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INTRODUCTION 

 

This thesis comprises three essays on the role of combinatorial processes in 

technological innovation. A good deal of consensus has formed around the idea that 

technological innovation is a problem solving endeavor wherein new solutions are either 

unique combinations (Schumpeter, 1939; Nelson & Winter, 1982) or new configuration of 

existing knowledge (Henderson & Clark, 1990). Yet, a lingering question remains as to how 

firms’ should structure their inter-organizational and intra-organizational activities to favor 

the development of new combinations. This thesis addresses this question, and explores the 

effect of intrafirm and interfirm knowledge networks on firms innovative output. 

The first essay reviews the most influential papers that built on a combinatorial 

approach to technological innovation, with the aim to assess the state of art and to advance an 

integrative framework. A co-citation analysis is carried out to detect the main themes of 

research in this tradition, and to integrate these topics into a coherent framework. The study 

highlights some limitations of this approach, and discusses future research that is needed to 

extend these themes, address the limitations, and exploit emerging research opportunities. 

The second essay explores the effect of inter-organizational knowledge networks and 

firm capabilities in the development of new technologies. The study sets out to integrate two 

well-established, complementary, and yet unrelated views on the process of technology 

development. On the one hand, inter-firm networks act as “pipes” that funnel different 

learning opportunities to different network positions and, hence, to different firms. On the 

other hand, it has been argued that a firm’s inventive performance depends on its 

organizational capabilities, and particularly its assimilative and recombinant capabilities. 

Integrating these perspectives, the study advances and tests a set of novel testable hypotheses 
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at both the firm- and the network-level the semiconductor industry over the period 1975-2001. 

The third essay explores how a firm's internal collaboration network affects its ability 

to integrate knowledge in the generation of new technologies. Building on the knowledge-

based view of the firm, the paper contrasts the relative efficacy of densely connected and 

brokered (i.e., cluster-and-bridge) structures, showing how the costs and benefits of both 

structures vary depending on the heterogeneity of a firms' knowledge base. To put our 

arguments to a test, a novel dataset describing the patent co-authorship networks of 121 

semiconductor firms over the period 1992-1998 is presented. The results offer support to our 

predictions and they yield important implications for the design of organizations.  

Table 1 introduces the essays and provides a summary of the research questions, unit 

of analysis, and key results of each article. 
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TABLE 1: Summary of the three essays 

 
Essay 1 Essay 2 Essay 3 

Research Questions 
 What does literature adopting a combinatorial 

perspective on technological innovation has 
accomplished so far? 

 How can studies adopting this approach be 
integrated into a coherent framework? 

 How can the combinatorial approach to 
technological innovation be extended in future 
research? 

 What is the relationship between knowledge 
diffusion and knowledge generation in inter-
organizational networks? 

 How do knowledge network structure and firms’ 
assimilative and combinative capabilities impact 
technological performance? 
 

 How does a firm's internal collaboration 
network affects its ability to integrate 
knowledge in the generation of new 
technologies? 

 Under which conditions dense and brokered 
collaboration networks enhance firms’ ability 
to integrate specialized knowledge into new 
technologies? 

Research setting and sample 
69 highly cited papers in top management journals that 
built on a combinatorial approach to technological 
innovation (1990-2006) 

An unbalanced, longitudinal panel of 132 firms in the 
worldwide semiconductor industry, between 1975-2001. 

A novel dataset describing the patent co-authorship 
networks of 121 semiconductor firms over the period 
1992-1998 

Unit of analysis N. A. Firm Firm 

Research design A co-citation analysis and a critical assessment of the 
most influential contributions that built on a 
combinatorial approach to technological innovation. 

An empirical test of hypotheses relating firms’ ability to 
assimilate knowledge from prolific contacts and 
knowledge network structure on innovation. Visual 
inspection techniques to display network evolution. 

An empirical test of hypotheses relating firms’ 
ability to generate new technologies to the structure 
of its knowledge network and to its knowledge base 
heterogeneity. 

Key Findings  Research on the role of re/combination in 
innovation covered three main topics (i) enabling 
architectures for recombination (ii) recombination 
as a capability (iii) outcomes of combinatorial 
processes. 

 Four major shortcomings and area for development 
emerged from this perspective: the lack of 
connection across levels of analysis, the use of 
recombination as a metaphor, the reification of 
constructs and limited analysis of performance 
implications. 
 

 A firm inventive performance increases with its 
ability to assimilate and recombine knowledge from 
highly prolific contacts 

 The more an organization brokers structural holes in 
a knowledge network, the greater its inventive 
performance 

 Brokering structural holes and assimilating 
knowledge from prolific contacts in a knowledge 
network are substitute mechanisms that drive a firm 
inventive performance 

 Self-enforcing, knowledge dynamics explain the 
patterns of network evolution 

 On average, brokered collaboration structures 
tend to enhance firms’ ability to develop new 
technological knowledge, while dense 
networks tend to depress it 
 

 These relationships are altogether reversed for 
firms whose knowledge base is highly 
heterogeneous.  

Contribution 

 The review contributes to the field of technology 
and innovation management by providing an 
integrated framework that highlights the role of 
combinatorial dynamics in the development of new 
technologies 

 Our critical assessment points out the fundamental 
limitations and the emerging research opportunities. 

 The paper extends received inter-organizational 
network theory showing that, in addition to 
knowledge conduits, networks encompass 
knowledge wellsprings  

 The paper sheds new light on the debate about the 
putative effects of closed versus brokering networks 
of knowledge 

 Our proposed analytical perspective yields a non-
trivial insight on the issue of “how collective 
outcomes might be generated in inter-organizational 
networks” 

 The paper extends recent studies in the 
knowledge tradition by advancing a theoretical 
framework that illuminate choices regarding 
the internal organization of a firm knowledge 
generation activities 

 The study offers network research new insights 
on the role of cohesive and brokered structures 
in the generation of new knowledge 

 The study enlarges the empirical content of 
both knowledge based theory and network 
research 
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Essay 1 

 

 

 

A REVIEW AND A CRITICAL ASSESSMENT OF COMBINATORIAL 

PERSPECTIVES ON TECHNOLOGICAL INNOVATION 

 

 

 

ABSTRACT 

 

A co-citation analysis of the most cited papers that build on a combinatorial perspective identifies 

three main topics covered by research on the role of re/combination in innovation: (i) enabling 

architectures for recombination (ii) combinative capabilities (iii) outcomes of combinatorial 

processes. The paper integrates the three themes into a theoretical model that clarifies the role of 

combinatorial dynamics in technological innovation and highlights some limitations of this 

approach. The study then discusses future research that is needed to extend those themes, address 

the limitations, and exploit emerging research opportunities. 

 

 

Keywords: technological innovation, recombination, combinative capabilities, co-citation 

analysis 
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How do firms generate technological inventions? In more than seven decades of research 

on technological innovation, a good deal of consensus has formed around the idea that the 

innovative process is a problem-solving endeavor wherein   solutions are discovered through 

recombination of existing elements. From this combinatorial perspective, innovation stem either 

from the novel combination of knowledge embedded in existing technological components or 

from reconfigurations of existing combinations (Gilfillan 1935; Schumpeter, 1939; Usher, 1954; 

Nelson & Winter, 1982; Basalla, 1988; Henderson & Clark, 1990; Fleming 2001).  

In the last two decades, more than 900 peer reviewed academic papers have built upon a 

combinatorial approach to innovation. The rapid development of this perspective is due in part to 

the flexibility that the idea of re/combination provides, that may well apply to describe 

evolutionary processes at different levels of analysis (Nelson & Winter, 1982; Kauffman, 1993). 

It is also due to its fit with other popular areas of organizational research and practice that have 

been rapidly growing during that same period: new product development, organizational learning, 

and industry life cycles.  

The large number and broad range of contributions embracing this perspective in 

technological innovation research raises important concerns about the use of the notion of 

recombination in this line of research and suggests an assessment of the literature is in order. 

What does literature adopting a combinatorial perspective on innovation has accomplished so 

far? Is a combinatorial approach necessary and useful for the development of the innovation 

field? How different constructs developed in this perspective, such as “architectural innovation” 

(Henderson & Clark, 1990) “combinative capabilities” (Kogut & Zander, 1992), “modularity” 

(Ulrich, 1995; Krishnan & Ulrich, 1996) and “flexibility” (Sanchez & Mahoney, 1996), “resource 

recombination” (Galunic & Rodan, 1998), “integrative knowledge” (Helfat & Raubitschek, 

2000), “knowledge integration” (Grant, 1996; Brusoni, Prencipe & Pavitt, 2001) or “recombinant 
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search” (Fleming, 2001) have contributed to our understanding of the process of recombination 

and how can we integrate these ideas into a reasoned framework? Finally, how can this approach 

be extended in future research? 

Such an assessment is important, because, despite the number and range of studies that 

built on this approach, the dynamics through which the combinatorial process unfolds and the 

implications of the idea of recombination remain to a great extent underdeveloped (Fleming, 

2001: 118). Several studied used the idea of recombination as a metaphor, so that some of the 

constructs that have been developed in this tradition are at risk of reification (Thomason, 1988; 

McKinley, Zhao & Rust, 2000). Reification is problematic because it threatens the validity of 

these constructs. Not only do constructs such as “combinative capabilities” (Kogut & Zander, 

1992), “combinative flexibility” (Sanchez, 1995; Sanchez & Mahoney, 1996), “resource 

recombination” (Galunic & Rodan, 1998), “recombinant search” (Fleming, 2001) become taken 

for granted, but researchers increasingly fail to specify the assumptions that underlie the use of 

this approach. Such problems can only be addressed by exploring the diverse interpretations and 

applications of the idea of recombination in innovation in heterogeneous streams of research, and 

investigating its assumptions and building blocks (Rousseau & House, 1994). These insights 

allow to refine the theoretical model that underlies this approach, and to reconnect it to its 

network of supporting assumptions. 

In this paper, I attempt to conduct such an investigation by providing a synthesis and an 

extension of the most influential contributions that built on a combinatorial approach to 

technological innovation. By reviewing these studies, I intend to contribute to the field of 

technology and innovation management an integrated framework, that explains how 

combinatorial processes lead to innovative outcomes and that might guide future research. The 

literature review is based on the bibliometric technique of co-citation analysis (Small, 1974; 
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White & Griffith, 1981; Veerbek, Debackere, Luwel & Zimmerman, 2002), a powerful and 

widely used procedure to study the study of scientific disciplines and trends (e.g. Meyer, Pereira, 

Persson & Grandstrand, 2004; Ramos-Rodríguez & Ruíz-Navarro, 2004; Gartner, Daviddson & 

Zahra, 2006; Acedo, Barroso & Galan, 2006). This method allows for the determination of the 

most relevant works that build on a combinatorial perspective in the last two decades, and for the 

identification of the three major themes covered by these contributions. Such themes, together 

with a graphical representation of the links between the studies, serve as a basis to clarify the 

theoretical model of combinatorial innovation. Based on these analyses, I identify the strengths of 

this approach as well as the weaknesses that I believe have led to oversee the procedural aspect 

and implications of the idea of recombination. Finally, I begin to explore additional themes that 

are needed to address those weaknesses and extend our understanding of the role of 

combinatorial dynamics in innovation.  

This paper differs from other bibliometric studies and from most literature reviews in 

general, in two major ways. First, this review is not based upon a single construct, or specific 

theme, or on a definite research theory; on the contrary, I take a broad approach to recombination, 

and I explore how different strategic theories, such as the knowledge based view, the research 

based view and dynamic capabilities research used this idea to develop new constructs and to 

explain innovation. Second, this study aims not only to highlight the main themes and emerging 

model of a combinatorial approach to innovation, but to use these analytical insights to develop a 

set of criteria to assess and evaluate both existing and potential studies.  

This study proceeds as follows. The first section presents the combinatorial approach to 

innovation, describes the methodology adopted for the literature review and summarizes the main 

findings of the co-citation analysis, with attention focused on the core themes and on their 

classification according to two main dimensions. The second section integrates findings from the 
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bibliometric analysis into a theoretical framework, and discusses the strengths and research 

avenues that need to be developed to integrate the emerging model. Finally, the last section 

discusses the results of the analysis and highlights the main issues on which future research 

should focus in order to develop a better understanding of the role of combinatorial dynamics in 

technological evolution. 

 

COMBINATORIAL PERSPECTIVES ON INNOVATION:  

REVIEWING TWO DECADES OF RESEARCH 

 

To analyze the role of combinatorial mechanisms in technological innovation, I build on 

co-citation analysis, a bibliometric technique used to analyze publication patterns in a field or 

body of literature (Veerbek et al., 2002).  This technique is based on grouping together authors or 

publications that are frequently cited in pairs, the underlying assumption being that two often co-

cited documents are related to one another, and address the same broad research questions, 

without necessarily agreeing with each other (White & Griffith, 1981). By using statistical 

techniques, co-citation analysis makes it possible to provide a map or visualization of research on 

a given subject in terms of the main contributions and links between them. Co-citation maps 

makes it easier to operationalize the notion of consensus (White, 1990), thereby defining a 

research area intellectual structure (McCain, 1990), and serving to model the research area of 

invisible colleges (Zuccala, 2006). In this case, this technique makes it possible to identify the 

connections between the most influential contributions that have explicitly or implicitly built on a 

combinatorial approach to technological innovation, in order to systematize them into a coherent 

framework. 
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The analysis encompasses five steps: (1) selecting the list of contributions (2) retrieving 

co-citation frequencies to build the raw co-citation matrix (3) converting the raw co-citation 

matrix into a correlation matrix; (4) performing factor analysis and multi-dimensional scaling; 

and (5) analyzing the results. 

The unit of analysis is defined in terms of articles that have explicitly or implicitly built 

on a combinatorial approach to technological innovation. For studies targeted at specific research 

perspective (as in this case), it is preferable to analyze papers rather than authors so that the 

results will not be biased by the fact that the same author may have published in different fields 

(Acedo et al., 2006).  

------------------------------------------ 
Insert Table 1 about here 

------------------------------------------- 
 

Throughout the last century, several outstanding personalities from all fields highlighted 

the inherent combinatorial nature of innovation (see table 1 for an overview) and described this 

combinatorial search process vividly. For example, the mathematician Poincarè (1921: 387) 

offered this account: “Ideas rose in crowds; I felt them collide until pairs interlocked, so to speak, 

making a stable combination”. Einstein also wrote that “combinatory play seems to be the 

essential feature in productive thought” (quoted in Simonton, 1999: 29). Similarly, new 

technologies can often be traced to the combination of prior technologies (Gilfillan, 1935; Nelson 

& Winter, 1982; Basalla, 1988). As Schumpeter (1934) puts it “the essence of innovation is 

carrying out of new combinations”. Yet, the combinatorial approach to the development of novel 

technological solutions1 has become popular in mainstream management journals only during the 

                                                 
1 The combinatorial perspective applies to the emergence of novelty in general (Simonton, 1999; Nelson & Winter, 
1982) and thus, both to the idea of invention and to the idea of innovation. This review, yet, focuses on the process of 
innovation, intended as the development of novel technological solutions to practically relevant problems. In this 
respect, our works differs from studies on creativity (e.g., Amabile, 1986; Fleming et al., 2007). 
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two past decades, with the emergence of evolutionary views of economic change and of new 

research streams such as the resource-based and knowledge-based views of the firm and dynamic 

capabilities.  

In particular, Henderson and Clark (1990), with their research on the photolithographic 

alignment equipment industry, pioneered this perspective in management research by introducing 

the concept of architectural innovation, defined as change the way in which the components of a 

product are linked together, while leaving the core design concepts (and thus the basic knowledge 

underlying the components) untouched (p. 10). This paper has been widely cited by following 

studies, receiving as many as 963 forward cites in the Social Science Citation Index (SSCI) of 

Thomson-ISI2 between 1990 and 2007, and can be considered as the path-breaking contribution 

bringing this idea to the attention of management researchers. For this reason, I sampled for this 

review all articles citing Henderson and Clark (1990) in two types of publications: top generalist 

management journals and top journals aimed at the specific community of Technology and 

Innovation Management3 researchers. Following the prescription of Brown & Eisenhardt (1995), 

I also included the most impactful practitioner-oriented journals.  Following this approach, I 

identified 417 papers in the selected outlets in the period between 1990 and the end of 2007, as 

detailed in table 2. 

------------------------------------------ 
Insert Table 2 about here 

------------------------------------------- 

                                                                                                                                                              
 
2 The Social Science Citation Index (SSCI) of Thomson-ISI, with a time span from 1990 to 2007 is available  on-line 
and covers over 1,700 of the world’s leading scholarly social sciences journals in more than 50 disciplines and 
relevant items from approximately 3,300 of the world’s leading science and technology journals, provides access to 
bibliographic information, author abstracts, and cited references. 
3 I selected the following outlets: Academy of Management Journal, Academy of Management Review, 
Administrative Science Quarterly, Management Science, Organization Science, Strategic Management Journal, 
Journal of Management, Journal of Management Studies, Organization Studies, Industrial and Corporate Change, 
Research Policy, Journal of Product Innovation Management, Sloan Management Review, California Management 
Review, Harvard Business Review, IEEE Transactions on Engineering Management. 
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When analyzing a body of research, the usual criterion to establish the core is relevance. 

In line with previous studies (Acedo et al., 2006) I focused on the most relevant pieces on the 

topic by retaining only those articles that received at least 50 citations by later articles in SSCI. 

The selection threshold at 50 citations reduces our sample to 69 papers. 

I then retrieved the co-citation frequencies in Thomson-ISI SSCI and then compiled the raw co-

citation matrix, using UCINET 6. The co-citation matrix is a square matrix; the rows and 

columns represent the articles included in the sample and each cell of the matrix fij reports the 

number of papers that jointly cite paper i and paper j. Diagonal values are treated as missing. 

Once this set of papers was obtained, it was necessary to verify that the resulting co-citation 

matrix was appropriate for bibliometric study. As Rowlands (1999) has observed, in a highly 

coherent research area, the number of zeros or very low values must be relatively small. Taking 

this approach and that of White and Griffith (1981), two criteria were established to screen the 

initial list of documents: (i) the number of total cocitations received (ii) the number of zeros and 

ones in its line of the matrix. This process eliminated two documents (Malerba, 2002; Zajac, 

Kraatz & Bresser, 2000). The final core was made up of 67 works that are listed in table 3. 

------------------------------------------ 
Insert Table 3 about here 

------------------------------------------- 
 

The raw co-citation matrix was converted into a correlation matrix, using SPSS Version 

17 to calculate Pearson’s correlation coefficient for each cell of the matrix. Correlation 

coefficients represent a measure of similarity between two papers: the higher the positive 

correlation, the higher the perceived similarity between the two works (White & McCain, 1998). 

Using correlation instead of a count of co-citation has two important advantages (Rowlands, 
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1999). First, it allows for data standardization, thus avoiding the scale effects caused by the 

number of citations made to the different documents. Secondly, it reduces the number of zeros 

existing in the matrix, preventing problems in the application of statistical methods. Once the 

correlation matrix was obtained, I applied two statistical multivariate techniques: factor analysis 

and multidimensional scaling (MDS).  

Factor analysis allowed to identify the factors explaining most of the variance observed 

and to identify groups of strongly correlated papers so that the structure of research in this area 

becomes visible. As shown in Table 4, the analysis resulted in three factors, explaining 80.8% of 

the variance (see the Appendix A for details). 

------------------------------------------ 
Insert Table 4 about here 

------------------------------------------- 
 

By analyzing the contributions loading on each factor, I named the three factors according 

to the following definitions: (i) Enabling architectures for recombination (ii) Recombining as a 

capability (iii) Outcomes of recombination. It is important to note that some contribution load on 

more than one factor: such works represent a bridge between the factors highlighted by this 

analysis.  

Using Euclidean distance as a measure of dissimilarity, MDS provided a representation of 

the relationships among the contributions shown in Figure 1. 

------------------------------------------ 
Insert Figure 1 about here 

------------------------------------------- 
 

MDS reduces the data space, by positioning the articles on a bidimensional space, and 

making it easier to interpret the relative positioning of the clusters of contributions. 

Consequently, in order to analyze MDS maps, both the point placement of the articles and the 
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orientation of the clusters of articles along the two axes have to be interpreted. In the MDS graph, 

contributions tend to be clustered coherently with the results of factor analysis, and thus in three 

main groups. The two axes can be interpreted as follows. The x-axis classifies existing studies 

according to the object of recombination, along a continuum that goes from immaterial elements 

(such as cognitive frames, routines and knowledge elements) to material components (product 

parts and core components), as we move from the left to the right part of the graph. The y-axis 

juxtaposes a proactive approach to recombination where firms actively engage and orchestrate 

combinatorial processes, to a reactive approach, where recombination is to a large extent 

triggered by factors that are exogenous to the firm. The three factors occupy specific positions in 

the graph. Factor 2 (enabling architectures) is placed on the lower right part of the graph, as it 

focuses on the intentional design of technological systems that favor combinatorial dynamics. 

Factor 3 (outcomes of recombination) is placed on the top right quadrant, to suggest that research 

has focused on how recombination favors adaptation and organizational survival. Papers loading 

on factor1 (recombining as an organizational capability) locate on the left hand side of the 

diagram, since they focus on immaterial factors and, consistently with the capability based 

approach, support both a proactive and a reactive approach to recombination.  

Building on these results, I move now to reviewing the papers loading on each factor 

together with their contribution to our understanding of the process of recombination underlying 

technological innovation. Building on the findings of these research themes, I then propose an 

integrating framework.  

 

Enabling architectures for recombination: modularity research 

Factor 2 groups papers that relate to the structural antecedents of combinatorial 

processes. The broad stream of research examines how design choices at different levels of 
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analysis (e.g., technological systems, process technologies, organizational structures, knowledge 

elements) affect the innovative process and its outcomes. In this respect, this set of papers builds 

upon earlier works on system decomposability (Simon, 1962; Alexander, 1964) and focuses on 

modular structures (Baldwin & Clark, 1997; 2000) as enabling architectures for recombination. 

System architectures considered by this research range from fully modular –i.e. systems made up 

by separate subsystem with no interactions between subsystems – over loosely coupled systems 

up to integrated systems, where each subsystem is tightly connected to all other parts of the 

system. The contributions loading on this factor cluster around three complementary research 

themes: definitions of modularity, practices to implement modular designs, and advantages of 

modularity. 

The description of the combinatorial architecture and the definition of modular systems is 

certainly a challenging task. To characterize modular architectures, extant research focuses on 

concepts such as decomposability, interdependences and interfaces (Ulrich, 1995; Krishnan & 

Ulrich, 1996; Browning, 2001). Trying to capture how modular architectures are described and 

defined by scholars from various disciplines quickly leads to the concepts of modules and the 

dependencies between them.  An often encountered notion of modularity in this set of papers 

describes modular systems as exhibiting relatively weak interdependencies between subsystems 

and relatively strong interdependencies within them (Ulrich, 1995; Krishnan & Ulrich, 1996; 

Schilling, 2000). A major tool developed to describe such interdependencies is a design structure 

matrix (Steward, 1981) and its various derivatives (Browning, 2001). This approach is followed 

by references that reflect modularity by the way functions are mapped to components (Ulrich, 

1995). In other cases interface standardization becomes the determining modularity at the product 

level: “Production of components conforming to standard interface specifications also leads to 

modularity.” (Garud & Kumaraswamy, 1995: 94) or “a modular product architecture [..] is a 
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special form of product design that uses standardized interfaces between components to create a 

flexible product architecture” (Sanchez & Mahoney, 1996: 66).  

The issues of how these architectures can be implemented in technological systems, 

organizational structures and knowledge structures and how design choices at one level of 

analysis relate to design choices to other levels of analysis have been extensively debated. 

Organizational architectures are generally described using intrafirm and interfirm networks 

(Powell, 1990; Garud & Kumaraswamy, 1995), or giving emphasis to specific aspects, such as 

centralization or decision making processes. In order to design technological systems that allow 

recombination and knowledge reuse, “firms need to reorganize their internal and external 

relationship to reduce the cost of component reuse, while enhancing the associated benefits” 

(Garud & Kuramaswamy, 1995: 94). In this respect, while some authors suggest that a close 

match between the structure of the products and governance modes is necessary to favor 

combinatorial innovation (Sanchez, 1995; Sanchez & Mahoney, 1996; Schilling, 2000), others 

suggest that the three levels of analysis tend to be somehow dissimilar, so that intra-

organizational and inter-organizational structures co-evolve with the structure of technologies 

and their underlying knowledge (Hobday, 1998; Brusoni et al., 2001). Institutions (Garud & 

Kumaraswamy, 1993; 1995) play a fundamental role in the diffusion and adoption of 

architectures that allow recombination, upgradeability and combinatorial technology 

development at the industry level. 

