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Preface

This thesis is based on one year work at the Institute of Applied Mathematics and Informa-

tion Technology of the C.N.R. (National Research Council) in Milan, under the supervision of Dr.

Antonio Pievatolo, and in collaboration with Prof. Alessandra Guglielmi and Dr. Fabrizio Ruggeri.

It concerns the study of theaccelerated failure time(AFT) model in the Bayesian nonparamet-

ric setting. In the survival literature, the AFT model is usually meant as the multiplicative effect

of a fixedp-vector of covariatesx = (x1, . . . , xp)
′ on the failure timeT , i.e.,

T = e−x
′β · V, (1)

whereβ = (β1, . . . , βp) is the vector of regression parameters andV denotes the error.

The errorV is usually assumed distributed from a parametric family, but often it is hard to

justify a specific choice. Therefore, we take anonparametricapproach to the distribution of

the error term. Recently this model has received much attention in the Bayesian community, in

particular in papers where the error,V or W = log(V ), has been represented hierarchically as a

mixture of parametric densities with a Dirichlet process asmixing measure (i.e., the well-known

DPM models, introduced by Lo, 1984). Moreover, Lijoi, Mena and Prun̈ster (2006) introduced the

N-IG prior, that could represent a valid alternative to the Dirichlet prior in the contest of mixture

modelling.
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Therefore, we consider the errorV in the AFT model as a mixture of some parametric family

of densities on the positive reals, mixed by a random distribution functionG. The work mainly fo-

cuses on the performances of two hierarchical mixture models by comparing Bayesian inferences

on the regression parameters and the survival times. On one hand we will assume thatG has a

Dirichlet process prior, yielding DPM models forV ; on the other hand,G will have the normalized

inverse-Gaussian prior (N-IG prior), thus defining what we call N-IG mixturesfor short.

Our approach to the comparison of such models is a computational one. We match the non-

parametric priors in such a way they carry the same prior information, then we measure the perfor-

mance of the two models on both simulated and real data. We cansummarize this approach in two

steps. In the first one, we determine the hyperparameters based on the marginal distribution of the

error, and we conduct some sensitivity analysis on the posterior estimates. In the second one, we

obtain the predictive estimates and measure the predictivepower of the two proposed methods. In

the simulated data case, we consider the distance in the uniform metric between the predictive and

the “target” distribution. In the real dataset case, we use a“cross validation” method, quantifying,

in practice, how far the predictions are from the observed data.

Another important feature of nonparametric mixtures is related to the number of components

in the mixture. Indeed, such prior specification is a fruitful extension of parametric finite mixture

models. In the nonparametric way, the prior number of components is random and its law (in

a sample of fixed sizen) is determined by the mixing process. The N-IG prior leads toa less

informative prior on the number of components with respect to the Dirichlet prior. We analyse

the differences in the posterior estimates of this distribution, arising under the two different prior

specifications.

Sometimes, in the Bayesian literature the AFT model is rewritten aslog T = −xβ+W , where

W = log V , then a nonparametric hierarchical mixture of parametric densities, with support on

the entire real line, is used to model the distribution ofW . However if, for example,W is a non-
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parametric mixture of normal densities, thenV is not a nonparametric mixture oflog−normals,

so that a one to one correspondence between the additive and the multiplicative model can not

be easily obtained. Therefore, it is equally reasonable to work onV rather than onW , with the

advantage that the survival timeT is modelled directly, thus facilitating also prior specification.

The plan of the Thesis is as follows.

In Chapter 1 we describe the two basic regression models for survival time data: the propor-

tional hazard model and the AFT model. Then, we briefly reviewthe literature on the nonpara-

metric Bayesian approach to inference for AFT models.

In Chapter 2 we discuss the basic Bayesian nonparametric models that will be used as prior

on the unknown distribution ofV . This development begins with the Dirichlet processes (Fergu-

son, 1973), the mixture of Dirichlet process (Antoniak, 1974) and the Dirichlet process mixture

models (Lo, 1984). Then we will illustrate the N-IG process and the N-IG process mixture.

A Monte Carlo approach to approximating the posterior distribution would involve sampling

the infinite dimensional parameterG. Such an approach cannot be implemented without introduc-

ing a finite approximation. In Chapter 3 we will illustrate the basic idea of Escobar (1994) who

first considered the DPM model obtained after marginalizingthe Dirichlet process. Then we will

describe some extensions to the Escobar algorithm, and we will adapt these to the N-IG mixture

model.

In Chapter 4 the two competing models are tested on real and simulated datasets. We present

four examples. In the first one we consider a simulated dataset and we perform density estimation

through an AFT model without covariates. The predictive performances are quantified by com-

puting the distance in the uniform metric between the true density and the predictive estimates.

In the two subsequent examples we study two well known datasets, one containing censored ob-

servation, the other not. The predictive performances of the two models are compared through

a cross-validationmethod. In the fourth example we test a non-conjugate hierarchical mixture
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model on the simulated data set and we compare the results with those arising from the first ex-

ample.

Chapter 4 constitutes the original part of this thesis. The AFT model with N-IG process

mixture modelling the error has not been considered before.We also examine in some detail the

effect of the choice of the prior mean of the N-IG and Dirichlet process on the marginal distribution

of V . Finally, while a very large number of proposals have appeared in the literature, there have

not been many attempts to compare competing models systematically.
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Chapter 1

Regression models for survival time

data

1.1 Introduction

In this chapter our aim is to introduce some basic definitionsand models of survival analysis, i.e.,

the procedures to analyze data arising as the time until an event occurs. Enormous progress has

been achieved in this area in the 20th century. The field of survival analysis is very rich, since

time-to-event data arises in many fields of study, includingmedicine, biology, engineering, public

health, epidemiology, economics among the others. In such context events are generically referred

to as failures (or deaths), since major areas of applicationare medical studies.

A complexity that frequently arises in trials having time-to-event endpoints is that a fraction

of subjects remains without time to failure at the end of the study. For these elements it is only

known that the true time-to-event exceeds the recognised time. We refer to such data as right

censored. As Flemming and Lin (2000) asserts: “The necessity of obtaining methods of analysis that

involve censoring is probably the most important reason fordeveloping specialised models and procedure

for failure time data.”
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The target of a survival study is to look at the dependence between failure time and some

explanatory variables. In medical studies for example, in order to enable some evaluation on

the benefit or the risk of treatment on the subjects under observations. Another problem is the

estimation and the identification of the distribution of thefailure times.

In Section 1.2 we describe the probability objects of interest in a statistical survival analysis.

In Section 1.3 we report the classical way of accomplishing estimates of parameters in particular

for the well-known Cox proportional hazard model and the accelerated failure time model, and we

mention some comparison between these two celebrated models.

Since in our work we focus the attention on the Bayesian semiparametric approach to the

accelerated failure time model, in section 1.4 we will give areview of the major works in this area

1.2 Survival analysis, basic definition

Let T be a non-negative absolutely continuous random variable onsome measure space(Ω,F , P),

representing the failure time of an individual in a population. Let f(·) denote the probability

density function ofT with distribution function

F (t) := P(T ≤ t) =

∫ t

0
f(u)du, t > 0.

In survival analysis it is customary to work with the survival function representing the probability

that the individual time-to-event is greater thant,

S(t) := 1 − F (t) = P(T > t), t > 0.
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Of course,S(·) is a monotone decreasing left continuous function withS(0) = 1, andS(+∞) :=

limt→+∞ S(t) = 0. The density function and the survival function are relatedby

f(t) = −dS

dt
(t).

The hazard function is the instantaneous rate of failure upon the timet and is defined by

λ(t) := lim
∆t↓0

P(t ≤ T < t + ∆t|T ≥ t)

∆t
=

f(t)

S(t)
.

It uniquely specifies the distribution ofT , since it obviously holds

λ(t) = −d log S

dt
(t).

Integrating both sides of this equality with the boundary condition S(0) = 1, we have

S(t) = exp

(

−
∫ t

0
λ(u)du

)

, t > 0.

1.3 Parametric regression models

The earliest efforts in the development of the survival methodology were predominantly focused

on the estimation of the hazard functionλ(·), or equivalently on the survival functionS(·). The

life table technique is one of the oldest methods for analysing survival (or failure time) data (e.g.,

see Berkson and Gage, 1950; Cutler and Ederer, 1958; Gehan, 1969). This table can be thought of

as an “enhanced” frequency distribution table. Kaplan and Meier (1958) proposed a famous esti-

mate ofS(·) through a nonparametric maximum likelihood approach. The Kaplan-Meier estimate

consists of a step survival function, with value reduced by amultiplicative factor at the times of

observed events. In practice the two estimators above are descriptive methods for estimating the
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distribution of survival times from a sample.

To improve flexibility in estimation it is useful to make someparametric assumptions on the

survival distribution. Modelling the survival timeT parametrically, a variety of distributions on

the positive realsR+ has been proposed. We mention, among the many, the exponential, Weibull,

log-logistic, log-normal and gamma distributions. Under this model Bayesian and maximum like-

lihood (ML) methods are used for parameters estimation. Lawless (1982) provides a, frequentist,

detailed presentation of parametric methods, while Ibrahim, Chen, and Sinha (2001) give a com-

plete panorama on the Bayesian approach.

However, usually failure time may depend on explanatory variables (or covariates). Therefore

it becomes of interest to consider generalisations of parametric models to take account of con-

comitant information on the individuals sampled. Considera failure timeT > 0 and suppose a

vectorX = (X1, . . . ,Xp)
′ ∈ R

p of explanatory variables (or covariates) has been observed(note

that these covariatesX can take a variety of functional forms, being dichotomous, discrete or con-

tinuous). One of the principal problem dealt with in the statistical analysis is that of modelling

and determining the relationship betweenT andX. The covariates can influence the survival time

either acting on the hazard function or directly “accelerating” or “decelerating” the failure time.

1.3.1 The proportional hazard model

Regression models proposed for survival distribution generally involve the assumption of pro-

portional hazard functions (Lehemann, 1953). A proportional hazards model possesses the prop-

erty that different individuals have hazard functions thatare proportional to one another, that is,

λ(·|X1)/λ(·|X2), the ratio of the hazard functions for two individuals with covariatesX1 andX2,

does not vary with timet. In this framework Cox (1972, 1975) introduced his celebrated model

λ(t|X = x) = λ0(t) exp(x′β), for eacht ≥ 0. (1.1)
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The functionλ0(·) can be considered as a baseline hazard function of an individual for which

X = 0, β = (β1, . . . , βp) is a vector of regression parameters andx′ means the transpose ofx.

The proportional hazard regression model (1.1) has been largely studied, mostly because Cox

(1975), by thepartial likelihoodapproach, provided methods to estimate the regression parameters

β without hypothesis onλ0; the hazard baseline is considered as a infinite-dimensional nuisance

function. Furthermore, Andersen and Gill (1982), through martingale theory, provided an elegant

asymptotic theory for the partial likelihood estimate, while Efron (1977) and Oakes (1977) studied

the efficiency of the Cox estimates.

1.3.2 The accelerated failure time model

The proportional hazard model (1.1) specifies that the effect of the covariatesX is to act mul-

tiplicatively on the hazard function: however, in this framework, it is not easy to interpret, for

example, the estimates of regression parameters. A different way to specify how the covariates

may influence the survival timeT is the Accelerated Failure Time (AFT) model (Cox, 1972; Pren-

tice, 1978) which specifies a log-linear relationship between time-to-event and covariates:

log T = −X′β + W, (1.2)

whereW is an error variable with support inR, independent ofX. Exponentiation of (1.2) yields

T = exp(−X′β)V, (1.3)

whereV = exp(W ) > 0. This expression shows that the role of covariatesX is to accelerate

(decelerate) the time to failure.

If λ0(·) is the hazard function ofV , then the hazard function ofT can be expressed through
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λ0(·) as

λ(t|X = x) = λ0(te
x′β)ex′β . (1.4)

The last identity shows the effect of the covariates on the hazard function in the AFT model,

which is multiplicative both ont and on the hazard function. Then in such model one assumes the

existence of a baseline hazard function and that the effect of the regression variables is to alter the

rate at which a subject proceeds along the time axis.

If there is no censored observation at the time of the analysis, the AFT model can be handled

as a generalised linear model (GLM) popularised by McCullagand Nelder (1989). Among the

various extensions of the traditional linear model, AFT models and the method of least squares

to accommodate censored data seems very appealing, simply because the model is well known,

widely used, well understood and well tested, as Wei (1992) points out. Consideringλ0(·) as an

infinite dimensional nuisance and using a U-statistic representation, Koul, Susarla, and Van Ryzin

(1981) showed that their estimates ofβ are consistent and asymptotically normal under some

regularity conditions. Following on the simple idea of using “synthetic data”, several extensions

of the method have appeared in the literature that use more efficient ways to obtain estimated

responses (Lai, Ying, and Zheng, 1992; Zhou, 1992). These developments gave rise to a notable

interest, but the lack of stability of estimators driven by them made these approaches not as widely

used as the proportional hazard model.

1.3.3 Comparison of the regression models

The two classes of models specified by (1.1) and (1.2) are different, and the only overlap arises

whenλ0(·) is the hazard function of a two parameters Weibull distributed random variableV , i.e

λ0(t) = λq(λt)q−1, λ > 0, q > 0. (1.5)
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To see that, consider the subset of log-linear models in which the regression variable acts mul-

tiplicatively on the hazard function. Using subscripts1 and2 for the respective models, if we

assume the same hazard function, we have

λ1(t|X = x) = λ01(t) exp(x′β1) = λ02(t exp(x′β2)) exp(x′β2) = λ2(t|X = x)

for all t ∈ R
+ andx ∈ R

p. Substitutingx = 0 we haveλ01(·) = λ02(·) = λ0(·); moreover ifβ11

andβ21 are respectively the first component ofβ1 andβ2 substitution ofx = (− log t/β21, 0, . . . , 0)

gives

λ0(t)t
−β11β−1

21 = λ0(1)t
−1.

Now if q = β11β
−1
12 andλ = {λ0(1)/q}1/q we obtain the Weibull model (1.5).

In any case, both models provide the necessary flexibility tomodel concrete problems, testified

by the fact that they are largely used in classical survival analysis.

We point out that the Cox proportional hazard regression (PH) model and the associated partial

likelihood theory of estimation was breakthrough in developing a flexible method of regression

for censored data. The huge success of PH models testify to the many needs for this type of

semiparametric regression models. However, observe that the structure of PH is quite different

from the generalised linear model for regression, in that the link function is not specified via the

mean but rather through the hazard function. On the other hand, the proportionality structure is

interesting but it may be hard to interpret the regression coefficients. As Sir D. Cox himself once

remarked (Reid, 1994): “Of course, another issue is the physical or substantive basis for the proportional

hazards model. I think that’s one of its weakness, that accelerated life models are in many ways more

appealing because of their quite direct physical interpretation, particularly in an engineering context.”

Survival models such as (1.1) and (1.2) are usually referredto asparametric modelswhen the

distribution of the failure time (or equivalentlyλ0(·)) is parametrically specified. The parametric

7



assumption, however, may be too restrictive in applications. Models in which no parametric hy-

potheses are assumed on the baseline hazard function are called semiparametric modelsbecause

of the presence of the finite-dimensional vector of parameters β, and an infinite dimensional pa-

rameterλ0(·). Analysis of parametric and semi-parametric survival models has been discussed

in a frequentist perspective by Kalbfleisch and Prentice (1980), Lawless (1982), Cox and Oakes

(1984), Anderson, borgan, Gill, and Keinding (1993). The Bayesian analysis of survival data is

examined in Klein and Moeschberger (1997) and in depth by Ibrahimet al. (2001).

Nonparametric and semiparametric Bayesian methods have recently become quite popular in

survival analysis, due to recent advances in computing technology and the development of effi-

cient computational algorithms for implementing these methods. The literature on nonparametric

Bayesian methods is widely large and the enormous number of references can not be listed here

(see e.g., the references chapter of Ibrahimet al., 2001). We mention that, for the Cox proportional

hazard model, Bayesian modelling involves the specification of nonparametric prior processes for

the baseline hazardλ0 or the cumulative hazard
∫ t
0 λ0(u)du. In particular is worth to mention the

work of Dykstra and Laud (1981) that specify agamma processprior on the hazard rate, and the

work of Hjort (1990) that introduced the beta process as prior on the space of cumulative haz-

ard functions, recently extended by De Blasi and Hjort (pear) to the case ofregressionmodels.

Finally we cite Walker and Muliere (1997) who introduced thebeta-stacy process as a generaliza-

tion of the the Dirichlet process that is conjugate to the right censored observations. The property

of conjugacy to right censored observations is also a feature of beta process; however, with the

beta process the statistician is required to consider hazard rates and cumulative hazards when con-

structing the prior. The beta-stacy process requires only considerations on the distribution of the

observations.
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1.4 Semiparametric AFT model

We have already noticed that theβ parameter in (1.1) and (1.2) explaining the relationship between

the survival time and the covariates is usually the main object of inference. The unspecified func-

tion λ0(·) can be treated as an nuisance parameter. Semiparametric models constitute an attempt

to avoid restrictive parametric assumptions. As Oakes (1977) observes:“A practical motivation for

consideration of semiparametric models is to avoid restrictive assumptions about secondary aspects of a

problem while preserving a tight formulation for the features of primary concern.”In the context of re-

gression modelling, Gelfand (1999) noted that the objective of semiparametric modelling is “to

enrich the class of standard parametric models by wanderingnonparametrically near, in some sense, the

standard class but retaining the linear structure.”

Semiparametric approaches to the AFT model, in the frequentist realm, date back to the initial

work of Buckley and James (1979). Bickel, Klaassen, Ritov, and Wellner (1993) provide a large-

sample theory. Lin and Geyer (1992) develop computational methods using simulated annealing

for rank regression procedures often used in semiparametric inference. More recent approaches

include those by Ying, Jung, and Wei (1995) and Yang (1999). All these approaches are essentially

fitting techniques focusing on the estimates of regression effects. In fact, although the latter two

papers include the analysis of failure time data, there are no predictive survival curve or densities

nor mention of how one might obtain these very common loci of inference. Moreover, these

frequentist approaches are based on a generalisation of theleast squares criterion, the least absolute

deviation criterion, resulting in what is referred to asL1 regression (see, e.g., Rosseeuw and Leroy

1987, for a fuller discussion on this topic). The computational difficulties of this method (for

example the possibility of a non-unique solution) comparedto the simplicity of the least square

method may also explain its limited usage as do the inferential limitations with smaller sample

size.

On the contrary, the Bayesian nonparametric approach is especially attractive in this regard,
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because inference is exact and predictive power may be gained by assuming a centring parametric

“baseline” form for the survival curve. The Bayesian literature on nonparametric methods has

grown rapidly since the theoretical background for the construction of priors on function spaces

was developed. We recall the pionering work of Freedman (1963), who introduced tail free and

Dirichlet random measure and Dubins and Freedman (1965), Fabius (1964), Freedman (1965)

and Ferguson (1973, 1974) that formalized and explored the notion of the Dirichlet processes.

Moreover the development of Markov Chain Monte Carlo (MCMC)algorithms and the enormous

progress in computer science provided a powerful tool to deal with non parametric Bayesian esti-

mation; see Robert and Casella (2004) for a survey on this topic.

In a pioneering work on AFT model from the Bayesian view point, Christensen and Johnson

(1988) modelV = exp(W ) as a random distribution according to a Dirichlet process,G ∈

Dir(MG0), whereM is a positive real parameter andG0 is a distribution on the positive reals.

The Dirichlet process has the advantage that the parametersM andG0 have an easy interpretation,

indeedG0 represents the prior belief about the mean of the distribution ofV andM indicates the

degree of concentration of the distribution ofV aroundG0. The largerM , the more concentrated G

is aroundG0. The discrete nature of the Dirichlet process, however, yields intractable computation

of the posterior distribution.

