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Preface

This thesis is based on one year work at the Institute of &pplWathematics and Informa-
tion Technology of the C.N.R. (National Research Counnilyiilan, under the supervision of Dr.

Antonio Pievatolo, and in collaboration with Prof. AlesdeanGuglielmi and Dr. Fabrizio Ruggeri.

It concerns the study of thaccelerated failure tim€AFT) model in the Bayesian nonparamet-

ric setting. In the survival literature, the AFT model is aby meant as the multiplicative effect

of a fixedp-vector of covariatex = (z1,...,xz,) onthe failure timer’, i.e.,
T=eXP.V, 1)
wherej = (01, .., 3,) is the vector of regression parameters &ndenotes the error.

The errorV is usually assumed distributed from a parametric family, diten it is hard to
justify a specific choice. Therefore, we takenanparametricapproach to the distribution of
the error term. Recently this model has received much &tem the Bayesian community, in
particular in papers where the errdf,or W = log(V'), has been represented hierarchically as a
mixture of parametric densities with a Dirichlet processrasing measure (i.e., the well-known
DPM models, introduced by Lo, 1984). Moreover, Lijoi, Memal@ruiister (2006) introduced the
N-IG prior, that could represent a valid alternative to thadblet prior in the contest of mixture

modelling.
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Therefore, we consider the errgrin the AFT model as a mixture of some parametric family
of densities on the positive reals, mixed by a random digtioh functionG. The work mainly fo-
cuses on the performances of two hierarchical mixture nsdolelcomparing Bayesian inferences
on the regression parameters and the survival times. On ame Wwe will assume tha¥ has a
Dirichlet process prior, yielding DPM models for; on the other hand’ will have the normalized

inverse-Gaussian prior (N-IG prior), thus defining what \a# N-IG mixturesfor short.

Our approach to the comparison of such models is a compogteme. We match the non-
parametric priors in such a way they carry the same prioriméion, then we measure the perfor-
mance of the two models on both simulated and real data. Wewamarize this approach in two
steps. In the first one, we determine the hyperparameteesl leesthe marginal distribution of the
error, and we conduct some sensitivity analysis on the pgostestimates. In the second one, we
obtain the predictive estimates and measure the predjpbwer of the two proposed methods. In
the simulated data case, we consider the distance in theromihetric between the predictive and
the “target” distribution. In the real dataset case, we Usgass validation” method, quantifying,

in practice, how far the predictions are from the observed.da

Another important feature of nonparametric mixtures iatesl to the number of components
in the mixture. Indeed, such prior specification is a fruigxtension of parametric finite mixture
models. In the nonparametric way, the prior number of coreptsis random and its law (in
a sample of fixed size) is determined by the mixing process. The N-IG prior leads fess
informative prior on the number of components with respedht Dirichlet prior. We analyse
the differences in the posterior estimates of this distidioy arising under the two different prior

specifications.

Sometimes, in the Bayesian literature the AFT model is igsvriadog 7' = —xG+ W, where
W = log V, then a nonparametric hierarchical mixture of parameteicsities, with support on

the entire real line, is used to model the distributioriiof However if, for examplel¥ is a non-
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parametric mixture of normal densities, thEnis not a nonparametric mixture afg —normals,
so that a one to one correspondence between the additivehanduitiplicative model can not
be easily obtained. Therefore, it is equally reasonabledkwen V' rather than ori¥/, with the

advantage that the survival timiéis modelled directly, thus facilitating also prior spedition.
The plan of the Thesis is as follows.

In Chapter 1 we describe the two basic regression modelsifgival time data: the propor-
tional hazard model and the AFT model. Then, we briefly reviegvliterature on the nonpara-

metric Bayesian approach to inference for AFT models.

In Chapter 2 we discuss the basic Bayesian nonparametrielsttat will be used as prior
on the unknown distribution di". This development begins with the Dirichlet processesgirer
son, 1973), the mixture of Dirichlet process (Antoniak, 4p@nd the Dirichlet process mixture

models (Lo, 1984). Then we will illustrate the N-IG processl ghe N-IG process mixture.

A Monte Carlo approach to approximating the posterior iistron would involve sampling
the infinite dimensional parametér. Such an approach cannot be implemented without introduc-
ing a finite approximation. In Chapter 3 we will illustrateetbasic idea of Escobar (1994) who
first considered the DPM model obtained after marginalizimgDirichlet process. Then we will
describe some extensions to the Escobar algorithm, and lvadapt these to the N-IG mixture

model.

In Chapter 4 the two competing models are tested on real andatied datasets. We present
four examples. In the first one we consider a simulated dasaskwe perform density estimation
through an AFT model without covariates. The predictivefgrenances are quantified by com-
puting the distance in the uniform metric between the truesitie and the predictive estimates.
In the two subsequent examples we study two well known distasee containing censored ob-
servation, the other not. The predictive performances efttfo models are compared through

a cross-validationmethod. In the fourth example we test a non-conjugate lubi@al mixture

XV



model on the simulated data set and we compare the resuligheise arising from the first ex-
ample.

Chapter 4 constitutes the original part of this thesis. TH& Anodel with N-IG process
mixture modelling the error has not been considered befdealso examine in some detail the
effect of the choice of the prior mean of the N-IG and Diri¢clgeocess on the marginal distribution
of V. Finally, while a very large number of proposals have apgean the literature, there have

not been many attempts to compare competing models systaityat
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Chapter 1

Regression models for survival time

data

1.1 Introduction

In this chapter our aim is to introduce some basic definiteom$ models of survival analysis, i.e.,
the procedures to analyze data arising as the time until ant@ccurs. Enormous progress has
been achieved in this area in the 20th century. The field ofivwlranalysis is very rich, since
time-to-event data arises in many fields of study, includiregicine, biology, engineering, public
health, epidemiology, economics among the others. In soctert events are generically referred
to as failures (or deaths), since major areas of applicatiermedical studies.

A complexity that frequently arises in trials having tintedvent endpoints is that a fraction
of subjects remains without time to failure at the end of thelg For these elements it is only
known that the true time-to-event exceeds the recognisee. tiWe refer to such data as right
censored. As Flemming and Lin (2000) asser®he necessity of obtaining methods of analysis that
involve censoring is probably the most important reasordéeloping specialised models and procedure

for failure time datd.



The target of a survival study is to look at the dependencevd®st failure time and some
explanatory variables. In medical studies for example, rotepto enable some evaluation on
the benefit or the risk of treatment on the subjects underresisens. Another problem is the

estimation and the identification of the distribution of th#dure times.

In Section 1.2 we describe the probability objects of irgene a statistical survival analysis.
In Section 1.3 we report the classical way of accomplishistinetes of parameters in particular
for the well-known Cox proportional hazard model and thestarated failure time model, and we

mention some comparison between these two celebrated snodel

Since in our work we focus the attention on the Bayesian samipetric approach to the

accelerated failure time model, in section 1.4 we will givexdew of the major works in this area

1.2 Survival analysis, basic definition

Let 7" be a non-negative absolutely continuous random variabsoore measure spate, 7, P),
representing the failure time of an individual in a popuati Let f(-) denote the probability

density function ofl" with distribution function
t
Ft) = P(T < 1) = / Fw)du, t>0.
0

In survival analysis it is customary to work with the suntifianction representing the probability

that the individual time-to-event is greater thian

S(t):=1—F(t)=P(T > 1), t>0.
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Of course,S(-) is a monotone decreasing left continuous function With) = 1, andS(+o00) :=

lim .1~ S(t) = 0. The density function and the survival function are reldigd

s

f(t):—g

().

The hazard function is the instantaneous rate of failurendpe timet and is defined by

 PU<T<t+AHT 1) f(1)
A) = fim At ~S@)

It uniquely specifies the distribution @f, since it obviously holds

_dlogS
dt

A(t) = (t).

Integrating both sides of this equality with the boundargdition S(0) = 1, we have

S(t) = exp (- /Ot)\(u)du> , t>0.

1.3 Parametric regression models

The earliest efforts in the development of the survival mddtogy were predominantly focused
on the estimation of the hazard functiag-), or equivalently on the survival functiofi(-). The
life tabletechnique is one of the oldest methods for analysing sur@vdailure time) data (e.g.,
see Berkson and Gage, 1950; Cutler and Ederer, 1958; Geb&®), T his table can be thought of
as an “enhanced” frequency distribution table. Kaplan amiel(1958) proposed a famous esti-
mate ofS(-) through a nonparametric maximum likelihood approach. Thpl&n-Meier estimate
consists of a step survival function, with value reduced byudtiplicative factor at the times of

observed events. In practice the two estimators above aciptive methods for estimating the

3



distribution of survival times from a sample.

To improve flexibility in estimation it is useful to make sorparametric assumptions on the
survival distribution. Modelling the survival timé& parametrically, a variety of distributions on
the positive real®* has been proposed. We mention, among the many, the expalngviibull,
log-logistic, log-normal and gamma distributions. Undes imodel Bayesian and maximum like-
lihood (ML) methods are used for parameters estimation.léssw1982) provides a, frequentist,
detailed presentation of parametric methods, while llnal@hen, and Sinha (2001) give a com-
plete panorama on the Bayesian approach.

However, usually failure time may depend on explanatorjaldes (or covariates). Therefore
it becomes of interest to consider generalisations of panatnmodels to take account of con-
comitant information on the individuals sampled. Considéailure time7 > 0 and suppose a
vectorX = (Xi,...,X,) € RP of explanatory variables (or covariates) has been obsénad
that these covariatés can take a variety of functional forms, being dichotomouscrete or con-
tinuous). One of the principal problem dealt with in the istatal analysis is that of modelling
and determining the relationship betweéEmandX. The covariates can influence the survival time

either acting on the hazard function or directly “accelegitor “decelerating” the failure time.

1.3.1 The proportional hazard model

Regression models proposed for survival distribution gaheinvolve the assumption of pro-
portional hazard functions (Lehemann, 1953). A propogidrazards model possesses the prop-
erty that different individuals have hazard functions thag proportional to one another, that is,
A(+|X1)/A(+|X2), the ratio of the hazard functions for two individuals wittvariatesX; andXs,

does not vary with time. In this framework Cox (1972, 1975) introduced his celeduianodel

At X = x) = \(t) exp(x’3), foreacht > 0. (1.2)

4



The function\y(-) can be considered as a baseline hazard function of an individr which
X =0,6=(b,...,0p) is avector of regression parameters andneans the transpose xf

The proportional hazard regression model (1.1) has begaljastudied, mostly because Cox
(1975), by thepartial likelihoodapproach, provided methods to estimate the regressiompsees
[ without hypothesis on\y; the hazard baseline is considered as a infinite-dimerismnsance
function. Furthermore, Andersen and Gill (1982), througdrtingale theory, provided an elegant
asymptotic theory for the partial likelihood estimate, lgttfron (1977) and Oakes (1977) studied

the efficiency of the Cox estimates.

1.3.2 The accelerated failure time model

The proportional hazard model (1.1) specifies that the efiethe covariateX is to act mul-
tiplicatively on the hazard function: however, in this frawork, it is not easy to interpret, for
example, the estimates of regression parameters. A diffevay to specify how the covariates
may influence the survival timg is the Accelerated Failure Time (AFT) model (Cox, 1972; Pren

tice, 1978) which specifies a log-linear relationship bemveme-to-event and covariates:

logT = —X'B+ W, (1.2)

whereW is an error variable with support iR, independent oX. Exponentiation of (1.2) yields

T = exp(—=X'B)V, (1.3)

whereV = exp(W) > 0. This expression shows that the role of covarig¥ess to accelerate

(deceleratg the time to failure.
If A\o(-) is the hazard function of, then the hazard function @f can be expressed through

5



AEX = x) = A (teXP)eX P (1.4)

The last identity shows the effect of the covariates on theattafunction in the AFT model,
which is multiplicative both ort and on the hazard function. Then in such model one assumes the
existence of a baseline hazard function and that the effébeaegression variables is to alter the

rate at which a subject proceeds along the time axis.

If there is no censored observation at the time of the arglyls¢ AFT model can be handled
as a generalised linear model (GLM) popularised by McCu#lad Nelder (1989). Among the
various extensions of the traditional linear model, AFT elscand the method of least squares
to accommodate censored data seems very appealing, sieqdyde the model is well known,
widely used, well understood and well tested, as Wei (1992)tp out. Considering(-) as an
infinite dimensional nuisance and using a U-statistic regméation, Koul, Susarla, and Van Ryzin
(1981) showed that their estimates @fare consistent and asymptotically normal under some
regularity conditions. Following on the simple idea of gglisynthetic data”, several extensions
of the method have appeared in the literature that use méogeat ways to obtain estimated
responses (Lai, Ying, and Zheng, 1992; Zhou, 1992). Thesel@@ments gave rise to a notable
interest, but the lack of stability of estimators driven bgrnh made these approaches not as widely

used as the proportional hazard model.

1.3.3 Comparison of the regression models

The two classes of models specified by (1.1) and (1.2) arerdiit, and the only overlap arises

when)(+) is the hazard function of a two parameters Weibull distedutandom variablé’, i.e

Mo(t) = AgA)TL, X >0, ¢ >0. (1.5)

6



To see that, consider the subset of log-linear models intwtiie regression variable acts mul-
tiplicatively on the hazard function. Using subscrigtsind 2 for the respective models, if we

assume the same hazard function, we have

A (HX = x) = \o1(t) exp(x/B1) = do2(texp(x'B2)) exp(x’B2) = Ao (¢|X = x)

for all t € R andx € RP. Substitutingx = 0 we have)p; (1) = Xp2(-) = Ao(+); moreover if311
andgs; are respectively the first component&fands, substitution ofk = (—logt/821,0,...,0)
gives

Ao(t)t P8 = xg(1)t L.

Now if ¢ = (11085 andX = {\o(1)/¢}"/? we obtain the Weibull model (1.5).

In any case, both models provide the necessary flexibilitgadel concrete problems, testified

by the fact that they are largely used in classical survizalysis.

We point out that the Cox proportional hazard regressior) (Rbtlel and the associated partial
likelihood theory of estimation was breakthrough in depélg a flexible method of regression
for censored data. The huge success of PH models testifyetondny needs for this type of
semiparametric regression models. However, observe libasttucture of PH is quite different
from the generalised linear model for regression, in thatlithk function is not specified via the
mean but rather through the hazard function. On the othedl,ithe proportionality structure is
interesting but it may be hard to interpret the regressiaffimients. As Sir D. Cox himself once
remarked (Reid, 1994):0f course, another issue is the physical or substantive fasihe proportional
hazards model. | think that's one of its weakness, that acatld life models are in many ways more

appealing because of their quite direct physical integti@t, particularly in an engineering contéxt.