Combinatorial advantages of modular architectures represent the last theme analyzed by 

papers loading on factor 2. Modularity increases the possible configurations achievable from a set 

of inputs and allows achieving both mass customization and mass production (Kotha, 1995). By 

mixing and matching components in modularly upgradeable systems, firms can reduce product 

development time, leverage past investments, and provide customers with novel technological 
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solutions while maintaining a high degree of continuity and compatibility with their existing 

products (Garud & Kumarasway, 1995). For that reason, these architecture enact innovative 

processes that entail economies of substitution (Garud & Kumarasway, 1993), where the partial 

retention of some technological components makes the cost of developing a new technological 

system lower that the cost of developing the system afresh. Thus, through the combination of 

technological subsystems, organizations can balance standardization and differentiation, and face 

an increasingly heterogeneous demand (Schilling, 2000).  

 

Recombining as a capability: a process based view 

Factor 1 is the richest of the three factors extracted in terms of number of contributions 

and groups studies that have seen recombination as a central organizational capability. The broad 

theoretical framework in which these articles can be positioned is the evolutionary approach 

(Nelson & Winter, 1982); some of the most salient and widely cited contributions of the resource 

based view (Galunic & Rodan, 1998), dynamic capability research (Teece, Pisano & Shuen, 

1997; Zollo & Winter, 2002) and knowledge based views of the firm (Grant, 1996a; Grant, 

1996b, Kogut & Zander, 1992) load on this factor.  

These works suggest that the ability to generate novel outcomes through the combination 

of distinct inputs is a central capability that characterizes organizations. Consistently with an 

evolutionary view of the firm, this ability depend both on the heterogeneous inputs (routines, 

resources, knowledge) that a firm has to begin with, and on the processes that a firm put in action 

to alter its resource process. While the theoretical framework and process differs somewhat 

across studies, all these works agree that generating new combinations by performing local and 

distant search (Stuart & Podolny, 1996, Van Der Bosch et al., 1999; Rosenkopf & Nerkar, 2001; 

Ahuja & Lampert, 2001; Fleming, 2001; Ahuja & Katila, 2001; Katila & Ahuja, 2002), 
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combining and integrating specialized knowledge residing in the mind of individuals (Grant 

1996a; Grant, 1996b, Kogut & Zander, 1992) or distributed in groups of individuals (Hansen, 

1999; Grant & Baden Fuller, 2004), generating new routines out of existing routines 

(Edmondson, 1999; Edmondson et al., 2001) or building up new capabilities and competences by 

combining existing routines (Henderson & Cockburn, 1994; Lei, Hitt & Bettis, 1996; 

LeonardBurton, 1996; Matusik & Hill, 1998; Lorenzoni & Lipparini, 1999; Helfat & 

Raubitschek, 2000; Lee et al., 2002; Zollo & Winter, 2002) or resources (Galunic & Rodan, 

1998) is the central activity performed by organizations. 

As the MDS graph in figure 1 highlights, the process through which recombination 

unfolds is triggered by both firm specific and environmental factors, and thus can be proactive – 

i.e. enacted by organization based on their slack resources and their ability to enact change 

processes - or reactive – i.e. resulting from the adaptation of firms to changes in the competitive 

landscape and in the environment. Relevant phases of combination process are the evaluation of 

the existing organization, in terms of competencies, knowledge and technologies, the generation 

of variety by bringing in and integrating internal and external inputs, the selection of a solution 

and its retention (Nelson & Winter, 1982; Zollo & Winter, 2002). 

 The development of new combinations is inherently intertwined with the organization’s 

existing knowledge and competences. Organizations command both component knowledge 

(Henderson & Clark, 1990; Henderson & Cockburn, 1994), or knowledge that focuses on “a 

subroutine or a discrete aspect of an organization’s operations (Matusik & Hill, 1996: 684) or on 

a core product and service, and of architectural knowledge, defined as “organization wide 

routines and schemas for coordinating the various components, both physical and organizational, 

and putting them to productive use” (Matusik & Hill, 1996: 684). Taken together, both types 

constitute the basis of an organization system of knowledge (Henderson & Cockburn, 1994; 
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Helfat & Raubitschek, 2000). Due to their path dependent evolutions, organizations develop 

highly heterogeneous systems of knowledge, competences and capabilities (Helfat & 

Raubitschek, 2000). Recombination concerns how an organization system of knowledge and the 

routines embedded within a firm’s competences may have to be untangled, altered and integrated 

with other knowledge elements and routines to create novel concepts, competencies and solutions 

(Teece et al., 1997; Galunic & Rodan, 1998; Zollo & Winter, 2002). The process entails both 

variation, intended as the use of experimentation and reconfiguration heuristics (Lei et al., 1996; 

Galunic & Rodan, 1998) and integration, whereby novelty is generates through the synthesis of 

existing knowledge and competences (Brusoni et al., 2001; Grant, 1996a; Galunic & Rodan, 

1998). Organizations devise feedback mechanisms to evaluate the internal and external fit 

between the newly developed combinations (Lei et al., 1996; Helfat & Raubitschek, 2000). 

Through these cycles, organizational learning takes place. When the feedback is positive, the new 

combination is accepted and the competences and new knowledge are retained by the 

organization. This way, the organization may employ such combinations for a number of 

purposes central to their survival and competitive advantage. 

 

Outcomes of recombination: incumbent failure 

Papers loading on the last factor deal with the outcomes and implications of failed or 

successful recombination. As the MDS suggests, most contributions loading on this factor 

focused on the emergence of novel combinations as determined by factors that are exogenous to 

the firm, and tried to understand why established organizations fail to adapt to/ develop novel 

configurations (Henderson & Clark, 1990) at given points of an industry lifecycle. Thus, research 

focused on survival or adoption as outcomes. 



20 
 

Established firms are bounded by their current managerial cognitive frames (Tripsas & 

Gavetti, 1997; Tripsas, 2000), by existing markets and design features (Christensen & Bower, 

1996; Christensen & Rosenbloom, 1996) or existing designs (Anderson & Tushman, 1990), by 

the legitimacy of established combinations (Dougherty & Heller, 1994; Garud et al., 2001) and 

tend to become more inert and fail to develop new combinations. Failure to innovate leads to 

incumbent failure.  

Yet, a few contributions highlight that overcoming these types of inertia is indeed 

possible. Ahuja and Lampert (2001) suggest that firms can overcome the familiarity, maturity 

and propinquity traps that hinder the development of innovative combinations by experimenting 

novel, emerging and pioneering technologies. Exploiting the expertise and insights of key 

individuals, incumbent can dismantle mature architectures and redeploy their existing 

combinations and existing experience in new related contexts (Burgelman, 1994; Klepper & 

Simons, 2002). It is worth pointing that the ability to overcome combinatorial inertia is certainly 

an example of organizational capability: as a result, the last three papers in the list represent a 

link between firms’ capabilities and outcomes4. 

Seen dynamically, these contributions also suggest that combinative process acts at the 

level of the industry, and that industry life cycles can be seen as characterized by an initial phase 

where all actors engage in combinatorial plays of functions and elements to define new products, 

a moment where a dominant design – or accepted architecture – emerges and a shakeout occurs 

and a maturity phase, where the actors who survived exploit the design and perform incremental 

and modular improvements of the existing product (e.g. Anderson & Tushman, 1990; Klepper & 

Simons, 2002). 

                                                 
4 Indeed, these papers (Burgelman, 1994; Tripsas & Gavetti, 2000; Ahuja & Lampert, 2001) load both on factor 1 
and on factor 3. 
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COMBINATORIAL PERSPECTIVES ON INNOVATION:  

A CRITICAL ASSESSMENT 

 

Accomplishments and shortcomings of the literature to date 

This initial analysis has been motivated by three main research questions. First, what does 

literature adopting a combinatorial perspective on innovation have accomplished so far? Second, 

how can these contributions be integrated into a coherent framework? Third, how can this 

approach be extended in future research? 

  The analysis shows that the combinatorial approach is well established in innovation 

research and widely used in organizational learning, research based view, knowledge based view 

and dynamic capability research to describe the process that originates novelty. Summarizing the 

most influential contribution in this perspective, I consider recombination as the process through 

which an actor untangles, alters and integrates existing technologies, competences, system of 

knowledge and routines, to create new stable combinations that address rapidly changing 

environments. Research in this area contributed to the emergence of the following integrative 

framework of the process combinatorial innovation (Figure 2): 

------------------------------------------ 
Insert Figure 2 about here 

------------------------------------------- 
 

The framework can be interpreted this way. Combinatorial processes start with a set of 

inputs, which can be traced back to the agent of recombination -i.e. internal- or in the 

environment. Such inputs may be material (such as physical components, parts, and tangible 

assets) or immaterial (cognitive frames, knowledge inputs, or competences). Combinatorial 
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processes are largely influenced by the architecture of such inputs. In fact, system partitions and 

interdependencies determine the size and complexity of the combinatorial space. Then a phase of 

combinatorial play occurs, which can be experimental – result of combinatorial play of individual 

bits into a system - or integrative – result of combinative routines designed to combine, integrate 

and synthesize parts and related knowledge into a whole. That is, this phase entails both variety 

generation and integration, or syntheses. The combination is then retained or discharged, 

according to the fit with hard factors (demand, technological performance) or soft factors (fit with 

organizational culture, objective, managerial cognitive frames, practices or institutional 

framework). The outcomes affect in turn the set of available inputs and the architectures in use, 

and provide the basis for future recombination, in a cycle of continuous learning.  The results of 

this process determine a range of performance outcomes, such as organizational survival, 

financial performance, product strategies and real options. 

This framework emerges from distinct models and heterogeneous theoretical roots; yet 

this combinatorial model of innovation, and the studies I considered for this review, rests on 

some shared assumptions. First, innovation does not require all components, processes and 

services that become part of a new combination to be entirely new to the world. Second, the 

notion of new combinations suggests certain cumulativeness also in innovative processes, which 

will exhibit path dependent properties. Third, combinatorial dynamics take place at all level of 

analysis, but collectives and organizations in particular, are the loci where combinatorial 

processes may be systematically applied to the development of technological solutions that foster 

the production of goods and services. 

Four major shortcomings and area for development emerged from this perspective: the 

lack of connection across levels of analysis, the use of recombination as a metaphor, the 

proliferation and reification of constructs and limited analysis of performance implications. 
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Crossing and bridging levels of analysis 

Most of the studies analyzed in this review build on a shared assumption: combinatorial 

dynamics take place at all level of analysis, but organizations are the loci where new 

combinations are used and applied to the production of goods and services (Kogut & Zander, 

1992; Grant, 1996a). Accordingly, since innovation requires turning creative ideas into 

commercially viable solutions (Schumpeter, 1939), research focused on firms as agents of 

recombination and on the process through which they apply old means to new ends (Nelson & 

Winter, 1982). This provided a greater understanding of the reason why firms exist and on the 

definition of their boundaries.  

Yet, more efforts are needed to reconnect these collective processes to lower level 

combinatorial practices and activities, and to get a better understanding of how collective and 

micro-dynamics interact. This step is fundamental for the development of a combinatorial theory 

of innovation, as all theories in social sciences need to explicitly address what has been called the 

micro-to-macro problem (Coleman, 1988: 8). That is, explanations of system behaviors need to 

explain how theoretical predictions at the micro-level translate into propositions at the macro 

level. Further contributions are needed to address the following questions: what is the link 

between combinatorial processes at different levels of analysis? To what level of analysis is it 

necessary to go to find empirical evidence of architectures and recombinant processes? For 

example, how do individually held convictions that certain elements belong together affect the 

coupling of such elements within their organization? Do concepts such as modularity or coupling 

apply also to more immaterial element that affect such as the cognitive frames and architecture 

held by individuals within organizations? Also, how can these micro-level combinatorial 
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processes be linked to firm level constructs, such as combinative capabilities or architectural 

knowledge? 

Also, the link between individual firms’ combinatorial processes and combinatorial 

dynamics at the level of the industry is an avenue worth further examination. The idea of the 

division of innovative labor (Arora, Gambardella, & Rullani, 1998) suggests that, when proper 

architectures are in place, the combinatorial process can be carried on by a number of 

organizations. The role of inter-organizational relationships in the development of complex 

combinations has only been partially explored (Garud et al., 1993; Garud et al., 1995; Brusoni et 

al., 2001). Analyzing how groups of firms manage and orchestrate distributed recombination and 

integration and how these processes interact with firm level dynamics could be a promising area 

for future research. 

 

Going beyond the metaphor 

Despite the widespread use of the combinatorial approach to innovation, more 

contributions, both theoretical and empirical, are needed to unpack the black box of 

combinatorial processes, and delve into the fundamental steps of this process. Our review of 

works in this tradition suggests a general tendency to treat recombination as a metaphor. The very 

process of recombination is often poorly described or mentioned, for example, in most empirical 

works relating given types of inputs to innovative output in mainstream management research, 

which simply assume combinatorial dynamics to be the underlying mechanisms explaining the 

input output relationship. 

Field based studies could add greater detail to our understanding of each phase of the 

combinatorial process, and of the different mechanisms enacted by different design choices and 

architectures. We need to understand whether the model described in figure 2 general, or do we 
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need to adapt it based on the agent or object of recombination. Literature would greatly benefit 

from observing the separate phases of variation, integration and selection at different levels of 

analysis, to gain an increased understanding of how such phases differ across levels of analysis 

and of the interaction between levels of analysis. For example, we need to build a better 

characterization of the process of selection that clarifies what levels of analysis concurrently 

explain fit, and to reconnect our characterization of fit to the underlying assumptions of our 

combinatorial framework. Only clarifying the uniqueness of this idea of fit vis à vis traditional 

market selection mechanisms would clarify the distinctive traits of this approach to technological 

progress. 

Econometric-based tests could also contribute to a more nuanced view of combinatorial 

models. Recent studies (Fleming, 2001; Fleming, Mingo & Chen, 2007) developed fine grained, 

patent based measures of combinatorial outcomes, which explain how much a given invention is 

re-using prior combination or producing a new combination. Such measures could be used to 

disentangle truly combinatorial outcomes and can be used and extended to other empirical 

contexts. New measures may be created applying the same logic to data other than patents. 

 

Reification of constructs and their validity 

Partially related to the previous point, the ease with which the idea of recombination has 

been used resulted in a stunning number of contributions ascribing to this perspective. This has 

resulted in a plethora of constructs, such as developed in the field, such as “architectural 

knowledge” (Henderson & Clark, 1990), “combinative capabilities” (Kogut & Zander, 1992), 

“dynamic core competencies” (Lei et al., 1996), “flexibility” (Sanchez & Mahoney, 1996), 

“dynamic capabilities” (Teece et al., 1997; Zollo & Winter, 2000), “resource recombination” 

(Galunic & Rodan, 1998), “knowledge integration” (Grant, 1996a, b; Brusoni, Prencipe & Pavitt, 
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2001), “integrative knowledge” (Helfat & Raubitschek, 2000) or “knowledge base malleability” 

(Yayavaram & Ahuja, 2008). These constructs greatly contributed to our understanding of how 

firms enact or react to combinatorial processes that lead to technological innovation.  

Yet, the use and abuse of the idea of recombination led to the reification of these 

constructs. Reification consists in the process by which the initial conceptualization of a construct 

ceases to be challenged, some of its original assumptions forgotten, and the construct becomes to 

be used as an “off-the-shelf” component to support researchers’ arguments (Rousseau & House, 

1994). Some contributions that advance these constructs locate very closely on the MDS graph, 

thus suggesting that all these constructs have been used interchangeably by following research, 

and co-cited in a significant number of works. Yet, these constructs differ somehow with respect 

to some dimensions (i.e. static-dynamic, inbound-outbound perspective). 

Though some attempts to systematize these and related innovation constructs exists 

(Gatignon et al., 2002), it would be promising to reason on the distinctiveness of such constructs, 

on the different assumptions behind them, thus providing lines for their development. In what 

way each construct advances our understanding of how combinatorial dynamics lead to new 

solutions?  This work would help to build proper measure of some constructs, given that most of 

these pieces are theoretical and even empirical research used very similar proxies or data to 

operationalize them. 

 

Understanding performance implications 

 Finally, research in this area would greatly benefit from considering the implication at 

large of organizational combinative activities. To date, a review of the papers loading on factor 3 

(outcomes of recombination) revealed that our understanding of the performance implications of 

recombination, other than successful or failed adaptation, is limited. 
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 Surely, there have been attempts in this direction. For example, a recent stream of 

research connected modular designs and organizational combinatorial processes to real options 

and competitive advantage (Baldwin & Clark, 2000; Kogut & Kulatilaka 2001). More work is 

needed to understand how firms can actively enact and orchestrate combinatorial strategies and 

exploit them through product innovation or entry in other markets. Extending our understanding 

of the process of internal and external selection would pave the way to advancements in this 

direction. 

 

CONCLUSIONS 

 

 The aim of the study was to address three related research questions: what does literature 

adopting a combinatorial perspective on innovation has accomplished so far? Second, how can 

these contributions be integrated into a coherent framework? Third, how can this approach be 

extended in future research? In order to address these questions, a bibliometric assessment of the 

most cited papers’ building upon this research trajectory was performed.  

The analysis showed that the combinatorial approach is well established in innovation 

research, as it well applies to describe evolutionary processes at different levels of analysis. 

Combinatorial processes have been widely used by different theoretical perspectives (research 

based view, knowledge based view, dynamic capability) to describe the process that originates 

innovation and to illuminate a wide range of issues, such as new product development, 

organizational learning and industry life cycles. The heterogeneous and large body of research 

building on this approach, though, can be coherently organized around three main themes. 

Understanding the link between the themes made it possible to gain a deeper understanding of the 

role of recombination in innovation, as well as of the current limitations of this perspective. 
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The study makes two important contributions. First, the results of this analysis contribute 

to research in the technology and innovation management field a framework that integrates and 

clarifies the relationship between the three core issues that characterize the process of 

recombination: (i) enabling architectures for recombination (ii) recombining as a capability (iii) 

outcomes of recombination. The model rests on a simplified picture of recombination, and tries to 

reconnect the definition and the emerging framework to their network of supporting assumptions. 

Second, focusing on the current limitations of this approach, I developed a set of criteria to assess 

and evaluate both existing and potential studies. These lines may be developed to address current 

limitations and exploit emerging research opportunities. 

The approach used in this paper has of course some limitations, which provide possible 

avenues for further developments of the study. First, the criteria used to identify the core papers 

of the combinatorial perspective is based on the impact that Henderson and Clark (1990) work 

had on subsequent research. Obviously, other choices could be possible, such as focusing on a 

core of initial contributions on the topic, or performing a keyword based search in the selected 

outlets. In this respect, a thematic analysis of the papers would help to distinguish between 

contributions where recombination is important to a paper core topic and papers that use it as an 

embellishment. Similarly, the relevance criterion used in this study favors older documents to the 

detriment of more recent ones that may be more central to the core of the recombinant approach. 

Setting year specific thresholds for the selection of the initial contributions would make the 

results more robust to right truncation biases (Acedo et al., 2006). 

Yet, the number of studies in this perspective suggests that combinatorial dynamics have 

an increasing practical and strategic relevance in technology strategy. Firms face increasingly 

fragmented markets, which demand timely and targeted innovative products, and severe pressures 

to maximize efficiency, to remain competitive in the face of worldwide producers (Baldwin & 
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Clark, 2000). Combinatorial strategies may be a way to reconcile these objectives. As Harold 

Wester (FIAT head of engineering) puts it “I will no longer reinvent the wheel each time. I will 

work instead on trying new combinations and on improving the same solution and within existing 

models. (…). The customer is interested in a fuel-efficient and well-functioning HVAC unit. 

Whether it's the same between four cars, or it uses solutions developed for other models, he 

doesn’t care. The effort we have to make is to guarantee compatibility and re-use” (Fortune, 

2007). Advancing our current understanding of the role of recombination in innovation and of its 

implications can greatly contribute to understand how companies can implement and profit from 

combinatorial strategies. 

 
REFERENCES 

 

Acedo, F. J., Barroso, C., & Galan, J. L. 2006. The Resource-Based Theory: Dissemination And 
Main Trends. Strategic Management Journal, 27(7): 621-636. 

Ahuja, G. & Katila, R. 2001. Technological Acquisitions And The Innovation Performance Of 
Acquiring Firms: A Longitudinal Study. Strategic Management Journal, 22(3): 197-220. 

Ahuja, G.  & Lampert, C. M. 2001. Entrepreneurship In The Large Corporation: A Longitudinal 
Study Of How Established Firms Create Breakthrough Inventions. Strategic 
Management Journal, 22: 521-543. 

Alexander, C. 1964. Notes on the Synthesis of Form. Cambridge, MA: Harvard University 
Press. 

Amabile, T. M. 1986. Creativity in Context. Boulder, CO: Westview Press. 

Anderson, P. & Tushman, M. L. 1990. Technological Discontinuities And Dominant Designs - A 
Cyclical Model Of Technological-Change. Administrative Science Quarterly, 35(4): 604-
633. 

Arora, A., Gambardella, A., & Rullani, E. 1998. Division of labour and the locus of inventive 
activity. Journal of Management and Governance, 1,1-21. 

Baldwin, C. Y., & Clark, K. B. 1997. Managing in the Age of Modularity. Harvard Business 
Review, 75(September-October): 84-93.  



30 
 

Baldwin, C. Y., & Clark, K. B. 2000. Design Rules. Volume 1: The Power of Modularity. 
Cambridge, Massachusetts: MIT Press. 

Basalla, G. 1988. The Evolution Of Technology. Cambridge, U.K: Cambridge University Press. 

Baum, J. A. C. & Ingram, P. 1998. Survival-Enhancing Learning In The Manhattan Hotel 
Industry, 1898-1980. Management Science, 44(7): 996-1016. 

Benner, M. & Tushman, M. L. 2003. Exploitation, Exploration, And Process Management: The 
Productivity Dilemma Revisited. Academy Of Management Review, 28(2): 238-256. 

Benner, M., 2002. Process Management And Technological Innovation: A Longitudinal Study Of 
The Photography And Paint Industries, Administrative Science Quarterly, 47(4): 676-
706. 

Blackler,  F. 1995. Knowledge, Knowledge Work and Organizations: An Overview and 
Interpretation. Organization Studies, 16 (6): 1021-1046  

Browning, T. R. 2001. Applying The Design Structure Matrix To System Decomposition And 
Integration Problems: A Review And New Directions. IEEE Transaction On 
Engineering Management, 48(3): 292-306. 

Brusoni, S., Prencipe, A. & Pavitt, K. 2001. Knowledge Specialisation, Organisational Coupling, 
And The Boundaries Of The Firm: Why Do Firms Know More Than They Make? 
Administrative Science Quarterly, 46(4): 597–621. 

Burgelman, R.A. 1994. Fading Memories - A Process Theory Of Strategic Business Exit In 
Dynamic Environments. Administrative Science Quarterly, 39(1): 24-56. 

Christensen, C.M., & Bower, J.L. 1996. Customer Power, Strategic Investment, And The Failure 
Of Leading Firms. Strategic Management Journal, 17(3): 197-218. 

Christensen, C.M. & Rosenbloom, R.S. 1995. Explaining The Attackers Advantage - 
Technological Paradigms, Organizational Dynamics, And The Value Network. Research 
Policy, 24(2): 233-257. 

Cockburn, I. M., Henderson, R. M. & Stern, S. 2000, Untangling The Origins Of Competitive 
Advantage. Strategic Management Journal, 21(2):1123-1145. 

Coleman, J. S. 1988. Social capital in the creation of human capital. American Journal of 
Sociology, 94: 95-120. 

Dougherty, D. & Hardy, C. 1996, Sustained Product Innovation In Large, Mature Organizations: 
Overcoming Innovation-To-Organization Problems. Academy Of Management Journal, 
39(5):1120-1153. 

Dougherty, D. & Heller, T. 1994. The Illegitimacy Of Successful Product Innovation In 
Established Firms. Organization Science, 5(2): 200-218. 



31 
 

Edmondson, A.C., Bohmer, R. M. & Pisano, G.P., 2001. Disrupted Routines: Team Learning 
And New Technology Implementation In Hospitals. Administrative Science Quarterly, 
46(4): 685-716. 

Edmondson, 1999. Psychological Safety And Learning Behavior In Work Teams. Administrative 
Science Quarterly, 44(2): 350-383. 

Faris, S. 2007. A car company can make a turn around: Look at Fiat. Fortune, 14/5/2007. 

Fleming, L. 2001. Recombinant Uncertainty In Technological Search. Management Science, 47: 
117-132. 

Fleming, L., Mingo, S., & Chen, D. 2007. Collaborative Brokerage, Generative creativity, and 
Creative Success. Administrative Science Quarterly, 52: 443-475. 

Galunic, D. C., & Rodan, S. 1998. Resource Recombinations In The Firm:  Knowledge 
Structures And The Potential For Schumpeterian Innovation. Strategic Management 
Journal, 17: 1193-1201. 

Garcia, R. & Calantone, R. 2002. A Critical Look At Technological Innovation Typology And 
Innovativeness Terminology: A Literature Review. Journal of Product Innovation 
Management, 19(2):110-132. 