To avoid the discreteness of the Dirichlet processes, Walker and Mallick (1999) proposed a

Pólya tree distribution (Lavine, 1992; Mauldin, Sudderth, and Williams, 1992) as the prior for the

unknown distribution ofW in (1.2). Under some sufficient conditions, Pólya tree priors assign

probability one to the set of continuous distributions; furthermore the conjugate nature of Pólya

trees makes the analysis less complicated. Walker and Mallick (1999) constrained the random

Pólya tree distribution to have median zero introducing amedian regressionmodel for (1.2).
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1.4.1 Semiparametric Bayesian AFT mixture model

We observed that the proportional hazard model is ubiquitous in modelling survival data because

of its tractability and flexibility. When the proportional hazard approach is untenable, a natural

alternative is the AFT model. However, to date applicationshave been restricted primarily to

parametric versions of the AFT model.

Parametric modelling has long dominated both classical andBayesian inference work, in the

AFT context. As mentioned earlier, such modelling is typically developed using generalised lin-

ear model within standard exponential families. Such families are limited, being unimodal with

implicit mean-variance relationship. In looking beyond standard parametric families, one is natu-

rally led to mixture models. Finite mixture distributions (Titteringonet al., 1985) are flexible and

also feasible to implement due to advances in simulation based model-fitting. See, for example,

Diebolt and Robert (1994) and Richardson and J. (1997).

Paradoxically, rather than handling the very large number of parameters resulting from a fi-

nite mixture models with a large number of mixands, it may be easier to work with an infinite

dimensional specification by assuming a random mixing distribution which is not restricted to

a specified parametric family. Here, bynonparametric hierarchical mixture(NPHM) model we

mean a mixture of parametric distributions (usually absolutely continuous) with a random mixing

distribution (i.e., a random probability measure). Besides, NPHM models provides a natural gen-

eralisation of existing parametric AFT models, bridging a gap between parametric and semipara-

metric approaches. If an experimenter has been fitting log-normal, log-logistic, gamma or Weibull

AFT specification to their data, then fitting regression models with a corresponding NPHM model

should be quite natural. Prior information used in parametric fit of a dataset (e.g, as in the prior

specification of Bedrick, Christensen, and Johnson (2000))may be immediately incorporated into

the semiparametric extension.

In the context of NPHM, Ferguson (1983) and Lo (1984) used a Dirichlet process prior on

11



the mixing distribution, introducing the so-called Dirichlet processes mixture (DPM) model, and

obtained expression for Bayesian estimates in density estimation, i.e., AFT without covariates.

Escobar and West (1995) developed this idea further and provided an Markov Chain Monte Carlo

algorithms for the computation of the posterior distributions of the parameters in a normal mixture

model.

Kuo and Mallick (1997) propose a class of DPM models in the AFTsetting with non-zero

covariate. In what they called “MDPV” the regression errorV of (1.3) has been represented

hierarchically as a location mixture of normal kernels. They observe that, as a prior onV , DPM

distribution smooths the Dirichlet process with a continuous known kernel with unknown mixing

weights where prior belief can be incorporated. The smoothing in DPM eliminates the difficulty,

due to Dirichlet processes having support on the class of thediscrete densities, encountered by

Christensen and Johnson (1988). Anyhow in this specification the marginal prior ofV gives

positive probability to the negative reals, and the authorshandled this problem considering kernel

variance small enough to avoid, at least computationally, this inconsistency.

In the framework of DPM models, Kottas and Gelfand (2001) andGelfand and Kottas (2003)

propose median regression approaches to the AFT model (1.2). They proposed a DPM of unimodal

parametric densities and, also, a DPM of unimodal step-functions as priors on the error variable

W . The first model generalises standard parametric families by considering a mixture of scale

families and including a parameter forskewness. This model seems very useful for estimating

regression effects and for survival analysis where it is known a priori that the error distribution is

unimodal.

To allow for multi-modality with flexibility in skewness in the median regression AFT model,

Hanson and Johnson (2002) introduce a mixture of Pólya Trees, centred about a 0-mean family

of normal distributions, as a prior for the error termW . The model accommodates data-driven

deviations from the parametric family, and uncertainty in this direction may be modelled a priori.

12



As more data are collected, they overwhelm the centring baseline family, and features such as

multimodality will become apparent. Moreover, Hanson and Johnson provide a comparison of

Bayesian semiparametric approaches between their own model and the Kuo-Mallik (1997) and

Kottas-Gelfand (2001) ones.

In Ghosh and Ghosal (2006) the distribution ofV is given as a scale mixture of Weibull dis-

tributions with Dirichlet process as a mixing measure. Theynot only give a semiparametric for-

mulation of the AFT model, but develop an asymptotic justification of the model. Indeed, in their

paper a discussion on the consistency of posterior distribution of the parameters is established.

In a recent paper, pointing out the inconsistency of the prior marginal ofV in the “MDPV”

model of Kuo and Mallick (1997), Hanson (2006) proposes as mixing measure a mixture of Dirich-

let processes (Antoniak, 1974) in which kernels are gamma densities, mixed both over the scale

and the shape parameters. Pointing out that any continuous density onR+ can be approximated ar-

bitrarily closely by a countable weighted sum of gamma densities, Hanson notes that such mixture

model can provide a highly flexible baseline, allowing, e.g,for multiple modes.

In our work we will consider the model (1.3),T = exp(−X′β)V , with V distributed ac-

cording to a NPHM of some parametric family of densities on the positive reals, mixed by a

random distribution functionG on R
s (s is a positive integer). In particular we will focus on the

performances of two hierarchical mixture models comparingBayesian inferences on the regres-

sion parameters and the survival times. On one hand we will assume thatG has a Dirichlet process

prior, yielding DPM models for V; on the other hand,G will have the normalised inverse-Gaussian

prior (N-IG prior), as introduced in Lijoi, Mena, and Prünster (2005), thus defining what we call

N-IG mixture for short. N-IG mixtures of normals have been studied in Lijoi et al. (2006), but

no approach appears to exist that employs a N-IG mixture withkernel having support onR+ in-

cluding a regression component. The N-IG prior, compared tothe Dirichlet process prior, while

preserving almost the same tractability, is characterisedby a more elaborate clustering property.
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Chapter 2

Nonparametric hierarchical mixture

models

2.1 Bayesian Nonparametric Modelling

The term “nonparametric” is somewhat of a misnomer, since itliterally connotes the absence of

parameters, but is usually used to indicate models in which the goals of a data analysis include

making inferences about functionals of an unknown probability measureP, which are themselves

parameters, regardless of whether the class of probabilitymeasures under consideration is quite

broad (e.g., not indexed by parameters). Nonetheless, the spirit of the term “nonparametric” is to

be free of restrictive, inappropriate or unrealistic constraints that are implied by particular para-

metric models. For example, it is often necessary to consider models that allow for unspecified

multimodality, asymmetry and nonlinearity. This can be accomplished by considering a broad

class of distributions and by making statistical inferencewithin that context.

Bayesian nonparametric models are constructed on “large” space to provide support for more

eventualities than are supported by a parametric model. Technically, (to many) the off-putting

aspect of Bayesian nonparametric framework is the mathematical apparatus that is required for
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specifying distributions on function spaces and for carrying through prior-to-posterior calculation.

Nonparametric modelling begins with the specification of a broad class of models for the data

at hands. LetY1, Y2, . . . be a sequence of observations on a sample spacesY endowed with its

σ−field B (in our work we will assumeY as a Euclidean space with its Borelσ−field). We

think at Y1, Y2, . . . as conditionally independent and identically distributed(i.i.d.) observation

from some unknown probability measureP on(Y,B) (or equivalently some unknown distribution

functionG) from P itself. In a nonparametric framework, each element of the set of all probability

measures onY is a candidate to represent the “true law”P . In the Bayesian context, then, the basic

modelling concerns on how to define a random element on the class of all probability measures on

Y. By a random probability measureP on (Y,B) we mean a random element on the spaceP(Y)

(we will skip Y when it does not generate confusion) of all probability measures on(Y,B) when

P(Y) is endowed with theσ−field of the Borel-sets generates from the weak convergence on P

(see Billingsley, 1968 or Parthasarathy, 1967 for a complete exposition on this theory).

In a Bayesian nonparametric framework, the goal is to make inferences about functionals

of P, or possibly about the pdf corresponding toP. We denote withπP the law ofP, this is

called prior distribution and, since it is a measure on a function space, it may be specified by

describing a sampling scheme that generate random distributions function with desired properties

or by describing the finite dimensional laws of the stochastic processP. This latter approach is

more intuitive, but non trivial propositions are needed to establish existence. Let(Y,B) be an

Euclidean space with its Borelσ−field, and let∆n−1 := {(x1, . . . , xn) ∈ R
n :

∑

xi = 1} be

then−dimensional unit simplex. Moreover let us denote, as usual,with the symbol⇒ the weak

convergence of a sequence of probability measures.

Theorem 2.1.1 (Regazzini, 1996, 2001)Let Π = {PA1,...,An : A1, . . . , An ∈ B} be a system of

finite dimensional distributions, such thatPA1,...,An : ∆n−1 → [0, 1] for eachn ≥ 0. Suppose the

followings hold.
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(a) For anyn ≥ 1 and any finite permutationξ of (1, . . . , n),

PA1,...,An(C) = PAξ(1) ,...,Aξ(n)
(Cξ), for each C ∈ ∆n−1

whereCξ = {(xξ(1), . . . , xξ(n)) : (x1, . . . , xn) ∈ C}.

(b) PY = δ1, whereδy represents the point mass aty.

(c) For any family of sets{A1, . . . , An} in B, let {D1, . . . ,Dh} be a measurable partition ofY

such that it is finer than the partition generated by{A1, . . . , An}. Then, for anyC ∈ ∆n−1,

PA1,...,An(C) = PD1,...,Dh
(C ′)

where

C ′ =







(x1, . . . , xh) ∈ [0, 1]k :





∑

(1)

xi, . . . ,
∑

(n)

xi



 ∈ C







with
∑

(i) meaning the sum over the indexj such thatDj ⊂ Ai;

(d) For any sequence(An)n≥1 of sets inB such thatAn ↓ ∅,

PAn ⇒ δ0.

Hence, there exists a unique stochastic process (i.e., random probability measure)P admittingΠ

as its family of finite-dimensional distribution, i.e.

L
(

P(A1), . . . ,P(An)
)

= PA1,...,An for eachA1, . . . , An ∈ B.

As an example of random probability measure we mention the Dirichlet process (Ferguson, 1973,

1974), that is one of the most used nonparametric prior in Bayesian nonparametric statistics, aris-

17



ing when the finite dimensional distributions are Dirichletdistributions.

Rather than constructingP directly via its finite dimensional laws, a non parametric prior

can be specified, also, via the de Finetti (de Finetti, 1937) representation theorem, constructing a

sequence ofexchangeablevariables.

A sequence of random variablesY1, Y2, .. is exchangeable if for anyfinite permutationξ on

the index space{1, 2, . . . } we have:

L(Y1, Y2, ..) = L(Yξ(1), Yξ(2), ..).

Theorem 2.1.2 (de Finetti, 1937)A sequenceY1, Y2, . . . of random variables on(Y,B) is ex-

changeable if and only if there exist a random probability measureP onY with law denoted by

πP (·) such that, for eachn ≥ 1 and for eachA1, . . . , An onB, we have

P (Y1 ∈ A1, . . . , Yn ∈ An) =

∫

{

n
∏

i=1

P (Ai)

}

dπP (P ).

Equivalently, the theorem states that we can obtain the distribution of Y1, Y2, . . . choosing

first P ∼ πP and then takingY1, Y2, . . . |P ∼iid P. In this framework the lawπP is referred to

asde Finetti measureand given the joint distribution ofY1, Y2, . . . this πP is unique (Hewitt and

Savage, 1955). The de Finetti measure of an exchangeable sequenceY1, Y2, . . . has the meaning of

the prior distribution for the unknown probability measureP. It can be interpreted, in a Bayesian

setting as the prior distribution, when the observationsYi conditioned on some “parameter”P

with prior distributionπP , are i.i.d.

In the following, by (finite) sample(Y1, . . . , Yn) from the random processP we mean the first

n observation of an exchangeable sequenceY1, Y2, . . . with de Finetti measureπP .

There are several reasons why it is often convenient to consider the sequenceY1, Y2, . . . di-

rectly, marginalizing overP. First, sinceP is an infinite dimensional parameter so it can be
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advantageous working in a finite dimensional framework, making much of the mathematics sim-

pler. Secondly, interest is often in prediction and the distribution of Yn+1 givenY1, . . . , Yn is an

immediate consequence. Thirdly, we are “closer” to the datain the sense that we consider the

probability distribution for the data explicitly. Also theposterior parameters ofπP (like the pos-

terior mean or variance) can often be determined from the sequence of predictive distributions

(consider, for example, the Pòlya urn sequence in section 2.2.1)

2.2 Dirichlet Process

Let a > 0 be a real number andP0 a probability measure (or equivalently,G0 a distribution

function) on the Euclidean measurable space(Y,B). A Dirichlet process on(Y,B) with pa-

rameter(aP0) is a random probability measureP, such that for each measurable finite partition

{A1, · · · , An} of Y, the joint distribution of the vector(P(A1), . . . ,P(An)) has Dirichlet distri-

bution with parameters(aP0(A1), . . . ,aP0(An)) on then−dimensional unit simplex. From The-

orem 2.1.1, under the consistency requirements (a)-(d), the distribution ofP is uniquely defined by

its finite dimensional distributions above. We shall denotethe distribution ofP by Dir(aP0). The

parametera is called the precision or total mass,P0 is called the centred measure or the “mean”

distribution, and the productaP0 is called the base measure of the Dirichlet process. To justify

this terminology, we observe that, for eachB ∈ B, the random variableP(B) is distributed as a

beta r.v. with parameteraP0(B) anda (1 − P0(B)), so that

E (P(B)) = P0(B)

and

Var(P(B)) =
P0(B)(1 − P0(B))

1 + a
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Therefore, ifa is large,P is tightly concentrated aboutP0. However, Sethuraman and Tiwari

(1982) pointed out that there is no clear interpretation forthe parametera. Not only it controls

the variability ofP aroundP0, but it influences the smoothness (or discreetness) of the random

distributions. For instance, asa → 0, P converges in distribution to a single atomic random

measure. We observe also that, from the expression for the variance ofP(B), it is not possible to

specify Var(P(B)) arbitrarily, and that the shape is determined byP0.

A key conjugacy result holds for the Dirichlet process. Ferguson (1973) showed that, given a

sample from the Dirichlet process(Y1, . . . , Yn), the posterior distribution ofP is P|Y1, . . . , Yn ∼

Dir(a∗P ∗
0 ) wherea∗ = a + n andP ∗

0 is defined as

P ∗
0 (·) =

a

a + n
P0(·) +

1

a + n

n
∑

i=1

δYi
(·). (2.1)

Thus the posterior mean ofP is a linear combination of the prior guessP0 and the empirical

measureP̂n = (1/n)
∑n

i=1 δYj
.

2.2.1 Ṕolya Urn and “stick-breaking” representation of Dirichlet Processes

Blackwell and MacQueen (1973), using the de Finetti representation, introduced a very useful

construction of the Dirichlet process extending the classical Pólya urn schemes.Leta be a positive

real number andP0 a probability measure on(Y,B). A sequence of random variablesY1, Y2, . . .

onY is calledPólya sequencewith measureaP0 when

P(Y1 ∈ B) = P0(B), for each B ∈ B

and, forn ≥ 1, the distribution ofYn+1 conditioned onY1, . . . , Yn is

P(Yn+1 ∈ B|Y1, . . . , Yn) =
aP0(B) +

∑

i=1 δYi
(B)

a + n
(2.2)
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We have,

Theorem 2.2.1 (Blackwell and MacQueen, 1973) LetY1, Y2, . . . be a Ṕolya sequence onY with

measureaP0(·). Then:

1. asn grows to infinity,P(Yn+1 ∈ · |Y1, . . . , Yn) ⇒ P(·)

2. the distribution ofP is a Dirichlet process with parameteraP0;

3. the Ṕolya sequence is exchangeable and its de Finetti measure is Dir(aP0).

This result gives a simple and concrete procedure for constructing an infinite exchangeable se-

quence of random variables with a Dirichlet measure as de Finetti measure. The distributions

in left side of equations (2.2) are usually called, in the Bayesian context,predictivedistributions

of {Yi}. This representation is extremely crucial for Markov ChainMonte Carlo sampling from

a Dirichlet process; it also shows that ties are expected in afinite sampleY1, . . . , Yn; moreover

Blackwell (1973) showed that a randomP following Dir(aP0) is a.s. discrete.

Two characteristics are usually indicated as limitations of the Dirichlet process. First, as pre-

viously indicated, the support of the Dirichlet process distribution is the set of all discrete distri-

bution. This can be also visualised from the constructive definition of P given by Sethuraman

(1994):

P =

∞
∑

j=1

ωjδθj
,

where, withκi ∼i.i.d Beta(1, α), theωj ’s are defined asω1 = κ1, . . . , ωj = κj
∏j−1

r=1(1 − κr), . . . ,

andθj ∼i.i.d P0. This is often referred to as the “stick-breaking” representation as the weights are

defined in a way that the interval[0, 1] (the stick) is successively broken up or partitioned into

pieces. The second drawback of the Dirichlet process is thatfor any disjoint measurable setsB1
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andB2, the correlation betweenP(B1) andP(B2) is negative,

Cov(P(B1),P(B2)) = −P0(B1)P0(B2)

a + 1
.

This for (“small”) adjacent sets violates a belief that these two probabilities should be positively

correlated.

2.2.2 Mixture of Dirichlet processes

Centring the Dirichlet process on a fixed parametric distribution P0 may be restrictive for some

applied problem. Antoniak (1974) introduced a generalisation of the Dirichlet process that, in

some sense, centres the process on afamily of parametric distributions. The author introduced

the so called mixture of Dirichlet processes (MDP), i.e. a random probabilityP distributed as a

mixture of Dirichlet processes indexed by a parametric family of probabilities{Pθ, θ ∈ Θ},

P ∼
∫

Dir(aPθ)π(dθ), (2.3)

where the mixing distributionπ(·) is a parametric prior onΘ.

In a Bayesian context, mixture models are essentially hierarchical models that date back to

Lindley and Smith (1972) who consider parametric mixtures.In a hierarchical fashion the random

variablesY1, . . . , Yn are a sample from the MDP process if

Y1, . . . , Yn|P ∼iid P

P|a, θ ∼ Dir(aPθ)

θ ∼ π(dθ).

Antoniak (1974) presented theoretical results for the MDP prior and also gave a number of ap-
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plications. In particular he showed an important conjugacyresult. LetY1, . . . , Yn a sample from

(2.3), then

P|Y1, . . . , Yn ∼
∫

Dir(a∗P ∗
θ )π(dθ|Y1, . . . , Yn)

wherea∗ andP∗ are defined as in expression (2.1). Moreover, if the family{Pθ, θ ∈ Θ} is

absolutely continuous with densities{f(·|θ), θ ∈ Θ}, then the posterior mixing distribution is

given by

π(dθ|Y1, . . . , Yn) ∝





k
∏

j=1

f(Y ∗
j |θ)



π(dθ)

wereY ∗
j are the distinct observations in the sampleY1, . . . , Yn.

Finally we observe that the MDP prior can be specified such that it chooses absolutely contin-

uous probability with probability one, thus overcoming thediscreteness problem of the Dirichlet

process. This advantage is compensated by the fact that posterior computation becomes very com-

plex. We mention that the complexity arising in the posterior computation has been rescaled by

the introduction of simulation procedures first developed by Escobar (1994).

2.3 Normalized Inverse-Gaussian Prior

In a recent paper Lijoi, Mena, and Prünster (2005), following the finite dimensional law specifi-

cation of Theorem 2.1.1, introduce a new nonparametric prior. As pointed out in Section 2.2, the

Dirichlet Process arises when the finite dimensional laws are assumed to be Dirichlet distributions.