Survival models such as (1.1) and (1.2) are usually refao@sparametric modelsvhen the

distribution of the failure time (or equivalently,(-)) is parametrically specified. The parametric
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assumption, however, may be too restrictive in applicatiddodels in which no parametric hy-
potheses are assumed on the baseline hazard function e seahiparametric modelsecause
of the presence of the finite-dimensional vector of pararagteand an infinite dimensional pa-
rameterio(-). Analysis of parametric and semi-parametric survival ni®das been discussed
in a frequentist perspective by Kalbfleisch and Prentic8@),.9Lawless (1982), Cox and Oakes
(1984), Anderson, borgan, Gill, and Keinding (1993). Theg&aan analysis of survival data is
examined in Klein and Moeschberger (1997) and in depth hibmet al. (2001).

Nonparametric and semiparametric Bayesian methods haenthe become quite popular in
survival analysis, due to recent advances in computingntdolyy and the development of effi-
cient computational algorithms for implementing thesehmods. The literature on nonparametric
Bayesian methods is widely large and the enormous numbe&fefences can not be listed here
(see e.g., the references chapter of Ibraéiml., 2001). We mention that, for the Cox proportional
hazard model, Bayesian modelling involves the specifinaticnonparametric prior processes for
the baseline hazarkl, or the cumulative hazarﬁ]t Ao(u)du. In particular is worth to mention the
work of Dykstra and Laud (1981) that specifygamma procesprior on the hazard rate, and the
work of Hjort (1990) that introduced the beta process asrmiothe space of cumulative haz-
ard functions, recently extended by De Blasi and Hjort (p&athe case ofegressionmodels.
Finally we cite Walker and Muliere (1997) who introduced beta-stacy process as a generaliza-
tion of the the Dirichlet process that is conjugate to thétrigensored observations. The property
of conjugacy to right censored observations is also a featfibeta process; however, with the
beta process the statistician is required to consider daases and cumulative hazards when con-
structing the prior. The beta-stacy process requires amgiderations on the distribution of the

observations.



1.4 Semiparametric AFT model

We have already noticed that thgarameter in (1.1) and (1.2) explaining the relationshigvben

the survival time and the covariates is usually the mainattgéinference. The unspecified func-
tion A\ (-) can be treated as an nuisance parameter. Semiparametrisncodstitute an attempt
to avoid restrictive parametric assumptions. As Oakes7{LBBservesA practical motivation for
consideration of semiparametric models is to avoid resteé@ssumptions about secondary aspects of a
problem while preserving a tight formulation for the feasiof primary concern.In the context of re-
gression modelling, Gelfand (1999) noted that the objecti’semiparametric modelling iso’
enrich the class of standard parametric models by wandeongarametrically near, in some sense, the
standard class but retaining the linear structure.

Semiparametric approaches to the AFT model, in the freggigrtlm, date back to the initial
work of Buckley and James (1979). Bickel, Klaassen, Ritod @ellner (1993) provide a large-
sample theory. Lin and Geyer (1992) develop computatiorethods using simulated annealing
for rank regression procedures often used in semiparaiefdrence. More recent approaches
include those by Ying, Jung, and Wei (1995) and Yang (1998)hAse approaches are essentially
fitting techniques focusing on the estimates of regresdii@ets. In fact, although the latter two
papers include the analysis of failure time data, there aneredictive survival curve or densities
nor mention of how one might obtain these very common locinéérence. Moreover, these
frequentist approaches are based on a generalisationlettesquares criterion, the least absolute
deviation criterion, resulting in what is referred tolasregression (see, e.g., Rosseeuw and Leroy
1987, for a fuller discussion on this topic). The computaiodifficulties of this method (for
example the possibility of a non-unique solution) comparethe simplicity of the least square
method may also explain its limited usage as do the infakfithitations with smaller sample
size.

On the contrary, the Bayesian nonparametric approach ecesly attractive in this regard,

9



because inference is exact and predictive power may bedjhinassuming a centring parametric
“paseline” form for the survival curve. The Bayesian liter@ on nonparametric methods has
grown rapidly since the theoretical background for the tmesion of priors on function spaces
was developed. We recall the pionering work of Freedman3)98ho introduced tail free and
Dirichlet random measure and Dubins and Freedman (196%ju$41964), Freedman (1965)
and Ferguson (1973, 1974) that formalized and explored dtiemof the Dirichlet processes.
Moreover the development of Markov Chain Monte Carlo (MCM@jorithms and the enormous
progress in computer science provided a powerful tool tb\aéha non parametric Bayesian esti-

mation; see Robert and Casella (2004) for a survey on this.top

In a pioneering work on AFT model from the Bayesian view poiristensen and Johnson
(1988) modelV = exp(WW) as a random distribution according to a Dirichlet proce&ssge
Dir(MGy), whereM is a positive real parameter adg is a distribution on the positive reals.
The Dirichlet process has the advantage that the parangtersdG, have an easy interpretation,
indeedG| represents the prior belief about the mean of the distobutif IV and M indicates the
degree of concentration of the distributiontofiroundG. The largerd, the more concentrated G
is aroundGy. The discrete nature of the Dirichlet process, howeveldyimtractable computation

of the posterior distribution.

To avoid the discreteness of the Dirichlet processes, Wallkd Mallick (1999) proposed a
Polya tree distribution (Lavine, 1992; Mauldin, Suddeghd Williams, 1992) as the prior for the
unknown distribution ofi/” in (1.2). Under some sufficient conditions, PoOlya tree ngriassign
probability one to the set of continuous distributions;ttiermore the conjugate nature of Polya
trees makes the analysis less complicated. Walker and dldlli999) constrained the random

Polya tree distribution to have median zero introducimgealian regressiomodel for (1.2).
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1.4.1 Semiparametric Bayesian AFT mixture model

We observed that the proportional hazard model is ubigsitounodelling survival data because
of its tractability and flexibility. When the proportionabhard approach is untenable, a natural
alternative is the AFT model. However, to date applicatibase been restricted primarily to
parametric versions of the AFT model.

Parametric modelling has long dominated both classicalBaygsian inference work, in the
AFT context. As mentioned earlier, such modelling is typcdeveloped using generalised lin-
ear model within standard exponential families. Such fesiare limited, being unimodal with
implicit mean-variance relationship. In looking beyondratard parametric families, one is natu-
rally led to mixture models. Finite mixture distributionEitferingonet al.,, 1985) are flexible and
also feasible to implement due to advances in simulatioedasodel-fitting. See, for example,
Diebolt and Robert (1994) and Richardson and J. (1997).

Paradoxically, rather than handling the very large numligracameters resulting from a fi-
nite mixture models with a large number of mixands, it may asier to work with an infinite
dimensional specification by assuming a random mixing itigiion which is not restricted to
a specified parametric family. Here, bpnparametric hierarchical mixturéNPHM) model we
mean a mixture of parametric distributions (usually ab®tucontinuous) with a random mixing
distribution (i.e., a random probability measure). Besjd¢PHM models provides a natural gen-
eralisation of existing parametric AFT models, bridgingag dpetween parametric and semipara-
metric approaches. If an experimenter has been fitting tvgaal, log-logistic, gamma or Weibull
AFT specification to their data, then fitting regression ni®eeth a corresponding NPHM model
should be quite natural. Prior information used in paraimditrof a dataset (e.g, as in the prior
specification of Bedrick, Christensen, and Johnson (200@)) be immediately incorporated into
the semiparametric extension.

In the context of NPHM, Ferguson (1983) and Lo (1984) usedriciét process prior on
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the mixing distribution, introducing the so-called Diriehprocesses mixture (DPM) model, and
obtained expression for Bayesian estimates in densitypnastin, i.e., AFT without covariates.
Escobar and West (1995) developed this idea further anddadan Markov Chain Monte Carlo
algorithms for the computation of the posterior distribog of the parameters in a normal mixture

model.

Kuo and Mallick (1997) propose a class of DPM models in the Alefting with non-zero
covariate. In what they called “MDPV” the regression erforof (1.3) has been represented
hierarchically as a location mixture of normal kernels. ybbserve that, as a prior dn, DPM
distribution smooths the Dirichlet process with a contusi&nown kernel with unknown mixing
weights where prior belief can be incorporated. The smagtii DPM eliminates the difficulty,
due to Dirichlet processes having support on the class ofliderete densities, encountered by
Christensen and Johnson (1988). Anyhow in this specificati®@ marginal prior ofl” gives
positive probability to the negative reals, and the authargdled this problem considering kernel

variance small enough to avoid, at least computationdily,ihconsistency.

In the framework of DPM models, Kottas and Gelfand (2001) @etfand and Kottas (2003)
propose median regression approaches to the AFT model {h&y proposed a DPM of unimodal
parametric densities and, also, a DPM of unimodal steptimme as priors on the error variable
W. The first model generalises standard parametric familjesonsidering a mixture of scale
families and including a parameter fekewness This model seems very useful for estimating
regression effects and for survival analysis where it isfma priori that the error distribution is

unimodal.

To allow for multi-modality with flexibility in skewness irhe median regression AFT model,
Hanson and Johnson (2002) introduce a mixture of PolyasT@ntred about a 0-mean family
of normal distributions, as a prior for the error tefin . The model accommodates data-driven

deviations from the parametric family, and uncertaintyhis direction may be modelled a priori.
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As more data are collected, they overwhelm the centringlip@stamily, and features such as
multimodality will become apparent. Moreover, Hanson aoldn3on provide a comparison of
Bayesian semiparametric approaches between their ownlrandehe Kuo-Mallik (1997) and
Kottas-Gelfand (2001) ones.

In Ghosh and Ghosal (2006) the distributionlofis given as a scale mixture of Weibull dis-
tributions with Dirichlet process as a mixing measure. Theyonly give a semiparametric for-
mulation of the AFT model, but develop an asymptotic jusdiiicn of the model. Indeed, in their
paper a discussion on the consistency of posterior disimibof the parameters is established.

In a recent paper, pointing out the inconsistency of therpriarginal ofV in the “MDPV”
model of Kuo and Mallick (1997), Hanson (2006) proposes asmgimeasure a mixture of Dirich-
let processes (Antoniak, 1974) in which kernels are gammaities, mixed both over the scale
and the shape parameters. Pointing out that any continuemsstgd onR* can be approximated ar-
bitrarily closely by a countable weighted sum of gamma d&ssiHanson notes that such mixture
model can provide a highly flexible baseline, allowing, éog multiple modes.

In our work we will consider the model (1.3), = exp(—X’'3)V, with V distributed ac-
cording to a NPHM of some parametric family of densities oa fositive reals, mixed by a
random distribution functiolds on R?® (s is a positive integer). In particular we will focus on the
performances of two hierarchical mixture models compaBagesian inferences on the regres-
sion parameters and the survival times. On one hand we willas thats has a Dirichlet process
prior, yielding DPM models for V; on the other har@ will have the normalised inverse-Gaussian
prior (N-1G prior), as introduced in Lijoi, Mena, and Prii@s(2005), thus defining what we call
N-IG mixturefor short. N-IG mixtures of normals have been studied iniLgbal. (2006), but
no approach appears to exist that employs a N-IG mixture kéthel having support oR™ in-
cluding a regression component. The N-IG prior, compareitiedirichlet process prior, while

preserving almost the same tractability, is charactetsea more elaborate clustering property.
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Chapter 2

Nonparametric hierarchical mixture

models

2.1 Bayesian Nonparametric Modelling

The term “nonparametric” is somewhat of a misnomer, sindigeiially connotes the absence of
parameters, but is usually used to indicate models in wihiehgbals of a data analysis include
making inferences about functionals of an unknown profighiteasureP, which are themselves
parameters, regardless of whether the class of probabikgsures under consideration is quite
broad (e.g., not indexed by parameters). Nonethelesspitiedas the term “nonparametric” is to
be free of restrictive, inappropriate or unrealistic coaists that are implied by particular para-
metric models. For example, it is often necessary to consiumlels that allow for unspecified
multimodality, asymmetry and nonlinearity. This can beamasplished by considering a broad
class of distributions and by making statistical inferenathin that context.

Bayesian nonparametric models are constructed on “lagpgesto provide support for more
eventualities than are supported by a parametric modelhnieally, (to many) the off-putting

aspect of Bayesian nonparametric framework is the matheahapparatus that is required for
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specifying distributions on function spaces and for caigythrough prior-to-posterior calculation.
Nonparametric modelling begins with the specification ofr@ald class of models for the data
at hands. Let7,Ys,... be a sequence of observations on a sample sgaeexiowed with its
o—field B (in our work we will assume) as a Euclidean space with its Borel-field). We
think at Y7,Y5, ... as conditionally independent and identically distribufedd.) observation
from some unknown probability measufeon (), B) (or equivalently some unknown distribution
functionG) from P itself. In a nonparametric framework, each element of thefsal probability
measures oy is a candidate to represent the “true lai’ In the Bayesian context, then, the basic
modelling concerns on how to define a random element on tise ofeall probability measures on
Y. By arandom probability measurP on (Y, B) we mean a random element on the spR¢®’)
(we will skip Y when it does not generate confusion) of all probability mieas on(), B) when
P(Y) is endowed with ther—field of the Borel-sets generates from the weak convergend@ o
(see Billingsley, 1968 or Parthasarathy, 1967 for a core@gposition on this theory).

In a Bayesian nonparametric framework, the goal is to mak&rences about functionals
of P, or possibly about the pdf correspondingRo We denote withrp the law of P, this is
called prior distribution and, since it is a measure on a function spaamay be specified by
describing a sampling scheme that generate random disrilsufunction with desired properties
or by describing the finite dimensional laws of the stocleagtocessP. This latter approach is
more intuitive, but non trivial propositions are needed s$tablish existence. L&), B) be an
Euclidean space with its Borel—field, and letA,,_; := {(z1,...,2,) € R" : > z; = 1} be
then—dimensional unit simplex. Moreover let us denote, as usuitth the symbol=- the weak

convergence of a sequence of probability measures.

Theorem 2.1.1 (Regazzini, 1996, 2001)etIT = {P4, . a, : A1,..., A, € B} be a system of
finite dimensional distributions, such th&l, .. 4, : A"~1 — [0,1] for eachn > 0. Suppose the

followings hold.
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(a) Foranyn > 1 and any finite permutatiog of (1,...,n),
Pay..4,(C) = Pag, ..., (Ce), foreachCe A,

Whel’ec% = {($§(1)> R 7x§(n)) : (.1‘1, R ,l‘n) € C}
(b) Py = 61, whered, represents the point massat
(c) For any family of set§ Ay,...,A,} in B, let{Dy,..., Dy} be a measurable partition QP

such that it is finer than the partition generated ¥, ..., A, }. Then, foranyC' € A,,_4,

Py, a,(C)= Pp, . .p,(C)

where

C = {(ml,...,xh) S [O,l]k: (Zwl,,Zmz) S C}
(1) (n)

with 3~ ;) meaning the sum over the indgsuch thatD; C A;;

(d) Forany sequencéA,,),>; of sets in3 such that4,, | ),

PAn = do.