Gartner, W.B., Davidsson, P., & Zahra SA. 2006. Are you talking to me? The nature of 
community in entrepreneurship scholarship. Entrepreneurship Theory and Practice, 30 
(3): 321-331. 

Garud, R. & Kumaraswamy, A. 1993. Changing Competitive Dynamics In Network Industries - 
An Exploration Of Sun Microsystems Open Systems Strategy. Strategic Management 
Journal, 14(5): 351-369. 

Garud, R. & Kumaraswamy, A. 1995. Technological And Organizational Designs For Realizing 
Economies Of Substitution. Strategic Management Journal, 16:93-109. 

Garud, R., Jain, S., & Kumaraswamy, A. 2001. Institutional Entrepreneurship In The 
Sponsorship Of Common Technological Standards: The Case Of Sun Microsystems And 
Java. Academy Of Management Journal, 45(1):196-214. 

Gatignon, H., Tushman, M. L., Smith, W. & Anderson, P. 2002, A Structural Approach To 
Assessing Innovation: Construct Development Of Innovation Locus, Type, And 
Characteristics. Management Science, 48(9):1103-1122. 

Gilfillan S. 1935. Inventing The Ship. Chicago, Il: Follett. 

Grant, R. M. & Baden-Fuller, C. 2004, A Knowledge Accessing Theory Of Strategic Alliances. 
Journal of Management Studies, 41(1):61-84. 



32 
 

Grant, R. M. 1996a. Toward A Knowledge-Based Theory Of The Firm. Strategic Management 
Journal, 17:109-122. 

Grant, R. M. 1996b. Prospering In Dynamically-Competitive Environments: Organizational 
Capability As Knowledge Integration. Organization Science, 7(4): 375-387. 

Hansen, M. T. 1999, The Search-Transfer Problem: The Role Of Weak Ties In Sharing 
Knowledge Across Organization Subunits. Administrative Science Quarterly, 44(1): 82-
111. 

Helfat, C. E. & Raubitschek, R. S. 2000, Product Sequencing: Co-Evolution Of Knowledge, 
Capabilities And Products. Strategic Management Journal, 21(3): 961-979. 

Henderson, R. M. & Cockburn, I. M. 1994, Measuring Competence - Exploring Firm Effects In 
Pharmaceutical Research. Strategic Management Journal, 15: 63-84. 

Henderson, R. M. & Clark, K. B. 1990. Architectural Innovations: The Reconfiguration Of 
Existing Product Technologies And Failure Of Established Firms. Administrative Science 
Quarterly, 35: 9-30. 

Hobday, M. 1998, Product Complexity, Innovation And Industrial Organisation. Research 
Policy, 26(6): 689-710. 

Katila, R. & Ahuja, G. 2002, Something Old, Something New: A Longitudinal Study Of Search 
Behavior And New Product Introduction. Academy Of Management Journal, 45(6): 
1183-1194. 

Kauffman S. 1993. The Origins of Order: Self Organization and Selection in Evolution. New 
York: Oxford University Press.  

Kessler ,E. H. & Chakrabarti, A. K. 1996, Innovation Speed: A Conceptual Model Of Context, 
Antecedents, And Outcomes. Academy Of Management Review, 21(4): 1143-1191. 

Klepper,  S. & Simons, K. L. 2000, Dominance By Birthright: Entry Of Prior Radio Producers 
And Competitive Ramifications In The Us Television Receiver Industry. Strategic 
Management Journal, 21(2): 997-1016. 

Kogut, B. & Zander, U. 1992. Knowledge Of The Firm, Combinative Capabilities, And The 
Replication Of Technology. Organization Science, 3(3): 383-397. 

Kotha, S. 1995, Mass Customization - Implementing The Emerging Paradigm For Competitive 
Advantage. Strategic Management Journal, 16: 21-42. 

Krishnan, V. & Ulrich, K. T. 1996, Product Development Decisions: A Review Of The 
Literature. Management Science, 47(1): 1-21. 



33 
 

Lee, C., Lee, K., & Pennings, J. M. 2001, Internal Capabilities, External Networks, And 
Performance: A Study On Technology-Based Ventures. Strategic Management Journal, 
22(5): 615-640. 

Lei, D., Hitt, M. A. & Bettis, R. 1996. Dynamic Core Competences Through Meta-Learning And 
Strategic Context. Journal of Management, 22(4): 549-569. 

Leonard-Barton, D. 1996. Core Capabilities And Core Rigidities - A Paradox In Managing New 
Product Development, Strategic Management Journal, 13: 111-125. 

Levinthal, D. A. 1997, Adaptation On Rugged Landscapes. Management Science, 43(7): 934-
950. 

Lieberman, M. B. & Montgomery D. B. 1998, First-Mover (Dis)Advantages: Retrospective And 
Link With The Resource-Based View. Strategic Management Journal, 19(12): 1111-
1125. 

Lorenzoni, G. & Lipparini, A. 1999, The Leveraging Of Interfirm Relationships As A Distinctive 
Organizational Capability: A Longitudinal Study. Strategic Management Journal, 20(4): 
317-338. 

Madhavan, R; Koka, B. R. & Prescott, J.E. 1998. Networks In Transition: How Industry Events 
(Re)Shape Interfirm Relationships. Strategic Management Journal, 19(5): 439-459. 

Malerba, 2002. Sectoral Systems Of Innovation And Production. Research Policy, 31(2): 247-
264. 

Matusik S. F. & Hill, C. W. L. 1998, The Utilization Of Contingent Work, Knowledge Creation, 
And Competitive Advantage. Academy Of Management Review, 23(4): 680-697. 

McCain, K.W. 1990. Mapping authors in intellectual space: A technical overview. Journal of the 
American Society for Information Science, 41 (6): 433-443.  

Mcgrath, R. G. 2001. Exploratory Learning, Innovative Capacity, And Managerial Oversight. 
Academy Of Management Journal, 44(1): 118-131. 

McKinley, W., Zhao, J., & Rust, K. 2000. A sociocognitive interpretation of organizational 
downsizing. Academy of Management Review, 25: 227-243. 

Meyer, M.H., Pereira, T.S., Persson, O., & Granstrand O. 2004. The scientometric world of Keith 
Pavitt - A tribute to his contribution to research policy and patent analysis. Research 
Policy, 33 (9): 1405-1417. 

Meyer, M.H., Tertzakian, P., & Utterback, J. M. 1997, Metrics For Managing Research And 
Development In The Context Of The Product Family. Management Science, 43(1): 88-
111. 



34 
 

Meyer, M.H. & Utterback, J. M. 1993. The Product Family And The Dynamics Of Core 
Capability. MIT Sloan Management Review, 34(3): 29-47. 

Mezias S. J. & Glynn, M. A. 1993, The 3 Faces Of Corporate Renewal - Institution, Revolution, 
And Evolution. Strategic Management Journal, 14(2): 77-101. 

Mitchell W. & Singh, K. 1996. Survival Of Businesses Using Collaborative Relationships To 
Commercialize Complex Goods. Strategic Management Journal, 17(3): 169-195. 

Nelson, R. R. & Winter S. G. 1982. An Evolutionary Theory Of Economic Change. Cambridge, 
Ma: Belknap Press/Harvard University Press.  

Ocasio, W. 1997. Towards An Attention-Based View Of The Firm. Strategic Management 
Journal, 18:187-206. 

Poincaré, H. 1921. The Foundations of Science: Science and Hypothesis, the Value of Science, 
Science and Method. G.B. Halstead, trans. New York: Science Press. 

Powell, W. W. 1990. Neither market nor hierarchy: Network forms of organization. Research in 
organizational behavior, 12, 295-336. 

Ramos-Rodríguez,  A.R., & Ruíz-Navarro, J. 2004. Changes in the intellectual structure of 
strategic management research: A bibliometric study of the Strategic Management 
Journal, 1980- 2000. Strategic Management Journal, 25 (10): 981-1004.  

Rosenkopf, L. & Nerkar, A. 2001, Beyond Local Search: Boundary-Spanning, Exploration, And 
Impact In The Optical Disk Industry. Strategic Management Journal, 22(4):287-306. 

Rousseau, D. M., & House, R. J. 1994. Meso organizational behavior: Avoiding three 
fundamental biases. Journal of Organizational Behavior, 1: 13-30. 

Rowlands, I. 1999. Patterns of author co-citation in information policy: evidence of social, 
collaborative and cognitive tructure. Scientometrics, 44(3): 533-546. 

Sanchez, R. & Mahoney, J. T. 1996, Modularity, Flexibility, And Knowledge Management In 
Product And Organization Design. Strategic Management Journal, 17: 63-76. 

Sanchez, R. 1995, Strategic Flexibility In Product Competition. Strategic Management Journal, 
16: 135-159. 

Schilling, M. A. 2000. Toward A General Modular Systems Theory And Its Application To 
Interfirm Product Modularity. Academy Of Management Review, 25(2): 312-334. 

Schumpeter J. 1939. Business Cycles. New York: McGraw-Hill. 

Simon, H. 1962. The architecture of complexity. Proceedings of the American Philosophical 
Society, 106: 467-482. 



35 
 

Simonton, D.K. 1999. Origins of Genius: Darwinian Perspectives on Creativity. New York: 
Oxford University Press. 

Small, H. 1974. Co-citation in the scientific literature: a new measure of the relationship between 
two documents. Essays on Information Scientist, 2: 28-31. 

Sorensen J. B. & Stuart, T. E. 2000. Aging, Obsolescence, And Organizational Innovation, 
Administrative Science Quarterly, 45(1): 81-112. 

Steward, D. V. 1981. System Analysis and Management: Structure, Strategy, and Design. New 
York/Princeton: Petrocelli Books. 

Stuart, T. E. & Podolny, J. M. 1996, Local Search And The Evolution Of Technological 
Capabilities. Strategic Management Journal, 17(): 21-38. 

Suarez, F.F. & Utterback, J. M. 1995, Dominant Designs And The Survival Of Firms. Strategic 
Management Journal, 16(6): 415-430. 

Takeishi, A. 2001, Bridging Inter- And Intra-Firm Boundaries: Management Of Supplier 
Involvement In Automobile Product Development. Strategic Management Journal, 
22(5): 403-433. 

Teece D. J., Pisano, G., & Shuen, A. 1997, Dynamic Capabilities And Strategic Management, 
Strategic Management Journal, 18(7): 509-533. 

Thomason, B. C. 1988. Making sense of reification: Alfred Schutz and constructionist theory. 
Atlantic Highlands, NJ: Humanities Press. 

Tripsas, M. & Gavetti, G. 2000, Capabilities, Cognition, And Inertia: Evidence From Digital 
Imaging. Strategic Management Journal, 21(2): 1147-1161. 

Tripsas, M. 2000, Unraveling The Process Of Creative Destruction: Complementary Assets And 
Incumbent Survival In The Typesetter Industry. Strategic Management Journal, 18: 119-
142. 

Ulrich, K. J. 1995, The Role Of Product Architecture In The Manufacturing Firm. Research 
Policy, 24(3): 419-440. 

Usher A. 1954. A History Of Mechanical Invention. Cambridge, MA: Dover. 

Utterback J. M. & Suarez, F. F. 1993, Innovation, Competition, And Industry Structure. 
Research Policy, 22(1): 1-21. 

Van Bosch, F.A.J., Volberda, H.W. & de Boer, M. 1999, Coevolution Of Firm Absorptive 
Capacity And Knowledge Environment: Organizational Forms And Combinative 
Capabilities. Organization Science, 10(5): 551-568. 



36 
 

Veerbek A, Debackere K., Luwel M. & Zimmerman E. 2002. Measuring Progress And Evolution 
In Science And Technology: The Multiple Uses Of Bibliometric Indicators. International 
Journal Of Management Reviews, 4(2): 179-211 

Wade, J. 1995, Dynamics Of Organizational Communities And Technological Bandwagons - An 
Empirical-Investigation Of Community Evolution In The Microprocessor Market. 
Strategic Management Journal, 16: 111-133. 

White, H. D. 1990. Author co-citation analysis: overview and defense. In Scholarly 
Communication and Bibliometrics. Newbury Park, CA: Sage; 84–106 

White, H. D., & Griffith, B. C. 1981. Author co-citation: a literature measure of intellectual 
structure. Journal of American Society for Information Science, 32: 163-171. 

Wolfe, R. A. 1994, Organizational Innovation - Review, Critique And Suggested Research 
Directions. Journal of Management Studies, 31(3): 405-431. 

Zajac,  E.J., Kraatz, M.S. & Bresser, R. K. F. 2000, Modeling The Dynamics Of Strategic Fit: A 
Normative Approach To Strategic Change. Strategic Management Journal, 21(4): 429-
453. 

Zollo M. & Winter, S. G. 2002. Deliberate Learning And The Evolution Of Dynamic 
Capabilities. Organization Science, 13(3):339-351. 

Zuccala, A. 2006. Modeling the invisible college. Journal of the American Society for 
Information Science, 57 (2): 152-168. 

 



37 
 

TABLE 1 

Reference Definition

Poincaré, 1908 “the finest ideas in science (...) are those which reveal to us 
unsuspected kinship between other facts, long known, but wrongly 
believed to be strangers to one another. Amongst chosen 
combinations the most fertile will often be those formed of elements 
drawn from domains which are far apart”

Poincaré, 1913 “… ideas rose in crowds; I felt them collide until pairs interlocked, so 
to speak, making a stable combination”

Usher, 1927 “invention finds its distinctive feature in the constructive assimilation 
of pre-existing elements into new synthesis, new patterns  or new 
configurations”

Einstein, quoted in Simonton, 1999 “…combinatory play seems to be the essential feature in productive 
thought” 

Schumpeter, 1934 "the essence of innovation is carrying out of new combinations (…) 
development consists primarily in employing existing resources in a 
different way, in doing new things with them”

Schumpeter, 1939 “innovation combines components in a new way, or it consists in 
carrying out new combinations”

Penrose, 1959 “The services yielded by resources are a function of the way in which 
they are used—exactly the same resources when used for different 
purposes or in different ways and in combination with different types 
or amounts of other resources provides a different service or set of 
services … unused productive services are a source of competitive 
advantage (…) they facilitate the introduction of new combination of 
resources - innovation - within the firm”

Nelson & Winter, 1982 “… the creation of any sort of novelty in art, science, or practical life - 
consists to a substantial extent of a recombination of conceptual and 
physical materials that were previously in existence”  

 
TABLE 2 

 
Journal Number of articles
STRATEGIC MANAGEMENT JOURNAL 79
RESEARCH POLICY 71
JOURNAL OF PRODUCT INNOVATION MANAGEMENT 39
ORGANIZATION SCIENCE 38
MANAGEMENT SCIENCE 35
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT 25
INDUSTRIAL AND CORPORATE CHANGE 25
ACADEMY OF MANAGEMENT JOURNAL 24
ACADEMY OF MANAGEMENT REVIEW 24
JOURNAL OF MANAGEMENT STUDIES 19
ADMINISTRATIVE SCIENCE QUARTERLY 17
CALIFORNIA MANAGEMENT REVIEW 9
SLOAN MANAGEMENT REVIEW 6
JOURNAL OF MANAGEMENT 5
ORGANIZATION STUDIES 1
Total 417  
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TABLE 3 
 

List of articles 

Selected Papers
Ahuja & Katila, 2001, Strategic Management Journal , 22(3): 197-220.
Ahuja & Lampert, 2001, Strategic Management Journal , 22(3): 521-543.
Anderson & Tushman, 1990, Administrative Science Quarterly , 35(4): 604-633.
Baum & Ingram, 1998, Management Science , 44(7): 996-1016.
Benner & Tushman, 2003, Academy of Management Review , 28(2): 238-256.
Benner, 2002, Administrative Science Quarterly , 47(4): 676-706.
Blanckler, 1995, Organization Studies , 16(6): 1021-1046.
Browning, 2001, IEEE Transaction on Engineering Management,  48(3): 292-306.
Brusoni et al., 2001, Administrative Science Quarterly , 46(4): 597-621.
Burgelman, 1994, Administrative Science Quarterly , 39(1): 24-56.
Christensen & Bower, 1996, Strategic Management Journal , 17(3): 197-218.
Christensen & Rosenbloom, 1995, Research Policy , 24(2): 233-257.
Cockburn et al., 2000, Strategic Management Journal , 21(2): 1123-1145.
Dougherty & Hardy, 1996, Academy of Management Journal , 39(5): 1120-1153.
Dougherty & Heller, 1994, Organization Science , 5(2): 200-218.
Edmondson et al., 2001, Administrative Science Quarterly , 46(4): 685-716.
Edmondson, 1999, Administrative Science Quarterly , 44(2): 350-383.
Fleming, 2001, Management Science , 47(1):  117-132.
Galunic & Rodan, 1998, Strategic Management Journal , 19(12):  1193-1201.
Garcia & Calantone, 2002, Journal of Product Innovation Management , 19(2):  110-132.
Garud & Kumaraswamy, 1993, Strategic Management Journal , 14(5):  351-369.
Garud & Kumaraswamy, 1995, Strategic Management Journal , 16:  93-109.
Garud et al., 2001, Academy of Management Journal , 45(1):  196-214.
Gatignon et al., 2002, Management Science , 48(9):  1103-1122.
Grant & Baden-Fuller, 2004, Journal of Management Studies , 41(1): 61-84.
Grant, 1996a, Strategic Management Journal , 17: 109-122.
Grant, 1996b, Organization Science , 7(4): 375-387.
Hansen, 1999, Administrative Science Quarterly , 44(1): 82-111.
Helfat & Raubitschek, 2000, Strategic Management Journal , 21(2): 961-979.
Henderson & Cockburn, 1994, Strategic Management Journal , 15: 63-84.
Hobday, 1998, Research Policy , 26(6): 689-710.
Katila & Ahuja, 2002, Academy of Management Journal , 45(6): 1183-1194.
Kessler & Chakrabarti, 1996, Academy of Management Review , 21(4): 1143-1191.
Klepper & Simons, 2000, Strategic Management Journal , 21(2): 997-1016.
Kogut & Zander, 1992, Organization Science , 3(3): 383-397.
Kotha, 1995, Strategic Management Journal , 16: 21-42.
Krishnan & Ulrich, 1996, Management Science , 47(1): 1-21.
Lee et al., 2001, Strategic Management Journal , 22(5): 615-640.
Lei, Hitt & Bettis, 1996, Journal of Management , 22(4): 549-569.
Leonardbarton, 1996, Strategic Management Journal , 13: 111-125.
Levinthal, 1997, Management Science , 43(7): 934-950.
Lieberman & Montgomery, 1998, Strategic Management Journal , 19(12): 1111-1125.  
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Lorenzoni & Lipparini, 1999, Strategic Management Journal , 20(4): 317-338.
Madhavan et al., 1998, Strategic Management Journal , 19(5): 439-459.
Matusik & Hill, 1998, Academy of Management Review , 23(4): 680-697.
McGrath. 2001, Academy of Management Journal , 44(1): 118-131.
Meyer & Utterback, 1993, MIT Sloan Management Review , 34(3): 29-47.
Meyer et al., 1997, Management Science , 43(1): 88-111.
Mezias & Glynn, 1993, Strategic Management Journal , 14(2): 77-101.
Mitchell & Singh, 1996, Strategic Management Journal , 17(3): 169-195.
Ocasio, 1997, Strategic Management Journal , 18: 187-206.
Rosenkopf & Nerkar, 2001, Strategic Management Journal , 22(4): 287-306.
Sanchez & Mahoney, 1996, Strategic Management Journal , 17: 63-76.
Sanchez, 1995, Strategic Management Journal , 16: 135-159.
Schilling, 2000, Academy of Management Review , 25(2): 312-334.
Sorensen & Stuart, 2000, Administrative Science Quarterly , 45(1): 81-112.
Stuart & Podolny, 1996, Strategic Management Journal , 17: 21-38.
Suarez & Utterback, 1995, Strategic Management Journal , 16(6): 415-430.
Takeishi, 2001, Strategic Management Journal , 22(5): 403-433.
Teece et al., 1997, Strategic Management Journal , 18(7): 509-533.
Tripsas & Gavetti, 2000, Strategic Management Journal , 21(2): 1147-1161.
Tripsas, 2000, Strategic Management Journal , 18: 119-142.
Ulrich, 1995, Research Policy , 24(3): 419-440.
Utterback & Suarez, 1993, Research Policy , 22(1): 1-21.
Van den Bosh et al., 1999, Organization Science , 10(5): 551-568.
Wade, 1995, Strategic Management Journal , 16: 111-133.
Wolfe, 1994, Journal of Management Studies , 31(3): 405-431.
Zollo & Winter, 2002, Organization Science , 13(3): 339-351.
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TABLE 4 
 

Factor Analysis 

1 2 3
Galunic and Rodan, 1998 0,979
Lei, Hitt and Bettis, 1996 0,976
Van den Bosh et al., 1999 0,974
Grant and Baden-Fuller, 2004 0,968
Kogut and Zander, 1992 0,967
Grant, 1996b 0,966
Matusik and Hill, 1998 0,964
Grant, 1996a 0,952
Lorenzoni and Lipparini, 1999 0,944
Hansen, 1999 0,944
Henderson and Cockburn, 1994 0,942
Zollo and Winter, 2002 0,938
Helfat and Raubitschek, 2000 0,936
Lee et al., 2001 0,925
Cockburn et al., 2000 0,911
Baum and Ingram, 1998 0,885
Leonardbarton, 1996 0,883
Ahuja and Katila, 2001 0,870
Blanckler, 1995 0,869
Mitchell and Singh, 1996 0,854
Ocasio, 1997 0,811
Teece et al., 1997 0,806
Ahuja and Lampert, 2001 0,784
Levinthal, 1997 0,770 0,576
McGrath. 2001 0,761
Benner and Tushman, 2003 0,753
Rosenkopf and Nerkar, 2001 0,746
Katila and Ahuja, 2002 0,746
Fleming, 2001 0,714
Sorensen and Stuart, 2000 0,708
Takeishi, 2001 0,689 0,551
Edmondson, 1999 0,677
Dougherty and Hardy, 1996 0,640 0,569
Madhavan et al., 1998 0,640
Edmondson et al., 2001 0,629

Factors
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1 2 3
Kotha, 1995 0,951
Sanchez and Mahoney, 1996 0,893
Schilling, 2000 0,876
Krishnan and Ulrich, 1996 0,867
Garud and Kumaraswamy, 1995 0,865
Sanchez, 1995 0,865
Ulrich, 1995 0,853
Garud and Kumaraswamy, 1993 0,853
Meyer and Utterback, 1993 0,850
Brusoni et al., 2001 0,833
Hobday, 1998 0,825
Browning, 2001 0,800
Anderson and Tushman, 1990 0,892
Tripsas, 2000 0,830
Garcia and Calantone, 2002 0,824
Gatignon et al., 2002 0,807
Klepper and Simons, 2000 0,806
Lieberman and Montgomery, 1998 0,802
Christensen and Bower, 1996 0,776
Christensen and Rosenbloom, 1995 0,776
Suarez and Utterback, 1995 0,757
Utterback and Suarez, 1993 0,755
Burgelman, 1994 0,577 0,730
Wade, 1995 0,692
Tripsas and Gavetti, 2000 0,628 0,688
Garud et al., 2001 0,664
Mezias and Glynn, 1993 0,591
Dougherty and Heller, 1994 0,588

Factors

 
 

Extraction Method: Principal Component Analysis.  
Rotation Method: Varimax with Kaiser Normalization. 
Rotation converged in 5 iterations. 
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FIGURE 2 
 

A combinatorial view of technological innovation: an integrative framework 
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APPENDIX A 

 
 The extraction method I used was principal component analysis and I used 

varimax rotation of the extracted factors to interpret the results. The number of extracted 

factors was fixed by studying the screeplot rather than by using Kaiser’s criterion. 

Kaiser’s criterion for factor extraction is accurate when there are less than 30 variables 

with communalities after extraction higher than 0.7 or, in the case of more than 230 with 

communalities, after extraction higher than 0.6. Since we do not fit in either case, having 

67 variables with communalities, after extraction, all higher than 0.73, the use of the 

screeplot is justified.  

 Three papers did not load on any factor (Benner, 2002; Wolfe, 1994; Kessler & 

Chackrabarti, 1996). 
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Essay 2 

 

 

NETWORKS AS PIPES AND WELLSPRINGS: EXPLORING THE LINK BETWEEN 

FIRM AND NETWORK DYNAMICS IN THE INVENTIVE PROCESS  

 

 

ABSTRACT 

 

This paper sets out to integrate two well-established, complementary, and yet unrelated views on 

the inventive process. On the one hand, it has been argued that a firm’s ability to generate new 

technological inventions is related to firm’s network position. This argument rests on the 

presumption that inter-firm networks act as “pipes” that funnel different learning opportunities to 

different network positions and, hence, to different firms. On the other hand, it has been argued 

that a firm’s inventive performance depends on its organizational capabilities, and particularly its 

assimilative and recombinant capabilities. We develop a model that integrates arguments from 

both views. By so doing, we generate a set of novel testable hypotheses at both the firm- and the 

network-level. Based on an analysis of the semiconductor industry over the period 1975-2001, 

our hypotheses are corroborated. 

