at King’s College London, UK, chair of
the jury of Polish Olympiad in Informatics, co–chair of the Scientific
Committee of CEOI’2011 in Gdynia, former member of Host Scien-
tific Committees of IOI’2005, CEOI’2004, BOI’2008, and BOI’2015.
His research interests focus on text algorithms and combinatorics.

J.O. Wojtaszczyk (1980), Staff Software Engineer at Google, Warsaw,
judge at the ACM ICPC World Finals in 2011, 2012, 2013, 2015 and
2016, coorganizer of the Google Code Jam since 2012, main organizer
of the Distributed Code Jam. The primary focus of his engineering
work is around cluster management.

A. Karczmarz et al.194

Appendix: Proof of Lemma 1

Lemma 1. Let  = ( ) and  = j j,  = jj. Then there exists a bridge certificate
 of  such that jj ≤ 2 which can be computed in  (+) time.

Proof. We compute the set  in the following way. First, compute some spanning forest
 (we identify it with a set of its edges) of  using any graph search algorithm. This
takes  ( +) time. Then, compute some spanning forest  0 of  0 = (  n ). Fi-
nally, set  =  [ 0. Clearly, jj ≤ 2 and  ⊆ .

We now prove that  is indeed a bridge certificate of . Let  ⊆  ×  . First, let
us show that the graphs 1 = (  [) and 2 = (  [) have the same con-
nected components. Clearly, if there exists a path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 in 2 then a path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 exists
in 1, as 2 is a subgraph of 1. Conversely, if  and  are connected in 1 by a path
, then any edge ( ) 2  n  such that ( ) 2  n  can be replaced by a path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 contained entirely in  (recall that  is a spanning forest of ).
For a graph , define  −  as  with the edge  removed. Now assume that ( )

is a bridge in 1, i.e., ( ) 2  (1). Then, there is no path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 in 1 − ( ). As
2 − ( ) is a subgraph of 1 − ( ), there is also no path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 in 2 − ( ).
Moreover, 1 and 2 have the same connected components and thus ( ) 2  [ .
Thus, ( ) 2  (2) and consequently  (1) ⊆  (2).

Finally, suppose that ( ) 2  (2). Then,  and  are connected in 2, but no
path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 exists in 2 − ( ). As 2 is a subgraph of 1, ( ) 2  [ . Let us
show that no path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪ Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 exists in 1 − ( ). Assume the contrary and let  be such a
path. If  ⊆  [ , then  would be a 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 path in 2 − ( ), which is not pos-
sible. Hence, there exists some edge ( ) 2  such that ( ) 2  n  n f( )g.
As ( ) 2  and ( ) 2  0, there exist paths  and  0 from  to  in both spanning
forests  and  0, correspondingly. At least one of these paths, say , does not contain
( ). We may replace the edge ( ) with the path  ⊆ . By replacing all such
edges ( ) with paths contained in , we obtain a path 

Appendix: Proof of Lemma ??
Lemma ??. Let H = (V,E) and n = |V |, m = |E|. Then there exists a bridge
certificate X of H such that |X| ≤ 2n which can be computed in O(n+m) time.

Proof. We compute the set X in the following way. First, compute some span-
ning forest F (we identify it with a set of its edges) of H using any graph search
algorithm. This takes O(n+m) time. Then, compute some spanning forest F 

of H  = (V,E \ F). Finally, set X = F ∪ F . Clearly, |X| ≤ 2n and X ⊆ E.
We now prove that X is indeed a bridge certificate of H. Let Y ⊆ V × V .

First, let us show that the graphs H1 = (V,E ∪ Y) and H2 = (V,X ∪ Y) have
the same connected components. Clearly, if there exists a path u  v in H2

then a path u  v exists in H1, as H2 is a subgraph of H1. Conversely, if u
and v are connected in H1 by a path P , then any edge (a, b) ∈ P \ Y such that
(a, b) ∈ E \X can be replaced by a path a  b contained entirely in F (recall
that F is a spanning forest of H).

For a graph G, define G − e as G with the edge e removed. Now assume
that (u, v) is a bridge in H1, i.e., (u, v) ∈ B(H1). Then, there is no path u  v
in H1 − (u, v). As H2 − (u, v) is a subgraph of H1 − (u, v), there is also no
path u  v in H2 − (u, v). Moreover, H1 and H2 have the same connected
components and thus (u, v) ∈ X ∪ Y . Thus, (u, v) ∈ B(H2) and consequently
B(H1) ⊆ B(H2).

Finally, suppose that (u, v) ∈ B(H2). Then, u and v are connected in H2, but
no path u  v exists in H2 − (u, v). As H2 is a subgraph of H1, (u, v) ∈ E ∪Y .
Let us show that no path u  v exists in H1 − (u, v). Assume the contrary
and let P be such a path. If P ⊆ X ∪ Y , then P would be a u  v path in
H2− (u, v), which is not possible. Hence, there exist some edges (a, b) ∈ P such
that (a, b) ∈ E \ X \ {(u, v)}. As (a, b) /∈ F and (a, b) /∈ F , there exist paths
Q and Q from a to b in both spanning forests F and F , correspondingly. At
least one of these paths, say Q, does not contain (u, v). We may replace the
edge (a, b) with the path Q ⊆ X. By replacing all such edges (a, b) with paths
contained in X, we obtain a path u  v in H2 − (u, v), a contradiction. Thus,
(u, v) ∈ B(H1) and, consequently, B(H2) ⊆ B(H1).

19

 in 2 − ( ), a con-
tradiction. Thus, ( ) 2  (1) and, consequently,  (2) ⊆  (1).