Hence, there exists a unique stochastic process (i.e. omnarobability measurelp admittingl1

as its family of finite-dimensional distribution, i.e.

L(P(A1),...,P(A,)) = Pa,,..a, foreachA;,... A, €B.

n

As an example of random probability measure we mention thielidet process (Ferguson, 1973,

1974), that is one of the most used nonparametric prior ireBiay nonparametric statistics, aris-
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ing when the finite dimensional distributions are Dirictdedtributions.

Rather than constructing directly via its finite dimensional laws, a non parametricopr
can be specified, also, via the de Finetti (de Finetti, 198@)asentation theorem, constructing a
sequence oéxchangeableariables.

A sequence of random variabl&3, Ys, .. is exchangeable if for anfinite permutatioré on

the index spac¢l, 2, ... } we have:
ﬁ(ifl, YQ, ) - E(Y%(l), Y%(Q), )

Theorem 2.1.2 (de Finetti, 1937)A sequencé’, Ys,... of random variables orf), B) is ex-
changeable if and only if there exist a random probabilityaswee P on ) with law denoted by

mp(-) such that, for eaclh > 1 and for eachA4,, ..., A, on 3, we have

n

P(Y; € Ay,...,Y, € Ay) :/{HP(Ai)}de(P).
=1

Equivalently, the theorem states that we can obtain theileion of Y7, Y5, ... choosing
first P ~ 7p and then takindi,Ys,...|P ~j; P. In this framework the lawrp is referred to
asde Finetti measur@nd given the joint distribution of7, Y5, ... this7p is unique (Hewitt and
Savage, 1955). The de Finetti measure of an exchangeahiers=y, Y>, ... has the meaning of
the prior distribution for the unknown probability measi@elt can be interpreted, in a Bayesian
setting as the prior distribution, when the observatidhgonditioned on some “parameteP
with prior distributionzp, are i.i.d.

In the following, by (finite) sampl¢Yy, ..., Y;,) from the random procedd we mean the first
n observation of an exchangeable sequericés, ... with de Finetti measurep.

There are several reasons why it is often convenient to dengne sequencg, Ys, ... di-

rectly, marginalizing ovelP. First, sinceP is an infinite dimensional parameter so it can be
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advantageous working in a finite dimensional framework, in@knuch of the mathematics sim-
pler. Secondly, interest is often in prediction and theritigtion of Y,,. 1 givenYy,... Y, is an
immediate consequence. Thirdly, we are “closer” to the dathe sense that we consider the
probability distribution for the data explicitly. Also th@sterior parameters afp (like the pos-
terior mean or variance) can often be determined from theesesg of predictive distributions

(consider, for example, the Polya urn sequence in sectii)?

2.2 Dirichlet Process

Leta > 0 be a real number an#, a probability measure (or equivalentl§z, a distribution
function) on the Euclidean measurable spé¥e3). A Dirichlet process on), B) with pa-
rameter(aP,) is a random probability measul®, such that for each measurable finite partition
{4y,---,A,} of Y, the joint distribution of the vectaP(4,),...,P(A,)) has Dirichlet distri-
bution with parameter& Py (A1), ...,aPy(A,)) on then—dimensional unit simplex. From The-
orem 2.1.1, under the consistency requirements (a)-(@Yigtribution ofP is uniquely defined by
its finite dimensional distributions above. We shall dertbedistribution ofP by Dir(aF;). The
parametes is called the precision or total masg; is called the centred measure or the “mean”
distribution, and the productF, is called the base measure of the Dirichlet process. Tdyusti
this terminology, we observe that, for eaBhe B, the random variabl®(B) is distributed as a

beta r.v. with parametetP,(B) anda (1 — Py(B)), so that

E(P(B)) = Py(B)

and
Py(B)(1 — R(B))
1+a

Var(P(B)) =
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Therefore, ifa is large, P is tightly concentrated about,. However, Sethuraman and Tiwari
(1982) pointed out that there is no clear interpretationtier parametea. Not only it controls
the variability of P around Py, but it influences the smoothness (or discreetness) of tieora
distributions. For instance, as — 0, P converges in distribution to a single atomic random
measure. We observe also that, from the expression for tieneca ofP(B), it is not possible to
specify Va(P(B)) arbitrarily, and that the shape is determinediy

A key conjugacy result holds for the Dirichlet process. ksan (1973) showed that, given a
sample from the Dirichlet proce$¥7, ..., Y,,), the posterior distribution d? isP|Yy,...,Y, ~

Dir(a*Fy) wherea* = a + n and Fy is defined as

Bi() = =2 Ry) + —— 0w (), (2.1)
=1

Thus the posterior mean @& is a linear combination of the prior gue$s and the empirical

measure?, = (1/n) > i Oy

2.2.1 PRlya Urn and “stick-breaking” representation of Dirichlet Processes

Blackwell and MacQueen (1973), using the de Finetti repriad®n, introduced a very useful
construction of the Dirichlet process extending the ctagd$POlya urn schemes.Letbe a positive
real number and®, a probability measure of), B). A sequence of random variabl&s, Y, . ..

on) is calledPolya sequencwith measurea Py when
P(Y, € B) = Py(B), foreachB e B

and, forn > 1, the distribution ofY}, . conditioned ort7,...,Y, is

aPy(B) +Y,_, ov;(B)

P(YH+IEB|Y1>"'7YYL): atn

2.2)
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We have,

Theorem 2.2.1 (Blackwell and MacQueen, 1973) L¥t, Y5, ... be a Folya sequence ol with

measureaFy(-). Then:

1. asn grows to infinity,P(Y,,4+1 € - |Y1,...,Y,) = P(+)

2. the distribution ofP is a Dirichlet process with parameterF;

3. the Plya sequence is exchangeable and its de Finetti measure (8B).

This result gives a simple and concrete procedure for aactgty an infinite exchangeable se-
quence of random variables with a Dirichlet measure as dettrimeasure. The distributions
in left side of equations (2.2) are usually called, in the &gn contextpredictivedistributions
of {Y;}. This representation is extremely crucial for Markov Chislionte Carlo sampling from
a Dirichlet process; it also shows that ties are expectedfinita sampleYy, ..., Y,; moreover
Blackwell (1973) showed that a randdPhfollowing Dir(aF) is a.s. discrete.

Two characteristics are usually indicated as limitatiohthe Dirichlet process. First, as pre-
viously indicated, the support of the Dirichlet procesgriistion is the set of all discrete distri-

bution. This can be also visualised from the constructivendien of P given by Sethuraman

(1994):
[ee]
P= ijégj,
j=1
where, withx; ~;;4 Beta(1, o), thew;’s are defined as; = k1, ..., w; = K; Hi;i(l — Ky )yeens

andf; ~;;4 Fy. This is often referred to as the “stick-breaking” repréagaon as the weights are
defined in a way that the interv@), 1] (the stick) is successively broken up or partitioned into

pieces. The second drawback of the Dirichlet process isthany disjoint measurable sef
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and By, the correlation betweeR(B;) andP(B;) is negative,

Py(B1)Py(B3) ‘

Cov(P(B1),P(Bg)) = — artl

This for (“small”) adjacent sets violates a belief that théso probabilities should be positively

correlated.

2.2.2 Mixture of Dirichlet processes

Centring the Dirichlet process on a fixed parametric distidn P, may be restrictive for some
applied problem. Antoniak (1974) introduced a generafisabf the Dirichlet process that, in
some sense, centres the process danaily of parametric distributions. The author introduced
the so called mixture of Dirichlet processes (MDP), i.e. rrd@n probabilityP distributed as a

mixture of Dirichlet processes indexed by a parametric faofi probabilities{ £, 0 € ©},
P~ / Dir(aP)(df), 2.3)

where the mixing distribution (-) is a parametric prior o®.
In a Bayesian context, mixture models are essentially fihieal models that date back to
Lindley and Smith (1972) who consider parametric mixtutasa hierarchical fashion the random

variablesYy, ..., Y, are a sample from the MDP process if

Y1, Yo|P ~iq P
P|a,0 ~ Dir(aPy)

0 ~ 7(df).

Antoniak (1974) presented theoretical results for the MDBiBrpand also gave a number of ap-
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plications. In particular he showed an important conjugasglt. LetYy,...,Y, a sample from
(2.3), then

P|Yi,....Y, ~ /Dir(a*Pg‘)w(dH\Yl,...,Yn)

wherea* and P* are defined as in expression (2.1). Moreover, if the farfiyy, 0 € ©} is
absolutely continuous with densiti€s(:|0), 0 € ©}, then the posterior mixing distribution is

given by
k
m(d|Yr,..., Y, (H (Y710) ) de)

wereY " are the distinct observations in the sample. . ., Y,,.

Finally we observe that the MDP prior can be specified suchittithooses absolutely contin-
uous probability with probability one, thus overcoming thiscreteness problem of the Dirichlet
process. This advantage is compensated by the fact tharjpostomputation becomes very com-
plex. We mention that the complexity arising in the postedomputation has been rescaled by

the introduction of simulation procedures first developgdbcobar (1994).

2.3 Normalized Inverse-Gaussian Prior

In a recent paper Lijoi, Mena, and Prinster (2005), follayvihe finite dimensional law specifi-
cation of Theorem 2.1.1, introduce a new nonparametria.pfie pointed out in Section 2.2, the
Dirichlet Process arises when the finite dimensional lawsasumed to be Dirichlet distributions.
It is well known (see, e.g. Bilodeau and Brenner 1999) thegrgir independent gamma random
variablesZ; ~ Gammda;, 1), the Dirichlet distribution is defined as the distributiohtloe vec-

tor (Wy,...,W,,), whereW,; = Z;/ 2?21 Zjfori=1,...,n. If a; > 0 for eachi: the vector
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(Wy,...,Wy,) has density on the—dimensional unit simplexX\,,_; given by:

w w.) — F(Z?zl ai) . w@i—l

1=

Clearly, if n = 2, the latter reduces to beta density with paramétgras) . By substituting
the gamma distribution with the inverse-Gaussian we obéairanalogous distribution on the

n—dimensional simplex.

2.3.1 The normalized Inverse-Gaussian distribution

A positive absolutely continuous random variabldas inverse-Gaussian distribution with shape
paramete/ > 0 and scale parameter> 0, which we will denoteZ ~ IG(M, ), if its density

is given by

. M 1 ([ M? _
f(z|M,7):\/%v_3/2exp{—§<7+72v>+7M}, v > 0.

An exhaustive account of the inverse Gaussian distributvas provided by Seshadri (1993).
Let Zi, .., Z, be independent random variables distributed according i@(a;,1) distribu-
tion for eachi = 1,...,n (=1 without loss of generality). Lijoet al. (2005) define the

normalized inverse-Gaussian (N-IG) distribution withayaeter(My, ..., M;), denoted by N-
IG(My, ..., M,), as the distribution of the random vectd¥’y, . .., W,,) whereW,; = Z;/ > i1 Z
fori =1,...,n. The following proposition provide the density function 4r_; of a N-IG ran-

dom vector.

Proposition 2.3.1 (Lijoi, Mena, and Priinster, 2005uppose that the random vectdv, ..., W,,)
is N-IG(My, ..., M), with M; > 0 for everyi = 1,...,n, then the vectofW1,...,W,) is ab-
solutely continuous and has a density functionon ; given by:

24



f(wl,...,wn|M1,...,Mn):

eim1 Mi T M;
= 2n/2—£[-‘-zn_/§ X I<—7"L/2 (\/‘An(wlv cee >wn))

(@ o))

were A, (w1, ..., w,) = > it, M?/w; andK denotes the Bessel function of the third type.

Let M = > M; andp; = M;/M for everyi = 1,...,n, then

E(W:) =pi, (2.4)

Var(W;) = pi(1 — p;) M?eMT (-2, M),
whereI'(-, -) denotes the incomplete gamma function, defined for édchk 0 andz € R as

I(z, M) ::/ t*te~tar.
M

We observe that the moments of a N-IG random vector are guitéas to those of a Dirichlet

random vector, the structure is the same and they diffelbjst multiplicative constant.

2.3.2 The normalized inverse-Gaussian process

Let M > 0 be a positive number anély a probability measure on the Euclidean measurable
space(), B). A N-IG process with paramete¥! P, is a random probability measure such that
for each finite and measurable partiti¢d,, ..., A, } of ), the joint distribution of the vector
(P(A1),...,P(A,)) on then—dimensional unit simplex has a N-IG distribution with parters
(MPy(Ay),...,MPy(A,)). The existence of such a process is justified by Theorem.2.1.1

The moments of an N-IG process with parameéter, follow immediately from (2.4), indeed
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for B € B, P is distributed according a N-IG distribution with paramet&/ P,(B) and M (1 —

Py(B), thus

Then we obtain an interpretation of the parameter simildinao of the Dirichlet process. The

proces<P is “centred” around’, and the scalal/ is a precision parameter.

2.3.3 Properties of the N-1G process

First, we recall that Ferguson (1973) also proposed annalige construction of the Dirichlet
process as a normalized gamma process. The same can be dbiedase by replacing the
gamma process with an inverse-Gaussian process, thatiigra@asing Lévy process,:= {(; :
t > 0}, which is uniquely characterised by its Lévy measurly) = (27v3)~1/2e*/2dv. As
shown by Regazzini, Lijoi, and Prunster (2003), such a ttaoson holds for any increasing
additive process, giving rise to the class of random measwith independent increment (RM).
Through this representation using a result in James (200i3) possible to show that the N-IG
process selects discrete distributions with probabilitg.o

The N-IG process is also, when its parameter measure is pan@ta special case species

samplingmodel. This class of probability measures, due to PitmaB@@)L% defined as

P=> Poy+|(1-> P|H

1>1 1>1

where0 < P, < 1 are random weights such th@i21 P, < 1, independent of the locations,

which are iid with some non atomic distributidih. We point out that the peculiarities of the N-IG
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and Dirichlet processes compared with other members oéthlesses (and, indeed, within all
random probability measures) is represented by the fatthiea finite-dimensional distribution
are known explicitly. What distinguishes the Dirichlet pegs from the other processes in the
class of normalized RMI’s and species sampling models (ansl &lso from the N-IG process) is
its conjugacy, as shown in James, Lijoi, and Prinster (RO®8yhow, this is no longer a problem,
given the availability of suitable sampling schemes. It @t noting, however, that a posterior
characterisation of the N-IG process, in term of a latentiée, can be deduced from the work of

James (2002).