 

 

Keywords: inventiveness, inter-organizational networks, recombination, assimilative capabilities 
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The dynamics by which firms generate technological inventions can hardly be understood 

without taking into account the organizational field within which those dynamics unfold 

(Tushman & Rosenkopf, 1992; Davis & Marquis, 2005). Firms extensively derive ideas for new 

technologies from other firms, and quite often the frontier of technological knowledge is 

advanced by a concatenation of inventions that cut across organizational boundaries (Utterback, 

1974). Accordingly, firms’ inventive performance depends to a relevant degree on their ability to 

assimilate the technological knowledge residing outside their boundaries (Cohen & Levinthal 

1990, 1994; Lane & Lubatkin, 1998; Van Den Bosch, Volbreda, & De Boer, 1999; Zahra & 

George, 2002), and this is particularly true in organizational fields where technologies are 

complex, dispersed, and rapidly expanding. Because one important way in which firms acquire 

external knowledge is by engaging in collaborative relationships with other firms (Hamel, 1991; 

Ahuja, 2000; Hoang & Rothaermel, 2005), a sizeable body of research has studied the inventive 

process by conceiving firms as nodes interconnected by a network of collaborations (e.g., Ahuja, 

2000; Stuart, 2000; Zaheer & Bell, 2005). 

Research in this area has typically conceptualized inter-organizational networks as 

“pipes”, or “channels”, funneling different knowledge streams and hence different opportunities 

for learning and innovation, to different network positions (Powell, Koput, & Smith-Doerr, 1996; 

Podolny, 2001; Owen Smith & Powell, 2004). This perspective proved very useful in explaining 

how the inventive process is influenced by the uneven structure of knowledge diffusion in a field. 

For example, Powell and colleagues (1996) analyzed the commercial biotech field to show that 

exposition to the knowledge circulating through an inter-organizational alliance network leads to 

increased rates of learning and innovation. Similarly, Ahuja (2000) found that the inventive 

performance of the firms operating in the international chemical industry is systematically related 

to the position firms occupy within the network of alliances. Extending this argument, other 
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studies suggested that the value of being exposed to the knowledge circulating through an inter-

organizational network is contingent on partner characteristics (Stuart, 2000; Zaheer & Bell, 

2005; Hoang & Rothaermel, 2005). 

The emphasis this line of inquiry has placed on the role of knowledge diffusion across 

firms has corresponded to a tendency to abstract away from the role the firms themselves play in 

the inventive process. The diffusion of technological knowledge throughout a network, however, 

is driven by two mechanisms that are strictly inherent to the level of the firm. First, technological 

knowledge can diffuse from a firm to another only if the former generates new technological 

knowledge. Second, technological knowledge can diffuse to a firm from another only if the 

former is able to assimilate1 that external knowledge. The networks-as-pipes metaphor evokes a 

somewhat passive image of the firm as a recipient of the knowledge that accrues to its network 

position. However, both to generate and to assimilate knowledge firms must build costly and hard 

to develop organizational routines, practices and processes (Blackler, 1995). In fact, it has been 

argued that the most important function of the firm lies in its capacity to build and govern such 

capabilities and that variance across firms with respect to these capabilities is a key source of 

firm performance differentials (Kogut & Zander, 1992). 

Our contention in this paper is that a vantage point can be gained by better explicating the 

relation between the network structure of knowledge diffusion, on the one hand, and the firm-

level processes of knowledge generation and assimilation, on the other. Extending the metaphor 

mentioned earlier, we suggest that in addition to pipes funneling knowledge among firms, inter-

firm networks encompass knowledge wellsprings, i.e. firms that by their knowledge 

recombination activities continuously generate and renew the knowledge flowing through the 
                                                 
1 Throughout the paper, we follow Zahra and George (2002: 189) in defining knowledge assimilation as a firm’s 
ability to “analyze process, interpret, and understand the information obtained from external sources.” As such, a 
firm’s knowledge assimilation capabilities constitute a key component of firm’s absorptive capacity (Cohen & 
Levinthal, 1990, Zahra & George, 2002; Lane, Koka & Pathak, 2006).   
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network at any point in time. By more explicitly relating the network-level dynamics of 

knowledge diffusion to the firm-level mechanisms of knowledge assimilation and generation, the 

paper aims to achieve a fourfold objective.  

First, on a general level, the paper illuminates the understudied link between firms and 

networks in the inventive process. By so doing, our study responds to the call for mechanism-

based organizational research that takes explicitly into account the duality inevitably existing 

between firms and inter-organizational fields (Davis & Marquis, 2005). Similar to other areas of 

organizational research, most extant studies of the inventive process focused either on the firm or 

on the inter-firm network. Accordingly, two lines of inquiry have developed largely independent 

of each other. By contrast, this paper represents an attempt to integrate important notions and 

theoretical arguments from both research traditions, with the end to gain novel insights about, and 

systematize our understanding of, the inventive process. The paper shows that firm- and network- 

level mechanisms do interact at some crucial junction of the inventive process, and much can be 

learned by more carefully exploring these interactions.  

Second, the paper furthers our understanding of how inter-firm network structure relates 

to firm performance. Namely, it has been shown that over time network structures tend to 

stabilize and reproduce themselves (White, 1981, Walker, Kogut, & Shan, 1997), so that once a 

firm has gained a favorable network position, it will tend to benefit from it indefinitely in the 

future (Podolny, 1993). By contrast, our proposed analytical perspective emphasizes that even if 

network structures stabilize, the knowledge circulating through those structures is continuously 

transformed and renewed by the firms populating the network. Accordingly, we will argue and 

show that net of positional benefits, the knowledge a firm can assimilate and recombine at any 

point in time through its network, crucially depend on the inventiveness of its network contacts at 

that specific point in time.  
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Third, the paper sheds new light on the important debate about the putative effects of 

closed versus brokering networks of knowledge (Brass, Galaskiewicz, Greve, & Tsai, 2004). 

Prior research has extensively debated whether a firm’s inventive performance is facilitated when 

the firm occupies a brokering position within the knowledge network or, conversely, when it 

occupies a closed position. To date, however, the empirical evidence is mixed. For example, 

Ahuja’s (2000) study of the international chemical industry shows that firms’ inventiveness 

increases when firms have many technical collaboration ties to densely connected contact firms; 

similarly, Rowley and colleagues (2000), Obstfield (2005) and Uzzi and Spiro (2005) provide 

evidence that network closure improves creativity and firm’s knowledge generation. On the 

contrary, several studies (Baum, Calabrese, & Silverman, 2000; Ruef, 2002; Zaheer & Bell, 

2005) find that networks giving access to diverse knowledge has a positive effect on 

inventiveness. This paper shows that which of the two positions is most beneficial depends on the 

firm ability to assimilate knowledge from inventive contacts. Namely, occupying a brokering 

position is advantageous to the extent that a firm draws from slow innovators; however, when a 

firm’s assimilates knowledge from technologically prolific contacts, being embedded in a closed 

network facilitates the recombination of their rich technological spillovers. 

  Fourth, by concurrently treating the inventive process at both the firm- and the network-

level, our proposed analytical perspective yields a non-trivial insight on the issue of “how 

collective outcomes might be generated in inter-organizational networks” (Provan, Fish & Sidow, 

2007:  480). Namely, we provide some evidence that inter-firm networks have an inherent 

tendency to partition into dense clusters of either technologically prolific or technologically 

sterile firms. Furthermore, we show that the technologically prolific clusters coalesce towards the 

core of the network, while the technologically sluggish clusters remain mostly confined within its 

periphery.  
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To further explain and test our arguments, we proceed as follows. We begin by 

elaborating our view of the inventive process in the context of inter-firm networks and, 

accordingly, we present a model of knowledge networks encompassing both “pipes” and 

“wellsprings”. Against the background of this network model, we then develop our hypotheses. 

To disentangle empirically knowledge generation and knowledge assimilation dynamics, and 

hence to operationalize our proposed model of knowledge network, we focus on a field where the 

bulk of technological developments gets systematically codified and patented – the 

semiconductors field between 1975 and 2001. In that context, we are able to follow Zahra and 

George’s suggestion to model firms’ ability to assimilate each other’s knowledge based on cross-

firm citation patterns (Zahra & George, 2002: 199). Having discussed the empirical context, the 

operationalization of the variables, and the statistical methods, we present the results of our 

analyses. We conclude the paper by elaborating on the implications and limitations of the study, 

and by pointing out which steps may be taken in order to extend this line of research. 

 

THEORETICAL FRAMEWORK 

 

Recombinant capabilities 

How do firms generate new technological knowledge? A good deal of consensus has 

formed around the view that the inventive process is a problem-solving endeavor wherein new 

knowledge is generated by recombining existing knowledge in novel ways (Fleming, 2001). 

According to this notion, new technical solutions are discovered through recombination of 

knowledge embodied in existing technological components (Gilfillan, 1935; Schumpeter, 1939; 

Usher, 1954; Nelson & Winter, 1982; Fleming, 2001) or through reconfigurations of existing 

technological architectures (Henderson & Clark, 1990). Through knowledge recombination, 
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firms discover new technological trajectories (Schumpeter, 1939), or new ways “to exploit [their] 

knowledge of the unexplored potential of the technology” (Kogut & Zander, 1992: 391).  

As firms’ recombinant capabilities evolve in a path-dependent fashion, firms tend to 

develop distinctive knowledge bases as well as distinctive trajectories of technological 

accumulation (Patel & Pavitt, 1997; Tsai, 2001; Jacobides & Winter, 2005). Accordingly, firms 

vary widely in their inventive performance (Ahuja, 2000; Katila & Ahuja, 2002; Yayavaram & 

Ahuja, 2008), and this variance is apparent both across and within technological sectors (Dosi, 

1982). Although firms’ ability to creatively recombine knowledge from within their own 

technological base is strategically pivotal (Tsai, 2001; Nerkar & Parachuri, 2005; Miller, Fern & 

Cardinal, 2007), however, a large and increasing share of their recombinant inputs are taken from 

other firms (Powell et al., 1996). Hence, “firm-level technological trajectories influence, and are 

influenced by, trajectories of other firms” (Rosenkopf & Nerkar, 2001: 291). This notion prompts 

the question of how firms can integrate externally generated technological knowledge into their 

own technological trajectory – or, said otherwise, of how technological knowledge diffuses 

across firms in the inventive process. 

 

Assimilative capabilities 

To integrate external technological knowledge into their own technological trajectory, 

firms must learn to analyze, interpret, and understand other firms’ technological trajectories 

(Zahra & George 2002; Hoang & Rothaermel, 2005). Accordingly, having access to externally 

generated knowledge is in general not enough to internalize it. To the contrary, specialized and 

costly organizational routines, practices and processes must be developed in order to both make 

sense of, and act upon, the heuristics embodied in the knowledge generated by other firms 

(Leonard-Barton, 1995). In the absence of such “assimilative capabilities” (Zahra & George, 
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2002), technological knowledge cannot diffuse across firms. For example, in the semiconductors 

field most newly generated technological knowledge is made publicly accessible through patents 

or products fact sheets. Nevertheless, to be able to assimilate at least part of that knowledge, 

firms must invest significant resources in monitoring and analyzing as closely as possible the 

technological developments of no more than a few competitors (Di Biaggio, 2007). 

Focusing on the technological trajectories of selected external sources facilitates the 

development of assimilative capabilities in at least two important ways. First, firms’ 

technological trajectories are highly path-dependent (Patel & Pavitt, 1997). As a consequence, 

there is a scale advantage in concentrating one’s attention and learning investments on the 

technological trajectories developed by specific firms. Second, assimilating knowledge from 

another firm tends to progressively reduce the technological distance from it (Tushman & 

Rosenkopf, 1992), which in turn progressively decreases the costs of further knowledge 

assimilation. Consistent with this view, Todorova and Durisin (2007) argued that a firm can 

internalize knowledge generated by another firm either by reconfiguring its technological base to 

fit the external knowledge or, conversely, by reconfiguring the external knowledge to fit its 

technological base. Either way, repeatedly assimilating knowledge from another firm reduces the 

technological distance from it. 

As firms build their assimilative capabilities, therefore, they become embedded in a 

network of source firms whose technological trajectories they understand and from which they 

can learn and draw recombinant inputs. From the perspective of the firm, this knowledge network 

delineates a firm’s search zone within the overwhelmingly vast body of technological knowledge 

residing outside its boundaries. Ideas and discoveries generated outside this knowledge network 

are overlooked because a firm is not equipped to either monitor or comprehend them (Zahra & 

George, 2002). From the perspective of the field, this knowledge network is the evolving 



 

 
 

53

substrate on which inventions and recombinant inputs diffuse across firms (Brown & Duguid, 

1991; 2001).  

 

Knowledge networks as “pipes” and “wellsprings” 

The two previous sections argue that the structure through which technological 

knowledge diffuses is inherently related to firm-level capabilities. Technological knowledge 

diffuses across firms to the extent that firms learn how to assimilate each other’s knowledge. 

Furthermore, firms differ in their recombinant capabilities and this has an impact on the volume of 

knowledge they pump into the network. We now turn to developing a network model that makes it 

possible to better take into account these considerations. Figure 1 provides a visual representation 

of our network model.  

------------------------------------------ 
Insert Figure 1 about here 

------------------------------------------- 
 

The example considers the “ego-network” of firm A, i.e., (i) A itself, (ii) A’s direct 

contacts (B, C and D), (iii) the ties between A and its direct contacts, and (iv) the ties among A’s 

contacts. In the figure, node sizes indicate the amount of new technological knowledge each firm 

generated during a given time interval t. In most network representations of inter-firm networks, 

a tie represents a collaborative relationship among two firms. By contrast, in our model a tie 

indicates a firm’s capacity to assimilate knowledge generated by another firm. While our choices 

of operationalization will be described in detail in a later section, it may be useful to anticipate 

that empirically, we will assume dyadic assimilative capacities to depend on the frequency with 

which a firm has assimilated knowledge from another firm over the past (few) years. 

Accordingly, in the example in Figure 1, prior to t firm A has accumulated a great deal of 

experience in assimilating knowledge from firm B, resulting in a large capacity to assimilate the 
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knowledge B generates during t. Conversely, A’s capacity to assimilate knowledge from C and D 

is small albeit positive, reflecting A’s limited experience in assimilating knowledge from the 

trajectories developed by those firms. Hence, unlike models of inter-firm collaboration, in which 

a firm either has or does not have a tie to another firm, our model allows valued ties. Also note 

that the absence of ties is as informative as their presence in our model, signaling which firms do 

not have the assimilative capabilities needed to draw from each others’ inventions. In Figure 1, 

for example, firm B has developed no assimilative capacity vis-à-vis D, implying that B is highly 

unlikely to make use of any of the knowledge D has generated during t.2 Finally, note that 

whereas models of inter-firm collaboration networks assume ties to be symmetric, our model 

allows asymmetric ties as well. For instance, in Figure 1, A’s capacity to assimilate knowledge 

from B is much larger than B’s capacity to assimilate knowledge from A. Against the background 

of our network model, in the next section we develop a set of testable hypotheses. Subsequently, 

we will provide a formal treatment of our network representation, allowing us to further sharp-

focus both our concepts and their empirical operationalization. 

 

HYPOTHESES  

 

We have argued that the knowledge diffusing through a network is continuously 

generated and renewed by the firms populating the network. A straightforward implication of this 

argument is that the volume of novel external knowledge a firm can creatively recombine at any 

point in time, and hence its inventive performance, depend on how technologically prolific are 

                                                 
2 This last point is important because it sets a clear demarcation between our model and models of technological 
knowledge prevalent among economists (see, e.g., Weitzman, 1996). Models in economics assume that an invention 
is a public good (i.e., the knowledge embodied in the invention can be assimilated at negligible costs) if it is both 
accessible and well-articulated in a codified language. By contrast,  our model assumes that even when knowledge is 
well-articulated and publicly accessible, firms are able to assimilate that knowledge only insofar as they understand 
the technological trajectory on which the invention builds. 
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the firms in its ego-network at that point in time. There are two reasons for this conjecture. First, 

the greater the technological output generated by the firms in a focal firm’s ego-network, the 

larger the pool of external knowledge the focal firm is equipped to understand and assimilate; 

hence, the greater the likelihood that the focal firm will discover recombinant inputs that enhance 

its technological production (Fleming, 2001). Second, firms whose technological trajectories 

grow fast may have identified new valuable veins of technological development, or may have 

triggered what historian Nathan Rosenberg called “compulsive sequences” of solutions to 

technical bottlenecks (Rosenberg, 1977). In that case, firms with the assimilative capabilities 

needed to exploit such opportunity-rich veins of technological development during the early 

phase of their expansion will have a distinct advantage over firms that do not (yet) have those 

capabilities. Therefore, irrespective of a firm’s position within the network, we expect its 

inventive performance to be boosted when a firm’s direct contacts are generating technological 

knowledge at a fast pace. By the same token, we expect a firm’s technological production to 

decelerate as the firms in its ego-network generate fewer technological inventions.  

Hypothesis 1: The more a firm has the capability to assimilate knowledge from 

technologically prolific contacts, the higher the firm’s inventive performance. 

 

 Inter-firm networks tend to organize as “small worlds” – networks characterized by dense 

clusters separated by structural holes and received research has shown that the inventive potential 

of firms is enhanced when they are positioned at the junction between clusters (Burt 1992; Baum 

et al., 2000; Obstfield, 2005; Uzzi & Spiro, 2005). The established explanation for this finding is 

that firms that broker across clusters are exposed to a broader variety of knowledge compared to 

firms that are squarely positioned within a dense cluster (Burt 2004; Fleming, Mingo, & Chen, 

2007). While access to diverse knowledge flows is the causal mechanism deemed responsible for 
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the beneficial effect of brokerage on inventive performance, however, extant research has almost 

exclusively focused on the structural holes inherent in the network of collaborative relationships 

among firms (McEvily & Zaheer, 1999; Baum et al., 2000; Ahuja, 2000). Our contention is that 

the structural holes argument can be straightforwardly applied to our model of inter-firm 

knowledge networks.  

In our proposed model of knowledge network, dense clusters correspond to “sub-

networks” within which firms have developed an extensive capacity to learn from and build on 

each other’s knowledge. Hence, the more a firm is embedded within a dense cluster in the 

knowledge network, the more it will draw from redundant and mutually interwoven technological 

trajectories. Conversely, a firm that is positioned at the junction between clusters is one that has 

developed the capabilities needed to assimilate knowledge across loosely related technological 

trajectories and, therefore, one that can recombine more varied knowledge inputs. For these 

reasons, our second hypothesis is that:  

Hypothesis 2: The more a firm brokers structural holes in the knowledge network, the 

higher the firm’s inventive performance 

 

Our proposed model of inter-firm knowledge networks also suggests that there is a 

fundamental limit to the advantages of brokering structural holes, however. Building on the 

premise that networks act as knowledge “pipes” in an organizational field, the brokerage 

argument posits that firms bridging otherwise unconnected clusters are exposed to a broad 

spectrum of diverse knowledge inputs, which enhances their inventive performance. But as we 

argued, firms are not mere recipients of the knowledge that accrues to their network position. To 

the contrary, to rip the benefits of knowledge diversity firms must be able to effectively integrate 

that knowledge into their technological base. As mentioned, this means that firms must either 
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reconfigure elements of the assimilated knowledge to fit their technological base or, conversely, 

that they must reconfigure elements of their technological base to fit the assimilated knowledge 

(Todorova & Durisin, 2007). Firms can handle only limited recombinant complexity (Fleming, 

2001; Fleming & Sorenson, 2004), however, and the complexity of such recombinant efforts 

increases with knowledge variety.  

Based on these arguments, we contend that when a firm brokers between technologically 

prolific contacts these limits are soon reached, as the recombinant complexity to be handled goes 

through the ceiling when multiple distinct technological trajectories develop at a fast pace. 

Accordingly, we expect brokering firms to be able to realize the knowledge-variety benefits 

inherent in their network position only to the extent that their contacts generate new knowledge 

relatively slowly. Conversely, we reckon that firms should be able to more easily exploit even 

very fast technological developments made by their contacts when the latter are tightly related to 

one another in a dense cluster and, hence, their technological trajectories overlap to a greater 

extent. In the latter case, the new knowledge generated by a focal firm’s contacts should be easier 

for the firm to recombine and, thus, the advantage of a technologically prolific ego-network 

should be ripped more fully. These arguments lead us to our third hypothesis. 

Hypothesis 3: The more technologically prolific are a firm’s contacts, the more the 

presence of structural holes among them hampers the firm’s inventive performance; by 

the same token, being connected to technologically prolific contacts is especially 

beneficial when these contacts are densely connected among each other. 

 

 Hypothesis 1 claims that a firm’s inventive performance depends on the inventive 

performance of the firms in its ego-network. Extending this claim to the level of the inter-firm 

network suggests that there may be an endogenous tendency of firms to partition into either 
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technologically prolific or technologically sluggish clusters. Our reasoning is as follows. As said, 

in our conceptualization a dense cluster identifies a sub-network wherein firms have developed a 

capacity to effectively build on each other’s technological knowledge. Therefore, any increase in 

the inventive performance of a firm embedded within a dense cluster will enhance the inventive 

performance of all other firms in the cluster. As a result, the volume of new recombinant inputs 

these other firms are able to assimilate and recombine, and hence the volume of knowledge 

output that they are able to pump back into the cluster will increase. This will fuel a self-

reinforcing cycle of knowledge generation within the cluster. By the same reasoning, however, a 

decrease in the inventive performance of a firm embedded within a dense cluster will reduce the 

knowledge inputs available to all the other firms in cluster, which may engender a negative self-

reinforcing cycle. As a result of these opposing dynamics, we conjecture that the densely 

clustered areas of the network will have a tendency to partition into either technologically prolific 

or technologically sluggish. Furthermore, we expect that because the prolific clusters generate 

more and more knowledge, part of which will spill over to other areas of the network, they will 

become increasingly central and coalesce towards the core of the network. By the same 

argument, we expect that because sluggish clusters are bound to contribute increasingly less to 

the technological development of the organizational field, they will become confined in the 

periphery of the knowledge network. These arguments lead to two interrelated hypotheses. 

Hypothesis 4a: Densely connected clusters of firms exhibit either a predominantly high or 

a predominantly low inventive performance  

Hypothesis 4b: The technologically prolific clusters tend to be located towards the core of 

the network; conversely, the sluggish clusters tend to be located towards the periphery of 

the network 
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DATA AND MEASURES 

 

The semiconductors field 

To test our hypotheses, we chose to focus on the inter-firm knowledge network of 

semiconductor device designers and manufacturers over the period 1975-2001. This setting lends 

itself to analyzing how the inventive process unfolds through inter-firm knowledge networks for 

multiple reasons. First, the semiconductors field is characterized by rapid technological growth 

and the competitiveness of semiconductor firms is to a considerable degree dependent on their 

inventive performance (Macher, 2006). Second, technological growth has been largely 

cumulative (Hall & Ziedonis, 2001), which made it possible for the field to progressively 

stabilize in the face of fast-growing technological developments. Third, public disclosure of 

technologies is a standard practice among designers and manufacturers of semiconductors (Braun 

& MacDonal, 1978); therefore, the locus of learning and innovation lies in the inter-firm network 

of knowledge flows. Fourth, patent data provide abundant, detailed, and quite reliable 

information about the dynamics of technological growth in this context.  

While most studies of the semiconductor field focused exclusively on US-based firms, we 

chose to expand consideration to European and Asian firms as well. The reason is that although 

many among the important semiconductor firms are indeed based in the US, the expansion of the 

industry “would no doubt have been smaller if the technological and scientific leadership of the 

United States had not come under challenge by the emergence of international competition” 

(Langlois & Steinmueller, 1999: 19). By concurrently analyzing the role of European, Asian, and 

US firms, we therefore hope to provide a more complete and accurate representation of the 

inventive process in the semiconductors field.  

Similarly, we reasoned that focusing exclusively on so-called Integrated Device 
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Manufactures (IMD), as many extant studies have done, could result in too narrow a definition of 

the semiconductors field for the purpose of our research. IMDs are firms specialized in the 

design, manufacture, and commercialization of semiconductor devices and, undoubtedly, they 

play a key role in the semiconductor field. However, for the purpose of understanding the process 

of technological growth, two more organizational forms need to be taken into consideration as 

well: so-called “fabless” companies, which specialize exclusively in designing semiconductor 

devices and contract out their manufacture; and, large, vertically integrated firms (such as IBM, 

Motorola and Philips), which produce semiconductor devices primarily to incorporate them in 

other products. While the strategic position of IMDs, fabless, and vertically integrated firms are 

somewhat distinct, inter-firm learning is plentiful among all three organizational forms and all 

three contribute in important ways to the development of technological knowledge applied to 

semiconductors. Accordingly, in our study we expand consideration to all three organizational 

forms. 

