
UNIVERSITA’ COMMERCIALE “LUIGI BOCCONI”

PhD SCHOOL

PhD program in Statistics

Cycle: XXXII

Disciplinary Field (code): INF/01

Online Learning, Physics and Algorithms

Advisor: Riccardo ZECCHINA

Co-Advisor: Nicolò CESA-BIANCHI

 PhD Thesis by

 Riccardo DELLA VECCHIA

 ID number: 3031356

Year 2021

i

Contents

1 Introduction 1
1.1 Statistical Physics, Algorithms and Neural Networks 1
1.2 Online Learning . 4
1.3 Outline of the thesis . 6

2 Clustering of solutions in the symmetric binary perceptron 8
2.1 Abstract . 8
2.2 Dense clusters in the symmetric binary perceptron 8

2.2.1 Model definition . 10
2.2.2 Replicated Systems and Dense Clusters 11

2.3 Pairs of solutions (y = 2): rigorous bounds 13
2.3.1 Upper bound: the first moment method 13
2.3.2 Lower bound: the second moment method 15

2.4 Multiplets of solutions (y > 2) . 21
2.4.1 Rigorous first moment upper bounds 21
2.4.2 Upper bounds under symmetric assumption for saddle point . . 24
2.4.3 Lower bounds under symmetric assumption for the saddle point 25

2.5 Conclusions . 27
2.6 Appendix . 28

2.6.1 y! • limit . 28
2.6.2 Derivation of the lower bound . 29
2.6.3 n-th moment of y-solutions multiplet using Replica Ansatz 35

3 An Efficient Algorithm for Cooperative Semi-Bandits 39
3.1 Abstract . 39
3.2 Introduction . 39
3.3 Related work and further applications . 40
3.4 Cooperative semi-bandit setting . 42
3.5 Coop-FTPL and upper bound . 42
3.6 Lower bound . 50
3.7 Conclusions and open problems . 51
3.8 Appendix . 51

3.8.1 Legendre functions and Fenchel conjugates 51
3.8.2 Online Stochastic Mirror Descent (OSMD) 52
3.8.3 Proofs of lemmas on geometric distributions 53
3.8.4 Proof of Theorem 3 . 54
3.8.5 Bounds on independence numbers 59

4 Cooperative Online Learning with Delays 61
4.1 Introduction . 61
4.2 Related work . 62
4.3 Single agent with delay . 64

4.3.1 Full-information feedback with delay and linear losses 64
4.3.2 Partial information feedback with delay and linear losses 67

4.4 From delayed single-agent to cooperative multi-agent 70
4.4.1 Cooperative learning with single agent activation 75
4.4.2 Cooperative learning with multiple agents activation 77

4.5 Cooperative multiple agents activation setting for semi-bandits 78
4.6 Appendix . 83

4.6.1 Analysis of Online Mirror Descent with delays 84
4.6.2 Analysis of Hedge with delays . 89
4.6.3 Analysis of partial information settings 95
4.6.4 Proof of sub-optimal bound in Eq. (4.7) 97
4.6.5 Proof of Theorem 10 . 102
4.6.6 Proof of lemmas from Section 4.5 108

ii

iii

List of Figures

2.1 Plot of free local entropy of eq. (2.3) as a function of the normalized Ham-
ming distance between solutions x, obtained with the replica method
using the replica-symmetric ansatz (see Appendix 2.6.1 for the details).
In both figures the value of the half-width of the channel is K = 1. (Left)
Curves for a = 0 up to a = 1.8 in steps of 0.1. When the distance x
approaches zero we see that all curves tend to coincide with the curve for
a = 0, meaning that there exist regions of solutions that are maximally
dense (nearly all configurations are solutions) in their immediate sur-
roundings. (Right) Zoom on the interval of values of a where there is a
change in monotonicity, which we interpret as signaling a fragmentation
of the dense clusters into separate pieces. We refine the step of a to 0.01,
and we find that the change happens for aU ' 1.58. 13

2.2 Lower and upper bounds for the RBP with K = 1. (Left) Lower and
upper bounds on the whole range x 2 [0, 1]. These bounds are symmetric
around the vertical axis that passes by x = 0.5. In correspondence of the
SB solution, the lower bound prediction from the S point (gray line) is
larger than the upper bound and therefore patently wrong. This is what
happens in the regions x  xc, x � 1� xc and x0c  x  1� x0c, where
the two critical values xc ' 0.195 . . . and x0c ' 0.405 . . . are highlighted
by the blue vertical lines on the left of the symmetry axis. In the regions
xc  x  x0c and 1� x0c  x  1� xc, there is a gap between the lower
(purple line) and the upper bound (green line) where the S solution is
indeed valid. (Right) Zoom of the figure on the left, in the region around
xc. Here, for x  xc the S solution fails. This is evident from the fact that
the symmetric lower bound becomes bigger than the upper bound (gray
line). In this region instead, the true lower bound perfectly matches the
upper bound since the optimum of eq. (2.31) is in correspondence of the
SB solution. 20

2.3 (Left) Upper bound a
y
UB (x, K = 1) to the SAT/UNSAT threshold for the

RBP problem with y replicas constrained at pairwise distance x. Curves
are given by rigorous derivation (y = 2, 3, 4) or by non-rigorous field
theoretical calculations (2.36) (y > 4) . (Center) Zoom of the figure
on the left. Close to x = 0 the curves corresponding to different y
intersect. (Right) The upper bounds (solid lines) are compared to the S
point predictions (2.40) for the lower bounds (dashed lines). 25

2.4 Lower and upper bounds for the RBP with K = 1 and for different values
of y = 3, 4, 5, in the region of small x. Like in the case of y = 2, for x larger
than the critical value xc (y) (blue vertical line) there is a gap between the
symmetric lower bound (purple line) and the upper bound (green line).
This gap closes in correspondence of the SB solution for x  xc (y) and
the two bounds coincide. 27

2.5 Numerical lower bounds aLB,y=2 (x, K = 1) obtained by multiple restarts
of GD from a 4d grids with m points, for different values of m, along with
theoretical predictions from the symmetric point S (that we know to be
wrong for x < xc) and the true lower bound (point S for x > xc, point SB
for x < xc). 34

2.6 (Left) Numerical and theoretical estimates for aLB,y=2 (x, K = 1) as in
fig. (2.5) but with GD in 2-dimensional space and multiple restarts from
grids of m points. (Right) Evaluation of the points in 2d grids of different
sizes m with no GD refinement. 34

iv

v

Acknowledgements

First of all, I would like to thank my Ph.D. advisors Riccardo Zecchina and Nicolò
Cesa-Bianchi for introducing me to machine learning and giving me the possibility to
contribute to scientific research in this vast field. I am also grateful to Carlo Lucibello
and Carlo Baldassi for their help in the part of my research that was more closely
related to physics, for their insightful comments and suggestions. I also have deep
gratitude towards Nicolò Cesa-Bianchi, for the kind hospitality in the Computer Science
Department of Milano University, where I learned so much of online learning from him
and Tom Cesari. I thank Nicolò also for all the fantastic collaborators he introduced me
to. Thanks to my colleagues in BNP and the ARTLab at Bocconi for your time, support
and laughs of these years.

Finally, this thesis wouldn’t have been possible without my beloved ones’ support in
the ups and downs of these years. A special thank you to my family.

Abstract

In recent years, we have witnessed an increasing cross-fertilization between the fields of
computer science, statistics, optimization and the statistical physics of learning. The area
of machine learning is at the interface of these subjects. We start with an analysis in the
statistical physics of learning, where we analyze some properties of the loss landscape of
simple models of neural networks using the computer science formalism of Constraint
Satisfaction Problems. Some of the techniques we employ are probabilistic, but others
have their root in the studies of disorder systems in the statistical physics literature. After
that, we focus mainly on online prediction problems, which were initially investigated
in statistics but are now very active areas of research also in computer science and
optimization, where they are studied in the adversarial case through the lens of (online)
convex optimization. We are particularly interested in the cooperative setting, where we
show that cooperation improves learning. More specifically, we give efficient algorithms
and unify previous works under a simplified and more general framework.

1

Chapter 1

Introduction

1.1 Statistical Physics, Algorithms and Neural Networks
Problems with many degrees of freedom (variables) but also many constraints are
ubiquitous in science. Most of the times, the problem is to find a value of the variables
which satisfies all constraints, or the most probable configuration of variables given the
constraints and some a priori measure. Such problems occur in various branches of
scientific research and are crucial in several domains. The satisfiability problem is also at
the core of the theory of computational complexity in computer science. Error correcting
codes is one of the main topics of information theory. Learning from examples is an
essential process in cognitive neuroscience. Reconstruction of neuron interactions from
multi-electrode recording is a problem which is becoming more and more critical. All
these problems can be formulated in a common language [Mezard and Montanari,
2009], and have a strong relationship to fundamental issues in statistical physics like the
existence of phase transition, and the possibility of glassy phases. They can also be cast
into a somewhat generic formalism, based a graphical representation of the topology of
constraints [Kschischang et al., 2001], which allows applying a general message passing
strategy to all of them. Some of these message passing algorithms have shown strikingly
good performance, solving some problems in satisfiability or perceptron learning that
are unreachable by any other algorithms.

Formally, a generic Constraint Satisfaction Problem (CSP) can be defined in terms of
configurations of N variables xi 2 Xi, subject to M constraints yµ : Dµ ! {0, 1}. Each
constraint µ involves a subset ∂µ of the variables, which we collectively represent as
x∂µ = {xi : i 2 ∂µ} 2 Dµ, and we define yµ

�
x∂µ

�
= 1 if the constraint is satisfied, 0

otherwise. For the case of binary spin variables, one has Xi = X = {�1,+1}. It is
possible to define an energy function of the system simply as the number of violated
constraints, namely:

E(x) = Â
µ

Eµ
�
x∂µ

�
= Â

µ

�
1� yµ

�
x∂µ

��
,

where a solution of a CSP is then a zero-energy configuration. Statistical Physics
provides (among others) tools to state whether one can find solutions to the problem
at a given constraint density, a = M/N, where the thermodynamic limit M, N ! • is
taken. Interestingly, in random CSPs, the system undergoes a sharp transition at a critical

density aC, going from a phase where exponentially many zero-energy configurations
are present with very high probability, the so-called SAT phase, to a phase where the
problem is no longer satisfiable, and at best a small fraction of the constraints will be
necessarily violated, the UNSAT phase. This will be the topic of Chapter 2 of this thesis,
where the model that we will study is a simple example of neural networks.

Artificial neural networks (NNs) are among the most widely used tools in data science
and have exceptional performances in complex recognition tasks [LeCun et al., 2015].
The remarkable output of these systems has paved the way for important opportunities
for machine learning in a vast number of applications. In NNs with simple as well as
large and complex architectures, learning from data is a computationally demanding
task in which a large number of connection weights are iteratively tuned through
heuristic improvements over the basic stochastic gradient descent (SGD) algorithm.
In practical applications, NNs are trained on big datasets, and the aforementioned
heuristic algorithms often find solutions with good generalization properties. How
learning, despite huge numbers of parameters and strong nonlinearities, occurs in these
systems, without getting trapped in configurations corresponding to local minima with
poor prediction performance, is not well understood. However, theoretical progress
could be useful to shape NNs architecture and new learning algorithms.

In the past decades, various methods borrowed from statistical physics have been
successful in studying the fundamental properties of neural-like systems [Advani et al.,
2013]. From this viewpoint, data under the form of training examples plays the role of
quenched disorder, and the synaptic weights of the network (the learning parameters
of the machine learning algorithm), play the role of statistical mechanical degrees
of freedom. In the zero-temperature limit, these degrees of freedom are optimized,
or learned, by minimizing an energy function, just as the ground state is usually
uncovered in the context of physics. Indeed, many machine learning algorithms can
be formulated as the minimization of a (possibly very rough) data dependent energy
function on a high-dimensional space of parameters - a topic that has been very much
studied in the statistical physics of disordered systems and in particular of spin glasses
[Mézard et al., 1987]. The techniques developed in the context of statistical physics
have been successfully applied also to study the geometry of the solution space and
corresponding phase transitions in random constraint satisfaction problems (CSPs)
[Mezard and Montanari, 2009, Krzaka. . . a et al., 2007], inspiring new powerful heuristic
algorithms that can find solutions to these problems in the hard phase close to the
SAT/UNSAT threshold [Mézard et al., 2002, Braunstein et al., 2005].

In a recent series of papers Baldassi et al. [2015, 2016b,a, 2020b], Pittorino et al. [2020]
propose to study artificial NNs performance in terms of a non-equilibrium statistical
physics framework. They perform a large deviation analysis to shed light on the inner
algorithmic working of models of artificial NNs and deep architectures. Theoretical
and numerical evidence shows that the large deviation measure - named local entropy
- reveals the existence of a class of exponentially rare solutions in the optimization
landscape (the network weight space) which have surprisingly good generalization
properties. These solutions are clustered in dense regions, in the case of the discrete
weights, and have radically different properties from the ones dominating an equi-
librium measure [Baldassi et al., 2015]. These exponentially rare minima are hard to
find for most algorithms, but they become very attractive for others that are properly

2

designed. The same picture holds for complex NNs architectures with continuous
weights trained on real-world benchmarks [Chaudhari et al., 2019, Pittorino et al., 2020],
where flat minimizers are the equivalent for the continuous weight space of the regions
of dense solutions. In fact, already Sagun et al. [2016] found that the spectrum of the
Hessian of the loss function is composed of two parts: the bulk centred near zero, and
outliers away from the bulk, confirming the hypothesis that good minimizer of the loss
landscape for NNs are minima that are surrounded by an exponential number of other
good ones.

The large deviation analysis of the local entropy measure and the out-of-equilibrium
measure named Robust Ensemble (RE) were introduced by Baldassi et al. [2016a], and pro-
vide a framework in which it is possible to interpret and understand the shortcomings
of the standard equilibrium analysis and, by a better understanding of the geometrical
structure of the solutions space of NNs, to design new effective algorithms for learning
in these systems. A general theory for these robust minima can be constructed moving
from the Gibbs Measure used in the standard statistical mechanics formulation, i.e.

p (x) =
1

Z(b)
e�bE(x) with Z(b) = Â

{x}
e�bE(x) , (1.1)

to a measure that suppresses the role of narrow local minima and favors these rare but
very dense regions, i.e.

P (x; b, y, l) =
1

Z (b, y, l)
e y F(x,b,l) (1.2)

where F (x, b, l) is called the local free entropy and y has the role of inverse temperature.
F involves both the energy term and a distance constraint between configurations
enforced by a Lagrange multiplier l:

F (x, b, l) = ln Â
{x0}

e�bE(x0)�l d(x,x0) , (1.3)

where d(·, ·) is a distance measure between two configurations. In this setting, not
only low-energy but also dense regions of configurations with high local entropy are
favoured. The parameter l controls how narrow/wide a minimum needs to be to have
a significant statistical weight. At this stage, a direct estimation of the local free entropy
F is not an easy task. However, by choosing y to be a non-negative integer, one can
rewrite the partition function as:

Z (b, y, l) = Â
{x⇤}

e y F(x⇤,b,l) (1.4)

= Â
{x⇤}

Â
{xa}

e�b Ây
a=1 E(xa)�l Ây

a=1 d(x⇤,xa). (1.5)

This form of Z can be interpreted as describing a system of y + 1 interacting replicas of
the original system, one of which acts as reference x⇤, and the other {xa

}
y
a=1 are subject

to the energy E (x) and to the interaction with the reference. This formulation is also
particularly apt to the construction of algorithms which are tuned to explore robust
regions of the energy landscape. By simply replicating the model and adding an elastic

3

interaction term between replicas, one can induce the dynamics to converge on local
entropy minima.

To demonstrate the utility of the local entropy measure for the implementation of new
efficient algorithms, Baldassi et al. [2016a] also introduce a fast Entropy-driven Monte
Carlo (EdMC) strategy relying exclusively on a local entropy estimate to sample solu-
tions of general random CSPs efficiently. Furthermore, the RE is applied to Markov
Chain Monte Carlo (MCMC), message passing and gradient descent algorithms, tar-
geting the robust dense states and resulting in improvements in their performance.
Replicated gradient descent is related to elastic averaged stochastic gradient descent,
used in complex deep artificial NNs [Zhang et al., 2015], implying that the geometrical
structure of the RE may provide an explanation for its effectiveness and a framework
for further research on learning in NNs as it has been recently confirmed in [Pittorino
et al., 2020].

Despite all the progress in algorithmic performances of NNs, many questions are still
open about their capabilities of generalizing well and yet little has been rigorously
proved in this regard. What has been observed, is that minimizers’ flatness consistently
correlates with good generalization, but there has been little rigorous work in exploring
the condition of existence of such minimizers, even in toy models. In Chapter 2 of this
thesis, we investigate with rigorous probabilistic methods a simple neural network
model, the symmetric perceptron, with binary weights. We perform the first steps
toward the rigorous proof of the existence of a dense cluster in certain regimes of the
parameters, by computing the first and second moment upper bounds for the existence
of pairs of arbitrarily close solutions. Moreover, we present a non rigorous derivation
of the same bounds for sets of y solutions at fixed pairwise distances using some quite
sophisticated techniques from the theory of disordered systems. In particular, we make
use of the replica method for which we refer the interested reader to the monographs
by Mézard et al. [1987] and Mezard and Montanari [2009], since a full exposition of the
method is out of the scope of this thesis.

1.2 Online Learning
Online learning is the process of answering a sequence of questions given (maybe
partial) knowledge of the correct answers to previous questions and possibly additional
available information. This setting differs from batch learning techniques in which the
entire training data set is processed all at the same time [Shalev-Shwartz and Ben-
David, 2014]. The study of online learning algorithms constitutes an essential domain in
machine learning, and it has interesting theoretical properties and practical applications.
Many reviews are available on the topic. The interested reader can look for example at
[Orabona, 2019, Hazan, 2019, Bubeck et al., 2012], to name a few. In particular, online
learning refers to the framework of regret minimization under worst-case assumptions,
and since many problems in it are particularly well fitted to be studied through the lens
of mathematical optimization, the field is also referred to as Online Convex Optimization
(OCO).

Formally, OCO can be seen as a game between a player and an environment, which
happens through a sequence of consecutive rounds. At each round t the learner/player

4

has to choose a prediction in the convex set X ✓ Rk, that is called decision set. For all
t = 1, 2, . . . a loss function `t(·) : X ! [0, 1] is chosen by the environment (possibly in
an adversary way). The learner makes a prediction xt 2 X , suffers a loss `t(xt) and
receives some feedback. The learner’s goal is to minimize the regret, defined for any
time horizon T by

RT = sup
x2X

RT(x) where RT(x) =
T

Â
t=1

`t(xt)�
T

Â
t=1

`t(x).

Within the regret framework, one can analyze situations in which the data are not
independent and identically distributed from a probability distribution but is possible
to guarantee that the algorithm is “learning” something. For example, online learning
is used to analyze click prediction problems, routing on a network, convergence to
equilibrium of repeated games. It can also be used to analyze stochastic algorithms,
e.g., Stochastic Gradient Descent, but the adversarial nature of the analysis might give
suboptimal results.

A particularly important case of OCO is the problem of learning with expert advice.
In this setting, the decision set is the probability simplex over a finite set of elements
typically referred to as experts. By defining a loss for each expert, we can define the
loss of all these distributions x as the expectation of the loss of a random expert (drawn
according to x). This setting is very important since, in many real-life applications
(weather forecast, stock-price prediction, etc.), the options are indeed limited to a finite
set, and after following the advice of an expert, it is possible to measure how good
the advice of the other experts really was respect to the best expert in hindsight. This
corresponds to the full-feedback setting.

In the case of multi-armed bandits (MAB) instead, the feedback does not comprise the
outcome of all possible actions. The two most important types of partial feedback are
bandit feedback and semi-bandit feedback. In the former case, the agent just receives a
feedback ft which corresponds to the loss `t(xt) that he pays when playing xt. In the
second case instead, the loss is a linear function, and the agent receives as feedback
the single components of the vector ft =

�
xt(1)`t(1), . . . , xt(k)`t(k)

�
for xt 2 {0, 1}k

while paying a loss h`t, xti. This is a fundamental paradigm in online learning and
has seen exponential growth in publications over the last decades. The name comes
from imagining a gambler at a row of slot machines (sometimes known as "one-armed
bandits"), who has to decide which machines to play, how many times to play each
machine and in which order to play them, and whether to continue with the current
machine or try a different machine. Despite the name, the original motivation for this
model was indeed different, and it comes from clinical trials. In clinical trials, each arm
corresponds to one treatment, and rewards measure the efficacy of this treatment on a
patient [Thompson, 1933]. Even though medical studies motivated the initial research
in multi-armed bandits, it is a field where researchers have not consistently employed
bandits for their analyses.

Multi-armed bandit problem is interesting for machine learning because it presents
the so-called exploration versus exploitation dilemma. Indeed, there is a clear tradeoff
between discovering which treatment is the most effective (exploration) and administer-
ing the best treatment to as many patients as possible (exploitation). On many aspects,

5

this problem represents the “hydrogen atom” of reinforcement learning, in the sense
that it is the basic model from which one can get insights before tackling more compli-
cated problems. For example, many algorithms for reinforcement learning and partial
monitoring have their roots in the bandit setting [Auer et al., 2009, Bartók, 2013]. For
further reading on different bandit models, we refer to the recent book by Lattimore and
Szepesvári [2018], where the authors also point out to the many applications in which
bandits already play a fundamental role today. For example, they have a prominent
role in online advertising, where customers arrive sequentially at a fast rate. Big tech
companies also use bandit algorithms to optimize user interfaces, provide personalized
news or content, and much more Li et al. [2010], Chapelle et al. [2014], Kveton et al.
[2015]. Furthermore, Monte-Carlo Tree Search, which also uses bandit theory, is a crucial
component of the algorithm that has defeated the world champion of Go in 2016 [Silver
et al., 2016], reaching a goal that many believed to be at least a decade away.

In a world where distributed systems are ubiquitous, is worth investigating how these
online convex optimization techniques behave in a cooperative framework. Cooperation is
useful for many problems in large-scale learning systems in finance, online advertising,
wireless sensor networks, climate informatics, where such an approach has shown em-
pirical performance advantages compared to the global (i.e., non-spatially distributed)
online learning counterparts. The goal in a cooperative setting is to minimize the regret
in a communication network, which is modelled as a graph G. After T time steps the
regret is

RT =
T

Â
t=1

Â
v2St

`t
�
xt(v)

�
� inf

x2X

T

Â
t=1

Â
v2St

`t(x) . (1.6)

where St is a stochastic set of “active” agents v that made a prediction at time t. Similarly
to the single agent case, this is the difference between the cumulative loss of the active
agents and the loss that they would have incurred had they consistently made the best
prediction in hindsight. In this framework, the protocols might differ. In Chapter 3, we
focus on the efficiency of the algorithms that are used, while, in Chapter 4, the focus is
on cooperation when the feedback is broadcast through the network. In this last setting,
it is natural the appearance of delays since agents have a certain spatial distance, which
is given by shortest-path distance on the communication graph.

1.3 Outline of the thesis
The thesis is structured in the following way.

Chapter 2 is based on [Baldassi et al., 2020a]. Motivated by the good generalization
properties of flat minimizers in deep NNs, we consider the symmetric perceptron with
binary weights and study the existence of this type of solutions. We phrase the learning
problem as a constraint satisfaction problem, where the analogous of a flat minimizer
becomes a large and dense cluster of solutions, while the narrowest minimizers are
isolated solutions. We perform the first steps toward the rigorous proof of the existence
of a dense cluster in certain regimes of the parameters, by computing the first and second
moment upper bounds for the existence of pairs of arbitrarily close solutions. Moreover,
we present a non rigorous derivation of the same bounds for sets of y solutions at fixed
pairwise distances.

6

Chapter 3 is based on [Della Vecchia and Cesari, 2020]. In this chapter we investigate
how online convex optimization techniques behave in a cooperative framework for
a combinatorial action set and under semi-bandit feedback. Furthermore, at each
time step, just some of the agents are stochastically activated and requested to make a
prediction. These are the agents that participate in the total loss of the system. Then,
neighbors of active agents receive semi-bandit feedback and exchange some succinct
local information. As usual, the goal is to minimize the network regret. Interestingly,
the main challenge in such a context is to control the computational complexity of the
resulting algorithm while retaining minimax optimal regret guarantees. We introduce
Coop-FTPL, a cooperative version of the well-known Follow The Perturbed Leader
algorithm, that implements a new loss estimation procedure that we call Coop-GR.

Chapter 4 is based on [Cesa-Bianchi et al.]. In this chapter we introduce and analyze an
online learning setting in which a network of agents solves a common online convex
optimization problem, in the full and partial feedback setting (bandit and semi-bandit),
by sharing feedback with their network neighbours. Such shared feedback is broadcast
through the network and we study its impact on the global performance of the agents.
We study the problem under two types of feedback, under the full-information feedback
we study the family of algorithm of Online Mirror Descent (OMD), but, since this
doesn’t directly give the interesting case of Hedge we resort to a specific analysis for
it that makes use of the update of Follow The Regularized Leader (FTRL). The other
important case is partial information feedback. We study the case of a network of agents
that cooperate to solve the same nonstochastic bandit problem, and we extend the
analysis also to the case of semi-bandits on m-sets. In Section 4.4 we present the main
novelty of our paper, which is an algorithm and an analysis that lets one transform
a general algorithm that plays with delays into an algorithm on the communication
network and retains a neat study for the total regret.

7

8

Chapter 2

Clustering of solutions in the
symmetric binary perceptron

2.1 Abstract
The geometrical features of the (non-convex) loss landscape of neural network models
are crucial in ensuring successful optimization and, most importantly, the capability to
generalize well. While minimizers’ flatness consistently correlates with good general-
ization, there has been little rigorous work in exploring the condition of existence of
such minimizers, even in toy models. Here we consider a simple neural network model,
the symmetric perceptron, with binary weights. Phrasing the learning problem as a
constraint satisfaction problem, the analogous of a flat minimizer becomes a large and
dense cluster of solutions, while the narrowest minimizers are isolated solutions. We
perform the first steps toward the rigorous proof of the existence of a dense cluster in
certain regimes of the parameters, by computing the first and second moment upper
bounds for the existence of pairs of arbitrarily close solutions. Moreover, we present
a non rigorous derivation of the same bounds for sets of y solutions at fixed pairwise
distances.

2.2 Dense clusters in the symmetric binary perceptron
The problem of learning to classify a set random patterns with a binary perceptron has
been a recurrent topic since the very beginning of the statistical physics studies of neural
networks models [Gardner and Derrida, 1988]. The learning problem consists in finding
the optimal binary assignments of the connection weights which minimize the number
of misclassifications of the patterns. We shall refer to such set of optimal assignments as
the space of solutions of the perceptron. In spite of the extremely simple architecture
of the model, the learning task is highly non convex and its geometrical features are
believed to play a role also in more complex neural architectures [Watkin et al., 1993,
Seung et al., 1992, Engel and Van den Broeck, 2001].

For the case of random i.i.d. patterns, the space of solutions of the binary perceptron
is known to be dominated by an exponential number of isolated solutions [Krauth
and Mézard, 1989] which lie at a large mutual Hamming distances [Huang et al., 2013,

Huang and Kabashima, 2014] (golf course landscape). An even larger number of local
minima have been shown to exist [Horner, 1992].

The study of how the number of these isolated solutions decreases as more patterns
are learned provides the correct prediction for the so-called capacity of the binary
perceptron, i.e. the maximum number of random patterns that can be correctly classified.
However, the same analysis does not provide the insight necessary for understanding
the behavior of learning algorithms: one would expect that finding solutions in a golf
course landscape should be difficult for search algorithms, and indeed Monte Carlo
based algorithms satisfying detailed balance get stuck in local minima; yet, empirical
results have shown that many learning algorithms, even simple ones, are able to find
solutions efficiently [Braunstein and Zecchina, 2006, Baldassi et al., 2007, Baldassi, 2009,
Baldassi and Braunstein, 2015].

These empirical results suggested that the solutions which were not the dominant ones
in the Gibbs measure, and were as such neglected in the analysis of the capacity, could
in fact play an important algorithmic role. As discussed in refs. [Baldassi et al., 2015,
2016b] this turned out to be the actual case: the study of the dominant solutions in the
Gibbs measure theory does not take into account the existence of rare (sub-dominant)
regions in the solution space which are those found by algorithms. Revealing those
rare, accessible regions required a large deviation analysis based on the notion of local
entropy, which is a measure of the density of solutions in an extensive region of the
configuration space (see the precise definition in the next section). The regions of
maximal local entropy are extremely dense in solutions, such that (for finite N) nearly
every configuration in the region is a solution. More recently, the existence of high local
entropy / flat regions has been found also in multi-layer networks with continuous
weights, and their role has been connected to the structural characteristics of deep
neural networks [Baldassi et al., 2019, 2020b].

All the above results rely on methods of statistical mechanics of disordered systems
which are extremely powerful and yet not fully rigorous. It is therefore important to
corroborate them with rigorous bounds [Ding and Sun, 2019]. In a recent paper [Aubin
et al., 2019], Aubin et al. have studied a simple variant of the binary perceptron model
for which the rigorous bounds provided by first and second moment methods can be
shown to be tight. The authors have been able to confirm the predictions of the statistical
physics methods concerning the capacity of the model, and the golf course nature of the
space of solutions. The model that the authors have studied has a modified activation
criterion compared to the traditional perceptron, replacing the Heaviside step function
by a function with an even symmetry.

The goal of the present paper is to study the existence of dense regions in the the
symmetrized binary perceptron model. In sec. 2.2 we define the model and, as a
preliminary step, we present the results of the replica-method large deviation analysis,
which predicts that the phenomenology for the symmetrized model is the same as for
the traditional one, and thus that high local entropy regions exist. If these predictions
are correct, then it should be possible, at least for some range of the parameters, to
choose any integer number y � 2 and find a threshold xc (y) such that for any x < xc (y)
there is an exponential number of groups of y solutions all at mutual Hamming distance
bNxc. In the remainder of the paper we try to verify this statement, by employing the
first and second moment methods where possible. In sec. 2.3 we address the y = 2

9

case: we extend the analysis of ref. [Aubin et al., 2019] and show rigorously (except for
a numerical optimization step) that, for small enough constraint density a, there exist
an exponential number of pairs of solutions at arbitrary O (N) Hamming distance. In
sec. 2.4 we study the general y case. For y = 3 or 4, we can derive a rigorous upper
bound that coincides with the non-rigorous results for general y. As for the lower
bound, only the y = 2 case can be derived rigorously (and again it coincides with the
non-rigorous results that we also derive). All the results are thus consistent with the
existence of high local entropy regions, as predicted by the large deviation study.

2.2.1 Model definition
We investigate the rectangular-binary-perceptron (RBP) problem introduced in ref.
[Aubin et al., 2019]. The RBP has the key property of having a symmetric activation
function, characterized by a parameter K > 0. Given a vector of binary weights
w 2 {±1}N and an input x 2 RN (an example), we say that w satisfies the example
if |x · w| < K.1 This symmetry simplifies the theoretical analysis and allows to obtain
tighter bounds for the storage capacity through the first and second moment methods.

For a given set of inputs xµ
2 RN , with µ = 1, . . . , M, the RBP problem can be expressed

as a constraint satisfaction problem (CSP) over the binary weights. Throughout the
paper we will assume the entries x

µ
i to be i.i.d. Gaussian variables with zero mean

and variance 1/N. A binary vector w 2 {±1}N is called a solution of the problem if it
satisfies

N

Â
i=1

wix
µ
i 2 IK 8µ 2 [M] , (2.1)

where IK = [�K, K]. Equivalently, a vector w is a solution of the RBP problem iff the
function Xx,K : {�1, 1}N

! {0, 1}, defined as

Xx,K (w) =
M

’
µ=1

N

Â
i=1

wix
µ
i 2 IK

!
, (2.2)

is equal to one, where we have denoted with (p) an indicator function that is 1 if the
statement p is true and 0 otherwise.

The storage capacity is then defined similarly to the satisfiability threshold in random
constraint satisfaction problems: we denote the constraint density as a ⌘ M/N and
define the storage capacity ac (K), also known as SAT-UNSAT transition point, as the
infimum of densities a such that, in the limit N ! •, with high probability (over
the choice of the matrix x

µ
i) there are no solutions. It is natural to conjecture that the

converse also holds, i.e. that the storage capacity ac (K) equals the supremum of a such
that in the limit N ! • solutions exist with high probability. In this case we would say
the storage capacity is a sharp threshold.

1This setting corresponds to a binary classification problem with training examples from a single class.
This simplifies the analysis.

10

2.2.2 Replicated Systems and Dense Clusters
In order to obtain a geometric characterization of the solution space, we consider the
Hamming distance of any two configurations w1 and w2, defined by

dH

⇣
w1, w2

⌘
⌘

N

Â
i=1

⇣
1� w1

i w2
i

⌘
/2.

Even if an exponential number of solutions exist for a < ac (K), the overwhelming
majority are isolated: for each such solution, there exists a radius rmin such that the num-
ber of other solutions within a distance bNrminc is sub-exponential. We are interested
instead in the presence of dense regions, which are characterized by the fact that there is
a configuration around which the number of solutions within a given radius bNrc is
exponential for all r in some neighborhood of 0. We speak of ultra-dense regions when
the logarithm of the density of solutions tends exponentially fast to 0 as r ! 0.

Suppose now that a dense region around some reference configuration exists, choose a
sufficiently small value r > 0, and call x the typical distance between any two solutions
at distance r from the reference. In general, 0 < x  2r, and for an ultra-dense region
x = 2r (1� r) in the limit of large N. Therefore for any x below some threshold there
should exist an exponential number of solutions at mutual normalized distance x.

We thus investigate the problem of finding a set of y solutions of the RBP problem,
where y is an arbitrary natural number, with all pairwise distances constrained to some
value bNxc. The existence (for some range of a) of such set of solutions, w.h.p. in the
large N limit, for arbitrarily large values of y and all x in some neighborhood of 0, is a
necessary condition for the presence of dense regions. These sets of y solutions would
coexist with an exponentially larger number of isolated solutions, and therefore the
usual tools of statistical physics are not sufficient to reveal their presence, and a large
deviation analysis is necessary [Baldassi et al., 2015].

As a starting point for the analysis we introduce the partition function of the model
with y real replicas, Zy, accounting for the number of such sets (up to a y! symmetry
factor). For any fixed (normalized) distance x 2 [0, 1], this is given by

Zy (x, K, x) ⌘ Â
{wa}

y
a=1

y

’
a=1

Xx,K (wa)
y

’
a<b

⇣
dH

⇣
wa, wb

⌘
= bNxc

⌘
. (2.3)

The summation here is over the 2yN spin configurations. We denote with a
y
c (x, K)

the SAT/UNSAT threshold (if it exists) in the N " • limit and under the probability
distribution for x described in the previous Section. The asymptotic behavior is captured
by the (normalized) local entropy fy defined by2

2We use a simpler definition compared to ref. [Baldassi et al., 2015] here, avoiding the explicit use of a
reference configuration. The technical justification for this can be found in ref. [Baldassi et al., 2020b];
intuitively, the reference is defined implicitly as the barycenter, and the results are basically equivalent
for large y.