LetY},...,Y," denote the distinct observations within the samglg, .. .,Y,,) withn; > 0
terms being equal t°", for j = 1,...,k and Z?:l n; = n. Then the predictive distribution

corresponding to a N-IG process is given for edtk B by

=

P(Yoi1 € BY1, ..., Yy) = wi, Po(B) + wi, Z —1/2)by+(B), (2.5)

with
2o (M(=M)"" D (k + 1+ 2r — 2n; M)
wo.n(k) = m >, (" (=M2)~T(k + 2 + 2r — 2n; M) (2.:6)
and
wl,n(k) — Z? 0 ( )( M) T—Hr(k + 2r — 2n; M) (27)

ny o (T (=M2)T(k + 2+ 2r — 2n; M)

Thus, similarly to the Dirichlet process, the predictivetdbutions are linear combinations
of the prior guess?, and the weighted empirical distributions with explicit expsion for the
weights. Moreover, from Regazzini (1999) the predictivechamism (2.5) leads to a generalized

Polya urn scheme for N-IG processes.

A comparison between the predictive distributions of the tmodels emphasises the distinc-

tive feature of the N-IG process. In the Dirichlet predioticase we have, from (2.2), the} 1
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is different from previous observations with probability(a + »n) and that it coincides with one
of the (Y}, ..., Y;) with probabilityn/(a + n). Thus the probability allocated to previous obser-
vations does not depend on the numbeaf distinct observations within the sample. Moreover,
the weight assigned to eadfj" is n;/(a + n), and it only depends on the multiplicity of*. As
pointed out by Ferguson (1973) this is a characterisingqutgf the Dirichlet process that at the
same time represents one of its drawbacks. In contrast,rédgéicgon mechanism (2.5) is quite
interesting and exploits the available information abauBiven a sampléYy,...,Y,,) from a N-

IG process, the next observatidf.; is different from the previous ones with probability ,, (k)

and coincides with an old observation with probability— £ /2)w, ,, (k). As we can see in figure
2.1, for a relatively small value df (= 20 in the figure) the weight that the N-1G process assigns
to the prior guesér is smaller than that assigned by the Dirichlet process. Atosipe behaviour

is shown wherk increases. The N-IG prediction takes the number of disthservationk into
account; sinceu’&n is an increasing function df, the more distinct observations are present in the
sample (i.e. not many ties), the higher the weight that tH&Mssigns to the prior guess.

Also the allocation of probability to eadti* is more elaborate for the N-IG case than for the
Dirichlet case. In figure 2.2 we depicted the weights assidnethe two processes to having a tie
with a previous observatioli” whenn; (= 3,5,20), in a sample of size = 100. Also these
guantities, for the N-IG processes, increase WwitiMoreover we can see how, for small values
of nj(= 3), the N-IG prior tends to reinforce the observation less thanDirichlet process, and
the opposite behaviour is observed for big value:pf= 20). This can be explained as follows:
a small value of:; suggests a weak statistical evidenc&gf particularly for small values of.

On the opposite way a big value of indicates a strong statistical evidenceygf.
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Figure 2.1: Weights, as a function df, assigned to the pria#y,appearing in the prediction rules by the
Dirichlet process (2.2) and by the N-IG process (2.5) in aarof sizen = 100 . The parameter are
a=14.16andM = 5.39
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Figure 2.2: Weights, as a function df, assigned td’;* with multiplicities n; = 3,5, 20, appearing in the
prediction rules by the Dirichlet process (2.2) and by thEa\arocess (2.5), in a sample of size= 100 .

The parameters ate= 14.16 and M = 5.39
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2.4 Nonparametric hierarchical mixture prior

A standard parametric model that strives to achieve fleiibi$ the finite parametric mixture

model (Titteringoret al., 1985)

k
Yi,... aYn|k7 P, 0 ~iid Z k(|0])p]7
j=1

where{k(-,0) : § € O} represents a standard parametric fandlly,c © for j = 1,...,k are
assumed to be distinct, so the mixture is comprised distinct members of this family, and
p = (p1,-..,pr) is a fixed unknown discrete probability. Bayesian inferefarethis model is
achieved by placing a prior distribution dn p = (p1,...,px), and{#;,j7 = 1,...,k}. Such

a model results in a varying dimensional parameter space@mzkequently specialized computa-

tional techniques, such reversible jump MCMC (Green, 198 required.

The nonparametric hierarchical mixture (NPHM) model asagdch concerns as the data are

modelled according to an infinite mixture, which is given by

foly) = / K(y:0)dP () (2.8)

where the random probabilitl? is chosen according to a probability measure (pripgn the
spaceP. An equivalent (and more used) specification of the nonpataenmixture model is a

hierarchical model: the random variablgs .. ., Y,, are a sample from a NPHM process if

Yil0; ~ k(0)), i=1,....n, 2.9)
01,...,00|P ~iiqg P,

P ~q(-)

Then, instead of thé;’s being assumed to be i.i.d. from some parametric disiobufas with
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standard Bayesian hierarchical models) greater flexibitallowed via the introduction of the
nonparametric priog(-) usually centred on a parametric distribution. In our workwileconsider
q as a Dirichlet prior, obtaining the well known Dirichlet mess mixture model, or a N-IG prior,

obtaining what we call N-IGnixture

2.4.1 Dirichlet process mixture model

If P in (2.8) is a Dirichlet process with parametef;, then we obtain the DPM model (Lo, 1984);
this model has been largely used in recent Bayesian nongéiiarmodelling. It reaches a great
level of flexibility, and inference can be obtained via thét8MC algorithms that have started to
appear in statistical literature since the work of Esco864).

An interesting property of the DPM is its posterior charastgion given by Antoniak (1974).
If Y7,...,Y,, is a sample from the DPM (2.9) witl(-) being a DifaF,), then the posterior

distribution of the mixing procesB is the mixture of Dirichlet processes
PV, Y, ~ /Dir (@ P)dr(01,....00Y1,. .., Vo), (2.10)

wherea* = a +n, Pf = 2-Py + —= >, 8,, and the mixing distributionr is the posterior

a+n a+n

law of the unobservable parametéis. .., 0,, i.e.

n

i—1
dr(By,...,0,Y1, ..., V) o< [[ R(Yil6:) | aPo+ > d, | (dby). (2.11)
i=1 j=1

Indeed, by (2.10) and (2.11) in the literature the tenmture of Dirichlet processeis often used
to indicate both model (2.3) and the DPM model.

Let 04,...,0, be a sample from DjaG,). The a.s. discreteness of the Dirichlet process
ensures that, with positive probability, there maykbeg n distinct observatiod;, . .., 0} in the

sample. In practice the Dirichlet process, used as mixisgidution in the hierarchical model,
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yields a prior specification on the numbkrof components in the mixture. Antoniak (1974)
deduced this distribution conditional on the number of olm@ons,

_ I'(a)
p(kln) = cn(k:)akm ke{l,....,n} (2.12)

wherec, (k) is the absolute value of a Stirling number of the first kindbrr(2.12) it is clear that
the real parameter influences the prior on the number of components in the mexépecification.
Large values ok give rise to models with a high prior number of componentsalsualues ofa

yield priors very concentrated on relatively small valués .o

2.4.2 Normalized inverse-Gaussian mixture model

The most widely used NPHM model is the Dirichlet process orxtjust described. A random
discrete probability distribution, such as the Dirichlebgess, exploited as a mixing measure in
the model, is an essential tool for modelling the clusterbetur. Indeed, the occurrence of ties at
higher levels of hierarchy induces a clustering structuthiwthe data. We wonder how a specific
choice of the driving random discrete distribution affebis clustering mechanism. In this respect,
it is worth mentioning that various new classes of discreig g generalising the Dirichlet process
have been introduced recently. Among them we recall spseaiepling models (Pitman, 1996),
dependent Dirichlet processes (MacEachern, 1999), derestastick-breaking prior (Ishwaran
and James, 2001), normalized random measures with indepemtrements (Regazziet al,,
2003).

We will focus on the case in whidh is distributed according to a N-IG mixture as in the work
of Lijoi et al. (2005). The cluster structure induced by this prior spedtiidn is quite interesting
because of the particular reinforcement mechanism indbgethe N-IG process discussed in

Section 2.3.3. Lefy, ..., 0, be a sample from a N-I3/G)), then the distribution of the number
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of distinct observationg in a sample of size is given by

on—k—1\eM(—Mm2)n-1
plkln) = ( - )zz(k—lr)af)
n—1
x Z(”;1>(—M2)—’“ (2.13)

r=0

x T'(k+24+2r—2n;M) ke{l,...,n}.

As the Dirichlet case, a smaller total massyields ap(-|n) more concentrated on smaller
values ofk. This can be explained by the fact that a smallémives rise to a smallewy ,, (see
(2.5)), that is, the process generates new data with lovedrghility. However, the(-|n) induced
by the N-IG prior is apparently less informative than thatresponding to the Dirichlet process
prior and thus is more robust with respect to a change in thlgpggameteiM (corresponding to
a, for the Dirichlet prior). A qualitative illustration is gén in Figure 2.3, where the distribution
of k givenn = 100 observation is depicted for the Dirichlet and N-IG procesSéhe parameters
a andM have been chosen in such a way to match the prior me&nwé mention that for fixed
n the mean of the number of clusters under the NI-G process loagea bound as shown in Lijoi
et al. (pear). We observe that the prior distributipfi|n) under the N-IG prior is more dispersed
with respect to the corresponding prior under the Diricletcess, but notice that a4 (or a)

grows, the differences between the two priors became lesopnced.
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-+ Dirichlet prior
—o— N-IG prior

0 10 20

Figure 2.3: Prior probability on the number of different observatiéris a sample ofi = 100 observations,
under the N-IG and Dirichlet processes for different cheiokthe real parametessand M/. These value
have been chosen such that the meah isfnearly 11 & = 3.10, M = 0.01), 17 (@ = 5.87, M = 1), and

30 (@ = 14.16, M = 5.39).
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Chapter 3

Markov Chain Monte Carlo methods

for NPHM

3.1 The Markov Chain Monte Carlo Methods

Integration plays a fundamental role in Bayesian staisaod Markov chain Monte Carlo (MCMC)
methods are a useful computational tool.

Before Markov chain Monte Carlo became routine and relafgmaximation or numerical
methods where developed, Dempster (1980, p. 273) wrils dpplication of inference techniques
is held back by conceptual factors and computational factiobelieve that Bayesian inference is concep-
tually much more straightforward than non-Bayesian infees one reason being that Bayesian inference
has a unified methodology for coping with nuisance pararagtdrereas non-Bayesian inference has only
a multiplicity of ad hoc rules. Hence, | believe that the mdgarrier to much more widespread application
of Bayesian methods is computational.. .. The developmfahiedfield depends heavily on the preparation
of effective computer progranis.

MCMC methods, which partially resolved the problem deltedaby Dempster, originated

in the statistical physics literature by Metropolis, Rdseth, Teller, and Teller (1953) and sub-
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sequently generalized by Hastings (1970), and were firggdun spatial statistics and image
analysis. Tierney (1994) gives a comprehensive theotetijaosition of these algorithms, and

Chib and Greenberg (1995) provide a useful tutorial.

For instance, let” be a random variable in a sample spatewith density f(y|0) depending
on a parametef € © C R"; let 7(0) be the prior distribution of. Suppose we are interested in

evaluation a quantity like the posterior mean

Elg(0ly)] = /9 9(0)m(0])do (3.1)

wereg is some function of the parameterltis clear that, in this framework, it is important to have
methods to approximate integrals in some complex spaceresiiect to complicated functions.
A powerful tool to address the computational challengee@ds/ the Bayesian paradigm is the
MCMC simulation. The two building blocks of MCMC are, as thanme itself suggests, Monte
Carlo simulation and Markov chains. Before introducing MCMve will recall what we mean for

Monte Carlo integration, and we will state some basic dedimiabout Markov chains. We refer
to Nummelin (1984), Meyn and Tweedie (1993) and Tierney 4)98r a detailed introduction on

this topic.

Firstly suppose we are able to generate a sample of i.i.deredt$ons, (6, - - ,6,), from
7(-]y). Then we can resort telonte Carlo simulatiofMcCracken, 1955) and estimdigg(6|x)]

by the sample mean

% > 9(0)).
i=1

Assuming thay has finite variance under(-|y), the law of large numbers guarantees that
(1/n) > ", g(0;) is a consistent estimator @fig(6|x)].

Suppose now that(-|y) is a complex distribution such that we are not able to (diyggen-
erate an i.i.d. sample from it, hence we cannot apply the M@grlo method. The idea of the
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MCMC methods is that of using the Markov Chain (MC) theory tildba sample that is approxi-

mately i.i.d. from theargetdistributionr(-|y).

A discrete-time Markov chain, with state spatendowed with ar—field B(X), is a stochas-
tic process X1, X, - - - } that evolves in time with the property that the future is ipeledent from

the past given the present:
]P){Xm+1 S A|X1, s ,Xm} = ]P){Xm+1 S A|Xm},
for eachm > 0 and for anyA in B(X).

We identify a MC with the corresponding transition kerié] defined for any measurable set

A and any element of the state space as:
K(x,A) :=P{X,,41 € A|X,, =} foreachm > 0.

We are implicitly assuming that the transition probal@btiare invariant over timéne-homogeneijly

A MC hasinvariant (or stationary distribution if
TK(A) = / K(x, A)r(dz) = m(A),

for each measurabld. Not all MC'’s have an invariant distribution and even wheniramriant
distribution exists it may not be unique. The basic prireipthind MCMC is that certain Markov
chains converge to a unique invariant distribution and bais be used to estimate expectations
with respect to this distribution. We refer to Mira (2005) & introduction on the MCMC meth-
ods in Bayesian estimation or, for a complete treatment isfgbbject, to Robert and Casella

(2004) or Gilks, Richardson, and Spiegelhalter (1996).
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3.1.1 The Metropolis-Hastings algorithm

A very general procedure to construct a Markov ch@in 6., ... ), stationary with respect to a
specified distributiong, is the Metropolis-Hastings algorithm (Metropoésal., 1953; Hastings,
1970). We can summarize a Metropolis-Hasting’s transipoobability in the following way:
given the current position of the M@,,, = 0, a move tof’ is proposed using the distribution
q(6,0") (such that we are able to sample from it), that may depend @uutrent position. Such

move is accepted with probability
a(6.6') = min {1 7”(9')‘1(9/’9)}

where we sety(0,0") = 1if =(0) = 0. If the move is rejected the current position is retained.
We observe that, in the acceptance probability expressientarget distribution enters only as a
ratio: w(0")/7(6). This means that, the possibly unknown normalizing constan the marginal
distribution of the data in Bayes formula, cancels and wethas easily implement the MCMC
setting to estimate (3.1), as long as we can evaluate theigr@dz|0)7(6) for any given value of

0 up to a constant of proportionality.