It is well known (see, e.g. Bilodeau and Brenner 1999) that givenn independent gamma random

variablesZi ∼ Gamma(āi, 1), the Dirichlet distribution is defined as the distribution of the vec-

tor (W1, . . . ,Wn), whereWi = Zi/
∑n

j=1 Zj for i = 1, . . . , n. If āi > 0 for eachi the vector
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(W1, . . . ,Wn) has density on then−dimensional unit simplex∆n−1 given by:

f(w1, . . . , wn) =
Γ(
∑n

i=1 āi)
∏n

i=1 Γ(āi)

(

n
∏

i=1

wāi−1
i

)

Clearly, if n = 2, the latter reduces to beta density with parameter(ā1, ā2) . By substituting

the gamma distribution with the inverse-Gaussian we obtainan analogous distribution on the

n−dimensional simplex.

2.3.1 The normalized Inverse-Gaussian distribution

A positive absolutely continuous random variableZ has inverse-Gaussian distribution with shape

parameterM̄ ≥ 0 and scale parameterγ > 0, which we will denoteZ ∼ IG(M̄ , γ), if its density

is given by

f(z|M̄, γ) =
M̄√
2π

v−3/2 exp

{

−1

2

(

M̄2

v
+ γ2v

)

+ γM̄

}

, v ≥ 0.

An exhaustive account of the inverse Gaussian distributionwas provided by Seshadri (1993).

Let Z1, .., Zn be independent random variables distributed according to aIG(M̄i, 1) distribu-

tion for eachi = 1, . . . , n (γi=1 without loss of generality). Lijoiet al. (2005) define the

normalized inverse-Gaussian (N-IG) distribution with parameter(M̄1, . . . , M̄1), denoted by N-

IG(M̄1, . . . , M̄n), as the distribution of the random vector(W1, . . . ,Wn) whereWi = Zi/
∑n

j=1 Zj

for i = 1, . . . , n. The following proposition provide the density function on∆n−1 of a N-IG ran-

dom vector.

Proposition 2.3.1 (Lijoi, Mena, and Prünster, 2005)Suppose that the random vector(W1, . . . ,Wn)

is N-IG(M̄1, . . . , M̄1), with M̄i > 0 for everyi = 1, . . . , n, then the vector(W1, . . . ,Wn) is ab-

solutely continuous and has a density function on∆n−1 given by:
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f(w1 , . . . , wn|M̄1, . . . , M̄n) =

=
e

Pn
i=1 M̄i

∏n
i=1 M̄i

2n/2−1πn/2
× K−n/2

(

√

An(w1, . . . , wn)
)

×
(

(w1 . . . , wn)3/2 ×
(

An(w1, . . . , wn)
)n/4

)−1

wereAn(w1, . . . , wn) =
∑m

i=1 M̄2
i /wi andK denotes the Bessel function of the third type.

Let M =
∑n

j=1 M̄j andpi = M̄i/M for everyi = 1, . . . , n, then

E(Wi) = pi, (2.4)

Var(Wi) = pi(1 − pi)M
2eMΓ(−2,M),

whereΓ(·, ·) denotes the incomplete gamma function, defined for eachM > 0 andx ∈ R as

Γ(x,M) :=

∫ ∞

M
tx−1e−tdt.

We observe that the moments of a N-IG random vector are quite similar to those of a Dirichlet

random vector, the structure is the same and they differ justby a multiplicative constant.

2.3.2 The normalized inverse-Gaussian process

Let M > 0 be a positive number andP0 a probability measure on the Euclidean measurable

space(Y,B). A N-IG process with parameterMP0 is a random probability measure such that

for each finite and measurable partition{A1, . . . , An} of Y, the joint distribution of the vector

(P(A1), . . . ,P(An)) on then−dimensional unit simplex has a N-IG distribution with parameters

(MP0(A1), . . . ,MP0(An)). The existence of such a process is justified by Theorem 2.1.1.

The moments of an N-IG process with parameterMP0 follow immediately from (2.4), indeed
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for B ∈ B, P is distributed according a N-IG distribution with parameters MP0(B) andM(1 −

P0(B), thus

E(P(B))=P0(B),

Var(P(B))=P0(B)(1 − P0(B))M2eMΓ(−2,M).

Then we obtain an interpretation of the parameter similar tothat of the Dirichlet process. The

processP is “centred” aroundP0 and the scalarM is a precision parameter.

2.3.3 Properties of the N-IG process

First, we recall that Ferguson (1973) also proposed an alternative construction of the Dirichlet

process as a normalized gamma process. The same can be done inthis case by replacing the

gamma process with an inverse-Gaussian process, that is, anincreasing Lévy process,ζ := {ζt :

t ≥ 0}, which is uniquely characterised by its Lévy measure,υ(dν) = (2πν3)−1/2eν/2dν. As

shown by Regazzini, Lijoi, and Prünster (2003), such a construction holds for any increasing

additive process, giving rise to the class of random measures with independent increment (RMI).

Through this representation using a result in James (2003),it is possible to show that the N-IG

process selects discrete distributions with probability one.

The N-IG process is also, when its parameter measure is non atomic, a special case ofspecies

samplingmodel. This class of probability measures, due to Pitman (1996) is defined as

P =
∑

i≥1

PiδYi
+



1 −
∑

i≥1

Pi



H

where0 < Pi < 1 are random weights such that
∑

i≥1 Pi ≤ 1, independent of the locationsYi,

which are iid with some non atomic distributionH. We point out that the peculiarities of the N-IG
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and Dirichlet processes compared with other members of these classes (and, indeed, within all

random probability measures) is represented by the fact that their finite-dimensional distribution

are known explicitly. What distinguishes the Dirichlet process from the other processes in the

class of normalized RMI’s and species sampling models (and thus also from the N-IG process) is

its conjugacy, as shown in James, Lijoi, and Prünster (2006). Anyhow, this is no longer a problem,

given the availability of suitable sampling schemes. It is worth noting, however, that a posterior

characterisation of the N-IG process, in term of a latent variable, can be deduced from the work of

James (2002).

Let Y ∗
1 , . . . , Y ∗

n denote thek distinct observations within the sample(Y1, . . . , Yn) with nj > 0

terms being equal toY ∗
j , for j = 1, . . . , k and

∑k
j=1 nj = n. Then the predictive distribution

corresponding to a N-IG process is given for eachB ∈ B by

P(Yn+1 ∈ B|Y1, . . . , Yn) = wn
0,kP0(B) + wn

1,k

k
∑

j=1

(nj − 1/2)δY ∗
j
(B), (2.5)

with

w0,n(k) =

∑n
r=0

(n
r

)

(−M)−r+1Γ(k + 1 + 2r − 2n;M)

2n
∑n−1

r=0

(n−1
r

)

(−M2)−rΓ(k + 2 + 2r − 2n;M)
(2.6)

and

w1,n(k) =

∑n
r=0

(n
r

)

(−M)−r+1Γ(k + 2r − 2n;M)

n
∑n−1

r=0

(n−1
r

)

(−M2)−rΓ(k + 2 + 2r − 2n;M)
. (2.7)

Thus, similarly to the Dirichlet process, the predictive distributions are linear combinations

of the prior guessP0 and the weighted empirical distributions with explicit expression for the

weights. Moreover, from Regazzini (1999) the predictive mechanism (2.5) leads to a generalized

Pólya urn scheme for N-IG processes.

A comparison between the predictive distributions of the two models emphasises the distinc-

tive feature of the N-IG process. In the Dirichlet prediction case we have, from (2.2), thatYn+1
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is different from previous observations with probabilitya/(a + n) and that it coincides with one

of the(Y ∗
1 , . . . , Y ∗

k ) with probabilityn/(a + n). Thus the probability allocated to previous obser-

vations does not depend on the numberk of distinct observations within the sample. Moreover,

the weight assigned to eachY ∗
j is nj/(a + n), and it only depends on the multiplicity ofY ∗

j . As

pointed out by Ferguson (1973) this is a characterising property of the Dirichlet process that at the

same time represents one of its drawbacks. In contrast, the prediction mechanism (2.5) is quite

interesting and exploits the available information aboutk. Given a sample(Y1, . . . , Yn) from a N-

IG process, the next observationYn+1 is different from the previous ones with probabilityw0,n(k)

and coincides with an old observation with probability(n− k/2)w1,n(k). As we can see in figure

2.1, for a relatively small value ofk (≈ 20 in the figure) the weight that the N-IG process assigns

to the prior guessG0 is smaller than that assigned by the Dirichlet process. An opposite behaviour

is shown whenk increases. The N-IG prediction takes the number of distinctobservationk into

account; sincewk
0,n is an increasing function ofk, the more distinct observations are present in the

sample (i.e. not many ties), the higher the weight that the N-IG assigns to the prior guess.

Also the allocation of probability to eachY ∗
j is more elaborate for the N-IG case than for the

Dirichlet case. In figure 2.2 we depicted the weights assigned by the two processes to having a tie

with a previous observationY ∗
j whennj (= 3, 5, 20), in a sample of sizen = 100. Also these

quantities, for the N-IG processes, increase withk. Moreover we can see how, for small values

of nj(= 3), the N-IG prior tends to reinforce the observation less thanthe Dirichlet process, and

the opposite behaviour is observed for big value ofnj(= 20). This can be explained as follows:

a small value ofnj suggests a weak statistical evidence ofY ∗
j , particularly for small values ofk.

On the opposite way a big value ofnj indicates a strong statistical evidence ofY ∗
j .
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Figure 2.1: Weights, as a function ofk, assigned to the priorG0,appearing in the prediction rules by the
Dirichlet process (2.2) and by the N-IG process (2.5) in a sample of sizen = 100 . The parameter are
a = 14.16 andM = 5.39
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Figure 2.2: Weights, as a function ofk, assigned toY ∗

j with multiplicitiesnj = 3, 5, 20, appearing in the
prediction rules by the Dirichlet process (2.2) and by the N-IG process (2.5), in a sample of sizen = 100 .
The parameters area = 14.16 andM = 5.39
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2.4 Nonparametric hierarchical mixture prior

A standard parametric model that strives to achieve flexibility is the finite parametric mixture

model (Titteringonet al., 1985)

Y1, . . . , Yn|k,p, θ ∼iid

k
∑

j=1

k(·|θj)pj ,

where{k(·, θ) : θ ∈ Θ} represents a standard parametric family,θj ∈ Θ for j = 1, . . . , k are

assumed to be distinct, so the mixture is comprised ofk distinct members of this family, and

p = (p1, . . . , pk) is a fixed unknown discrete probability. Bayesian inferencefor this model is

achieved by placing a prior distribution onk, p = (p1, . . . , pk), and{θj, j = 1, . . . , k}. Such

a model results in a varying dimensional parameter space andconsequently specialized computa-

tional techniques, such reversible jump MCMC (Green, 1995), are required.

The nonparametric hierarchical mixture (NPHM) model avoids such concerns as the data are

modelled according to an infinite mixture, which is given by

fP(y) =

∫

k(y; θ)dP(θ) (2.8)

where the random probabilityP is chosen according to a probability measure (prior)q on the

spaceP. An equivalent (and more used) specification of the nonparametric mixture model is a

hierarchical model: the random variablesY1, . . . , Yn are a sample from a NPHM process if

Yi|θi ∼ k(·; θi), i = 1, . . . , n,

θ1, . . . , θn|P ∼iid P,

P ∼ q(·)

(2.9)

Then, instead of theθi’s being assumed to be i.i.d. from some parametric distribution (as with
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standard Bayesian hierarchical models) greater flexibility is allowed via the introduction of the

nonparametric priorq(·) usually centred on a parametric distribution. In our work wewill consider

q as a Dirichlet prior, obtaining the well known Dirichlet process mixture model, or a N-IG prior,

obtaining what we call N-IGmixture.

2.4.1 Dirichlet process mixture model

If P in (2.8) is a Dirichlet process with parameteraP0, then we obtain the DPM model (Lo, 1984);

this model has been largely used in recent Bayesian nonparametric modelling. It reaches a great

level of flexibility, and inference can be obtained via thoseMCMC algorithms that have started to

appear in statistical literature since the work of Escobar (1994).

An interesting property of the DPM is its posterior characterisation given by Antoniak (1974).

If Y1, . . . , Yn is a sample from the DPM (2.9) withq(·) being a Dir(aP0), then the posterior

distribution of the mixing processP is the mixture of Dirichlet processes

P|Y1, . . . , Yn ∼
∫

Dir (a∗P ∗
0 ) dπ(θ1, . . . , θn|Y1, . . . , Yn), (2.10)

wherea∗ = a + n, P ∗
0 = a

a+nP0 + 1
a+n

∑n
i=1 δθi

, and the mixing distributionπ is the posterior

law of the unobservable parametersθ1, . . . , θn, i.e.

dπ(θ1, . . . , θn|Y1, . . . , Yn) ∝
n
∏

i=1

k(Yi|θi)



aP0 +

i−1
∑

j=1

δθj



 (dθi). (2.11)

Indeed, by (2.10) and (2.11) in the literature the termmixture of Dirichlet processesis often used

to indicate both model (2.3) and the DPM model.

Let θ1, . . . , θn be a sample from Dir(aG0). The a.s. discreteness of the Dirichlet process

ensures that, with positive probability, there may bek ≤ n distinct observationθ∗1, . . . , θ
∗
n in the

sample. In practice the Dirichlet process, used as mixing distribution in the hierarchical model,
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yields a prior specification on the numberk of components in the mixture. Antoniak (1974)

deduced this distribution conditional on the number of observations,

p(k|n) = cn(k)ak Γ(a)

Γ(a + n)
k ∈ {1, . . . , n} (2.12)

wherecn(k) is the absolute value of a Stirling number of the first kind. From (2.12) it is clear that

the real parametera influences the prior on the number of components in the mixture specification.

Large values ofa give rise to models with a high prior number of components, small values ofa

yield priors very concentrated on relatively small values of k.

2.4.2 Normalized inverse-Gaussian mixture model

The most widely used NPHM model is the Dirichlet process mixture just described. A random

discrete probability distribution, such as the Dirichlet process, exploited as a mixing measure in

the model, is an essential tool for modelling the cluster behaviour. Indeed, the occurrence of ties at

higher levels of hierarchy induces a clustering structure within the data. We wonder how a specific

choice of the driving random discrete distribution affectsthe clustering mechanism. In this respect,

it is worth mentioning that various new classes of discrete priors generalising the Dirichlet process

have been introduced recently. Among them we recall speciessampling models (Pitman, 1996),

dependent Dirichlet processes (MacEachern, 1999), generalized stick-breaking prior (Ishwaran

and James, 2001), normalized random measures with independent increments (Regazziniet al.,

2003).

We will focus on the case in whichP is distributed according to a N-IG mixture as in the work

of Lijoi et al. (2005). The cluster structure induced by this prior specification is quite interesting

because of the particular reinforcement mechanism inducedby the N-IG process discussed in

Section 2.3.3. Letθ1, . . . , θn be a sample from a N-IG(MG0), then the distribution of the number
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of distinct observationsk in a sample of sizen is given by

p(k|n) =

(

2n − k − 1

n − 1

)

eM (−M2)n−1

22n−k−1Γ(k)

×
n−1
∑

r=0

(

n − 1

r

)

(−M2)−r (2.13)

× Γ(k + 2 + 2r − 2n;M) k ∈ {1, . . . , n}.

As the Dirichlet case, a smaller total massM yields ap(·|n) more concentrated on smaller

values ofk. This can be explained by the fact that a smallerM gives rise to a smallerw0,n (see

(2.5)), that is, the process generates new data with lower probability. However, thep(·|n) induced

by the N-IG prior is apparently less informative than that corresponding to the Dirichlet process

prior and thus is more robust with respect to a change in the real parameterM (corresponding to

a, for the Dirichlet prior). A qualitative illustration is given in Figure 2.3, where the distribution

of k givenn = 100 observation is depicted for the Dirichlet and N-IG processes. The parameters

a andM have been chosen in such a way to match the prior mean ofk; we mention that for fixed

n the mean of the number of clusters under the NI-G process has alower bound as shown in Lijoi

et al. (pear). We observe that the prior distributionp(·|n) under the N-IG prior is more dispersed

with respect to the corresponding prior under the Dirichletprocess, but notice that asM (or a)

grows, the differences between the two priors became less pronounced.
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Figure 2.3: Prior probability on the number of different observationsk in a sample ofn = 100 observations,
under the N-IG and Dirichlet processes for different choices of the real parametersa andM . These value
have been chosen such that the mean ofk is nearly 11 (a = 3.10, M = 0.01), 17 (a = 5.87, M = 1), and
30 (a = 14.16, M = 5.39).
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Chapter 3

Markov Chain Monte Carlo methods

for NPHM

3.1 The Markov Chain Monte Carlo Methods

Integration plays a fundamental role in Bayesian statistics, and Markov chain Monte Carlo (MCMC)

methods are a useful computational tool.

Before Markov chain Monte Carlo became routine and related approximation or numerical

methods where developed, Dempster (1980, p. 273) writes: “The application of inference techniques

is held back by conceptual factors and computational factors. I believe that Bayesian inference is concep-

tually much more straightforward than non-Bayesian inference, one reason being that Bayesian inference

has a unified methodology for coping with nuisance parameters, whereas non-Bayesian inference has only

a multiplicity of ad hoc rules. Hence, I believe that the major barrier to much more widespread application

of Bayesian methods is computational.. . . The development of the field depends heavily on the preparation

of effective computer programs.”

MCMC methods, which partially resolved the problem delineated by Dempster, originated

in the statistical physics literature by Metropolis, Rosenbluth, Teller, and Teller (1953) and sub-
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sequently generalized by Hastings (1970), and were firstly used in spatial statistics and image

analysis. Tierney (1994) gives a comprehensive theoretical exposition of these algorithms, and

Chib and Greenberg (1995) provide a useful tutorial.

For instance, letY be a random variable in a sample spaceY, with densityf(y|θ) depending

on a parameterθ ∈ Θ ⊂ R
n; let π(θ) be the prior distribution ofθ. Suppose we are interested in

evaluation a quantity like the posterior mean

E[g(θ|y)] =

∫

θ
g(θ)π(θ|x)dθ (3.1)

wereg is some function of the parameterθ. It is clear that, in this framework, it is important to have

methods to approximate integrals in some complex space withrespect to complicated functions.

A powerful tool to address the computational challenges posed by the Bayesian paradigm is the

MCMC simulation. The two building blocks of MCMC are, as the name itself suggests, Monte

Carlo simulation and Markov chains. Before introducing MCMC, we will recall what we mean for

Monte Carlo integration, and we will state some basic definition about Markov chains. We refer

to Nummelin (1984), Meyn and Tweedie (1993) and Tierney (1994) for a detailed introduction on

this topic.

Firstly suppose we are able to generate a sample of i.i.d. observations,(θ1, · · · , θn), from

π(·|y). Then we can resort toMonte Carlo simulation(McCracken, 1955) and estimateE[g(θ|x)]

by the sample mean

1

n

n
∑

i=1

g(θi).

Assuming thatg has finite variance underπ(·|y), the law of large numbers guarantees that

(1/n)
∑n

i=1 g(θi) is a consistent estimator ofE[g(θ|x)].

Suppose now thatπ(·|y) is a complex distribution such that we are not able to (directly) gen-

erate an i.i.d. sample from it, hence we cannot apply the Monte Carlo method. The idea of the
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MCMC methods is that of using the Markov Chain (MC) theory to build a sample that is approxi-

mately i.i.d. from thetargetdistributionπ(·|y).

A discrete-time Markov chain, with state spaceX endowed with aσ−fieldB(X ), is a stochas-

tic process{X1,X2, · · · } that evolves in time with the property that the future is independent from

the past given the present:

P{Xm+1 ∈ A|X1, · · · ,Xm} = P{Xm+1 ∈ A|Xm},

for eachm ≥ 0 and for anyA in B(X ).

We identify a MC with the corresponding transition kernelK, defined for any measurable set

A and any elementx of the state space as:

K(x,A) := P{Xm+1 ∈ A|Xm = x} for eachm > 0.

We are implicitly assuming that the transition probabilities are invariant over time (time-homogeneity).