11

fy (x, K, a) = lim
N!•

1
yN

Ex lnZy (x, K, x) . (2.4)

The interpretation of this quantity is as follows. If fy is positive, the number of groups
of y solutions is exponential. For any group of y solutions that contributes to the sum
in Zy we can use their barycenter (which will be at distance r = 1�

p
1�2x
2 from each

of them) as a reference configuration, and in the limit of large y the sum is dominated
by the regions with the highest density of solutions at distance r from their center,
provided they are evenly distributed. Also in this limit the logarithm of the density
of solutions is computed as fy (x, K, a) � fy (x, K, 0) = fy (x, K, a) � H2

⇣
1�
p

1�2x
2

⌘

where H2 (r) = �r ln r� (1� r) ln (1� r) is the two-state entropy function. If a dense
region exists around a configuration, we should observe a positive fy for all y and
for all x in some neighborhood of 0, and for ultra-dense regions we should have
limy!• fy (x, K, a) = H2

⇣
1�
p

1�2x
2

⌘
�O

⇣
e�

1
x

⌘
for sufficiently small x.3

The computation of fy can be approached by rigorous techniques only for small y, as
discussed in the next sections. In the general case, for any finite y and in the y! • limit,
it can be carried out at present only using the non-rigorous replica method of statistical
physics of disordered systems. The computations for this model follow entirely those of
ref. [Baldassi et al., 2015] and are reported in Appendix 2.6.1.

The replica analysis in the y! • limit strongly suggests the existence of ultra-dense
regions of solutions: as shown in fig. 2.1, for K = 1 and for sufficiently small x the curves
for a below the SAT-UNSAT transition, i.e. a < ac ' 1.815 . . . , tend to collapse onto the
curve for a = 0, implying that these regions are maximally dense in their immediate
surroundings (nearly all configurations are solutions in an extensive region centered
around their barycenter). Furthermore, there is a transition at around aU ' 1.58 after
which the curves are no longer monotonic. Overall, this is the same phenomenology
that was observed (and confirmed by numerical simulations) for the standard binary
perceptron model in ref. [Baldassi et al., 2015], and we interpret it in the same way,
i.e. we speculate that ultra-dense sub-dominant regions of solutions exist, and that the
break of monotonicity at aU ' 1.58 signals a transition4 between two regimes: one
for low a in which the ultra-dense regions are immersed in a vast connected structure,
and one at high a in which the structure of the dense solutions fragments into separate
regions that are no longer easily accessible.5

These results were obtained with the so-called replica-symmetric ansatz, and they

3Although these are in principle necessary conditions, and not sufficient, the latter scenario of a
log-density going to 0 in particular seems very unlikely in the absence of ultra-dense regions, and indeed
when the matter was investigated numerically for the standard perceptron model these rare regions
were found and their properties were in good agreement with the theory in a wide range of parameters
[Baldassi et al., 2015, 2016b].

4In ref. [Baldassi et al., 2015] it was shown that some geometric constraints are violated in a region of x
for a � aU implying the onset of strong symmetry-breaking effects, with numerical evidence supporting
the switch to a different regime.

5It should be noted that in the standard binary perceptron case (i.e. with sign activation) there is
empirical evidence only for the first scenario of a vast connected structure with ultra-dense regions in it,
while the second scenario of fragmented regions has never been directly observed at large N, arguably
due to the intrinsic algorithmic hardness of finding such regions.

12

xx

0.00 0.05 0.10

1.50

1.55

1.60

1.70

1.65

αα

0.00

0.05

0.10

ϕϕ

xx

0.00 0.05 0.10

0.0

0.5

1.0

2.0

1.5

αα

0.0

0.1

0.2

ϕϕ

Figure 2.1: Plot of free local entropy of eq. (2.3) as a function of the normalized Hamming
distance between solutions x, obtained with the replica method using the replica-
symmetric ansatz (see Appendix 2.6.1 for the details). In both figures the value of the
half-width of the channel is K = 1. (Left) Curves for a = 0 up to a = 1.8 in steps of
0.1. When the distance x approaches zero we see that all curves tend to coincide with
the curve for a = 0, meaning that there exist regions of solutions that are maximally
dense (nearly all configurations are solutions) in their immediate surroundings. (Right)
Zoom on the interval of values of a where there is a change in monotonicity, which we
interpret as signaling a fragmentation of the dense clusters into separate pieces. We
refine the step of a to 0.01, and we find that the change happens for aU ' 1.58.

are certainly not exact. However, as in previous studies [Baldassi et al., 2015], the
corrections (which would require the use of a replica-symmetry-broken ansatz) only
become numerically relevant at relatively large a (e.g. we may expect small corrections
to the value of aU, and larger effects close to ac), and they don’t affect the qualitative
picture, the emerging phenomenology and its physical interpretation.

2.3 Pairs of solutions (y = 2): rigorous bounds
We are able to derive rigorous lower and upper bounds for the existence of pairs of
solutions, i.e. for the y = 2 case, without resorting to the replica method.

The idea of the derivation follows very closely the strategy used in refs. [Mézard et al.,
2005, Daudé et al., 2008] for the random K-SAT problem.

We define a SAT-x-pair as a pair of binary weights w1, w2 2 {�1, 1}N, which are
both solutions of the CSP, and whose Hamming distance is dH

�
w1, w2� = bNxc. The

number of such pairs is Zy=2 (x, K, x), see eq. (2.3).

2.3.1 Upper bound: the first moment method
In this section we are interested in finding an upper-bound (which depends on x) to the
critical capacity of pairs of solutions. To do that we use the following lemma.

13

Lemma 1 (First moment method). If the random variable X is non-negative and integer-
valued then we have

P [X > 0]  E [X] . (2.5)

Theorem 1. For each K and 0 < x < 1, and for all a such that

a > aUB (x, K) ⌘ �
ln 2 + H2 (x)
ln f1 (x, K)

, (2.6)

there are no SAT-x-pairs w.h.p.

Proof. Let us apply eq. (2.5) it to the random variable Zy=2. We get:

P
⇥
Zy=2 (x, K, x) > 0

⇤
 E

⇥
Zy=2 (x, K, x)

⇤
= 2N(N

bNxc)P [v1 2 IK, v2 2 IK]
M (2.7)

where we have introduced the two Gaussian random variables v1 and v2, with E [v1] =
E [v2] = 0, E

⇥
v2

1
⇤
= E

⇥
v2

2
⇤
= 1, and covariance

E [v1v2] =
N � 2 bNxc

N
�!

N!+•
1� 2x.

Let us consider the normalized logarithm of the first moment,

F (x, K, a) = lim
N!•

1
N

ln E
⇥
Zy=2 (x, K, x)

⇤
= ln 2 + H2 (x) + a ln f1 (x, K) ,

where as before H2 (x) = �x ln x� (1� x) ln (1� x) is the two-state entropy function
while f1 (x, K) is defined as follows. Denote with S2 the covariance matrix of the
Gaussian random vector ~v = (v1, v2) whose components have covariance equal to
1 � 2x and variances equal to one. We define f1 (x, K) as the probability that this
random vector takes values in the box [�K, K]2:

f1 (x, K) =
1

2p |S2|
1/2

Z K

�K

Z K

�K
dv1dv2e�~v

TS�1
2 ~v

=
Z K

�K
du1

e�u2
1/2

p
2p

Z K�(1�2x)u1
2
p

x(1�x)
�K�(1�2x)u1

2
p

x(1�x)

du2
e�u2

2/2
p

2p
. (2.8)

From the inequality (2.7), F (x, K, a) < 0 implies that limN!• P
⇥
Zy=2 (x, K, x) > 0

⇤
= 0.

In turn this provides the upper bound in the statement of the theorem.

Notice that the first moment computation for Zy=2(x) is similar to the second moment
computation for Zy=1 in ref. [Aubin et al., 2019]: in the former x enters as an external
constraint, in the latter as an order parameter to be optimized.

The upper bound that we obtained for K = 1 and as a function of x is shown in fig. 2.2.
For x = 0 the upper bound trivially reduces to the one for a single replica as found in
ref. [Aubin et al., 2019]. The same happens also for x = 1/2, as the two constrained
replicas behave as independent systems in the large N limit.

14

2.3.2 Lower bound: the second moment method
We compute the lower bound to the critical capacity using the second moment method,
which is a direct consequence of the Cauchy-Schwarz inequality:

Lemma 2 (Second moment method). If X is a non-negative random variable, then

P [X > 0] �
E [X]2

E [X2]
. (2.9)

From the results of section 2.3.1 we have

E
⇥
Zy=2 (x, K, x)

⇤
= 2N

✓
N
bNxc

◆
f1

✓
bNxc

N
, K
◆M

, (2.10)

where f1 (x, K) is defined like in eq. (2.8). The second moment of the random variable
Zy=2 follows from simple combinatorics and reads

E
h
Z

2
y=2 (x, K, x)

i

= Â
{w1}

Â
{w2}

Â
{w̃1}

Â
{w̃2}

⇣
dH

⇣
w1, w2

⌘
= bNxc

⌘ ⇣
dH

⇣
w̃1, w̃2

⌘
= bNxc

⌘

M

’
µ=1

E
h ⇣

w1
· xµ
2 IK

⌘ ⇣
w2

· xµ
2 IK

⌘ ⇣
w̃1

· xµ
2 IK

⌘ ⇣
w̃2

· xµ
2 IK

⌘i

= 2N Â
a2VN,x\{0,1/N,2/N,...,1}8

N!
’7

i=0 (Nai)!
f2 (a, x, K)M ,

(2.11)

where we have adopted the following conventions.

• a is an 8-component vector giving the proportion of each type of quadruplets�
w1

i , w2
i , w̃1

i , w̃2
i
�

as described in the table below, where we have arbitrarily (but
without loss of generality) fixed w1 to (1, . . . , 1). Fixing the vector a entails fixing
all the possible overlaps between the vectors w1, w2, w̃1 and w̃2 and consequently
the covariances of the random variables z1 := w1 · x, z2 := w2 · x, z̃1 := w̃1 · x and
z̃2 := w̃2 · x with xi ⇠ N (0, 1/N) i.i.d. These covariances as functions of a are
made explicit in eq. (2.12).

a0 a1 a2 a3 a4 a5 a6 a7
w1

i + + + + + + + +
w2

i + + + + � � � �

w̃1
i + + � � + + � �

w̃2
i + � + � + � + �

• f2 (a, x, K) has the expression

f2 (a, x, K) = P [z1 2 IK, z2 2 IK, z̃1 2 IK, z̃2 2 IK] .

15

where zT := (z1, z2, z̃1, z̃2) is a 4-dimensional Gaussian vector, with the following
set of covariances:

S =

0

BB@

1 q1 q01 q02
q1 1 q03 q04
q01 q03 1 q1
q02 q04 q1 1

1

CCA where

8
>>>><

>>>>:

q1 = 1� 2 bNxc
N

q01 = 1� 2 (a2 + a3 + a6 + a7)
q02 = 1� 2 (a1 + a3 + a5 + a7)
q03 = 1� 2 (a2 + a3 + a4 + a5)
q04 = 1� 2 (a1 + a3 + a4 + a6)

.

(2.12)
Therefore f2 (a, x, K) can be simply written as the following Gaussian integral

f2 (a, x, K) =
Z

I4
K

dz1dz2dz̃1dz̃2
1

(2p)2
|S|1/2 e�

1
2 zTS�1z. (2.13)

• The set VN,x ⇢ [0, 1]8 is a simplex specified by:
8
<

:

bN (a4 + a5 + a6 + a7)c = bNxc
bN (a1 + a2 + a5 + a6)c = bNxc
Â7

i=0 ai = 1
. (2.14)

These three conditions correspond to the normalization of the proportions and
to the enforcement of the conditions dw1w2 = bNxc, dw̃1w̃2 = bNxc. When
N ! •, Vx =

T
N2N VN,x defines a five-dimensional simplex described by the

three hyperplanes: 8
<

:

a4 + a5 + a6 + a7 = x
a1 + a2 + a5 + a6 = x
Â7

i=0 ai = 1
. (2.15)

In order to yield an asymptotic estimate of E
h
Z2

y=2

i
we first use the following known re-

sult, which comes from the approximation of integrals by sums (proof in Appendix 2.6.2):

Lemma 3. Let y (a) be a real, positive, continuous function of a, and let VN,x, Vx be as defined
above. Then for any given x there exists a constant C0 such that for sufficiently large N:6

Â
a2VN,x\{0,1/N,2/N,...,1}8

N!
’7

i=0 (Nai)!
y (a)N

 C0N3/2
Z

Vx
da eN[H8(a)+ln y(a)], (2.16)

where H8 (a) = �Â7
i=0 ai ln ai.

The bound for the second moment then reads:

E
h
Z

2
y=2 (x, K, x)

i
 C0N3/2

Z

Vx
da eN[ln 2+H8(a)+a ln f2(a,x,K)], (2.17)

6Here and below this 8-dimensional integration is to be understood as being per-
formed with a uniform measure in the 5-dimensional subspace Vx, i.e.

R
Vx

da ⌘
R
[0,1]8 da d (a4 + a5 + a6 + a7 � x) d (a1 + a2 + a5 + a6 � x) d

⇣
Â7

i=0 ai � 1
⌘

, where d is a Dirac delta,
cf. eq. (2.15).

16

which is obtained from substitution of eq. (2.3.2) into Lemma 3. The number of compo-
nents of the vector a is eight, but we can reduce their number to five with a change of
variables and rewrite the integral in a particularly simple form where f2 just depends
on four of them. This is done in Appendix 2.6.2. Here we give just the final expression
where the new integration variables are h (a scalar) and ~q0 = (q01, q02, q03, q04). The
bound becomes

E
h
Z

2
y=2 (x, K, x)

i
 C0N3/2

Z

Ṽx
d~q0 dh eN[ln 2+H8(~q0,h,x)+a ln f2(~q0,x,K)], (2.18)

where:

• f2 (~q0, x, K) has the expression

f2 (~q0, x, K) =
Z

I4
K

dz1dz2dz̃1dz̃2
1

(2p)2
|S|1/2 e�

1
2 zTS�1z,

where S is the covariance matrix of eq. (2.12) with q1 = 1� 2x and where the
components of~q0 are considered as independent variables.

• H8 (~q0, h, x) is defined as the Shannon entropy of a probability mass function with
masses corresponding to the components of the following vector:

0

BBBBBBBBBBB@

1
4 (q02 + q03 + 2� 4x) + h

1
4 (q01 � q02 + 2x)� h

1
4 (�q03 + q04 + 2x)� h

1
4 (2� q01 � q04 � 4x) + h

1
4 (q01 � q03 + 2x)� h

h
1
4 (�q01 + q02 + q03 � q04) + h

1
4 (�q02 + q04 + 2x)� h

1

CCCCCCCCCCCA

; (2.19)

• Ṽx is the new domain of integration specified by the inequalities
8
>>>>>>>>>>><

>>>>>>>>>>>:

1
4 (q01 � q02 + 2x� 4)  h  1

4 (q01 � q02 + 2x)
1
4 (�q03 + q04 + 2x� 4)  h  1

4 (�q03 + q04 + 2x)
1
4 (q01 + q04 + 4x� 2)  h  1

4 (q01 + q04 + 4x + 2)
1
4 (q01 � q03 + 2x� 4)  h  1

4 (q01 � q03 + 2x)
0  h  1
1
4 (q01 � q02 � q03 + q04)  h
1
4 (�q02 + q04 + 2x� 4)  h  1

4 (�q02 + q04 + 2x)
1
4 (�q02 � q03 + 4x� 2)  h

, (2.20)

some of which are already contained in eq. (2.19).

Proposition 1. For each K, x, define:

Fx,K,a (~q0, h) = H8 (~q0, h, x)� ln 2� 2H2 (x)+ a ln f2 (~q0, x, K)� 2a ln f1 (x, K) . (2.21)

17

and let
�
~qM

0 , hM� 2 Ṽx be the global maximum of Fx,K,a restricted to Ṽx. Then there exists a
x, K-dependent constant C > 0 such that, for N sufficiently large,

E
⇥
Zy=2 (x, K, x)

⇤2

E
h
Z2

y=2 (x, K, x)
i � C exp

⇣
�NFx,K,a

⇣
~qM

0 , hM
⌘⌘

. (2.22)

Proof. Applying Laplace method to the integral in eq. (2.18), for some constant C1 and
for N large enough we obtain

E
h
Z

2
y=2 (x, K, x)

i
 C1N�1eN[ln 2+H8(~qM

0 ,h,x)+a ln f2(~qM
0 ,x,K)] ,

where the factor N�1 = N
3
2�

5
2 stems from the Gaussian fluctuations around the 5-

dimensional saddle point. For the first moment instead, a simple application of Stirling
formula to eq. (2.7) leads, for some constant c1 and N large enough, to

E
⇥
Zy=2 (x, K, x)

⇤2
� c1N�1e2N[ln 2+H2(x)+a ln f1(x,K)] .

Combining the two expressions, the proposition follows.

Theorem 2. For each K and 0 < x < 1, and for all a such that

a < aLB (x, K) ⌘ inf
(~q0,h)2Ṽ+

x

ln 2 + 2H2 (x)� H8 (~q0, h, x)
ln f2 (~q0, x, K)� 2 ln f1 (x, K)

(2.23)

we have that there is a positive probability of finding SAT-x-pairs of solutions, namely

lim inf
N!•

P
⇥
Zy=2 (x, K, x) > 0

⇤
> 0.

Proof. Given that Fx,K,a
�
~qM

0 , hM� � 0, the second moment method gives a useful
bound just when Fx,K,a

�
~qM

0 , hM� = 0. If instead Fx,K,a
�
~qM

0 , hM� > 0, the probability is
bounded above zero (included) and the bound is non-informative.

For a particular point (~q?0, h?) 2 Ṽx, which can be interpreted intuitively as captur-
ing the situation where the two pairs of solutions are uncorrelated, we have that
Fx,K,a (~q?0, h?) = 0 for all values of a. This point (~q?0, h?) is specified by the following
equations,

q?01 = 0, q?02 = 0, q?03 = 0, q?04 = 0, h? =
x2

2
.

In that case, we have the following properties:

• H8 (~q?0, h?, x) = ln 2 + 2H2 (x),

• f2 (~q?0, x, K) = f1 (x, K)2.

Therefore, aLB is the largest value of a such that (~q?0, h?) is a global maximum, i.e. such
that there exists no (~q0, h) 2 Ṽx with Fx,K,a (~q0, h) > 0. In particular, for a = 0 the
second moment bound holds (proof in Appendix 2.6.2):

Fx,K,a=0 (~q0, h) = H8 (~q0, h, x)� ln 2� 2H2 (x)  0 8 (~q0, h) 2 Ṽx. (2.24)

18

Now, let us split Ṽx in the following way:

Ṽ+
x :=

n
(~q0, h) 2 Ṽx | f2 (~q0, x, K) > f 2

1 (x, K)
o

and

Ṽ�x :=
n
(~q0, h) 2 Ṽx | f2 (~q0, x, K)  f 2

1 (x, K)
o

.

It follows that for all (~q0, h) 2 Ṽ�x and a > 0 we have

Fx,K,a (~q0, h)  Fx,K,a=0 (~q0, h)  0.

As already discussed, aLB is the largest value of a such that

max
(~q0,h)2Ṽx

Fx,K,a (~q0, h) = 0.

From the previous observation

max
(~q0,h)2Ṽx

Fx,K,a (~q0, h) = sup
(~q0,h)2Ṽ+

x

Fx,K,a (~q0, h) ,

and therefore aLB is the largest value of a such that

sup
(~q0,h)2Ṽ+

x

Fx,K,a (~q0, h) = 0.

Then, aLB is the largest value of a such that there exists no (~q0, h) 2 Ṽ+
x with Fx,K,a (~q0, h) >

0, which is true if and only if

H8 (~q0, h, x)� ln 2� 2H2 (x) + a ln f2 (~q0, x, K)� 2a ln f1 (x, K)  0, (2.25)

for all (~q0, h) 2 Ṽ+
x and for all a  aLB. Therefore, eq. (2.25) implies that for a  aLB

the following condition must hold as well:

a 
ln 2 + 2H2 (x)� H8 (~q0, h, x)
ln f2 (~q0, x, K)� 2 ln f1 (x, K)

8 (~q0, h) 2 Ṽ+
x . (2.26)

The optimization in (2.23) can be simplified further by slicing the set Ṽ+
x in the two “di-

rections”~q0 and h. We define a~q0-slice as
�
Ṽ+

x
�
~q0

:=
�

h | (~q0, h) 2 Ṽ+
x

and the natural
projection of the set Ṽ+

x on the ~q0-subspace as p~q0

�
Ṽ+

x
�
=
�
~q0 | 9 h s.t. (~q0, h) 2 Ṽ+

x

.
With this notation, eq. (2.23) becomes:

aLB (x, K) = inf
~q02p~q0(Ṽ+

x)

ln 2 + 2H2 (x)� suph2(Ṽ+
x)~q0

H8 (~q0, h, x)

ln f2 (~q0, x, K)� 2 ln f1 (x, K)
. (2.27)

The optimization in h is easy because the function H8 (~q0, h) is concave in h for each~q0.
This is not necessarily true for the optimization in~q0. In fact, it is crucial that we find
the global optimum of the objective function because this gives the correct value for
the lower bound. To this purpose we have devised two computational strategies. First

19

xx

0.00 0.05 0.10

αLB
αUB
αLB-S
x critical

1.815

1.600

1.700

1.800

αα

xx

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.815

1.600

1.700

1.900

2.000

αα

Figure 2.2: Lower and upper bounds for the RBP with K = 1. (Left) Lower and
upper bounds on the whole range x 2 [0, 1]. These bounds are symmetric around
the vertical axis that passes by x = 0.5. In correspondence of the SB solution, the
lower bound prediction from the S point (gray line) is larger than the upper bound and
therefore patently wrong. This is what happens in the regions x  xc, x � 1� xc and
x0c  x  1� x0c, where the two critical values xc ' 0.195 . . . and x0c ' 0.405 . . . are
highlighted by the blue vertical lines on the left of the symmetry axis. In the regions
xc  x  x0c and 1� x0c  x  1� xc, there is a gap between the lower (purple line) and
the upper bound (green line) where the S solution is indeed valid. (Right) Zoom of the
figure on the left, in the region around xc. Here, for x  xc the S solution fails. This is
evident from the fact that the symmetric lower bound becomes bigger than the upper
bound (gray line). In this region instead, the true lower bound perfectly matches the
upper bound since the optimum of eq. (2.31) is in correspondence of the SB solution.

we evaluated the objective function on a 4-dimensional grid with increasing number
of points. Then we have also implemented a simple gradient descent starting from the
points of the grid. The different strategies are discussed in Appendix 2.6.2.

The bounds that we obtain in fig. 2.2 are symmetric around the value x = 0.5 and
there are two critical values xc, x0c 2 [0, 0.5] (plus the symmetric ones, 1� xc and 1� x0c)
that delimit regions characterized by two different phases. For values of x such that
xc  x  x0c or 1� x0c  x  1� xc all four entries of ~q0 take the same value. We use
the subscript S to denote this kind of solution. Instead for x  xc, x � 1� xc and
x0c  x  1� x0c, this symmetry is broken and the optimum is achieved on a different
point that we call Symmetry Broken (SB) solution. This point has the property that the
two pairs of binary vectors of solutions (w1, w2) and (w̃1, w̃2) coincide, as can be seen
from the structure of the covariance matrix. We report below the covariance structure
of the two solutions, where we adopted the convention q1 := 1� 2x. The symmetric
covariance matrix is the following:

SS =

0

BB@

1 q1 q0 q0
q1 1 q0 q0
q0 q0 1 q1
q0 q0 q1 1

1

CCA , (2.28)

while the one corresponding to point SB is the following:

20

SSB =

0

BB@

1 q1 1 q1
q1 1 q1 1
1 q1 1 q1
q1 1 q1 1

1

CCA . (2.29)

This is a degenerate covariance matrix, and in correspondence of the SB solution it
follows from the previous equations that the lower bound and the upper bound coincide.

The physical meaning of what happens is qualitatively different for these two phases.
Let us take x < xc, where the bounds are tight, and let’s start with low a and progres-
sively increase it. In this regime the typical overlap between pairs of solutions is zero,
i.e. the two pairs of solutions are independent and there is a positive probability of
finding SAT-x-pairs since we are below aLB. When we reach a = aLB = aUB there is
a transition to a regime where w.h.p. there exists no pair of solutions to the problem.
When this happens the point

�
~qM

0 , hM� 2 Ṽx that optimizes (2.21) is the SB point. For
xc < x < x0c, the bounds are no longer tight and we can only identify a region between
the two bounds where a SAT/UNSAT transition occurs. Again, for x0c < x  0.5 the
bounds are tight. For x > 0.5 the behavior is symmetric to the one that we have just
described.

2.4 Multiplets of solutions (y > 2)
In the previous section we were able to derive rigorous expressions for the upper bound
aUB (x), in eq. (2.6), and the lower bound aLB (x), in eq. (2.27), obtained by first and
second moment calculations, such that w.h.p. no pairs of solutions at distance x exist for
load a > aUB (x) and at least one pair exists for a < aLB (x). It would be then natural to
try to generalize the derivation to sets of y solutions at pairwise distance x (multiplets)
and in particular asses the existence of a small a regime where such sets can be found
for any value of y and for small enough x. This result would rigorously confirm the
existence of a dense region of solutions as derived in sec. 2.2, which in turn has been
non-rigorously advocated as a necessary condition for the existence of efficient learning
algorithms [Baldassi et al., 2015].

Unfortunately, it is technically unfeasible to carry out the rigorous derivation for y > 2
as we have done above for the case y = 2. Therefore, in this section, after giving an
rigorous expression for the first moment upper bound limited to the cases y = 3 and
y = 4, we will derive compact expressions for the first and second moment bound using
non-rigorous field theoretical calculations and a replica symmetric ansatz. We find that
the non-rigorous results match the rigorous ones when available, although we expect
the prediction to break down at large values of y due to replica symmetry breaking
effects (see the discussion in the Introduction).

2.4.1 Rigorous first moment upper bounds
In the following we derive the rigorous expressions for the first moment bound in two
additional cases: the existence of triplets and quadruplets of solutions at fixed pairwise
distance x.

21

Triplets (y = 3)

Let us define the symbol ⇠= as equivalence up to sub-exponential terms as N ! •, that
is for any two sequences (aN)N and (bN)N we write aN ⇠= bN iff limN!+•

ln aN
ln bN

= 1. The
first moment of the triplets partition function has the following asymptotic expression:

E
⇥
Zy=3 (x, K, x)

⇤
⇠= 2N(N

Nx
2 , Nx

2 , Nx
2 ,N(1� 3

2 x))P [v1 2 IK, v2 2 IK, v3 2 IK]
M

⇠= eN
⇣

ln(2)+H4(x)+a ln f y=3
1 (x,K)

⌘

,

where H4 (x) = � 3
2 x ln

� x
2
�
�
�
1� 3

2 x
�

ln
�
1� 3

2 x
�

and we get the geometric condition
0 < x < 2

3 , and f y=3
1 (x, K) is the probability that a zero mean Gaussian random vector

~v3 = (v1, v2, v3), whose covariance matrix S3 has ones on the diagonal and 1 � 2x
off-diagonal, takes values in the box [�K, K]3, that is

f y=3
1 (x, K) =

1

(2p)
3
2 |S3|

1/2

Z

[�K,K]3
dv1dv2dv3 e�~v

T
3 S�1

3 ~v3 .

An equivalent argument to the case y = 2 gives the following upper bound for the
existence of clusters of three solutions:

a
y=3
UB (x, K) = �

ln 2 + H4 (x)
ln f y=3

1 (x, K)
. (2.30)

Quadruplets (y = 4)

For quadruplets of solutions, we have

E
⇥
Zy=4 (x, K, x)

⇤
⇠= 2N Â

a2Vy=4
N,x \{0,1/N,2/N,...,1}8

N!
’7

i=0 (Nai)!

h
f y=4
1 (x, K)

iM
, (2.31)

where:

• In complete analogy with the previous case f y=4
1 (x, K) is the probability that a

zero mean Gaussian random vector ~v4 = (v1, v2, v3, v4), whose covariance matrix
S4 has ones on the diagonal and 1 � 2x off-diagonal, takes values in the box
[�K, K]4, that is

f y=4
1 (x, K) =

1
(2p)2

|S4|
1/2

Z

[�K,K]4
d~v4 e�~v

T
4 S�1

4 ~v4 . (2.32)

22

• The summation is restricted to the set Vy=4
N,x ✓ [0, 1]8, specified by:

8
>>>>>>>><

>>>>>>>>:

bN (a4 + a5 + a6 + a7)c = bNxc
bN (a1 + a2 + a5 + a6)c = bNxc
bN (a2 + a3 + a6 + a7)c = bNxc
bN (a1 + a3 + a5 + a7)c = bNxc
bN (a2 + a3 + a4 + a5)c = bNxc
bN (a1 + a3 + a4 + a6)c = bNxc
Â7

i=0 ai = 1

. (2.33)

In the limit N ! •, due to the 7 constraints in eq. (2.33), the summation over elements
in the box [0, 1]8 in eq. (2.31) can be replaced by an integral over the interval

Bx ⌘


0, min

⇢
x
2

, 1�
3
2

x
��

for x <
2
3

, (2.34)

while for x > 2
3 the constraints admit no solutions and E

⇥
Zy=4 (x, K, x)

⇤
⇠= 0.

Therefore, for x < 2
3 , we can write

E
⇥
Zy=4 (x, K, x)

⇤

⇠= 2N
Z

Bx
db
✓

N
N
�
1� b� 3

2 x
�

, Nb, Nb, N
� x

2 � b
�

, Nb, N
� x

2 � b
�

, N
� x

2 � b
�

, Nb

◆

f y=4
1 (x, K)

⇠=
Z

Bx
db eN

⇣
ln 2+H8(x,b)+ln f y=4

1 (x,K)
⌘

⇠= eN
⇣

ln 2+H8(x,b⇤(x))+ln f y=4
1 (x)

⌘

,

where in the last line we estimated the integral with its saddle point contribution at
b? (x) = argmaxb2Bx

H8 (x, b). The function H8 (x, b) is the Shannon entropy of an
eight-states discrete probability distribution with masses given by the components of
the following vector

(1� b� 3/2 x, b, b, x/2� b, b, x/2� b, x/2� b, b) .

It follows that the first moment upper bound to the storage capacity for quadruplets of
solutions at a fixed distance x is given by

a
y=4
UB (x, K) = �

ln 2 + H8 (x, b? (x))
ln f y=4

1 (x, K)
.

The numerical evaluation of the two upper bounds, y = 3 and y = 4, can be found in
fig. 2.3 along with the predictions for the upper bound from non-rigorous calculations
for larger y’s.

23

2.4.2 Upper bounds under symmetric assumption for saddle point

Since a rigorous expression for the upper bound a
y
UB (x, K) for y > 4 is hard to derive,

due to highly non-trivial combinatorial factors, we resort to non-rigorous field theoret-
ical techniques and replica symmetric ansatz to obtain an expression that we believe
to be exact for low values of y but is likely slightly incorrect for very large y due to
replica symmetry breaking effects. The generic computation of the n-th moment of the
partition function, E

h
Zn

y

i
, is shown in Appendix 2.6.3. Here we present the final result

for the first moment bound, i.e. the case n = 1.

In what follows, we denote with SP the saddle point operation, and we use the overlap
between solutions q1 ⌘ 1� 2x as our control parameter instead of the distance x to
match the usual notation of replica theory calculations. Up to subleading terms in N as
N ! • we have:

E
⇥
Zy (q1, K, x)

⇤
⇠= e

N

SP
q̂1

n
Gn=1,y

IS (q1,q̂1)
o
+aGn=1,y,K

E (q1)

!

,

where

Gn=1,y
IS (q1, q̂1) = �q1q̂1

y (y� 1)
2

�
q̂1y
2

+ ln
Z

Dt
⇣

2 cosh
⇣

t
p

q̂1

⌘⌘y

Gn=1,y,K
E (q1) = ln

Z
Dz

"

Â
s=±1

s H

�s Kp
1� q1

+

pq1z
p

1� q1

!#y

where we have used the shorthand notation for standard Gaussian integrals Dz ⌘

dz e�
x2
2

p
2p

, and the definition H (x) =
R •

x Dz = 1
2erfc

⇣
xp
2

⌘
.

The first moment bound therefore implies that in the limit N ! • there are no SAT-x
multiplets of y solutions if

SP
q̂1

n
Gn=1,y

IS (q1, q̂1)
o
+ aGn=1,y,K

E (q1) < 0. (2.35)

This leads to an estimation a
y
UB,S given by the symmetric saddle point of the true upper

bound a
y
UB that takes the form

a
y
UB,S (q1, K) ⌘ �

SP
q̂1

n
Gn=1,y

IS (q1, q̂1)
o

Gn=1,y,K
E (q1)

. (2.36)

These expressions are derived under a symmetric ansatz (i.e. we restrict the search
for the saddle point to a particular subset of the region of integration) and thus are
not rigorous; yet the results in the cases y = 2, 3, 4 agree with the rigorous ones. The
corresponding curves are shown in fig. 2.3. Notice that for some values and y and x,
the second moment upper bound is larger than the critical value for the single (and less

24

xx

0.00 0.05 0.10 0.15 0.20

2
3
4
6

y:y:

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

αα

xx

0.000 0.005 0.010

2
3
4
6
8
10

y:y:

1.65

1.70

1.75

1.80

1.85

αα

xx

0.0 0.1 0.2 0.3 0.4 0.5

2
3
4
6
8
10

y:y:

1.6

1.7

1.8

1.9

2.0

2.1

2.2

αα

Figure 2.3: (Left) Upper bound a
y
UB (x, K = 1) to the SAT/UNSAT threshold for the

RBP problem with y replicas constrained at pairwise distance x. Curves are given by
rigorous derivation (y = 2, 3, 4) or by non-rigorous field theoretical calculations (2.36)
(y > 4) . (Center) Zoom of the figure on the left. Close to x = 0 the curves corresponding
to different y intersect. (Right) The upper bounds (solid lines) are compared to the S
point predictions (2.40) for the lower bounds (dashed lines).

constrained) system , a
y
UB (x) > ac. Since the replicated system critical value, if exist, is

such that a
y
c (x)  ac , in that parameter region the upper bound is not tight.