3.1.2 The Gibbs sampler algorithm

A special case of Metropolis-Hasting is ti&bbs sampler The Gibbs Sampler was given its
name by Geman and Geman (1984), who used it for analysings@iiskributions. Nevertheless,
the work of Geman and Geman (1984) led to the introduction &M into the mainstream
statistics via the articles by Gelfand and Smith (1990) aatia®d, Hills, Racine-Poon, and Smith
(1990). To date, most statistical application of MCMC hasediGibbs Sampling. Suppose that
for somen > 1, the random variablé, with distribution7 can be written ag = (0y,...,0,),

where the&d;’s are univariate (or multidimensional). Moreover suppagecan simulate from the
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corresponding univariate (multidimensional)l conditional densities

0;10" ~ m;(0;10C7)

fori=1,...,n, whered(~" is the vector(0;,...,0;_1,0i11,...,6,).
To produce a Markov sequenég,, 0,, . ..) with = as stationary distribution we can use the
following procedure: given the current position of the M, = 6 a move tof’ is completed

using
o 01 ~mi(01]02,...,0,)

o 0L ~ (0410, 65, ...,00)

o 0 ~mn(0L16),....0, ).

»Yn—1

Thus Gibbs sampling consist purely in sampling from the dalditional distributions. A feature
of a Gibbs sampler is that even in a high-dimensional proplatnof the simulation may be
univariate, which is usually an advantage. This advantagempensated by the fact that the full
conditionals are often not easy to obtain and sampling catiffieult. In this case we could resort
to a Metropolis within Gibbsalgorithm in which the easy to sample full conditionals asedi
as proposals while the other ones are substituted withrdiffeproposals and the corresponding

acceptance probability is computed.

3.2 Markov Chain Sampling Methods for NPHM

Modelling a distribution as a mixture of simpler distribaris is a useful structure in a wide range

of statistical problems. As discussed in Chapter 2, migtwvgh a countable infinite number of
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components can be reasonably handled, in a Bayesian fraidwoemploying a nonparametric

prior distribution for mixing proportions such as Dirichjgrocesses or NI-G processes.

Let (Y3,...,Y,) asample from a nonparametric hierarchical mixture prid®)2.e.

Y;‘HZNk(‘HZ), izl,...,n,
01, .., 0n|P ~iiq P,

P ~q(-)

with &(-|-) being a parametric density on the sample spae&dq(-) a nonparametric prior on the
space of distributiorP()) (in our study we will consider only the case whefi) is a Dirichlet

prior or a N-IG prior).

Our estimates will be based on the predictive distributianthe distribution of a new obser-

vationY,,;1 given the sampléYy, ..., Y,,), with density that can be written as:

Fnia|Yis. .. Ya) = / Fnia|0)dn(@Yi, . .., Yy)

wherer(:|Y1,...,Y,,) is the posterior distribution &f = (61, ...,6,). We have

Fynii]0)= / S (ns1[8, 6ns1)L(d6,14116)

:/ k(Yn+1]0n+1)L(dOn+10) (3.2)

wherek(-|0,+1) is the known (parametric) kernel distribution ahd |0) is the predictive distri-
bution ofd,, 1 given the observatioi = (64, ...,80,). For the two processes under study;|0)

is a mixture between the mean distribution of the prioy and the empirical distribution of the
observations; see expression (2.2) for the Dirichlet paiwd the expression (2.5) for N-I1G prior.

Finally, the predictive distribution of the nonparametnierarchical mixture model can be written
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as

a1, ... V) = /k(yn+1|9n+1)L(d9n+1|Q)d7T(Q|Y1> s Vo). (3.3)

Then NPHM become computationally feasible if we have medtiodsampling from the posterior
distribution(-|Y7,...,Y,) of the unobservable parametéks. .., 6,. When the priorg(-) is a

Dirichlet process the problem has been largely investihatarting from the seminal papers of
Escobar (1994) and MacEachern (1994). We will give a coreagiew of these works and their

generalizations.

3.2.1 Dirichlet Processes

LetYy,...,Y, be a sample from the hierarchical model (2.9), and let
q(-) = Dir(aGy),

with a > 0 being a real number ar@, being a distribution o). Marginalizing over the process

P we have, see expression (2.11)

n

i—1
n(dO[Yr, ..., Yn) o< [ ] R(Vil65) (aGo + Z%) (db;). (3.4)
j=1

=1
We are interested in a sample from this distribution to eat&luhe predictive distribution (3.3).
The first work proposing a Monte Carlo strategy to sample f(2rhl) dates back to Kuo (1986),
where the author proposed mnportance samplingnethod (see Robert and Casella, 2004, p. 80-

96). However Kuo’s algorithm does not sample values cooukilly on the data, which can lead

to very inefficient estimates (see Escobar, 1992, for aléetdiscussion).

The computational difficulties attached to the MDP were sgltay Escobar (1994), who in-
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troduced a Gibbs sampler algorithm to sample from (2.11}he&ull conditional

7(db;|0",Y1,...,Y,), foreachi=1,...,n.

By Bayes’ theorem, observing théf is independent fronY; with j # 4, we have, for each

1=1,.,n,
, 10 1o(=9)
m(d0;|0D, Yy, Y,) = F(Y:l6:) £(d6:l6"7) (3.5)
J k(Y;10;)£(d0;10)
The key idea of Escobar’s algorithm is the following: we ddesthe samplé., ..., 0, as a part

of an exchangeable sequence havind &3if;) as de Finetti measure (see Section 2.2.1). Then for
eachi = 1,...,n, we can considef; as the last observation, after,...,0,_1,6;41,...,0, are

observed, so from the prediction rule (2.2)

a

L(d6;|07") = Po—

1
Go(do;) + atn_1 %:Z 59;"

therefore, (3.5) can be written as

ak(Yi|0;)Go(d0;) + > .; k(Yil0;)00, (db;)

7(d0;|0°D.Y;, ... Y,,) = 3.6
(a6 ) ado(V3) + (%) (50
whereq(-) is the marginal distribution defined on the sample space by
() = [ kwl)Goldp) @)
and
ai(y) = D k(yl6))- (38)

JFi

Let (0,0 .. .) be a Markov chain generated by a Gibbs sampler procedurefulfittondi-
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tional given by (3.6); then Escobar (1994) showed, wheéft) is a normal with fixed variance,
that the distributiont(6|Y1,...,Y;,) is stationary for suclig™, 0 .. .). The same result holds
for the more general case, whé(|0) is an absolutely continuous family of distributions (see

Escobar and West, 1995).

The convergence of Escobar's MCMC method may be rather slod,sampling thereafter
may be inefficient. The problem is that there are often graefpsbservations that with high
probability are associated with the sathe Since the algorithm cannot change thefor more
than one observation simultaneously, an update of the canvaloe requires passage through a
low-probability intermediate state in which observatiarttie group do not have the sathealue.

A more efficient algorithm can be obtained resorting to Mattean (1994), where updatirégs

is done in clusters. Let fix some notation. In a DPM model wiahtmuous base measutg), let

0" = {0;,...,0;} denote the set of distiné}’s, werek < n is the number of distinct elements in
the vectord = (04,...,0,). Letc = (cy,...,c,) denote the vector of the configuration indicator
defined byc; = ¢; if and only if 0; = 6;. We will use the terntlusterto refer to the set of all
observationY;, or just the index, or the corresponding;’s, with identical configuration index
¢;. The numerical values of the are arbitrary, as long as they faithfully represent whetharot

¢; = cj; that is, thec; are important only in that they determine what is calledabefigurationin
which the data items are grouped in clusters. We will alwayssilerc such that; € {1,...,k},
fori =1,...n, and we will indicate withz., the size of the cluster associated with the valye

7

i.e.,ne; = #{i : ¢; = c;}. Note that knowledge df is equivalent to knowledge @f, c, and¢”.

We can rewrite the full conditional (3.6) in term of the newaraeterisation as

(=) (=3 *
(0107, Y5, V) = ak(Yi[6:)Go(d6) + 5, nf " k(Yil6))y; (d6) (3.9)
T 1Y yFlyc ey tn) T aqO(Y;)—i_ql(}/Z) .
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(=9)

werek(~") is the multiplicity of the cluster vecta*(~"), obtained from the vectd~"), andn;

is the multiplicity ofe; in *(—9). Simulation off; from the above conditional is straightforward:
with conditional probabilities proportional tﬂg-_i)k(Yiw;‘), the sample is one of the existing
clusters, otherwise, the samleis drawn anew from the marginalY;|6;)Go(d6;). Then we can
write the full conditional for the configuration vecte®as:
ng; k(Yil6:)
aqo(Y;) + i(Y7)’

. . —1 * a }/Z
P(c; # c; for all j # z|c( ),Q ;) = aQO(Y('])O(‘i' q)(y)

P(c; = ¢j|c),0%,Y;) = it j #iandn? >0,

(3.10)

The algorithm introduced by MacEachern (1994) for a mixtfreormals and by Neal (1992)
for models of categorical data, uses an analytical integratverd; eliminating them from the
algorithm. This procedure requires the computation of demgxpressions, which therefore

relatively limits its applicability in hierarchical model

The computational difficulties with the MacEachern alduritare solved when combined with
the Escobar algorithm. This improvement is used in Bush aadBAchern (1996) and West,
Muller, and Escobar (1994) who construct a Markov chidf,, ¢, }»>1 updating the configu-
ration vector via the full conditionals (3.10) and the chustectord* using the property that the

9;*], 's are conditionally independent with posterior densities

p(0;|e Y1, .. Vo) = | T] #(Yil6:,) | Go(dey,), (3.12)

i€l
wherel,; = {i:c; =c;}, fore; =1,... k.

We have already observed that, when more observations soeiai®ed with the same cluster,
the algorithm of Escobar (1994) can not perform excelleritypractice this event occurs when

for somef* the sumZ?zl k(Y;,07) becomes very large relative tg(Y;) on any iteration (see
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expression (3.9)). This occurs when the Markov chain haabifited” on a small number of
clusters, and it is then unlikely to generate a “new” valug¢)of The last described algorithm,
obtained combining the Escobar and MacEachern procediwes,not suffer of this pathology in
that it “shuffles”, through the (3.11), th‘!gf’s after every step, providing more movement in the

MCMC sampler, which in turn improves convergence.

We can summarize the Gibbs sampler procedure as followhdaturrent state of the Markov

chain consist ot = (cy,...,¢,) andf* = (07,...,6;). Repeatedly sample as follow:

Fori=1,...,n[Escobar-MacEachern step]

o If the present value af; is associated with no other observation (izé;i) = 0), we remove

0., from the state.

o We draw a new value far; from ¢;|c(~=%, Y;, §* as defined by equation (3.10). If the new
is not associated with any other observation, we draw a vfalug:, from k(Y;|0;)Go(d0;)

and we add it to the state.

For ¢; withi = 1,. .., n [Shuffle step]

e We draw a new value df;, from the posterior based on pri6f, and all data points currently

associated with the clustey defined in (3.11).

All the algorithms we mentioned are based on the Polya ued(ptive) representation of the
Dirichlet process. For this reason, usually in literatame refers to them @0lya urn Gibbs sam-
plers This methods are been largely used in nonparametric Bayasatistics using DPM pro-
cesses as prior distribution, a survey of these models engivMacEachern and Muller (2000).

We mention that on some of these models prior distributiorsaéso introduced on the hyperpa-
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rametersa andG or sets of covariates, but conditional on these additioaedipeters, the portion

of the model involving the DPM has the form given above.

3.2.2 N-IG process

To exploit a N-IG mixture process for inferential purposiss essential to derive an appropri-
ate sampling scheme. In such framework, knowledge of pireelidistributions (2.5) is crucial.
Indeed this formula suggests to build a generalized-urrb&gampler procedure, adapting the

methods described in Section 3.2.1. Bet (64, ...,6,,) be a sample from a N-IG/Gy) pro-

cess, weré\/ is a positive real parameter at is a distribution or® C R™. Then,(6,,...,6,)
can be characterized by the following generalized Polyaseheme. Lettingyq, ..., v,) be an
i.i.d. sample fromG, 8 can be generated as follows: 8et= ¢, and fori = 2,..., n, generate
from

©V; with prob. w07i_1(ki)
(0:161, ..., 0;_1) = (3.12)

0i with prob. (n; ; — 1/2)wy;—1(ki), j =1,... ,k;

werek; represents the number of distinct observations, denotégl,by. ., 67, with multiplicities

(ni1,...,nik ), andwy . andw; . are given in expressions (2.6) and (2.7).

Now, letYy, ..., Y, be a sample on the spagefrom a NPHM model with

a() = N-IG(M, Go).

We are interested in the evaluation of the predictive dengiten in (3.3). We construct a
MCMC method to sample from the posterior distributiorf@fiven the observationds, ..., Y,).
From the generalized urn representation (3.12), using lizstsoalgorithm idea and the cluster

parametrization in term af*, k andc¢, we can write the full conditional as
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(0070, Y1, .., V) o w1 (KTD)E(Y;]60;)Go(db;) (3.13)
k(=1

+ Z )~ 1/2)k(Y;07)0,(d67)
were the normalizing constamt is given by
D = won1(k"7)go (V) + win1(k")g: (V)

with
J(—1)

wlw) = [ HI)Go@s) and a(s) = 3 (0] 1/,
j=1
The N-IG mixture has a behaviour similar to the DPM. In falog full conditional (3.13) has

the same structure of (3.9). The difference between the tadets consists in the weights that the

processes respectively use to choose the cluster for arvabisa Y;.

To construct an efficient MCMC algorithm for sampling fronetposterior distributiornr of
thed given the data, we can resort to the idea of MacEachern arne thg full conditional for the

vector of the clusters, as follows

1

Ple; = ¢j[c™,0,Yi) o wi a1 (K () = Dk(YIIOE), if j #iandnf™ >0,

Cj

P(c; # ¢; forall j # il 0%, Y;) oc w1 (KD)qo(Y7). (3.14)

Then we can implement an Escobar-MacEachern “shuffle” ghgorfor the N-IG mixture
model. We use the full conditional (3.14) to update the caméigon vectorc, and we use a

mixing strategy for the clustet; as outlined in the previous section.
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Convergence for such algorithm can be obtained considériag a particular case of the
strategy introduced by Ishwaran and James (2001) for btielking priors. In their paper the
authors describe an algorithm to handle NPHM’s when thenmgixirior is in the class of stick-
breaking process, as the N-IG does.