A MC hasinvariant (or stationary) distributionπ if

πK(A) :=

∫

K(x,A)π(dx) = π(A),

for each measurableA. Not all MC’s have an invariant distribution and even when aninvariant

distribution exists it may not be unique. The basic principle behind MCMC is that certain Markov

chains converge to a unique invariant distribution and can thus be used to estimate expectations

with respect to this distribution. We refer to Mira (2005) for an introduction on the MCMC meth-

ods in Bayesian estimation or, for a complete treatment of this subject, to Robert and Casella

(2004) or Gilks, Richardson, and Spiegelhalter (1996).
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3.1.1 The Metropolis-Hastings algorithm

A very general procedure to construct a Markov chain(θ1, θ2, . . . ), stationary with respect to a

specified distribution,π, is the Metropolis-Hastings algorithm (Metropoliset al., 1953; Hastings,

1970). We can summarize a Metropolis-Hasting’s transitionprobability in the following way:

given the current position of the MC,θm = θ, a move toθ′ is proposed using the distribution

q(θ, θ′) (such that we are able to sample from it), that may depend on the current position. Such

move is accepted with probability

α(θ, θ′) = min

{

1,
π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)

}

,

where we setα(θ, θ′) = 1 if π(θ) = 0. If the move is rejected the current position is retained.

We observe that, in the acceptance probability expression,the target distribution enters only as a

ratio: π(θ′)/π(θ). This means that, the possibly unknown normalizing constant, i.e. the marginal

distribution of the data in Bayes formula, cancels and we canthus easily implement the MCMC

setting to estimate (3.1), as long as we can evaluate the product f(x|θ)π(θ) for any given value of

θ up to a constant of proportionality.

3.1.2 The Gibbs sampler algorithm

A special case of Metropolis-Hasting is theGibbs sampler. The Gibbs Sampler was given its

name by Geman and Geman (1984), who used it for analysing Gibbs distributions. Nevertheless,

the work of Geman and Geman (1984) led to the introduction of MCMC into the mainstream

statistics via the articles by Gelfand and Smith (1990) and Gelfand, Hills, Racine-Poon, and Smith

(1990). To date, most statistical application of MCMC have used Gibbs Sampling. Suppose that

for somen > 1, the random variableθ, with distributionπ can be written asθ = (θ1, . . . , θn),

where theθi’s are univariate (or multidimensional). Moreover supposewe can simulate from the
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corresponding univariate (multidimensional)full conditional densities

θi|θ(−i) ∼ πi(θi|θ(−i))

for i = 1, . . . , n, whereθ(−i) is the vector(θ1, . . . , θi−1, θi+1, . . . , θn).

To produce a Markov sequence(θ1, θ2, . . . ) with π as stationary distribution we can use the

following procedure: given the current position of the MC,θm = θ a move toθ′ is completed

using

• θ′1 ∼ π1(θ
′
1|θ2, . . . , θn)

• θ′2 ∼ π2(θ
′
2|θ′1, θ3, . . . , θn)

...
...

• θ′n ∼ πn(θ′n|θ′1, . . . , θ′n−1).

Thus Gibbs sampling consist purely in sampling from the fullconditional distributions. A feature

of a Gibbs sampler is that even in a high-dimensional problem, all of the simulation may be

univariate, which is usually an advantage. This advantage is compensated by the fact that the full

conditionals are often not easy to obtain and sampling can bedifficult. In this case we could resort

to a Metropolis within Gibbsalgorithm in which the easy to sample full conditionals are used

as proposals while the other ones are substituted with different proposals and the corresponding

acceptance probability is computed.

3.2 Markov Chain Sampling Methods for NPHM

Modelling a distribution as a mixture of simpler distributions is a useful structure in a wide range

of statistical problems. As discussed in Chapter 2, mixtures with a countable infinite number of
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components can be reasonably handled, in a Bayesian framework, by employing a nonparametric

prior distribution for mixing proportions such as Dirichlet processes or NI-G processes.

Let (Y1, . . . , Yn) a sample from a nonparametric hierarchical mixture prior (2.9), i.e.

Yi|θi ∼ k(·|θi), i = 1, . . . , n,

θ1, . . . , θn|P ∼iid P,

P ∼ q(·)

with k(·|·) being a parametric density on the sample spaceY andq(·) a nonparametric prior on the

space of distributionP(Y) (in our study we will consider only the case whenq(·) is a Dirichlet

prior or a N-IG prior).

Our estimates will be based on the predictive distribution,i.e the distribution of a new obser-

vationYn+1 given the sample(Y1, . . . , Yn), with density that can be written as:

f(yn+1|Y1, . . . , Yn) =

∫

f(yn+1|θ)dπ(θ|Y1, . . . , Yn)

whereπ(·|Y1, . . . , Yn) is the posterior distribution ofθ = (θ1, . . . , θn). We have

f(yn+1|θ)=

∫

f(yn+1|θ, θn+1)L(dθn+1|θ)

=

∫

k(yn+1|θn+1)L(dθn+1|θ) (3.2)

wherek(·|θn+1) is the known (parametric) kernel distribution andL(·|θ) is the predictive distri-

bution ofθn+1 given the observationθ = (θ1, . . . , θn). For the two processes under study,L(·|θ)

is a mixture between the mean distribution of the priorq(·) and the empirical distribution of the

observations; see expression (2.2) for the Dirichlet priorand the expression (2.5) for N-IG prior.

Finally, the predictive distribution of the nonparametrichierarchical mixture model can be written
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as

f(yn+1|Y1, . . . , Yn) =

∫

k(yn+1|θn+1)L(dθn+1|θ)dπ(θ|Y1, . . . , Yn). (3.3)

Then NPHM become computationally feasible if we have methods for sampling from the posterior

distributionπ(·|Y1, . . . , Yn) of the unobservable parametersθ1, . . . , θn. When the priorq(·) is a

Dirichlet process the problem has been largely investigated starting from the seminal papers of

Escobar (1994) and MacEachern (1994). We will give a concisereview of these works and their

generalizations.

3.2.1 Dirichlet Processes

Let Y1, . . . , Yn be a sample from the hierarchical model (2.9), and let

q(·) = Dir(aG0),

with a > 0 being a real number andG0 being a distribution onY. Marginalizing over the process

P we have, see expression (2.11)

π(dθ|Y1, . . . , Yn) ∝
n
∏

i=1

k(Yi|θi)



aG0 +
i−1
∑

j=1

δθj



 (dθi). (3.4)

We are interested in a sample from this distribution to evaluate the predictive distribution (3.3).

The first work proposing a Monte Carlo strategy to sample from(2.11) dates back to Kuo (1986),

where the author proposed animportance samplingmethod (see Robert and Casella, 2004, p. 80-

96). However Kuo’s algorithm does not sample values conditionally on the data, which can lead

to very inefficient estimates (see Escobar, 1992, for a detailed discussion).

The computational difficulties attached to the MDP were solved by Escobar (1994), who in-

41



troduced a Gibbs sampler algorithm to sample from (2.11) viathe full conditional

π(dθi|θ−i, Y1, . . . , Yn), for eachi = 1, . . . , n.

By Bayes’ theorem, observing thatθi is independent fromYj with j 6= i, we have, for each

i = 1, .., n,

π(dθi|θ(−i), Y1, . . . , Yn) =
k(Yi|θi)L(dθi|θ(−i))
∫

k(Yi|θi)L(dθi|θ(−i))
. (3.5)

The key idea of Escobar’s algorithm is the following: we consider the sampleθ1, . . . , θn as a part

of an exchangeable sequence having Dir(aG0) as de Finetti measure (see Section 2.2.1). Then for

eachi = 1, . . . , n, we can considerθi as the last observation, afterθ1, . . . , θi−1, θi+1, . . . , θn are

observed, so from the prediction rule (2.2)

L(dθi|θ−i) =
a

a + n − 1
G0(dθi) +

1

a + n − 1

∑

j 6=i

δθj
.

therefore, (3.5) can be written as

π(dθi|θ(−i), Yi, . . . , Yn) =
ak(Yi|θi)G0(dθi) +

∑

j 6=i k(Yi|θj)δθj
(dθi)

aq0(Yi) + qi(Yi)
(3.6)

whereq0(·) is the marginal distribution defined on the sample space by

q0(y) =

∫

k(y|θ)G0(dθ) (3.7)

and

qi(y) =
∑

j 6=i

k(y|θj). (3.8)

Let (θ(1), θ(2), . . . ) be a Markov chain generated by a Gibbs sampler procedure withfull condi-
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tional given by (3.6); then Escobar (1994) showed, whenk(·|·) is a normal with fixed variance,

that the distributionπ(θ|Y1, . . . , Yn) is stationary for such(θ(1), θ(2), . . . ). The same result holds

for the more general case, whenk(·|θ) is an absolutely continuous family of distributions (see

Escobar and West, 1995).

The convergence of Escobar’s MCMC method may be rather slow,and sampling thereafter

may be inefficient. The problem is that there are often groupsof observations that with high

probability are associated with the sameθ. Since the algorithm cannot change theθi for more

than one observation simultaneously, an update of the common value requires passage through a

low-probability intermediate state in which observation in the group do not have the sameθ value.

A more efficient algorithm can be obtained resorting to MacEachern (1994), where updatingθ’s

is done in clusters. Let fix some notation. In a DPM model with continuous base measureG0, let

θ∗ = {θ∗1, . . . , θ∗k} denote the set of distinctθi’s, werek ≤ n is the number of distinct elements in

the vectorθ = (θ1, . . . , θn). Let c = (c1, . . . , cn) denote the vector of the configuration indicator

defined byci = cj if and only if θi = θj. We will use the termcluster to refer to the set of all

observationYi, or just the indexi, or the correspondingθi’s, with identical configuration index

ci. The numerical values of theci are arbitrary, as long as they faithfully represent whetheror not

ci = cj ; that is, theci are important only in that they determine what is called theconfigurationin

which the data items are grouped in clusters. We will always considerc such thatci ∈ {1, . . . , k},

for i = 1, . . . n, and we will indicate withncj
the size of the cluster associated with the valuecj ,

i.e.,ncj
= #{i : ci = cj}. Note that knowledge ofθ is equivalent to knowledge ofk, c, andθ∗.

We can rewrite the full conditional (3.6) in term of the new parameterisation as

π(dθi|θ(−i), Yi, . . . , Yn) =
ak(Yi|θi)G0(dθi) +

∑k(−i)

j=1 n
(−i)
j k(Yi|θ∗j )δθ∗j

(dθi)

aq0(Yi) + qi(Yi)
(3.9)
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werek(−i) is the multiplicity of the cluster vectorθ∗(−i), obtained from the vectorθ(−i), andn
(−i)
j

is the multiplicity ofθ∗j in θ∗(−i). Simulation ofθi from the above conditional is straightforward:

with conditional probabilities proportional ton(−i)
j k(Yi|θ∗j ), the sample is one of the existing

clusters, otherwise, the sampleθi is drawn anew from the marginalk(Yi|θi)G0(dθi). Then we can

write the full conditional for the configuration vectorc as:

P(ci = cj |c(−i), θ∗, Yi) =
n

(−i)
cj k(Yi|θ∗cj

)

aq0(Yi) + qi(Yi)
, if j 6= i andn(−i)

cj
> 0,

P(ci 6= cj for all j 6= i|c(−i), θ∗, Yi) =
aq0(Yi)

aq0(Yi) + qi(Yi)
. (3.10)

The algorithm introduced by MacEachern (1994) for a mixtureof normals and by Neal (1992)

for models of categorical data, uses an analytical integration overθi eliminating them from the

algorithm. This procedure requires the computation of complex expressions, which therefore

relatively limits its applicability in hierarchical models.

The computational difficulties with the MacEachern algorithm are solved when combined with

the Escobar algorithm. This improvement is used in Bush and MacEachern (1996) and West,

Müller, and Escobar (1994) who construct a Markov chain{θ∗m, cm}m≥1 updating the configu-

ration vector via the full conditionals (3.10) and the cluster vectorθ∗ using the property that the

θ∗cj
’s are conditionally independent with posterior densities

p(θ∗cj
|c, Y1, . . . , Yn) =





∏

i∈Icj

k(Yi|θ∗cj
)



G0(dθ∗cj
), (3.11)

whereIcj
= {i : ci = cj}, for cj = 1, . . . , k.

We have already observed that, when more observations are associated with the same cluster,

the algorithm of Escobar (1994) can not perform excellently. In practice this event occurs when

for someθ∗ the sum
∑k

j=1 k(Yi, θ
∗
j ) becomes very large relative toq0(Yi) on any iteration (see
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expression (3.9)). This occurs when the Markov chain has “stabilized” on a small number of

clusters, and it is then unlikely to generate a “new” value ofθ∗. The last described algorithm,

obtained combining the Escobar and MacEachern procedures,does not suffer of this pathology in

that it “shuffles”, through the (3.11), theθ∗j ’s after every step, providing more movement in the

MCMC sampler, which in turn improves convergence.

We can summarize the Gibbs sampler procedure as follow: let the current state of the Markov

chain consist ofc = (c1, . . . , cn) andθ∗ = (θ∗1, . . . , θ
∗
k). Repeatedly sample as follow:

For i = 1, . . . , n [Escobar-MacEachern step]

• If the present value ofci is associated with no other observation (i.e.,n
(−i)
ci = 0), we remove

θci
from the state.

• We draw a new value forci from ci|c(−i), Yi, θ
∗ as defined by equation (3.10). If the newci

is not associated with any other observation, we draw a valuefor θ∗ci
from k(Yi|θi)G0(dθi)

and we add it to the state.

For ci with i = 1, . . . , n [Shuffle step]

• We draw a new value ofθ∗ci
from the posterior based on priorG0 and all data points currently

associated with the clustercj defined in (3.11).

All the algorithms we mentioned are based on the Pòlya urn (predictive) representation of the

Dirichlet process. For this reason, usually in literature,one refers to them asPòlya urn Gibbs sam-

plers. This methods are been largely used in nonparametric Bayesian statistics using DPM pro-

cesses as prior distribution, a survey of these models is given in MacEachern and Müller (2000).

We mention that on some of these models prior distributions are also introduced on the hyperpa-
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rametersa andG0 or sets of covariates, but conditional on these additional parameters, the portion

of the model involving the DPM has the form given above.

3.2.2 N-IG process

To exploit a N-IG mixture process for inferential purposes,it is essential to derive an appropri-

ate sampling scheme. In such framework, knowledge of predictive distributions (2.5) is crucial.

Indeed this formula suggests to build a generalized-urn Gibbs sampler procedure, adapting the

methods described in Section 3.2.1. Letθ = (θ1, . . . , θn) be a sample from a N-IG(MG0) pro-

cess, wereM is a positive real parameter andG0 is a distribution onΘ ⊂ R
m. Then,(θ1, . . . , θn)

can be characterized by the following generalized Pòlya urn scheme. Letting(ϕ1, . . . , ϕn) be an

i.i.d. sample fromG0, θ can be generated as follows: setθ1 = ϕ1, and fori = 2, . . . , n, generate

from

(θi|θ1, . . . , θi−1) =











ϕi with prob. w0,i−1(ki)

θ∗i,j with prob. (ni,j − 1/2)w1,i−1(ki), j = 1, . . . , ki

(3.12)

wereki represents the number of distinct observations, denoted byθ∗i,1, . . . , θ
∗
i,ki

with multiplicities

(ni,1, . . . , ni,ki
), andw0,· andw1,· are given in expressions (2.6) and (2.7).

Now, letY1, . . . , Yn be a sample on the spaceY from a NPHM model with

q(·) = N-IG(M,G0).

We are interested in the evaluation of the predictive density given in (3.3). We construct a

MCMC method to sample from the posterior distribution ofθ given the observations(Y1, . . . , Yn).

From the generalized urn representation (3.12), using Escobar’s algorithm idea and the cluster

parametrization in term ofθ∗, k andc, we can write the full conditional as
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π(θi|θ(−i), Y1, . . . , Yn) ∝ w0,n−1(k
(−i))k(Yi|θi)G0(dθi) (3.13)

+

k(−i)
∑

j=1

(n
(−i)
j − 1/2)k(Yi|θ∗j )δθj∗(dθi)

were the normalizing constantD is given by

D = w0,n−1(k
(−i))q0(Yi) + w1,n−1(k

(−i))qi(Yi)

with

q0(y) =

∫

k(y|θi)G0(dθi) and qi(y) =

k(−i)
∑

j=1

(n
(−i)
j − 1/2)k(y|θ∗j ).

The N-IG mixture has a behaviour similar to the DPM. In fact, the full conditional (3.13) has

the same structure of (3.9). The difference between the two models consists in the weights that the

processes respectively use to choose the cluster for an observationYi.

To construct an efficient MCMC algorithm for sampling from the posterior distributionπ of

theθ given the data, we can resort to the idea of MacEachern and write the full conditional for the

vector of the clustersc, as follows

P(ci = cj |c(−i), θ∗, Yi) ∝ w1,n−1(k
(−i))(n(−i)

cj
− 1

2
)k(Yi|θ∗cj

), if j 6= i andn
(−i)
j > 0,

P(ci 6= cj for all j 6= i|c(−i), θ∗, Yi) ∝ w0,n−1(k
(−i))q0(Yi). (3.14)

Then we can implement an Escobar-MacEachern “shuffle” algorithm for the N-IG mixture

model. We use the full conditional (3.14) to update the configuration vectorc, and we use a

mixing strategy for the clusterθ∗j as outlined in the previous section.
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Convergence for such algorithm can be obtained consideringit as a particular case of the

strategy introduced by Ishwaran and James (2001) for stick-breaking priors. In their paper the

authors describe an algorithm to handle NPHM’s when the mixing prior is in the class of stick-

breaking process, as the N-IG does.

Recently, new algorithms have been proposed for dealing with nonparametric mixtures. Ish-

waran and James (2003) proposed a generalized weighted Chinese restaurant algorithm that cover

species-sampling mixture models. They formally derived the posterior distribution of a species

sampling mixture. To draw approximate samples from this distribution, they devised a compu-

tational scheme that requires knowledge of the conditionaldistribution of the species sampling

distributed random measureP, given the unobservable parametersθ. When feasible, such an

algorithm has the merit of reducing the posterior approximation error. In the case of the N-IG pro-

cess, sampling from the posterior law is not straightforward, because it is characterized in terms

of latent variables (see Section 2.3.3). Nieto-Barajas, Prünster, and Walker (2004) proposed a

method similar to that of Ishwaran and James (2003) to samplefrom the posterior of a mixture

of normalized random measures driven by increasing additive processes (RMI). Problems of the

same type of that described above arise if one is willing to implement this scheme for a N-IG

mixture.

3.3 Method for non-Conjugate Models

The Pòlya urn Gibbs samplers described in the last Sectionsare practicable only ifk(·|·) and

G0(·|·) areconjugatein θ, allowing analytic evaluation ofq0 = P(ci 6= cj for i 6= j| . . . ) (see

expressions (3.10) and (3.7)). West, Müller, and Escobar (1994) presented the first algorithm

designed specifically for use with non-conjugate models. Intheir algorithm they approximateq0

taking a random draw fromG0, sayθ′, and replace
∫

k(Yi|θi)G0(dθi) with k(Yi|θ′) (one sample

Monte Carlo approximation). This approximation is quite inaccurate because it can lead to the
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wrong stationary distribution (see, MacEachern and Müller, 1998 or Neal, 2000).

MacEachern and Müller (1998) introduced a sampling plan that entirely avoids the difficult

integration to evaluateq0. In their no gapsalgorithm the configuration vector is constructed such

thatci ∈ {1, . . . , k} for eachi. Then the cluster vector isθ∗ = (θ∗1, . . . , θ
∗
k) and a set of, i.i.d. from

G0, auxiliary variables(θ∗k+1, . . . , θ
∗
n) are introducedaugmentingθ∗, these are interpreted as not

yet used clusters. In the augmented model the Gibbs sampler is simplified, practically, evaluation

of integrals of the typeq0 is performed marginalizing over the augmenting variables.

The work of MacEachern and Müller (1998) was extended by Neal (2000). In this paper the

author gives a complete review of the past work and presents two new approaches for handling

non-conjugate priors. It suggests a Metropolis-Hasting and a data augmentation procedures that

both refine the previous sample schemes to update the configuration parameterc.