 

Sample and Data collection 

We analyze the semiconductors field between 1975 and 2001. To select our sample, we 

used the following procedure. We first identified a list of semiconductor device designers and 

producers through authoritative specialized market data providers3. We then used the Directory of 

Corporate Affiliation to detect the subsidiaries of each firm in the sample. Financial and 

economic data about these firms and their subsidiaries were retrieved from three data sets: 

COMPUSTAT Global, COMPUSTAT North America, and Osiris. Further, we consulted 

business directories (Hoovers Premium, Who owns Whom US, UK and Asia), industry sources 

                                                 
3 We relied on the annual Profiles of IC Manufacturers and Suppliers published by Integrated Circuit Engineering 
Corporation (ICE), a semiconductor industry market research firm, on the online reports published by Gartner 
Research ,by Electronic Business and through data Semiconductor Industry Association. 
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(ICE annual volumes) and prior research (Hall & Ziedonis, 2001) to identify each firm’s 

founding date, and to establish whether a firm should be categorized as “integrated device 

manufacturer”, “fabless”, or “vertically integrated producer”. All remaining organizational types 

(i.e., foundries, components producers, and service providers), were categorized as “others”.  

To collect patent data on this sample of firms, we used two independent data sets: the 

NBER Patent and Patent Citations Data Set (Hall, Jaffe, & Trajtenberg, 2002), and the National 

University of Singapore’s NUS Patent Data Set (Lim, 2004)4. Within these data sets we identified 

semiconductor-related patents based on the list of USPTO patent subclasses developed by 

Macher (2006). We first counted the number of patents granted in any of these subclasses to each 

of the identified firms and subsidiaries, and we selected only on those firms that had at least one 

patent each time window, and a minimum of 5 patents in our observation period.  

Finally, consistent with our inclusive definition of the semiconductor field, we chose to 

include in our sample all firms that accounted for at least 1% of the total patents in the selected 

semiconductor-related subclasses. By this selection criterion we cast a wide net, with the end to 

achieve two related goals. First, consistent with the view that technological knowledge grows 

cumulatively and interdependently across firms, we wanted to include in our analysis as large as 

possible a share of the firms participating in the inventive process. Second, by guaranteeing that 

only negligible sources of technological development are left outside our sample, we met a 

necessary condition for correctly estimating network autocorrelation models (Lenders, 2002), a 

point to which we will return later. Summing up, as a result of the procedure just described we 

were able to retrieve an unbalanced panel of financial, economic, and patent data for 156 

                                                 
4 The updated NBER data set comprises information on all the patents granted by the US Patent and Trademark 
Office (USPTO) between 1975 and 2001. The information in the NUS data set is largely overlapping with that in the 
NBER data set, and its coverage period extends to 2004. Concurrently using the NBER and NUS data sets made it 
possible to cross validate our data. Precisely, we retrieved detailed patent data for all our semiconductors companies 
over the period 1975-2001 and we traced forward citations to these patents up to the end of 2004. 
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semiconductor firms over the period 1975-2001.  

 

Tracing the inter-firm knowledge network  

Inter-firm knowledge networks played a key role in the semiconductor field since its 

inception. As semiconductor firms soon recognized that the value of learning from competitors 

was far greater than the costs of knowledge leaking, a policy of extensive knowledge codification 

and disclosure became commonplace in the field, particularly through practices such as patenting 

and publication of product fact sheets (Braun & Macdonald, 1978: 54-55). The strengthened IPR 

regime that characterized the last couple of decades of the industry did not diminish the 

importance of networks of practice, and evidence shows that semiconductor firms still copiously 

learn “from the inventive efforts of others” (Langlois & Steinmueller, 1999: 22).  

As suggested by Zahra and George (2002), we analyzed the evolving pattern of cross-firm 

patent citations to trace the capacity of a firm to assimilate technological knowledge from other 

firms. A vast body of research has employed patent data to analyze the process of technological 

diffusion (see, among others, Henderson & Cockburn,1994; Fleming, 2001; Rosenkopf & 

Nerkar, 2001). Patent data have received so much attention because they provide detailed large-

scale information about several interesting aspects of patented inventions, and because they offer 

complete coverage over relatively long time periods in computerized form. A key bit of 

information is contained in the so-called patent’s prior art. A focal invention’s prior art indicates 

all the existing inventions from which the focal invention has drawn, and thereby it provides an 

informed account of the knowledge recombination entailed in generating the focal invention. 

Numerous scholars used this information to investigate technological knowledge diffusion at 

various levels of analysis, including inventors (Nerkar & Paruchuri, 2005), organizational 

subunits (Miller et al., 2007), firms (Mowery, Oxley & Silverman, 1996), and countries (Jaffe, 
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Trajtenberg, & Henderson, 1993). In this paper, we used patent citation data to trace the evolving 

network through which technological knowledge diffuses and gets creatively recombined among 

semiconductor firms. 

While patent citation data have been usefully employed as indicators of technological 

knowledge diffusion in a wide variety of empirical studies, two validation studies have shown 

that patent citations should be regarded as a “valid but noisy measure of technology spillovers” 

(Jaffe, Fogarty and Banks 1998: 183; Jaffe, Trajtenberg, & Fogarty, 2000); accordingly, analyses 

based on patent citation data must be designed and interpreted with vigilance. The literature has 

identified two main limitations associated with using patent citation data.  

The first limitation is that although citing all relevant prior art is a legal obligation for a 

patent applicant, “... inventors, their employers, attorneys, and patent examiners all have input to 

the citation process” (Miller et al., 2007: 314). As a consequence, the choice of which patents 

(not to) cite may be partly strategic, for example reflecting an attempt to prevent litigations. 

Taking a patent’s citations as indicative of the technological knowledge utilized by an inventor to 

generate that specific invention may therefore result in both type I and type II errors (Alcacer & 

Gittelman, 2006). To gauge the magnitude of this problem in the context of our data, we 

exploited data available since 2001, which disentangle the patent citations made by an inventor 

from those added during the patent examination process. We devised an empirical test5 to 

compare the pattern of intrafirm citation pattern using inventor citations only and using all 

                                                 
5 Precisely, we randomly sampled 10% of the patents granted to each firm in our study population in year 2001. This 
resulted in a subsample of 540 patents, accounting for 2285 citations to patents generated by the firms in our 
population. To check if this subsample was representative of the patents in our sample in the same year we 
performed a t-test of both the mean number of backward citations and of the number of claims made per patent: 
neither variable differed across the two groups. We then coded each citation in the subsample to indicate whether it 
was added by the examiner or, conversely, it was reported by the inventor. On these basis, we built two separate 
networks. One network was constructed based on all citations; the other network was based on the citations made by 
the patent’s inventor(s) only. We used a Quadratic Assignment Procedure to assess the degree of similarity (or 
difference) among the two resulting networks (Simpson, 2001). The results showed that the network based on the 
patent citations made by the inventors is 0.832 correlated (p<0.001) with the network based on all citations.   
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citations. The similarity in citation patterns between inventor-only and all citations, is much 

higher than that reported for most of the studies for which this check has been made (Alcacer & 

Gittelman, 2006; Criscuolo & Verspagen, 2008). Therefore, we feel confident that the patent 

citation data we observe in our study reflect with reasonable accuracy actual patterns of inter-firm 

technological knowledge assimilation.  

The second main limitation associated with using patent citation data is that because not 

all technological knowledge gets patented, not all technological knowledge flows can be captured 

by patent citations. While this limitation is inherent in patent data, we think that this is unlikely to 

engender a significant problem in the context of our study. Indeed, one reason for choosing to test 

our arguments in the semiconductors field is that in that context, the propensity to codify and 

patent technological inventions is much higher than in most other sectors (Hall & Ziedonis, 

2001); moreover, research has shown that semiconductor firms customarily analyze the patents 

granted to other firms to benchmark their own products (Di Biaggio, 2007) and to discover new 

avenues of technological development (Lim, 2007)6. As a consequence, the share of 

technological knowledge diffusion captured by patent citations is likely to be larger in our study 

than in most studies where patent citations have been usefully utilized.  

It should also be noted that unlike many extant studies, our approach does not rest on the 

assumption that patent citations measure all the technological knowledge diffusing among 

semiconductor firms. Rather, our study rests on the much weaker assumption that a firm’s 

capacity to assimilate knowledge from another firm is proportional to the frequency with which 

the former has drawn from patents generated by the latter in the (recent) past. In the next section, 

we discuss in detail how we use patent citation data to measure firms’ assimilative capacities. 

                                                 
6 Lim (2007), in his study of the development of copper interconnect technology for semiconductor chips, provides 
evidence that all players in the field extensively sourced knowledge from IBM technical documents, scientific 
publications and patents. IBM was considered, in the late 90s, the forerunner in that technological area. 
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Instantiating our network model  

Having described the data, we can now turn to developing the visual illustration of Figure 

1 into a network model. Formally, a network Nt  during time interval t is a four-tuple, Nt = 〈Jt , Lt, 

Vt,, At〉, which consists of a finite set of nodes, tJ  = {i,…,k,q,…,j}; a finite set of arcs (i.e., 

directed ties) between the nodes, tL  = {lik,t, …, lqj,t}; a function Vt(.) mapping arcs on pertaining 

arc values h (i.e., tie weights); and, a function tA (.) mapping nodes on node values. Nodes 

represent firms, and their values represent firms’ inventive performance during t; arc value, wij, 

represents the capacity of the right-hand subscript firm to assimilate knowledge generated by the 

left hand firm; hence, “loops” represent the extent to which a firm has developed a capacity to 

exploit its own internal knowledge trajectory (Nerkar & Paruchuri, 2005).  

As said, our goal is to model the network through which technological knowledge gets 

assimilated and recombined by the firms operating in the semiconductor industry from 1975 and 

2001. Consistent with prior studies (e.g., Schilling & Phelps, 2007), to capture the evolution of 

this inter-firm knowledge network we partitioned the observation period into nine 3-years 

interval. We use patents application year to assign patents to each time window. As it has been 

argued, a time interval of three years roughly corresponds to the time that a semiconductor 

product remains up to date; for example, each next-generation computer memory lasts 

approximately 2.5 years (Stuart & Podolny, 1996). Hence, in our model, wijt indicates i’s capacity 

to assimilate the inventions generated by j during a 3-year window t. We reasoned that wijt should 

be comparable across both larger firms, which cite thousands of patents every year, and smaller 

ones. To this end, we followed a consolidated practice in network research (e.g., Burt, 1992), and 

row-normalized the firm-to-firm citation matrix; hence, wijt expresses the proportion of citations i 
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makes to patents generated by j during t, and wijt ∈ [0, 1]. Unlike collaboration networks, our data 

make it possible to account for the fact that wijt is in general asymmetric. Hence, in our model, i’s 

capacity to assimilate j’s knowledge can be different from j’s capacity to assimilate i’s 

knowledge. Another advantage of our data is that we can treat wijt as a continuous variable, 

making it possible to account for the fact that the degree of assimilative capacity of a focal firm 

varies across contacts depending on the level of experience the focal firm has accumulated with 

each of them. Therefore, wijt reflects the current assimilative capacity of i vis-à-vis its contacts j 

as a function of how frequently i has drawn knowledge from j in the past.  

We reckoned that ideally, wijt should reflect the fact that the capacity of a firm to 

assimilate knowledge from other firms develops over time as a function of both learning by 

experience (Cohen & Levinthal, 1990; Fleming 2001) and forgetting (de Holan, Phillips, & 

Lawrence, 2004). That is, the greater is the experience i has accumulated with drawing 

knowledge from j up to t, the greater should be wijt; however, the less recent is this experience, 

the lower should be its marginal contribution to wijt. To account for these facts, we adopted three 

alternative operationalizations of wijt: (i) we operationalized wijt as the proportion of citations i 

has made to patents generated by j during t. This operationalization emphasizes the importance of 

recent experience, while it disregards the experience accumulated in earlier time periods. (ii) we 

operationalized wijt as the proportion of citations i has made to j’s patents from 1975 (the 

beginning of our observation period) up to t. This operationalization accounts for both recent and 

less recent experience, and it assumes that they both contribute equally to a firm’s current 

absorptive and recombinant capacities (i.e., it disregards forgetting). (iii) we operationalized wijt 

as the proportion of citations i has made to j’s patents from 1975 up to t, where the weight of 

each citation decreases at a decreasing rate with the time elapsed between the citation and t (Burt, 
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2000)7. As (iii) adheres most closely to received theory on the dynamics of experience and 

forgetting, we utilize it for the analyses reported in the main text.  

As a consequence of these choices, we characterize the evolution of our inter-firm 

knowledge network as a time series of nine subsequent weighed and directed networks. Against 

the backdrop of this model, we can now explicate the measures entailed in our hypotheses. 

 

Measures 

Dependent variable. To measure our dependent variable, firms’ inventive performance, 

we followed a consolidated tradition (e.g., Alcacer & Gittelman, 2006; Sampson, 2007; 

Yayavaram & Ahuja, 2008) and calculated for each firm a citation-weighed patent count. For an 

invention to be patented, it must consist of knowledge that is new, non trivial, and useful; 

furthermore, if a patented invention engenders subsequent inventions, it will be cited. 

Accordingly, a widely used and validated indicator of technological inventiveness consists of 

counting the number of patents granted to a firm, weighed by the number of citations each of this 

patents received within a given time interval. As an indirect validation that this measure well 

quantifies inventive performance, citation-weighed patent counts were found to be very highly 

correlated with both the economic and the social value of inventions (Trajtenberg, 1990; Harhoff, 

Narin, Scherer, & Vopel, 1999). Furthermore, citation-weighed patent counts were directly 

validated as a measure of inventive performance by studies in which surveys were administered 

to inventors and technical experts (Albert, Avery, Narin, & McAllister, 1991; Jaffe et al., 2000). 

In our study, to measure the inventive performance of a firm we counted the number of patents 

the firm generated during each of the nine 3-year time intervals described earlier, weighed by the 

                                                 
7 Formally: ii) ijt

T

tijT ww ∑=
=

1
and iii) ijTw =

ijt
T

t
w

tT∑= +−1 1
1 , where weights decrease with time at a decreasing rate. 

(i) and (ii) provide an upper and a lower bound with respect to (iii); hence, we used them as robustness check. 
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number of forward citations (excluding self-citations) each patent received within 5 years from its 

application8.  

Independent  variables. To model a firm’s contacts’ inventive performance, we adapted 

models of network autocorrelation. Network autocorrelation models are used to estimate the 

extent to which the outcome variable of a focal node in a network varies as a linear combination 

of the outcome variables of its network contacts (Leenders, 2002). Typically, to each of the 

network contacts is assigned a weight, reflecting the strength of its connection to the focal node. 

For example, network autocorrelation models have been used to estimate the extent to which the 

attitude of a focal person on specific political issues co-vary with the attitudes of her friends, 

where the influence exerted by each friend is assumed proportional to the strength of her 

friendship to the focal person (Mardsen & Friedkin, 1993). We use an autocorrelation model to 

estimate the degree to which the inventive performance of a focal firm i during t is influenced by 

the inventive performance of its network contacts, j; furthermore, we weigh the influence of each 

contact firm by our measure of tie strength described above, wijt,.  Following Doreian, Teuter and 

Wang (1984) and Leenders (2002), network autocorrelation can be computed as: 

jtji
i ijtit yway ∑
≠
== 1 , where yjt is a vector indicating the inventive performance of each contact firm, 

j, belonging to the ego-network of focal firm i; wijt is a weight specifying the impact that the 

inventive performance of each contact  j has on the performance of the focal firm, i. Let us clarify 

the measure with a simple example. Let us consider the network in Figure 1. Let 20 and 70 be the 

inventive performance of node A and B, respectively. Let us suppose that node C has cited node 

A 20 times and node B 30 times. The measure of contacts inventive performance for node C will 

                                                 
8 The number of forward citations received throughout the entire period by each firm is highly correlated with the 
citations obtained with a 5 years threshold (Spearmans’ rho correlation of the rank orders turned out to be as high as 
0.982). This indicates that truncating citation counts at 5 years from application provides a robust measure.   
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be computed as follows:  5070
3020

3020
3020

20 =×
+

+×
+

=CtessInventivenContacts  

To gauge the extent to which a firm brokers structural holes, we took the additive inverse 

of Burt’s well known measure of constraint (Burt 1992: 54-55). The constraint score was 

computed as follows: 2)( qiq iqijij pppc ∑+= , for jiq ,≠ . The total in parentheses is the 

proportion of i’s relations that are directly or indirectly invested in connection with contact j 

(Burt, 1992). The network constraint measure approaches 0 when ego networks are unconstrained 

and reaches the maximum of 1 when they are fully constrained. All network-analytic measures 

were computed with UCINET VI (Borgatti, Everett, & Freeman, 2002). 

To measure how the effects of structural holes on a firm’s inventiveness change with the 

inventive performance of its contacts, we constructed a multiplicative term. To reduce multi-

collinearity, we mean-centered the constituent variables (Aiken, West, & Reno, 1991).  

 Controls. We controlled for a number of variables that may affect firms’ inventive 

performance. Centrality in a network of knowledge flows has been shown to affect firms’ 

innovative performance (Powell et al. 1996). To control for this effect, we computed a firm’s 

network centrality as the number of direct contacts in its ego network (Ahuja, 2000).  

A firm’s inventive performance may vary according to a number of firm specific 

covariates. A firm’s size may affect both the scope and the scale of its technological activities 

(Henderson & Cockburn, 1994). We measure firm size as the natural logarithm of the number of 

employees. Age may affect a firm’s inventive performance because older firms tend to be more 

inert than younger ones (Cyert & March, 1963). We measure age as firm age at the middle year 

of each time window. R&D intensity has been often been used as a measure of input in the 

process of technological generation (Ahuja, 2000; Katila & Ahuja, 2002). We computed R&D 
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intensity as the ratio between a firm’s R&D expenditure and its net sales9. Previous studies have 

hypothesized that the economic performance of a firm may have both positive (Katila & Ahuja, 

2002) and negative (Cyert & March, 1963) effects on its inventive performance.  We measure a 

firm’s economic performance by its ROA. We use the lagged number of patents granted to each 

firm in each time window to control for knowledge base size effects (Yayavaram & Ahuja, 2008). 

A firm that produces general technologies, which are useful in several application sectors, is 

more likely to be cited than a technological specialist. To control for the degree of generality of a 

firm’s knowledge base, we used Hall et al.’s generality index (2002). Prior research has shown 

that technological diversification (Hoskisson & Hitt, 1988) can have a positive effect on 

inventiveness, as it increases the opportunities for exploiting knowledge internally, or a negative 

effect, because the top management team in a diversified firm may have a poorer understanding 

of R&D and be less likely to invest in R&D. To control for these effects, we computed a firm’s 

technological diversification as one minus the sum of the squared share of patents in each 

USPTO patent class. Forward citation frequencies may vary across technological sectors and 

subsectors independently of firm-specific factors. For example some technological areas may 

have inherently higher growth potential than others (Dosi, 1982). To control for these effects we 

use a technological fertility variable (Ahuja, 2000), defined as the average citation rate of each 

technology class in which a firm has patents in a given year, times the number of firm’s 

inventions that belong to that technology class in that year. This is then summed over all 

technology classes for each firm. Since the focus of this study is on the inter-firm knowledge 

network, all our measures are computed excluding self-citations. Yet, in our models, we control 

for the extent to which a firm relies on its own previous knowledge, we computed for each firm 

in each time interval the ratio of backward self-citations to total citations.  
                                                 
9 When R&D, sales or employment data were not available, we used imputation techniques to estimate the value 
based on existing data using STATA ice function. A total of 74 values were imputed. 



 

 
 

71

Finally, we account for a number of country-, type- and time -varying effects. Differences 

may exist across countries in patenting propensity. This possibility was controlled for by a 

dummy variable US, which was set to one if a firm’s country is the United States, and zero 

otherwise. Similarly, we constructed a set of three dummy variables to indicate if a firm is an 

integrated device manufacturer (IDM), a vertically integrated firm (Vertically integrated), or a 

fabless firm (Fabless). The category Other was used as reference category. We also introduced a 

set of time windows dummies, to control for exogenous shocks and other time-varying effects.  

 

RESULTS 

 

The unit of analysis in our study is the firm-period and, thus, the data have an unbalanced 

panel form. The dependent variable is a count variable which takes on only nonnegative integer 

values. The linear regression model is inadequate under these conditions because the distribution 

of residuals will be heteroscedastic and non-normal. Moreover, the variable presents 

overdispersion (rejection of Poisson model at p<0.0001). Since a Hausman test rejects random 

effects specification at p<0.0001, we used a fixed-effects negative binomial regression analysis 

(Cameron & Trivedi, 1986).  

To visualize the networks, we used NetDraw (Borgatti et al., 2002). Figure 2 provides a 

representation of the network of knowledge flows in the semiconductor field between 1975 and 

2001. 

------------------------------------------ 
Insert Figure 2 about here 

             ------------------------------------------- 
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We report summary statistics and correlations in Table 1.  

------------------------------------------ 
Insert Table 1 about here 

------------------------------------------- 
 

To assess potential problems of multi-collinearity, we calculated variance inflation factors 

(VIF) based on the pooled data. VIF values ranged from 1.51 to 7.75 (mean 3.78). 

Conventionally, VIF scores are regarded as indicative of multicollinearity problems when their 

value is greater than 10. 

For twelve firms we have data for no more than one three-year window. Because our 

analyses are based on fixed-effect estimations of inventive performance, these firms had to be 

dropped. Lastly, for twenty-four firm-period data points we were able to gather information about 

firms’ patenting activity, but not about their sales, R&D expenditure, and employment. This is 

because those firms were technologically active but not (yet) publicly traded. Given that these 

observations did not meet the requirements for imputation, we decided to drop them as well. As a 

consequence of these choices, our econometric analyses are based on an unbalanced panel of 132 

firms, yielding a total of 633 firm-period observations.  

------------------------------------------ 
Insert Table 2 about here 

------------------------------------------- 
 

In Table 2, we report the results of our analyses. Model 1 is a baseline model including a 

set of covariates that according to received research, may affect firms’ inventive performance. Of 

these, firms’ age, R&D intensity, size of patent portfolio, technological generality, technological 

diversification do indeed have a significant positive effect on firms’ inventiveness. Furthermore, 

as one would expect, the results indicate that firms that have developed a competence in 

technological areas characterized by greater technological fertility tend to be more inventive. All 
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other control variables show little or no association with our dependent variable. In model 2, we 

introduce the variable contacts inventive performance, to gauge the extent to which a firm has 

focused its assimilative capacity on technologically prolific contacts. In line with hypothesis 1, 

the inventive performance of a focal firm is positively and significantly associated with its ability 

to assimilate knowledge from inventive contacts (β=0.40; p<0.001). In other words, the more the 

firms on which a focal firm has focused its assimilative capacity in the past become 

technologically prolific, the more the focal firm itself becomes technologically prolific.  

Model 3 introduces a variable measuring the extent to which firms broker structural holes 

in the network of inter-organizational knowledge flows, which we hypothesized to be positively 

related to firms’ inventive performance (H2). In line with received theory, the effect of structural 

holes brokerage is positive and significant (β=0.42; p<0.001). Hence, firms that develop the 

capabilities needed to assimilate knowledge from across unrelated clusters exhibit superior 

inventive performance. Model 4 introduces the interaction term between structural holes and 

contacts inventive performance. Hypothesis 3 was that the positive effect of having developed an 

assimilative capacity across structural holes declines with the extent to which a firm’s contacts 

produce new knowledge. Also this hypothesis is corroborated, as the coefficient of the interaction 

term is negative and statistically significant (β=-0.22; p<0.05). The log-likelihood statistics 

provide evidence that each model provides a statistically significant improvement in fit.  

------------------------------------------ 
Insert Figure 3 about here 

             ------------------------------------------- 
 

In the graph reported by Figure 3, we use the estimated regression coefficients to visually 

represent the interaction effect between contacts’ inventiveness and structural holes brokerage, on 

inventive performance. For ease of presentation and interpretation, we used the log-linear form of 

the negative binomial models (i.e., where the log of the conditional mean function is linear in the 
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estimated parameters). As can be seen, the effect of brokering structural holes on a firm’s 

inventive performance is positive when the firm’s contacts generate technological knowledge 

relatively slowly. However, the more rapidly a firm’s contacts develop their technological 

trajectories the harder it becomes to recombine knowledge from them and, eventually, the effect 

of brokering structural holes turns negative. Thus, for a firm at the mean of both constituent 

variables, a one standard deviation increase in the inventive performance of its contacts leads to a 

42 percent increase in its own inventive performance. For the same firm, a one standard deviation 

increase in structural holes leads to a 35 percent increase of inventive performance. Yet, for a 

firm with a high focus on technologically prolific contacts a one standard deviation increase in 

structural holes reduces its inventive performance by 24 percent. 

We also hypothesized that because within dense clusters firms either mutually enhance or 

mutually hinder each others’ inventive performance, the network should tend to partition into 

clusters of technologically prolific and technologically sluggish firms (H4a). Furthermore, we 

argued that the prolific clusters should progressively coalesce towards the center of the 

knowledge network, while the sluggish clusters should remain confined in the periphery (H4b). 