Recently, new algorithms have been proposed for dealing mohparametric mixtures. Ish-
waran and James (2003) proposed a generalized weightedgehiaestaurant algorithm that cover
species-sampling mixture models. They formally derivesl psterior distribution of a species
sampling mixture. To draw approximate samples from thigribisgtion, they devised a compu-
tational scheme that requires knowledge of the conditidirgitibution of the species sampling
distributed random measut®, given the unobservable parametérs When feasible, such an
algorithm has the merit of reducing the posterior approxiomserror. In the case of the N-IG pro-
cess, sampling from the posterior law is not straightfodyéecause it is characterized in terms
of latent variables (see Section 2.3.3). Nieto-Barajagn8ler, and Walker (2004) proposed a
method similar to that of Ishwaran and James (2003) to safrqme the posterior of a mixture
of normalized random measures driven by increasing aediiocesses (RMI). Problems of the
same type of that described above arise if one is willing tpl@ment this scheme for a N-IG

mixture.

3.3 Method for non-Conjugate Models

The Polya urn Gibbs samplers described in the last Sectomgracticable only if(-|-) and
Go(-|-) areconjugatein ¢, allowing analytic evaluation ofy = P(c; # c¢; fori # j|...) (see
expressions (3.10) and (3.7)). West, Muller, and Escob884) presented the first algorithm
designed specifically for use with non-conjugate modelghédir algorithm they approximaig
taking a random draw frorf¥y, say®’, and replacef k(Y;|0;)Go(db;) with k(Y;]6’) (one sample
Monte Carlo approximation). This approximation is quiteadourate because it can lead to the
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wrong stationary distribution (see, MacEachern and M{ill898 or Neal, 2000).

MacEachern and Muller (1998) introduced a sampling plat #émtirely avoids the difficult
integration to evaluatgy. In theirno gapsalgorithm the configuration vector is constructed such
thatc; € {1,...,k} for eachi. Then the cluster vector & = (07, ...,0;) and a set of, i.i.d. from
Go, auxiliary variablegd; , ,, ..., ;) are introducecaugmenting”, these are interpreted as not
yet used clusters. In the augmented model the Gibbs samnspenplified, practically, evaluation
of integrals of the typeg is performed marginalizing over the augmenting variables.

The work of MacEachern and Muller (1998) was extended byl KB&00). In this paper the
author gives a complete review of the past work and presemsew approaches for handling
non-conjugate priors. It suggests a Metropolis-Hasting) @lata augmentation procedures that
both refine the previous sample schemes to update the catf@uparameter.

Another approach to handling non-conjugate prior was @éeMiyy Walker and Damien (1998).
Their method avoids the integrals needed for Polya Gibbgpbag, but requires instead that the
probability underG of the set for whichk(Y;|0) > u (werew > 0 is a real number) be com-
putable, and that one is able to sample fr@mon this set. Although these operations are feasible
for some models, they will in general be quite difficult, espy when@ is multidimensional.

Finally, Green and Richardson (2001) and Jain and Neal j20&4eloped a Markov chain
sampling method based on splitting and merging componbatsg applicable to non-conjugate
models. These methods are more complex than those alresmysded, since they attempt, using
a reversible jump strategy (see Green, 1995), to solve ffieuti problem of obtaining a good

performance in situations where the other methods tenddorbe trapped in local modes.

3.3.1 Data Augmentation Methods

The basic idea of data augmentation methods on samplingthlgs is the introduction of some

appropriate auxiliary variables that make the sampling@uare much easier. Suppose we wish to
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sample from a distributiony for 6, then we can resort to an auxiliary variablsuch that it is easy
to sample from the joint distribution,,.. We can built a Markov chain with the following strategy.
Let the permanent state of the chaindhand introduce the auxiliary variabtetemporarily during

an update of the following form:
1. Draw a valuer from its conditional distribution givefi, as defined byty,.
2. Perform some updaté’, ') that leavesr,, invariant.
3. Discardr’, leaving only the value of’

It easy to see that this update fbleavesry invariant as long asy is the marginal distribution
of 6 undermy..

We are going to report now how use a data augmentation sgradegodify the MacEachern-
Escobar Gibbs sampler algorithm, described in the prevsegtions, in such a way that the ana-
lytic integration with respect t6é: in (3.7), to evaluate the quantitigg(Y;), can be avoided.

As shown in Section 3.2 to give an estimation of the predictistribution (3.3) we need to
build a Markov chain having (df|Y1, ..., Y,) as stationary distribution, and this can be done by

a Gibbs sampler algorithm via the full conditionals

m(d6;|0D, Y1, ..., V) o< k(Yil0:)Lq(d6;10C) fori=1,... n.

where L, is the predictive law of the nonparametric prigr For both the N-IG prior and the

Dirichlet prior, the lawZ, can be written, foé = 1,...,n, as:
J(—1) 4
£q(d0;10'=) = Ho(n, k=)Go(db:) + > Hy(n,n$ ™, kD)5p- (db), (3.15)
j=1

where the weight${y, and H; are given in equation (2.2) for the Dirichlet prior and in atjon

(2.5) for the N-IG prior.
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Following the idea of Algorithm 8 in Neal (2000) we can use gadaugmentation technique
to updatef; from (3.15) introducing, for each= 1,...,n, a vector of auxiliary variables =
(t1,...,7s) iid according to the distributiol. In this way the law (3.15) conditionally tois

J(—1)

L,(d0;079,7) = Ho(n, k) Z% (db;) + Z Hy(n,nj, kKD)5p- (d6y),

fori =1,...,n. To complete the algorithm, we have to sample from the ciordit law

(0|7, 00 - m(7)

716, 0
m(r16:, 0°7%) = m(6:100)

Some simple algebra gives that

IT;-; Go(m) if 0; = 0; for somej # i
m(7]6;,0Y)

8, (77) - 1.1 Go(m) ~ otherwise; withl € {1,...,s}.

In practice, to sample from the conditional distributiorttod auxiliary parameter given the current
value off; and the rest of the state, we will proceed as followss; it= 0, for some; # i, the
auxiliary parameter has no connection with the rest of tagestand its are drawn independently
from Gy. If 0; # 0; for all j # 4, then it must be equal to one of tBeauxiliary parameters.
Technically, we should randomly select which auxiliarygraeter it is associated with, but since
it turns out to make no difference, we can just fetbe the first of these. Finally, using the
usual reparametrization dfin term ofc andf8* we can summarize the Gibbs sampler algorithm
with auxiliary variable. Let the state of the Markov chaimsist ofc = (¢y,...,¢,) andg* =

(01,...,6;). Repeatedly sample as follows:

For i=1,...,n [Data augmentation step]
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o Leth = k(=) + s, and relabel the distinat; for j # i with values in{1, ..., k(=9}. If
ci = ¢; for somej # i, draw(ry, ..., 7,) independently fronty and lett; _, , = 7 for
I =1,...,5 If ¢; # ¢jforall j # i, letc; have the labek(=? + 1, draw (7y,..., 75 1)

independently frontz, and Iet@fk(ﬁ)ﬂ)ﬂ =nforl=1,...,s—1.

e Draw a new value for; from {1, ..., h} using the following probabilities:

Hy(nn$ 0 kC0) - k(Y;|07) for 1 < ¢ < k(=9

P(c; = c|c™9,Y;,0%,...,07) o

Bk p(viles)  for KD < e <.

m

Finally change the state to contain only th@$ehat are now associated with one or more

observations.
For ¢; withi = 1,...,n [Updating0*]

e Draw a new value ofl;, from the posterior based on pri6f, and all data points currently

associated with the clustey as defined in (3.11).

This approach is similar to that of MacEachern and Mull&98), the difference being that in
the MacEachern-Muller approach the auxiliary paramet@ntroduced on the space of the vector
6* and then a Gibbs sampler procedure is built to update the enigad*. On the contrary in
the Neal (2000) approach just described, first we use a Gdubglsr strategy, then for each=
1,...,n the parametef; is augmented by the vector, in this algorithm the auxiliary parameter
is regarded as existing only temporarily, during the updatg.

We observe also that, as— oo, this algorithm approaches the behaviour of the Escobar-
MacEachern algorithm described in Section 3.2.1, sincenti@r m — 1) values forf’ drawn
from G effectively produce a Monte Carlo approximation to the diti@s ¢o(Y;), i = 1,...,n.

However, the equilibrium distribution of the Markov chaiefshed by the data augmentation pro-
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cedure is correct for any value ef unlike the simulation when a Monte Carlo approximation is
used to implement the Escobar-MacEachern algorithm (sesté&Val, 1994 and MacEachern

and Muller, 1998).
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Chapter 4

A comparison of two NPHMs in

regression for survival time data

4.1 Introduction

In this chapter we will study a semiparametric acceleraaddre time (AFT) survival model (see

Section 1.4) analyzing the performances of two nonparametior specifications for the error

variable.
Let T1,...,T, be survival times of subjects. In the AFT model, the covariates act multi-
plicatively on the survival time. We assume for edach 1,...,n

’

T = eV,

or equivalently, lettingV; = e",

log(T;) = —x;3 + Wi,
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wherex; = (z;1 ..., x;p)" is a known vector of covariates for thith patient, and is an unknown
column vector op regression coefficients. In this thesis we assume the emosst;, i =1...,n
as a sample from a NPHM model, i.e. we assume that. ., V,,, given a random distributiox

on the Euclidean spac®, are independent and identically distributed from theoiwlhg density

f01G) = / K(0)dG(0)

with the unknownG chosen according to a nonparametric laf). In particular we direct our
the attention at two particular choices 18t G is a Dirichlet process yielding a DPM model (see
Section 2.4.1), o6z is a N-IG mixture model (see Section 2.4.2). Our primaryriggeis a com-
parison between the two models specification. As alreadyt@diout in the previous Chapters,
the N-IG mixture model represents an interesting alteraath the DPM model. Indeed, as the
Dirichlet process, the N-IG process selects discreteibligions with probability one, and it pre-
serves almost the same tractability; nevertheless it isackerised by a more elaborate clustering
structure that makes use of all the information containethéndata (see Section (2.3.3)). The
matching between the two priors is achieved centefh@gt the same distribution functio,

and letting the prior means of the number of components imiixéure coincide.

We will consider hierarchical mixtures of gamma densiti@ssed on both the scale and the
shape. The centering distributiafy we choose following Hanson yields an infinite mean marginal
prior for V'; then we resort to enedianregression model, and prior information will be expressed
by means of the median &f. Posterior inference on regression parameteasd on the survival
function S(t) := P(T > t) is carried out via Gibbs sampling, incorporating censovifgn nec-
essary. Of course, density estimation can be performednattiis model ignoring the regression
aspect (i.e. simply assuming a null vector of covariatelg fivo “competing” models were tested

on real and simulated data. We will use the same notationrtotdalistribution functions and the
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corresponding probability measures.

4.2 Quantile Regression Models

The theory of linear models is essentially a theory for medéconditional expectations. In many
applications, however, it is fruitful to go beyond these mled Quantile regression is gradually
emerging as a comprehensive approach to the statisticlglsenaf linear and nonlinear response
models. Employing the standard additive regression foatran, thep—th quantile linear regres-
sion model (the special cage= 1/2 is calledmedianregression model) for response observation

Y;, with associated covariate vect®r;, i = 1,...,n, can be written as
Y = X8+ Wi, (4.1)

where thd¥/; are assumed conditionally independent from an error Higidn withp—th quantile

equal to zero, i.e.,

0
/_ fw(w)dw = p, 4.2)

with the functionfyy (-) denoting the error density. There is a fairly extensiveditare on classical
estimation for model (4.1), we refer, for example, to thdeevpapers by Buckinsky (1998) and
Yu, Lu, and Stander (2003), and to the work of Yiegal. (1995) for the model with censored
observations. In this literature no likelihood specifioatfor the response distribution are made
(a part for the quantile constrain (4.2)), and point estiomafor 5 proceeds by optimization of
somelossfunction. Any inference beyond point estimation is base&symptotic arguments or

resampling methods and thus relies on the availability gidaamples.

The Bayesian approach to these models enables exact icéeasropposed to the asymptotic

inference of the classical approach, moreover Bayesianeénte deals in a better way with pa-

57



rameters uncertainty. The relative ease with which MCMChod$ may be used for obtaining
the posterior distribution, even in complex situationss heade Bayesian inference much more
accessible and attractive. MCMC methods make the entireepasdistribution of parametes

of interest available.

As mentioned in Section 1.4, the special case of medianssigrehas been considered in the
Bayesian literature (see, e.g, Walker and Mallick, 199%t&oand Gelfand, 2001, Hanson and
Johnson, 2002) and little works exists for general quanéggession modelling. See, e.g., Yu and
Moyeed (2001) for a parametric approach based on the asyiraplace distribution for the er-
ror, Dunson and Taylor (2005) for an approximate methoddasdhe substitution likelihood for
quantiles or the recent work of Hjort and Petrone (2006) torparametric inference. We mention
also the work of Kottas and Krnjajic (2005) who propose a &sdgn nonparametric methodol-
ogy for quantile regression modelling, developing some MidRlels for the error distribution in
additive quantile regression formulation.

In our work we consider a multiplication regression model

T — e_)(lﬁ ° V7

without the intercept parametgy. Given S, this specification leads to a proportionality relation

between the quantile function of the error variablend the time variabl&:

Qr(p) = Qv(p)-e X7, pe(0,1). (4.3)

If we fix p = 1/2 thenm := Qv (1/2) is the prior median o¥ that represents the baseline median
of T', i.e. the prior median with no effect of covariaté§ & 0). In our model specification we

will choose fy/(-) such that

m

; fr(v)dv =1/2 (4.4)
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thus resulting in a semiparametric—medianregression model.