Another approach to handling non-conjugate prior was devised by Walker and Damien (1998).

Their method avoids the integrals needed for Pòlya Gibbs sampling, but requires instead that the

probability underG0 of the set for whichk(Yi|θ) > u (wereu > 0 is a real number) be com-

putable, and that one is able to sample fromG0 on this set. Although these operations are feasible

for some models, they will in general be quite difficult, especially whenθ is multidimensional.

Finally, Green and Richardson (2001) and Jain and Neal (2004) developed a Markov chain

sampling method based on splitting and merging components that is applicable to non-conjugate

models. These methods are more complex than those already discussed, since they attempt, using

a reversible jump strategy (see Green, 1995), to solve the difficult problem of obtaining a good

performance in situations where the other methods tend to become trapped in local modes.

3.3.1 Data Augmentation Methods

The basic idea of data augmentation methods on sampling algorithms is the introduction of some

appropriate auxiliary variables that make the sampling procedure much easier. Suppose we wish to
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sample from a distributionπθ for θ, then we can resort to an auxiliary variableτ such that it is easy

to sample from the joint distributionπθτ . We can built a Markov chain with the following strategy.

Let the permanent state of the chain beθ, and introduce the auxiliary variableτ temporarily during

an update of the following form:

1. Draw a valueτ from its conditional distribution givenθ, as defined byπθτ .

2. Perform some update(θ′, τ ′) that leavesπθτ invariant.

3. Discardτ ′, leaving only the value ofθ′

It easy to see that this update forθ leavesπθ invariant as long asπθ is the marginal distribution

of θ underπθτ .

We are going to report now how use a data augmentation strategy to modify the MacEachern-

Escobar Gibbs sampler algorithm, described in the previoussections, in such a way that the ana-

lytic integration with respect toG0 in (3.7), to evaluate the quantitiesq0(Yi), can be avoided.

As shown in Section 3.2 to give an estimation of the predictive distribution (3.3) we need to

build a Markov chain havingπ(dθ|Y1, . . . , Yn) as stationary distribution, and this can be done by

a Gibbs sampler algorithm via the full conditionals

π(dθi|θ(−i), Y1, . . . , Yn) ∝ k(Yi|θi)Lq(dθi|θ(−i)) for i = 1, . . . , n.

whereLq is the predictive law of the nonparametric priorq. For both the N-IG prior and the

Dirichlet prior, the lawLq can be written, fori = 1, . . . , n, as:

Lq(dθi|θ(−i)) = H0(n, k(−i))G0(dθi) +
k(−i)
∑

j=1

H1(n, n
(−i)
j , k(−i))δθ∗j

(dθi), (3.15)

where the weightsH0 andH1 are given in equation (2.2) for the Dirichlet prior and in equation

(2.5) for the N-IG prior.
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Following the idea of Algorithm 8 in Neal (2000) we can use a data augmentation technique

to updateθi from (3.15) introducing, for eachi = 1, . . . , n, a vector of auxiliary variablesτ =

(τ1, . . . , τs) iid according to the distributionG0. In this way the law (3.15) conditionally toτ is

Lq(dθi|θ(−i), τ) = H0(n, k(−i))
1

s

s
∑

l=1

δτl
(dθi) +

k(−i)
∑

j=1

H1(n, nj, k
(−i))δθ∗(dθi),

for i = 1, . . . , n. To complete the algorithm, we have to sample from the conditional law

π(τ |θi, θ
(−i)) =

π(θi|τ, θ(−i)) · π(τ)

π(θi|θ(−i))
.

Some simple algebra gives that

π(τ |θi, θ
(−i)) ∝



























∏s
l=1 G0(τl) if θi = θj for somej 6= i

δθi
(τl) ·

∏

l 6=l G0(τl) otherwise; withl ∈ {1, . . . , s}.

In practice, to sample from the conditional distribution ofthe auxiliary parameter given the current

value ofθi and the rest of the state, we will proceed as follows: ifθi = θj for somej 6= i, the

auxiliary parameter has no connection with the rest of the state, and its are drawn independently

from G0. If θi 6= θj for all j 6= i, then it must be equal to one of thes auxiliary parameters.

Technically, we should randomly select which auxiliary parameter it is associated with, but since

it turns out to make no difference, we can just letθi be the first of these. Finally, using the

usual reparametrization ofθ in term ofc andθ∗ we can summarize the Gibbs sampler algorithm

with auxiliary variable. Let the state of the Markov chain consist ofc = (c1, . . . , cn) andθ∗ =

(θ∗1, . . . , θ
∗
k). Repeatedly sample as follows:

For i=1,. . . ,n [Data augmentation step]
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• Let h = k(−i) + s, and relabel the distinctcj for j 6= i with values in{1, . . . , k(−i)}. If

ci = cj for somej 6= i, draw(τ1, . . . , τs) independently fromG0 and letθ∗
k(−i)+l

= τl for

l = 1, . . . , s. If ci 6= cj for all j 6= i, let ci have the labelk(−i) + 1, draw(τ1, . . . , τs−1)

independently fromG0 and letθ∗
(k(−i)+1)+l

= τl for l = 1, . . . , s − 1.

• Draw a new value forci from {1, . . . , h} using the following probabilities:

P(ci = c|c(−i), Yi, θ
∗
1, . . . , θ

∗
h) ∝



























H1(n,n
(−i)
c ,k(−i)) · k(Yi|θ∗c ) for 1 ≤ c ≤ k(−i)

H0(n,k(−i))
m · k(Yi|θ∗c) for k(−i) ≤ c ≤ h.

Finally change the state to contain only thoseθ∗c that are now associated with one or more

observations.

For ci with i = 1, . . . , n [Updatingθ∗]

• Draw a new value ofθ∗ci
from the posterior based on priorG0 and all data points currently

associated with the clustercj as defined in (3.11).

This approach is similar to that of MacEachern and Müller (1998), the difference being that in

the MacEachern-Müller approach the auxiliary parameter is introduced on the space of the vector

θ∗ and then a Gibbs sampler procedure is built to update the augmentedθ∗. On the contrary in

the Neal (2000) approach just described, first we use a Gibbs sampler strategy, then for eachi =

1, . . . , n the parameterθi is augmented by theτ vector, in this algorithm the auxiliary parameter

is regarded as existing only temporarily, during the updateof θi.

We observe also that, ass → ∞, this algorithm approaches the behaviour of the Escobar-

MacEachern algorithm described in Section 3.2.1, since them (or m − 1) values forθ∗c drawn

from G0 effectively produce a Monte Carlo approximation to the quantities q0(Yi), i = 1, . . . , n.

However, the equilibrium distribution of the Markov chain defined by the data augmentation pro-
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cedure is correct for any value ofs, unlike the simulation when a Monte Carlo approximation is

used to implement the Escobar-MacEachern algorithm (see, Westet al., 1994 and MacEachern

and Müller, 1998).
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Chapter 4

A comparison of two NPHMs in

regression for survival time data

4.1 Introduction

In this chapter we will study a semiparametric accelerated failure time (AFT) survival model (see

Section 1.4) analyzing the performances of two nonparametric prior specifications for the error

variable.

Let T1, . . . , Tn be survival times ofn subjects. In the AFT model, the covariates act multi-

plicatively on the survival time. We assume for eachi = 1, . . . , n

Ti = e−x′
iβVi,

or equivalently, lettingWi = eVi ,

log(Ti) = −x′
iβ + Wi,
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wherexi = (xi1 . . . , xip)
′ is a known vector of covariates for theith patient, andβ is an unknown

column vector ofp regression coefficients. In this thesis we assume the error termsVi, i = 1 . . . , n

as a sample from a NPHM model, i.e. we assume thatV1, . . . , Vn, given a random distributionG

on the Euclidean spaceΘ, are independent and identically distributed from the following density

f(·|G) =

∫

k(·|θ)dG(θ)

with the unknownG chosen according to a nonparametric lawq(·). In particular we direct our

the attention at two particular choices forG: G is a Dirichlet process yielding a DPM model (see

Section 2.4.1), orG is a N-IG mixture model (see Section 2.4.2). Our primary interest is a com-

parison between the two models specification. As already pointed out in the previous Chapters,

the N-IG mixture model represents an interesting alternative to the DPM model. Indeed, as the

Dirichlet process, the N-IG process selects discrete distributions with probability one, and it pre-

serves almost the same tractability; nevertheless it is characterised by a more elaborate clustering

structure that makes use of all the information contained inthe data (see Section (2.3.3)). The

matching between the two priors is achieved centeringG at the same distribution functionG0,

and letting the prior means of the number of components in themixture coincide.

We will consider hierarchical mixtures of gamma densities,mixed on both the scale and the

shape. The centering distributionG0 we choose following Hanson yields an infinite mean marginal

prior for V ; then we resort to amedianregression model, and prior information will be expressed

by means of the median ofV . Posterior inference on regression parametersβ and on the survival

functionS(t) := P (T > t) is carried out via Gibbs sampling, incorporating censoringwhen nec-

essary. Of course, density estimation can be performed within this model ignoring the regression

aspect (i.e. simply assuming a null vector of covariates). The two “competing” models were tested

on real and simulated data. We will use the same notation to denote distribution functions and the
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corresponding probability measures.

4.2 Quantile Regression Models

The theory of linear models is essentially a theory for models of conditional expectations. In many

applications, however, it is fruitful to go beyond these models. Quantile regression is gradually

emerging as a comprehensive approach to the statistical analysis of linear and nonlinear response

models. Employing the standard additive regression formulation, thep−th quantile linear regres-

sion model (the special casep = 1/2 is calledmedianregression model) for response observation

Yi, with associated covariate vectorXi, i = 1, . . . , n, can be written as

Yi = X′
iβ + Wi, (4.1)

where theWi are assumed conditionally independent from an error distribution withp−th quantile

equal to zero, i.e.,
∫ 0

−∞
fW (w)dw = p, (4.2)

with the functionfW (·) denoting the error density. There is a fairly extensive literature on classical

estimation for model (4.1), we refer, for example, to the review papers by Buckinsky (1998) and

Yu, Lu, and Stander (2003), and to the work of Yinget al. (1995) for the model with censored

observations. In this literature no likelihood specification for the response distribution are made

(a part for the quantile constrain (4.2)), and point estimation for β proceeds by optimization of

somelossfunction. Any inference beyond point estimation is based onasymptotic arguments or

resampling methods and thus relies on the availability of large samples.

The Bayesian approach to these models enables exact inference as opposed to the asymptotic

inference of the classical approach, moreover Bayesian inference deals in a better way with pa-
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rameters uncertainty. The relative ease with which MCMC methods may be used for obtaining

the posterior distribution, even in complex situations, has made Bayesian inference much more

accessible and attractive. MCMC methods make the entire posterior distribution of parameterβ

of interest available.

As mentioned in Section 1.4, the special case of median regression has been considered in the

Bayesian literature (see, e.g, Walker and Mallick, 1999, Kottas and Gelfand, 2001, Hanson and

Johnson, 2002) and little works exists for general quantileregression modelling. See, e.g., Yu and

Moyeed (2001) for a parametric approach based on the asymmetric Laplace distribution for the er-

ror, Dunson and Taylor (2005) for an approximate method based on the substitution likelihood for

quantiles or the recent work of Hjort and Petrone (2006) for nonparametric inference. We mention

also the work of Kottas and Krnjajic̀ (2005) who propose a Bayesian nonparametric methodol-

ogy for quantile regression modelling, developing some MDPmodels for the error distribution in

additive quantile regression formulation.

In our work we consider a multiplication regression model

T = e−X
′β · V,

without the intercept parameterβ0. Givenβ, this specification leads to a proportionality relation

between the quantile function of the error variableV and the time variableT :

QT (p) = QV (p) · e−X′β, p ∈ (0, 1). (4.3)

If we fix p = 1/2 thenm := QV (1/2) is the prior median ofV that represents the baseline median

of T , i.e. the prior median with no effect of covariates (X = 0). In our model specification we

will choosefV (·) such that
∫ m

0
fV (v)dv = 1/2 (4.4)
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thus resulting in a semiparametricm−medianregression model.

4.3 The model

Let T1, . . . , Tn be the survival time ofn subjects, and letxi = (xi1, . . . , xip) be the covariate

vector associated with (observed or censored)ti, i = 1, . . . , n. The model we consider can be

hierarchically expressed as

Ti = e−x′
iβ · Vi, i = 1, . . . , n,

Vi|θi
ind∼ k(·|θi),

θi|G iid∼ G, (4.5)

G ∼ q, G0(A) := Eq(G(A)), A ∈ B(Θ)

β ⊥ G, β ∼ π(β),

werek(·|θi) is a family of densities onR+, depending on a vector of parametersθi belonging to

a Borel subsetΘ of R
r, andq is the prior distribution of the random distribution function G, G0

being a distribution function onΘ, expressing the “mean” ofG. Here we will assume thatq is

a Dirichlet prior or a N-IG prior. The Bayesian model specification is completed assumingG0

depends on a vector ofs hyperparametersγ = (γ1, .., γs) (possibly random and distributed ac-

cording toπ(γ)). In ours model specification, the nonparametric priorq(·) is chosen such that it is

centred on the same “mean” distributionG0 for both the Dirichlet and the N-IG specification. The

two priors depend also on two positive parameters expressing the “total mass”, which we denoted

by a for the Dirichlet process, and byM for the N-IG process. This parameter can be interpreted

as the confidence we have on the choice ofG0 as center measure (see the expressions (2.2) and
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(2.4)), but it influences also the induced priors on the number of components in the mixture model.

Indeed, as pointed out in Section (2.4), the distribution assigned to the random distribution func-

tion G induces a prior distribution on the number of componentsk on a sample(θ1, . . . , θn) of

dimensionn from G. Expressions for this distribution, which we calledp(k|n), k = 1, . . . , n, are

given in (2.12) for the Dirichlet process and in (2.13) for the N-IG process. Hence, the matching

between the two non parametric priors is completed choosinga andM such that

EDir(k|n) = EN-IG(k|n),

i.e., we will assume that the prior means of the number of components in both mixture models

coincide.

4.4 Hyperparameters

In the hierarchical model (4.5), we are assuming the error variablesVi, i = 1, . . . , n as a sample

from a NPHM model, i.e. givenG, as an i.i.d. sample from the density:

f(v|G) =

∫

k(v|θ)dG(θ), (4.6)

were the unknownG is chosen according the lawq(·). Lo (1984), in the context of DPM models,

discusses various choices of the family of kernel densities{k(v|θ), θ ∈ Θ} that include histogram

models, uniform densities over(0, θ), exponential densities with parameterθ, and normal densities

with θ = (µ, σ2). In the context of AFT, Kuo and Mallick (1997) used normal densities with a

fixed variance, achieving a prior fromV that gives positive mass to non positive values. Recently

DPM with kernel having support onR+ are been studied by Ghosh and Ghosal (2006) using a

family of Weibull densities or by Hanson (2006) using gamma densities (see Section 1.4.1).
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Following Hanson (2006) we considered hierarchical mixtures of gamma densitiesk(·; θ),

θ = (ϑ1, ϑ2), with meanϑ1/ϑ2. We observe that in the no-sample problem, the Bayes estimate of

f(v|G) is the marginal distribution

q0(v) = fV (v) :=

∫

k(v|θ)dG0(θ).

Therefore, we should chooseG0(·) so thatq0(v) represents our prior belief about the distribution

of the error variableV , in the NPHM model. However, as pointed out in Section 3.2, assuming a

G0(·) conjugate inθ with the kernels family{k(·|θ), θ ∈ Θ} leads to a computationally convenient

conjugatehierarchical mixture model.

For this reason we choose the centering distributionG0 on R
+ × R

+ as the product of two

exponential distributions, i.e.ϑ1 andϑ2, underG0, are independent, exponentially distributed

with parametersγ1 andγ2, respectively. Indeed, for model (4.5), under both Dirichlet and N-IG

priors, the marginal prior density ofV is, for v > 0,

fV (v) =

∫ +∞

0
dϑ1

∫ +∞

0
dϑ2

ϑϑ1
2

Γ(ϑ1)
vϑ1−1e−ϑ2vγ1e

−γ1ϑ1γ2e
−γ2ϑ2

=
γ1γ2

v(v + γ2)(γ1 + log(v+γ2

v ))2
, (4.7)

with distribution function

FV (v) =
γ1

(

γ1 + log(1 + γ2

v )
) , v > 0. (4.8)

and quantile function

QV (p) =
γ2

eγ1(1/p−1) − 1
, p ∈ (0, 1).

This distribution has infinite mean, but information about the hyperparametersγ1 andγ2 will
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be derived through (4.4) fixing the medianm of V . Therefore, we have

γ1 = log(1 + γ2/m). (4.9)

On the other hand, the “remaining” hyperparameterγ2 controls the dispersion ofV : the interquar-

tile range of the marginal prior, as a function ofm andγ2, is

γ2

(

(

(1 + γ2/m)1/3 − 1
)−1 − (

(

1 + γ2/m)3 − 1
)−1
)

,

which, for fixedm, increases with increasingγ2. The90% prior probability interval forV is

[ γ2
(

1 + γ2

m

)19 − 1
,

γ2
(

1 + γ2

m

)1/19 − 1

]

. (4.10)

The length,L, of the interval (4.10) has a strictly positive lower bound,for each choice of the

medianm, given by:

L =
2 · 0.9 − 1

0.9 · (1 − 0.9)
m = 8.8 · m,

and for fixedγ2 the quantityL is an increasing function ofm.

We point out that this choice forG0 is helpful in the algorithm implementation, but is not

extremely flexible. Indeed, as shown in figure 4.1,fV (·) is decreasing with an asymptote at0 for

anyγ1, γ2 (even ifγ1 6= log(1 + γ2/m)).

The hyperparameters(γ1, γ2) affect also the mean and the variance of the gamma components

of the mixture model. Indeed, letV |θ ∼ Γ(ϑ1, ϑ2) indicate a gamma distributed random variable

with meanµ = ϑ1/ϑ2 and varianceσ2 = ϑ1/ϑ
2
2, with θ ∼ Exp(γ1) × Exp(γ2). Then, givenγ1

andγ2 the marginal prior onµ is

f(µ|γ1, γ2) =
γ1γ2

(γ2 + γ1µ)2
, µ > 0,

62



and givenµ, γ1, andγ2 the precisionσ−2 is distributed asΓ(2, γ1µ
2 + γ2µ). We observe that

the induced density forµ is monotone decreasing and can be very diffuse on the positive reals.

Moreover the larger theγ2 parameter (and consequently the parameterγ1 = log(1 + γ2/m)), the

smaller the precision of the component is expected to be.

0 5 10 15

0
.0
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0

0
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5
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f V

γ2 = 0.1
γ2 = 1
γ2 = 10
γ2 = 100

Figure 4.1: Graphics of the marginal prior distribution (4.7) of the error variableV for some choice of the
hyperparameterγ2. The medianm = 5.67 and the gamma parameters satisfy the relation (4.9)

4.5 The regression coefficientβ

To avoid identification problems with the shape parameters of the gamma kernel densityϑ2 in the

AFT model, we do not consider an intercept parameterβ0. Indeed, a priorπβ0 does lead to an

identification problem. To see this, consider for simplicity, the parametric hierarchical model

Ti = e−β0e−x′
iβVi, i = 1, . . . , n,
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with V ∼ Γ(ϑ1, ϑ2).Then, givenβ0 andβ, we have

T ∼ Γ
(

ϑ1, (ϑ2e
β0)ex

′
iβ
)

and the productϑ2e
β0 generates an identification inconsistency in the hierarchical model specifi-

cation.

A flat prior distribution is often imposed upon theβ regression parameters (Kuo and Mallick,

1997; Hanson, 2006), regardless of the form of the kernel density k(·; θ). We introduced instead

the reparametrizationαj = eβj , j = 1, . . . , p, and assigned independent gamma priors to theαj ’s.

In this way, with gamma kernel densities, the full conditional posterior distributions of theαj ’s

associated to binary covariates are still gamma (see Section 4.6.1).