Given that a formal statistical test of these hypotheses is hard to conceive, we chose to investigate 

them by visual inspection - a methodological strategy that has been gaining increasing scientific 

footing in social network analysis (Moody, McFarland, & Skye Bender-deMoll, 2005). To bring 

evidence in support of our hypotheses, we used the Gopher drawing algorithm implemented in 

NetDraw. The Gopher function draws the nodes of a network closer together in a 2-dimensional 

space based on a multi-dimensional scaling algorithm, so that nodes that are strongly tied to one 

another and to common third parties are clustered together. If our hypotheses are correct, this 

algorithm should show prolific firms as clustered together towards the center of the graph, while 

sluggish firms should cluster at the fringe. Conversely, assuming that the clustering structure of 
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the network is unrelated to firms’ inventive performance implies that technologically prolific and 

technologically sluggish firms should be randomly scattered across the represented space. 

Because these hypothesized outcomes presume that the network has stabilized, we focus our 

attention on the last window in our observation period (1999-2001).   

------------------------------------------ 
Insert Figure 4 about here 

             ------------------------------------------- 
 

In Figure 4, black triangles represent the 25% least inventive firms and hollow squares 

represent the 25% most inventive firms. All remaining firms and all ties have been removed. In 

line with Hypothesis 4a, firms do group together in either prolific or sluggish clusters, and to us it 

seems quite evident that this phenomenon goes well beyond what could be expected from a 

random process. Similarly, as predicted by Hypothesis 4b, the technologically prolific firms have 

to a very large extent coalesced towards the center of the network, while the clusters of sluggish 

innovators are mostly confined in peripheral network positions.  

 

Sensitivity analyses 

We assessed the robustness of our results in several ways. As previously described, we 

used a network operationalization based on the weighted sum of the inter-firm citation patterns, 

where assimilative capacities are assumed to depreciate at a decreasing rate over time. We also 

computed the measure in two extreme cases of instantaneous depreciation and no depreciation: 

results hold. To check the robustness of our dependent variable, we also operationalized inventive 

performance as simple patent counts, regardless of how many citations these patents received. 

Both the direction and the significance of the estimates of interest are consistent with those 

presented above. Similar results to those presented in Table 2 are obtained when we adopt a SIC-

based measure of diversification (i.e., a dummy valued 1 if the firm has other business lines than 
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semiconductors, 0 otherwise) or when we exclude from the analysis the controls with highest 

VIF. We also ran the model lagging all non-network variables by one time period and estimated 

“pre-sample” fixed effect estimators (Blundell, Griffith, & Van Reenen, 1995). Our findings are robust 

to these changes. 

 

DISCUSSION AND CONCLUSIONS 

 

It is by now widely recognized that a firm’s inventive performance depends on its ability 

to assimilate and recombine externally generated knowledge. Also, most scholars agree that 

which and how much external knowledge a firm is able to assimilate depends on its position 

within the network of knowledge flowing throughout a field. The present article improved our 

understanding of these important notions in multiple ways. The vast majority of received research 

on these topics has focused on the knowledge accessed through, and funneled by, a particular 

form of collaboration, typically R&D alliances. We expanded the focus of this line of inquiry by 

analyzing the role of the knowledge network delineated by firms’ assimilative capacities. 

Namely, we studied the knowledge network that weaves together firms’ technological trajectories 

as they build upon each other’s patented knowledge. Such knowledge networks do not necessitate 

direct interaction or collaboration among firms. Nevertheless, our contention was that they shape 

the patterns of inter-firm knowledge diffusion to an important extent.  

Based on this presumption, we conjectured that received theory on the role of inter-firm 

network structures could be usefully extended to illuminate how knowledge networks affect 

firms’ inventive performance. This conjecture was corroborated, as we showed that the brokerage 

of structural holes is an important determinant of firms’ inventive performance also in the context 

of inter-firm knowledge networks. While our hypothesis was based on received theory, the 



 

 
 

77

implications that derive from it are somewhat different. Structural holes theory claims that 

brokering structural holes in a collaboration network provides access to more heterogeneous 

knowledge, which in turn explains why actors in brokering positions tend to be more inventive 

(Burt, 2004). Reflecting the prevalent focus of network researchers on inter-firm collaborations, 

extant studies have taken this principle to imply that in order to become more inventive, firms 

should seek to collaborate with partners that don’t collaborate with each other (Baum et al., 2000; 

Ruef, 2002). Our study, by contrast, used the structural holes argument to emphasize that in order 

to become more inventive, firms must develop the organizational capabilities needed to 

assimilate knowledge from firms that are unable to learn from each other. To the extent that these 

organizational capabilities can be built exclusively by means of direct collaboration ties, the two 

perspectives offer a similar recommendation. Nevertheless, firms assimilate useful technological 

knowledge generated by other firms in many other ways, including reverse-engineering, 

reviewing patents, scanning newsletters and technical journals, and attending professional 

workshops and conferences (Brown & Duguid, 2002; Di Biaggio, 2007). Indeed, a distinguishing 

trait of the knowledge-based economy is that a large share of knowledge gets diffused through 

codified documents, such as the patents analyzed in this paper (Carnabuci & Bruggeman, 

forthcoming). Hence, distinguishing the precise causal mechanisms that link inter-firm 

knowledge networks to the process of technological invention seems relevant from the 

perspective of both positive and normative theory building.  

In addition to enlarging the empirical content of received theory, our study contributed a 

number of novel theoretical insights. On a general level, we argued and showed that a vantage 

point can be gained by explicitly recognizing that the network-level process of knowledge 

diffusion and the firm-level mechanisms of knowledge assimilation and recombination are 

inherently interwoven. Extending a well-know metaphor in the literature on inter-firm networks, 
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we argued that knowledge networks consist of both “pipes”, along which knowledge diffuses 

throughout a field, and “wellsprings”, i.e. firms that continuously generate and renew the 

knowledge circulating through the network. By conceiving and modeling knowledge networks in 

this way, we were able to derive and empirically test three original hypotheses about the 

inventive process. First, we demonstrated that the more a focal firm focuses its assimilative 

capacity on technologically prolific firms, the more it will itself become technologically prolific. 

Hence, in addition to the structural conditions characterizing a firm’s position within the 

knowledge network, the inventive performance of a firm at any point in time, is a function of the 

inventive performance of the firms in its ego-network at that point in time.  

Second, we shed new light on the important debate about the putative effects of closed 

and brokering network structures (Brass et al., 2004), making it possible to better understand and 

qualify received network-structural explanations. In particular, we showed that due to their 

limited recombinant capacity, the extent to which firms can rip the structural benefits inherent in 

brokering network positions varies inversely with the rate at which firms’ contacts generate new 

knowledge. Namely, for firms positioned within highly innovative regions of the knowledge 

network, the complexity of recombining knowledge across structural holes is so high that 

knowledge brokerage becomes detrimental. Conversely, firms embedded within dense clusters 

are significantly better at exploiting even very fast technological developments made by their 

contact firms, as their technological trajectories overlap to a greater extent.  

Third, concurrently treating the firm and the network level made it possible to provide a 

nontrivial insight on the understudied issue of “how collective outcomes might be generated in 

inter-organizational networks” (Provan et al. 2007: 480). Specifically, we showed that because 

within dense clusters the knowledge generation process is driven by self-reinforcing cycles, inter-

firm knowledge networks tend to partition into clusters of technologically prolific and 
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technologically sluggish firms. Furthermore, the clusters of technologically prolific firms tend to 

coalesce towards the center of the network, while the clusters of technologically sluggish firms 

exhibit a tendency to remain confined towards the periphery. Scholars have recently began to 

investigate the effects of core-periphery structures on firms’ inventive performance, and results 

indicate that it is a line of inquiry worth further investigation (Cattani & Ferriani, 2008). Albeit 

supported by no more that suggestive evidence, our findings indicate that cross-level and co-

evolutionary dynamics play a crucial role in the relation between core-periphery structures and 

firms’ inventive performance. 

These results have important practical implications, most notably regarding how 

companies can manage their knowledge network to enhance their inventive performance. Our 

findings show that a firm’s inventive performance is driven by its capability to assimilate the 

technological knowledge generated and made publicly available by other firms. The results 

presented suggest that an important way to develop such capability is to systematically monitor 

and follow the inventive activity of technologically prolific firms. Managers should invest to 

strengthen their firms’ monitoring capabilities, as well their ability to predict which firms are 

going to be more technologically prolific. To both these ends, quantitative analytical frameworks 

and measures such as the ones advanced in this study may serve as a useful guide.  

Our result concerning how the effects of structural holes on a firm’s inventiveness change 

with the inventive performance of its contacts, suggest the intriguing idea that there are two 

different strategies through which firms can benefit from the knowledge circulating in their field, 

and enhance their inventive performance. One path, ideal for firms that are either good or lucky 

enough to position themselves within clusters with high potential for technological growth, is to 

focus on exploiting and developing the existing trajectories within the cluster. This, in turn, 

suggests that firms surrounded by technologically prolific contacts may be better off by favoring 
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the emergence of knowledge sharing across their contacts. This notion resonates in the words a 

vice-president of AT&T used to describe the early stage of the semiconductor field: “We realized 

that if this thing [the transistor] was as big as we thought, we couldn’t keep it to ourselves and 

couldn’t make all the technical contributions. It was our interest to spread it around. If you cast 

your bread on the water, sometimes it comes back angel food cake” (Langlois & Steinmueller, 

1999: 22). A second possible path to increasing a firm’s inventive performance, conversely, 

pertains to firms that find themselves locked within technologically sluggish clusters. For these 

firms, our analyses suggest that the only way to significantly improve technological performance 

is to broker knowledge from remote regions of the knowledge network. Both strategies entail 

both risks and costs. On the one hand, seeking network closure in order to handle fast 

technological growth is likely to entail disclosure of valuable private knowledge and exposure of 

one’s resources to severe risks of expropriation and free riding. On the other hand, brokering 

knowledge from unrelated areas of the knowledge network means incurring the high fixed costs 

associated with learning outside one’s knowledge base, as well as the legitimacy costs associated 

with dis-embedding and re-embedding knowledge across domains. How to strike a balance 

between the benefits and costs of these two strategies is a question that will certainly prove hard 

to answer for managers and organizational students alike; yet, addressing this question seems 

highly relevant for both. 

Our study has some worth mentioning limitations, which in turn signal potentially fruitful 

research opportunities. A first limitation is that by focusing on the knowledge network signaled 

by patent citations, we focused away from the collaborative ties that may be involved in such 

flows. Received theory suggests that collaboration networks, and more generally the 

communities of practice that develop across organizations, are a subset of the broader knowledge 

network through which firms access technological knowledge (Brown & Duguid, 1991; 2001). 
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But, to the best of our knowledge, no one has yet investigated empirically the exact relationship 

between these different types of learning strategies. Manipulating knowledge and collaboration 

networks is likely to require different strategies and capabilities, as the creation and dissolution of 

collaboration ties may depend on different mechanisms, and entail different kinds of inertial 

pressures, than do the creation and dissolution of partner-specific assimilative capacities. Future 

research should be designed to better disentangle these differences. Are there differences in the 

extent to which firms invest in one kind of network instead of the other? What implications do 

these different strategies entail for the inventive performance of both individual firms and the 

fields they are embedded in? Currently, we do not have an answer to these questions.  

A second, related limitation of our study is that it heavily relies on patent data, which, as 

we explained in detail, are known to be valid yet noisy proxies of both technological generation 

and technological diffusion. While for large-scale studies like ours there hardly exist alternative 

measures of those constructs, valuable insights and a further validation could be gained by 

complementing our patent-based analyses with process-oriented qualitative investigations of the 

interwoven dynamics of knowledge diffusion, absorption and recombination that putatively 

explain our findings. Also, it would be important to investigate the extent to which the 

mechanisms we studied extend into the process of technological innovation. While our focus in 

this paper was confined to the generation of technological knowledge, the  process of 

technological innovation requires that technological knowledge be turned into commercially 

valuable products. As we have not addressed this topic in the paper, we currently do not know if 

and to what extent our arguments can be extended to explain performance differentials in 

technological innovation at large. Future research should investigate this possibility. 
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FIGURE 1 

Example of knowledge combinative patterns across firms 

  

FIGURE 2 

Network of knowledge flows between semiconductor players 1975-200110 

 

 
                                                 
10 10% weakest ties have been removed to ease graph interpretation. 
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FIGURE 3 

Interaction effect between structural holes and contacts inventive performance 
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FIGURE 4 

Period 1999-2001: Clusters of high-growth and slow-growth firms 
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TABLE 1 

Correlation matrix (significance levels in parenthesis) 

 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 Inventive Performance 1 
2 Contacts Inventive Performance 0.36* 1 
3 Structural Holes 0.16* 0.26* 1

4 Performance 0,06 0,00 -0,01 1

5 Age 0.48* -0,02 0,08 0,11 1

6 Size 0.51* 0,04 0.19* 0.17* 0.58* 1

7 R&D Intensity -0,02 0,02 0,02 -0,04 -0,02 -0,06 1

8 Knowledge Base Size 0.81* 0.19* 0.21* 0,07 0.59* 0.57* -0,03 1

9 Knowledge Diversification 0.42* 0.28* 0.41* 0.14* 0.44* 0.64* -0,07 0.47* 1 
10 Knowledge Base Generality 0.14* 0.23* -0,04 0,09 0,07 0.21* 0,01 0,04 0.30* 1

11 US -0.27* -0,10 -0,09 -0,06 -0.39* -0.35* 0,03 -0.32* -0.35* -0,09 1

12 Technological Fertility 0.84* 0.29* 0.15* 0,06 0.57* 0.49* -0,02 0.80* 0.42* 0,09 -0.34* 1

13 Centrality 0.48* 0.12* 0.39* 0,09 0.60* 0.56* -0,05 0.24* 0.21* -0.15* -0.27* *0.58 1

14 Selfcites 0.13* 0,04 0.14* 0,05 0.22* 0.26* -0,04 0.19* 0.31* 0.13* -0.16* 0.24* 0.29* 1

15 Fabless -0.2* 0,02 0,05 -0,05 -0.37* -0.12* -0,01 -0.23* -0.12* -0.12* 0.13* -0.21* -0.23* -0.16* 1

16 Vertically Integrated 0.21* 0,06 0,08 0,07 0.52* 0,32 -0,03 0.31* 0.54* 0.24* -0.56* 0.42* 0.41* 0.28* -0.18* 1

17 IDM -0,09 -0,05 0,01 0,06 -0,18 0,00 0,04 -0,10 -0,08 0,00 0.17* -0.15* -0,02 -0,08 -0,51 -0,33 1

Mean 334,86 1781,33 0,64 -0,02 23,22 7,22 0,75 81,88 0,51 0,23 0,77 1143,88 20,89 0,11 0,30 0,16 0,38
S.D. 937,85 1962,00 0,20 0,41 21,50 2,54 11,14 201,86 0,35 0,21 0,42 3342,02 25,67 0,17 0,46 0,36 0,49
Min 0 0 0 -8,23 0 0,48 0,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Max 7158 10138,5 1 0,66 109 12,90 278,53 1621,00 0,99 1,00 1,00 27525,34 130,00 1,00 1,00 1,00 1,00

* p <0.05
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TABLE 2 

Results of Negative Binomial Regression for Number of Citations (FE) 

 

Model 1 Model 2 Model 3 Model 4 

Constant -0.40* -0.43* -0.49** -0.46*
(0.19) (0.18) (0.19) (0.18)

Contacts Inventive Performance 0.40** 0.39** 0.42**
(0.06) (0.06) (0.06)

Structural Holes 0.42** 0.33**
(0.10) (0.11)

Prolific contacts X Structural Holes -0.22*
(0.09)

Centrality 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Performance -0.07 -0.04 -0.05 -0.05
(0.06) (0.06) (0.06) (0.06)

Age 0.21* 0.25** 0.24** 0.24**
(0.09) (0.08) (0.08) (0.08)

R&D intensity 0.07* 0.07* 0.06* 0.06*
(0.03) (0.03) (0.03) (0.03)

Knowledge Base Size 0.25** 0.25** 0.26** 0.24**
(0.04) (0.03) (0.03) (0.03)

Knowledge Base Generality 0.47** 0.42** 0.42** 0.44**
(0.07) (0.07) (0.07) (0.07)

Knowledge Base Diversification 0.84** 0.77** 0.74** 0.75**
(0.07) (0.07) (0.07) (0.07)

Selfcites 0.11** 0.13** 0.11** 0.11**
(0.04) (0.04) (0.04) (0.04)

Technological Fertility 0.05† 0.05† 0.05† 0.05†
(0.03) (0.03) (0.03) (0.03)

Fabless 0.10 0.01 -0.04 -0.04
(0.12) (0.12) (0.12) (0.12)

VI -0.20† -0.21† -0.27* -0.25*
(0.12) (0.12) (0.12) (0.12)

IDM -0.07 -0.15 -0.26* -0.24*
(0.12) (0.12) (0.12) (0.12)

US 0.09 0.10 0.09 0.07
(0.08) (0.08) (0.08) (0.08)

Period dummies included included included included

Observations 631 631 631 631
Number of cusip2 132 132 132 132
Log likelihood -2144.23 -2123.46 -2113.7 -2108.68
Increase in log likelihood 20.77** 9.76* 5.02*

Standard errors in parentheses
† significant at 10% * significant at 5% ** significant at 1% 
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Essay 3 

 

 

 

THE IMPACT OF INTRAFIRM NETWORKS AND KNOWLEDGE BASE 

HETEROGENEITY ON FIRMS’ INNOVATION  

 

 

 

ABSTRACT 

 

This paper explores how a firm's internal collaboration network affects its ability to integrate 

knowledge in the generation of new technologies. Building on the knowledge-based view of 

the firm, we contrast the relative efficacy of densely connected and brokered (i.e., cluster-and-

bridge) structures, showing how the costs and benefits of both structures vary depending on 

the heterogeneity of a firms' knowledge base. To put our arguments to a test , we use a novel 

dataset describing the patent co-authorship networks of 121 semiconductor firms over the 

period 1992-1998. The results offer support to our predictions and they yield important 

implications for the design of organizations.  

 

 

Key words: Knowledge integration, intra-organizational networks, innovation, knowledge 

based theory. 
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 A central tenet of the knowledge-based perspective on organizations is that the ability 

to effectively integrate the specialized knowledge of individual organizational members is 

critical to a host of organizational capabilities (Kogut & Zander, 1992; Grant, 1996a; Grant 

1996b; Brusoni, Prencipe & Pavitt, 2001). In particular, the question of how firms should 

organize their knowledge integration activities in order to favor technological innovation is at 

the core of the academic debate (e.g., Allen, 1977; Tushman, 1978; Kogut & Zander, 1996; 

Argyres & Silverman, 2004). Received research on this topic univocally indicates that firms’ 

internal collaboration networks play a pivotal role in shaping both processes and outcomes of 

knowledge integration (Hansen, 1999a; Tsai, 2001; Reagans & Zuckerman, 2001; Reagans & 

McEvily, 2003). However, opinions concerning which collaborative structure is most 

conducive to innovation diverge widely. In this paper, we address perhaps the most 

fundamental of such outstanding academic controversies: Is innovation favored by densely 

connected, team-like collaboration networks or, conversely, by brokered, cluster-and-bridge 

ones?  

 Densely connected collaboration structures (Figure 1a) are argued to boost knowledge 

integration and innovative productivity by reducing the risks of knowledge sharing, by 

providing richer information channels, and by facilitating the diffusion of tacit coordination 

practices among organizational members (Coleman, 1988; Clark & Fujimoto, 1991; Iansiti, 

1995). By contrast, brokered collaboration structures (Figure 1b) are argued to enhance 

innovation because they feature both dense clusters, wherein the abovementioned advantages 

apply, and bridges, which economize on redundant information channels (Allen, 1986; Burt, 

2004; Fleming et al. 2007). To date, much empirical evidence has been found supporting both 

arguments, and the controversy remains largely unresolved. One important reason for this 

stalemate may be that extant studies have primarily focused on unveiling the distinctive 

advantages of each network structure. Our goal, by contrast, is to explain under which 
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conditions dense and brokered collaborative structures facilitate innovation. This goal poses 

two requisites. First, we need a theory that specifies how both the costs and benefits of dense 

and brokered structures vary as a function of specific contingent conditions. Second, to 

empirically test the predictions of such theory, we need data on the internal collaboration 

network of a large number of firms (and, of course, on their innovative productivity). 

--------------------------------------- 
Insert Figure 1 about here 

---------------------------------------- 
 

In this paper, we build on the knowledge based perspective on organizations to argue 

that the relative costs and benefits of knowledge integration in closed and brokered 

collaboration networks depend on the heterogeneity of a firm’s knowledge base (Hansen, 

1999a; Birkinshaw, Nobel & Ridderstrale, 2002; Nickerson & Zenger, 2004; Rodan & 

Galunic, 2004). To test our conjectures, we use a novel, longitudinal dataset describing the 

evolution of the intra-organizational collaboration networks of 121 technologically active 

firms in the worldwide semiconductor industry between 1992 and 1998. We use patent-based 

indicators to measure firms’ knowledge output and co-patenting as an indicator of 

collaborative ties among inventors (Nerkar & Paruchuri, 2005; Fleming, Mingo & Chen, 

2007). Further, we use “whole network” measures to characterize densely connected and 

brokered structures (Hansen, 1999a; Reagans & Zuckerman, 2001; Reagans & McEvily, 

2003; Nerkar & Paruchuri, 2005).  

 Our analyses provide several insights on the relative efficacy of dense and brokered 

structures in fostering the creation of new technological knowledge. As we argue and show, 

on average brokered structures tend to enhance firms’ innovation output, while dense 

networks tend to depress it. Thus, having a cluster-and-bridge collaboration network 

positively affects firms’ innovation relative to having a more homogeneous tie distribution. 
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Conversely, firms with dense collaborative structures are on average less innovative than 

firms whose inventors operate more autonomously from one another. However, these 

relationships are altogether reversed for firms whose knowledge base is heterogeneous and, 

hence, complex. As a consequence, the higher the heterogeneity of the knowledge base to be 

integrated in the process of technological production, the more dense collaboration structures 

turn out to boost innovation. Furthermore, as knowledge exchange requirements increase with 

knowledge heterogeneity, bridges are easily overloaded, making brokered structures 

particularly inefficacious.       

 This article aims to make a threefold contribution. First, it extends recent studies in the 

knowledge based view of the firm (Nickerson & Zenger, 2004) by advancing a theoretical 

framework that explains the relative efficiency of alternative organizational forms in the 

creation of new knowledge. Most studies using a knowledge based perspective have 

explained the choice of hierarchies versus market-based modes by articulating the efficiency 

of vertically integrated organizations in economizing on knowledge exchange (Demsetz, 

1988; Conner, 1991; Prahalad & Conner, 1996) or in facilitating knowledge transfer (Kogut 

& Zander, 1996; Grant, 1996a; Kogut & Zander, 1996). Our study extends this line of 

research arguing that the same logic may well apply to illuminate choices regarding the 

internal organization of a firm’s knowledge generation activities. Second, our approach makes 

it possible to gain new insights on the role of cohesive and brokered collaborative structures 

in the generation of new knowledge. Apart from few cases (Hansen, 1999a; Rodan & 

Galunic, 2004) extant models of firms’ intra-organizational structures focused either on 

structural features or on knowledge characteristics to explain the process of knowledge 

generation. By contrast, this paper shows that choices regarding collaborative structure that 

support the process of integration and the heterogeneity of a firm’s knowledge base are 

inherently intertwined and much can be learned by more carefully exploring the main and 
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relative effect of these mechanisms. Third, the paper concurrently answers the quest for 

empirical work in the knowledge based perspective (Foss, 1996) and a recent call for 

empirical studies at the network level that investigate the effect of whole network properties 

on collective outcomes (Provan, Fish & Sydow, 2007: 465). 

 The paper is structured as follows. In the first section, we advance a view of the firm 

as a knowledge integrating institution, and develop a theoretical rationale for a framework 

that encompasses both collaborative forms and knowledge base characteristics. On these 

premises, we develop a set of testable hypotheses that relate the development of new 

corporate knowledge to structural properties of the organization and to the heterogeneity of a 

firm knowledge base.  Next, we present our dataset, which describe the evolution of intra-firm 

collaborative activity of 121 semiconductor players between 1992 and 1998. We then present 

and discuss the results of our empirical analyses. In the last section, we elaborate on the 

limitations and implications of our study and suggest the next steps that need to be undertaken 

to improve this line of research. 