4.3 The model
Let Ty,..., T, be the survival time of. subjects, and lex; = (x;1,...,2;,) be the covariate
vector associated with (observed or censortgd) = 1,...,n. The model we consider can be

hierarchically expressed as

Ti:e_xgﬁ-Vi, i=1,...,n,
Vil0; ' k(10),

0;1G “ G, (4.5)

G ~q, Go(A):=E(G(A)), AcB(©)

BLG, B~m(B),

werek(-|0;) is a family of densities ofR*, depending on a vector of parametérdelonging to

a Borel subse® of R", andq is the prior distribution of the random distribution furwiiG, G
being a distribution function o®, expressing the “mean” d&x. Here we will assume that is

a Dirichlet prior or a N-IG prior. The Bayesian model speeifion is completed assuming
depends on a vector gfhyperparameters = (71, ..,7s) (possibly random and distributed ac-
cording tor(7)). In ours model specification, the nonparametric pgioy is chosen such that it is
centred on the same “mean” distributiofy for both the Dirichlet and the N-IG specification. The
two priors depend also on two positive parameters exprgs$sen“total mass”, which we denoted
by a for the Dirichlet process, and b/ for the N-IG process. This parameter can be interpreted

as the confidence we have on the choic& gfas center measure (see the expressions (2.2) and
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(2.4)), butitinfluences also the induced priors on the nurobeomponents in the mixture model.
Indeed, as pointed out in Section (2.4), the distributiosigased to the random distribution func-
tion G induces a prior distribution on the number of componénts a sampl€6, ..., 0, ) of
dimensionn from G. Expressions for this distribution, which we calle@:|n), k = 1,...,n, are
given in (2.12) for the Dirichlet process and in (2.13) foe t8-IG process. Hence, the matching

between the two non parametric priors is completed choasigd M/ such that
Epir (k|n) = Enac(k|n),

i.e., we will assume that the prior means of the number of amapts in both mixture models

coincide.

4.4 Hyperparameters

In the hierarchical model (4.5), we are assuming the erroabkesV;, i = 1,...,n as a sample

from a NPHM model, i.e. givelx, as an i.i.d. sample from the density:

f|G) = /k(v\@)dG(Q), (4.6)

were the unknowr& is chosen according the lay(-). Lo (1984), in the context of DPM models,
discusses various choices of the family of kernel densftiés|0), 6 € O} that include histogram
models, uniform densities ovéw, #), exponential densities with parameteand normal densities
with § = (u,0?). In the context of AFT, Kuo and Mallick (1997) used normal sitias with a
fixed variance, achieving a prior froi that gives positive mass to non positive values. Recently
DPM with kernel having support oR* are been studied by Ghosh and Ghosal (2006) using a

family of Weibull densities or by Hanson (2006) using gamraagities (see Section 1.4.1).
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Following Hanson (2006) we considered hierarchical mesuof gamma densitieks(-; 6),
0 = (¥1,72), with meand, /¥2. We observe that in the no-sample problem, the Bayes estiofiat

f(v|G) is the marginal distribution

Q@) = fr(v) :== /k(v|9)dG0(9).

Therefore, we should choogé(-) so thatgy(v) represents our prior belief about the distribution
of the error variabld/, in the NPHM model. However, as pointed out in Section 3.8uasng a
Gy (+) conjugate irf with the kernels family{ k(-|0), 6 € ©} leads to a computationally convenient

conjugatehierarchical mixture model.

For this reason we choose the centering distributignon R™ x R™ as the product of two
exponential distributions, i.e; andv,, underG, are independent, exponentially distributed
with parametersy; and~s, respectively. Indeed, for model (4.5), under both Dirtrdnd N-1G

priors, the marginal prior density &f is, forv > 0,

19191
fv(v) = /dﬂlf d2gr5y 2 v ey e M gm0

7172
= m , 4.7)
v(v +72) (11 + log(*£12))?

with distribution function

Fy(v) = N v > 0. (4.8)
(% + log(1 + %))

and quantile function

2
Qv (p) = enp-0 _1 P €(0,1).

This distribution has infinite mean, but information abdw hyperparameterg and~, will

61



be derived through (4.4) fixing the medianof V. Therefore, we have

y1 = log(1 + y2/m). (4.9)

On the other hand, the “remaining” hyperparametecontrols the dispersion df: the interquar-

tile range of the marginal prior, as a functionmafand~s, is

(1 a2/m)* = 1) = (L4 y2/m)* = 1)),

which, for fixedm, increases with increasing. The90% prior probability interval forV is

72 72
[O+l%m—1Xl+ﬁf””—J' (4.10)

m

The length,L, of the interval (4.10) has a strictly positive lower boumal, each choice of the

medianm, given by:
2-09-1 _
= = —_m=288.
0.9-(1-09)" m

and for fixedy, the quantityL is an increasing function of..

We point out that this choice fa& is helpful in the algorithm implementation, but is not
extremely flexible. Indeed, as shown in figure 4fi{-) is decreasing with an asymptoteCafor
anyyi, 2 (even ify; # log(1 +~2/m)).

The hyperparamete(s;, ) affect also the mean and the variance of the gamma components
of the mixture model. Indeed, 1&t|0 ~ I'(J,,1)2) indicate a gamma distributed random variable
with meany = ¥, /9, and variancer®> = 91 /93, with § ~ Exp(y1) x Exp(v2). Then, giveny;

and~, the marginal prior on is

Y172
f(uy1,72) = ( ! w>0,

Y2 +71p)?

62



and giveny, 1, andy, the precisions =2 is distributed ad’(2, 1% + y2p). We observe that
the induced density for is monotone decreasing and can be very diffuse on the posiizls.
Moreover the larger the, parameter (and consequently the parameter log(1 + v2/m)), the

smaller the precision of the component is expected to be.

0.15
1

fv
0.10
1

0.05
L

Figure 4.1: Graphics of the marginal prior distribution (4.7) of thearvariableV” for some choice of the
hyperparametey,. The mediann = 5.67 and the gamma parameters satisfy the relation (4.9)

4.5 The regression coefficient

To avoid identification problems with the shape parametetiseogamma kernel density, in the
AFT model, we do not consider an intercept paramgter Indeed, a priorrg, does lead to an

identification problem. To see this, consider for simpjicihe parametric hierarchical model

T, =e PPy, i=1,...,n,
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with V' ~ I'(¢1, ¥2).Then, givend, and3, we have
T ~ F(’l91, (ﬂQGBO)ex;ﬁ)
and the producti,e™ generates an identification inconsistency in the hieraathiodel specifi-

cation.

A flat prior distribution is often imposed upon tideregression parameters (Kuo and Mallick,
1997; Hanson, 2006), regardless of the form of the kerneditleh(-; #). We introduced instead
the reparametrization; = e’i,j=1,...,p, and assigned independent gamma priors totiee
In this way, with gamma kernel densities, the full condiibposterior distributions of the;;’s

associated to binary covariates are still gamma (see 8etifol).

4.6 The algorithm

The Bayesian estimate of the distribution of the survivaktis the predictive distribution of a new

observationr,, ., with covariatex,, .1, given the sampl&?, ..., T,, from the hierarchical model
(4.5), i.e.

Pt (T Torin) = [ Fr 8,8, %0)dn(B 00T T). (D)
werer (-, |T1,...,T,) is the joint posterior distribution of andg = (61, ...,6,). Observe now

that, given the vectof and the covariate,,, 1, the conditional predictive survival density is given
by
T (8,0, X 11) = fujy, (tem41710)Xns”,
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where fy;, ., (-|¢) has the following closed form expression

P (010) = —— [ [ #01611)aG0(Bn0) + men] (4.12)

=1
for the DPM model (see Expression (2.2) and Expression)(3aay

k

P 0 18) = () | K030 )Goldhni) + 010 3 (s = 5 ) i) (413

J=1

for the N-IG mixture model (see Expression (2.5) and Expoes§3.2)). We observe that the

integral in (4.12) and (4.13) is the marginal prior density/oin (4.7).

To estimate the predictive distribution, we resorted to a@BNUC procedure to produce a
Markov sequencéﬂ(j),g(”}jzl having the posterior (-, -|T1, ..., T),) as stationary distribution.
In this way, an estimate of the posterior predictive dengitgn a covariate vectot,, is given
by

J
P o) = 32 0 w20

k(l'—‘

The desired Markov sequenq@j),g(j)}jzl is constructed using a Gibbs sample proce-
dure updatings from the full conditionalw (3|0, 11, ...,T,), andg from the full conditional
©(0|6,T1,...,T,). Moreover in the survival analysis context, the predictiligtribution of an
individuals with covariate value,,.; is usually presented as the predictive survival function.

Therefore, we also computed
1< &)
. b Al
ST T, Ty Xng1) = 5 z_: Vs (e Xpt1P |Q(J))’ (4.15)

whereSy, ., (te<++17”|9(1)) can be easily found by integrating (4.12) or (4.13).
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4.6.1 Updatingg

Observing thafl; = e %i#V;, i = 1,...,n, from expression (4.6) we derived the densityf
dv B 1 (X
fri(t1G.B) = Fu(v1G)| S| = [ P k(texi910)dG(6,).

Then, the conditional density of = (31, ..., 3,) givend andTy, ..., T, is given, up to a propor-

tionality constant, by

m(B10. T, ..., Tp) o< w(B3) [ [ €5 k(Tie:?16;). (4.16)
=1

Introducing the reparametrizatian;, = e%i, j =1,...,p, the conditional distribution (4.16) can

be written as
A ST T Tida,i (T o))
m(all, Th, ..., T,) < 7(a) Haj =1L ) g sl TR =1 R )
j=1

Now, if 3; is a coefficient corresponding to a binary covariatg, then assuming independent

prior for thea’s, the full conditional of the corresponding; is given by

. o V1% 9. i, )
7T(aj|a(_J)7Q7 T17 e ,Tn) 0.8 ﬁ(aj)ajz{xz‘yjio} o 7]e {Z{xiﬁjio} TZﬁQ’Z (Hlij 0 )}a], (417)

where, as usuah(~7) means the vector without the element;.
If, as prior fora;, we consider a gamma distribution with megiih;, we obtain econjugate

model. Therefore, with this choice, the full conditionastdibution of«; is still a gamma, and

Unluckily, the same conjugacy property does not hold whgis the coefficient of a continu-
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ous covariate; in this case the full conditional is a nomdéeid density given by

R ON [ ) S

m(ay]0, Th, ..., T;,) o m(ay)aj

To sample from the density proportional to (4.18), we usece&rdpolis-Hasting step in the Gibbs-
sampler algorithm. lf; is the current state of the chain we proposed a new vaiuﬁfom a
Log-Normalu, o) distribution, with mean in the current state of the chains «;, and standard

deviation
1
n Xi,5 <2
Zz’:l T’ﬂ?gﬂ'aj ]xi7j + thtj

This expression is an approximation of the dispersion ofdémesity in (4.18), arising from a

second order Taylor expansion of this density around theentistate of the chain.

4.6.2 Updatingf'’s

Conditionally on the vectos, the model (4.5) is equivalent to a NPHM model described ttiSe
2.9; indeed, for = 1, ..., n, the observatio; are deterministically related, through the relation
V: = exéﬁTi, to a sample)r, ..., V,, from a NPHM; therefore, instead ofand Ty, ..., T, we
can uses andVi, ..., V, as conditioning variables in the expressions that follow.
To update the non-observable vedfore resorted to a Polya urn Gibbs sampler scheme such

as in Section 3.2. In particular, introducing the clust@arametrization in term af*, k andc, we

used an Escobar-MacEachern “shuffle” procedure.
The vectore is updates through the full conditional
ni; k(Vil6;)

aqo(Vi) +a:(Vs)
P(c; # c; forall j # il ,6%,V;, 8) =

P(c; = ¢|c, 0", Vi, ) = it j #iandn? > 0,

aqo(V;)
aqo (Vi) + ¢;(Vi)’
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for the Dirichlet prior, and through

P(e; = ¢, 0%, ;) o wy o (D) (0D — %)k(meg), if j +#iandn!™ >0,

& j

P(c; # c; forall j # i, 0%, ;) o won—1(k)go(Y5).
for the N-IG prior; with normalizing constant
D = wop-1(k")qo(Ys) + win-1(k)gs(Yi).

The functiongy(-) coincides to the prior marginal (4.7), angl-) are given, for each, in (3.8)
and (3.14). Then, independently from the nonparametricday the updating 09;, for each

j=1,..,k, is performed trough the posterior distribution

FO5 e VA, Vi, B) o (H k(%@;)) Gol(67,) (4.19)
iEICj

werel., = {i: ¢; = c;}. We already pointed out that the choice of the family of kedeisities

{k(-|0),0 € O} and the “centering” distributiortzy(-), is such that the model is conjugate in

6, so that the computation of the integigl(-), to update the configuration vecter becomes

particularly handy. Moreover the conjugacy is helpful atsapdatingd*. Indeed, ifc; is a “one-

observation” cluster, i.en.; = 1, then we shall simulaté?, = (97,73 ) from the following

density (we omit the subscripf and the superscript, to simplify the notation)

f@le, Vi, ..., Vi, B) o< k(V;10)Go(0) (4.20)

L
O

e—ﬁQVj,yle—’Ylﬁl,me—’Ym% )
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From the last expression it clear that

FO2]91,¢, Vi, ..., Vi, B) ox 951e 1Vitr2}d2,

and then

f(('ﬂl,l?Q”C,‘/l, . '7Vn7/8)
f(192|191767 V17 .. '7Vnaﬁ)

—{m+n(1+32) 1

f(191|c, Vl, .. .,Vn,ﬂ) =

x e

Hence, to sample an observation from the density (4.20),rstesmpled); ~ I'(2;~1 + In(1 +
’}/Q/Vj)), them92 ~ P(ﬁl + 1; Vj + 72).
The same sample scheme cannot be applied in the case ther cjusbntains more that one

observation, i.en.; > 1. In this case the density (4.19) becomes

ne; a1

f(9|c7 V17’ . -,Vnyﬁ) X %(Hiel% V;) ’ v

e_{ZieICj %}192’}/
(ﬁl)ncj 1

1e My 2%2 - (4.21)

This is a non standard density, but we can observe that

ey —{Xies,, Vitr2}d
f(ﬁ2|19170;‘/1,...7vn75) X ’192 J le {Zzelcj +'“/2} 2

)

and then the marginal of density 6f is given by

e Vi, .. V. L(ne; -9 1 Rier,, Vit 2)™ 9, % (.22
J(W1le, Vi, ..., mﬁ)“W 16Xp — Y1 +1n HieIC.Vi 1. (4.22)
J

Sampling from (4.21) is achieved by first updatifigfrom (4.22) via a Metropolis-Hasting step.
If 9, is accepted, then we sample from F(ncjﬂl +1; Zielc, Vi +72) , otherwise both are left at
J

their previous values. The Metropolis-Hasting step to darfrpm density (4.22) was performed
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proposing a new observatiat{ from normal distributionVN (4, o), with mean in the current state

of the chainy; and standard deviation

1 Ne; + 3
o=— —
\/5 (Zielc. Vity2)
v1 +1n erlc' v — ne; Inng;
J

First we observe that the denominator in the last expressigmreater than zero, since the following

inequality holds
v, e, Vit )™
b Hielc]- Vi

because, > 0 and by Jensen’s inequality
l/an Vv
[Tv| <=

i€le; J

Then, we obtained the estimateof the dispersion of (4.22), by observing that

ncj +3

;71 +1In

(Zz‘elc. Vi +fY2)ncj
F@ile Vi, Vo ) < KT (0 J ne, nn,

[ier,, Vi
(4.23)

where K is a constant andl'(-|s, r) is the density of a gamma distributed random variable with
shape parameterand rate parameter

Inequality (4.23) follows from the multiplication theoreof the gamma function (see Grad-

shtey and Ryzhik, 1994, p.946).