4.6 The algorithm

The Bayesian estimate of the distribution of the survival time is the predictive distribution of a new

observationTn+1 with covariatexn+1, given the sampleT1, . . . , Tn, from the hierarchical model

(4.5), i.e.

fTn+1(t|T1, . . . , Tn,xn+1) =

∫

fTn+1(t|β, θ,xn+1)dπ(β, θ|T1, . . . , Tn). (4.11)

wereπ(·, ·|T1, . . . , Tn) is the joint posterior distribution ofβ andθ = (θ1, . . . , θn). Observe now

that, given the vectorβ and the covariatexn+1, the conditional predictive survival density is given

by

fTn+1(t|β, θ,xn+1) = fVn+1(te
x′

n+1β|θ)ex
′
n+1β,
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wherefVn+1(·|θ) has the following closed form expression

fVn+1(v|θ) =
1

a + n

[

∫

k(v|θn+1)dG0(θn+1) +
n
∑

i=1

k(v|θi)

]

(4.12)

for the DPM model (see Expression (2.2) and Expression (3.2)), and

fVn+1(v |, θ) = w0,n(k)

∫

k(v; θn+1)G0(dθn+1) + w1,n(k)
k
∑

j=1

(

nj −
1

2

)

k(v; θ∗j ) (4.13)

for the N-IG mixture model (see Expression (2.5) and Expression (3.2)). We observe that the

integral in (4.12) and (4.13) is the marginal prior density of V in (4.7).

To estimate the predictive distribution, we resorted to an MCMC procedure to produce a

Markov sequence{β(j), θ(j)}j≥1 having the posteriorπ(·, ·|T1, . . . , Tn) as stationary distribution.

In this way, an estimate of the posterior predictive densitygiven a covariate vectorxn+1 is given

by

f̂Tn+1(t|T1, . . . , Tn,xn+1) =
1

J

J
∑

j=1

fVn+1(te
x
′
n+1β(j) |θ(j))ex

′
n+1β(j)

(4.14)

The desired Markov sequence{β(j), θ(j)}j≥1 is constructed using a Gibbs sample proce-

dure updatingβ from the full conditionalπ(β|θ, T1, . . . , Tn), and θ from the full conditional

π(θ|β, T1, . . . , Tn). Moreover in the survival analysis context, the predictivedistribution of an

individuals with covariate valuexn+1 is usually presented as the predictive survival function.

Therefore, we also computed

ŜTn+1(t|T1, . . . , Tn,xn+1) =
1

J

J
∑

j=1

SVn+1(te
x
′
n+1β(j) |θ(j)), (4.15)

whereSVn+1(te
x
′
n+1β(j) |θ(j)) can be easily found by integrating (4.12) or (4.13).
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4.6.1 Updatingβ

Observing thatTi = e−x
′
iβVi, i = 1, . . . , n, from expression (4.6) we derived the density ofTi,

fTi
(t|G, β) = fVi

(v|G)
∣

∣

∣

dv

dt

∣

∣

∣
=

∫

ex
′
iβk(tex

′
iβ|θi)dG(θi).

Then, the conditional density ofβ = (β1, . . . , βp) givenθ andT1, . . . , Tn is given, up to a propor-

tionality constant, by

π(β|θ, T1, . . . , Tn) ∝ π(β)

n
∏

i=1

ex
′
iβk(Tie

x′
iβ|θi). (4.16)

Introducing the reparametrizationαj = eβj , j = 1, . . . , p, the conditional distribution (4.16) can

be written as

π(α|θ, T1, . . . , Tn) ∝ π(α)





p
∏

j=1

α
Pn

i=1 ϑ1,ixi,j

j



 e
−

Pn
i=1 Tiϑ2,i

“

Qp
j=1 α

xi,j
j

”

.

Now, if βj is a coefficient corresponding to a binary covariatexi,j, then assuming independent

prior for theα’s, the full conditional of the correspondingαj is given by

π(αj |α(−j), θ, T1, . . . , Tn) ∝ π(αj)α

P

{xi,j 6=0} ϑ1,ixi,j

j e
−

n

P

{xi,j 6=0} Tiϑ2,i

“

Q

l6=j α
xi,l

l

”o

αj
, (4.17)

where, as usual,α(−j) means the vectorα without the elementαj .

If, as prior forαj, we consider a gamma distribution with meangj/hj , we obtain aconjugate

model. Therefore, with this choice, the full conditional distribution ofαj is still a gamma, and

αj|α(−j), θ, T1, . . . , Tn ∼ Γ
(

gj +
∑

{xi,j 6=0} ; hj +
∑

{xi,j 6=0} Tiϑ2,i
∏

l 6=j α
xi,l

l

)

.

Unluckily, the same conjugacy property does not hold whenβj is the coefficient of a continu-
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ous covariate; in this case the full conditional is a non-standard density given by

π(αj |θ, T1, . . . , Tn) ∝ π(αj)α
Pn

i=1 ϑ1,ixi,j

j e
Pn

i=1 Tiϑ2,i

“

Qp
j=1 α

xi,j
j

”

. (4.18)

To sample from the density proportional to (4.18), we used a Metropolis-Hasting step in the Gibbs-

sampler algorithm. Ifαj is the current state of the chain we proposed a new valueα′
j from a

Log-Normal(µ, σ) distribution, with mean in the current state of the chain,µ = αj, and standard

deviation

1
∑n

i=1 Tiϑ2,iα
xi,j

j x2
i,j + hjαj

This expression is an approximation of the dispersion of thedensity in (4.18), arising from a

second order Taylor expansion of this density around the current state of the chain.

4.6.2 Updatingθ’s

Conditionally on the vectorβ, the model (4.5) is equivalent to a NPHM model described in Section

2.9; indeed, fori = 1, . . . , n, the observationTi are deterministically related, through the relation

Vi = ex
′
iβTi, to a sample,V1, . . . , Vn, from a NPHM; therefore, instead ofβ andT1, . . . , Tn, we

can useβ andV1, . . . , Vn as conditioning variables in the expressions that follow.

To update the non-observable vectorθ we resorted to a Pòlya urn Gibbs sampler scheme such

as in Section 3.2. In particular, introducing the cluster reparametrization in term ofθ∗, k andc, we

used an Escobar-MacEachern “shuffle” procedure.

The vectorc is updates through the full conditional

P(ci = cj |c(−i), θ∗, Vi, β) =
n

(−i)
cj k(Vi|θ∗cj

)

aq0(Vi) + qi(Vi)
, if j 6= i andn(−i)

cj
> 0,

P(ci 6= cj for all j 6= i|c(−i), θ∗, Vi, β) =
aq0(Vi)

aq0(Vi) + qi(Vi)
,
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for the Dirichlet prior, and through

P(ci = cj |c(−i), θ∗, Yi) ∝ w1,n−1(k
(−i))(n(−i)

cj
− 1

2
)k(Yi|θ∗cj

), if j 6= i andn
(−i)
j > 0,

P(ci 6= cj for all j 6= i|c(−i), θ∗, Yi) ∝ w0,n−1(k
(−i))q0(Yi).

for the N-IG prior; with normalizing constant

D = w0,n−1(k
(−i))q0(Yi) + w1,n−1(k

(−i))qi(Yi).

The functionq0(·) coincides to the prior marginal (4.7), andqi(·) are given, for eachi, in (3.8)

and (3.14). Then, independently from the nonparametric lawq(·), the updating ofθ∗cj
, for each

j = 1, .., k, is performed trough the posterior distribution

f(θ∗cj
|c, V1, . . . , Vn, β) ∝





∏

i∈Icj

k(Vi|θ∗cj
)



G0(θ
∗
cj

) (4.19)

wereIcj
= {i : ci = cj}. We already pointed out that the choice of the family of kerneldensities

{k(·|θ), θ ∈ Θ} and the “centering” distributionG0(·), is such that the model is conjugate in

θ, so that the computation of the integralq0(·), to update the configuration vectorc, becomes

particularly handy. Moreover the conjugacy is helpful alsoin updatingθ∗. Indeed, ifcj is a “one-

observation” cluster, i.e.ncj
= 1, then we shall simulateθ∗cj

= (ϑ∗
1,cj

, ϑ∗
2,cj

) from the following

density (we omit the subscriptcj and the superscript∗, to simplify the notation)

f(θ|c, V1, . . . , Vn, β) ∝ k(Vj |θ)G0(θ) (4.20)

=
ϑϑ1

2

Γ(ϑ1)
V ϑ1−1

j e−ϑ2Vjγ1e
−γ1ϑ1γ2e

−γ2ϑ2 .
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From the last expression it clear that

f(ϑ2|ϑ1, c, V1, . . . , Vn, β) ∝ ϑϑ1
2 e−{Vj+γ2}ϑ2 ,

and then

f(ϑ1|c, V1, . . . , Vn, β) =
f((ϑ1, ϑ2)|c, V1, . . . , Vn, β)

f(ϑ2|ϑ1, c, V1, . . . , Vn, β)

∝ ϑ1e
−{γ1+ln(1+

γ2
Vj

)}ϑ1
.

Hence, to sample an observation from the density (4.20), we first sampledϑ1 ∼ Γ
(

2; γ1 + ln(1 +

γ2/Vj)
)

, thenϑ2 ∼ Γ
(

ϑ1 + 1;Vj + γ2

)

.

The same sample scheme cannot be applied in the case the cluster cj contains more that one

observation, i.e.ncj
> 1. In this case the density (4.19) becomes

f(θ|c, V1, . . . , Vn, β) ∝ ϑ
ncj

ϑ1

2

Γ(ϑ1)
ncj

(

∏

i∈Icj
Vi

)ncj
ϑ1e

−{
P

i∈Icj
Vi}ϑ2

γ1e
−γ1ϑ1γ2e

−γ2ϑ2 . (4.21)

This is a non standard density, but we can observe that

f(ϑ2|ϑ1, c, V1, . . . , Vn, β) ∝ ϑ
ncj

ϑ1

2 e
−{

P

i∈Icj
Vi+γ2}ϑ2

,

and then the marginal of density ofϑ1 is given by

f(ϑ1|c, V1, . . . , Vn, β) ∝ Γ(ncj
· ϑ1)

Γ(ϑ1)
ncj

ϑ1 exp−
{(

γ1 + ln
(
∑

i∈Icj
Vi + γ2)

ncj

∏

i∈Icj
Vi

)

ϑ1

}

. (4.22)

Sampling from (4.21) is achieved by first updatingϑ1 from (4.22) via a Metropolis-Hasting step.

If ϑ1 is accepted, then we sampleϑ2 from Γ
(

ncj
ϑ1 +1;

∑

i∈Icj
Vi +γ2

)

, otherwise both are left at

their previous values. The Metropolis-Hasting step to sample from density (4.22) was performed
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proposing a new observationϑ′
1 from normal distributionN(µ, σ), with mean in the current state

of the chainϑ1 and standard deviation

σ =
1√
2

√

ncj
+ 3

γ1 + ln
(
P

i∈Icj
Vi+γ2)

ncj

Q

i∈Icj
Vi

− ncj
ln ncj

.

First we observe that the denominator in the last expressionis greater than zero, since the following

inequality holds

n
ncj
cj ≤

(
∑

i∈Icj
Vi + γ2)

ncj

∏

i∈Icj
Vi

becauseγ2 > 0 and by Jensen’s inequality





∏

i∈Icj

Vi





1/ncj

≤
∑

i∈Icj
Vi

ncj

.

Then, we obtained the estimateσ of the dispersion of (4.22), by observing that

f(ϑ1|c, V1, . . . , Vn, β) ≤ K · Γ
(

ϑ1

∣

∣

∣

ncj
+ 3

2
; γ1 + ln

(
∑

i∈Icj
Vi + γ2)

ncj

∏

i∈Icj
Vi

− ncj
lnncj

)

(4.23)

whereK is a constant andΓ(·|s, r) is the density of a gamma distributed random variable with

shape parameters and rate parameterr.

Inequality (4.23) follows from the multiplication theoremof the gamma function (see Grad-

shtey and Ryzhik, 1994, p.946).

4.6.3 Censored observations

Suppose that the firstn1 observations in the sampleT1, . . . , Tn are known only up to the censoring

intervals

Ti ∈ [ai, bi), i = 1, . . . , n1,
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wherebi = ∞ for right-censored data. In the MCMC algorithm, we used a data augmentation

strategy sampling at each iteration the latentTi’s from the conditional distribution of[Ti

∣

∣Ti ∈

[ai, bi), β, θi] for i = 1, . . . , n1. Indeed, we note thatTi is conditionally independent from

Tj , j 6= i, given Ti ∈ [ai, bi), β and θi. The updating of the censoredTi was performed at

each iteration of the MCMC algorithm using thatTi ∈ [ai, bi) impliesVi ∈
[

aie
x
′
iβ, bie

x
′
iβ
)

, and

then
[

Vi

∣

∣Vi ∈
[

aie
x
′
iβ, bie

x
′
iβ
)

, θi

]

is distributed as a gamma random variable, with shapeϑ1 and

rateϑ2, restricted to the interval
[

aie
x′

iβ, bie
x′

iβ
)

. We thus sampled[Ti

∣

∣Ti ∈ [ai, bi), β, θi], i =

1, . . . , n1 using the inverse cumulative distribution function method, i.e. first samplingU ∼

Unif
(

K(aie
x
′
iβ |θi),K(bie

xiβ |θi)
)

and then takingVi = K−1(U |θi), whereK(·|θ) is the cumula-

tive distribution function of a gamma random variable. Finally we set

Ti = Vie
−x

′
iβ, i = 1, . . . , n1.

4.7 Data Illustration

4.7.1 Simulated data for density estimation

We studied, first, an AFT model with no effect of covariate, i.e. xi = 0, for eachi = 1, . . . , n.

In practice we performed a nonparametric density estimate of a random sampleT1, . . . , Tn from a

NPHM. We considered a simulated data set from a mixture of 3 gamma densities. We generated a

samplet1, . . . , tn of sizen = 100 from the density

f(t) = 0.2 · Γ(t|40, 20) + 0.6 · Γ(t|6, 1) + 0.2 · Γ(t|200, 20), (4.24)

(with mean6 and variance10.12) and computed the posterior density estimates from the Dirichlet

and the N-IG mixtures of gammas.

We assumedM = 0.01 and M = 5.39, which corresponds to a prior mean of the num-
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ber of components under the N-IG prior equal to the (actual) minimum value11.3700 and30,

respectively. The matching with the Dirichlet process prior is achieved whena = 3.0981 and

a = 14.1614, respectively. We set the medianm of V equal to5.6702 (i.e. the true median),

56.7016 and0.5670, and the hyperparameterγ2 in G0 equal to0.01, 1 and10, corresponding to

values for the IQR and90% prior probability interval listed in Table 4.1.

For each choice of hyperparametersγ2,m,M anda, we run several chains. We observed that

convergence was relatively fast, essentially occurring after2, 000 iterations. We finally run a long

chain for each model, discarding the first10, 000 iteration (burn-in) and then keeping the values

every50 iterations (thinning) to reduce autocorrelation. These choices are rather conservative and,

indeed, smaller burn-in and thinning would also be adequate.

As a measure of the performances of our estimates, for every choice of the hyperparameters,

we computed the error, in the uniform metric, between the true distribution function and the predic-

tive distributions (under both priors). Let̂FT (·|t1, . . . , tn) represents the predictive Bayesian esti-

mation of the “true” cumulative distribution functionFT (·) based on the datat1, . . . , tn
(

F̂T (·|t1, . . . , tn)

is obtained integrating (4.14)
)

; then the error in the uniform metric (EUM) is defined as

EUM(t1, . . . , tn) = sup
t

∣

∣F̂T (t|t1, . . . , tn) − FT (t)
∣

∣ (4.25)

.

Figures 4.2, 4.3 and 4.4 display the true density, the histogram from the simulated data, and

the density estimates under the Dirichlet process prior andthe N-IG prior for each value of the

hyperparameters; in each graph the two estimates are indistinguishable. Moreover, Table 4.2

presents the observed errors for some choices of the hyperparameters.

We provided also an estimate of the posterior number of clusters in the samplet1, . . . , tn.

Figures 4.5, 4.6 and 4.7 show the posterior estimates for theeach choice of the hyperparameters.
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The posterior clusters distributions under the N-IG prior seem to be more robust than the corre-

sponding distributions under the Dirichlet prior. The two models produce almost indistinguishable

predictive density estimates, but the posterior clusters configurations are quite different. We argue

that the elaborate predictive form of the predictive distribution of a N-IG process makes it quite

suited, as prior distribution, in the analysis of the cluster structure of data.

We observe that, under both nonparametric lawsq(·), the hyperparameterγ2 works as a

smoothing parameter, since it controls the prior variance of the gamma component of the mixture

model. It is interesting to note that (relatively) largeγ2’s empirically fit the observed data worst,

underestimating the number of modes of the generating distribution (the opposite pathology can

arise using small values ofγ2).

In the no covariate NPHM setting, the prior marginalf(·|G0) =
∫

k(·|θ)dG0(θ) represents the

prior belief on the distribution ofT . We already pointed out that our choice ofG0 and{k(·|θ),Θ}

is such thatf(·|G0) is easily computable, but it suffers of lack of flexibility. Indeed, our posterior

density estimates are an average of mixtures between the prior marginal and some gamma com-

ponents (see (4.14),(4.12) and (4.13)). This leads to posterior estimates with an asymptote in zero

(asf(·|G0)) also when the data do not indicate this kind of trend, as in the case under observation.

This discrepancy becomes more evident when the parametersM anda become bigger (stronger

confidence in the prior), or when the prior medianm is set at relatively small values (informative

prior).

Finally to quantify the difference in estimating the density (4.24) independently from the ob-

served sample, we computed the mean error between the exact cumulative distribution function

and the estimates:

ET1,...,Tn

(

EUM(T1, . . . , Tn)
)

. (4.26)

We performed a Monte Carlo estimate of (4.26) for a smaller sample size, generatingJ = 200
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samples of sizen = 30, {T (j)
1 , . . . , T

(t)
n }J

j=1, and computing

Ê(EUM(T1, . . . , Tn) =
1

J

J
∑

j=1

EUM
(

T
(j)
1 , . . . , T (j)

n

)

.

The mean errors (and the corresponding standard deviations) of the estimates for some choices

of the hyperparameters are presented in Table 4.3. The valuewe obtained seem to confirm that the

two prior specifications are equivalent in density estimation.

74



 

(a)

 

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

E(kn) = 11.37
m = 0.567

 

(b)

 

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

E(kn) = 30
m = 0.567

 

(c)

 

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

E(kn) = 11.37
m = 5.6702

 

(d)

 

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30 E(kn) = 30

m = 5.6702

 

(e)

 

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

E(kn) = 11.37
m = 56.7016

 

(f)

 

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

E(kn) = 30
m = 56.7016

Figure 4.2: Histogram from the simulated data and density estimates under the Dirichlet process prior
(dotted red) and the N-IG prior (dashed blue) whenγ2 = 0.01. E(kn) indicates the prior number of
component. In each graph the solid (green) line denotes the true density.
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Figure 4.3: Histogram from the simulated data and density estimates under the Dirichlet process prior
(dotted red) and the N-IG prior (dashed blue) whenγ2 = 1. E(kn) indicates the prior number of component.
In each graph the solid (green) line denotes the true density.
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Figure 4.4: Histogram from the simulated data and density estimates under the Dirichlet process prior (dot-
ted red) and the N-IG prior (dashed blue) whenγ2 = 10. E(kn) indicates the prior number of component.
In each graph the solid (green) line denotes the true density.
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m
0.5670 5.6702 56.7016

γ2

0.01
1.5255 15.1339 151.2172

[0.0254,10.8627] [0.2937,107.8237] [2.9796,1077.4701]

1
2.4299 16.3819 152.5298

[4 · 10−9, 18.1950] [0.0479,116.4774] [2.5382,1086.3024]

10
6.0543 24.2965 163.8171

[7 · 10−24, 60.0826] [4 · 10−8,181.9538] [0.4787,1164.7669]

Table 4.1: IQR and90% probability interval for the marginal prior ofV .
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Figure 4.5: Posterior distribution estimates of the number of clustersunder the Dirichlet case (dotted red)
and N-IG case (continuous blue) whenγ2 = 0.01.
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Figure 4.6: Posterior distribution estimates of the number of cluster under the Dirichlet case (dotted red)
and N-IG case (continuous blue) whenγ2 = 1.
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Figure 4.7: Posterior distribution estimates of the number of cluster under the Dirichlet case (dotted red)
and N-IG case (continuous blue) whenγ2 = 10.
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M a
0.01 5.39 3.0981 14.1614

m
5.6702 0.0481 0.0386 0.0466 0.0339
56.7016 0.0334 0.0975 0.0448 0.0768

Table 4.2: Errors in the uniform metric for the simulated dataset of size100 between the true and estimated
distribution functions.