As one can see, the curves intersect in a nontrivial way. Let’s take for example the curves
for y = 2 and y = 3. If the bounds were tight for all values of x, the curve at y = 3
should always stay below the curve for y = 2. This follows directly from the fact that
if we have no way of accommodating pairs of solutions then we do not have a way to
accommodate triplets solutions either. Instead, the fact that the curves intersect means
that for values of x smaller than the intersection point the bounds stop being tight. This
straightforward argument, generalized to higher values of y, therefore we can define a
tighter upper bound, that we call ã

y
UB (x, K) , for the existence of sets of y constrained

solutions:

ã
y
UB (x, K) = min

n
a

y0
UB (x, K) : y0 2 N, 2  y0  y

o
. (2.37)

2.4.3 Lower bounds under symmetric assumption for the saddle point
We compute the partition function moments needed for the lower bounds in Ap-
pendix 2.6.3. The final result of the replica calculation is given by

25

E
h
Z

2
y (q1, K, x)

i

⇠= exp

N · SP

q0 q̂0 q̂1

(
�q̂1y� y [yq0q̂0 + (y� 1) q1q̂1]

+ ln
Z

Dz
Z

Dt
⇣

2 cosh
⇣p

q̂0z +
p

q̂1 � q̂0t
⌘⌘y

�2

+ a ln
Z

Dz

"Z
Dt

"

Â
s=±1

s H

�s Kp
1� q1

+

pq0z +
p

q1 � q0t
p

1� q1

!#y#2
9
=

;

1

A

= exp
✓

N · SP
q0 q̂0 q̂1

n
Gn=2,y

I (q0, q̂0, q1, q̂1) + Gn=2,y
S (q̂0, q̂1) + aGn=2,y,K

E (q0, q1)
o◆

,

where

Gn=2,y
I (q0, q̂0, q1, q̂1) = �q̂1y� y [yq0q̂0 + (y� 1) q1q̂1]

Gn=2,y
S (q̂0, q̂1) = ln

Z
Dz

Z
Dt

⇣
2 cosh

⇣p
q̂0z +

p
q̂1 � q̂0t

⌘⌘y
�2

Gn=2,y,K
E (q0, q1) = ln

Z
Dz

"Z
Dt

"

Â
s=±1

s H

�s Kp
1� q1

+

pq0z +
p

q1 � q0t
p

1� q1

!#y#2

.

Performing the saddle points over the variables q̂0 and q̂1, these expressions reduce to

E
h
Z

2
y (q1, K, x)

i
' eN

⇣
maxq0

n
Gopt,n=2,y

IS (q0,q1)+aGn=2,y,K
E (q0,q1)

o⌘

, (2.38)

where

Gopt,n=2,y
IS (q0, q1) = SP

q̂0 q̂1

n
Gn=2,y

I (q0, q̂0, q1, q̂1) + Gn=2,y
S (q̂0, q̂1)

o
. (2.39)

For fixed a, if the optimum in eq. (2.38) is at q0 = 0 we have

E
h
Z

2
y (q1, K, x)

i
⇠= E

⇥
Zy (q1, K, x)

⇤2 ,

and from the second moment inequality, eq. (2.9), we have that there is positive proba-
bility of finding multiplets of y solutions at distance x = 1

2 (1� q1) . This in turn implies
that the lower bound is valid for all a’s such that

argmax
q0

n
Gopt,n=2,y

IS (q0, q1) + aGn=2,y,K
E (q0, q1)

o
= 0 .

In particular the symmetric saddle point prediction for the lower bound is given by

26

a
y
LB,S (q1) = sup

(
a � 0

���� argmax
q0

n
Gopt,n=2,y

IS (q0, q1) + aGn=2,y,K
E (q0, q1)

o
= 0

)
.

(2.40)
The results for y = 2, 3, 4, 5 are summarized in fig. 2.3 on the right. In fig. 2.4 we plot an
enlargement of the small-distance region around x = 0, corresponding to q1 = 1. We
find that in all cases there is an inconsistency region [0, xc (y)] in which the symmetric
lower and upper bounds switch roles, similarly to what happened in the case of y = 2
(see fig. 2.2). The true lower bound cannot thus be symmetric in this region: the
configuration in which the two SAT-x multiplets of y solutions are collapsed on a single
multiplet always gives a better saddle point, resulting in a lower bound equal to the
upper bound. We thus conjecture that for x < xc (y) the bounds are tight, like in the
y = 2 case. The symmetry of lower and upper bounds with respect to x on the interval
[0, 1] (or the corresponding symmetry for q1) which holds for y = 2 does not apply to
general y. In our numerical exploration presented in fig. 2.3, we focused on the region of
small x. We also notice that the lower bounds for increasing y’s decrease monotonically,
and in the limit y! • the limiting curve seem to exhibit a vertical asymptote for x = 0.
Furthermore, the intersection point xc (y) seem to decrease monotonically with y and to
approach zero. It is also worth noting that, for all the y that we tested, we found that in
the region [0, xc(y)] we have ã

y
UB = a

y
UB, which is consistent with the conjecture that

the bounds are tight in this region.

xx

0.000 0.001 0.002 0.003 0.004 0.005

αLB
αUB
x critical

y=5y=5

1.500

1.600

1.700

1.800
1.815

xx

0.000 0.002 0.004 0.006 0.008

αLB
αUB
x critical

y=4y=4

1.500

1.600

1.700

1.800
1.815

xx

0.000 0.005 0.010 0.015 0.020

αLB
αUB
x critical

y=3y=3

1.500

1.600

1.700

1.800
1.815

αα

Figure 2.4: Lower and upper bounds for the RBP with K = 1 and for different values of
y = 3, 4, 5, in the region of small x. Like in the case of y = 2, for x larger than the critical
value xc (y) (blue vertical line) there is a gap between the symmetric lower bound
(purple line) and the upper bound (green line). This gap closes in correspondence of
the SB solution for x  xc (y) and the two bounds coincide.

2.5 Conclusions
We have presented an investigation of the geometry of the solutions space for the binary
symmetric perceptron model storing random patterns. According to the non-rigorous
analysis conducted with the replica method, this model exhibits the same qualitative
phenomenology as the more standard non-symmetric counterpart. In particular, we
focused on signatures for the presence of rare dense regions of solutions, which are

27

of particular interest since according to previous studies they appear to be crucially
connected to the existence of efficient learning algorithms [Baldassi et al., 2015, 2016a].
The analogous structures for continuous models (of the kind used for deep learning
applications) are wide flat minima, which have also been related to training efficiency
and generalization capabilities [Baldassi et al., 2020b].

Compared to standard models, the symmetry in the model used for this paper simplifies
the analytical treatment, as was first shown in ref. [Aubin et al., 2019]. Thanks to this,
we have been able to show rigorously (up to a numerical optimization step) that in the
large N limit there exist an exponential number of pairs of solution at arbitrary O (N)
Hamming distance. A further analysis led us to conjecture that this scenario extends to
multiplets of more than 2 solutions at fixed distance. These results are highly non-trivial,
and consistent with the replica analysis; a complete and rigorous confirmation will
presumably require different tools or alternative approaches however, and thus remains
as an open problem. Besides this, several other important problems related to the dense
regions, with potentially far-fetching practical and theoretical implications, remain
open: in particular, obtaining a detailed description of their geometry, and a complete
characterization of their accessibility by efficient algorithms.

2.6 Appendix

2.6.1 y! • limit
In this Section we derive the large y limit of the entropy

fy (x, K, a) = lim
N!•

1
yN

Ex lnZy (x, K, x)

within RS assumptions. For convenience of notation we will use the overlap q1 = 1� 2x
instead of x. As explained in ref. [Baldassi et al., 2020b], the computation of fy (x) is
formally equivalent to that of a single replica in the 1RSB ansatz with Parisi parameter
y, except for the fact that q1 is fixed externally instead of being optimized as usual.
We obtain the following entropy for the Random Binary Perceptron (RBP) with y real
replicas:

fy (x, K, a) = SP
q0 q̂0 q̂1

⇢
�

q̂1
2
(1� q1) +

y
2
(q0q̂0 � q1q̂1)

+
1
y

Z
Dz0 ln

Z
Dz1

h
2 cosh

⇣p
q̂0z0 +

p
q̂1 � q̂0z1

⌘iy

+
a

y

Z
Dz0 ln

Z
Dz1

"

Â
s=±1

s H

�s Kp
1� q1

+

pq0z0 +
p

q1 � q0z1p
1� q1

!#y)
.

We want to take the limit y! • in the previous expression. By looking at the entropic
and energetic parts we derive the appropriate scalings

28

q̂0 = q̂1 �
dq̂
y

, q0 = q1 �
dq
y

, (2.41)

and the previous equation becomes

fy=• (q1, K, a) = SP
dqq̂1dq̂

⇢
�

q̂1
2
(1� q1)�

1
2
(dqq̂1 + dq̂q1) +

Z
Dz0 A? (z0) + a

Z
Dz0 B? (z0)

�
,

where

A? (z0) = ln 2�min
z1

(
z2

1
2
� ln cosh

⇣p
q̂1z0 +

p
dq̂z1

⌘)
, (2.42)

B? (z0) = �min
z1

(
z2

1
2
� ln

"

Â
s=±1

s H

�s Kp
1� q1

+

pq1z0 +
p

dqz1p
1� q1

!#)
. (2.43)

The results are shown in fig. 2.1. The behavior of fy=• (q1) close to q1 = 1, where
it approaches the maximum volume curve, reveals the existence of a dense cluster
of solutions. Furthermore, the maximum volume curve coincides with the curve
for a = 0, which means that there are no constraints to impose and the function
fy=• (q1, K, 0) = H2

��
1 +pq1

�
/2
�

. We expect the value obtained within the RS ansatz
for fy=• (q1, K, a) to not be the correct one, at least for a above some critical value where
spin glass instabilities arise. In fact fy=• (q1, K, a) yields a SAT/UNSAT transition that
is wrong, since it is above the known one for the standard y = 1 model. Therefore
this scenario should be checked within a 1RSB calculation, where we also expect the
dense cluster prediction to remain true. We refer to [Baldassi et al., 2015] for an in-depth
analysis of a similar model which takes also into account replica symmetry breaking
corrections.

2.6.2 Derivation of the lower bound
Change of integration variables in second moment bound

The bound in eq. (2.17) depends on the 8 variables a. We want now to reduce the
number of from 8 to 5 using the constraints in eq. (2.15). We choose to write a0, a6, a7 as
functions of the other variables

8
<

:

a0 = 1� a1 � a2 � a3 � x
a6 = x� a1 � a2 � a5
a7 = a1 + a2 � a4

. (2.44)

The integration set Vx is then reparametrized as a function of the variables~a which are
defined as~a := (a1, a2, a3, a4, a5). We indicate with a (~a, x) the immersion from R5 to R8

whose components from a1 to a5 are mapped in themselves while the remaining ones
are specified by the equations in (2.44). This makes the expression of Vx more explicit
and lets us rewrite the integral in an equivalent way. The integration set becomes

29

V0x ✓ [0, 1]5 and it is specified by the following set of inequalities:
8
>><

>>:

0  ai  1 8 i = 1, . . . , 5
0  a1 + a2 � a4  1
a1 + a2 + a5  x
a1 + a2 + a3  1� x

. (2.45)

With this change of variables eq. (2.17) becomes:

E
h
Z

2
y=2 (x, K, x)

i
 C0N3/2

Z

V0x
d~a eN[ln 2+H8(~a,x)+a ln f2(~a,x,K)], (2.46)

where we defined H8 (~a, x) := H8 (a (~a, x)) and f2 (~a, x, K) := f2 (a (~a, x) , x, K). The
covariance matrix in the Gaussian integral f2 (~a, x, K) is reparameterized in the following
way (cf. eq. (2.12)):

S =

0

BB@

1 q1 q01 q02
q1 1 q03 q04
q01 q03 1 q1
q02 q04 q1 1

1

CCA where

8
>>>><

>>>>:

q1 = 1� 2x
q01 = 1� 2 (x + a2 + a3 � a4 � a5)
q02 = 1� 2 (2a1 + a2 + a3 � a4 + a5)
q03 = 1� 2 (a2 + a3 + a4 + a5)
q04 = 1� 2 (x� a2 + a3 + a4 � a5)

.

(2.47)

The next and final reparametrization of the integral is suggested by the form of the
covariance matrix. In particular we would like to express the four possible overlaps
between the two pairs of solution using the four parameters q01, q02, q03, q04 and
group them in a four dimensional vector~q0. However, since our integration domain is
5-dimensional, we need an additional parameter that we call h. Inverting the under-
parametrized system of eqs. (2.47), we obtain the vectors~a? that lie in the vector space
below, for h 2 R:

8
>>>><

>>>>:

a?1 = 1
4 (q01 � q02 + 2x)� h

a?2 = 1
4 (�q03 + q04 + 2x)� h

a?3 = 1
4 (2� q01 � q04 � 4x) + h

a?4 = 1
4 (q01 � q03 + 2x)� h

a?5 = h

. (2.48)

By constraining the solutions~a? in their natural domain V0x we find how the domain is
transformed in the new coordinates~q0 and h:

8
>>>>>>>>>>><

>>>>>>>>>>>:

1
4 (q01 � q02 + 2x� 4)  h  1

4 (q01 � q02 + 2x)
1
4 (�q03 + q04 + 2x� 4)  h  1

4 (�q03 + q04 + 2x)
1
4 (q01 + q04 + 4x� 2)  h  1

4 (q01 + q04 + 4x + 2)
1
4 (q01 � q03 + 2x� 4)  h  1

4 (q01 � q03 + 2x)
0  h  1
1
4 (q01 � q02 � q03 + q04)  h
1
4 (�q02 + q04 + 2x� 4)  h  1

4 (�q02 + q04 + 2x)
1
4 (�q02 � q03 + 4x� 2)  h

, (2.49)

30

where we have expressed all inequalities in terms of the variable h. This set of inequali-
ties specifies a new integration domain in eq. (2.46), this time in the new variables h and
~q0, that we call Ṽx and that depends on x. Again, we can express the vector of solutions
~a? as a function of the pair (~q0, h). The integral (2.46) is rewritten as:

E
h
Z

2
y=2 (x, K, x)

i
 C0N3/2

Z

Ṽx
d~q0 dh eN[ln 2+H8(~q0,h,x)+a ln f2(~q0,x,K)], (2.50)

where we adopt the convention that f2 (~q0, x, K) := f2 (~a? (~q0, h) , x, K) and H8 (~q0, h, x) :=
H8 (~a? (~q0, h) , x).

Proof of Lemma 3

Proof of Lemma 3. From eq. (2.14) we obtain the following inequalities:

8
<

:

|� a0 + 1� a1 � a2 � a3 � x| < 3
N

|a6 � x + a1 + a2 + a5| <
1
N

|a7 � a1 � a2 + a4| <
2
N

. (2.51)

In the limit N ! • these inequalities determine three of the parameters as a function of
the other five:

8
<

:

a?0 = 1� a1 � a2 � a3 � x
a?6 = x� a1 � a2 � a5
a?7 = a1 + a2 � a4

. (2.52)

Notice that the summation on the left hand side of eq. (2.16) is taken for

a 2 {0, 1/N, 2/N, . . . , 1}8 .

If we fix the five components vector ~a := (a1, . . . , a5) 2 V0x \ {0, 1/N, 2/N, . . . , 1}5

where V0x is defined as in eq. (2.45), then, independently from this 5-dimensional vector,
there exist at most a fixed number of a’s that satisfy the inequalities in eq. (2.51) (for
every N and x 2 [0, 1]). This is sufficient to conclude that for large enough N there
exists a positive constant F0 such that

Â
a2VN,x\{0,1/N,2/N,...,1}8

✓
N

Na0 . . . Na7

◆
y (a)N

 F0 Â
~a2V0x\{0,1/N,2/N,...,1}5

✓
N⌅

Na?0
⇧

Na1 . . . Na5
⌅

Na?6
⇧

Na?7

◆
y (a?0, a1, . . . , a5, a?6, a?7)

N .

where V0x is defined by the system of eqs. (2.45).

From Stirling’s approximation, the expression for large N and fixed ai of the multinomial
factor is

✓
N

Na0 . . . Nam

◆
= eNH(a)�m�1

2 ln N+O(1)
 G0eNH(a)�m�1

2 ln N

31

where G0 is some positive constant and H (a) is the Shannon entropy of the discrete
probability distribution with masses {a0, . . . , am} .

Putting all together we have

Â
a2VN,x\{0,1/N,2/N,...,1}8

✓
N

Na0 . . . Na7

◆
y (a)N

 F0 Â
~a2V0x\{0,1/N,2/N,...,1}5

✓
N⌅

Na?0
⇧

Na1 . . . Na5
⌅

Na?6
⇧

Na?7

◆
y (a?0, a1, . . . , a?6, a?7)

N


F0G0

N
7
2

Â
~a2V0x\{0,1/N,2/N,...,1}5

eNH8(a?0,a1,...,a5,a?6,a?7)� 7
2 ln Ny (a?0, a1, . . . , a5, a?6, a?7)

N

< C0N
3
2

Z

Vx
da eN[H8(a)+ln y(a)] ,

where we have used the limit of Riemann sums in the last step and C0 > F0G0 is a
positive constant that does not depend on N but depends on x. The integral in the last
line is defined as in the footnote for Lemma 3.

Proof of eq. (2.24)

For finite N we define N2 (x) and N4 (x, a) as follows. First,

N2 (x) ⌘ Â
{w1}

Â
{w2}

⇣
dH

⇣
w1, w2

⌘
= bNxc

⌘
,

which implies that

(N2 (x))2 =

0

@ Â
{w1}

Â
{w2}

⇣
dH

⇣
w1, w2

⌘
= bNxc

⌘
1

A
2

= Â
{w1}

Â
{w2}

Â
{w̃1}

Â
{w̃2}

⇣
dH

⇣
w1, w2

⌘
= bNxc

⌘ ⇣
dH

⇣
w̃1, w̃2

⌘
= bNxc

⌘
.

Then, for a 2 VN,x we have:

N4 (x, a) ⌘ Â
{w1}

Â
{w2}

Â
{w̃1}

Â
{w̃2}

⇣
dH

⇣
w1, w2

⌘
= bNxc

⌘ ⇣
dH

⇣
w̃1, w̃2

⌘
= bNxc

⌘

·

⇣
dH

⇣
w1, w̃1

⌘
= bN (a2 + a3 + a6 + a7)c

⌘

·

⇣
dH

⇣
w1, w̃2

⌘
= bN (a1 + a3 + a5 + a7)c

⌘

·

⇣
dH

⇣
w2, w̃1

⌘
= bN (a2 + a3 + a4 + a5)c

⌘

·

⇣
dH

⇣
w2, w̃2

⌘
= bN (a1 + a3 + a4 + a6)c

⌘
.

32

From the definitions it follows that N4 (x, a)  (N2 (x))2 and computing the summa-
tions gives

2N N!
’7

i=0 (Nai)!


✓
2N

✓
N
bNxc

◆◆2
, 8a 2 VN,x \

⇢
0,

1
N

, . . . , 1
�8

.

Taking the logarithm on both sides, dividing by N and taking the limit for N ! •,
gives the following inequality

ln 2 + H8 (a)  2 log 2 + 2H2(x) 8a 2 VN,x.

If we apply now the same change of variable of Appendix 2.6.2 the result is

H8 (~q0, h, x)  ln 2 + 2H2 (x) 8 (~q0, h) 2 Ṽx.

Numerical optimization

We performed the optimization in expression (2.27) numerically. We empirically find
the objective function to be ridden by many local minima, therefore we implemented 3
different strategies to partition the search space and obtain a numerical estimate of the
global one.

A first strategy consists in constructing a 4-dimensional uniformly-spaced grid for the
values of~q0, and then performing Gradient Descent (GD) starting from these points and
selecting the overall minimum obtained. The downside of this approach is that the the
optimization is very time-consuming. We simulated grids with up to m = 1004 number
of points. We restrict the experiment to the region of small x, in particular x < x0c. The
results are shown in fig. 2.5. While for x > xc, and already for a low numbers of points
m, the numerical estimate coincides with the symmetric point prediction, for x < xc
instead, where we predict the broken symmetry point to yield the true value of aLB, only
with the two finest grid spacing we are able to get close to the theoretical prediction.
Overall, the results for this numerical experiment are in good agreement with theoretical
value predicted for the saddle point by symmetry arguments, supporting our conclusion
that for x < xc lower and upper bounds coincide.

Another approach is to restrict the search space to a lower dimensional manifold,
containing both the symmetric (S) and the symmetry broken (SB) points. The lower
dimensionality (2 instead of 4) allows us to use as starting points of our GD procedure
grids with smaller spacings. Therefore, we restrict the search space to points of the type
~q0 = (qa, qb, qb, qa). The corresponding covariance matrix in this case is given by

SSB =

0

BB@

1 q1 qa qb
q1 1 qb qa
qa qb 1 q1
qb qa q1 1

1

CCA . (2.53)

The optimization over this submanifold is done by multiple restarts of GD from a
2-dimensional grid corresponding of values for qa and qb. The results are reported in
fig. 2.6 (Left). Again, while GD quickly finds the global minima for x > xc, the S point,
for x < xc the global minima SB is more difficult to approach, and the restriction to the

33

 1.66

 1.68

 1.7

 1.72

 1.74

 1.76

 1.78

 1.8

 1.82

 0 0.005 0.01 0.015 0.02 0.025
α

L
B

x

αLB-S
αLB true

m=10
4

m=40
4

m=100
4

Figure 2.5: Numerical lower bounds aLB,y=2 (x, K = 1) obtained by multiple restarts
of GD from a 4d grids with m points, for different values of m, along with theoretical
predictions from the symmetric point S (that we know to be wrong for x < xc) and the
true lower bound (point S for x > xc, point SB for x < xc).

2d submanifold doesn’t seem to provide a computational advantage, possibly due to
the presence of further spurious minima in this restricted space.

A further approach is to just evaluate the objective function in eq. (2.27) on the points
of the increasingly refined 2d-grid, without any GD refinement, and take the lowest of
the values obtained. With this approach, we evaluated grids of up to m = 50002 points.
Results are presented in fig. 2.6 (Right).

All of the 3 approaches are in good agreement with each other and with theoretical
predictions.

 1.66

 1.68

 1.7

 1.72

 1.74

 1.76

 1.78

 1.8

 1.82

 0 0.005 0.01 0.015 0.02 0.025

α
L

B

x

αLB-S
αLB true

m=10
2

m=100
2

m=200
2

m=1000
2

 1.66

 1.68

 1.7

 1.72

 1.74

 1.76

 1.78

 1.8

 1.82

 0 0.005 0.01 0.015 0.02 0.025

α
L

B

x

αLB-S
αLB true

m=100
2

m=200
2

m=500
2

m=2000
2

m=5000
2

Figure 2.6: (Left) Numerical and theoretical estimates for aLB,y=2 (x, K = 1) as in fig. (2.5)
but with GD in 2-dimensional space and multiple restarts from grids of m points. (Right)
Evaluation of the points in 2d grids of different sizes m with no GD refinement.

Computation of f2 (~q0, x, K)

The computation in an efficient and precise way of the quantity f2 (~q0, x, K) is crucial for
the numerical results. We use the Cholesky decomposition of matrix S = CLCT

L where
CL is lower triangular and C�1

L = CT
L . Then it is natural to use the change of variable

34

y =C�1
L z, in matrix form

0

BB@

z1
z2
z̃1
z̃2

1

CCA =

0

BB@

c11 0 0 0
c21 c22 0 0
c31 c32 c33 0
c41 c42 c43 c44

1

CCA

0

BB@

y1
y2
ỹ1
ỹ2

1

CCA

the integral is transformed in the following way:

f2 (~q0, x, K)

=
Z

I4
K

dz1dz2dz̃1dz̃2

(2p)2
|S|1/2 e�

1
2 zTS�1z

=
1

(2p)2

Z K
c11

�
K

c11

dy1

Z (K�c21y1)
c22

(�K�c21y1)
c22

dy2

Z (K�c31y1�c32y2)
c33

(�K�c31y1�c32y2)
c33

dỹ1

Z (K�c41y1�c42y2�c43 ỹ1)
c44

(�K�c41y1�c42y2�c43 ỹ1)
c44

dỹ2e�
yTy

2

=
1

(2p)
3
2

Z K
c11

�
K

c11

dy1

Z (K�c21y1)
c22

(�K�c21y1)
c22

dy2

Z (K�c31y1�c32y2)
c33

(�K�c31y1�c32y2)
c33

dỹ1e�
y2

1+y2
2+ỹ2

1
2

Â
s=±1

s H
✓
�sK� c41y1 � c42y2 � c43ỹ1

c44

◆
,

where in the last line we have performed the integral over ỹ2, using the definition
H (x) = 1

2erfc
⇣

xp
2

⌘
.

2.6.3 n-th moment of y-solutions multiplet using Replica Ansatz
Let us define Zy to be the number of configurations of y vectors of binary weights each
satisfying the CSP eq. (2.2) and whose mutual distance is x. In the following we will
use the overlap q1 = 1� 2x between solutions as an external control parameter. We
also introduce for convenience of notation the indicator functions jK (z) = (|z|  K)
and d (z) = (z = 0). We denote with dD the Dirac’s delta distribution. With these
definitions we have:

Zy (q1, K, x) = Â
{wa}

y
a=1

y

’
a=1

Xx,K (wa)
y

’
a<b

d

Â
i

wa
i wb

i � bNq1c

!

= Â
{wa}

y
a=1

y

’
a=1

M

’
µ=1

jK

Â
i

wa
i x

µ
i

!
y

’
a<b

d

Â
i

wa
i wb

i � bNq1c

!
.

35

We want to take the expectation of the n-th moment of this partition function:

Z
n
y (q1, K, x)

= Â
{wa

a}

’
a,a,µ

jK

Â
i

wa
a,ix

µ
i

!

’
a,a<b

d

Â
i

wa
a,iw

b
a,i � bNq1c

!

= Â
{wa

a}

Z
’
a,a,µ

dla
a,µ jK

⇣
la

a,µ

⌘
dD

la

a,µ �Â
i

wa
a,ix

µ
i

!

’
a,a<b

d

Â
i

wa
a,iw

b
a,i � bNq1c

!

= Â
{wa

a}

Z
’
a,a,µ

dla
a,µdl̂a

a,µ

2p
jK

⇣
la

a,µ

⌘
eil̂a

a,µla
a,µ�il̂a

a,µ Âi wa
a,ix

µ
i ’

a,a<b
d

Â
i

wa
a,iw

b
a,i � bNq1c

!
.

Now we can take the average over the quenched disorder (in the large N limit, up to
the leading exponential order):

E
h
Z

n
y (q1, K, x)

i

= Â
{wa

a}

Z
’
a,a,µ

dla

a,µdl̂a
a,µ

2p
jK

⇣
la

a,µ

⌘
eil̂a

a,µla
a,µ

!
E
h
eÂµ,i x

µ
i Âa,a(�il̂a

a,µwa
a,i)
i

’
a,a<b

d

Â
i

wa
a,iw

b
a,i � bNq1c

!

⇠= Â
{wa

a}

Z
’
a,a,µ

dla

a,µdl̂a
a,µ

2p
jK

⇣
la

a,µ

⌘
eil̂a

a,µla
a,µ

!
e�

1
2N Âµ,i(Âa,a l̂a

a,µwa
a,i)

2

’
a,a<b

d

Â
i

wa
a,iw

b
a,i � bNq1c

!

= Â
{wa

a}

Z
’
a,a,µ

dla

a,µdl̂a
a,µ

2p
jK

⇣
la

a,µ

⌘!
e

i Âa,a,µ l̂a
a,µla

a,µ�
1
2 Âµ Âa,b Âa,b l̂a

a,µl̂b
b,µ

Âi wa

a,iwb
b,i

N

!

’
a,a<b

d

Â
i

wa
a,iw

b
a,i � bNq1c

!
.

Next, we introduce the overlaps qab
ab =

Âi wa
a,iw

b
b,i

N via Dirac deltas:

36

E
h
Z

n
y (q1, K, x)

i

= Â
{wa

a}

Z
’
a,a,µ

dla

a,µdl̂a
a,µ

2p
jK

⇣
la

a,µ

⌘! Z
’

a<b;a,b
dqab

ab

Z
’

a;a<b
dqab

aaei Âa,a,µ l̂a
a,µla

a,µ

e�Âµ Âa,b,a<b l̂a
a,µl̂b

b,µqab
ab e�Âµ Âa,a<b l̂a

a,µl̂b
b,µq1�

1
2 Âµ Âa,a(l̂a

a,µ)
2

’
a<b;a,b

dD

Âi wa

a,iw
b
b,i

N
� qab

ab

!

’
a,a<b

dD

Âi wa

a,iw
b
a,i

N
� qab

aa

!
d
⇣

Nqab
aa � bNq1c

⌘

⇠= Â
{wa

a}

Z
’

a<b;a,b

dqab
abdq̂ab

ab

2p

Z
’

a;a<b

dq̂ab
aa

2p

Z
’
a,a,µ

dla

a,µdl̂a
a,µ

2p
jK

⇣
la

a,µ

⌘!

ei Âa,a,µ l̂a
a,µla

a,µ�Âµ Âa,b,a<b l̂a
a,µl̂b

b,µqab
ab�Âµ Âa,a<b l̂a

a,µl̂b
b,µq1�

1
2 Âµ Âa,a(l̂a

a,µ)
2
�N Âa<b;a,b q̂ab

abqab
ab

eÂa<b;a,b q̂ab
ab Âi wa

a,iw
b
b,i�Nq1 Âa,a<b q̂ab

a +Âa,a<b q̂ab
aa Âi wa

a,iw
b
a,i

=
Z

’
a<b;a,b

dqab
abdq̂ab

ab

2p ’
a;a<b

dq̂ab
aa

2p
eN(GI(q,q̂)+GS(q̂)+aGE(q)),

where we have introduced the interaction, entropic and energetic terms:

Gn,y
I (q, q̂) =� Â

a<b;a,b
q̂ab

abqab
ab � q1 Â

a,a<b
q̂ab

a ,

Gn,y
S (q̂) =

1
N

ln Â
{wa

a}

eÂa<b;a,b q̂ab
ab Âi wa

a,iw
b
b,i+Âa,a<b q̂ab

aa Âi wa
a,iw

b
a,i ,

Gn,y,K
E (q) =

1
aN

ln
Z

’
a,a,µ

dla

a,µdl̂a
a,µ

2p
jK

⇣
la

a,µ

⌘!
ei Âa,a,µ l̂a

a,µla
a,µ�Âµ Âa,b,a<b l̂a

a,µl̂b
b,µqab

ab

e�Âµ Âa,a<b l̂a
a,µl̂b

b,µq1�
1
2 Âµ Âa,a(l̂a

a,µ)
2

.

We introduce a replica-symmetric ansatz on the matrices Qab and Q̂ab which is specified
by the following set of equations:

Qab
ab =

8
><

>:

1 if a = b and a = b
q0 if a 6= b

q1 if a = b and a 6= b
Q̂ab

ab =

8
><

>:

0 if a = b and a = b
q̂0 if a 6= b

q̂1 if a = b and a 6= b
.

In the case y = 3 and n = 2 they look as follows:

Q =

0

BBBBBB@

1 q1 q1 q0 q0 q0
q1 1 q1 q0 q0 q0
q1 q1 1 q0 q0 q0
q0 q0 q0 1 q1 q1
q0 q0 q0 q1 1 q1
q0 q0 q0 q1 q1 1

1

CCCCCCA
Q̂ =

0

BBBBBB@

0 q̂1 q̂1 q̂0 q̂0 q̂0
q̂1 0 q̂1 q̂0 q̂0 q̂0
q̂1 q̂1 0 q̂0 q̂0 q̂0
q̂0 q̂0 q̂0 0 q̂1 q̂1
q̂0 q̂0 q̂0 q̂1 0 q̂1
q̂0 q̂0 q̂0 q̂1 q̂1 0

1

CCCCCCA
.

37

We now compute the interaction, entropic and energetic terms using this ansatz:

Gn,y
I (q0, q1, q̂0, q̂1) = �y2 n (n� 1)

2
q0q̂0 � n

y (y� 1)
2

q1q̂1 �
yn
2

q̂1 , (2.54)

Gn,y
S (q̂0, q̂1) =

1
N

ln Â
{wa

a}

’
i

eÂa<b;a,b q̂0wa
a,iw

b
b,i+Âa,a<b q̂1wa

a,iw
b
a,i

=�
nyq̂1

2
+ ln Â

{wa
a}

e
1
2 q̂0(Âaa wa

a)
2+

q̂1�q̂0
2 Âa(Âa wa

a)
2

=�
nyq̂1

2
+ ln Â

{wa
a}

Z
Dz ez

p
q̂0 Âaa wa

a

Z
’

a
Dtae
p

q̂1�q̂0 Âa ta Âa wa
a

=�
nyq̂1

2
+ ln

Z
Dz

Z
Dt

⇣
2 cosh

⇣p
q̂0z +

p
q̂1 � q̂0t

⌘⌘y
�n

, (2.55)

Gn,y,K
E (q0, q1) =

1
aN

ln
Z

’
a,a,µ

dla

a,µdl̂a
a,µ

2p
jK

⇣
la

a,µ

⌘!
ei Âa,a,µ l̂a

a,µla
a,µ�Âµ q0 Âa,b,a<b l̂a

a,µl̂b
b,µ

e�Âµ Âa,a<b l̂a
a,µl̂b

b,µq1�
1
2 Âµ Âa,a(l̂a

a,µ)
2

= ln
Z

’
a,a

dla

adl̂a
a

2p
jK (la

a)

!
ei Âa,a l̂a

ala
a�

1
2 q0(Âaa l̂a

a)
2
�

q1�q0
2 Âa(Âa l̂a

a)
2
�

1�q1
2 Âaa(l̂a

a)
2

= ln
Z

Dz
Z

’
a

Dta

Z
’
aa

dla

adl̂a
a

2p
jK (la

a)

!
ei Âa,a l̂a

ala
a

eizpq0 Âaa l̂a
a+i
p

q1�q0 Âa ta Âa l̂a
a�

1�q1
2 Âaa(l̂a

a)
2

= ln
Z

Dz

"Z
Dt

"Z dldl̂

2p
jK (l) eil̂l+izpq0l̂+i

p
q1�q0tl̂� 1�q1

2 l̂2

#y#n

= ln
Z

Dz

2

4
Z

Dt

2

4
Z dlp

2p (1� q1)
jK (l) e

�
(l+
pq0z+

p
q1�q0t)2

2(1�q1)

3

5
y3

5
n

= ln
Z

Dz

"Z
Dt

"

Â
s=±1

s H

�s Kp
1� q1

+

pq0z +
p

q1 � q0t
p

1� q1

!#y#n

.

In the last line, as in the main text, the function H (x) is defined as H (x) ⌘
R •

x Dz ⌘
R •

x
dzp
2p

e�z2/2 = 1
2erfc

⇣
xp
2

⌘
.