 

THEORETICAL FRAMEWORK 

 

Firms as knowledge integrating systems 

A central insight of the knowledge based perspectives on organizations is that the role 

of firms is to integrate and apply “existing knowledge to the production of goods and 

services” (Grant, 1996a: 112). Building unique combinations (Schumpeter, 1939; Nelson & 

Winter, 1982) or synthesis (Henderson & Clark, 1990) of distinct and rapidly evolving 

domains of knowledge, firms produce goods and services, which strengthen their competitive 

position (Kogut & Zander, 1992; Grant, 1996b).  
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Two main arguments have been advanced to support the efficiency of firms in 

knowledge exchange relative to markets. The first argument posits that hierarchies exist 

essentially to avoid, or economize on, knowledge exchange and transfer (Demsetz, 1988; 

Conner, 1991; Conner & Prahalad, 1996), emphasizing the firm’s capacity to exercise 

authority in directing members’ actions. The other view claims that hierarchies exist instead 

to facilitate knowledge transfer (Arrow, 1974; Kogut & Zander, 1992; 1996; Nonaka, 1994; 

Nahapiet & Goshal, 1998), emphasizing the firm’s capacity to support the creation of shared 

language and identity. As Hakanson (2006: 19) notes: “firms themselves may form epistemic 

communities of their own right, conferring on their members the means by which knowledge 

can be effectively combined and integrated”.  

The difference between economizing and facilitating knowledge transfer in the 

knowledge integration process is rigorously discussed in Nickerson and Zenger (2004). In 

their original work, the authors articulate the knowledge based advantages of markets, 

authority based and consensus based, and predicts that a match would occur between these 

alternatives and the complexity of knowledge needed to solve the problem, based on the 

associated benefits and costs in governing the knowledge integration process. Similarly, other 

studies suggest that fit between governance choices and specific problem characteristics 

significantly improves problem solving performance (Marengo, Dosi, Legrenzi & Pasquali, 

2000; Macher, 2006). 

If the match between knowledge type and boundary choices may be usefully applied 

to explain a firms’ ability to generate knowledge and capabilities (Nickerson & Zenger, 2004; 

Macher, 2006), this logic may well apply to illuminate choices regarding the internal 

organization of a firm’s knowledge generation activities. Technological innovation represents 

a prototypical example of problem solving that requires the integration of different knowledge 

trajectories and the generation of new knowledge (Fleming, 2001). Following our reasoning, 
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the relative effect of different intra-organizational choices on a firms’ ability to develop new 

technologies is likely to vary as a function of specific contingent conditions. Yet, before 

investigating how the fit between internal organizational structure and knowledge type 

impacts innovative productivity, it is critical to define what knowledge attribute is 

fundamental to discriminate the cost and benefits of different collaborative forms in 

technology development. We take up this issue in the following section.  

 

Knowledge base heterogeneity 

 The production of increasingly complex technological goods requires the integration 

of highly heterogeneous and divergent technological trajectories (Dosi, 1982; Tushman & 

Rosenkopf, 1992) and the heterogeneity1 of combinatorial inputs (Hargadon & Sutton, 1997) 

is strategically pivotal in the development of technological innovations (Fleming, 2001; 

Fleming & Sorenson, 2004). In principle, the set of potential inputs and, a fortiori, the set of 

combination of those inputs, is infinite. Individual cognitive limitations, though, limit the 

maximum amount of heterogeneity that individual inventors can handle simultaneously in 

technological search (Fleming, 2001). As a result, individuals and groups tend to research 

locally and specialize within specific domains.  

While maintaining a balance between the depth of knowledge acquired by 

specialization and the breadth of insights emerging from heterogeneous disciplines is 

extremely hard for individual inventors, it becomes much easier when inventors can draw on 

others’ knowledge and experience in addition to their own (Yayavaram & Ahuja, 2008). 

Inventors do certainly learn from peers in many ways, and interacting with colleagues within 

                                                            
1 In general terms, a firm’s knowledge base heterogeneity refers to the breadth of knowledge applied by the firm 
as it carries out its production tasks. Applying this definition to the task of technological innovation, a firm is 
characterized by low knowledge base heterogeneity when its search for recombinant inputs is confined within a 
restricted number of technology domains. On the contrary, the knowledge base of firms that customarily 
recombines knowledge inputs across many distinct technology domains is high. In the NK jargon, knowledge 
heterogeneity refers to the N distinct technological components searched. Hence, increasing heterogeneity 
implies increasing complexity. 
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firms’ laboratories and research units is certainly a fundamental source of ideas (Brown & 

Duguid, 1991).  To favor knowledge exchange between inventors’, firms devise formal and 

informal collaborative structures (Allen, 1986; Argyres & Silverman, 2004). The benefits and 

costs of different collaborative structures in the generation of new technological knowledge 

are likely to vary depending on the type of search needed to integrate increasingly 

heterogeneous bodies of knowledge. 

 

Matching knowledge base heterogeneity and collaborative structures 

Literature has extensively debated how firms should organize their innovative 

activities to favor the integration of heterogeneous knowledge (e.g., Allen, 1977; Tushman, 

1978; Brown & Duguid, 1998; Kogut & Zander, 1996; Argyres & Silverman, 2004; Schmickl 

& Kieser, 2008). Received research on this topic univocally indicates that firms’ internal 

collaboration networks play a pivotal role in shaping both processes and outcomes of 

knowledge integration (Hansen, 1999a; Tsai, 2001; Reagans & Zuckerman, 2001; Reagans & 

McEvily, 2003). However, opinions concerning which collaborative structure is most 

conducive to innovation diverge widely. Research emphasized that two different designs are 

generally adopted.  

On one side, firms may favor the emergence of densely connected, team-like 

collaboration networks (Figure 1 A), where dense formal and informal ties connect 

individuals belonging to diverse specialties and functions (Clark & Fujimoto, 1991; Iansiti, 

1995; Hansen, 1999a). The distribution of collaborative ties is homogeneous (Figure 1A), so 

that all members in the organization have approximately a similar number of connections. 

Cohesive structures generate new knowledge by maximizing the amount of transpecialist 

understanding through trust and integrating practices (Postrel, 2002). On the contrary, firms 
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may adopt brokered, cluster-and-bridge2 collaborative structures (Figure 1 B), characterized 

by separate teams and units connected by boundary spanning roles (Tushman, 1978; Allen, 

1986; Burt, 2004; Fleming et al. 2007). While in the case of cohesive networks the 

distribution of collaborative ties is homogeneous, in this case the number of connections of 

the individuals is highly skewed, with few individuals, called brokers or gatekeepers, 

accounting for the majority of the connections and knowledge exchanges in the network. 

Brokered networks preserve a high level of specialist knowledge and rely on boundary 

spanning roles to connect specialized island of mutual ignorance (Postrel, 2002). A variety of 

results has been found supporting the positive effect of either form on firms’ ability to 

develop new knowledge, and the controversy remains theoretically and empirically open.  

Extant results may be reconciled through our matching perspective (Nickerson & 

Zenger, 2004). The benefits and costs of different network structures is likely to be contingent 

on the way these structures deal with knowledge formation hazards at increasing levels of 

input heterogeneity. To put it simply, to favor the development of new technological 

solutions, network structures need to be matched in a discriminating way to the heterogeneity 

of the knowledge that is continuously integrated and produced, based on their associated costs 

and benefits in the process of knowledge integration (Nickerson & Zenger, 2004; Rodan & 

Galunic, 2004). 

With this picture in mind, we can develop a set of testable hypotheses that relate the 

collaborative structure of organizations to firms’ ability to integrate knowledge into novel 

solutions. In addition, we can make conjectures regarding the efficiency of different structures 

when organizational members build on increasingly heterogeneous knowledge inputs. Our 

contention is that, by deepening our understanding of the matching between the heterogeneity 

                                                            
2 Literature (Watts & Strogartz, 1999; Watts, 1999; Fleming et al., 2007) refers to these structures as small 
world. We define them “brokered” or “cluster-and-bridge” to relax the stringent requirement of small world 
networks, and to extend this characterization even to small networks, or to network that are partially 
disconnected. A similar approach is adopted by Schilling and Phelps (2007). 
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of the knowledge base and the collaborative structure that supports technological problem 

solving, on the other side, we can advance a more encompassing framework that explains 

under which conditions densely connected or brokered collaborative structures facilitate 

innovation. 

 

HYPOTHESES 

 

We described cohesive collaborative networks as characterized by dense formal and 

informal ties connecting individuals belonging to diverse specialties and groups. Knowledge 

integration through a dense network of collaboration surely entails costs, which should be 

taken into account when evaluating the efficiency of a collaborative network. In particular, 

maintaining a dense knowledge exchange structure among organizational members implies 

that a great amount of time and energy be committed to preserving existing collaboration ties 

and the relational knowledge they entail (Hansen, 1999b). Such costs increase with the 

number of relationships. In addition, dense collaboration networks imply collective, lengthy 

knowledge integrating procedures and decision cycles (Cross, Erlich, Dawson, & Erferilich, 

2008) which reduce the amount of time for creative activities and increase the likelihood of 

engaging in redundant knowledge transfer (Tsai, 2001). Finally, cohesive networks also entail 

higher social costs in innovative activities, as maintaining overly closed relationships stifles 

experimentation (Uzzi & Spiro, 2005), reduce the ability to react to errors (Hoopes & Postrel, 

1999) and encourage groupthink, so that people will generate fewer ideas (Hunt, Ogden & 

Neale, 2003).  

 These arguments suggest that, in absolute terms, building and maintaining cohesive 

networks is necessary only when innovation requires the transfer of complex knowledge 

across technological domains (Hansen, 1999a). Thus, controlling for the degree of knowledge 
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heterogeneity of problem solving inputs, the relative efficiency of a sparse network in the 

innovative process will be superior to the efficiency of overly connected collaborative 

structures: 

Hypothesis 1: Ceteris paribus, the greater the density of a firm collaborative structure, 

the lower the firm’s innovative output. 

 

The prior hypothesis suggest that, holding constant the heterogeneity of a firm’s 

knowledge base, economizing on tie formation and maintenance cost is positively related to 

firms’ knowledge generating performance. Yet, once the number of ties within an 

organization is fixed, how should these relationships be distributed? Prior research on small 

world networks (Watts & Strogartz, 1998; Watts, 1999; Cowan & Jonard, 2003; Uzzi & 

Spiro, 2005; Fleming, Juda & King, 2007) emphasized the benefits of structures of 

collaborative structures, characterized by localized pockets of dense connectivity bridged by a 

few boundary spanning individuals (Figure 1B), vis à vis structures where ties are 

homogeneously distributed.  

From the perspective presented in this paper, brokered structures – i.e. cluster and 

bridge networks -, present two fundamental efficiency advantages in the integration of 

knowledge into new technologies. On the one hand, separate clusters tend to increase 

efficiency by favoring transfer of specialized, embedded knowledge within each cluster. 

Individuals embedded within different clusters search locally on a delimited area of the 

problem solving space and specialize in a specific area (Schilling & Phelps, 2007). In each 

cluster, the development of shared understanding of problems and solutions greatly facilitates 

communication and further learning (Brown & Duguid, 1991). Similarly, the creation of 

common practices eases solution search and evaluation (Hansen, 1999; Uzzi & Spiro, 2005; 

Schelling & Phelps 2007; Fleming et al., 2007). At the same time, the presence of external 
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bridges across clusters make it possible to economize on knowledge transfer  (Schilling & 

Phelps, 2007; Watts, 1999) and reach out to a number of network members, while preserving 

knowledge integrity and speed of transmission. This results in an efficient division of 

innovative labor (Arora & Gambardella, 1994), whereby specialization is efficiently managed 

by specialized individuals in separate clusters, and transfer and integration is guaranteed by 

brokers (Burt, 1992), also called gatekeepers (Tushman, 1978) or system integrators (Brusoni 

et al., 2001; Brusoni & Prencipe, 2006). Based on these arguments, we predict that, holding 

constant the heterogeneity of a firm knowledge base, cluster-and-bridge structures, in absolute 

terms, will favor the process of knowledge integration into new technologies: 

Hypothesis 2:   Ceteris paribus, the more a firm collaborative structure combines high 

 clustering and high reach, the greater the firm’s innovative output. 

 

When an organization builds upon highly heterogeneous disciplines, the challenges of 

knowledge integration become increasingly severe (Postrel, 2002), as extensive specialization 

results in a situation where each individual is largely ignorant of the activities of his fellows. 

Thus, the associated costs and benefits of the abovementioned structures are likely to vary 

depending on the heterogeneity of a firm knowledge base.  

Let us start with cohesive collaborative networks. We argued that, holding constant the 

degree of variety in a knowledge network, densely connected structures bear heavy 

maintenance and social costs that reduce the efficiency of the innovative process. Yet, in 

collaborative structures leverage increasingly heterogeneous competencies, maintenance costs 

are increasingly offset by the knowledge transfer benefits that cohesive structures guarantee 

(Postrel, 2002). 

On the one hand, heterogeneity increases the benefits of knowledge transfer through 

dense relationships. Cohesive structures create shared norms and practices that speed 
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knowledge transfer (Nonaka, 1994) and facilitate the transfer of increasingly heterogeneous 

and complex knowledge. As Hansen (1999a; 1999b) suggests, when knowledge is 

increasingly complex and difficult, strong and redundant ties are fundamental to maintain 

speed and integrity of knowledge search and transfer. On the other hand, increased 

heterogeneity reduces the social costs of cohesive structures. The coexistence of 

heterogeneous learning heuristics and diverse knowledge can counteract the staleness of 

closed collaborative structures, which tend to recycle information (Simonton, 1999). As 

Fleming and colleagues suggest (2007: 448), “the non redundant information that 

heterogeneous agents possess and that would naturally bring to the collaboration will be of 

less value unless their social isolation is ameliorated by the collaboration within a locally 

cohesive structure”. If this is the case, variety of knowledge in problem solving would reduce, 

in principle, the likelihood of redundant conversation an feedback processes, and thus reduce 

the relative duplication and maintenance costs of denser structures.  

Accordingly, we expect that, in organizations whose innovative activity requires the 

integration of highly heterogeneous domains, the integration and coordination benefits 

resulting from cohesive network will compensate the social and maintenance costs: 

 Hypothesis 3:   Ceteris paribus, knowledge base heterogeneity will positively 

 moderate the relationship between the density of a firm collaborative structure and the 

 firm’s innovative output. 

 

Hypothesis 2 states that, holding constant the level of knowledge input heterogeneity, 

brokered collaborative structures favor innovation as they concurrently enhance knowledge 

transfer within clusters and economize on knowledge transfer through dedicated boundary 

spanning roles. Both advantages offered by “cluster-and-bridge” structures need to be 



 106

discussed when the problem solving activity demands the integration of increasingly 

heterogeneous knowledge. 

On one side, insulating tendencies will emerge when increased heterogeneity will 

result in densely connected clusters of homogeneous knowledge bridged by a few individuals. 

Clusters will push specialists to pursue the challenges of their specific fields rather than the 

common objective of knowledge generation (Allen, 1986). Stronger integrating practices will 

be required to overcome these tendencies, at additional costs. The effectiveness of knowledge 

transfer within clusters will be offset by a stronger demand of integration across clusters. 

Thus, the benefits of knowledge transfer will be diminished. In addition, knowledge 

heterogeneity can decrease the advantages of coordination via boundary spanning roles. 

Brokers are fundamental to preserve the connectivity of the organizational structure and to 

allow access to diverse bodies of knowledge residing in different subgroups (Burt, 1992). Yet, 

as the heterogeneity of knowledge increases, brokers face a number of challenges. In highly 

diverse knowledge environments, brokers not only guarantee the translation and transfer of 

knowledge across groups, but truly participate to both communities’ innovative activity 

(Brown & Duguid, 1998) and develop technological competencies at the interface between 

different areas (Brusoni & Prencipe, 2006). As a consequence, they become cognitively and 

relationally overloaded by the amount and variety of information that they need to transmit 

(Fleming et al., 2007). In addition, extreme variety in the network increases the hazard of 

brokers’ opportunism, as very few individuals in the structure can develop similar integrating 

skills (Nickerson & Zenger, 2004). For example, brokers may have the incentive either to 

assimilate knowledge from different groups and profit individually from that knowledge or to 

strategically shape the heuristics that guide search to their interest. Finally, as in diverse 

environments brokers develop stronger integrating and translation capabilities and embody 

unique combinations of knowledge profiles, it becomes increasingly difficult for firms to 
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retain them. All these reasons diminish the fidelity of knowledge translation and reduce the 

relative efficiency of coordination through dedicated bridges.  

For this reason, we argue that, at increasing levels of knowledge heterogeneity, 

brokered, cluster-and-bridge network will display higher costs than organizations where ties 

are homogeneously distributed. Such cost would result in a negative impact on 

firms’innovative performance. This leads to our last hypothesis, 

Hypothesis 4:   Ceteris paribus, collaborative structures that combine high clustering 

and high reach will exhibit higher innovative output at low levels of knowledge base 

heterogeneity; conversely at high levels of technological heterogeneity, the more a 

corporate inventors’ network combines high clustering and reach, the lower the firm 

subsequent innovative output. 

 

METHODS 

 

Sample and data collection 

To test our predictions, we focused on the intraorganizational networks of inventors of 

132 firms in the worldwide semiconductor industry. Research and development units are the 

locus of technological innovation, and the design of appropriate collaborative structure is 

fundamental to facilitate the process of knowledge integration into new solutions (Hansen, 

1999a; Reagans & Zuckerman, 2001; Argyres & Silverman, 2004; Nerkar & Paruchuri, 

2005). 

We decided choose the semiconductor industry as the setting for this study for a 

number of reasons. First, it is a setting characterized by continuous technological change, and 

firms’ ability to continuously and speedily generate new knowledge is absolutely crucial to 

command a competitive advantage (Langlois & Steinmueller, 1999). Second, semiconductor 
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device producers vary greatly with respect to the collaborative structure of their innovative 

activities (West, 2002): organizational forms range from fully centralized to extremely 

dispersed structures with divisional and factory scientific and engineering labs, and the use of 

ad hoc roles to guarantee communication and feedback at various juncture and intersection 

points in the R&D process (Okimoto & Nishi, 1994: 190). Thus, the issue of how to choose 

between alternative forms of collaboration is critical to firms’ ability to generate new 

knowledge. Third, the increasing miniaturization of semiconductor devices paved the way to 

the emergence of new downstream markets knowledge (Di Biaggio, 2007), so  that the 

effective integration of specialist knowledge related to different application fields into new 

solutions is absolutely crucial to keep up with the technological frontier. Fourth, patenting is 

extensively carried out in the semiconductor industry, and all relevant players patent their 

invention at the USPTO (Hall & Ziedonis, 2002), thus making it easier to reconstruct the 

pattern of intrafirm collaboration and to monitor firms’ problem solving activity.  

We focus on the semiconductor industry in the period between 1992 and 1998. To 

select our sample, we used the following procedure. We first identified a list of semiconductor 

device designers and producers through authoritative specialized market data providers3. We 

then used the Directory of Corporate Affiliation to detect the subsidiaries of each firm in the 

sample. Financial and economic data about these firms and their subsidiaries were retrieved 

from three data sets: COMPUSTAT Global, COMPUSTAT North America, and Osiris. 

Further, we consulted business directories (Hoovers Premium, Who owns Whom US, UK and 

Asia), industry sources (ICE annual volumes) and prior research (Hall & Ziedonis, 2001) to 

identify each firm’s founding date, and to establish whether a firm should be categorized as 

“integrated device manufacturer”, “fabless”, or “vertically integrated producer”. All 

                                                            
3 We relied on the annual Profiles of IC Manufacturers and Suppliers published by Integrated Circuit 
Engineering Corporation (ICE), a semiconductor industry market research firm, on the online reports published 
by Gartner Research, by Electronic Business and through data Semiconductor Industry Association. 
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remaining organizational types (i.e., foundries, components producers, and service providers 

other than fabless), were categorized as “others”.  

To collect patent data on this sample of firms, we used two independent data sets: the 

NBER Patent and Patent Citations Data Set (Hall, Jaffe & Trajtenberg, 2001), and the 

National University of Singapore’s NUS Patent Data Set (Lim, 2004). The updated NBER 

data set comprises information on all the patents granted by the US Patent and Trademark 

Office (USPTO) between 1975 and 2002. The information codified in the NUS data set is 

largely overlapping with that in the NBER data set, and its coverage period extends to 2004. 

Concurrently using the NBER and NUS data sets made it possible to cross validate our data in 

many ways. First, we retrieved detailed patent information for all our semiconductors 

companies between January 1, 1990 and December 31, 2001 and we traced forward citations 

to these patents up to the end of 2004. Second, using both NBER and NUS data makes it 

possible to corroborate inventors’ information, thus making it possible to refine our matching 

technique. Third, while most studies employ only the first classification listed on firms’ 

patents to characterize technological location, we were able to retrieve information regarding 

all technological class assignments, which offers a higher-quality description of the firm 

technological position (Benner & Waldfogel, 2008). 

We follow Yayavaram & Ahuja (2008) to identify semiconductor related classes4 (table 1). 
 
 

------------------------------------- 
                                                  Insert Table 1 about here 

-------------------------------------- 
 

We look at the classes that were assigned to all the patents of the firms in our sample. 

We ranked the classes by the number of firms that had patents assigned to that class and then 

considered the top 30 to be semiconductor classes. These top 30 classes accounted for about 
                                                            
4 Our patent class list is slightly different from the one presented in Yayavaram and Ahuja (2008), as they 
sampled patents between 1984 and 1994, while we used patents filed between 1990 and 2001. Differences 
between the two lists reflect recent technological trends in the semiconductor industry: the increasing relevance 
of software interfaces and virtual design and verification tools and the emergence of nanotechnologies and 
semiconductor lasers.  
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63% of all the patents that belonged to the firms in the sample. This method generated a wider 

set of classes as compared to previous studies that were based on the semiconductor industry 

such as Macher (2006)5. We believe that using a wider set of classes provides a better criteria 

to identify inventors in semiconductor related R&D activities as that would include classes 

that are not typically classified as semiconductor classes but are nevertheless combined with 

semiconductor classes to create semiconductor related patents. This approach allows us to 

cast a wider net with the end to make sure that we build a representative picture of the 

organization collaborative structure. 

Prior research on the link between firms’ collaborative structure and organizational 

ability to generate new knowledge span several levels of analysis, including to R&D unit 

(Birkinshaw et al., 2002), team (Hansen, 1999a; Hansen, 1999b; Tsai, 2001) and firm 

(Argyres, 1996; Argyres & Silverman, 2004; Nerkar & Paruchuri, 2005). Given the aim of 

our study, we focus on the firm as level of analysis, taking into account all assignee codes 

mapping to the same organization6. 

 

Building inventors’ networks 

We describe a firm’s collaborative structure based on co-patenting data within each 

organization. Previous work (Singh, 2005; Fleming et al., 2007) reports significant 

knowledge flows and interaction between co-authors. Thus, co-patenting ties are informative 

of the pattern of collaboration in knowledge related activities.  

For each firm, a network of inventors was constructed by using all the patents that 

were filed in the three year period before the focal year. Because inventors are not uniquely 

                                                            
5 Specifically, patents identified according to Macher (2006) criteria represent a subsample which represents 
80.89% of the patents considered for this study. 
6 Our field interviews at a large European semiconductor company reveal that firms largely vary with respect to 
the number and use of assignee code. Some companies decide to patent all invention, even those developed by 
their subsidiaries, using the parent company assignee (generally through a centralized function). Others adopt a 
decentralized approach. Thus, using the assignee as unit of analysis and focusing on the collaborative structure 
of each subsidiary may engender a truncation bias in the definition of the collaborative structure. 
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identified (patents by the same person often appear under different combinations of initials 

and names, and there can be multiple inventors with the same name), we applied an inventor-

matching algorithm to determine each inventor’s patents and other inventors with whom the 

focal inventor had coauthored. We used inventor name, surname, middle name initial7, 

inventor’s state, assignee, patent technology as matching criteria. The inventors associated 

with each of these patents were considered an affiliation network. Each patent could have 

multiple inventors, and each inventor could be on multiple patents. This affiliation network, 

which is a two-mode network of patent to inventor, was transformed into a one-mode network 

of inventor to inventor, using UCINET VI (Borgatti, Everett & Freeman, 2002). This leads to 

a network of inventors with copatenting as non-directional tie (Singh, 2005; Nerkar & 

Paruchuri, 2005; Fleming et al., 2007); a tie connects two inventors if the firm was awarded a 

patent on which they are copatentees. As developing technological knowledge requires close 

collaboration and joint problem solving between these inventors, copatenting is considered a 

strong tie (Hansen, 1999a). For each firm in each time window, we use these one-mode 

networks of inventors to construct our independent variables.  

To make our network representation meaningful, we considered only those firms with 

at least five inventors. This leaves us with 152 firms and seven three years windows in the 

period 1992-1998, where each network at time t is based on the inventions filed by a firm in 

the three prior years (i.e. 1990-1992, 1991-1993, …, 1996-1998). 