E(k|n) = 6.2 E(k|n) = 14.5
γ2 N-IG DIR N-IG DIR

0.01 0.1263 (0.046) 0.1112 (0.044) 0.1281 (0.040) 0.1129 (0.030)
m = 5.6706 1 0.1086 (0.032) 0.1028 (0.031) 0.1325 (0.021) 0.1470 (0.017)

10 0.1144 (0.023) 0.1380 (0.022) 0.1774 (0.018) 0.2216 (0.016)
0.01 0.1281 (0.042) 0.1254 (0.043) 0.2037 (0.035) 0.2289 (0.025)

m = 56.7061 1 0.1198 (0.040) 0.1147 (0.032) 0.2057 (0.020) 0.2504 (0.019)
10 0.1120 (0.024) 0.1445 (0.023) 0.2370 (0.019) 0.3011 (0.021)

0.01 0.1177 (0.048) 0.1179 (0.049) 0.1825 (0.032) 0.2055 (0.030)
m = 0.5671 1 0.1054 (0.029) 0.1177 (0.028) 0.1914 (0.022) 0.2525 (0.023)

10 0.1326 (0.020) 0.1518 (0.017) 0.2156 (0.022) 0.2843 (0.026)

Table 4.3: Mean errors and corresponding standard deviations (in brackets) between the estimates and the
true distribution for samples of size30. The error is the distance, in the uniform metric, between distribution
functions.
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4.7.2 Dataset not involving censoring

We studied a famous dataset, in Feigl and Zelen (1965), wherethe survival times (in weeks) after

diagnosis of33 patients suffering from leukemia are presented. For each patient, two covariates

were recorded, the white blood cell (WBC) count and the test result on the AG factor (positive

and negative) at the time of diagnosis. As pointed out in Cookand Weisberg (1982) for instance,

this dataset is controversial probably for the presence of ameasurement error in the survival time

of the 17th patient (AG positive); indeed, it is atypically high (65 week) related to the elevated

number of white blood cell recovered (WBC17 = 105). Anyway we decided to use this dataset as

a test for comparing our models.

Patient AG factor WBC Survival Time Patient AG factor WBC Survival Time

1 1 2300 65 18 0 4400 56
2 1 750 156 19 0 3000 65
3 1 4300 100 20 0 4000 17
4 1 2600 134 21 0 1500 7
5 1 6000 16 22 0 9000 16
6 1 10500 108 23 0 5300 22
7 1 10000 121 24 0 10000 3
8 1 17000 4 25 0 19000 4
9 1 5400 39 26 0 27000 2
10 1 7000 143 27 0 28000 3
11 1 9400 56 28 0 31000 8
12 1 32000 26 29 0 26000 4
13 1 35000 22 30 0 21000 3
14 1 105 1 31 0 79000 30
15 1 105 1 32 0 105 4
16 1 52000 5 33 0 105 43
17 1 105 65

Table 4.4: Feigl-Zelen dataset

We considered the bivariate vectors of covariatesxi = (xi,1, xi,2)
′ such thatxi1 = 1 if AG

positive and 0 if AG negative andxi2 ∈ [0, 1]. Indeed, in order to maintain numerical stability, we

normalized the continuous covariate by defining:

xi,2 =
WBCi − mini(WBCi)

maxi(WBCi) − mini(WBCi)
i = 1, . . . , 33.

We assumedM = 0.01 (a = 2.1478) andM = 10 (a = 16.3400), which corresponds to prior

means of the number of components in the mixture equal to6.5108 and18.3966, respectively.

Following the idea of MacEachern and Müller (2000) that viewed an NPHM model as a robust
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extension of a parametric model, we performed a preliminaryanalysis of the parametric AFT

model

Ti = e−x
′
iβVi

Vi ∼iid Γ(ϑ1, ϑ2)

θ ∼ π(θ); β ∼ π(β), i = 1, . . . , n,

as described in Ibrahimet al. (2001, p.40). Then, we obtained the Bayesian estimates of the

parameters that we called̂θpre, β̂pre and α̂pre (whereα̂j,pre is the estimate ofαj = eβj , j =

1, . . . , p). We used these estimates as prior information in the nonparametric framework. We

assumed the prior medianm of the error variableV such that

m = K−1

(

1

2

∣

∣θ̂pre

)

= 14.8484,

whereK(·|θ) is a cumulative distribution function of a gamma random variable with meanϑ1/ϑ2.

Moreover, we assigned independent gamma priorsΓ(gj , hj) to the regressors parameterαj , j =

1, . . . , p, such that

E(αj) =
gj

kj
= α̂j,pre j = 1, . . . , p

with a non-informative variance Var(αj) = gj/h
2
j = 1000 (in particularα̂pre = (0.5213, 7.372))

Figures 4.8, 4.9 and 4.10 display the estimates of the survival functions for 2 “new” patients

(corresponding to covariates(1, 0.5) and(0, 0.5) respectively) whenγ2 = 1, 10 and100. The

predictive survival function are practically indistinguishable, whenM = 0.01 (a = 2.1478). A

different behaviour in the tails of the predictive survivalfunction arises when the parameterM

(a) increases: the survival predictive functions under the N-IG specification have heavier tails

indicating a more robust estimate under this prior specification.
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Each survival function estimate was obtained through a sample from a Markov chain{θ(j), β(j)}J
j=1

built as described in Section 4.6. We run several independent chains and we observed an high auto-

correlation in the chain, maybe due to the high number of parameters in the algorithm; nevertheless

convergence was quite fast and achieved after nearly2, 000 iterations. We finally run a long chain

with a burn-in period of10, 000 iterations, and a thinning of100 iterations to reduce autocorrela-

tion, obtaining a final samples sizeJ = 1, 000 from the posterior joint distribution. The Bayesian

estimates ofα1 andα2, together with the90% credible intervals, are presented in Table 4.5 for

m = 14.8480 and the different values ofγ2. Figures from 4.11 to 4.13 show the tipical traces,

the autocorrelation functions and the scatter plots of the chains{α(j) = (α
(j)
1 , α

(j)
2 )}J

j=1, for one

choice of the hyperparameter.

We observe how the hyperparameterγ2 works as a smoothing parameter in this example too.

Indeed, assumingγ2 = 1 (small) leads to a wave trend in the estimated survival function, that

indicates a multimodality in the relative density (see Figure 4.8). In particular in this case, also

the posterior joint density ofα = (α1, α2) seems to have two modes. This can be imputed to the

presence of influential points, as the17th observation, in the data.

To evaluate the performance of the models considered we should check how well the model

predicts. We consider a cross-validation method (see Gelfand, Dey, and Chang, 1992). Let

T1, . . . , Tn be a sample from the NPHM model (4.5), and lett1, . . . , tn be the observed values from

the sample. In a cross-validation approach we want to check the observed non-censored survival

time ti against the predictive distribution,f(·|t(i),xi) arising from the model, all the observations

tj, j 6= i, and the covariates value of theith patientxi. Actually, if the model holds,ti could be

viewed as a random observation fromfTi
(·|t(i)). To do this we consideredg(Ti; ti) := Ti − ti

whose median underfTi
(·|t(i)) has been calculated and denoted byri := Med(Ti|t(i)) − ti. We

used the set of{ri, i = 1, . . . , n}, calledgeneralized residuals, for model assessment (various

possible choices ofg(·; ·), calledchecking functions, are discussed in Gelfandet al., 1992). We
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considered

sj := Med
(

abs
(

Ti − Med(Ti|t(i),xi)
)∣

∣t(i),xi

)

(4.27)

to standardize the generalized residuals by lettingr′i := ri

si
, for i = 1, . . . , n. Then the quantity

I :=

n
∑

i=1

|r′i| (4.28)

can be considered as as index of the model fit.

This approach can be viewed as the Bayesian analogue to the well known frequentist strategy

of examining the studentized residuals. We point out that usually in the Bayesian framework the

residuals are computed through the conditional mean of the checking functiong(Tj ; tj). Since in

our model the predictive distributionfTj
(·|t(j)) does not admit mean, here we decided to use a

median estimate.

We computed the predictive fit index (4.28) whenm = 14.8480, γ2 = 1 and E(k|n) =

6.5108, obtainingINIG = 108.97 andIDIR = 103.06, indicating a slightly better fit of the DPM

model. The Figures 4.14, 4.15 and 4.16 show the plots of the standardaized residualsr′i upon the

continuous covariatexi,2, i = 1, . . . , n.

86



0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

 

E(kn) = 6.5

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b)
 

E(kn) = 6.5

0 50 100 150 200

0
.2

0
.4

0
.6

0
.8

1
.0

(c)

 

E(kn) = 18.4

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d)

 

E(kn) = 18.4

Figure 4.8: Estimated survival functions under the Dirichlet process prior (dotted red) and the N-IG prior
(dashed blue) for 2 patients (covariate(1, 0.5) in the left column and covariate(0, 0.5) in the right column)
from Example 2 whenγ2 = 1 andm = 14.85.
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Figure 4.9: Estimated survival functions under the Dirichlet process prior (dotted red) and the N-IG prior
(dashed blue) for 2 patients (covariate(1, 0.5) in the left column and covariate(0, 0.5) in the right column)
from Example 2 whenγ2 = 10 andm = 14.85.
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Figure 4.10: Estimated survival functions under the Dirichlet process prior (dotted red) and the N-IG prior
(dashed blue) for 2 patients (covariate(1, 0.5) in the left column and covariate(0, 0.5) in the right column)
from Example 2 whenγ2 = 100 andm = 14.85.
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Nig-mixture prior
M=0.01 M=10

γ2

1
α̂1 = 0.5156 (0.3318; 0.8661) α̂1 = 0.4859 (0.2497; 0.8056)
α̂2 = 4.8386 (1.4532; 15.7634) α̂2 = 4.6024 (1.3554; 16.0212)

10
α̂1 = 0.4052 (0.1549; 0.7794) α̂1 = 0.3984 (0.1489; 0.7818)
α̂2 = 8.6771 (0.9026; 38.1015) α̂2 = 10.2115 (1.1436; 34.2550)

100
α̂1 = 0.4305 (0.1967; 0.7867) α̂1 = 0.6581 (0.2342; 1.3701)
α̂2 = 4.3092 (0.9009; 10.3039) α̂2 = 13.7599 (1.6032; 46.6534)

(a)

MDP prior
a=2.1478 a= 16.3390

γ2

1
α̂1 = 0.5107 (0.3337; 0.8258) α̂1 = 0.5070 (0.3434; 0.7914)
α̂2 = 5.3749 (1.4407; 16.4946) α̂2 = 5.3749 (1.4403; 16.0518)

10
α̂1 = 0.4282 (0.1557; 0.7722) α̂1 = 0.4338 (0.1555; 0.8062)
α̂2 = 7.8721 (1.0260; 21.4419) α̂2 = 8.3606 (1.0105; 30.8108)

100
α̂1 = 0.4980 (0.2053; 0.9722) α̂1 = 0.4851 (0.1955; 0.9497)
α̂2 = 10.5538 (1.1902; 44.7378) α̂2 = 10.1354 (1.1850; 36.3112)

(b)

Table 4.5: Estimates ofα1 andα2, with 90% probability credible intervals, for the Feigl & Zelen dataset
under the N-IG mixture (a) and DPM (b) priors.
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Figure 4.11:Traces and estimated autocorrelation functions of the Markov chain sample{α(j)
1 , α

(j)
2 } under

the Dirichlet prior whenE(k|n) = 18.4, m=14.85 andγ2 = 10

0 200 400 600 800 1000

0.5
1.0

1.5

iteration

α 1(j)

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

iteration

α 2(j)

0 200 400 600 800 1000

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series  α1
(j)

0 200 400 600 800 1000

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series  α2
(j)

Figure 4.12:Traces and estimated autocorrelation functions of the Markov chain sample{α(j)
1 , α

(j)
2 } under

the N-IG prior whenE(k|n) = 18.4, m=14.85 andγ2 = 10
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Figure 4.13: Scatter plots of the series{α(j)
1 , α

(j)
2 }j under the N-IG process prior (left column blue) and

Dirichlet process prior (right column red), whenγ2 = 10 andm = 14, 84. E(k|n) = 6, 5 in graph (a-b)
andE(k|n) = 18.4 in (c-d).
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Figure 4.14: Standardized residuals, on the Feigl & Zelen data set, plotted respect to the continuous
covariatex·2, under the Dirichlet process prior. The Influent points are labelled with the identification
number.γ2 = 1, m = 14.84 andE(k|n) = 6.5
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Figure 4.15: Standardized residuals, on the Feigl & Zelen data set, plotted respect to the continuous co-
variatex·2, under the N-IG process prior. The Influent points are labelled with the identification number.
γ2 = 1, m = 14.84 andE(k|n) = 6.5
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Figure 4.16:Standardized residuals against the continuous covariate under both the N-IG (blue) and Dirich-
let (red) priors.γ2 = 1, m = 14.84 andE(k|n) = 6.5
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4.7.3 Dataset involving censoring

As a third example, we considered survival times in thousands of days of small-cell lung cancer

data patients with right censoring from Ying, Jung and Wei (1995), and studied also in Walker

and Mallick (1999), Yang (1999), Kottas and Gelfand (2001),Hanson (2006). The standard ther-

apy is to use a combination of etoposide (E) and cisplatin (P); however the optimal sequencing

and administration schedule was not defined (the original dataset and a more complex study were

originally presented in Maksymiuket al. (1994)). The data, see Table 4.6, consist ofn = 121

survival times in days of patients with limited-stage small-cell lung cancer who were randomly

assigned to two different regimens (TreatmentA: P followed by E, administered to 62 patients,

and TreatmentB: E followed by P, administered to 59 patients); moreover 23 patients were ad-

ministratively right-censored. In this case the covariates arexi = (xi1, xi,2)
′, with xi1 = 0 if

patienti was assigned to TreatmentA, andxi,2 denoting the patient’s entry age.

As in the previous example, an explorative parametric analysis was performed, and the com-

puted estimates were used in the nonparametric model specification. The prior median of the error

variableV was assumed to be equal to the parametric estimate of the medianm = 2.4356, and the

prior onα = (α1, α2) was assumed to be a product of independent gamma,Γ(gj , hj), j = 1, 2,

such thatE(α1) = 1.559 andE(α2) = 1.113, with an elevate variability, Var(αj) = 1.000, j =

1, 2. Figures 4.17, 4.18 and 4.19 display the estimated survivaldistributions, under the two semi-

parametric Bayesian models considered here, for 2 patientswith covariates(1, 36) and(0, 36), for

different values of the hyperparameters. The estimated survival functions are practically indistin-

guishable for small values ofM (or a), see figure 4.17. As before, a different behaviour on the

tails arises whenM (a) increases, but unlike the previous example the predictivesurvival function

under the Dirichlet prior have heavier tails than those under the N-IG prior. We argue that the

N-IG process is particularly sensible to the presence of clusters in the data. In the Feigl-Zelen data

set the presence of influential points with high survival times (see Figure 4.16) generates a cluster
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that returns heavy tails in the survival estimates. This behaviour is accentuate when the N-IG is

used as prior.

We observe also that, for high values ofM or a (strong confidence in the prior), the estimated

survival functions have an undesirable trend near zero (seefor example Figure 4.19 (e) or (f)). This

is imputable to the choice of the marginal prior of the error variableV , which has an asymptote

in zero for each choice of the hyperparameters. Clearly thisbehaviour is emphasized when the

confidence on the prior, quantified by the parameterM (a), is high.

The survival estimates we just described, are based on a Markov sample{(θ(j), α(j)}J
j=1 from

the posterior joint distribution of(θ, α), obtained with the MCMC procedure in Section 4.6. As

usual, we run several independent chains for each choice of hyperparameters. We noted that the

autocorrelation in each sample was quite high, likely due tothe presence of censored observations,

that increases the number of parameters in the algorithm. Convergence, however, was sufficiently

fast. We run long Markov chains with a burn-in period of10, 000 iteration and a thinning of 100

observation. The final sample size wasJ = 1, 000. Figures from 4.20 to 4.22 show the tipical

traces, the autocorrelation functions and the scatter plots for the chains{α(j) = (α
(j)
1 , α

(j)
2 )}J

j=1

for one choice of the hyperparameters. The Bayesian estimates ofα1 andα2, together with the

90% credible intervals, are presented in Table 4.7 form = 2.4356 and different values ofγ2.