38

39

Chapter 3

An Efficient Algorithm for Cooperative
Semi-Bandits

3.1 Abstract
We consider the problem of asynchronous online combinatorial optimization on a net-
work of communicating agents. At each time step, some of the agents are stochastically
activated, requested to make a prediction, and the system pays the corresponding
loss. Then, neighbors of active agents receive semi-bandit feedback and exchange
some succinct local information. The goal is to minimize the network regret, defined
as the difference between the cumulative loss of the predictions of active agents and
that of the best action in hindsight, selected from a combinatorial decision set. The
main challenge in such a context is to control the computational complexity of the
resulting algorithm while retaining minimax optimal regret guarantees. We introduce
Coop-FTPL, a cooperative version of the well-known Follow The Perturbed Leader
algorithm, that implements a new loss estimation procedure generalizing the Geometric
Resampling of Neu and Bartók [2013] to our setting. Assuming that the elements of
the decision set are k-dimensional binary vectors with at most m non-zero entries and
a1 is the independence number of the network, we show that the expected regret of
our algorithm after T time steps is of order Q

p
mkT log(k)(ka1/Q + m), where Q is the

total activation probability mass. Furthermore, we prove that this is only
p

k log k-away
from the best achievable rate and that Coop-FTPL has a state-of-the-art T3/2 worst-case
computational complexity.

3.2 Introduction
Distributed online settings with communication constraints arise naturally in large-scale
learning systems. For example, in domains such as finance or online advertising, agents
often serve high volumes of prediction requests and have to update their local models
in an online fashion. Bandwidth and computational constraints may therefore preclude
a central processor from having access to all the observations from all sessions and
synchronizing all local models at the same time. With these motivations in mind, we
introduce and analyze a new online learning setting in which a network of agents solves

efficiently a common nonstochastic combinatorial semi-bandit problem by sharing
information only with their network neighbors. At each time step t, some agents v
belonging to a communication network G are asked to make a prediction xt(v) belonging
to a subset A of {0, 1}k and pay a (linear) loss

⌦
xt(v), `t

↵
where `t 2 [0, 1]k is chosen

adversarially by an oblivious environment. Then, any such agent v receives the feedback�
xt(1, v)`t(i), . . . , xt(k, v)`t(k)

�
, which is shared, together with some local information,

to its first neighbors in the graph. The goal is to minimize the network regret after T
time steps

RT = max
a2A

E

"
T

Â
t=1

Â
v2St

⌦
xt(v), `t

↵
�

T

Â
t=1

Â
v2St

ha, `ti

#
, (3.1)

where St is the set of agents v that made a prediction at time t. In words, this is the
difference between the cumulative loss of the “active” agents and the loss that they
would have incurred had they consistently made the best prediction in hindsight.

For this setting, we design a distributed algorithm that we call Coop-FTPL (Algorithm 1),
and prove that its regret is upper bounded by Q

p
mkT log(k)(ka1/Q + m) (Theorem 3),

where a1 is the independence number of the network G and Q is the sum over all agents
of the probability that the agent is active during a time step. Our algorithm employs
an estimation technique that we call Cooperative Geometric Resampling (Coop-GR,
Algorithm 2). It is an extension of a similar procedure appearing in [Neu and Bartók,
2013] that relies on the fact that the reciprocal of the probability of an event can be
estimated by measuring the reoccurrence time. We can leverage this idea in the context
of cooperative learning thanks to some statistical properties of the minimum of a family
of geometric random variables (see Lemmas 4–6). Our algorithm has a state-of-the-
art dependence on time of order T3/2 for the worst-case computational complexity
(Proposition 2). Moreover, we show with a lower bound (Theorem 4) that no algorithm
can achieve a regret smaller than Q

p
mkTa1/Q on all cooperative semi-bandit instances.

Thus, our Coop-FTPL is at most a multiplicative factor of
p

k log k-away from the
minimax result.

To the best of our knowledge, ours is the first computationally efficient near-optimal
learning algorithm for the problem of cooperative learning with nonstochastic combina-
torial bandits, where not all agents are necessarily active at all time steps.

3.3 Related work and further applications
Single-agent combinatorial bandits find applications in several fields, such as path plan-
ning, ranking and matching problems, finding minimum-weight spanning trees, cut sets,
and multitask bandits. An efficient algorithm for this setting is Follow-The-Perturbed-
Leader (FTPL), which was first proposed by Hannan [1957] and later rediscovered by
Kalai and Vempala [2005]. Neu and Bartók [2013] show that combining FTPL with a
loss estimation procedure called Geometric Resampling (GR) leads to a computationally
efficient solution for this problem. More precisely, the solution is efficient given that the
offline optimization problem of finding

a? = argmin
a2A

ha, yi , 8y 2 [0,+•)k (3.2)

40

admits a computationally efficient algorithm. This assumption is minimal, in the sense
that if the offline problem in Eq. (3.2) is hard to approximate, then any algorithm with
low regret must also be inefficient.1 Grötschel et al. [2012] and Lee et al. [2018] give some
sufficient conditions for the validity of this assumption. They essentially rely on having
an efficient membership oracle for the convex hull co(A) of A and an evaluation oracle
for the linear function to optimize. Audibert et al. [2014] note that Online Stochastic
Mirror Descent (OSMD) or Follow The Regularized Leader (FTRL)-type algorithms can
be efficiently implemented by convex programming if the convex hull of the decision
set can be described by a polynomial number of constraints. Suehiro et al. [2012]
investigate the details of such efficient implementations and design an algorithm with
k6 time-complexity, which might still be unfeasible in practice. Methods based on the
exponential weighting of each decision vector can be implemented efficiently only in a
handful of special cases —see, e.g., [Koolen et al., 2010] and [Cesa-Bianchi and Lugosi,
2012] for some examples.

The study of cooperative nonstochastic online learning on networks was pioneered
by Awerbuch and Kleinberg [2008], who investigated a bandit setting in which the
communication graph is a clique, agents belong to clusters characterized by the same
loss, and some agents may be non-cooperative. In our multi-agent setting, the end goal
is to control the total network regret (4.1). This objective was already studied by Cesa-
Bianchi et al. [2019a] in the full-information case. A similar line of work was pursued by
Cesa-Bianchi et al. [2019b], where the authors consider networks of learning agents that
cooperate to solve the same nonstochastic bandit problem. In their setting, all agents
are simultaneously active at all time steps, and the feedback propagates throughout
the network with a maximum delay of d time steps, where d is a parameter of the
proposed algorithm. The authors introduce a cooperative version of Exp3 that they call
Exp3-COOP with regret of order

p
(d + 1 + Kad/N)(T log K) where K is the number

of arms in the nonstochastic bandit problem, N is the total number of agents in the
network, and ad is the independence number of the d-th power of the communication
network. The case d = 1 corresponds to information that arrives with one round of
delay and communication limited to first neighbors. In this setting Exp3-COOP has
regret of order

p
(1 + Ka1/N)(T log K). Thus, our work can be seen as an extension

of this setting to the case of combinatorial bandits with stochastic activation of agents.
Finally, we point out that if the network consists of a single node, our cooperative setting
collapses into a single-agent combinatorial semi-bandit problem. In particular, when the
number of arms is k and m = 1, this becomes the well-known adversarial multiarmed
bandit problem (see [Auer et al., 2002]). Hence, ours is a proper generalization of all the
settings mentioned above.

Finally, the reader may wonder what kind of results could be achieved if the agents are
activated adversarially rather than stochastically. Cesa-Bianchi et al. [2019a] showed
that in this setting no learning can occur, not even in with full-information feedback.

1A slight relaxation in this direction would be assuming that Eq. (3.2) can be approximated accurately
and efficiently.

41

3.4 Cooperative semi-bandit setting
In this section, we present our cooperative semi-bandit protocol and we introduce all
relevant definitions and notation.

We say that G = (V , E) is a communication network over N agents if it is an undirected
graph over a set V with cardinality |V| = N, whose elements we refer to as agents.
Without loss of generality, we assume that V = {1, . . . , N}. For any agent v 2 V , we
denote by N (v) the set of agents containing v and the neighborhood {w 2 V : (v, w) 2
E}. We say that a1 is the independence number of the network G if is the largest cardinality
of an independent set of G , where an independent set of G is a subset of agents, no two of
which are neighbors.

We study the following cooperative online combinatorial optimization protocol. Initially,
hidden from the agents, the environment draws a sequence of subsets S1,S2, . . . ⇢ V of
agents, that we call active, and a sequence of loss vectors `1, `2, . . . 2 Rk. We assume that
each agent v has a probability q(v) of being activated, which need only be known by
v. The set of active agents St at time t 2 {1, 2, . . .} is then determined by drawing, for
each agent v 2 V , a Bernoulli random variable Xt(v) with bias q(v), independently of
the past, and St consists exclusively of agents v 2 V for which Xt(v) = 1. The decision
set is a subset A of

�
a 2 {0, 1}k : Âk

i=1 ai  m

, for some m 2 {1, . . . , k}.

For each time step t 2 {1, 2, . . .}:

1. each active agent v 2 St predicts with xt(v) 2 A (possibly drawn at random);
2. each neighbor v 2 N (w) of an active agent w 2 St receives the feedback

ft(w) :=
�
xt(1, w)`t(1), . . . , xt(k, w)`t(k)

�
; (3.3)

3. each agent v 2
S

w2St N (w) receives some local information from its neighbors in
N (v);

4. the system incurs the loss Âv2St

⌦
xt(v), `t

↵
.

The goal is to minimize the expected network regret as a function of the time horizon T,
defined by

RT := max
a2A

E

"
T

Â
t=1

Â
v2St

⌦
xt(v), `t

↵
�

T

Â
t=1

Â
v2St

ha, `ti

#
, (3.4)

where the expectation is taken with respect to the draws of S1, . . . ,ST and (possibly)
the randomization of the learners. In the next sections we will also denote by Pt the
probability conditioned to the history up to and including round t� 1, and by Et the
corresponding expectation.

The nature of the local information exchanged by neighbors of active agents will be
clarified in the next section. In short, they share succinct representations of the current
state of their local prediction model.

3.5 Coop-FTPL and upper bound
In this section we introduce and analyze our efficient Coop-FTPL algorithm (Algo-
rithm 1) for cooperative online combinatorial optimization.

42

Coop-FTPL takes as input a decision set A ⇢ {0, 1}k, a time horizon T 2 N, a learning
rate h > 0, a truncation parameter b, and an exploration distribution z. At each time
step t, all active agents v make a FTPL prediction xt(v) (line 5) with an i.i.d. perturbation
sampled from z (line 4), then they receive some feedback ft(v) and share it with their
first neighbors (line 6). Afterwards, each agent who received some feedback this round,
requests from its neighbors w a vector Kt(w) of geometric random samples (line 7)
which is efficiently computed by Algorithm 2 and will be described in detail later. With
these geometric samples, each agent v computes an estimated loss b̀t(v) (line 8) and
updates the cumulative loss estimate bLt(v) (line 9).

Algorithm 1: Follow the perturbed leader for cooperative semi-bandits (Coop-FTPL)
Input: decision set A, horizon T, learning rate h, truncation parameter b, exploration

pdf z
Initialization: bL0 = 0 2 Rk

1 for each time t = 1, 2, . . . do
2 for each agent v 2

S
w2St N (w) do // neighbors of active agents

3 if v 2 St then // active agents
4 sample Zt(v) ⇠ z, independently of the past
5 make the prediction xt(v) = argmaxa2A

⌦
a, Zt(v)� hbLt�1(v)

↵

6 receive the feedback ft(w) (Eq. (3.3)) from each active neighbor w 2 N (v) \ St
7 receive Kt(i, w) (8 i 2 {1, . . . , k}) from each neighbor w 2 N (v) using

Algorithm 2
8 compute b̀t(i, v) = `t(i) Bt (i, v)minw2N (v)

�
Kt(i, w)

, 8i 2 {1, . . . , k}

(Eq. (3.6)–(3.7))
9 update bLt(v) = bLt�1(v) + b̀t(v)

Algorithm 2: Geometric resampling for cooperative semi-bandits (Coop-GR)
Input: time step t, component i, agent w, truncation parameter b, exploration pdf z

1 for s = 1, 2, . . . do
2 sample z0s ⇠ z, independently of the past
3 let x0s be the i-th component of the vector argmaxa2A

⌦
a, z0s � hbLt�1(w)

↵

4 sample y0s from a Bernoulli distribution with parameter q(w), independently of the
past

5 if (x0s = 1 and y0s = 1) or s = b, break
6 return Kt(i, w) = s

Before describing Kt(w) and b̀t(v), we make a connection between FTPL and the Online
Stochastic Mirror Descent algorithm (OSMD)2 that will be crucial for our analysis.3

Fix any time step t and an agent v. As we mentioned above, if v is active, it makes the
following FTPL prediction (line 5)

xt(v) = argmin
a2A

⌦
a, hbLt�1(v)� Zt(v)

↵
,

2For a brief overview of some key convex analysis and OSMD facts, see Appendices 3.8.1 and 3.8.2
3For a similar approach in the single-agent case, see [Lattimore and Szepesvári, 2020].

43

where Zt(v) 2 Rk is sampled i.i.d. from z (the random perturbations introduce the
exploration, which for an appropriate choice of z is sufficient to guarantee small regret).
On the other hand, given a Legendre potential F with dom (rF) = int (co (A)), an
OSMD algorithm makes the prediction

xt(v) = argmin
x2co(A)

⇣⌦
x, h b̀t�1(v)

↵
+ BF(x, xt�1(v))

⌘
,

where BF is the Bregman divergence induced by F and co(A) is the convex hull of
A. Using the fact that dom(rF) = int

�
co(A)

�
, the argmin above can be computed

in a standard way by studying when the gradient of its argument is equal to zero,
and proceeding inductively, we obtain the two identities rF(xt(v)) = rF(xt�1(v))�
h b̀t�1(v) = �hbLt�1(v) . By duality this implies that xt(v) = rF⇤

�
�hbLt�1(v)

�
. We now

want to relate xt(v) and xt(v) so that

xt(v) = Et
⇥
xt(v)

⇤
= Et

"
argmin

a2A

⌦
a, hbLt�1(v)� Zt(v)

↵
#

, (3.5)

where the conditional expectation Et (given the history up to time t� 1) is taken with
respect to Zt(v). Thus, in order to view FTPL as an instance of OSMD, it suffices to find
a Legendre potential F with dom (rF) = int (co (A)) such that rF⇤

�
�hbLt�1(v)

�
=

Et
⇥
argmaxa2A

⌦
a, Zt(v)� hbLt�1(v)

↵⇤
. In order to satisfy this condition, we need that for

any x 2 Rk, the Fenchel conjugate F⇤ of F enjoysrF⇤ (x) =
R

Rk argmaxa2A ha, z� xi z(z)dz.
Then, we define h(x) := argmaxa2A ha, xi for any x 2 Rk, where h(x) is chosen
to be an arbitrary maximizer if multiple maximizers exist. From convex analysis,
if the convex hull co(A) of A had a smooth boundary, then the support function
x 7! f(x) := maxa2co(A) ha, xi = maxa2A ha, xi , of co(A) would satisfy rf(x) = h(x).
For combinatorial bandits, co(A) is non-smooth, but, being z a density with respect
to Lebesgue measure, one can prove (see, e.g., Lattimore and Szepesvári [2020]) that
r
R

Rk f (x + z) z(z) dz =
R

Rk h (x + z) z(z) dz, for all x 2 Rk. This shows that FTPL can
be interpreted as OSMD with a potential F defined implicitly by its Fenchel conjugate

F⇤(x) :=
Z

Rk
f (x + z) z(z) dz , 8x 2 Rk .

Thus, recalling (3.5), we can think of the update xt(v) of OSMD as the average of a
random component-wise draw xt(i, v) = Âa2A Pt(a, v) a(i) (for all i 2 {1, . . . , k}), with
respect to a distribution Pt(v) on A defined in terms of the distribution of Zt, as

Pt(a, v) = Pt

h
h
�
Zt(v)� hbLt�1(v)

�
= a

i
, 8a 2 A ,

where Pt is the probability conditioned of the history up to time t� 1.

For the understanding of the definitions and analyses of Kt(w) and b̀t(v), we introduce
three useful lemmas on geometric distributions. We defer their proofs to Appendix 3.8.3.

Lemma 4. Let Y1, . . . , Ym be m independent random variables such that each Yj has a geometric
distribution with parameter pj 2 [0, 1]. Then, the random variable Z := minj2{1,...,m} Yj has a
geometric distribution with parameter 1�’m

j=1(1� pj).

44

Lemma 5. Let G be a geometric random variable with parameter q 2 (0, 1] and b > 0. Then, the
expectation of the random variable min{G, b} satisfies E

⇥
min{G, b}

⇤
=
�
1� (1� q)b

�
/q.

Lemma 6. For all v 2 V , fix two arbitrary numbers p1(v), p2(v) 2 [0, 1]. Consider a collection�
Xs(v), Ys(v)

s2N,v2V of independent Bernoulli random variables such that E

⇥
Xs(v)

⇤
=

p1(v) and E
⇥
Ys(v)

⇤
= p2(v) for any s 2 N and all v 2 V . Then, the random variables

{G(v)}v2V defined for all v 2 V by G(v) := inf
�

s 2 N : Xs(v)Ys(v) = 1

are all
independent and they have a geometric distribution with parameter p1(v) p2(v).

Fix now any time step t, agent v, and component i 2 {1, . . . , k}. The loss estimator b̀t(i, v)
depends on the algorithmic definition of Kt(i, w) in Algorithm 2, where w 2 N (v). By
Lemma 6, we have that for any w, conditionally on the history up to time t� 1, the
random variable Kt(i, w), has a truncated geometric distribution with success probability
equal to xt(i, w)q(w) and truncation parameter b. The loss estimator of v is then defined
as

b̀t(i, v) := `t(i) Bt (i, v) min
w2N (v)

�
Kt(i, w)

, (3.6)

where

Bt(i, v) = I
�
9w 2 N (v) : w 2 St, xt(i, w) = 1

, Kt(i, w) = min

�
Gt(i, w), b

,

(3.7)
and given the history up to time t� 1, for each i 2 {1, . . . , k}, the family

�
Gt(i, w)

w2V

consists of independent geometric random variables with parameter xt(i, w)q(w). Note
that the geometric random variables Gt(i, w) are actually never computed by Algo-
rithm 2 which efficiently computes only their truncations Kt(i, w), with truncation
parameter b. Nevertheless, as it will be apparent later, they are a useful tool for the
theoretical analysis. Note that, by Eq. (3.5), we have

Pt
⇥
xt(i, w) = 1

⇤
= Et[xt(i, w)] = xt (i, w) ,

therefore

Bt(i, v) := Et [Bt(i, v)] = 1� ’
w2N (v)

(1� xt(i, w) q(w)) =
1

Et

h
minw2N (v) Gt(i, w)

i ,

where the last identity follows by Lemma 4. Moreover from Lemma 5, we have

Et [Kt(i, w)] =
1�’w2N (v) (1� xt(i, w) q(w))b

Bt(i, v)
.

The following key lemma gives an upper bound on the expected estimated loss.

Lemma 7. For any time t, component i, agents v, and truncation parameter b, the expectation
of the loss estimator in (3.6), given the history up to time t� 1, satisfies

Et

h
b̀t(i, v)

i
= `t(i)

0

@1�

’
w2N (v)

�
1� xt(i, w) q(w)

�
!b

1

A  `t(i) .

45

Proof. Using the fact that, conditioned on the history up to time t� 1, the random vari-
able minw2N (v) Gt(i, w) has a geometric distribution with parameter Bt(i, v) (Lemmas
4-6), we get

Et

h
b̀t(i, v)

i
= Et


`t(i)Bt(i, v) min

w2N (v)
{min {Gt(i, w), b}}

�

= Et


`t(i)Bt(i, v)min

⇢
min

w2N (v)
Gt(i, w), b

��

= `t(i)Et [Bt(i, v)]Et


min

⇢
min

w2N (v)
Gt(i, w), b

��

= `t(i)Bt(i, v)

⇣
1�

�
1� Bt(i, v)

�b
⌘

Bt(i, v)

= `t(i)
⇣

1�
�
1� Bt(i, v)

�b
⌘

= `t(i)

0

@1�

’
w2N (v)

�
1� xt(i, w) q(w)

�
!b

1

A ,

where we plugged in the definition of Bt(i, v) in the last equation. From the fact that
xt(i, w) q(w) 2 [0, 1] and b > 0 follows that Et

h
b̀t(i, v)

i
 `t(i).

We can finally state our upper bound on the regret of Coop-FTPL.

Theorem 3. If z is the Laplace density z 7! z(z) = 2�k exp
�
�kzk1

�
and the parameters h, b

are chosen as follows

b =

�
1

kh

⌫
and h =

vuut
2m log(k)

5kT
⇣

k
Q a1 + m

⌘ , where Q = Â
v2V

q(v) , (3.8)

then the regret of our Coop-FTPL algorithm (Algorithm 1) satisfies

RT  2Q

s

10mkT log(k)
✓

k
Q

a1 + m
◆

.

We now present a detailed sketch of the proof of our main result (full proof in Ap-
pendix 3.8.4).

Proof sketch. For the sake of convenience, we define the expected individual regret of an
agent v 2 V in the network with respect to a fixed action a 2 A by

RT(a, v) := E

"
T

Â
t=1
hxt(v), `ti �

T

Â
t=1
ha, `ti

#
,

where the expectation is taken with respect to the internal randomization of the agent,
but not to its activation probability q(v). With this definition the total regret on the

46

network in Eq. (3.4) can be decomposed as

RT = max
a2A

E

"
T

Â
t=1

Â
v2St

⇣⌦
xt(v), `t

↵
� ha, `ti

⌘#
= max

a2A
E

"
T

Â
t=1

Et

"

Â
v2St

⇣⌦
xt(v), `t

↵
� ha, `ti

⌘##

= max
a2A

E

"
T

Â
t=1

Â
v2V

q(v)Et

h⌦
xt(v), `t

↵
� ha, `ti

i#
= max

a2A
Â

v2V
q(v)RT(a, v) . (3.9)

The proof then proceeds by isolating the bias in the loss estimators. For each a 2 A we
have

RT(a, v) = E

"
T

Â
t=1

D
xt(v)� a, b̀t(v)

E#
+ E

"
T

Â
t=1

D
xt(v)� a, `t � b̀t(v)

E#
.

Exploiting the analogy that we established between FTPL and OSMD, we begin by
using the standard bound for the regret of OSMD in the first term of the previous
equation. For the reader’s convenience, we restate it in Appendix 6, Theorem 6. This
leads to

RT(a, v)
F(x1(v))� F(a)

h
| {z }

(I)

+E

"
1
h

T

Â
t=1

BF (xt(v), xt+1(v))

#

| {z }
(II)

+E

"
T

Â
t=1

D
xt(v)� a, `t � b̀t(v)

E#

| {z }
(III)

.

The three terms are studied separately and in detail in Appendix 3.8.4. Here, we provide
a sketch of the bounds.

For the first term (I), we use the fact that the regularizer F satisfies, for all a 2 A,

F(a) � �m
�
1 + log(k)

�
, (3.10)

which follows by the definition of F, the properties of the perturbation distribution ,
and the fact that kak1  m for any a 2 A. One can also show that F(a)  0 for all a 2 A,
and this, combined with the previous equation, leads to

(I) 
m(1 + log k)

h
.

For the second term (II), we have

BF (xt(v), xt+1(v)) = BF⇤ (rF (xt+1(v)) ,rF (xt(v)))

= BF⇤
⇣
�hbLt�1(v)� hb̀t(v),�hbLt�1(v)

⌘

=
h2

2

���b̀t(v)
���

2

r2F⇤(x(v))
, (3.11)

where the first equality is a standard property of Bregmann divergence (see Theorem 5
in Appendix 3.8.1), the second follows from the definitions of the updates and the
last by Taylor’s theorem, where x(v) = �hbLt�1(v)� ahb̀t(v), for some a 2 [0, 1]. The
estimation of the entries of the Hessian are non trivial (but tedious); the interested

47

reader can find them in Appendix 3.8.4. Exploiting our assumption that b  1/(hk),
we get, for all i, j 2 {1, . . . , k},

r
2F⇤

�
x(v)

�
ij  e xt(i, v) .

Plugging this estimate in Eq. (3.11) yields

h2

2

���b̀t(v)
���

2

r2F⇤(x(v))
=

h2

2

k

Â
i=1

k

Â
j=1
r

2F⇤
�
x(v)

�
i,j
b̀t(i, v)b̀t(j, v)


h2e
2

k

Â
i=1

k

Â
j=1

xt(i, v)b̀t(i, v)b̀t(j, v)


h2e
2

k

Â
i=1

k

Â
j=1

xt(i, v)Bt(i, v) min
w2N (v)

{Gt(i, w)} Bt(j, v) min
w2N (v)

{Gt(j, w)} ,

where the last inequality follows by neglecting the truncation with b. Hence multiplying
(II) by q(v) and summing over v 2 V yields

Â
v2V

q(v)E

"
h

2

T

Â
t=1

���b̀t(v)
���

2

r2F⇤(x(v))

#
= Â

v2V
q(v)

h

2
E

"
T

Â
t=1

Et

���b̀t(v)
���

2

r2F⇤(x(v))

�#

 Â
v2V

q(v)
he
2

E

"
T

Â
t=1

Et

"
k

Â
i,j=1

xt(i, v)Bt(i, v) min
w2N (v)

{Gt(i, w)} Bt(j, v) min
w2N (v)

{Gt(j, w)}

##
,

which, making use of Lemmas 4–6, gives

Â
v2V

q(v)
he
2

E

"
T

Â
t=1

Et

"
k

Â
i,j=1

xt(i, v)Bt(i, v) min
w2N (v)

{Gt(i, w)} Bt(j, v) min
w2N (v)

{Gt(j, w)}

##

= Â
v2V

q(v)
he
2

E

"
T

Â
t=1

Et

"
k

Â
i=1

k

Â
j=1

xt(i, v)Bt(i, v)G̃t(i, v)Bt(j, v)G̃t(j, v)

##

= Â
v2V

q(v)
he
2

E

"
T

Â
t=1

k

Â
i=1

k

Â
j=1

xt(i, v)Et [Bt(i, v)Bt(j, v)]Et
⇥
G̃t(i, v)

⇤
Et

⇥
G̃t(j, v)

⇤
#
=: (?) ,

where in the first equality we defined G̃t(i, v) = minw2N (v)
�

Gt(i, w)

and, analogously,
G̃t(j, v) = minw2N (v)

�
Gt(j, w)

, while the second follows by the conditional indepen-

dence of the three terms
�

Bt(i, v), Bt(j, v)
�
, G̃t(i, v), and G̃t(j, v) given the history up to

time t� 1. Further upper bounding, we get

(?) = Â
v2V

q(v)
he
2

E

"
T

Â
t=1

Et

"
k

Â
i=1

k

Â
j=1

xt(i, v)
Bt(i, v)

Bt(i, v)
Bt(j, v)
Bt(j, v)

##


hek
2

E

"
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i, v)q(v)
Bt(i, v)

#


hekT
2 (1� e�1)

(ka1 + mQ) ,

where the first equality uses the expected value of the geometric random variables G̃,
the first inequality is obtained neglecting the indicator function Bt(i, v) and taking the

48

conditional expectation of Bt(j, v), and the last inequality follows by a known upper
bound involving independence numbers appearing, for example in Cesa-Bianchi et al.
[2019a,b]. For the sake of convenience, we add this result to Appendix 3.8.5, Lemma 9.
We now consider the last term (III). Since `t � Et

h
b̀t(v)

i
by Lemma 7, we have

(III) = E

"
T

Â
t=1

Et

hD
xt(v)� a, `t � b̀t(v)

Ei#
 E

"
T

Â
t=1

Et

hD
xt(v), `t � b̀t(v)

Ei#

= E

2

4
T

Â
t=1

k

Â
i=1

`t(i)xt(i, v)

’
w2N (v)

�
1� xt(i, w) q(w)

�
!b

3

5 .

Multiplying (III) by q(v) and summing over the agents, we now upper bound `t(i)
with 1 and use the facts that 1� x  e�x for all x 2 [0, 1] and e�y  1/y for all y > 0, to
obtain

Â
v2V

q(v)E

2

64
T

Â
t=1

k

Â
i=1

`t(i)xt(i, v)

0

@ ’
w2N (v)

(1� xt(i, w) q(w))

1

A
b
3

75

 E

2

64
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i, v) q(v)

0

@ ’
w2N (v)

(1� xt(i, w) q(w))

1

A
b
3

75

= E

2

664
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i,v) q(v)>0

xt(i, v) q(v)

0

@ ’
w2N (v)

(1� xt(i, w) q(w))

1

A
b
3

775

 E

2

664
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i,v) q(v)>0

xt(i, v)q(v) exp

0

@�b Â
w2N (v)

xt(i, w) q(w)

1

A

3

775

 E

2

664
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i,v) q(v)>0

xt(i, v) q(v)
b Âw2N (v) xt(i, w) q(w)

3

775  E

"
T

Â
t=1

k

Â
i=1

a1
b

#
=

a1 k T
b

where the last inequality follows by a known upper bound involving independence
numbers appearing, for example in [Alon et al., 2017, Lemma 10]. For the sake of
convenience, we add this result to Appendix 3.8.5, Lemma 8.

Putting everything together and recalling that b =
⌅
1/(kh)

⇧
� 1/(2kh), we can finally

49

conclude that

RT  Q
m (1 + log(k))

h
+ Q

hekT
2 (1� e�1)

✓
k
Q

a1 + m
◆
+

a1 k T
b

 Q
m (1 + log(k))

h
+ Q

hekT
2 (1� e�1)

✓
k
Q

a1 + m
◆
+ 2ha1k2T

= Q
m (1 + log(k))

h
+ hQkT

✓
e

2 (1� e�1)

✓
k
Q

a1 + m
◆
+ 2a1

k
Q

◆

 Q
m (1 + log(k))

h
+ 5hQkT

✓
k
Q

a1 + m
◆

 2Q

s

10mkT log(k)
✓

k
Q

a1 + m
◆

.

We conclude this section by discussing the computational complexity of our Coop-
FTPL algorithm. The next result shows that the total number of elementary operations
performed by Coop-FTPL over T time-steps scales with T3/2 in the worst-case. To the
best of our knowledge, no known algorithm attains a lower worst-case computational
complexity.

Proposition 2. If the optimization problem (3.2) can be solved with at most c 2 N elementary
operations, the worst-case computational complexity gCoop-FTPL of each agent v 2 V running
our Coop-FTPL algorithm with the optimal tuning (3.8) for T rounds is

gCoop-FTPL = O

T3/2c

r
a1/Q + 1

m

!
.

Proof. The result follows immediately by noting that the number of elementary opera-
tions performed by each agent v at each time step t is at most

c(b + 1)  c
1

kh
= c

1
k

s
5kT(ka1/Q + m)

2m log k
= c

s
5T(a1/Q + m/k)

2m log k
.

3.6 Lower bound
In this section we show that no cooperative semi-bandit algorithm can beat the Q

p
mkTa1/Q

rate. The key idea for constructing the lower bound is simple: if the activation prob-
abilities q(v) are non-zero only for agents v belonging to an independent set with
cardinality a1, then the problem is reduced to a1 independent instances of single-agent
semi-bandits, whose minimax rate is known.

Theorem 4. For each communication network G with independence number a1 there exist
cooperative semi-bandit instances for which the regret of any learning algorithm satisfies

RT = W
�
Q
p

mkTa1/Q
�

.

50

Proof. Let W = {w1, . . . , wa1} ⇢ V be an independent set with cardinality a1. Further-
more, let q 2 (0, 1] be a positive probability and for all agents v 2 V , let

q(v) = qI{v 2W} .

In words, only agents belonging to an independent set with largest cardinality are
activated (with positive probability), and all with the same probability. Thus, only
agents in W contribute to the expected regret and their total mass Q = Âv2V q(v) is
equal to a1q. Moreover, note that being non-adjacent, agents in W never exchange
any information. Each agent w 2W is therefore running an independent single-agent
online linear optimization problem with semi-bandit feedback for an average of qT
rounds. Since for single-agent semi-bandits, the worst-case lower bound on the regret
after T0 time steps is known to be W

�p
mkT0

�
(see, e.g., Audibert et al. [2014], Lattimore

et al. [2018]) and the cardinality of W is a1, the regret of any cooperative semi-bandit
algorithm run on this instance satisfies

RT = W
�
a1
p

mk qT
�
= W

�
a1q

p
mkT/q

�
= W

�
Q
p

mkTa1/Q
�

,
where we used Q = a1q. This concludes the proof.

In the previous section we showed that the expected regret of our Coop-FTPL algorithm
can always be upper bounded by Q

p
mkT log(k)(ka1/Q + m) (ignoring constants).

Thus, Theorem 4 shows that, up to the additive m term inside the rightmost bracket, the
regret of Coop-FTPL is at most

p
k log k-away from the minimax optimal rate.

3.7 Conclusions and open problems
Motivated by spatially distributed large-scale learning systems, we introduced a new
cooperative setting for adversarial semi-bandits in which only some of the agents are
active at any given time step. We designed and analyzed an efficient algorithm that we
called Coop-FTPL for which we proved near-optimal regret guarantees with state-of-
the-art computational complexity costs. Our analysis relies on the fact that agents are
aware of their activation probabilities, and they have some prior knowledge about the
connectivity of the graph. Two interesting new lines of research are investigating if either
of these assumptions could be lifted while retaining low regret and good computational
complexity. In particular, removing the need for prior knowledge of the independence
number would represent a significant theoretical and practical improvement, given
that computing a1 is NP-hard in the worst-case. Unfortunately, existing techniques that
address this problem in similar settings (e.g., Cesa-Bianchi et al. [2019b]) rely heavily on
agents being active at all time steps, and they are unlikely to yield any results in our
general case. We believe that entirely new ideas will be required to deal with this issue.
We leave these intriguing problems open for future work.

3.8 Appendix

3.8.1 Legendre functions and Fenchel conjugates
In this section, we briefly recall a few known definitions and facts in convex analysis.

51

Definition 1 (Interior, boundary, and convex hull). For any subset E of Rk, we denote its
topological interior by int(E), its boundary by ∂E, and its convex hull by co(E).

Definition 2 (Effective domain). The effective domain of a convex function F : Rk !
R [{+•} is

dom(F) :=
�

x 2 Rk : F(x) < +•

. (3.12)

With a slight abuse of notation, we will denote with the same symbol f a convex function
f : ! R [{+•} and its restriction ef : dom(f)! R to its effective domain.

Definition 3 (Legendre function). A convex function F : Rk ! R [{+•} is Legendre if

1. int
�
dom(F)

�
is non-empty;

2. F is differentiable and strictly convex on int
�
dom(F)

�
;

3. for all x0 2 ∂
⇥
int

�
dom(F)

�⇤
, if x 2 int

�
dom(F)

�
, x ! x0, then krF(x)k2 ! +•.

Definition 4 (Fenchel conjugate). Let F : Rk ! R [{+•} be a convex function. The
Fenchel conjugate F⇤ of F is defined as the function

F⇤ : Rk
! R [{+•}

z 7! F⇤(z) := sup
x2Rk

�
hx, zi � F(x)

�
.

Definition 5 (Bregman divergence). Let F : Rk ! R [{+•} a convex function with
non-empty int

�
dom(F)

�
that is differentiable on int

�
dom(F)

�
. The Bregman divergence

induced by F is

BF : Rk
⇥ int

�
dom(F)

�
! R [{+•}

(x, y) 7! BF(x, y) := F(x)� F(y)�
⌦
rF(y), x� y

↵
.