 

Measures 

Dependent variables. Following a well established tradition (Griliches, 1990; 

Gittelman & Kogut, 2003), we use patent data to measure our dependent variable, firms’ 

                                                            
7We wrote a text algorithm that performs a simplified coding of inventors’ names, middle names and surnames 
to correct for phonetic misspellings. Robustness checks using SOUNDEX (Trajtenberg, 2005) are currently 
being performed. 
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innovative output. Patents are strongly correlated with new products (Comanor & Scherer, 

1969), literature-based invention counts (Basberg, 1982), and nonpatentable innovations 

(Patel & Pavitt, 1997). Knowledge based theories focus on firms’ ability to develop 

knowledge that has an economic value (Grant, 1996: 112) – i.e. can be turned into the 

production of goods and services. Of course, simple patent counts do not accurately capture 

the value of underlying innovations (Griliches, 1990). To address this heterogeneity in patent 

value, a widely used and validated indicator of technological inventiveness consists of 

counting the number of patents granted to a firm, weighed by the number of citations they 

received within a given time interval (Sampson, 2007; Yayavaram & Ahuja, 2008). Citation-

weighed patent counts were found to be very highly correlated to both the economic and the 

social value of inventions (Trajtenberg, 1990; Harhoff, Narin, Scherer, & Vopel, 1999). 

Furthermore, citation-weighed patent counts were directly validated as measures of 

innovativeness by two studies in which surveys were administered to inventors and technical 

experts (Albert et al, 1991; Jaffe et al., 2000). In our study, we measure firms’ ability to 

develop new knowledge via a count of citation-weighted firm patents in the year that follows 

each time window. For example, if we use the patents filed by a firm between t-2 and t to 

compute the network variables, we observe the number of forward cites received by the 

patents filed by firm i in year t+1. 

Independent variables. The overall density of the network for each firm in a given 

time window was computed as follows: 

( )1
2
−
×

=
nn

LDensity  

where L is the number of existing links in the network and n is the number of inventors’ in a 

firm inventors’ network. Since collaboration ties are symmetrical and undirected, this variable 

measures the ratio of existing links in the network to the number of possible pair wise 
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combinations of inventors. Density may range from 0 to 1, with larger values indicating 

increasing density.  

  Brokered, cluster-and-bridge networks are characterized as networks with high 

clustering and high reach (Schilling & Phelps, 2007). To measure the clustering of each 

network for each time period, we used the weighted overall clustering coefficient measure 

(Borgatti et al. 2002, Newman et al. 2002):  

( )
( ) triplesconnected ofNumber 

graph in the  trianglesofNumber 3×
=wClustering  

where a triangle is a set of three nodes (e.g., i, j, k), each of which is connected to both of the 

others, and a connected triple is a set of three nodes in which at least one is connected to both 

the others (e.g., i is connected to j and k, but j and k need not be connected). This measure 

indicates the proportion of triples for which transitivity holds (i.e., if i is connected to j and k, 

then by transitivity, j and k are connected). The factor of three ensures that the measure lies 

strictly in the range of 0 and 1. For each inventor, the clustering coefficient tells us the 

proportion of partners that are themselves linked to each other. This variable can range from 0 

to 1, with larger values indicating increasing clustering. While network density captures the 

density of the entire network, the clustering coefficient captures the degree to which the 

overall network contains localized pockets of dense connectivity. A network can be globally 

sparse and still have a high clustering coefficient.  

To capture the reach of each network for each time period, we use a measure of average 

distance-weighted reach (Borgatti et al., 2002). This is a compound measure that takes into 

account both the number of individuals that can be reached by any path from a given inventor, 

and the path length it takes to reach them. This measure is calculated as follows: 

Average distance-weighted reach nd
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where n is the number of nodes in the network, and dij is defined as the minimum geodesic 

distance d, from a focal node i to partner j, where ji ≠ . Average distance-weighted reach can 

range from 0–n, with larger values indicating higher reach.  

The interaction term was mean centered to avoid collinearity problems (Aiken, West & Reno, 

1991). As said, previous studies used other measures, such as the small world coefficient 

(Watts & Strogatz, 1998; Fleming et al., 2007) to describe brokered networks. We use this 

approach for two reasons. First, distance weighted reach provides a meaningful measure of 

the overall size and connectivity of a network, even when that network has multiple 

components, and/or component structure is changing over time (Schilling & Phelps, 2007). 

Second, it avoids the typical infinite path length problem typically associated with 

disconnected networks by measuring only the path length between connected pairs of nodes, 

and it provides a more meaningful measure than the simple average path length between 

connected pairs by factoring in the size of connected components (Borgatti et al., 2002; 

Schilling & Phelps, 2007) 

 To gauge the extent to which firm integrate diverse technological trajectories, we 

measure knowledge base heterogeneity as follows: 

∑−=
j

iji sityHeterogene 21 , where ijs  denotes the share of patents by firm i in the technology 

class j in a given window.   

Controls. We include network size and a fragmentation measure to account for 

heterogeneity in size and fragmentation levels (Schilling & Phelps, 2007).  A firm’s size may 

affect both the scope and the scale of its knowledge-related activities (Henderson & 

Cockburn, 1994). Thus, we control for firm size, measured as the natural logarithm of the 

number of corporate assets. R&D intensity has been often been used as a measure of input in 

the process of technological generation (Ahuja, 2000; Katila & Ahuja, 2002). We followed 
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the literature in computing R&D intensity as the ratio between a firm’s R&D expenditure and 

its net sales. Previous studies have hypothesized that the economic performance of a firm may 

have both positive (Katila & Ahuja, 2002) and negative (Cyert & March, 1963) effects on its 

innovative capability.  We measure a firm’s economic performance by its ROA (Return on 

Assets). Some firms are likely to be cited simply because they produce more innovation.  This 

variable is measured as the number of patents granted to the firm in the time window 

(Yayavaram & Ahuja, 2008). Controlling for network size and number of patents would also 

control for the fact that networks based on co-authorship have clustering properties by 

definition (Fleming et al., 2008). In addition, variance in citation frequency may vary across 

classes reflecting field specific factors such as patenting propensity and technological 

opportunity. For that reason, a firm that patents mainly in classes that have high citation rates 

can get spuriously high citation rates for its inventions. To control for these effects we use 

technology class dummies. Finally, we introduce time dummies to account for time varying 

effects. 

 

Statistical model 

Since the dependent variable is a count variable that has high variance relative to 

mean, we used a negative binomial regression analysis (Cameron & Trivedi, 1986). Negative 

binomial models are preferred because our data demonstrate overdispersion (rejection of the 

Poisson model at p<0.0001). Though it sacrifices efficiency, a fixed effect model is preferred 

because it considers within-firm variation only, i.e. it controls for time invariant, firm 

idiosyncratic factors (a Hausman test rejects a random effects specification at p<0.0001). We 

used STATA 10.0 to estimate all equations. 

 

 



 116

RESULTS 

 

Table 2 provides descriptive statistics and correlation for the key variables. To assess 

potential problems of multi-collinearity, we calculated variance inflation factors (VIF) based 

on the pooled data. Mean VIF is 4.59. Conventionally, VIF scores are regarded as indicative 

of multicollinearity problems when their value is greater than 10; in our case, three VIF 

values (density, size, fragmentation) were above this limit. To reduce collinearity issues 

between these variables, we follow a well established practice and orthogonalize the three 

network variables with highest VIF scores (Golub & Von Loen, 1996). These variables will 

be used also in our regression models.  

----------------------------------------- 
Insert Table 2 about here 

           ----------------------------------------- 
 

53 firm-period observations reported missing values for some of the control variables; since 

these the criteria for data imputation were not met, we dropped those observations. Moreover, 

for 18 firms we had data regarding only one time window. Since we adopt a fixed effect 

specification, those observations were dropped. This leaves us with an unbalanced panel of 

121 firms and seven time windows (1990-1992, 1991-1993, … , 1996-1998). 

----------------------------------------- 
Insert Figure 2 about here 

           ----------------------------------------- 
 

As figure 2 details, average network size ranges from 156 to approximately 180 collaborating 

inventors; the average size of the giant component is between 54% and 59%.  

As said, in this paper, we contrast the relative efficacy of densely connected and 

brokered (i.e., cluster-and-bridge) collaborative structures. Let us offer a few visual examples 

from our dataset in order to clarify these structures. 
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----------------------------------------- 
Insert Figure 3 about here 

           ----------------------------------------- 
 

Figure 3 represents the structure of the inventors’ network of two semiconductor firms, 

Rambus Inc. and Integrated Device Technology Corp., in 1998. The firms have similar size 

and employ roughly the same number of patenting inventors (58 versus 62 inventors in this 

time window). Yet, Rambus Inc. collaborative network is characterized by high density, while 

Integrated Device Technology Corp. is a sparse network. 

----------------------------------------- 
Insert Figure 4 about here 

           ----------------------------------------- 
 

Similarly, in figure 3 compares the structure of collaboration between inventor in two small 

firms, Actel Corp. and Kopin Inc., in 1995. Kopin Inc. represents a prototypical example of 

brokered, cluster-and-bridge network, with dense clusters isolated clusters and high reach, 

while ties are distributed in a more uniform fashion in Actel Corp. Both pictures were drawn 

with Netdraw (Borgatti et al., 2002) and used a Spring Embedding multidimensional scaling 

algorithm.  

These examples from our dataset help us to make two important points. First, despite 

these firms operate in the same technological environment and face similar competitive 

challenges, networks of inventors are highly heterogeneous with respect to their structural 

properties. Second, the measures we chose to describe collaborative structures well apply not 

only to large networks of collaboration, such as those of key players such as AMD, Intel, 

Texas Instruments Inc. or STMicroelectronics, but also to smaller firms, such as those 

described in the examples. Thus, it is meaningful to use a network approach to describe firms’ 

collaborative structure.  

In table 3, we report the results of our analyses8.  

                                                            
8 We report standard coefficients of robust fixed effect negative binomial regression. 
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---------------------------------------- 
Insert Table 3 about here 

           ----------------------------------------- 
 

Model 1 is a baseline model including a set of covariates that, according to prior 

studies, may affect the impact of firms’ technological inventions. Among firm level controls, 

patents, number of assignees, number of R&D units and firms’ size do indeed have a positive 

effect on firms’ innovative output. In addition, among the network variables, network reach 

has a strong, positive effect on problem solving performance. It is important to point to the 

negative effect of knowledge base heterogeneity on firm level ability to generate new 

knowledge (β=-0.055, p<0.10). Thus, a firm that uses heterogeneous knowledge inputs in its 

problem solving activity pays higher costs of knowledge integration and this is detrimental to 

its ability to develop new technologies.  

In order to ensure that our estimates are robust, model 2 and 3 introduce separately the 

main effects of network density and the interaction between clustering and reach, while model 

4 includes both structure-related covariates. Similarly, model 5 and 6 introduce the interaction 

terms between heterogeneity and structural parameters separately, while model 7 include both 

interaction effects. Since models based on three-way interactions should include controls of al 

the second order interactions (Aiken, West & Reno, 1991) we focus on model 7 to discuss the 

results of our analyses. 

In line with our expectations, our prediction concerning the negative impact of 

network density on firms’ subsequent knowledge output (H1) is supported (β= -0.255, 

p<0.001). The size of the effect is large: a one standard deviation increase in density 

corresponds to a 22% decrease in innovative performance. Hence, controlling for knowledge 

base heterogeneity, overly cohesive structures imply higher coordination costs, which hamper 

the firms’ innovativeness. In addition, in line with hypothesis 2 (H2), brokered collaborative 

structures balance the benefits of autonomous clusters and the efficiency of knowledge 
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transfers through boundary spanning roles, which favor the integration of knowledge into new 

technologies. Hypothesis 2 is strongly supported (β=0.048, p<0.001).  

Also our predictions concerning the relative efficacy of different collaborative 

structures at increasing levels of knowledge heterogeneity are supported. Hypothesis 3 

predicted that the negative effect of density would decline with the extent to which firms’ 

need to integrate increasingly heterogeneous bodies of knowledge to develop new 

technologies. In line with this prediction, the coefficient for the interaction term is positive 

and significant (β=0.149, p<0.001). Similarly, our framework suggested that collaborative 

structures that combine high clustering and high reach will exhibit higher innovative 

performance at low levels of knowledge base heterogeneity; conversely at high levels of 

technological heterogeneity, the more a corporate inventors’ network combines high 

clustering and reach, the lower the firm subsequent ability to develop new knowledge (H4). 

Our empirical results support this contention (β=-0.076, p<0.05). 

 

Sensitivity analyses 

We assessed the robustness of our results in multiple ways. First, we address the 

concern of unobserved heterogeneity, which may affect our results. Blundell, Griffith and 

Van Reenen (1995) argued that because the main source of unobserved heterogeneity in 

models of innovation lies in the different knowledge stocks with which firms enter a sample, a 

variable that approximates the build-up of firm knowledge at the time of entering the sample 

is a particularly good control for unobserved heterogeneity. For this reason, we estimated “pre 

sample” firm fixed effect estimators for our main equations. Results hold. Also, another 

limitation is that the model we present treats network structure as exogenous, but they may be 

an outcome of other variables, such as individuals or group demographic or experience 

variables. This possibility raises the issue of whether any omitted variables create a spurious 
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association between the main structure variables and firms’ ability to generate new 

knowledge. While the time lag employed in constructing explanatory and control variables 

and the estimation of pre-sample fixed estimators mitigates such concerns to some extent, it 

does not completely eliminate them. To check for this possibility: i) I ran other models where 

I included additional controls, such as average inventor experience (and standard deviation for 

experience)  or inventors knowledge overlap (and standard deviation for overlap) ii) I 

estimated “pre sample” fixed effects estimator with an endogenous specification for our key 

predictors. The inclusion of additional variables did not alter the results. To reduce 

multicollinearity issues, these controls were excluded. To assess the robustness of our 

empirical models to alternative operationalizations of the dependent variable, we used patent 

counts to measure firms’ ability to generate new knowledge. Both the direction and 

significance of the coefficients for the variables of interest are consistent with those presented 

in table 3. As suggested by recent research (Yayavaram & Ahuja, 2008), we included 

decomposability and decomposability squared as additional controls. Regression coefficients 

signs and significance for these terms was in line with received theory, and our main results 

were robust to the inclusion of these variables. 

 

DISCUSSION AND CONCLUSIONS 

 

 It is by now widely recognized that firms’ ability to develop new products and services 

depends crucially on the integration of heterogeneous and rapidly evolving disciplines and 

practices (Grant, 1996a; Brusoni et al., 2001). Also, most scholars agree that the extent to 

which a firm is able to integrate specialized knowledge into new technological solutions 

depends crucially on the structure (Hansen, 1999a; Hansen, 1999b; Reagans & Zuckerman, 

2001; Tsai, 2001). Building on the knowledge based theory of the firm, the present article 
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offers a reconciliation of the controversy over the benefits of densely connected and brokered 

collaborative structures. Our findings suggest that organizational structures have to be 

matched in a discriminating way to the heterogeneity of a firm knowledge base, based on the 

associated costs and benefits in the problem solving process (Nickerson & Zenger, 2004; 

Rodan & Galunic, 2004). Namely, brokered, cluster-and-bridge networks provide the highest 

relative net effect when the knowledge is relatively homogeneous and easy to transfer through 

boundary spanning roles. By contrast, when the knowledge is highly heterogeneous, dense 

and homogeneously connected collaborative structures are positively related to firms’ 

innovative performance. 

By concurrently looking at the structure of a firm’s internal collaboration network and 

at the heterogeneity of a firm knowledge base, this study contributes a number of theoretical 

and empirical insights.  

First, we extend recent studies in the knowledge based tradition (Nickerson & Zenger, 

2004; Macher, 2006) by advancing a theoretical framework that explains the relative 

efficiency of alternative collaborative structures in the formation of new knowledge. Research 

in the knowledge based tradition argued that firms exist either to economize on knowledge 

exchange (Demsetz, 1988; Conner, 1991; Prahalad & Conner, 1996) or to facilitate 

knowledge transfer (Kogut & Zander, 1996; Grant, 1996a; Kogut & Zander, 1996). Our study 

extends this line of research arguing that contrasting the costs and benefits of alternative 

governance modes is a promising logic to illuminate not only why firms exists, but when they 

exist and what intra-organizational structure would better support their knowledge formation 

activity.  

Second, this approach makes it possible to gain new insights on the role of cohesive 

and brokered collaborative structures in the generation of new knowledge. As said, the role of 

collaborative structures in the development of new knowledge has been largely debated and a 
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controversy has emerged over the relative benefits of densely connected and “cluster-and-

bridge” networks. In most empirical works, the relationship between structure and problem 

solving performance is tested and the dynamics that characterize the organizational 

knowledge base are treated as underlying mechanism (Tsai, 2001; Reagans & Zuckerman, 

2001). Our matching perspective shows that choices regarding collaborative structures and the 

heterogeneity of a firm’s knowledge base are inherently intertwined but distinct. Testing the 

relative efficiency of both structures at different degrees of heterogeneity allows reconciling 

previously divergent findings. 

Finally, we enlarge the empirical content of the received theoretical perspectives. 

Extant models of organizational collaborative structure (Tushman, 1978; Allen, 1986; 

Hansen, 1999a; Hansen, 1999a; Reagans & Zuckerman, 2001; Tsai, 2001; Reagans & 

McEvily, 2003; Argyres & Silverman, 2004), relied heavily on cross sectional, survey and 

field data to infer collaborative patterns and organizational form. By contrast, we offer a  

simple network-based operationalization of cohesive and organizational forms and provide 

evidence of the performance implications of these alternatives based on archival, longitudinal 

data on collaborative inventors in a large sample of organizations. By these means, we 

concurrently answer the quest for empirical work in the knowledge based perspective (Foss, 

1996; 2007) and recent call for empirical studies at the network level that investigate the 

effect of whole network properties on collective outcomes (Provan, Fish & Sydow, 2007: 

465) 

Our study has also some noteworthy implications for the design of organizations. It is 

nowadays common for firms to produce technologies that can potentially serve a variety of 

downstream markets. As the scope of potential applications for a general purpose technology 

increases, firms need to leverage and integrate heterogeneous, market specific knowledge to 

develop new technological solutions. This issue, for example, is pervasive in the 
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semiconductor industry, where the increasing miniaturization of semiconductor devices paved 

the way to emergence of new downstream markets, which impose greater specialization of 

technological knowledge (Di Biaggio, 2007). Our results offer managers some insights on 

how increasing degrees of knowledge specialization in heterogeneous fields can be managed 

and how collaborative may be designed to guarantee trans-specialist coordination. Managers 

should align internal design choices by evaluating the relative benefits and costs of alternative 

designs, and devise procedures to assess the fir between structure and knowledge base 

characteristics. 

There are some limitations to this study that provide avenues for future research. 

Though this paper uses a unique dataset of patents and studies the networks of inventors over 

a period of ten years to identify the intra-organizational collaborative structure, the networks 

that are considered are only of a single type of ties, that of co-patenting. There could be other 

possible types of ties among these inventors, such as their membership in trade associations, 

their being members of the same department, and so on. If we had included these differences, 

findings would have been more comprehensive (Haveman, 2000). Also, our approach focuses 

on structure as depicted by the patterns of collaboration between inventors, and abstracts 

away from formal characteristics of the organization of corporate research activities, such as 

centralization, autonomy and hierarchy. Indeed formal design choices, such as these ones, 

have an impact on the integration of heterogeneous knowledge. Studying the relationship and 

interaction of formal and informal attributes of organizations of research within established 

firms represents a promising extension of this research. Finally, we only focused on 

innovation as an example of firms’ knowledge generating activities. Further research could 

explore the effect of the division and coordination of knowledge within organization on other 

dimensions of technological performance, such as publications, products and radical 

technologies. 
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FIGURE 1 

Cohesive vs. Brokered Structures 

  1.A    1.B 

 

 

 

 

 

 

 

 



 131

FIGURE 2 

Average inventors’ network size and  

size of the largest component between 1992 and 1998 

 

FIGURE 3 

Inventor’s network structure:  

Rambus Inc. vs. Integrated Device Technology Corp. in 1998 
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FIGURE 4 

Inventor’s network structure: Kopin Inc. vs. Actel Corp. in 1995 
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TABLE 1 

Semiconductor related classes 

Class 
Number Title

257 Active solid-state devices (e.g. transistors, solid state diodes)
324 Electricity: measuring and testing
326 Electronic digital & logic circuitry
327 Miscellaneous active electrical nonlinear devices, circuits & systems
330 Amplifiers
341 Coded data generation or conversion
345 Computer graphics processing and selective visual display systems
347 Incremental printing of symbolic information
348 Television
359 Optic systems (communication) including elements
360 Dynamic magnetic information storage and retrieval
361 Electricity: electrical systems and devices
365 Static information storage and retrieval
369 Dynamic information storage and retrieval
370 Multiplex communications
375 Pulse or digital communication
382 Image analysis
395 Information processing system organization
430 Radiation imagery chemistry: process, composition or product thereof
438 Semiconductor device manufacturing: process
455 Telecommunications
707 Data processing
708 Electrical computer: arithmetic processing and calculating
709 Electrical computers and digital processing systems: multiple computers and process coordination
710 Electrical computers and digital data processing systems: input/output
711 Electrical computers and digital processing systems: memory
712 Electrical computers and digital processing systems: processing architectures and instruction processing
713 Electrical computers and digital processing systems: support
714 Error detection/correction and fault detection/recovery
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TABLE 2 

Descriptive statistics and correlation between the main variables 

 

1 2 3 4 5 6 7 8 9 10 11 12 13
1. Impact of invention 1

2. Density -0.12 1

3. Reach -0.16* 0.00 1

4. Clustering coefficient -0.02 .21* -0.03 1

5. Network size 0.56* 0.00 -0.00 -0.05 1

6. Fragmentation -0.19* 0.51* 0.14* 0.07* -0.47* 1

7. Knowledge base heterogeneity -0.29* -0.08* -0.10* 0.05 0.03 0.36 1

8. Patents 0.53* 0.14* 0.02 0.01 0.52* -0.21* 0.05 1

9. RD intensity 0.07* -0.01 0.00 0.05 0.03 -0.00 0.07* 0.04 1

10. Size 0.32* -0.36* -0.10* 0.04 0.24* -0.49* 0.16* 0.37* -0.18* 1

11. ROA 0.08* -0.23* -0.01 -0.05 0.05* -0.22* 0.04 0.07* 0.09 0.16 1

12. Number of RD units 0.23* -0.19* -0.06 0.03 0.14* -0.29* 0.03 0.30 -0.00 -0.36* 0.06* 1

13. US -0.09* 0.11 0.04 -0.14* 0.07* 0.18 -0.15 -0.17* -0.01 -0.47* -0,07* -0.5* 1

Mean   2031.93 0.25 10.22 0.63 171.58 0.58 0.71 295.14 0 5.82 -0.04 1.45 0.67
S.D.   5841.14 0.27 31.92 0.30 705.54 0.30 0.21 814.80 8.55 2.89 0.38 1.18 0.42
Min 1 0 0 0 5 0 0 0 0 0 -6.16 1 0
Max 14451 1 564.88 1 8620 1 1 8170   157.83 15.62 0.35 13.00 1
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TABLE 3 

Results of negative binomial panel regression for innovative output 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Constant 1.034** 1.126** 1.035** 1.151** 1.081** 1.293** 1.249**

US 0.074 0.093 0.095 0.128 0.126 0.157 0.156

ROA -0.015 -0.018 -0.018 -0.022 -0.014 -0.016 -0.005

RDintensity 0.181** 0.202** 0.172** 0.191** 0.225** 0.188** 0.227**

LOGassets 0.170** 0.178** 0.169** 0.176** 0.182** 0.177** 0.186**

Heterogeneity -0.055† -0.095† -0.047† -0.091† -0.296† -0.076* -0.322*

Number of parents 0.086** 0.091** 0.072** 0.081** 0.085** 0.093** 0.095**

Number of assignee 0.071** 0.076** 0.077** 0.086** 0.083** 0.090** 0.088**

Fragmentatiom -0.009 -0.068 -0.016 -0.015 -0.035 -0.022 -0.046

Network size 0.021† 0.031† 0.053* 0.072* 0.080* 0.089† 0.094†

CC -0.046† -0.032† -0.034† -0.027† -0.027† -0.051† -0038†

Reach 0.032** 0.043** 0.068** 0.085** 0.097** 0.495** 0.515**

CC x Heterogeneity 0.024 -0.002

Reach x Heterogeneity -0.350** -0.362**

Density -0.213** -0.240** -0.183** -0.331** -0.255**

CC x Reach 0.048** 0.060** 0.065** 0.117** 0.107**

Density x Heterogeneity 0.127** 0.149**

CC x Reach x Heterogeneity -0.095* -0.076*

Time dummies included included included included included included included included

Class dummies included included included included included included included included

Firm type dummies included included included included included included included

Log likelihood -3034.10 -3023.79 -3029.53 -3016.19 -3002.87 -3002.55 -2984.42

Observations 655 655 655 655 655 655 655
Number of firms 121 121 121 121 121 121 121
Standard errors in brackets
† significant at 10%; * significant at 5%; ** significant at 1%  
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