As before a cross-validation method to evaluate the predictive performances of the two models

under study was set. Letg(Ti, ti) = Ti − ti the checking function, the generalized residuals

ri := Med(g(Ti, ti)|t(i),xi),

can be computed only for the non-censored observation; therefore if S∗ denotes the index set of

non-censored data in the sample, we quantified the goodness in prevision of the models by the
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Treatment A Treatment B
Survival time Survival time Survival time Survival time

Entry age (thousand days) Entry age (thousand days)Entry age (thousand days) Entry age (thousand days)

56 0.73 52 0.998 72 1.225 60 0.511

70 1.98+ 52 0.311 55 0.556 44 0.372

56 0.26 51 1.843+ 68 0.17 60 1.82+

54 1.883+ 68 0.455 60 0.174 68 0.728
74 1.194 59 0.315 58 0.219 70 0.613

65 1.624+ 50 0.624 62 0.241 36 0.352
60 0.967 69 0.473 72 0.394 51 0.343

66 1.779+ 71 0.354 64 0.731 57 1.232
74 0.643 55 0.893 72 0.395 65 0.232

63 1.645+ 64 0.577 58 0.687 68 0.428

39 0.749 55 0.441 67 0.23 42 1.573+

64 0.882 69 0.478 75 0.209 68 1.457+

65 0.164 57 1.433+ 55 0.703 65 0.398
71 1.221 64 1.043 72 0.799 70 0.166
47 0.523 47 0.465 58 1.315 56 0.364
75 0.201 68 0.524 72 0.265 72 0.789
66 0.288 55 0.529 60 0.199 63 0.083

57 1.123+ 53 0.49 62 0.426 45 0.757
67 0.442 62 0.755 59 0.34 69 0.329

56 1.133+ 64 1.008 68 0.488 56 1.12+

57 1.204+ 62 0.525 66 0.292 61 0.181
49 0.429 59 0.22 59 0.426 67 0.49
74 0.47 65 0.464 54 0.305 72 0.285

65 0.667 58 1.102+ 68 1.005+ 59 1.043+

62 1.11+ 72 0.938 63 0.382 65 0.435

66 0.622 63 0.597 77 0.325 58 0.897+

68 0.98+ 53 0.476 52 0.916+ 79 0.44
57 0.935 69 0.251 73 0.172 71 0.251
79 0.152 71 0.539 78 0.339 63 0.254

55 0.552 52 0.746+ 65 0.371

52 0.256 54 0.835+

Table 4.6: Small cell lung cancer data. The superscript “+” indicates censoring

index

I+ :=
∑

j∈S∗

|rj |
s̃j

wheresj is the index of dispersion introduced in (4.27). We computedthe index I+ for both models

for m = 2.4356, γ2 = 1 andE(K|n) = 12.4107, and obtainedI+
NIG = 94.42 andI+

DIR = 99.99,

indicating a slightly better fit of the N-IG mixture model forthis dataset. Plots of the standardized

generalized residual are shown in Figure 4.23, 4.24, and 4.25; the graphics indicate a good fit of

both models, and no sign of curvature or heteroscedascity are present.
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Figure 4.17:Estimated survival functions under the Dirichlet process prior (dotted red) and the N-IG prior
(dashed blue) for 2 patients (covariate(1, 36) in the left column and covariate(0, 36) in the right column)
from Example 3 whenm = 2.4356 andγ2 = 0.1.
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Figure 4.18: Estimated survival functions under the Dirichlet process prior (dotted red) and the N-IG prior
(dashed blue) for 2 patients (covariate(1, 36) in the left column and covariate(0, 36) in the right column)
from Example 3 whenm = 2.4356 andγ2 = 1
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Figure 4.19:Estimated survival functions under the Dirichlet process prior (dotted red) and the N-IG prior
(dashed blue) for 2 patients (covariate(1, 36) in the left column and covariate(0, 36) in the right column)
from Example 3 whenm = 2.4356 andγ2 = 10
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N-IG mixture prior
M=0.001 M=1 M=10

γ2

0.1
α̂1 = 1.1492; (1.1814; 1.8193) α̂1 = 1.4209; (1.1238; 1.7623) α̂1 = 1.4087; (1.1145; 1.7820)
α̂2 = 1.0113; (0.9998; 1.0234) α̂2 = 1.0165; (1.0061; 1.0280) α̂2 = 1.0180; (1.0071; 1.0284)

1
α̂1 = 1.5330; (1.2028; 1.9031) α̂1 = 1.5289; (1.2010; 1.8953) α̂1 = 1.5222; (1.1813; 1.9260)
α̂2 = 1.0150; (1.0047; 1.0248) α̂2 = 1.0149; (1.0051; 1.0248) α̂2 = 1.0152; (1.0060; 1.0239)

10
α̂1 = 1.5210; (1.0221; 1.0418) α̂1 = 1.5311; (1.1676; 1.9406) α̂1 = 1.5155; (1.1584; 1.9667)
α̂2 = 1.0318; (1.0221; 1.0418) α̂2 = 1.0307; (1.0207; 1.0413) α̂2 = 1.0290; (1.0206; 1.0387)

(a)

MDP prior
a=3.2713 a= 6.2467 a=22.3172

γ2

0.1
α̂1 = 1.4365; (1.1492; 1.7719) α̂1 = 1.4086; (1.1229; 1.7532) α̂1 = 1.3867; (1.0961; 1.7613)
α̂2 = 1.0141; (1.0032; 1.0251) α̂2 = 1.0163; (1.0049; 1.0279) α̂2 = 1.0211; (1.0126; 1.0288)

1
α̂1 = 1.5149; (1.1741; 1.8865) α̂1 = 1.5123; (1.1922; 1.8694) α̂1 = 1.5295; (1.1564; 1.9838)
α̂2 = 1.0160; (1.0070; 1.0253) α̂2 = 1.0176; (1.0090; 1.0267) α̂2 = 1.0199; (1.0122; 1.0280)

10
α̂1 = 1.5178; (1.1499; 1.9471) α̂1 = 1.5214; (1.1277; 1.9425) α̂1 = 1.5369; (1.1226; 2.0492)
α̂2 = 1.0324; (1.0221; 1.0430) α̂2 = 1.0318; (1.0227; 1.0413) α̂2 = 1.0331; (1.0245; 1.0423)

(b)

Table 4.7: Estimates ofα1 andα2, with 90% probability credible intervals, for the small-cell lung cancer
dataset under the N-IG mixture (a) and MDP (b) priors, whenm = 2.4356.

101



0 200 400 600 800 1000

1.0
1.5

2.0
2.5

iteration

α 1(j)

0 200 400 600 800 1000

1.0
2

1.0
3

1.0
4

1.0
5

1.0
6

iteration

α 2(j)

0 200 400 600 800 1000

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

 Series  α1
(j)

0 200 400 600 800 1000
0.0

0.2
0.4

0.6
0.8

1.0

Lag

AC
F

 Series  α2
(j)

Figure 4.20:Traces and estimated autocorrelation functions of the Markov chain sample{α(j)
1 , α

(j)
2 } under

the N-IG process prior whenE(k|n) = 19.31, m=2.44 andγ2 = 10.
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Figure 4.21:Traces and estimated autocorrelation functions of the Markov chain sample{α(j)
1 , α

(j)
2 } under

the Dirichlet process prior whenE(k|n) = 19.31, m=2.44 andγ2 = 10.
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Figure 4.22: Scatter plots of the series{α(j)
1 , α

(j)
2 }j under the N-IG process prior (left column blue) and

Dirichlet process prior (right column red).γ2 = 10, m = 2.44 andE(k|n) = 19.31
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Figure 4.23: Standardized residuals, from the third Example, plotted respect to the continuous covariate
x·2, under the Dirichlet process prior.γ2 = 1, m = 2.43 andE(k|n) = 12.41
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Figure 4.24: Standardized residuals, from the third Example, plotted respect to the continuous covariate
x·2, under the N-IG process prior.γ2 = 1, m = 2.43 andE(k|n) = 12.41
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Figure 4.25:Standardized residuals against the continuous covariate under both the N-IG (blue) and Dirich-
let (red) priors.γ2 = 1, m = 2.44 andE(k|n) = 12.41

105



4.8 A non conjugate model

In the previous sections we observed that the marginal priorof the error term in the AFT regression

model, given by

fV (v) =

∫ +∞

0
dϑ1

∫ +∞

0
dϑ2

ϑϑ1
2

Γ(ϑ1)
vϑ1−1e−ϑ2vγ1e

−γ1ϑ1γ2e
−γ2ϑ2

=
γ1γ2

v(v + γ2)(γ1 + log(v+γ2

v ))2
,

is not flexible enough. Indeed, it is monotone with an asymptote in zero for each choice of the

hyperparameters. In practice, in spite of the knowledge we have on lifetimes, we are not able to

introduce all prior informations in to the model. As seen in section 4.7.1, this can produce an

undesirable behaviour in posterior estimates (see figure 4.5). To obtain a more flexible prior, we

propose to change the mean distributionG0(·) of the non parametric prior, both in the N-IG and

the Dirichlet cases. The hierarchical model for the variable V1, . . . , Vn is:

Vi|θi
ind∼ k(·|θi),

θi|G iid∼ G, (4.29)

G ∼ q, G0(A) := Eq(G(A)), A ∈ B(Θ)

where
{

k(·|θ), θ ∈ Θ
}

is a family of gamma kernels withθ = (ϑ1, ϑ2) and meanϑ1/ϑ2. We let

G0 be the product of two independent gamma distributions, i.e., in the hierarchical specification,

we chooseθ = (ϑ1, ϑ2) such that,ϑ1 andϑ2 underG0 are independent gamma distributed with

parameter(ω1, γ1) and(ω2, γ2) respectively. The new marginal prior for the variableV is:

fV (v)=

∫ +∞

0
dϑ1

∫ +∞

0
dϑ2

ϑϑ1
2

Γ(ϑ1)
vϑ1−1e−ϑ2v γω1

1

Γ(ω1)
ϑω1

1 e−γ1ϑ1
γω2
2

Γ(ω2)
ϑω2

2 e−γ2ϑ2

=
γω1
1 γω2

2

v(v + γ2)ω2(γ1 + log(v+γ2

v ))ω1
·
∫ +∞

0
dϑ1

Γ(ϑ1 · ω2)

Γ(ϑ1)
Γ(ϑ1|s, r(v)), (4.30)
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whereΓ(·|s, r) is the density of a gamma distributed random variable with shape parameters

and rate parameterr, andr(v) = γ1 + log(1 + γ1/v). Distribution (4.30) is more flexible than

distribution (4.7), it has an asymptote in zero, but forω2 > 1 it admits a mode. In figure 4.26

the graphics offV (·) for some choices of the hyperparameters are depicted. We cansee that for

ω1 andω2 big enough the asymptote offV (·) becomes negligible. The new marginal prior also

admitsk−th moment forω2 > k. Indeed, ifV ∼ fV (·) then E(V k) = E(E(V k|ϑ1, ϑ2)) =

E(ϑk
1)E(1/ϑk

2), and the second term of the last product exist if and only ifω2 > k. In particular

E(V ) =
ω1γ2

(ω2 − 1)γ1
, ω2 > 1. (4.31)

We derive the induced mean and variance of the gamma components in the mixture: letV |(ϑ1, ϑ2) ∼

Γ(ϑ1, ϑ2) indicate a gamma distributed random variable with meanµ = ϑ1/ϑ2 and variance

σ2 = ϑ1/ϑ
2
2. With (ϑ1, ϑ2) ∼ Γ(ω1, γ1) × Γ(ω2, γ2), we have thatE(µ) = E(V ), and

E(σ2) =
γ2

ω2 − 2
E(V ), ω2 > 2. (4.32)

Finally we compute

Var(V ) =

(

ω2 + ω1 − 1

(ω2 − 1)γ1
+ 1

)

E(σ2), ω2 > 2. (4.33)

In this way we can use equations (4.31), (4.32) and (4.33) to express the prior information on the

problem at hand.

4.8.1 A numerical example

We performed a nonparametric density estimate of the same sample t1, . . . , tn of sizen = 100

from the mixture density (4.24), used in section 4.7.1. We centred the marginal prior at the popula-
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Figure 4.26:Graphics of the marginal prior (4.30) of the variableV of model (4.29) for some choices of the
hyperparameters. (a) ω1 = 1, ω2 = 1, λ1 = 0.002, λ2 =
0.01; (b) ω1 = 3, ω2 = 2, λ1 = 1, λ2 = 4; (c) ω1 = 4, ω2 = 4, λ1 = 0.007, λ2 = 0.04; (d)
ω1 = 149, ω2 = 4, λ1 = 1, λ2 = 0.2;

tion mean, choosing the hyperparameters so thatE(V )=6. To have a benchmark with the estimate

obtained under the conjugate model we fixed the dispersion ofV through the widthLα of the

(α·)100% prior probability interval determined in Section 4.4, using the approximation arising

from the Gaussian distribution:
√

Var(V ) ≈ Lα

2 · z1−α/2

wherez1−α/2 is the(1−α/2) percentile of the Gaussian distribution. Moreover we usedE(σ2) =

5, 10 and50 as a bandwidth parameter, controlling the dispersion of thegamma-components of

the nonparametric mixture. We gave a strong confidence to themarginal prior (i.e, we chose

M = 5.39 anda = 14.1614) because the undesirable behaviour near the origin of the predictive

densities under the conjugate model (clearly) was more pronounced in this case.

For each choice of the hyperparameters we ran several chains, using a data augmentation Gibbs

sampler algorithm as described in section 3.3, with an auxiliary vector of size3. The convergence
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was relatively fast, and we did not observe a significant worsening with respect to the conjugate

algorithm. Then we run a long chain for each model, with a burn-in of 10,000 iteration and a

thinning of 50 iterations.

As in the conjugate case the predictive performances under the N-IG and the Dirichlet prior

are equivalent. In the left column of Figure 4.27 we depictedthe predictive distributions for each

choice of hyperparameters, and in Table 4.8 we present the distance in the uniform metric between

the “true” distribution and the predictive ones. Under the non conjugate model (with an appropriate

choice of hyperparameter) the posterior densities have thedesired trend near the origin. Although

produce indistinguishable predictive densities, the two models make use of a different clustering

of the elementsθ. The right column of figure 4.27 shows the posterior estimates of the distribution

of the number of clustersk. We can see that whenE(σ2) takes the smallest value, the estimate

under the N-IG process tends to use a greater number of components with respect to those used in

the estimate under the Dirichlet process prior. The opposite trend is observed when the prior mean

of the variance of the mixture component is set at the largestvalue. The N-IG process seems to

mitigate the influence of the choice of the total mass given tothe “mean” measure, but it is more

susceptible to change in the prior information given by the hyperparametersω andγ.

E(k|n) = 30
E(σ2)

2 10 50

N-IG 0.0508 0.0485 0.0642
Dir 0.0682 0.0647 0.0754

Table 4.8: Errors in the uniform metric for the simulated dataset of size100 between the true and estimated
distribution functions, under the non conjugate model.
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Figure 4.27: Histogram for the simulated data and density estimates under the Dirichlet process prior
(dotted red) and the N-IG prior (dashed blue) in the left column. Posterior estimates of the distribution
of the number of cluster under the Dirichlet prior (dotted red) and N-IG prior (solid blue) in in the right
column. The hyperparameters are such thatE(V ) = 6 , Var(V ) = 32.782 andγ2 = 2. The green solid line
denotes the true density.
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4.9 Conclusions

In this Thesis we studied the accelerated failure time models in the context of Bayesian semipara-

metric statistics. In the first two chapters we reviewed the main contributions in this area, and we

surveyed on nonparametric Bayesian modelling. In particular we focused the attention on non-

parametric hierarchical mixture models, with the goal of comparing the performance of the well

known DPM model with N-IG process mixture model, recently introduced in literature. The two

competing models have been tested looking at the predictiveestimates they produce. The com-

parison between is carried out in the following way: first we fixed the prior hyperparameters, in

such a way they carry as similar a prior information as possible, then we quantified the predictive

performances. With the simulated data sets we measured the distance between the predictive and

the “true” distribution. With the real data sets we used across validationprocedure to quantify the

predictive power of each model.

The estimation was carried out by MCMC simulation methods. In the third chapter we re-

viewed the mains strategies to handle DPM models. In particular we focused on algorithms that

rest on the predictive structure of the Dirichlet process prior. Then we described how to extend

this algorithm to the N-IG mixture models, for both the conjugate and the non-conjugate case.

The fourth chapter contains the main results of the work. We described in depth the hierar-

chical models adopted, and we matched the two nonparametricpriors by centering the mixing

distributions at the same “mean”G0 and assuming an equal prior mean of the number of compo-

nents in the mixture. Then the prior information on the survival times was passed to the model

through functionals of the marginal prior.

We presented three examples using a conjugate hierarchicalmodel: the first one on density

estimation (AFT with a null vector of covariates) with simulated data; the second one on regression

for uncensored survival times; the third one on regression for right-censored data. Finally a non-

conjugate hierarchical model is tested on density estimation with simulated data.
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A close inspection of the marginal error distribution leadsto to think that some artifacts near

the origin of the predictive density are due to the choice of the kernels and the “mean”G0. Indeed

the analysis of a non conjugate model, with a more generalG0 eliminates this drawback.

From a predictive point of view, the illustrative examples show that there is not a substantial

difference between the DPM and N-IG process priors in mixture density estimation. However

some differences arise in the posterior distribution of thenumber of clusters the two models use

to “built” the predictive estimates: the more elaborate prior reinforcement structure of the N-IG

process prior leads to estimates of the number of clusters inthe mixture that are difficult to in-

terpret. Indeed this posterior, for both the models, not only depends on the prior total mass of

the mixing distribution, it also depends on the hyperparameters within the mean distribution of

the non parametric prior processes. In our experiment, withan appropriate choice of these hyper-

parameters, the N-IG process prior seems to be better than the DPM prior in finding clustering

structures in the data. Nevertheless we believe that some more though is needed to give a good

statistical interpretation of this characteristic.

In the first regression example (see Section 4.7.2) the modelwith the Dirichlet process prior

error fits the data a little better. However, the second experiment, on the Feigl and Zelen (1965)

leukemia dataset (see Section 4.7.3), gives the opposite result. In both cases we notice that the

difference in the predictive fit indexes is not dramatic, andit is difficult to choose between the two

process priors based only on this. This uncertainty remainseven if we consider that the result on

the Feigl and Zelen dataset is influenced by a few abnormal observations, whose removal produces

essentially equal predictive fit indexes.

A similar conclusion worth looking at the concerns posterior distribution of the regression

parameterα. We can see from Table 4.5 and Table 4.7 as, the point and the interval estimates

obtained under the two competing priors do not differ in meaningful way.

The Dirichlet process prior is, maybe, the most studied nonparametric prior in Bayesian statis-
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tics. One of the reasons of this popularity is its “relative”simplicity. The Pólya urn and the

“stick-breaking” representation (see Section 2.2.1) constitute, for example, a very useful tools to

work with. Furthermore, in the recent years the Dirichlet process prior has experienced a great

success in the context of Bayesian mixture modelling. The idea of overcoming the discreteness of

its realizations by exploiting it in hierarchical models, combined with the development of suitable

sampling techniques, constitutes one of the reasons of its popularity.

The NIG prior represents a valid alternative to the Dirichlet prior in the NPHM models. Indeed,

it preserves almost the same tractability and has an interesting clustering property that makes use

of all the information contained in the data,in a predictivesense.

Future extensions of the work will focus on models with one more level in the hierarchical

structure, introducing some distributions for the total mass parametersa andM , which determine

the prior distribution of the number of components in the mixture, so as to obtain a refined estimate

of this distribution. Other extensions can look at the use ofa more general nonparametric prior,

like the generalized gamma process (see Lijoiet al., pear) that includes both the Dirichlet and the

N-IG prior as particular cases.

We mention also that the use of the N-IG prior requires a greater computational effort. Indeed,

the computation of the weights (2.6) and(2.7) needs multiple precision arithmetics, because of the

presence of the sum of several incomplete gamma functions. Therefore we did all the computations

and the MCMC simulations using R (R Development Core Team, 2006), but we used Maple

for setting up a table with the necessary weights (which do not change during simulations). An

alternative to Maple is the PARI C library (The PARI Group, 2006), which can be used both at

initialisation and at run time, because C subroutines can beloaded into R. Given the availability

of these multiple precision computational tools, the calculation of the weights is not a serious

concern.
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Ibrahim, J. G., Chen, M. H., and Sinha, D. (2001).Bayesian Survival Analysis. Springer-Verlag.

Ishwaran, H. and James, L. F. (2001). Gibbs sampling methodsfo stick-breaking priors.Journal

of the American Statistical Association, 96, 161–173.

Ishwaran, H. and James, L. F. (2003). Generalized weigthed chinese restaurant processes for

species sampling mixture models.Statistica Sinica, 13, 1211–1235.

Jain, S. and Neal, M. (2004). A split-merge Markov Chain Monte Carlo procedure for the Dirichlet

process mixture models.Journal of Computational and Graphical Statistics, 13, 158–182.

James, L. F. (2002). Poisson process partition calculus with application to exchangeable models

and bayesyan nonparametrics,.Mathematics ArXiv, math. PR/0205093.

James, L. F. (2003). A simple proof of the almost sure discreteness of a class of random measures,.

Statistics & probability letters, 65, 363–368.

James, L. F., Lijoi, A., and Prünster, I. (2006). Conjugacyas distinctive feature of the Dirichlet

process.Scandinavian journal of Statistics, 33, 105–120.

120



Kalbfleisch, J. D. and Prentice, R. L. (1980).The Statistical Analysis of Failure Time Data. Wiley,

New York.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations.

Journal of the American Statistical Association, 53, 457–448.

Klein, J. P. and Moeschberger, M. L. (1997).Survival Analysis. Tecniques for Censored and

Truncated Data. Springer-Verlag, New York.

Kottas, A. and Gelfand, A. E. (2001). Bayesian semiparametric median regression modeling.

Journal of the American Statistical Association, 96, 1458–1468.

Kottas, A. and Krnjajic̀, M. (2005). Bayesian nonparametric modeling in quantile regression.AMS

Technical Report-06.

Koul, H., Susarla, V., and Van Ryzin, J. (1981). Regression analysis with randomly right censored

data.The Annals of Statistics, 9, 1276–1288.

Kuo, L. (1986). Computation of mixture of Dirichlet process. SIAM Journa of Science and

Statistical Computing, 7, 60–71.

Kuo, L. and Mallick, B. (1997). Bayesian semiparametric inference for the accelerated failure-

time model.The Canadian Journal of Statistics, 25, 457–472.

Lai, T. L., Ying, Z., and Zheng, Z. (1992). Asymptotic normality of a class of adaptive statistics

with applications to synthetic data methods for censored regression. Journal of Multivariate

Analysis, 52, 159–179.
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