The following results are taken from [Lattimore and Szepesvári, 2020, Theorem 26.6 and
Corollary 26.8].

Theorem 5. Let F : Rk ! R [{+•} be a Legendre function. Then:

1. the Fenchel conjugate F⇤ of F is Legendre;
2. rF : int

�
dom(F)

�
! int

�
dom(F⇤)

�
is bijective with inverse (rF)�1 = rF⇤;

3. BF(x, y) = BF⇤
�
rF(y),rF(x)

�
, for all x, y 2 int

�
dom(f)

�
.

Corollary 1. If F : Rk ! R [{+•} is a Legendre function and x 2 argminx2dom(F) F(x),
then x 2 int

�
dom(F)

�
.

3.8.2 Online Stochastic Mirror Descent (OSMD)
In this section, we briefly recall the standard Online Stochastic Mirror Descent algorithm
(OSMD) (Algorithm 3) and its analysis.

For an overview on some basic convex analysis definitions and results, we refer the
reviewer to the previous Appendix 3.8.1. For a convex function F : Rk ! R [{+•}

that is differentiable on the non-empty interior int
�
dom(F)

�
6= ? of its effective domain

52

dom(F), we denote by BF the Bregman divergence induced by F (Definition 5). Fol-
lowing the existing convention, we refer to the input function F of OSMD as a potential.
Furthermore, given a measure P on a subset of Rk, we say that a vector x 2 Rk is the
mean of the measure P if x is the component-wise expectation of a Rk-valued random
variable with distribution P. For any time step t 2 {1, 2, . . .}, we denote by Et the
expectation conditioned to the history up to and including round t� 1.

Algorithm 3: Online Stochastic Mirror Descent (OSMD)
Input: Legendre potential F : Rk ! R [{+•}, compact action set A ⇢ Rk with

int
�
dom(F)

�
\ co(A) 6= ?, learning rate h > 0

Initialization: x1 = argminx2dom(F)\co(A) F(x)
1 for t = 1, 2, . . . do
2 choose a measure Pt on A with mean xt
3 make a prediction xt drawn from A according to Pt and suffer the loss hxt, `ti

4 compute an estimate b̀t of the loss vector `t

5 make the update: xt+1 = argminx2dom(F)\co(A) h
⌦

x, b̀t
↵
+ BF(x, xt)

It is known that since co(A) is convex and compact, int
�
dom(F)

�
\ co(A) 6= ?, and F

is Legendre, then, all the argmin’s exist in Algorithm 3 and xt 2 int
�
dom(F)

�
\ co(A)

for all t 2 {1, 2, . . .} (see, e.g., [Lattimore and Szepesvári, 2020, Exercise 28.2]).

The following result is taken from [Lattimore and Szepesvári, 2020, Theorem 28.10] and
gives an upper bound on the regret of OSMD.

Theorem 6. Suppose that OSMD (Algorithm 3) is run with input F,A, h. If the estimates b̀t
computed at line 4 satisfy Et

⇥b̀t
⇤
= `t for all t 2 {1, 2, . . .}, then, for all x 2 co(A),

E

"
T

Â
t=1
hxt, `ti�

T

Â
t=1
hx, `ti

#
 E

"
F(x)� F(x1)

h
+

T

Â
t=1

⌦
xt � xt+1, b̀t

↵
�

1
h

T

Â
t=1

BF(xt+1, xt)

#
.

Furthermore, letting
ext+1 = argmin

x2dom(F)
h
⌦

x, b̀t
↵
+ BF(x, xt)

and assuming that �hb̀t +rF(x) 2 rF
�
dom(F)

�
for all x 2 co(A) almost surely, then

sup
x2co(A)

E

"
T

Â
t=1
hxt, `ti �

T

Â
t=1
hx, `ti

#


diamF
�
co(A)

�

h
+

1
h

T

Â
t=1

E
⇥
BF(xt, ext+1)

⇤
,

where diamF
�
co(A)

�
:= supx,y2co(A)

�
F(x)� F(y)

�
is the diameter of co(A) with respect

to F.

3.8.3 Proofs of lemmas on geometric distributions
In this section we provide all missing proofs on geometric distributions that we stated
in Section 3.5.

53

Proof of Lemma 4. For all j 2 {1, . . . , m}, the cumulative distribution function (c.d.f.)
of Yj is given, for all n 2 N, by

P
⇥
Yj  n

⇤
= pj

n

Â
i=1

�
1� pj

�i�1
= 1�

�
1� pj

�n .

The c.d.f. of Z is given, for all n 2 N, by

P [Z  n] = P


min

j2{1,...,m}

Yj  n
�
= 1�

m

’
j=1

P
⇥
Yj > n

⇤
= 1�

m

’
j=1

�
1�P

⇥
Yj  n

⇤�

= 1�
m

’
j=1

⇣
1�

⇣
1�

�
1� pj

�n
⌘⌘

= 1�

m

’
j=1

�
1� pj

�
!n

= 1�

1�

"
1�

m

’
j=1

�
1� pj

�
#!n

,

and this is the c.d.f. of a geometric random variable with parameter (1�’m
j=1

�
1� pj

�

.

Proof of Lemma 5. By elementary calculations,

E [min {G, b}] =
•

Â
n=1

n (1� q)n�1 q�
•

Â
n=b

(n� b) (1� q)n�1 q

=
•

Â
n=1

n (1� q)n�1 q� (1� q)b
•

Â
n=b

(n� b) (1� q)n�b�1 q

=
⇣

1� (1� q)b
⌘ •

Â
n=1

n (1� q)n�1 q =

⇣
1� (1� q)b

⌘

q
.

Proof of Lemma 6. The proof follows immediately from the fact that
�

Xs(v)Ys(v)

s2I ,v2V
is a collection of independent Bernoulli random variables with expectation E

⇥
Xs(v)Ys(v)

⇤
=

p1(v) p2(v) for any s 2 N and all v 2 V .

3.8.4 Proof of Theorem 3
In this section, we present a complete proof of Theorem 3.

Proof of Theorem 3. For the sake of convenience, we define the expected individual
regret of an agent v 2 V in the network with respect to a fixed action a 2 A by

RT(a, v) := E

"
T

Â
t=1
hxt(v), `ti �

T

Â
t=1
ha, `ti

#
,

54

where the expectation is taken with respect to the internal randomization of the agent,
but not its activation probability q(v). With this definition the total regret on the network
in Eq. (3.4) can be decomposed as

RT = max
a2A

E

"
T

Â
t=1

Â
v2St

⇣⌦
xt(v), `t

↵
� ha, `ti

⌘#
= max

a2A
E

"
T

Â
t=1

Et

"

Â
v2St

⇣⌦
xt(v), `t

↵
� ha, `ti

⌘##

= max
a2A

E

"
T

Â
t=1

Â
v2V

q(v)Et

h⌦
xt(v), `t

↵
� ha, `ti

i#
= max

a2A
Â

v2V
q(v)RT(a, v) . (3.13)

The proof then proceeds by isolating the bias in the loss estimators. For each a 2 A we
get

RT(a, v)

= E

"
T

Â
t=1
hxt(v)� a, `ti

#
= E

"
Et

"
T

Â
t=1
hxt(v)� a, `ti

##
= E

"
T

Â
t=1
hxt(v)� a, `ti

#

= E

"
T

Â
t=1

D
xt(v)� a, b̀t(v)

E#
+ E

"
T

Â
t=1

D
xt(v)� a, `t � b̀t(v)

E#


F(x1(v))� F(a)

h
| {z }

(I)

+E

"
1
h

T

Â
t=1

BF (xt(v), xt+1(v))

#

| {z }
(II)

+E

"
T

Â
t=1

D
xt(v)� a, `t � b̀t(v)

E#

| {z }
(III)

where the inequality follows by the standard analysis of OMD. We bound the three
terms separately. For the first term (I), we have

F(a) = sup
x2Rk

�
ha, xi � F⇤(x)

�
= sup

x2Rk

✓
ha, xi �E


max
a2A
ha, x + Zi

�◆

� �E


max
a2A
ha, Zi

�
� �mE [kZk•] = �m

k

Â
i=1

1
i
� �m (1 + log(k)) , (3.14)

where the first inequality follows by choosing x = 0, the second follows from Hölder’s
inequality and kak1  m for any a 2 A, and the last equality is Exercise 30.4 in Lattimore
and Szepesvári [2020]. It follows that

F
�
x1(v)

�
� F(a)  m

�
1 + log(k)

�
,

where we use the fact that F(a)  0 for all a 2 A and this follows from the first line of
Eq. (3.14) by the convexity of the maximum, using Jensen’s inequality and the fact that
the random variable Z is centered. Thus

(I) 
m(1 + log k)

h
.

We now study the second term (II). We have

55

BF (xt(v), xt+1(v)) = BF⇤ (rF (xt+1(v)) ,rF (xt(v)))

= BF⇤
⇣
�hbLt�1(v)� hb̀t(v),�hbLt�1(v)

⌘

=
h2

2

���b̀t(v)
���

2

r2F⇤(x(v))
, (3.15)

where the first equality is a standard property of Bregmann divergence, the second
follows from the definitions of the updates and the last by Taylor’s theorem, where
x(v) = �hbLt�1(v) � ahb̀t(v), for some a 2 [0, 1]. To calculate the Hessian we use a
change of variable to avoid applying the gradient to the (possibly) non-differentiable
argmax and we get:

r
2F⇤(x) = r (rF⇤(x)) = rE[h(x + Z)] = r

Z

Rk
h(x + z)z(z)dz

= r
Z

Rk
h(u)z(u� x)du =

Z

Rk
h(u)(rz(u� x))>du

=
Z

Rk
h(u)sign(u� x)>z(u� x)du =

Z

Rk
h(x + z)sign(z)>z(z)dz

Using the definition of x(v) and the fact that h(x) is nonnegative,

r
2F⇤(x(v))ij =

Z

Rk
h(x(v) + z)isign(z)jz(z)dz



Z

Rk
h(x(v) + z)iz(z)dz

=
Z

Rk
h
⇣

z� hbLt�1 � ahb̀t

⌘

i
z(z)dz

=
Z

Rk
h
⇣

u� hbLt�1(v)
⌘

i
z
⇣

u + ahb̀t(v)
⌘

du

 exp
⇣���ahb̀t(v)

���
1

⌘ Z

Rk
h
⇣

u� hbLt�1(v)
⌘

i
z(u)du

 exp

ah

k

Â
i=1

Bt(i, v)b

!
xt(i, v)

 exp (ahkb) xt(i, v)
 e xt(i, v)

where the last inequality follows by a  1 and b  1/(hk). Plugging this estimate in
Eq. (3.15) yields

h2

2

���b̀t(v)
���

2

r2F⇤(x(v))
=

h2

2

k

Â
i=1

k

Â
j=1
r

2F⇤
�
x(v)

�
i,j
b̀t(i, v)b̀t(j, v)


h2e
2

k

Â
i=1

k

Â
j=1

xt(i, v)b̀t(i, v)b̀t(j, v)


h2e
2

k

Â
i=1

k

Â
j=1

xt(i, v)Bt(i, v) min
w2N (v)

{Gt(i, w)} Bt(j, v) min
w2N (v)

{Gt(j, w)} ,

56

where the last inequality follows by neglecting the truncation with b. Hence multiplying
(II) by q(v) and summing over v 2 V yields

Â
v2V

q(v)E

"
h

2

T

Â
t=1

���b̀t(v)
���

2

r2F⇤(x(v))

#
= Â

v2V
q(v)

h

2
E

"
T

Â
t=1

Et

���b̀t(v)
���

2

r2F⇤(x(v))

�#

 Â
v2V

q(v)
he
2

E

"
T

Â
t=1

Et

"
k

Â
i,j=1

xt(i, v)Bt(i, v) min
w2N (v)

{Gt(i, w)} Bt(j, v) min
w2N (v)

{Gt(j, w)}

##
,

making use of Lemmas 4–6, gives

Â
v2V

q(v)
he
2

E

"
T

Â
t=1

Et

"
k

Â
i,j=1

xt(i, v)Bt(i, v) min
w2N (v)

{Gt(i, w)} Bt(j, v) min
w2N (v)

{Gt(j, w)}

##

= Â
v2V

q(v)
he
2

E

"
T

Â
t=1

Et

"
k

Â
i=1

k

Â
j=1

xt(i, v)Bt(i, v)G̃t(i, v)Bt(j, v)G̃t(j, v)

##

= Â
v2V

q(v)
he
2

E

"
T

Â
t=1

k

Â
i=1

k

Â
j=1

xt(i, v)Et [Bt(i, v)Bt(j, v)]Et
⇥
G̃t(i, v)

⇤
Et

⇥
G̃t(j, v)

⇤
#
=: (?) ,

where in the first equality we defined G̃t(i, v) = minw2N (v)
�

Gt(i, w)

and, analogously,
G̃t(j, v) = minw2N (v)

�
Gt(j, w)

, while the second follows by the conditional indepen-

dence of the three terms
�

Bt(i, v), Bt(j, v)
�
, G̃t(i, v), and G̃t(j, v) given the history up to

time t� 1. Further upper bounding, we get

(?) = Â
v2V

q(v)
he
2

E

"
T

Â
t=1

Et

"
k

Â
i=1

k

Â
j=1

xt(i, v)
Bt(i, v)

Bt(i, v)
Bt(j, v)
Bt(j, v)

##

 Â
v2V

q(v)
he
2

E

"
T

Â
t=1

Et

"
k

Â
i=1

k

Â
j=1

xt(i, v)
Bt(i, v)

Bt(j, v)
Bt(j, v)

##

= Â
v2V

q(v)
he
2

E

"
T

Â
t=1

k

Â
i=1

k

Â
j=1

xt(i, v)
Bt(i, v)

⇠⇠⇠⇠Bt(j, v)
⇠⇠⇠⇠Bt(j, v)

#

=
hek
2

E

"
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i, v)q(v)
Bt(i, v)

#


hek
2

E

"
T

Â
t=1

k

Â
i=1

1

1� e�1

a1 + Â

v2V
xt(i, v)q(v)

!!#

=
hek
2

E

"
T

Â
t=1

1

1� e�1

ka1 + Â

v2V

k

Â
i=1

xt(i, v)q(v)

!!#

=
hekT

2 (1� e�1)
(ka1 + mQ) ,

where the first equality uses the expected value of the geometric random variables G̃,
the first inequality is obtained neglecting the indicator function Bt(i, v), the following
equality uses the expected value of the geometric random variables Bt, the second

57

inequality follows by Lemma 9. We now consider the last term (III). Since `t � E[b̀t],
from Lemma 7, we have

(III) = E

"
T

Â
t=1

Et

hD
xt(v)� a, `t � b̀t

Ei#
 E

"
T

Â
t=1

Et

hD
xt(v), `t � b̀t(v)

Ei#

= E

2

64
T

Â
t=1

k

Â
i=1

`t(i)xt(i, v)

0

@ ’
w2N (v)

(1� xt(i, w) q(w))

1

A
b
3

75 .

Multiplying (III) by q(v) and summing over the agents, we can now upper bound `t(i)
with 1, then we use facts that 1� x  e�x for x 2 [0, 1] and that e�y  1/y for all y > 0,
to obtain

Â
v2V

q(v)E

2

64
T

Â
t=1

k

Â
i=1

`t(i)xt(i, v)

0

@ ’
w2N (v)

(1� xt(i, w) q(w))

1

A
b
3

75

 E

2

64
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i, v) q(v)

0

@ ’
w2N (v)

(1� xt(i, w) q(w))

1

A
b
3

75

= E

2

664
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i,v) q(v)>0

xt(i, v) q(v)

0

@ ’
w2N (v)

(1� xt(i, w) q(w))

1

A
b
3

775

 E

2

664
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i,v) q(v)>0

xt(i, v)q(v) exp

0

@�b Â
w2N (v)

xt(i, w) q(w)

1

A

3

775

 E

2

664
T

Â
t=1

k

Â
i=1

Â
v2V

xt(i,v) q(v)>0

xt(i, v) q(v)
b Âw2N (v) xt(i, w) q(w)

3

775

 E

"
T

Â
t=1

k

Â
i=1

a1
b

#
=

a1 k T
b

where in the last inequality follows by Lemma 8. Putting all together and recalling that

58

b =
j

1
kh

k
�

1
2kh , we can conclude that for every a 2 A, thanks to Eq. (3.13), we have

RT  Â
v2V

RT(a, v) q(v)

 Q
m (1 + log(k))

h
+ Q

hekT
2 (1� e�1)

✓
k
Q

a1 + m
◆
+

a1 k T
b

 Q
m (1 + log(k))

h
+ Q

hekT
2 (1� e�1)

✓
k
Q

a1 + m
◆
+ 2ha1k2T

= Q
m (1 + log(k))

h
+ hQkT

✓
e

2 (1� e�1)

✓
k
Q

a1 + m
◆
+ 2a1

k
Q

◆

 Q
m (1 + log(k))

h
+ 5hQkT

✓
k
Q

a1 + m
◆

 2Q

s

10mkT log(k)
✓

k
Q

a1 + m
◆

.

3.8.5 Bounds on independence numbers
The two following lemmas provide upper bounds of sums of weights over nodes of a
graph expressed in terms of its independence number.

Lemma 8. Let G = (V , E) be an undirected graph with indedence number a1, q(v) � 0, and
Q(v) = Âw2N (v) q(v) > 0 for all v 2 V . Then

Â
v2V

q(v)
Q(v)

 a1

Proof. Initialize V1 = V , fix w1 2 argminw2V1
Q(w), and denote V2 = V \ N (w1). For

k � 2 fix wk 2 argminw2Vk
Q(w) and shrink Vk+1 = Vk \ N (wk) until Vk+1 = ?. Since

G is undirected wk /2
Sk�1

s=1 N (ws), therefore the number m of times that an action can be
picked this way is upper bounded by a1. Denoting N 0(wk) = Vk \N (wk) this implies

Â
v2V

q(v)
Q(v)

=
m

Â
k=1

Â
v2N 0(wk)

q(v)
Q(v)



m

Â
k=1

Â
v2N 0(wk)

q(v)
Q(wk)



m

Â
k=1

Âv2N (wk) q(v)
Q(wk)

= m  a1

concluding the proof.

Lemma 9. Let G = (V , E) be an undirected graph with independence number a1. For each
v 2 V , let N (v) be the neighborhood of node v (including v itself), and

�
p(1, v), . . . , p(k, v)

�

be a probability distribution over {1, . . . , k}. Then, for all i 2 {1, . . . , k},

Â
v2V

p(i, v)
q(i, v)


1

1� e�1

a1 + Â

v2V
p(i, v)

!
where q(i, v) = 1� ’

w2N (v)

�
1� p(i, w)

�
.

59

Proof. Fix i 2 {1, . . . , k} and set for brevity P(i, v) = Âw2N (v) p(i, w). We can write

Â
v2V

p(i, v)
q(i, v)

= Â
v2V : P(i,v)�1

p(i, v)
q(i, v)

| {z }
(I)

+ Â
v2V : P(i,v)<1

p(i, v)
q(i, v)

| {z }
(II)

,

and proceed by upper bounding the two terms (I) and (II) separately. Let r(v) be the
cardinality of N (v). We have, for any given v 2 V ,

min

8
<

:q(i, v) : Â
w2N (v)

p(i, w) � 1

9
=

; = 1�
✓

1�
1

r(v)

◆r(v)
� 1� e�1 .

The equality is due to the fact that the minimum is achieved when p(i, w) = 1
r(v) for all

w 2 N (v), and the inequality comes from r(v) � 1 (for, v 2 N (v)). Hence

(I)  Â
v2V : P(i,v)�1

p(i, v)
1� e�1  Â

v2V

p(i, v)
1� e�1 .

As for (II), using the inequality 1� x  e�x, x 2 [0, 1], with x = p(i, w), we can write

q(i, v) � 1� exp

0

@� Â
w2N (v)

p(i, w)

1

A = 1� exp (�P(i, v)) .

In turn, because P(i, v) < 1 in terms (II), we can use the inequality 1� e�x � (1� e�1) x,
holding when x 2 [0, 1], with x = P(i, v), thereby concluding that

q(i, v) � (1� e�1)P(i, v)

Thus

(II)  Â
v2V : P(i,v)<1

p(i, v)
(1� e�1)P(i, v)


1

1� e�1 Â
v2V

p(i, v)
P(i, v)


a1

1� e�1 ,

where in the last step we used Lemma 8.

60

61

Chapter 4

Cooperative Online Learning with
Delays

4.1 Introduction
Distributed online learning settings with communication constraints arise naturally in
several applications. Consider a network of geographically distributed ad servers using
real-time bidding to sell their inventory. Each server sequentially learns how to set the
auction parameters (e.g., reserve price) to maximize the network’s overall revenue, and
shares feedback information with other servers to speed up learning. However, the
rate at which data is exchanged through the communication network is slower than
the typical rate at which ads are served. This causes each learner to acquire feedback
information from other servers with a delay that depends on the network’s structure.

Motivated by this, we introduce and analyze an online learning setting in which a
network of agents solves a common online convex optimization problem, in the full
and partial feedback setting, by sharing feedback with their network neighbours. We
also study the impact of delay on the global performance of these agents, which do not
have to be synchronized. At each time step, only some of them are requested to make
a prediction and pay the corresponding loss: we call these agents "active" and the set
of active agents at time t is denoted with St. If v 2 St, it predicts with xt(v) 2 X and
the network incurs the loss `t

�
xt(v)

�
. Besides observing their own feedback, each agent

obtains some information previously broadcast by other agents with a delay equal to
the shortest-path distance between the agents. Namely, at time t an agent learns what
the active agents at shortest-path distance s did at time t� s for each s = 1, ..., d, where d
is a delay parameter. The goal is to minimize the total network regret after T time steps

RT =
T

Â
t=1

Â
v2St

`t
�
xt(v)

�
� inf

x2X

T

Â
t=1

Â
v2St

`t(x) . (4.1)

In words, this is the difference between the cumulative loss of the “active” agents and
the loss that they would have incurred had they consistently made the best prediction in
hindsight. The lack of global synchronization implies that agents who are not requested
to make a prediction can get some "free feedback" with a certain delay. Since in online
convex optimization the sequence of loss functions is fully arbitrary, it is not clear

whether this free feedback can improve the system’s performance. Following some
previous work by Cesa-Bianchi et al. [2019a] and Cesa-Bianchi et al. [2019b], we will
show to which extent such improvements are possible, and we will see that we can
characterize the improvement of the cooperative learning of the system in terms of the
d-th independence number ad of G is the cardinality of the biggest subset of agents, no
two of which have shortest-path distance d or less.

We study the problem under two types of feedback, under the full-information feedback
we study the family of algorithm of Online Mirror Descent (OMD), but, since this
doesn’t directly give the interesting case of Hedge we resort to a specific analysis for
it that makes use of the update of Follow The Regularized Leader (FTRL). The other
important case is partial information feedback. We study the case of a network of agents
that cooperate to solve the same nonstochastic bandit problem, and we extend the
analysis also to the case of semi-bandits on m-sets. The delays arise naturally in this
distributed setting on a networks and depend on the topology of the graph itself. For
this reason, the first step in our analysis is to obtain the regret for single agents that
play with generic delays under the different types of feedback. This part of the analysis,
presented in Section 4.3, relies heavily on previous work by Joulani et al. [2016] and
Zimmert and Seldin [2019] with some minor adaptation to recover the particular case of
Hedge (with adaptive learning rates) from FTRL and the case of semi-bandits on m-sets.
In Section 4.4 we present the main novelty of our paper, which is an algorithm and
an analysis that lets one transform a general algorithm that plays with delays into an
algorithm on the communication network and retains a neat study for the total regret.
We differentiate between two types of activation. In the first one, in Section 4.4.1, we
treat the case of single agent activation whose analysis is more straightforward than the
multiple agent activation of Section 4.4.2. We anticipate that the difference is that in the
single agent activation setting, we obtain results for both full and partial information
feedback. In contrast, multiple agent activation is studied just in the full information
setting with the techniques developed up to there. To fill this gap, we propose an ad-hoc
analysis for multiple agents activation and semi-bandits which generalizes the work of
Cesa-Bianchi et al. [2019b].

4.2 Related work
The study of cooperative nonstochastic online learning on networks was pioneered
by Awerbuch and Kleinberg [2008], who investigated a bandit setting in which the
communication graph is a clique, agents belong to clusters characterized by the same
loss, and some agents may be non-cooperative. In our multi-agent setting, the end goal
is to control the total network regret (4.1). This objective was already studied by Cesa-
Bianchi et al. [2019a] in the full-information case. A similar line of work was pursued by
Cesa-Bianchi et al. [2019b], where the authors consider networks of learning agents that
cooperate to solve the same nonstochastic bandit problem. In their setting, all agents
are simultaneously active at all time steps, and the feedback propagates throughout the
network with a maximum delay of d time steps, where d is a parameter of the proposed
algorithm. The authors introduce a cooperative version of Exp3 that they call Exp3-
COOP with regret of order

p
(d + 1 + Kad/N)(T log K) where K is the number of arms

in the nonstochastic bandit problem, N is the total number of agents in the network,

62

and ad is the independence number of the d-th power of the communication network.
The case d = 1 corresponds to information that arrives with one round of delay and
communication limited to first neighbours. In this setting Exp3-COOP has regret of
order

p
(1 + Ka1/N)(T log K). Cesa-Bianchi et al. [2019a] present a full information

scenario where agents play instances of OMD and exchange information just with first
neighbours. In a stochastic activation setting, at each time step t each agent v 2 G is
independently active with probability qv, where qv is a fixed and unknown number in
[0, 1]. Under this assumption, they show that when each agent runs OMD, the network
regret is O(

p
a1T), where a1  N is the independence number of the communication

graph. The bound smoothly interpolates the two extreme cases of no communication
(a1 = N) and full communication (a1 = 1). They also find a matching lower bound for
their algorithm. More recently, Della Vecchia and Cesari [2020] considered the case of
asynchronous online combinatorial semi-bandits on a network of communicating agents
and stochastic activation of agents. They introduce Coop-FTPL, the first algorithm that
is computationally efficient in this cooperative setting.

Our work can be seen as an extension of these settings along with two directions. On
one side, we are interested in the case in which information is broadcast through the
network up to a particular delay d and is successively dropped. On the other hand, we
take two types of stochastic activations for the agents: a setting in which a single agent is
activated per time-step, and another one, where multiple agents are activated together.
From an algorithmic point of view, we extend the analysis of Cesa-Bianchi et al. [2019b]
to the case of semi-bandits on m-sets where the study follows a very general proof
strategy in the single agent activation, while follows more closely [Cesa-Bianchi et al.,
2019b] for the multiple agents one. We point out that if the network consists of a single
node, our cooperative setting always collapses into a single-agent setting. In particular,
for combinatorial bandits, when the number of arms is k and m = 1, this becomes the
well-known adversarial multiarmed bandit problem (see [Auer et al., 2002]). Hence,
ours is a proper generalization of all the settings mentioned above. The main result of
our work is stated in Theorem 11 for a general algorithm (for experts or bandits) in a
delayed setting, with regret guarantee of the following form

Rdelay
T  a +

p
b1T +

vuutb2

T

Â
t=1

dt +

vuutc1T + c2

T

Â
t=1

dt

where a, b1, b2, c2 are constants. Our theorem states that such an algorithm has a corre-
spondent cooperative counterpart that, in the case of single agent activation, satisfies

Rcoop
T  a ad +

p
b1 ad T +

p
b2 d T +

p
c1 ad T + c2 d T .

The regret bound of the cooperative algorithm with multiple agents activation for the
full-information setting is instead

E
⇥
Rcoop

T
⇤
 a

ad + Q
1� e�1 + Q

s
b1

1� e�1

✓
ad
Q

+ 1
◆

T + Q
p

b2 d T

+ Q

s
c1

1� e�1

✓
ad
Q

+ 1
◆

T + c2 d T ,

63

where Q = Âv2V q(v). These results are very general and explain how to pass from
a delayed setting to a cooperative one, also showing how the two are deeply related.
From this general formulation, it is then possible to recover the bounds for specific
algorithms through a general and much more straightforward analysis. Through a
unique framework, it is possible to treat the broadcasting of information through the
network and the stochastic activation of agents in an elegant way.

4.3 Single agent with delay
In recent years, learning with delays has received a significant amount of attention in
both stochastic and nonstochastic settings, under full and partial information feedback
assumptions. In many practical applications, the learner does not have instant access to
the feedback. For example, the time between clicking on a link and buying a product
could be minutes, days, weeks, or longer. Similarly, the response to a drug does not
come immediately. In most cases, the learner does not have the choice to wait before
making the next decision because the arrival of new buyers and patients is beyond their
control.

To the best of our knowledge, Weinberger and Ordentlich [2002] were the first to study
online learning with delays in the full-information setting. Following their work, several
extensions and variations have emerged in both stochastic and nonstochastic bandits,
[Joulani et al., 2016, Cesa-Bianchi et al., 2019b, Pike-Burke et al., 2018, Desautels et al.,
2014].

In this section, we will consider delayed online optimization under both full-information
and partial feedback.

4.3.1 Full-information feedback with delay and linear losses

Let X 6= ? be a convex and closed subset of Rk, that we call decision set. We consider
the following online protocol.

For all t = 1, 2, . . .

1. a linear loss function `t(·) = h`t, ·i : X ! [0, 1] and delay dt 2 {0, 1, 2, . . .} are
chosen by the environment, independently of the learner’s past actions

2. the learner makes a prediction xt 2 X

3. the learner suffers a loss `t(xt)
4. the learner receives as feedback the set of pairs

Ht =
�
(s, `s) : s 2 {1, . . . , t}, s + ds = t

.

The goal is to minimize the regret, defined for any time horizon T by

RT = sup
x2X

RT(x) where RT(x) =
T

Â
t=1

`t(xt)�
T

Â
t=1

`t(x).

Note that if we know beforehand that dt = 0 for all t, this setting collapses into a
standard online convex optimization with full feedback. We also assume that delays

64

are bounded from above by a constant d. Note that this is without loss of generality.
Indeed, for our application to learning on a communication network, d can be taken as
the diameter of the network.

OMD with delays

We now present SOLID (Algorithm 4, Single-Instance Online Learning wIth Delays),
originally introduced by Joulani et al. [2016] for delayed full-information settings. The
idea behind SOLID is simple: it takes as input any algorithm BASE for non-delayed
online convex optimization with full-information feedback and uses it to make updates
whenever it receives a new loss function as feedback. If multiple losses are received at
the same time step, they are all processed at the same time step, from the oldest to the
newest.

Algorithm 4: SOLID (Single-Instance Online Learning wIth Delays)
Input: an algorithm BASE for the non-delayed setting, and its input
Initialization: let x1 be the first prediction of BASE

1 for t = 1, 2, . . . do
2 predict xt and incur loss `t(xt)
3 receive the feedback set Ht
4 if Ht = ? then
5 let xt+1 xt
6 else
7 for each s such that (s, `s) 2 Ht, in increasing order of s, do
8 update BASE with `s.
9 let xt+1 be the next prediction of BASE

We choose as BASE the well-known Online Mirror Descent algorithm (Algorithm 5),
where we denote by BF the Bregman divergence BF : X 0 ⇥ int(X 0)! R with respect to
F:

BF(x, y) = F(x)� F(y)� hrF(y), x� yi 8(x, y) 2 X
0
⇥ int(X 0) .

Algorithm 5: Online Mirror Descent (OMD)
Input: a set X 0 ✓ Rk, a regularizer F : X 0 ! R that is 1-strongly convex with

respect to a norm k·k on X 0 and continuously differentiable on int(X 0), a
decision set X ✓ int(X 0), a nonincreasing sequence of strictly positive
learning rates h1, h2, . . ., and an initial prediction x1 2 X

1 for t = 1, 2, . . . do
2 predict xt
3 receive `t : Rk ! R and incur loss `t(xt)
4 let gt 2 r`t(xt)

5 let xt+1 argminx2X

n
hgt, xi+ 1

ht
BF(x, xt)

o

The next result is an upper bound on the regret of SOLID run with OMD as BASE algo-
rithm. The theorem is proven in Appendix 4.6.1 (Theorem 7) and is a direct adaptation
from Joulani et al. [2016].

65

Theorem 7. There is a choice of learning rates for which the regret of SOLID run with OMD
as BASE algorithm against linear losses satisfies

RT  2LR

vuut2
T

Â
t=1

(1 + 2dt) + LR
q

2d(2d� 1) ,

where d = maxt2{1,...,T}{dt}, R is a positive constant such that maxs2{1,...,T} BF(u, exs) 

2R2, exs is the prediction that OMD makes after receiving the s-th loss as feedback, and L =
maxt2{1,...,T} k`tk is the Lipschitz constant of the linear losses.

Hedge with delays

In this section, we focus on the delayed version (Algorithm 6) of the well-known
Hedge algorithm. Unfortunately, running Online Mirror Descent with negative entropy
regularizer, prediction set equal to the k-dimensional simplex of probabilities X = Dk�1,
and adaptive learning rates does not yield to the classic anytime version of Hedge.
Moreover, its regret guarantees become unbounded when the predictions get arbitrary
close to the edges of the simplex.

To circumvent these problems, we use Follow The Regularized Leader (FTRL) with
linear losses, negative entropy regularization, and adaptive learning rates. It is not
clear if the techniques introduced by Joulani et al. [2016] that we presented above could
apply to this instance of FTRL with changing learning rates because of the form of the
prediction drift. For this reason, we adopt a different approach, following the work
done in Zimmert and Seldin [2019] for bandits. Simplifying their analysis (which is, in
turn, inspired by Joulani et al. [2016]) to the full-information scenario gives an upper
bound to the regret of Hedge with delays that we state in Theorem 8. The proof of this
result is deferred to Appendix 4.6.2 (Theorem 8).

Before stating the theorem, we define the number of outstanding observations at round
t as

dt =
t�1

Â
s=1

I{s + ds � t} . (4.2)

The quantity dt counts how many observations for the previous actions we are missing
at the beginning of round t. Notably, dt is an observable quantity, unlike the delays
dt. As such, dt can be used for online tuning of the learning rates in the following
theorem, through the quantity Dt = Ât

s=1 ds. We also note that, straightforwardly from
the definitions, the following important equality holds:

T

Â
t=1

dt =
T

Â
t=1

dt . (4.3)

Furthermore, we use a negative entropy regularizer for the regret of Hedge with delays
in the next theorem:

Ft(x) = h�1
t F(x) = h�1

t

k

Â
i=1

xi log(xi) . (4.4)

66

Algorithm 6: Hedge with delays
Input: a sequence of regularizers F1, F2, . . .
Initialization: let Lobs

1 = 0 and D0 = 0
1 for t = 1, 2, . . . do
2 let Dt Dt�1 + dt
3 let xt argminx2Dk�1

�
hx, Lobs

t i+ Ft(x)

4 choose distribution Pt on {1, . . . , k} with probabilities given by the
components of xt

5 sample an arm xt 2 {1, . . . , k} according to the distribution Pt
6 for each s 2 {1, . . . , t} such that s + ds = t do
7 observe (s, `s)
8 update Lobs

t+1 Âs:s+dst `s

Theorem 8. The regret of Algorithm 6 run with decreasing learning rates (ht)t2N and the
regularizer F equal to the negative entropy in Eq. (4.4) satisfies

RT 
ln k
hT

+
1
2

T

Â
t=1

ht +
T

Â
t=1

htdt .

Furthermore if learning rates are chosen for all t, as ht =
q

ln k
Ât

s=1(1+2ds)
, then

RT  2

vuut(ln k)

T +

T

Â
t=1

dt

!
.

4.3.2 Partial information feedback with delay and linear losses
In this section we investigate the case of partial feedback that arrives with delay. We
consider the following online protocol.

For all t = 1, 2, . . .

1. a linear loss function `t : X ! [0, 1] and a delay dt 2 {0, 1, 2, . . .} are chosen by
the environment, independently of the learner’s past actions

2. the learner makes a prediction xt 2 X

3. the learner suffers a loss `t(xt)
4. the learner receives as feedback the set of pairs

ft =
�
(s, fs) : s 2 {1, . . . , t}, s + ds = t

,

where fs is some feedback relative to the loss `t .

Note that, in the previous full-information scenario with linear losses, the feedback fs
coincides exactly with gs, which fully determines the linear loss function `s(·) through
the identity `s(·) = hgs, ·i. The regret is defined as before and analogously, for dt = 0
this setting collapses into a standard online convex optimization with partial informa-
tion. We examine the two cases of bandits and semi-bandits for which we will define
the corresponding feedback fs.

67

FTRL for bandits with delays

In the bandit case, the feedback fs is the loss `s(xs) of the prediction xs made by the
learner at time s. Zimmert and Seldin [2019] studied the Follow The Regularized Leader
algorithm for bandits with delay (Algorithm 7) for which they proved theoretical regret
guarantees.

We recall their main result [Zimmert and Seldin, 2019, Theorem 1] below (Theorem 9).
The loss estimators b̀s(i) used by the algorithm are defined, for all i 2 {1, . . . , k}, by

b̀s(i) =
`s(i)
xs(i)

I{xs = i} ,

where xs is the algorithm’s probability of selecting action xs at round s. The cumulative
observed loss estimator at time t is defined by

bLobs
t = Â

s:s+ds<t

b̀s .

The number of outstanding observations dt at round t is defined as in the previous
Eq. (4.2) and similarly Dt = Ât

s=1 ds. The regularizer is of the form Ft = Ft,1 + Ft,2 with
the following choices for Ft,1 and Ft,2:

Ft(x) = �
k

Â
i=1

2
p

tx1/2
i

| {z }
Ft,1(x)

+ h�1
t

k

Â
i=1

xi log(xi)

| {z }
Ft,2(x)

. (4.5)

The first part of the regularizer Ft,1(x) =
p

tF1(x) is the 1
2-Tsallis entropy F1(x) =

�2 Âk
i=1
p

xi with learning rate 1p
t
, which is non-adaptive to the problem. The second

part of the regularizer Ft,2(x) = h�1
t F2(x) is the negative entropy F2(x) = Âk

i=1 xi log(xi)
with adaptive learning rate ht.

Algorithm 7: FTRL for bandits with delay
Input: a sequence of regularizers F1, F2, . . .
Initialization: let bLobs

1 = 0 and D0 = 0
1 for t = 1, 2, . . . do
2 let Dt = Dt�1 + dt

3 let xt = argminx2Dk�1
⌦

x, bLobs
t
↵
+ Ft(x)

4 sample xt ⇠ xt
5 for each s 2 {1, . . . , t} such that s + ds = t do
6 observe

�
s, `s(xs)

�

7 construct b̀s and update bLobs
t

Theorem 9. The regret of Algorithm 7 run with the regularizer in Eq. (4.5) and decreasing
learning rates (ht)t2N satisfies

RT  4
p

kT + h�1
T ln k +

T

Â
t=1

ht dt .

68

Furthermore if learning rates are chosen for all t, as h�1
t =

q
2Dt
ln k =

q
2 Ât

s=1 ds
ln k , then

RT  4
p

kT +

vuut8
T

Â
t=1

dt ln k .

FTRL for semi-bandits on m-sets with delays

Another important problem is finite optimization where at each round the player has
to choose m alternatives out of the k possible choices. This corresponds to the set
A ✓ {0, 1}k of all vectors with exactly m ones. Note that there are (k

m) such vectors and
the set A is called m-set.

Also in this setting, we define bLobs
t , dt and Dt as in the case of learning with bandit

feedback (see previous section) and we use an instance of FTRL (see Algorithm 8) with
appropriate loss estimators for learning with semi-bandits:

b̀s(i) =
`s(i) xs(i)

xs(i)
,

where xs 2 A and xs 2 co(A) for each s 2 {1, . . . , T}.

Algorithm 8: FTRL for semi-bandits on m-sets with delays

Input: Regularizer F, bLobs
1 = 0 and D0 = 0.

Initialization:
1 for t = 1, . . . , T do
2 set Dt = Dt�1 + dt

3 set xt = argminx2co(A)

nD
x, bLobs

t

E
+ Ft(x)

o

4 choose distribution Pt on A such that Âa2A Pt(a)a = xt
5 sample xt ⇠ Pt
6 for s : s + ds = t do
7 observe (s ; xs(1)`s(1), . . . , xs(d)`s(d))
8 construct b̀s(i) =

`s(i) xs(i)
xs(i)

for all i 2 [k]

9 update bLobs
t+1 = Âs:s+ds<t+1

b̀s

What remains is to choose an appropriate regularizer. The choice of the unnormalized
negentropy

Ft(x) = h�1
t F(x) = h�1

t

k

Â
i=1

xi log(xi)� xi

!
, (4.6)

leads to a sub-optimal regret bound

RT  2

vuut2km(1 + log (k/m))

T +

T

Â
t=1

dt

!
, (4.7)

69

for an appropriate choice of learning rates ht =

r
m(1+log(k/m))
2k Ât

s=1(ds+1)
. The proof of this bound

is anyway presented in Appendix 4.6.4 and is again an adaptation of the proof by
Zimmert and Seldin [2019] for bandits.

A different choice of regularizer leads to a better regret bound like for the case of bandits
with delays in Zimmert and Seldin [2019]. Therefore, also in this case we use the hybrid
regularizer of Eq. (4.5) and run Algorithm 8 with this new choice. In Appendix 4.6.5
(Theorem 10) we prove the following bound for such algorithm.

Theorem 10. Algorithm 8 with proper learning rates (ht)t=1,...,n and a choice of regularizer as
in Eq. (4.5) satisfies

RT  2
p

Tkm +
m log

⇣
k
m

⌘

hT
+
p

Tkm +
T

Â
t=1

htkdt



m log
⇣

k
m

⌘

hT
+ 3
p

Tkm + k
T

Â
t=1

htdt

Furthermore if one chooses ht =

r
m(1+log(k/m))

2k Ât
s=1 ds

then

RT  3
p

Tkm + 2

vuut2kmlog (k/m)

T

Â
t=1

dt

!
.

4.4 From delayed single-agent to cooperative multi-agent
Let G = (V , E) be an undirected graph. We say that G is a communication network
and V is the set of agents. For any agent v 2 V and all d 2 N, we denote by Nd(v) the
set of nodes containing agent v and all agents w with dG(v, w)  d, where dG(v, w) is
the shortest-path distance on the graph. The d-th independence number ad of G is the
cardinality of the biggest subset of agents, no two of which have shortest-path distance
d or less.

We study the following cooperative online convex optimization protocol: initially, hid-
den from the agents, the environment picks a sequence of random subsets S1,S2, . . . ✓ V

of active agents and a sequence of differentiable convex real loss functions `1, `2, . . .
defined on a convex decision set X ⇢ Rk.

Then, for each time step t = 1, 2, . . .:

1. for each active agent v 2 St
(a) v predicts with xt(v) 2 X and the network incurs the loss `t

�
xt(v)

�
;

(b) v receives some feedback ft(v) and sends the message mt(v) = ht, v, ft(v)i;
2. for each agent v 2 V

(a) v receives from its neighbours all past messages mt�s = ht� s, v0, ft�si such
that v0 2 St�s and dG(v, v0) = s 2 {1, . . . , d};

(b) v drops the messages that are older than t� d and forwards the remaining
ones;

70

(c) v (possibly) updates its local model and, depending on the setting, sends to its
neighbors a message m0t(v) = ht, v, it(v)i containing some local information
it(v).

The goal is to minimize the network regret as a function of the number T of time steps:

RT =
T

Â
t=1

Â
v2St

`t
�
xt(v)

�
� inf

x2X

T

Â
t=1

Â
v2St

`t(x) . (4.8)

Note that only the losses of active agents contribute to the network regret. We will
study the problem under different feedback types and under two types of activation
mechanisms.

Feedback type. We consider the bandit, semi-bandit, and full-info feedback types
that we introduced in Section 4.3. In the bandit case, the feedback ft(v) received by
v at time t (line 1 of the protocol) is the loss `t

�
xt(v)

�
of the prediction xt(v). In the

semi-bandit case, X = co(A), where A =
�

a 2 {0, 1}k : Âk
i=1 ai = m

for some m 2 N,

the agent v predicts with xt(v) 2 A, losses `t are linear, and the feedback ft(v) is
the vector

�
`t,1xt,1(v), . . . , `t,kxt,k(v)

�
where, with a slight abuse of notation, we write

`t(x) = h`t, xi (i.e., we think of `t as a vector in Rk). In the full-information case, the
feedback ft(v) is the whole loss function `t.

Activations. We consider the two distinct settings in which a single agent is activated
at each time step or multiple agents are. In the single-activation setting, we assume that
there exists a distribution q on V and, for each time step t, the set St contains only one
agent that is drawn i.i.d. from q. In the multiple-activation setting, we assume that there
exists an activation probability q(v) 2 [0, 1] for each agent v 2 V and, at each time step t,
each agent v 2 V is activated i.i.d. with probability q(v). In the case of full-information
we are able to treat multiple activations, while the single activation setting is the one
adopted for learning with partial feedback. This difference is due to technical reasons
related to the difficulty of building loss estimators for partial feedback when the pieces
of information on the loss at a specific time can arrive at possibly different later rounds.
Despite these challenges, we present in Section 4.5 a different analysis for dealing with
multiple agent activations and semi-bandit feedback.

Now we show how the regret guarantees of an algorithm for a delayed single-agent v
(Theorems 7, 8, 9, 10) translates to cooperative multi-agent setting (for different choices
of feedback type and activations). To this end, we define the random variable Dt(v) by

Dt(v) =
t+dt(v)

Â
s=t+1

I
�
9v0 2 Ss \Nd(v)

, where dt(v) = min

v02St
dG(v0, v) ,

with the understanding that Dt(v) = 0 if dt(v) = 0. At a high-level, the random variable
Dt(v) represents the delay of loss `t from the perspective of v.

We define the total delay of loss `t from the perspective of v by

T

Â
t=1

Dt(v) I
�
9v0 2 St \Nd(v)

.

71

Algorithm 1 Delay Into Cooperation (DIC)
input: maximum delay d, single-agent non-delayed algorithm BASE for each time step
t = 1, 2, . . .

1. for each active agent v 2 St
(a) v outputs the prediction xt(v) 2 X generated by SOLID(BASE)
(b) v receives some feedback ft(v) and sends the message mt(v) = ht, v, ft(v)i

2. for each agent v 2 V

(a) v receives from its neighbours all past messages mt�s(w) and m0t�s(w) (see
last item) such that w 2 St�s and dG(v, w) = s 2 {1, . . . , d};

(b) v drops the messages that are older than t� d and forwards the remaining
ones

(c) v makes a step of the SOLID(BASE) algorithm for each newly received mes-
sage

(d) depending on the setting, v sends to its neighbors a message m0t(v) =
ht, v, it(v)i containing some local information it(v)

The following lemma controls the total (expected) delay of the losses delay of from the
perspective of each node v.

Lemma 10. For all agents v 2 V , for both single and multiple agents activation, we have

E

"
T

Â
t=1

Dt(v) I
�
9v0 2 St \Nd(v)

#
 T d Qd(v)2 ,

where Qd(v) = P
⇥
9v0 2 St \Nd(v)

⇤
.

Proof. For all agents v 2 V , we have

72

E

"
T

Â
t=1

Dt I
�
9v0 2 St \Nd(v)

#

= E

"
T

Â
t=1

Et

h
Dt I

�
9v0 2 St \Nd(v)

 i
#

= E

"
T

Â
t=1

Et

h
Dt I

�
9v0 2 St \Nd(v)

| dt(v)

i#

= E

"
T

Â
t=1

Et
⇥
Dt | dt(v)

⇤
Et

h
I
�
9v0 2 St \Nd(v)

| dt(v)

i#

= E

"
T

Â
t=1

Et
⇥
Dt | dt(v)

⇤
I
�

dt(v)  d

#

= E

"
T

Â
t=1

diam(G)

Â
b=0

Et
⇥
Dt | dt(v) = b

⇤
Pt
⇥
dt(v) = b

⇤
I
�

dt(v)  d

#

= E

"
T

Â
t=1

d

Â
b=0

Et
⇥
Dt | dt(v) = b

⇤
P
⇥
dt(v) = b

⇤
#

= E

"
T

Â
t=1

Et
⇥
Dt | dt(v) = 0

⇤
q(v)

#

+ E

"
T

Â
t=1

d

Â
b=1

Et
⇥
Dt | dt(v) = b

⇤�
Qb(v)�Qb�1(v)

��
1�Qb�1(v)

�
#

 E

"
T

Â
t=1

Et
⇥
Dt | dt(v) = 0

⇤
q(v)

#

+ E

"
T

Â
t=1

d

Â
b=1

Et
⇥
Dt | dt(v) = b

⇤�
Qb(v)�Qb�1(v)

�
#

=
T

Â
t=1

d

Â
b=1

b Qd(v)
�
Qb(v)�Qb�1(v)

�



T

Â
t=1

d Qd(v)
d

Â
b=1

�
Qb(v)�Qb�1(v)

�



T

Â
t=1

d Qd(v)2

= T d Qd(v)2,

where we used the fact that P
⇥
dt(v) = b

⇤
=
�
Qb(v)�Qb�1(v)

��
1�Qb�1(v)

�
.

Theorem 11. Fix any algorithm (for experts or bandits) for the delayed setting having regret

73

guarantees

Rdelay
T  a +

p
b1T +

vuutb2

T

Â
t=1

dt +

vuutc1T + c2

T

Â
t=1

dt ,

where the quantities a, b1, b2, c2 are positive and possibly depend in arbitrary ways on all the
relevant parameters of the problem and d1, . . . , dT are the delays and they are upper bounded
by d. Then, the regret of the correspondent cooperative algorithm with single agent activation
satisfies

Rcoop
T  a ad +

p
b1 ad T +

p
b2 d T +

p
c1 ad T + c2 d T ,

where ad is the d-th independence number of graph G. The regret bound of the cooperative
algorithm with multiple agents activation for the full-information setting satisfies insted

E
⇥
Rcoop

T
⇤
 a

ad + Q
1� e�1 + Q

s
b1

1� e�1

✓
ad
Q

+ 1
◆

T + Q
p

b2 d T

+ Q

s
c1

1� e�1

✓
ad
Q

+ 1
◆

T + c2 d T .

where Q = Âv2V q(v).

Proof. Fix any x 2 X and let rt(v) = `t (xt(v)) � `t(x). The regret of agent v on a
communication network is

T

Â
t=1

rt(v)I
�
9v0 2 St \Nd(v)

 a +

vuutb1

T

Â
t=1

I
�
9v0 2 St \Nd(v)

+

vuutb2

T

Â
t=1

Dt(v) I
�
9v0 2 St \Nd(v)

+

vuutc1

T

Â
t=1

I
�
9v0 2 St \Nd(v)

+ c2

T

Â
t=1

Dt(v) I
�
9v0 2 St \Nd(v)

.

We now take expectations to both sides with respect to the activations of the nodes. The
expectation of the left-hand side is

E

"
T

Â
t=1

rt(v) I
�
9v0 2 St \Nd(v)

#
= E

"
T

Â
t=1

rt (v) Qd(v)

#
.

By Jensen’s inequality and Lemma 10, the expectation of the right-hand side can be
upper bounded by

a +
q

b1 Qd(v) T +
q

b2 d Qd(v)2 T +
q

c1 Qd(v) T + c2 d Qd(v)2 T ,

Putting everything together and dividing both sides by Qd(v) yields

E

"
T

Â
t=1

rt (v)

#


a
Qd(v)

+

s

b1
1

Qd(v)
T +

p
b2 d T +

s

c1
1

Qd(v)
T + c2 d T ,

74

Hence, by Jensen’s inequality, we get

E
⇥
Rcoop

T
⇤
= E

"
T

Â
t=1

Â
v2V

rt(v)I
�

v 2 St

#
=

T

Â
t=1

Â
v2V

q(v)E [rt(v)] = Â
v2V

q(v)
T

Â
t=1

E [rt(v)]

 Â
v2V

q(v)

a

Qd(v)
+

s

b1
1

Qd(v)
T +

p
b2 d T +

s

c1
1

Qd(v)
T + c2 d T

!
.

(4.9)

The probability Qd(v) = P
⇥
9v0 2 St \ Nd(v)

⇤
has the following two expressions

depending on the type of activation

Qd(v) =

(
Âv02Nd(v) q(v0) for single agent activation,
1�’v02Nd(v)(1� q(v0)) for multiple agents activation.

Therefore continuing from Eq. (4.9) we have

Â
v2V

q(v)

a

Qd(v)
+

s

b1
1

Qd(v)
T +

p
b2 d T +

s

c1
1

Qd(v)
T + c2 d T

!

= a Â
v2V

q(v)
Qd(v)

+ Q Â
v2V

q(v)
Q

s

b1
1

Qd(v)
T + Q

p
b2 d T + Q Â

v2V

q(v)
Q

s

c1
1

Qd(v)
T + c2 d T

 a Â
v2V

q(v)
Qd(v)

+ Q

s
b1

1
Q Â

v2V

q(v)
Qd(v)

T + Q
p

b2 d T + Q

s
c1

1
Q Â

v2V

q(v)
Qd(v)

T + c2 d T ,

where we recall that Q = 1 for single agent activation.

The analysis of the quantity Âv2V q(v)/Qd(v) differs at this point for the two types of
activations. For single agent activation, using Lemma 2 in Cesa-Bianchi et al. [2019a],
we get

E
⇥
Rcoop

T
⇤
 a ad +

p
b1 ad T +

p
b2 d T +

p
c1 ad T + c2 d T .

In the case of multiple agents activation we use Lemma 14 (setting p(i, v) equal to q(v))
and this leads to the following bound

E
⇥
Rcoop

T
⇤
 a

ad + Q
1� e�1 + Q

s
b1

1� e�1

✓
ad
Q

+ 1
◆

T + Q
p

b2 d T

+ Q

s
c1

1� e�1

✓
ad
Q

+ 1
◆

T + c2 d T .

4.4.1 Cooperative learning with single agent activation
At this point we have all the tools to show how the regret guarantees of the algorithms in
Theorems 7, 8, 9, 10, translate when algorithms are played in a cooperative multi-agent
setting. In this section anyway we treat the case of single agent activation which is

75

the simplest and is available for all the algorithms that we have presented so far. We
postpone to the next section a description of the technical difficulties encountered when
trying to do the same thing in a partial information setting. Going in the same order of
Section 4.3 we have the following corollaries.

Corollary 2. The regret of DIC, when it is run with maximum delay d in a single agent
activation setting and the BASE algorithm is OMD, has regret bound that satisfies

Rcoop
T  2LR

q
2T(ad + 2d) + LRad

q
2d(d + 1).

Proof. Exploiting the result of Theorem 7 we have the following regret

RT  2LR

vuut2
T

Â
t=1

(1 + 2dt) + LR
q

2d(d + 1),

and from Theorem 11 we obtain the following regret for the communication network

Rcoop
T  2LR

q
2T(ad + 2d) + LRad

q
2d(d + 1).

Under some mild conditions OMD and FTRL are the same family of algorithms (see
Orabona [2019]). Therefore, we are interested to give a regret bound for a special
member of these families which is Hedge. The regret of Hedge on a communication
network follows in the corollary below.

Corollary 3. The regret of Hedge, when it is run with maximum delay d in a single agent
activation setting is

Rcoop
T  2

q
log(k)T (ad + d).

Proof. Exploiting the result of Theorem 8, we have the following regret

RT  2

vuutlog(k)

T +

T

Â
t=1

dt

!
.

and from Theorem 11 we obtain the following regret for the communication network

Rcoop
T  2

q
log(k)T (ad + d).

For the case of bandit feedback on the simplex like in Section 4.3.2 we have the following
corollary.

Corollary 4. The regret of FTRL for bandits, when it is run with maximum delay d in a single
agent activation setting is

Rcoop
T  4

p
adkT +

p
8Td log k.

76

Proof. Exploiting the result of Theorem 9 we have the following regret

RT  4
p

kT +

vuut8
T

Â
t=1

dt log k.

and from Theorem 11 we obtain the following regret for the communication network

Rcoop
T  4

p
adkT +

p
8Td log k.

The cooperative regret of the optimal algorithm for learning with semi-bandit feedback
is given in the following corollary.

Corollary 5. The regret of FTRL for semi-bandits on m-sets with the regularizer in Eq. (4.5),
when it is run with maximum delay d in a single agent activation setting is

Rcoop
T  3

p
adTkm + 2

q
2km log (k/m) dT.

Proof. Exploiting the result of Theorem 10 we have the following regret

RT  3
p

Tkm + 2

vuut2kmlog (k/m)

T

Â
t=1

dt

!
.

and from Theorem 11 we obtain the following regret for the communication network

Rcoop
T  3

p
adTkm + 2

q
2km log (k/m) dT.

We note that with the regularizer in (4.6), we obtain the following regret bound instead
(which is not optimal):

Rcoop
T  2

q
2km (1 + log (k/m)) T (ad + d).

4.4.2 Cooperative learning with multiple agents activation
The case of partial information is more complicated to treat for multiple agents activation
than the full-info. This stems from the fact that is less trivial to construct the estimators
for the losses. In fact, given a node v and its neighbourhood Nd(v) let us assume
is possible to take two different nodes v0, v00 2 Nd(v) such that dG(v, v0) 6= dG(v, v00).
Furthermore, assuming v0, v00 2 St they received feedbacks ft(v0) and ft(v00) and both
of these feedbacks contain some, a priori different, information on the loss `t. Since
v0 and v00 have different distances from v the two feedbacks will get to node v with
two different delays and this doesn’t allow for a direct applications of the techniques
proposed in Zimmert and Seldin [2019]. For this reason the corollaries of this section
just refer to the full-information case and are the following two.

77

Corollary 6. The regret of DIC, when it is run with maximum delay d in a multiple agents
activation setting and the BASE algorithm is OMD, has regret bound that satisfies

Rcoop
T  2LRQ

s
2

1� e�1

✓
ad
Q

+ 1
◆

T + 4dT + LR
ad + Q
1� e�1

q
2d(d + 1).

Proof. Exploiting the result of Theorem 7 we have the following regret

RT  2LR

vuut2
T

Â
t=1

(1 + 2dt) + LR
q

2d(d + 1),

and from Theorem 11 we obtain the following regret for the communication network

Rcoop
T  2LRQ

s
2

1� e�1

✓
ad
Q

+ 1
◆

T + 4dT + LR
ad + Q
1� e�1

q
2d(d + 1).

Corollary 7. The regret of Hedge run in a cooperative multiple agents activation setting, with
maximum delay d is

Rcoop
T  2Q

vuutlog (k) T

1

1� e�1

✓
ad
Q

+ 1
◆
+ d

!
.

Proof. Exploiting the result of Theorem 8 we have the following regret

RT  2

vuutlog(k)

T +

T

Â
t=1

dt

!
.

and from Theorem 11 we obtain the following regret for the communication network

Rcoop
T  2Q

vuutlog (k) T

1

1� e�1

✓
ad
Q

+ 1
◆
+ d

!
.

4.5 Cooperative multiple agents activation setting for semi-
bandits

As we anticipated in Section 4.4 the case of partial information is more complicated to
treat for multiple agents activation than the full-info. For this reason we propose here
Algorithm 2 that uses the loss estimator in Eq. (4.10). Its analysis is similar in spirit to
the analysis contained in Cesa-Bianchi et al. [2019b], the main difference here is that we

78

Algorithm 2 baditCoopMsets
Paramters: learning rate h > 0
Initialization: each agent v 2 V sets weights w1(i, v) = 1/k and x1(i, v) = m/k for all
i 2 {1, . . . , k}
For: t = 1, 2, . . .

1. for each active agent v 2 St
(a1) v computes a probability distribution Pt(v) =

�
Pt(a, v)

�
a2A on A such that

xt(i, v) = Â
a2A

ai Pt(a, v), 8i 2 {1, . . . , k}

(a2) v outputs the prediction xt(v) 2 A drawn according to Pt(v)
(b) v receives the feedback ft(v) = (xt,1`t,1, . . . , xt,k`t,k) and sends the message

mt(v) =
⌦
t, v, ft(v)

↵

2. for each agent v 2 V

(a) v receives from its neighbours all past messages mt�s(w) and m0t�s(w) (see
last item) such that w 2 St�s and dG(v, w) = s 2 {1, . . . , d}

(b) v drops the messages that are older than t� d and forwards the remaining
ones

(c1) v performs the update

wt+1(i, v) = xt(i, v) exp
�
�h b̀t(i, v)

�
, 8i 2 {1, . . . , k} (4.10)

where

b̀t(i, v) =

(`t�d(i)
Bd,t�d(i,v)

Bd,t�d(i, v) if t > d

0 otherwise

with
Bd,t�d(i, v) = I

�
9v0 2 Nd(v) \ St�d : xt�d(i, v0) = 1

and
Bd,t�d(i, v) = 1� ’

v02Nd(v)

⇣
1� xt�d(i, v0) q(v0)

⌘

(c2) each agent v 2 V computes xt(v) =
�
xt(1, v), . . . , xt(k, v)

�
as

xt+1(i, v) = m
wt+1(i, v)
Wt+1(v)

, 8i 2 {1, . . . , k} where Wt+1(v) =
k

Â
j=1

wt+1(j, v)

(d1) each agent v 2 St sends to its neighbors the message m0t(v) =
⌦
t, v, it(v)

↵
,

where it(v) =
⌦

xt(v), xt(v)
↵

(d2) if t > 1 each agent v 2 V \ St such that x̄t(v) 6= x̄t�1(v) sends to its neighbors
the message m0t(v) =

⌦
t, v, it(v)

↵
, where it(v) =

⌦
xt(v)

↵

79

extend the analysis therein to the case of semi-bandit feedback on m-sets and stochastic
activation of the agents on the communication network. The following lemma provides
a deterministic bound for a single agent v, its analysis mimics very closely the anlysis
that is done for EXP3 and its proof can be found in Appendix 4.6.6, Lemma 11.

Lemma 11. If agent v 2 V runs the Algorithm 2 with learning rate h > 0, the following
deterministic bound holds for all i 2 {1, . . . , k}:

T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)�
T

Â
t=1

b̀t(i?, v) 
ln k
h

+
h

2

T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)2 .

Next we have a lemma to bound the additive drift of the algorithm in a semibandit
setting and it is the analogous of Lemma 1 in Cesa-Bianchi et al. [2019b] for bandits. We
postpone its proof to Appendix 4.6.6, Lemma 12.

Lemma 12. If agent v 2 V runs baditCoopMsets with learning rate h > 0, the following
deterministic bounds for the drift probabilities hold for all i 2 {1, . . . , k}:

�h
xt(i, v)

m
b̀t(i, v) 

xt+1 (i, v)
m

�
xt (i, v)

m
 h

xt+1(i, v)
m

k

Â
j=1

xt(j, v)
m

b̀t(j, v) .

A lemma to bound the drift in a multiplicative way follows. It is the analogous of
Lemma 2 in Cesa-Bianchi et al. [2019b] for bandits. Its proof is in Appendix 4.6.6,
Lemma 13.

Lemma 13. If agent v 2 V runs baditCoopMsets with learning rate h 2
�
0, m

ke(d+1)
�
, the

following deterministic bound holds for all i 2 {1, . . . , k}:

xt+1(i, v) 
✓

1 +
1
d

◆
xt(i, v) .

Finally, a last lemma is used in Theorem 12 to link the regret for the network, that is
obtained summing over the agents, to the independence number of the orrespondig
graph, which is characheristic of the network topology (see Cesa-Bianchi et al. [2019b]
for a proof).

Lemma 14. Let G = (V , E) be an undirected graph with independence number a1. For
each v 2 V, let N1(v) be the neighborhood of node v (including v itself), and pt(v) =�

p(1, v), . . . , p(k, v)
�

has positive entries. Then, for all i 2 [k],

Â
v2V

p(i, v)
q(i, v)


1

1� e�1

a1 + Â

v2V
p(i, v)

!
where q(i, v) = 1� ’

v02N1(v)

�
1� p(i, v0)

�
.

Theorem 12. If baditCoopMsets (Algorithm 2) is run with h > 0, its regret satisfies

RT  2dQm +
m ln k

h
Q + 4hTQ

✓
k
Q

ad + md
◆

,

80

where Q = Âv2V q(v). Choosing, in particular, h = Q
q
(m ln k)/

�
4TQ

�
(k/Q)ad + md

��
,

yields

RT  2dQm + 2Q

s

mT ln(k)
✓

k
Q

ad + md
◆

.

Proof. The standard analysis of the exponentially-weighted algorithm in Lemma 11
with importance-sampling estimates gives for each agent v and and each i? 2 {1, . . . , k},
the deterministic bound

T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)�
T

Â
t=1

b̀t(i?, v) 
ln k
h

+
h

2

T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)2 . (4.11)

Iterative applications of the first inequality in Lemma 12 gives, for t > d,

xt(i, v)
m

�
xt�d(i, v)

m
� h

k

Â
s=1

xt�s(i, v)
m

b̀t�s(i, v) ,

so that, setting for brevity At(i, v) = Âk
s=1

xt�s(i,v)
m

b̀t�s(i, v) we have

T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v) �
T

Â
t=2d+1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)

�

T

Â
t=2d+1

k

Â
i=1

xt�d(i, v)
m

b̀t(i, v)� h
T

Â
t=2d+1

k

Â
i=1

At(i, v)b̀t(i, v) .

Hence

E

"
T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)

#

� E

"
T

Â
t=2d+1

k

Â
i=1

xt�d(i, v)
m

b̀t(i, v)

#
� hE

"
T

Â
t=2d+1

k

Â
i=1

At(i, v)b̀t(i, v)

#

= E

"
T

Â
t=2d+1

k

Â
i=1

xt�d(i, v)
m

Et�d

h
b̀t(i, v)

i#
� hE

"
T

Â
t=2d+1

k

Â
i=1

At(i, v)Et�d

h
b̀t(i, v)

i#

= E

"
T

Â
t=2d+1

k

Â
i=1

xt�d(i, v)
m

`t�d(i, v)

#
� hE

"
T

Â
t=2d+1

k

Â
i=1

At(i, v)`t�d(i, v)

#

� E

"
T

Â
t=1

k

Â
i=1

xt(i, v)
m

`t(i)

#
� 2d� hTd

where the last step follows by

E

"
k

Â
i=1

At(i, v)`t�d(i)

#
 E

"
k

Â
i=1

At(i, v)

#
= E

"
k

Â
i=1

k

Â
s=1

xt�s(i, v)
m

b̀t�s(i, v)

#

= E

"
k

Â
i=1

k

Â
s=1

xt�s(i, v)
m

`t�s�d(i)

#
 E

"
k

Â
i=1

k

Â
s=1

xt�s(i, v)
m

#
= d .

81

Similarly, for the second sum in (4.11), we have

E

"
T

Â
t=d+1

b̀t (i?, v)

#
=

T

Â
t=d+1

`t�d(i?) 
T

Â
t=1

`t(i?).

Finally for the third sum in (4.11), an iterative application of Lemma 13 and the inequal-
ity

�
1 + 1

d
�k
 e. yields, for t > d,

xt(i, v)
m



✓
1 +

1
d

◆k xt�d(i, v)
m

 e
xt�d(i, v)

m
,

so that we can finally write

E

"
T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)2

#
=

1
m

E

"
T

Â
t=d+1

k

Â
i=1

Et�d

h
xt(i, v)b̀t(i, v)2

i#


1
m

E

"
T

Â
t=d+1

k

Â
i=1

xt(i, v)
Bd,t�d(i, v)

#


e
m

E

"
T

Â
t=d+1

k

Â
i=1

xt�d(i, v)
Bd,t�d(i, v)

#
.

Therefore, putting everything together and multiplying by m, we have, for any i? 2
{1, . . . , k},

E

"
T

Â
t=1

k

Â
i=1

`t(i) xt(i, v)

#
�m

T

Â
t=1

`t(i?)  2dm+ hdmT+
m ln k

h
+

he
2

E

"
T

Â
t=d+1

k

Â
i=1

xt�d(i, v)
Bd,t�d(i, v)

#
.

(4.12)
We will use this estimate to upper bound the regret. Let

a? 2 argmin
a2A

T

Â
t=1

Â
v2V

k

Â
j=1

`t(j) a(j) I{v 2 St}

i? 2 argmin
j2{1,...,k}

T

Â
t=1

Â
v2V

m `t(j) q(v)

82

Then

RT = E

"
T

Â
t=1

Â
v2V

k

Â
i=1

`t(i) xt(i, v) I{v 2 St}�min
a2A

T

Â
t=1

Â
v2V

k

Â
j=1

`t(j) a(j) I{v 2 St}

#

= E

"
T

Â
t=1

Â
v2V

k

Â
i=1

`t(i)Et
⇥
xt(i, v) I{v 2 St}

⇤
#
�E

"
T

Â
t=1

Â
v2V

k

Â
j=1

`t(j) a?(j) I{v 2 St}

#

= E

"
T

Â
t=1

Â
v2V

k

Â
i=1

`t(i)Et
⇥
xt(i, v)

⇤
Et
⇥
I{v 2 St}

⇤
#
�

T

Â
t=1

Â
v2V

k

Â
j=1

`t(j) a?(j)E
⇥
I{v 2 St}

⇤

= E

"
T

Â
t=1

Â
v2V

k

Â
i=1

`t(i) xt(i, v) q(v)

#
�

T

Â
t=1

Â
v2V

k

Â
j=1

`t(j) a?(j)

!
q(v)

 E

"
T

Â
t=1

Â
v2V

k

Â
i=1

`t(i) xt(i, v) q(v)

#
�

T

Â
t=1

Â
v2V

�
m `t(i?)

�
q(v)

= Â
v2V

E

"
T

Â
t=1

k

Â
i=1

`t(i) xt(i, v)

#
�m

T

Â
t=1

`t(i?)

!
q(v)

(4.12)
 Â

v2V

2dm + hdmT +

m ln k
h

+
he
2

E

"
T

Â
t=d+1

k

Â
i=1

xt�d(i, v)
Bd,t�d(i, v)

#!
q(v)

= 2dmQ + hdmTQ +
m ln k

h
Q +

he
2

E

"
T

Â
t=d+1

k

Â
i=1

Â
v2V

xt�d(i, v) q(v)
Bd,t�d(i, v)

#

For the last term, applying Lemma 14 to the d-th power of the graph G, we get the
following upper bound,

E

"
T

Â
t=d+1

k

Â
i=1

Â
v2V

xt�d(i, v)q(v)
qd,t�d(i, v)

#


1
(1� e�1)

E

"
T

Â
t=d+1

k

Â
i=1

ad + Â

v2V
xt�d(i, v)q(v)

!#


1

(1� e�1)
T (kad + mQ)

=
1

(1� e�1)
TQ

✓
k
Q

ad + m
◆

.

Putting all together

RT  2dmQ + hdmTQ +
m ln k

h
Q +

h

2
eTQ

(1� e�1)

✓
k
Q

ad + m
◆

.

4.6 Appendix
We recall some notation that we will use extensively in the analysis of OMD. We
denote the topological interior of X 0 by int(X 0) and define the Bregman divergence
BF : X 0 ⇥ int(X 0)! R with respect to a differentiable function F : int(X 0)! R as

BF(x, y) = F(x)� F(y)� hrF(y), x� yi 8(x, y) 2 X
0
⇥ int(X 0) (4.13)

83

We recall that for all z 2 Rk, the dual norm of z (or, equivalently, of the linear functional
hz, ·i) is given by

kzk
⇤
= max

�
hz, xi : x 2 Rk, kxk  1

(4.14)

We also recall that a differentiable function f is called s-strongly convex with respect to
a norm k·k, if

f (x) � f (y) +
⌦
r f (y), x� y

↵
+

s

2
kx� yk2

for all x, y and for some s > 0. Note that the previous expression is equivalent to

BF(x, y) �
s

2
kx� yk2 (4.15)

by definition of Bregman divergence.

Finally, let F be a convex function and X = dom(F) and C = int(X). Then F is Legendre
if

1. C is nonempty;

2. F is differentiable and strictly convex on C

3. limn!• krF (xn)k2 = • for any sequence (xn)n with xn 2 C for all n and
limn!• xn = x and some x 2 ∂C

4.6.1 Analysis of Online Mirror Descent with delays
Let us introduce the delayed environment following the work of Joulani et al. [2016]. For
all s, we denote by r(s) the time step in which the s-th feedback pair, that BASE receives
from SOLID (line 8 of Algorithm 4), was generated. Next, for all s, we denote by ets the
number of feedbacks that BASE receives between the time r(s) in which SOLID makes
the prediction xr(s) (i.e., when the learner incurs loss `r(s)) and that in which `r(s) is
received by BASE (i.e., when the learner receives the loss `r(s) at round r(s) + dr(s)). For
all s, we set ès = `r(s). In words, è1, è2, . . . is the sequence of losses in the order received
by BASE. In the same spirit, for all s we denote the prediction made by BASE after
receiving ès by exs+1. Note that exs�ets = xr(s). Furthermore, without loss of generality we
will assume that for any 1  t  T, t + dt  T, i.e., all feedbacks are received by the
end of round T. This does not restrict generality because the feedbacks that arrive in
round T are not used to make any predictions and hence do not influence the regret
of SOLID. Note that under this assumption ÂT

s=1 t̃s = ÂT
t=1 dt (both count over time

the total number of outstanding feedbacks), and (r(s))1sT is a permutation of the
integers {1, . . . , T}.

We recall here an important identity that was proven in Joulani et al. [2016].

Theorem 13. Let BASE be any deterministic algorithm for the non-delyed setting. For every
x 2 X and all time horizons T, the regret of SOLID with input BASE satisfies

RT(x) = eRT(x) +
T

Â
s=1

eDs,ets (4.16)

84

where
eRT(x) =

T

Â
s=1

ès(exs)�
T

Â
s=1

ès(x)

is the regret of BASE relative to x for the sequence of losses è1, . . . , èT and

eDs,ets =
ès(exs�ets)�

ès(exs) = `r(s)
�
xr(s)

�
� ès(exs)

is the prediction drift of BASE while feedback ès is outstanding.

In the following we will use Online Mirror Descent (OMD) as BASE and we study the
regret of OMD in a delayed environment bounding separately the two contributions
coming from the non-delayed regret of BASE and its prediction drift. Let us start with
the following lemma that bounds the stability for OMD.

Lemma 15. If OMD is run with inputs X , F, (ht)t2N, x1 and F is 1-strongly convex with
respect to a norm k·k, then, for all t = 1, 2, . . .

kxt � xt+1k  ht kgtk⇤

Proof. Fix any t. Without loss of generality, assume that kxt � xt+1k > 0. Recall that
by definition of subgradient, a point x? is the minimum of a convex function f if and
only if

⌦
r f (x?), x� x?

↵
� 0 for all x, wherer f (x?) is any subgradient of f at x?. Since

for all t, xt+1 = minx2X
�

ft(x)

, where ft(x) = hgt, xi+ 1
ht
BF(x, xt) is convex, we have

that

ht
⌦
r ft(xt+1), xt � xt+1

↵
=
⌦
htgt +rF(xt+1)�rF(xt), xt � xt+1

↵
� 0

or, equivalently,
⌦
htgt, xt � xt+1

↵
�
⌦
rF(xt)�rF(xt+1), xt � xt+1

↵
(4.17)

By the 1-strong convexity of F, we get

kxt � xt+1k
2 =

1
2
kxt � xt+1k

2 +
1
2
kxt+1 � xtk

2

 BF(xt, xt+1) + BF(xt+1, xt) =
⌦
rF(xt)�rF(xt+1), xt � xt+1

↵

Further upper bounding with Eq. (4.17) and by definition of dual norm, we have

kxt � xt+1k
2

⌦
htgt, xt � xt+1

↵
 ht kgtk⇤ kxt � xt+1k .

The result follows by dividing both the left and the right hand side by kxt � xt+1k.

The following known result states an upper bound for the regret of OMD (run in a
non-delayed setting).

Theorem 14. The regret of OMD (Algorithm 5) for the sequence of losses è1, . . . , èT with
{h̃s}s=1,...,T as the set of learning rates, u 2 X , F a 1-strongly convex regularizer w.r.t. norm
k·k is:

eRBASE
T (u) 

max1sT BF (u, x̃s)
h̃T

+
1
2

T

Â
s=1

h̃s kg̃sk
2
⇤

.

85

If we assume that max1sT BF (u, x̃s)  2R2 for a positive constant R > 0, then the regret is

eRBASE
T (u) 

2R2

h̃T
+

1
2

T

Â
s=1

h̃s kg̃sk
2
⇤

.

From Lemma 15 the stability of OMD is bounded by
��x̃j � x̃j+1

��  h̃j
��g̃j

��
⇤
, and the

drift term for linear losses is

D̃s,t̃s = ˜̀s (x̃s�t̃s)� ˜̀s (x̃s) =
s�1

Â
j=s�ets

˜̀s
�
x̃j
�
� ˜̀s

�
x̃j+1

�



s�1

Â
j=s�ets

⌦
r ˜̀s

�
x̃j
�

, x̃j � x̃j+1
↵



s�1

Â
j=s�t̃s

��r ˜̀s
�
x̃j
���
⇤

��x̃j � x̃j+1
��

and now if losses are linear, from ˜̀s
�
x̃j
�
=
⌦ ˜̀s, x̃j

↵
we get r ˜̀s

�
x̃j
�
= ˜̀s, and the drift

term becomes

D̃s,t̃s 

s�1

Â
j=s�t̃s

�� ˜̀s
��
⇤

��x̃j � x̃j+1
�� 

s�1

Â
j=s�t̃s

h̃j
�� ˜̀s

��
⇤

�� ˜̀ j
��
⇤

.

We need now a technical lemma to prove a regret bound for OMD in the delayed
feedback environment.

Lemma 16. For all j, s 2 {1, . . . , T}, let

bG f wd
j = 1 + 2

T

Â
s=j+1

I {s� t̃s  j} and bGbck
s = 1 + 2t̃s ,

with the understanding that bG f wd
T = 1. For all t 2 {1, . . . , T}, let bG f wd

1:t = Ât
j=1

bG f wd
s ,

bGbck
1:t = Ât

s=1
bGbck

s and d ⌘ maxs=1,...,T {ds}. Then, for all t 2 {1, . . . , T},

bGbck
1:t 

bG f wd
1:t 

bGbck
1:t + d(2d� 1)

and bGbck
1:T = bG f wd

1:T .

86

Proof. From the definitions, for all t 2 {1, . . . , T},

bGbck
1:t =

t

Â
s=1

bGbck
s =

t

Â
s=1

(1 + 2t̃s) =
t

Â
s=1

1 + 2
t

Â
s=1

s�1

Â
j=s�t̃s

1



t

Â
j=1

1 + 2
t

Â
j=1

t

Â
s=j+1

I {s� t̃s  j}

=
t

Â
j=1

1 + 2
t

Â
j=1

T

Â
s=j+1

I {s� t̃s  j}

� 2
t

Â
j=1

T

Â
s=t+1

I {s� t̃s  j}

=
t

Â
j=1

bG f wd
j � 2

t

Â
j=1

T

Â
s=t+1

I {s� t̃s  j}

 bG f wd
1:t ,

furthermore for t = T we have �2 Ât
j=1 ÂT

s=t+1 I {s� t̃s  j} = 0 and therefore we

have bGbck
1:T = bG f wd

1:T . We want to lower bound the negative term now to conclude the
proof. Let us define t⇤ = maxs=1,...,T {t̃s}. We notice that for s > t and j  s� t⇤ the
indicator function I {s� t̃s  j} is equal to zero. Also note that I {s� t̃s  j} = 0 for
s > j + t⇤. Hence

t

Â
j=1

T

Â
s=t+1

I {s� t̃s  j} =
t

Â
j=t�t⇤+1

j+t⇤

Â
s=t+1

I {s� t̃s  j}



t

Â
j=t�t⇤+1

(j + t⇤ � t)

=
t⇤

Â
i=1

i =
1
2

t⇤(t⇤ + 1).

If the maximum delay is d = maxs=1,...,T {ds}, from the definition of t̃s we have that
t⇤  2d� 1 . We conclude that

bG f wd
1:t 

bGbck
1:t + t⇤(t⇤ + 1)  bGbck

1:t + d(2d� 1) .

Lemma 17 (see McMahan and Streeter [2014], Lemma 9). For any sequence of real numbers
x1, x2, . . . , xn such that x1:t = Ât

s=1 xs > 0 for all t = 1, 2, . . . , n, we have

n

Â
t=1

xt
p

x1:t
 2
p

x1:n.

We have the following theorem for the regret of OMD in the delayed environment.

87

Theorem 7. Suppose losses are linear and we run SOLID in a delayed-environment. Let
h̃j denote the learning rates that BASE uses in its simulated non-delayed run inside SOLID

environment. If a =
p

2 R
L and h̃j = a/

q
bGbck

1:j + d(2d� 1) then the regret of SOLID with
OMD can be bounded as

RT  2LR

vuut2
T

Â
t=1

(1 + 2dt) + LR
q

2d(2d� 1).

Proof. The total regret is bounded in the following way, where from L-Lipschitzness of
the losses we have

�� ˜̀ j
��
⇤
 L for each j = 1, . . . , T:

RT 
2R2

h̃T
+

1
2

T

Â
s=1

h̃s
�� ˜̀s

��2
⇤
+

T

Â
s=1

s�1

Â
j=s�t̃s

h̃j
�� ˜̀s

��
⇤

�� ˜̀ j
��
⇤


2R2

h̃T
+

L2

2

T

Â
s=1

h̃s + 2
T

Â
s=1

s�1

Â
j=s�t̃s

h̃j

!

=
2R2

h̃T
+

L2

2

T

Â
j=1

h̃j + 2
T

Â
j=1

h̃j

T

Â
s=j+1

I {s� t̃s  j}

!

=
2R2

h̃T
+

L2

2

T

Â
j=1

h̃j

1 + 2

T

Â
s=j+1

I {s� t̃s  j}

!!

=
2R2

h̃T
+

L2

2

T

Â
j=1

h̃j bG
f wd
j

!
.

Let us define

h̃j =
aq

bGbck
1:j + d(2d� 1)

=
aq

Âj
i=1 (1 + 2t̃i) + d(2d� 1)

(4.18)

Then

2R2

h̃T
= 2R2

q
ÂT

s=1 (1 + 2t̃s) + d(2d� 1)
a

 2R2

q
ÂT

s=1 (1 + 2t̃s) +
p

d(2d� 1)
a

= 2R2

q
ÂT

t=1 (1 + 2dt) +
p

d(2d� 1)
a

,

where the last equality follows thanks to the identity ÂT
s=1 t̃s = ÂT

t=1 dt and we conclude
that

T

Â
j=1

h̃j bG
f wd
j = a

T

Â
j=1

bG f wd
jq

bGbck
1:j + d(2d� 1)

 a
T

Â
j=1

bG f wd
jq
bG f wd

1:j

 2a
q

bG f wd
1:T = 2a

q
bGbck

1:T = 2a

vuut
T

Â
t=1

(1 + 2dt),

88

where in the second inequality we use Lemma 17. Choosing a =
p

2 R
L the upper bound

on the regret becomes

RT  2LR

vuut2
T

Â
t=1

(1 + 2dt) + LR
q

2d(2d� 1).

4.6.2 Analysis of Hedge with delays
In order to simplify the reasoning of Zimmert and Seldin [2019] to adapt it to the
study of Hedge with delays and in a second moment to its cooperative version on
the communication network we remind the following definitions taken exactly like in
Zimmert and Seldin [2019]. For a convex function F we use F⇤ to denote its convex
conjugate and F⇤ the constrained convex conjugate. They are defined as

F⇤(y) = max
x2Rk
hx, yi � F(x) ,

F⇤(y) = max
x2X
hx, yi � F(x) ,

where here in Appendix 4.6.2 we consider the case of X = Dk�1 and the negative
entropy regularizer

Ft(x)| {z }
=Âk

i=1 ft(xi)

= h�1
t

k

Â
i=1

xi log(xi)

| {z }
Ft(x)=Âk

i=1 ft(xi)

. (4.19)

Standard properties of FTRL analysis

We introduce properties of FTRL that will be useful in the following.

Claim 15. f 00t (x) : R+ ! R+ are monotonically decreasing functions and f ⇤t
0 : R ! R+ are

convex and monotonically increasing.

Proof. By definition f 00t (x) = h�1
t x�1, which concludes the first statement. Since ft are

Legendre functions, we have f ⇤t
0 (f 0t (x)) = x and, taking derivatives on both sides and

applying the chain rule, we get the identity f ⇤t
00 (f 0t (x)) f 00t (x) = 1. We set y = f 0t (x),

with inverse f ⇤t
0(y) = x. Therefore, substituting in the previous identity and inverting

thanks to monotonicity, we obtain

f ⇤00t (y) = f 00t (f ⇤t
0(y))�1 > 0 . (4.20)

Therefore the function is monotonically increasing. Since both f 00t (x)�1, as well as f ⇤t
0(y)

are increasing, the composition is as well and f ⇤t
000
� 0 and this implies convexity of

f ⇤t
0.

Claim 16. For any convex F, L 2 Rk and c 2 R:

F⇤(L + c~1) = F⇤(L) + c .

89

Proof. By definition F⇤(L + c~1) = maxx2Dk�1

D
x, L + c~1

E
� F(x) = maxx2Dk�1 hx, Li �

F(x) + c = F⇤(L) + c.

Claim 17. For any xt there exists l 2 R such that:

xt = rF⇤t (�bLobs
t) = rF⇤t (�bLobs

t + l~1) = rF⇤t (rFt(xt)) .

Proof. By the KKT conditions, there exists l 2 R such that

xt = argmax
x2Dk�1

nD
x,�bLobs

t

E
+ Ft(x)

o
= argmax

x2dom(Ft)

(D
x,�bLobs

t

E
+ Ft(x) + l

k

Â
i=1

xi � 1

!)

satisfies rFt(xt) = �bLobs
t + l~1. The rest follows from the standard result of rF =

(rF⇤)�1 for Legendre F.

Claim 18. For any Legrendre function F and L 2 Rk it holds that

F⇤(L)  F⇤(L) ,

with equality iff there exists x 2 Dk�1 such that L = rF(x).

Proof. The first statement follows from the definition since for any A ⇢ B: maxx2A f (x) 
maxx2B f (x). The second part follows because L = rF(x) for some x 2 Dk�1 holds if
and only ifrF⇤(L) = x which is equivalent to argmaxx02Rk hx0, Li � F(x0) = rF⇤(L) =
x 2 Dk�1. Therefore, if the unrestricted maximum x is on the simplex then the maximum
restricted to the simplex will be also at the same point x. This statement is equivalent to
F⇤(L) = F⇤(L) from the properties of Legendre functions.

Claim 19. For any x 2 Dk�1, L 2 [0, •)k and i 2 [k]:

rF⇤t (rFt(x)� L)i � rF⇤t (rFt(x)� L)i .

Proof. As in the proof of Claim 17, there exists l 2 R : rF⇤t (rFt(x)� L) = rF⇤t (rFt(x)�
L + l~1). The statement is equivalent to l being non-negative, since f ⇤t

0 are monotoni-
cally increasing. If l < 0, then observing that rF⇤t (y) 2 Dk�1 for all y we have

1 =
k

Â
i=1

⇣
rF⇤t (rFt(x)� L)

⌘

i
=

k

Â
i=1

(rF⇤t (rFt(x)� L + l~1))i

=
k

Â
i=1

f ⇤t
0(f 0t (xi)� Li + l) <

k

Â
i=1

f ⇤t
0(f 0t (xi)) =

k

Â
i=1

xi = 1 ,

which is a contradiction and completes the proof.

Claim 20. For any Legendre function f with monotonically decreasing second derivative,
x 2 dom(f) and ` 2 [0, •) such that f 0(x)� ` 2 dom(f ⇤):

B f ⇤(f 0(x)� `, f 0(x)) 
`2

2 f 00(x)
.

90

Proof. Based on Taylor’s theorem, there exists an x̃ 2
⇥

f ⇤0 (f 0(x)� `) , x
⇤
, such that

B f ⇤
�

f 0(x)� `, f 0(x)
�
=

`2

2 f 00(x̃)
.

x̃ is smaller than x, since f ⇤0 is monotonically increasing. Finally using the fact that the
second derivative is decreasing allows us to bound f 00 (x̃)�1

 f 00 (x)�1.

Proof of Theorem 8

Let us define the cumulative loss vector Lt as follows, for every arm i we have

Lt,i =
t�1

Â
s=1

`s,i.

The arm with the best cumulative loss in hindsight is i⇤ = argmini2[k] ÂT
t=1 `t,i.

Lemma 18. For any t it holds

F⇤t (�Lobs
t � `t)� F⇤t (�Lobs

t) + hxt, `ti 
ht
2

.

Proof. We have

F⇤t (�Lobs
t � `t)� F⇤t (�Lobs

t) + hxt, `ti

= F⇤t (rFt(xt)� `t + l~1)� F⇤t (rFt(xt) + l~1) + hxt, `ti

= F⇤t (rFt(xt)� `t)� F⇤t (rFt(xt)) + hxt, `ti

 F⇤t (rFt(xt)� `t)� F⇤t (rFt(xt)) + hxt, `ti

=
k

Â
i=1

B f ⇤t (f 0t (xt,i)� `t,i, f 0t (xt,i))


1
2

k

Â
i=1

`2
t,i f 00t (xt,i)

�1

=
ht
2

k

Â
i=1

`2
t,i xt,i


ht
2

where the first equality follows using Claim 17, the second equality is from Claim 16,
the first inequality is from both parts of Claim 18, the second inequality follows from
Claim 20 and finally the last equality is from the expression of f 00t (x) = 1/x that holds
for the negative etropy regularizer.

Lemma 19. For any non-increasing learning rate ht, it holds that

T

Â
t=1

F⇤t (�Lt)� F⇤t (�Lt+1)� hei⇤ , `ti

!


log (k)
hT

.

91

Proof. Let x̃t = argmaxx2Dk�1 {hx,�Lti � Ft(x)}, then

F⇤t (�Lt) = hx̃t,�Lti � Ft(x̃t).

Furthermore, since F⇤ (�Lt) = maxx2Dk�1 {hx,�Lti � F(x)}, we have

� F⇤t�1(�Lt)  hx̃t, Lti+ Ft�1(x̃t) (4.21)

� F⇤T (�LT+1)  hei⇤ , LT+1i+ FT(ei⇤) =
T

Â
t=1
hei⇤ , `ti . (4.22)

Plugging these inequalities into the LHS leads to

T

Â
t=1

F⇤t (�Lt)� F⇤t (�Lt+1)� hei⇤ , `ti

!

=
T

Â
t=1

F⇤t (�Lt)�
T

Â
t=2

F⇤t�1(�Lt)� F⇤T(�LT+1)�
T

Â
t=1
hei⇤ , `ti



T

Â
t=1

F⇤t (�Lt)�
T

Â
t=2

F⇤t�1(�Lt)



T

Â
t=1
hx̃t,�Lti �

T

Â
t=1

Ft(x̃t) +
T

Â
t=2
hx̃t, Lti+

T

Â
t=2

Ft�1(x̃t)

= �F1(x̃1) +
T

Â
t=2

Ft�1(x̃t)� Ft(x̃t)



T

Â
t=1

Ft�1(x̃t)� Ft(x̃t)

=
T

Â
t=1

✓
1
ht
�

1
ht�1

◆
(�F(x̃t))



T

Â
t=1

✓
1
ht
�

1
ht�1

◆
max

x2Dk�1
(�F(x))

=
1

hT
max

x2Dk�1
{�F(x)} ,

where in the first inequality we used Eq. (4.22), in the second inequality we used Eq.
(4.21), and with a slight abuse of notation we defined h�1

0 = 0 in the third inequality.
We are left with computing the maximum, and using Jensen’s inequality

max
x2Dk�1

{�F(x)} = max
x2Dk�1

(
k

Â
i=1

xi log
✓

1
xi

◆)

 log (k) .

Lemma 20. For any t it holds that

F⇤t (�Lobs
t)� F⇤t (�Lobs

t � `t)� F⇤t (�Lt) + F⇤t (�Lt+1)  htdt.

92

Proof. We define Lmiss
t = Lt � Lobs

t . Then we have

�F⇤t (�Lt) + F⇤t (�Lt+1) = �
Z 1

0

D
`t,rF⇤t (�Lt � x`t)

E
dx

= �
Z 1

0

D
`t,rF⇤t (�Lobs

t � Lmiss
t � x`t)

E
dx

where the first equality uses the fundamental theorem of calculus. In the same way we
have

F⇤t (�Lobs
t)� F⇤t (�Lobs

t � `t) =
Z 1

0

D
`t,rF⇤t (�Lobs

t � x`t)
E

dx

Now, putting the previous equations together and defining z̃(x) = rF⇤t (�Lobs
t � x`t)

we have the following

F⇤t (�Lobs
t)� F⇤t (�Lobs

t � `t)� F⇤t (�Lt) + F⇤t (�Lt+1)

=
Z 1

0

D
`t,rF⇤t (�Lobs

t � x`t)
E

dx�
Z 1

0

D
`t,rF⇤t (�Lobs

t � Lmiss
t � x`t)

E
dx

=
Z 1

0

D
`t, z̃(x)�rF⇤t

⇣
rFt(z̃(x))� Lmiss

t

⌘E
dx



Z 1

0

D
`t, z̃(x)�rF⇤t

⇣
rFt(z̃(x))� Lmiss

t

⌘E
dx

=
k

Â
i=1

Z 1

0
`t,i

⇣
z̃(x)�rF⇤t

⇣
rFt(z̃(x))� Lmiss

t

⌘⌘

i
dx

=
k

Â
i=1

Z 1

0
`t,i

⇣
z̃i(x)� f ⇤t

0
⇣

f 0t (z̃i(x))� Lmiss
t,i

⌘⌘
dx



k

Â
i=1

Z 1

0
`t,i f ⇤t

00
�

f 0t (z̃i(x))
�

Lmiss
t,i dx

=
k

Â
i=1

Z 1

0
`t,i

⇣
f 00t (z̃i(x))

⌘�1
Lmiss

t,i dx

= ht

Z 1

0

k

Â
i=1

`t,i Lmiss
t,i z̃i(x)

!
dx ,

where the second equality uses the definition of z̃(x) and Claim 17, the first inequality ap-
plies Claim 19, the second inequality follows because f ⇤t

0 is convex, so� f ⇤t
0
�

ft
0(z̃i)� `

�


�z̃i + f ⇤t
00
�

ft
0(z̃i)

�
`, the second to last equlity follows by Eq. (4.20), and the last follows

93

because ft
00(x) = 1

x . From the previous series of inequalities we have

F⇤t (�Lobs
t)� F⇤t (�Lobs

t � `t)� F⇤t (�Lt) + F⇤t (�Lt+1)

 ht

Z 1

0

k

Â
i=1

`t,iLmiss
t,i z̃i(x)

!
dx

= ht

Z 1

0

k

Â
i=1

`t,i

✓
Â

s:s<t
I {s + ds � t} `s,i

◆
z̃i(x)

!
dx

 ht

Z 1

0

k

Â
i=1

✓
Â

s:s<t
I {s + ds � t}

◆
z̃i(x)

!
dx

= ht

Z 1

0
Â

s:s<t
I {s + ds � t}

k

Â
i=1

z̃i(x) dx

= ht Â
s:s<t

I {s + ds � t}

= htdt ,

where the first equality follows by expanding the definition of Lmiss
t,i = Âs:s<t I {s + ds � t} `s,i,

the second inequality bounds losses with one, finally the second to last equality follows
by the fact that by definition z̃(x) 2 Dk�1.

Theorem 8. Algorithm 6 with decreasing learning rates (ht)t=1,...,n satisfies

RT 
log(k)

hT
+

1
2

T

Â
t=1

ht +
T

Â
t=1

htdt .

Furthermore if one chooses ht =
r

log k
Ât

s=1 1+2ds
then

RT  2

vuutlog(k)

T +

T

Â
t=1

dt

!
.

Proof. We have the following decomposition of RT

RT =
T

Â
t=1
hxt � ei⇤ , `ti =

T

Â
t=1
hxt, `ti � hei⇤ , `ti

=
T

Â
t=1

⇣
F⇤t (�Lt)� F⇤t (�Lt+1)� hei⇤ , `ti

⌘

+
T

Â
t=1

⇣
F⇤t (�Lobs

t � `t)� F⇤t (�Lobs
t) + hxt, `ti

⌘

+
T

Â
t=1

⇣
F⇤t (�Lobs

t)� F⇤t (�Lobs
t � `t)� F⇤t (�Lt) + F⇤t (�Lt+1)

⌘


log(k)

hT
+

1
2

T

Â
t=1

ht +
T

Â
t=1

htdt .

94

4.6.3 Analysis of partial information settings
Standard properties of FTRL analysis for semi-bandits

In this section we present an adaptation of the reasoning of Zimmert and Seldin [2019]
to the study of semibandits with delays.

We use the following hybrid regularizer Ft = Ft,1 + Ft,2, where each of the two parts of
the regularizer has its own learning rate.

Ft(x)| {z }
=Âk

i=1 ft(xi)

= �

k

Â
i=1

2
p

tx1/2
i

| {z }
Ft,1(x)=Âk

i=1 ft,1(xi)

+ h�1
t

k

Â
i=1

xi log(xi)

| {z }
Ft,2(x)=Âk

i=1 ft,2(xi)

. (4.23)

The first part of the regularizer Ft,1(x) =
p

tF1(x) is the 1
2-Tsallis entropy F1(x) =

�2 Âk
i=1
p

xi with learning rate 1p
t
, which is non-adaptive to the problem. The second

part of the regularizer Ft,2(x) = h�1
t F2(x) is the negative entropy F2(x) = Âk

i=1 xi log(xi)
with adaptive learning rate ht. We define this regularizer on the domain co(A) =n

x 2 [0, 1]k : Âk
i=1 xi = m

o
which corresponds to the probability simplex just in the

case of m = 1.

Claim 21. f 00t (x) : R+ ! R+ are monotonically decreasing functions and f ⇤t
0 : R ! R+ are

convex and monotonically increasing. An analogous result holds for the function ft,2.

Proof. By definition f 00t (x) =
p

tx�3/2 + h�1
t x�1, which concludes the first statement.

Since ft are Legendre functions, we have f ⇤00t (y) = f 00t (f ⇤t
0(y))�1 > 0. Therefore the

function is monotonically increasing. Since both f 00t (x)�1, as well as f ⇤t
0(y) are increasing,

the composition is as well and f ⇤t
000 > 0. The result for ft,2 follows immediately from its

definition in the same way as for ft.

Claim 22. For any convex F, L 2 Rk and c 2 R:

F⇤(L + c~1) = F⇤(L) + mc .

Proof. By definition F⇤(L+ c~1) = maxx2co(A)

D
x, L + c~1

E
� F(x) = maxx2co(A) hx, Li �

F(x) + mc = F⇤(L) + mc.

Claim 23. For any xt there exists l 2 R such that:

xt = rF⇤t (�bLobs
t) = rF⇤t (�bLobs

t + l~1) = rF⇤t (rFt(xt)) .

An analogous result also holds if we use as a regularizer Ft,2 in place of the hybrid Ft.

Proof. By the KKT conditions, there exists l 2 R such that xt = argmaxx2co(A)

D
x,�bLobs

t

E
+

Ft(x) satisfies rFt(xt) = �bLobs
t + l~1. The rest follows from the standard result of

rF = (rF⇤)�1 for Legendre F.

95

Claim 24. For any Legrendre function F and L 2 Rk it holds that

F⇤(L)  F⇤(L) ,

with equality iff there exists x 2 co(A) such that L = rF(x).

Proof. The first statement follows from the definition since for any A ⇢ B: maxx2A f (x) 
maxx2B f (x). The second part follows because equality means that argmaxx hx, Li �
F(x) = rF⇤(L) 2 co(A), which is equivalent to the statement.

Claim 25. For any x 2 co (A), L 2 [0, •)k and i 2 [k]:

rF⇤t (rFt(x)� L)i � rF⇤t (rFt(x)� L)i .

Proof. By Claim 23, there exists l 2 R : rF⇤t (rFt(x)� L) = rF⇤t (rFt(x)� L + l~1).
The statement is equivalent to l being non-negative, since f ⇤t

0 are monotonically in-
creasing. If l < 0, then

m =
k

Â
i=1

⇣
rF⇤t (rFt(x)� L)

⌘

i
=

k

Â
i=1

(rF⇤t (rFt(x)� L + l~1))i

=
k

Â
i=1

f ⇤t
0(f 0t (xi)� Li + l) <

k

Â
i=1

f ⇤t
0(f 0t (xi)) =

k

Â
i=1

xi = m ,

which is a contradiction and completes the proof.

Claim 26. For any Legendre function f with monotonically decreasing second derivative,
x 2 dom(f) and ` 2 R such that f 0(x)� ` 2 dom(f ⇤):

B f ⇤(f 0(x)� `, f 0(x)) 
`2

2 f 00(x)
.

Proof. For any Legendre function f with monotonically decreasing second derivative,
x 2 dom(f) and ` 2 [0, •) such that f 0(x)� ` 2 dom(f ⇤):

B f ⇤(f 0(x)� `, f 0(x)) 
`2

2 f 00(x)
.

Claim 27. For each j 6= i and c > 0 holds

rF⇤ (�L)i � rF⇤
�
�L + cej

�
i

Proof. Let x = rF⇤
�
�L + cej

�
, this definition is equivalent to rF(x)� cej = �L then

rF⇤ (�L)i = rF⇤
�
rF(x)� cej

�
i � rF⇤

�
rF(x)� cej

�
i

= f ⇤0
⇣

f 0(xi)� c
�
ej
�

i

⌘
= f ⇤0

�
f 0(xi)

�
= xi

= rF⇤
�
�L + cej

�
i

96

4.6.4 Proof of sub-optimal bound in Eq. (4.7)
In this section we use the non-optimal negative entropy regularizer which corresponds
to taking just the term Ft,2 in Eq. (4.23). For convenience of notation we call in this
section Ft the term Ft,2 of the previous section.

Like we did before for Lt, let us define bLt as the cumulative estimated loss vector with
components i 2 [k] that are given by

bLt,i =
t�1

Â
s=1

b̀s,i.

Lemma 21. For any t it holds

E
h

F⇤t (�bLobs
t �

b̀t)� F⇤t (�bLobs
t) +

D
xt, b̀t

Ei


k
2

ht .

Proof. We have

F⇤t (�bLobs
t �

b̀t)� F⇤t (�bLobs
t) +

D
xt, b̀t

E

= F⇤t (rFt(xt)� b̀t + l~1)� F⇤t (rFt(xt) + l~1) +
D

xt, b̀t

E

= F⇤t (rFt(xt)� b̀t)� F⇤t (rFt(xt)) +
D

xt, b̀t

E

 F⇤t (rFt(xt)� b̀t)� F⇤t (rFt(xt)) +
D

xt, b̀t

E

=
k

Â
i=1

B f ⇤t (f 0t (xt,i)� b̀t,i, f 0t (xt,i))

=
k

Â
i=1

B f ⇤t (f 0t (xt,i)�
At,i`t,i

xt,i
, f 0t (xt,i))


1
2

k

Â
i=1

At,i
`2

t,i

x2
t,i

f 00t (xt,i)
�1

=
ht
2

k

Â
i=1

At,i
`2

t,i
xt,i

,

where the first equality follows using lemma 23, the second equality follows by Lemma
22, the first inequality is from Lemma 24 and finally the second inequality follows from
Lemma 26. In expectation we get

E
h

F⇤t (�bLobs
t �

b̀t)� F⇤t (�bLobs
t) +

D
xt, b̀t

Ei


ht
2

k

Â
i=1

E [At,i]
`2

t,i
xt,i

=
ht
2

k

Â
i=1

`2
t,i 

k
2

ht.

Lemma 22. For any non-increasing learning rate ht, it holds that
T

Â
t=1

F⇤t (�bLt)� F⇤t (�bLt+1)�

D
a, b̀t

E!


1
hT

✓
m + m log

✓
k
m

◆◆
.

97

Proof. Let x̃t = argmaxx2co(A)

nD
x,�bLt

E
� Ft(x)

o
, then

F⇤t
⇣
�bLt

⌘
=
D

x̃t, bLt

E
� Ft(x̃t).

Furthermore, since F⇤
⇣
�bLt

⌘
= maxx2co(A)

nD
x,�bLt

E
� F(x)

o
, we have

� F⇤t�1(�bLt) 
D

x̃t, bLt

E
+ Ft�1(x̃t)

� F⇤T
⇣
�bLT+1

⌘


D
a, bLT+1

E
+ FT(a) 

T

Â
t=1

D
a, b̀t

E
,

where we observe that FT(a)  0 for all a 2 [0, 1]k. Plugging these inequalities into the
LHS leads to

T

Â
t=1

F⇤t (�bLt)� F⇤t (�bLt+1)�

D
a, b̀t

E!

=
T

Â
t=1

F⇤t (�bLt)�
T

Â
t=2

F⇤t�1(�bLt)� F⇤T(�bLT+1)�
T

Â
t=1

D
a, b̀t

E



T

Â
t=1

F⇤t (�bLt)�
T

Â
t=2

F⇤t�1(�bLt)

=
T

Â
t=1

D
x̃t,�bLt

E
�

T

Â
t=1

Ft(x̃t) +
T

Â
t=2

D
x̃t, bLt

E
+

T

Â
t=2

Ft�1(x̃t)



T

Â
t=1

Ft�1(x̃t)� Ft(x̃t)

=
T

Â
t=1

✓
1
ht
�

1
ht�1

◆
(�F(x̃t))



T

Â
t=1

✓
1
ht
�

1
ht�1

◆
max

x2co(A)
(�F(x))

=
1

hT
max

x2co(A)
{�F(x)} ,

where with a slight abuse of notation we defined h�1
0 = 0. We are left with computing

the maximum:

max
x2co(A)

{�F(x)} = max
x2co(A)

(
k

Â
i=1

xi +
k

Â
i=1

xi log
✓

1
xi

◆)

= max
x2co(A)

(
m + mÂk

i=1 xi
m

log
✓

1
xi

◆)

 m + m log
✓

k
m

◆
.

98

Follows that

T

Â
t=1

F⇤t (�bLt)� F⇤t (�bLt+1)�

D
a, b̀t

E!


1
hT

✓
m + m log

✓
k
m

◆◆
.

Lemma 23. For any t it holds that

F⇤t (�bLobs
t)� F⇤t (�bLobs

t �
b̀t)� F⇤t (�bLt) + F⇤t (�bLt+1)  htkdt.

Proof. We define bLmiss
t = bLt � bLobs

t . Then we have

� F⇤t (�bLt) + F⇤t (�bLt+1)

= �
Z 1

0

D
b̀t,rF⇤t (�bLt � xb̀t)

E
dx

= �
Z 1

0

D
b̀t,rF⇤t (�bLobs

t � bLmiss
t � xb̀t)

E
dx

= �
Z 1

0

k

Â
i=1

At,i`t,i
xt,i

rF⇤t (�bLobs
t � bLmiss

t � xb̀t)i dx

= � Â
i:At,i=1

Z 1

0

`t,i
xt,i
rF⇤t (�bLobs

t � bLmiss
t � xb̀t)i dx

 � Â
i:At,i=1

Z 1

0

`t,i
xt,i
rF⇤t (�bLobs

t � bLmiss
t +

k

Â
j:At,j=0

bLmiss
t,j ej � xb̀t)i dx

= � Â
i:At,i=1

Z 1

0

`t,i
xt,i
rF⇤t (�bLobs

t �
k

Â
j=1

At,jbLmiss
t,j ej � xb̀t)i dx

= �
Z 1

0

*
b̀t,rF⇤t (�bLobs

t �
k

Â
j=1

At,jbLmiss
t,j ej � xb̀t)

+
dx ,

where the first equality uses the fundamental theorem of calculus and the inequality
follows from Claim 27. Now let us define z̃(x) = rF⇤t (�bLobs

t � xb̀t). We have the
following

99

F⇤t (�bLobs
t)� F⇤t (�bLobs

t �
b̀t)� F⇤t (�bLt) + F⇤t (�bLt+1)



Z 1

0

D
b̀t,rF⇤t (�bLobs

t � xb̀t)
E

dx�
Z 1

0

*
b̀t,rF⇤t (�bLobs

t �
k

Â
j=1

At,jbLmiss
t,j ej � xb̀t)

+
dx

=
Z 1

0

*
b̀t, z̃(x)�rF⇤t

rFt(z̃(x))�

k

Â
j=1

At,jbLmiss
t,j ej

!+
dx



Z 1

0

*
b̀t, z̃(x)�rF⇤t

rFt(z̃(x))�

k

Â
j=1

At,jbLmiss
t,j ej

!+
dx

=
k

Â
i=1

Z 1

0
b̀t,i

z̃(x)�rF⇤t

rFt(z̃(x))�

k

Â
j=1

At,jbLmiss
t,j ej

!!

i

dx

=
k

Â
i=1

Z 1

0
b̀t,i

⇣
z̃i(x)� f ⇤t

0
⇣

f 0t (z̃i(x))� bLmiss
t,i

⌘⌘
dx



k

Â
i=1

Z 1

0
b̀t,i f ⇤t

00(f 0t (z̃i(x)))bLmiss
t,i dx

=
k

Â
i=1

Z 1

0
b̀t,i

�
ft
00(z̃i(x))

��1 bLmiss
t,i dx

= ht

Z 1

0

k

Â
i=1

b̀t,ibLmiss
t,i z̃i(x)

!
dx ,

where the first inequality uses the fundamental theorem of calculus together with the
inequality above, the first equality substitutes ez(x) = rF̄⇤t

⇣
�L̂obs

t � x ˆ̀t

⌘
and applies

Claim 23. The second inequality applies Claim 25 and the third uses the fact that f ⇤0(t)
is convex, so � f ⇤0 (f 0 (z̃At)� `)  �z̃At + f ⇤00 (f 0 (z̃At)) . The second to last equality
follows by Eq. (4.20), and the last follows because ft

00(x) = 1
x . Taking the expected

100

value we have

E
h

F⇤t (�bLobs
t)� F⇤t (�bLobs

t �
b̀t)� F⇤t (�bLt) + F⇤t (�bLt+1)

i

 htE

"Z 1

0

k

Â
i=1

b̀t,ibLmiss
t,i z̃i(x)

!
dx

#

 htE

"
k

Â
i=1

b̀t,ibLmiss
t,i

#

= htE

"
k

Â
i=1

bLmiss
t,i Et

h
b̀t,i

i#

= htE

"
k

Â
i=1

bLmiss
t,i `t,i

#

 htE

"
k

Â
i=1

bLmiss
t,i

#

= htE

"
k

Â
i=1

Â
s:s<t

I {s + ds � t} b̀s,i

#

= htE

"
k

Â
i=1

Â
s:s<t

I {s + ds � t}Es

h
b̀s,i

i#

= htE

"
k

Â
i=1

Â
s:s<t

I {s + ds � t} `s,i

#

 htk Â
s:s<t

I {s + ds � t}

 htkdt .

Theorem 28 (Proof of Eq. (4.7)). Algorithm 8 with proper learning rates (ht)t=1,...,n satisfies

RT 
m
hT

✓
1 + log

✓
k
m

◆◆
+

k
2

T

Â
t=1

ht + k
T

Â
t=1

htdt.

Furthermore if one chooses ht =

r
m(1+log(k/m))
2k Ât

s=1(ds+1)
then

RT  2

vuut2km(1 + log (k/m))

T +

T

Â
t=1

dt

!
.

101

Proof. We have the following decomposition of RT

RT = E

"
T

Â
t=1
hxt � a, `ti

#
= E

"
T

Â
t=1

D
xt, b̀t

E
�

D
a, b̀t

E#

= E

"
T

Â
t=1

F⇤t (�bLt)� F⇤t (�bLt+1)�

D
a, b̀t

E!

T

Â
t=1

⇣
F⇤t (�bLobs

t �
b̀t)� F⇤t (�bLobs

t) +
D

xt, b̀t

E⌘

T

Â
t=1

⇣
F⇤t (�bLobs

t)� F⇤t (�bLobs
t �

b̀t)� F⇤t (�bLt) + F⇤t (�bLt+1)
⌘#


m
hT

✓
1 + log

✓
k
m

◆◆
+

k
2

T

Â
t=1

ht + k
T

Â
t=1

htdt.

4.6.5 Proof of Theorem 10
Lemma 24. For any t it holds

T

Â
t=1

E
h

F⇤t (�bLobs
t �

b̀t)� F⇤t (�bLobs
t) +

D
xt, b̀t

Ei


p

Tkm .

102

Proof. We have

F⇤t (�bLobs
t �

b̀t)� F⇤t (�bLobs
t) +

D
xt, b̀t

E

= F⇤t (rFt(xt)� b̀t + l~1)� F⇤t (rFt(xt) + l~1) +
D

xt, b̀t

E

= F⇤t (rFt(xt)� b̀t)� F⇤t (rFt(xt)) +
D

xt, b̀t

E

 F⇤t (rFt(xt)� b̀t)� F⇤t (rFt(xt)) +
D

xt, b̀t

E

=
k

Â
i=1

B f ⇤t (f 0t (xt,i)� b̀t,i, f 0t (xt,i))

=
k

Â
i=1

B f ⇤t (f 0t (xt,i)�
At,i`t,i

xt,i
, f 0t (xt,i))


1
2

k

Â
i=1

At,i
`2

t,i

x2
t,i

f 00t (xt,i)
�1


1
2

k

Â
i=1

At,i
`2

t,i

x2
t,i

f 00t,1(xt,i)
�1

=
k

Â
i=1

At,i
`2

t,i

x2
t,i

x
3
2
t,i
p

t

=
k

Â
i=1

At,i`
2
t,i

x�
1
2

t,i
p

t
,

where the first equality follows using lemma 23, the second equality follows by Lemma
22, the first inequality is from Lemma 24 and finally the second inequality follows from
Lemma 26. In expectation we get

E
h

F⇤t (�bLobs
t �

b̀t)� F⇤t (�bLobs
t) +

D
xt, b̀t

Ei


1
2

k

Â
i=1

E [At,i] `
2
t,i

x�
1
2

t,i
p

t
=

1
2

k

Â
i=1

x
1
2
t,i
p

t
`2

t,i 
1
2

k

Â
i=1

x
1
2
t,i
p

t
.

Summing over t and using Cauchy-Schwarz gives

1
2

T

Â
t=1

k

Â
i=1

x
1
2
t,i
p

t


p

Tkm.

Lemma 25. For any non-increasing learning rate ht, it holds that for every a 2 S

T

Â
t=1

F⇤t (�bLt)� F⇤t (�bLt+1)�

D
a, b̀t

E!
 2
p

Tkm +
m log

⇣
k
m

⌘

hT
.

103

Proof. Let x̃t = argmaxx2co(A)

nD
x,�bLt

E
� Ft(x)

o
, then

F⇤t
⇣
�bLt

⌘
=
D

x̃t, bLt

E
� Ft(x̃t).

Furthermore, since F⇤
⇣
�bLt

⌘
= maxx2co(A)

nD
x,�bLt

E
� F(x)

o
, we have

� F⇤t�1(�bLt) 
D

x̃t, bLt

E
+ Ft�1(x̃t)

� F⇤T
⇣
�bLT+1

⌘


D
a, bLT+1

E
+ FT(a) =

T

Â
t=1

D
a, b̀t

E
.

Plugging these inequalities into the LHS leads to

T

Â
t=1

F⇤t (�bLt)� F⇤t (�bLt+1)�

D
a, b̀t

E!

=
T

Â
t=1

F⇤t (�bLt)�
T

Â
t=2

F⇤t�1(�bLt)� F⇤T(�bLT+1)�
D

a, b̀t

E



T

Â
t=1

F⇤t (�bLt)�
T

Â
t=2

F⇤t�1(�bLt)

=
T

Â
t=1

D
x̃t,�bLt

E
�

T

Â
t=1

Ft(x̃t) +
T

Â
t=2

D
x̃t, bLt

E
+

T

Â
t=2

Ft�1(x̃t)



n

Â
t=1

Ft�1(x̃t)� Ft(x̃t)

=
n

Â
t=1

F1,t�1(x̃t) + F2,t�1(x̃t)� F1,t(x̃t)� F2,t(x̃t)

=
n

Â
t=1

⇣p
t�
p

t� 1
⌘
(�F1(x̃t)) +

n

Â
t=1

✓
1
ht
�

1
ht�1

◆
(�F2(x̃t))

=
n

Â
t=1

⇣p
t�
p

t� 1
⌘

max
x2co(A)

(�F1(x)) +
n

Â
t=1

✓
1
ht
�

1
ht�1

◆
max

x2co(A)
(�F2(x))

=
p

T max
x2co(A)

(�F1(x)) +
1

hT
max

x2co(A)
(�F2(x))

We are left with computing the maximum and using Hölder we get:

max
x2co(A)

{�F1(x)} = max
x2co(A)

(
2

k

Â
i=1

x
1
2
i

)

 2
p

km ,

where the inequality is due to Cauchy-Schwarz; also

max
x2co(A)

{�F2(x)} = max
x2co(A)

(
k

Â
i=1

xi log
✓

1
xi

◆)

 m log
✓

k
m

◆
,

104

where we used Jensen’s inequality. Follows that

T

Â
t=1

F⇤t (�bLt)� F⇤t (�bLt+1)�

D
a, b̀t

E!
 2
p

Tkm +
m log

⇣
k
m

⌘

hT
.

Lemma 26. For any t it holds that

F⇤t (�bLobs
t)� F⇤t (�bLobs

t �
b̀t)� F⇤t (�bLt) + F⇤t (�bLt+1)  htkdt.

Proof. We define bLmiss
t = bLt � bLobs

t . Then we have

� F⇤t (�bLt) + F⇤t (�bLt+1)

= �
Z 1

0

D
b̀t,rF⇤t (�bLt � xb̀t)

E
dx

= �
Z 1

0

D
b̀t,rF⇤t (�bLobs

t � bLmiss
t � xb̀t)

E
dx

= �
Z 1

0

k

Â
i=1

At,i`t,i
xt,i

rF⇤t (�bLobs
t � bLmiss

t � xb̀t)i dx

= � Â
i:At,i=1

Z 1

0

`t,i
xt,i
rF⇤t (�bLobs

t � bLmiss
t � xb̀t)i dx

 � Â
i:At,i=1

Z 1

0

`t,i
xt,i
rF⇤t (�bLobs

t � bLmiss
t +

k

Â
j:At,j=0

bLmiss
t,j ej � xb̀t)i dx

= � Â
i:At,i=1

Z 1

0

`t,i
xt,i
rF⇤t (�bLobs

t �
k

Â
j=1

At,jbLmiss
t,j ej � xb̀t)i dx

= �
Z 1

0

*
b̀t,rF⇤t (�bLobs

t �
k

Â
j=1

At,jbLmiss
t,j ej � xb̀t)

+
dx ,

where the first equality uses the fundamental theorem of calculus and the inequality
follows from Claim 27. Now let us define z̃(x) = rF⇤t (�bLobs

t � xb̀t). We have the
following

105

F⇤t (�bLobs
t)� F⇤t (�bLobs

t �
b̀t)� F⇤t (�bLt) + F⇤t (�bLt+1)



Z 1

0

D
b̀t,rF⇤t (�bLobs

t � xb̀t)
E

dx�
Z 1

0

*
b̀t,rF⇤t (�bLobs

t �
k

Â
j=1

At,jbLmiss
t,j ej � xb̀t)

+
dx

=
Z 1

0

*
b̀t, z̃(x)�rF⇤t (rFt(z̃(x))�

k

Â
j=1

At,jbLmiss
t,j ej)

+
dx



Z 1

0

*
b̀t, z̃(x)�rF⇤t (rFt(z̃(x))�

k

Â
j=1

At,jbLmiss
t,j ej)

+
dx

=
k

Â
i=1

Z 1

0
b̀t,i

z̃(x)�rF⇤t

rFt(z̃(x))�

k

Â
j=1

At,jbLmiss
t,j ej

!!

i

dx

=
k

Â
i=1

Z 1

0
b̀t,i(z̃i(x)� f ⇤t

0(f 0t (z̃i(x))� bLmiss
t,i) dx



k

Â
i=1

Z 1

0
b̀t,i f ⇤t

00(f 0t (z̃i(x)))bLmiss
t,i dx

=
k

Â
i=1

Z 1

0

b̀t,i

ft
00(z̃i(x))

bLmiss
t,i dx



k

Â
i=1

Z 1

0

b̀t,i

ft,2
00(z̃i(x))

bLmiss
t,i dx

= ht

Z 1

0

k

Â
i=1

b̀t,ibLmiss
t,i z̃i(x)

!
dx

where the first inequality uses the fundamental theorem of calculus together with the
inequality above, the first equality substitutes ez(x) = rF̄⇤t

⇣
�L̂obs

t � x ˆ̀t

⌘
and applies

Claim 23. The second inequality applies Claim 25 and the third uses the fact that f ⇤0(t)
is convex, so � f ⇤0 (f 0 (z̃At)� `)  �z̃At + f ⇤00 (f 0 (z̃At)) . Taking the expected value we
have

106

E
h

F⇤t (�bLobs
t)� F⇤t (�bLobs

t �
b̀t)� F⇤t (�bLt) + F⇤t (�bLt+1)

i

 htE

"Z 1

0

k

Â
i=1

b̀t,ibLmiss
t,i z̃i(x)

!
dx

#

 htE

"
k

Â
i=1

b̀t,ibLmiss
t,i

#

= htE

"
k

Â
i=1

bLmiss
t,i Et

h
b̀t,i

i#

= htE

"
k

Â
i=1

bLmiss
t,i `t,i

#

 htE

"
k

Â
i=1

bLmiss
t,i

#

= htE

"
k

Â
i=1

Â
s:s<t

I {s + ds � t} b̀s,i

#

= htE

"
k

Â
i=1

Â
s:s<t

I {s + ds � t}Es

h
b̀s,i

i#

= htE

"
k

Â
i=1

Â
s:s<t

I {s + ds � t} `s,i

#

 htk Â
s:s<t

I {s + ds � t}

 htkdt .

Theorem 10. Algorithm 8 with proper learning rates (ht)t=1,...,n satisfies

RT 
m log

⇣
k
m

⌘

hT
+ 3
p

Tkm + k
T

Â
t=1

htdt

Furthermore if one chooses ht =

r
m(1+log(k/m))

2k Ât
s=1 ds

then

RT  3
p

Tkm + 2

vuut2kmlog (k/m)

T

Â
t=1

dt

!
.

107

Proof. We have the following decomposition of RT

RT = E

"
T

Â
t=1

F⇤t (�bLt)� F⇤t (�bLt+1)�

D
a, b̀t

E!

T

Â
t=1

⇣
F⇤t (�bLobs

t �
b̀t)� F⇤t (�bLobs

t) +
D

xt, b̀t

E⌘

T

Â
t=1

⇣
F⇤t (�bLobs

t)� F⇤t (�bLobs
t �

b̀t)� F⇤t (�bLt) + F⇤t (�bLt+1)
⌘#

= 2
p

Tkm +
m log

⇣
k
m

⌘

hT
+
p

Tkm +
T

Â
t=1

htkdt

4.6.6 Proof of lemmas from Section 4.5
Lemma 11. If agent v 2 V runs the Algorithm 2 with learning rate h > 0, the following
deterministic bound holds for all i 2 {1, . . . , k}:

T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)�
T

Â
t=1

b̀t(i?, v) 
ln k
h

+
h

2

T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)2 .

Proof. For all t 2 {2, . . . , T}, i 2 {1, . . . , K}, and v 2 V , let

w0t(i, v) = w0t�1(i, v) exp
�
�hb̀t�1(i, v)

�
and w01(i, v) =

1
k
= w1(i, v) .

Note that, for all t, i, v, we have wt(i,v)
Wt(v)

= w0t(i,v)
W 0t (v)

, where W 0t (v) = Âk
i=1 w0t(i, v). Then,

W 0t+1(v)
W 0t (v)

=
k

Â
i=1

w0t+1(i, v)
W 0t (v)

=
k

Â
i=1

w0t(i, v)e�hb̀t(i,v)

W 0t (v)

=
k

Â
i=1

wt(i, v)e�hb̀t(i,v)

Wt(v)

=
k

Â
i=1

xt(i, v)
m

e�hb̀t(i,v)



k

Â
i=1

xt(i, v)
m

✓
1� hb̀t(i, v) +

1
2

h2
⇣
b̀t(i, v)

⌘2
◆

= 1� h
k

Â
i=1

xt(i, v)
m

b̀t(i, v) +
h2

2

k

Â
i=1

xt(i, v)
m

⇣
b̀t(i, v)

⌘2

Taking the logarithm and using the inequality ln (1 + x)  x for all x > �1, and
summing over t = 1, . . . , T yields

108

ln
W 0T+1(v)

W 01(v)
 �h

T

Â
t=1

K

Â
i=1

xt(i, v)
m

b̀t(i, v) +
h2

2

T

Â
t=1

K

Â
i=1

xt(i, v)
m

⇣
b̀t(i, v)

⌘2
.

Moreover, for any fixed comparison action i?, we also have

ln
W 0T+1(v)

W 01(v)
� ln

w0t(i?, v)
W 01(v)

= �h
T

Â
t=1

b̀t(i?, v)� ln k

Putting this together and rearranging gives

T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)�
T

Â
t=1

b̀t(i?, v) 
ln k
h

+
h

2

T

Â
t=1

k

Â
i=1

xt(i, v)
m

b̀t(i, v)2 .

Lemma 12. If agent v 2 V runs baditCoopMsets with learning rate h > 0, the following
deterministic bounds for the drift probabilities hold for all i 2 {1, . . . , k}:

�h
xt(i, v)

m
b̀t(i, v) 

xt+1 (i, v)
m

�
xt (i, v)

m
 h

xt+1(i, v)
m

k

Â
j=1

xt(j, v)
m

b̀t(j, v) .

Proof. Directly from the definition of the update wt+1(i, v)  xt(i, v) for all i 2 {1, . . . , k},
so that Wt+1(v)  m which in turn implies

wt+1(i, v) 
wt+1(i, v)

Wt+1(v)/m
= xt+1(i, v).

Therefore,

xt+1(i, v)
m

�
xt (i, v)

m
�

wt+1(i, v)
m

�
xt (i, v)

m
= �

xt (i, v)
m

⇣
1� e�hb̀t(i,v)

⌘
� �h

xt (i, v)
m

b̀t(i, v),

the last inequality using 1� e�x  x for x � 0. Similarly,

xt+1(i, v)
m

�
xt(i, v)

m


xt+1(i, v)
m

�
wt+1(i, v)

m

=
xt+1(i, v)

m
�

xt+1(i, v)
m2 Wt+1(v)

=
xt+1(i, v)

m

✓
1�

Wt+1(v)
m

◆

=
xt+1(i, v)

m

k

Â
j=1

✓
xt(j, v)

m
�

wt+1(j, v)
m

◆

=
xt+1(i, v)

m

k

Â
j=1

xt(j, v)
m

⇣
1� e�hb̀t(j,v)

⌘!

 h
xt+1(i, v)

m

k

Â
j=1

✓
xt(j, v)

m
b̀t(j, v)

◆
.

109

Lemma 13. If agent v 2 V runs baditCoopMsets with learning rate h 2
�
0, m

ke(d+1)
�
, the

following deterministic bound holds for all i 2 {1, . . . , k}:

xt+1(i, v) 
✓

1 +
1
d

◆
xt(i, v) .

Proof. We proceed by induction over t. For all t  d, b̀t(·) = 0. Hence xt (·) = m
K and

this lemma trivially holds. For t > d we can write

k

Â
i=1

xt(i, v)
m

b̀t(i, v) =
k

Â
i=1

xt(i, v)
m

`t�d(i)
Bd,t�d(i, v)

Bd,t�d(i, v)



k

Â
i=1

xt(i, v)
mBd,t�d(i, v)



k

Â
i=1

✓
1 +

1
d

◆k xt�d(i, v)
mBd,t�d(i, v)



✓
1 +

1
d

◆k K
m


K
m

e

where the second inequality follows by the inductive hypothesis. Hence, using Lemma
12 we have

xt+1(i, v)
m

✓
1� h

Ke
m

◆


xt+1 (i, v)
m

1� h

k

Â
j=1

xt (j, v)
m

b̀t(j, v)

!


xt(i, v)
m

110

111

Bibliography

Madhu Advani, Subhaneil Lahiri, and Surya Ganguli. Statistical mechanics of complex
neural systems and high dimensional data. Journal of Statistical Mechanics: Theory and
Experiment, 2013(03):P03014, 2013.

Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and
Ohad Shamir. Nonstochastic multi-armed bandits with graph-structured feedback.
SIAM Journal on Computing, 46(6):1785–1826, 2017.

Benjamin Aubin, Will Perkins, and Lenka Zdeborová. Storage capacity in symmetric
binary perceptrons. Journal of Physics A: Mathematical and Theoretical, 52(29):294003,
jun 2019. doi: 10.1088/1751-8121/ab227a.

Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online combinatorial
optimization. Mathematics of Operations Research, 39(1):31–45, 2014.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2-3):235–256, 2002.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for rein-
forcement learning. In Advances in neural information processing systems, pages 89–96,
2009.

Baruch Awerbuch and Robert Kleinberg. Competitive collaborative learning. Journal of
Computer and System Sciences, 74(8):1271–1288, 2008.

Carlo Baldassi. Generalization learning in a perceptron with binary synapses. Journal of
Statistical Physics, 136(5):902–916, 2009. doi: 10.1007/s10955-009-9822-1.

Carlo Baldassi and Alfredo Braunstein. A max-sum algorithm for training discrete
neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2015(8):P08008,
2015. doi: 10.1088/1742-5468/2015/08/P08008.

Carlo Baldassi, Alfredo Braunstein, Nicolas Brunel, and Riccardo Zecchina. Efficient
supervised learning in networks with binary synapses. Proceedings of the National
Academy of Sciences of the United States of America, 104(26):11079–1084, 2007. doi:
10.1073/pnas.0700324104.

Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo
Zecchina. Subdominant dense clusters allow for simple learning and high computa-
tional performance in neural networks with discrete synapses. Phys. Rev. Lett., 115:
128101, Sep 2015. doi: 10.1103/PhysRevLett.115.128101.

Carlo Baldassi, Christian Borgs, Jennifer T. Chayes, Alessandro Ingrosso, Carlo Lucibello,

Luca Saglietti, and Riccardo Zecchina. Unreasonable effectiveness of learning neural
networks: From accessible states and robust ensembles to basic algorithmic schemes.
Proceedings of the National Academy of Sciences, 113(48):E7655–E7662, November 2016a.
ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1608103113.

Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo
Zecchina. Local entropy as a measure for sampling solutions in constraint satisfaction
problems. Journal of Statistical Mechanics: Theory and Experiment, 2016(2):P023301,
February 2016b. ISSN 1742-5468. doi: 10.1088/1742-5468/2016/02/023301.

Carlo Baldassi, Enrico M Malatesta, and Riccardo Zecchina. Properties of the geometry
of solutions and capacity of multilayer neural networks with rectified linear unit
activations. Physical Review Letters, 123(17):170602, 2019. doi: 10.1103/PhysRevLett.
123.170602.

Carlo Baldassi, Riccardo Della Vecchia, Carlo Lucibello, and Riccardo Zecchina. Cluster-
ing of solutions in the symmetric binary perceptron. Journal of Statistical Mechanics:
Theory and Experiment, 2020(7):073303, 2020a.

Carlo Baldassi, Fabrizio Pittorino, and Riccardo Zecchina. Shaping the learning land-
scape in neural networks around wide flat minima. Proceedings of the National Academy
of Sciences, 117(1):161–170, 2020b. doi: 10.1073/pnas.1908636117.

Gábor Bartók. A near-optimal algorithm for finite partial-monitoring games against
adversarial opponents. In Conference on Learning Theory, pages 696–710, 2013.

Alfredo Braunstein and Riccardo Zecchina. Learning by message passing in networks
of discrete synapses. Physical Review Letters, 96:030201, Jan 2006. doi: 10.1103/
PhysRevLett.96.030201.

Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey propagation: An
algorithm for satisfiability. Random Structures & Algorithms, 27(2):201–226, 2005.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends R� in Machine Learning,
5(1):1–122, 2012.

Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and
System Sciences, 78(5):1404–1422, 2012.

Nicolò Cesa-Bianchi, Tommaso R Cesari, and Claire Monteleoni. Cooperative online
learning: Keeping your neighbors updated. arXiv preprint arXiv:1901.08082, 2019a.

Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Delay and cooperation in
nonstochastic bandits. The Journal of Machine Learning Research, 20(1):613–650, 2019b.

Nicolò Cesa-Bianchi, Tommaso Cesari, and Riccardo Della Vecchia. Online cooperative
learning with broadcasting and delays. (in preparation).

Olivier Chapelle, Eren Manavoglu, and Romer Rosales. Simple and scalable response
prediction for display advertising. ACM Transactions on Intelligent Systems and Technol-
ogy (TIST), 5(4):1–34, 2014.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi,
Christian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd:

112

Biasing gradient descent into wide valleys. Journal of Statistical Mechanics: Theory and
Experiment, 2019(12):124018, 2019.

Hervé Daudé, Marc Mézard, Thierry Mora, and Riccardo Zecchina. Pairs of sat-
assignments in random boolean formulæ. Theoretical Computer Science, 393(1):260–279,
2008. ISSN 0304-3975. doi: 10.1016/j.tcs.2008.01.005.

Riccardo Della Vecchia and Tommaso Cesari. An efficient algorithm for cooperative
semi-bandits. arXiv preprint arXiv:2010.01818, 2020.

Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing exploration-
exploitation tradeoffs in gaussian process bandit optimization. Journal of Machine
Learning Research, 15:3873–3923, 2014.

Jian Ding and Nike Sun. Capacity lower bound for the ising perceptron. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 816–827.
ACM, 2019. doi: 10.1145/3313276.3316383.

Andreas Engel and Christian Van den Broeck. Statistical mechanics of learning. Cambridge
University Press, 2001.

Elizabeth Gardner and Bernard Derrida. Optimal storage properties of neural network
models. Journal of Physics A: Mathematical and General, 21(1):271–284, jan 1988. doi:
10.1088/0305-4470/21/1/031.

Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization, volume 2. Springer Science & Business Media, 2012.

James Hannan. Approximation to bayes risk in repeated play. Contributions to the Theory
of Games, 3:97–139, 1957.

Elad Hazan. Introduction to online convex optimization. arXiv preprint arXiv:1909.05207,
2019.

Heinz Horner. Dynamics of learning for the binary perceptron problem. Zeitschrift für
Physik B Condensed Matter, 86(2):291–308, 1992. doi: 10.1007/BF01313839.

Haiping Huang and Yoshiyuki Kabashima. Origin of the computational hardness for
learning with binary synapses. Physical Review E, 90(5):052813, 2014. doi: 10.1103/
PhysRevE.90.052813.

Haiping Huang, K. Y. Michael Wong, and Yoshiyuki Kabashima. Entropy landscape
of solutions in the binary perceptron problem. Journal of Physics A: Mathematical and
Theoretical, 46(37):375002, aug 2013. doi: 10.1088/1751-8113/46/37/375002.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Delay-tolerant online convex
optimization: Unified analysis and adaptive-gradient algorithms. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291–307, 2005.

Wouter M Koolen, Manfred K Warmuth, Jyrki Kivinen, et al. Hedging structured
concepts. In COLT, pages 93–105. Citeseer, 2010.

113

Werner Krauth and Marc Mézard. Storage capacity of memory networks with bi-
nary couplings. Journal de Physique, 50(20):3057–3066, 1989. doi: 10.1051/jphys:
0198900500200305700.

Florent Krzaka. . . a, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian,
and Lenka Zdeborová. Gibbs states and the set of solutions of random constraint
satisfaction problems. Proceedings of the National Academy of Sciences, 104(25):10318–
10323, 2007.

Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on information theory, 47(2):498–519, 2001.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Combinatorial
cascading bandits. In Advances in Neural Information Processing Systems, pages 1450–
1458, 2015.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. preprint, page 28, 2018.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press,
2020.

Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvari. Toprank: A practical
algorithm for online stochastic ranking. In Advances in Neural Information Processing
Systems, pages 3945–3954, 2018.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436, 2015.

Yin Tat Lee, Aaron Sidford, and Santosh S Vempala. Efficient convex optimization with
membership oracles. In Conference On Learning Theory, pages 1292–1294. PMLR, 2018.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit
approach to personalized news article recommendation. In Proceedings of the 19th
international conference on World wide web, pages 661–670, 2010.

Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous
distributed online learning. In Advances in Neural Information Processing Systems, pages
2915–2923, 2014.

Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford
University Press, 2009.

Marc Mézard, Giorgio Parisi, and Miguel Virasoro. Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, volume 9. World Scientific
Publishing Company, 1987.

Marc Mézard, Giorgio Parisi, and Riccardo Zecchina. Analytic and algorithmic solution
of random satisfiability problems. Science, 297(5582):812–815, 2002.

Marc Mézard, Thierry Mora, and Riccardo Zecchina. Clustering of solutions in the
random satisfiability problem. Physical Review Letters, 94:197205, May 2005. doi:
10.1103/PhysRevLett.94.197205.

Gergely Neu and Gábor Bartók. An efficient algorithm for learning with semi-bandit

114

feedback. In International Conference on Algorithmic Learning Theory, pages 234–248.
Springer, 2013.

Francesco Orabona. A modern introduction to online learning. arXiv preprint
arXiv:1912.13213, 2019.

Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari, and Steffen Grunewalder. Bandits
with delayed, aggregated anonymous feedback. In International Conference on Machine
Learning, pages 4105–4113, 2018.

Fabrizio Pittorino, Carlo Lucibello, Christoph Feinauer, Enrico M Malatesta, Gabriele
Perugini, Carlo Baldassi, Matteo Negri, Elizaveta Demyanenko, and Riccardo
Zecchina. Entropic gradient descent algorithms and wide flat minima. arXiv preprint
arXiv:2006.07897, 2020.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep
learning: Singularity and beyond. arXiv preprint arXiv:1611.07476, 2016.

Hyunjune Sebastian Seung, Haim Sompolinsky, and Naftali Tishby. Statistical mechanics
of learning from examples. Physical Review A, 45:6056–6091, Apr 1992. doi: 10.1103/
PhysRevA.45.6056.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Daiki Suehiro, Kohei Hatano, Shuji Kijima, Eiji Takimoto, and Kiyohito Nagano. Online
prediction under submodular constraints. In International Conference on Algorithmic
Learning Theory, pages 260–274. Springer, 2012.

William R Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Timothy L. H. Watkin, Albrecht Rau, and Michael Biehl. The statistical mechanics
of learning a rule. Reviews of Modern Physics, 65:499–556, Apr 1993. doi: 10.1103/
RevModPhys.65.499.

Marcelo J Weinberger and Erik Ordentlich. On delayed prediction of individual se-
quences. IEEE Transactions on Information Theory, 48(7):1959–1976, 2002.

Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic
averaging sgd. In Advances in Neural Information Processing Systems, pages 685–693,
2015.

Julian Zimmert and Yevgeny Seldin. An optimal algorithm for adversarial bandits with
arbitrary delays. arXiv preprint arXiv:1910.06054, 2019.

115