4.6.3 Censored observations

Suppose that the first; observations in the sampls, .. . , 7,, are known only up to the censoring
intervals
T; € [ai,bi), 1=1,...,n1,
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whereb; = oo for right-censored data. In the MCMC algorithm, we used @ @datgmentation
strategy sampling at each iteration the latéfis from the conditional distribution oﬂTi\Ti €
la;, b;),5,0;] for i = 1,...,n;. Indeed, we note thdl; is conditionally independent from
Tj, j # 4, givenT; € [a;,b;),3 and§;. The updating of the censoret] was performed at
each iteration of the MCMC algorithm using tHBt € [a;,b;) impliesV; € [a;e%i%, b;e%:%), and
then[V;|V; € [a;eXi%, b;exi%), 6;] is distributed as a gamma random variable, with shapand
rate s, restricted to the intervala;ex:®, b;e*i%). We thus samplefl;|T; € [a;, b;), 3,6;], i =
1,...,n1 using the inverse cumulative distribution function method. first samplingl ~
Unif (K (a;e*:%(6;), K (b;e*|6;)) and then taking; = K~ (U|6;), whereK (-|0) is the cumula-

tive distribution function of a gamma random variable. Hinae set

! .
T, =Vie ™S8, i=1,....,n.

4.7 Data lllustration

4.7.1 Simulated data for density estimation

We studied, first, an AFT model with no effect of covariate, ix; = 0, for eachi = 1,... n.
In practice we performed a nonparametric density estimedig@andom sampléy, . .., 7T, from a
NPHM. We considered a simulated data set from a mixture oh3ga densities. We generated a

samplety, ..., t, of sizen = 100 from the density

£(t) = 0.2 - T'(£40, 20) 4 0.6 - T'(¢]6, 1) + 0.2 - I'(£[200, 20), (4.24)

(with mean6 and varianced 0.12) and computed the posterior density estimates from theliai
and the N-IG mixtures of gammas.

We assumedV/ = 0.01 and M = 5.39, which corresponds to a prior mean of the num-

71



ber of components under the N-IG prior equal to the (actuahimum value11.3700 and 30,
respectively. The matching with the Dirichlet process pigachieved whem = 3.0981 and
a = 14.1614, respectively. We set the mediam of V' equal t05.6702 (i.e. the true median),
56.7016 and0.5670, and the hyperparametes in Gy equal t00.01, 1 and 10, corresponding to

values for the IQR ané0% prior probability interval listed in Table 4.1.

For each choice of hyperparametessm, M anda, we run several chains. We observed that
convergence was relatively fast, essentially occurringraf 000 iterations. We finally run a long
chain for each model, discarding the fit$x 000 iteration purn-in) and then keeping the values
every50 iterations thinning) to reduce autocorrelation. These choices are rather n@ise and,

indeed, smaller burn-in and thinning would also be adequate

As a measure of the performances of our estimates, for evige of the hyperparameters,
we computed the error, in the uniform metric, between the distribution function and the predic-
tive distributions (under both priors). Létr(.|t1, ..., ty) represents the predictive Bayesian esti-
mation of the “true” cumulative distribution functidf,(-) based on the data, . . . , ¢, (FT(-|t1, ceayty)

is obtained integrating (4.1)4;)then the error in the uniform metric (EUM) is defined as

EUM(t1, ... t,) = sup | Fr(tlt, ... tn) — Fr(t)| (4.25)
t

Figures 4.2, 4.3 and 4.4 display the true density, the hiatogrom the simulated data, and
the density estimates under the Dirichlet process priortaad\-IG prior for each value of the
hyperparameters; in each graph the two estimates areinglisghable. Moreover, Table 4.2

presents the observed errors for some choices of the hypenpters.

We provided also an estimate of the posterior number of elsish the sampley, ..., t,.

Figures 4.5, 4.6 and 4.7 show the posterior estimates fogdhbk choice of the hyperparameters.
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The posterior clusters distributions under the N-IG prieera to be more robust than the corre-
sponding distributions under the Dirichlet prior. The twodels produce almost indistinguishable
predictive density estimates, but the posterior clustendigurations are quite different. We argue
that the elaborate predictive form of the predictive dttion of a N-IG process makes it quite

suited, as prior distribution, in the analysis of the clusteucture of data.

We observe that, under both nonparametric laMsg, the hyperparametey, works as a
smoothing parameter, since it controls the prior variarfid@@gamma component of the mixture
model. It is interesting to note that (relatively) larggs empirically fit the observed data worst,
underestimating the number of modes of the generatinglaistn (the opposite pathology can

arise using small values ob).

In the no covariate NPHM setting, the prior margitiéd|Go) = [ k(-|0)dGo () represents the
prior belief on the distribution df’. We already pointed out that our choice@f and{%(:|0),©}
is such thatf (-|Go) is easily computable, but it suffers of lack of flexibilityadeed, our posterior
density estimates are an average of mixtures between thierparginal and some gamma com-
ponents (see (4.14),(4.12) and (4.13)). This leads to poststimates with an asymptote in zero
(asf(:|Gop)) also when the data do not indicate this kind of trend, asercdse under observation.
This discrepancy becomes more evident when the parameteasda become bigger (stronger
confidence in the prior), or when the prior mediaris set at relatively small values (informative

prior).

Finally to quantify the difference in estimating the deng#.24) independently from the ob-
served sample, we computed the mean error between the exaatative distribution function
and the estimates:

Er,,..1, (EUM(TY, ..., Ty)). (4.26)

We performed a Monte Carlo estimate of (4.26) for a smaller@e size, generating = 200
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samples of size = 30, {Tl(j), e ,T,St) 37:1, and computing

E(EUM(Ty,...,T,) =

The mean errors (and the corresponding standard deviptbtige estimates for some choices
of the hyperparameters are presented in Table 4.3. The wal@btained seem to confirm that the

two prior specifications are equivalent in density estiorati
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E(k,) =11.37
m=0.567

E(kn) =30
m=0.567

E(k,) =11.37
m =56.7016

E(k,) =30
m =56.7016

© " ’ : ®

Figure 4.2: Histogram from the simulated data and density estimatesuth@ Dirichlet process prior
(dotted red) and the N-IG prior (dashed blue) when= 0.01. E(k,) indicates the prior number of
component. In each graph the solid (green) line denotesukalensity.
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Figure 4.3: Histogram from the simulated data and density estimategmnih@ Dirichlet process prior
(dotted red) and the N-IG prior (dashed blue) when-= 1. E(k,, ) indicates the prior number of component.
In each graph the solid (green) line denotes the true density
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Figure 4.4: Histogram from the simulated data and density estimatesnthd Dirichlet process prior (dot-
ted red) and the N-IG prior (dashed blue) when= 10. E(k,,) indicates the prior number of component.
In each graph the solid (green) line denotes the true density
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m

0.5670 | 5.6702 | 56.7016

0.01 1.5255 15.1339 151.2172
' [0.0254,10.8627] | [0.2937,107.8237]| [2.9796,1077.4701]

X 2.4299 16.3819 152.5298
12 [4-1079,18.1950] | [0.0479,116.4774]| [2.5382,1086.3024]

10 6.0543 24.2965 163.8171
[7-1024,60.0826] | [4 - 10~8,181.9538]| [0.4787,1164.7669]

Table 4.1: 1QR and90% probability interval for the marginal prior df .
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Figure 4.5: Posterior distribution estimates of the number of clusteider the Dirichlet case (dotted red)
and N-IG case (continuous blue) when= 0.01.
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Figure 4.6: Posterior distribution estimates of the number of clustatar the Dirichlet case (dotted red)
and N-IG case (continuous blue) when= 1.
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Figure 4.7: Posterior distribution estimates of the number of clustatar the Dirichlet case (dotted red)
and N-IG case (continuous blue) when= 10.
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M a
0.01 5.39 | 3.0981 14.1614
5.6702 | 0.0481 0.038q 0.0466 0.0339
56.7016 || 0.0334 0.0975 0.0448 0.0768

Table 4.2: Errors in the uniform metric for the simulated dataset o $i20 between the true and estimated
distribution functions.

E(k|n) = 6.2 E(k|n) = 14.5

72 N-IG DIR N-IG DIR

0.01 || 0.1263 (0.046) 0.1112 (0.044) | 0.1281 (0.040) 0.1129 (0.030)
m=56706 1 | 0.1086(0.032) 0.1028(0.031) || 0.1325(0.021) 0.1470 (0.017)

10 || 0.1144 (0.023) 0.1380 (0.022) | 0.1774 (0.018) 0.2216 (0.016)

0.01 || 0.1281 (0.042) 0.1254 (0.043) | 0.2037 (0.035) 0.2289 (0.025)
m =56.7061 1 | 0.1198 (0.040) 0.1147 (0.032) || 0.2057 (0.020) 0.2504 (0.019)

10 || 0.1120(0.024) 0.1445 (0.023) | 0.2370 (0.019) 0.3011 (0.021)

0.01 || 0.1177 (0.048) 0.1179 (0.049) | 0.1825 (0.032) 0.2055 (0.030)
m=05671 1 | 0.1054(0.029) 0.1177 (0.028) || 0.1914 (0.022) 0.2525 (0.023)

10 || 0.1326 (0.020) 0.1518 (0.017) | 0.2156 (0.022) 0.2843 (0.026)

Table 4.3: Mean errors and corresponding standard deviations (irkbtacbetween the estimates and the
true distribution for samples of si3®. The error is the distance, in the uniform metric, betwesirithution

functions.
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4.7.2 Dataset not involving censoring

We studied a famous dataset, in Feigl and Zelen (1965), whersurvival times (in weeks) after
diagnosis o33 patients suffering from leukemia are presented. For eatibrpatwo covariates
were recorded, the white blood cell (WBC) count and the testilt on the AG factor (positive
and negative) at the time of diagnosis. As pointed out in Caak Weisberg (1982) for instance,
this dataset is controversial probably for the presencenoéasurement error in the survival time
of the 17th patient (AG positive); indeed, it is atypically high (6%ek) related to the elevated
number of white blood cell recovered (WBC= 10°). Anyway we decided to use this dataset as

a test for comparing our models.

Patient | AG factor ~ WBC  Survival Time || Patient | AGfactor  WBC  Survival Time

T T 2300 65 18 0 4400 56
2 1 750 156 19 0 3000 65
3 1 4300 100 20 0 4000 17
4 1 2600 134 21 0 1500 7
5 1 6000 16 22 0 9000 16
6 1 10500 108 23 0 5300 22
7 1 10000 121 24 0 10000 3
8 1 17000 4 25 0 19000 4
9 1 5400 39 26 0 27000 2
10 1 7000 143 27 0 28000 3
11 1 9400 56 28 0 31000 8
12 1 32000 26 29 0 26000 4
13 1 35000 22 30 0 21000 3
14 1 10° 1 31 0 79000 30
15 1 10° 1 32 0 10° 4
16 1 52000 5 33 0 10° 43
17 1 10° 65

Table 4.4: Feigl-Zelen dataset

We considered the bivariate vectors of covariates= (z; 1, x;2) such thatz;; = 1 if AG
positive and 0 if AG negative and, € [0, 1]. Indeed, in order to maintain numerical stability, we
normalized the continuous covariate by defining:

T = -
" max;(WBC;) — min;(WBGC;)

i=1,...,33.

We assumed/ = 0.01 (a = 2.1478) andM = 10 (a = 16.3400), which corresponds to prior
means of the number of components in the mixture equélbid8 and18.3966, respectively.

Following the idea of MacEachern and Muller (2000) thatwed an NPHM model as a robust
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extension of a parametric model, we performed a prelimirsarglysis of the parametric AFT

model

T, = e PV,
Vi ~iig T(01,02)

eNﬂ-(e);ﬁNﬂ-(ﬁ)7 iz]‘?"'?”?

as described in Ibrahiret al. (2001, p.40). Then, we obtained the Bayesian estimateseof th
parameters that we calle‘?;l)re, Bpre and &y, (Wherea; .. is the estimate ofy; = eli, j =
1,...,p). We used these estimates as prior information in the nanpetric framework. We

assumed the prior median of the error variablé” such that
1 (1,
m=K E\epre = 14.8484,

whereK (-|0) is a cumulative distribution function of a gamma randomalale with mean, /19,.
Moreover, we assigned independent gamma pilidts, /) to the regressors parametey, j =

1,...,p, such that

9 A .
E(aj):#:aj,pre j=1...,p
j

with a non-informative variance Vaw;) = gj/h§ = 1000 (in particularé,,. = (0.5213,7.372))

Figures 4.8, 4.9 and 4.10 display the estimates of the salriuwctions for 2 “new” patients
(corresponding to covariatés, 0.5) and(0,0.5) respectively) when, = 1, 10 and100. The
predictive survival function are practically indistingbable, when/ = 0.01 (a = 2.1478). A
different behaviour in the tails of the predictive survivahction arises when the parametef
(a) increases: the survival predictive functions under th&GNspecification have heavier tails

indicating a more robust estimate under this prior spetifina
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Each survival function estimate was obtained through a &afrgm a Markov chair{Q(j), 5(j)}37:1
built as described in Section 4.6. We run several indepérateins and we observed an high auto-
correlation in the chain, maybe due to the high number ofrpaters in the algorithm; nevertheless
convergence was quite fast and achieved after n@afi§0 iterations. We finally run a long chain
with a burn-in period ofl0, 000 iterations, and a thinning dfo0 iterations to reduce autocorrela-
tion, obtaining a final samples size= 1, 000 from the posterior joint distribution. The Bayesian
estimates ofy; andas, together with theéd0% credible intervals, are presented in Table 4.5 for
m = 14.8480 and the different values of,. Figures from 4.11 to 4.13 show the tipical traces,
the autocorrelation functions and the scatter plots of tans{a) = (a§j>, agj)) 3’:1, for one
choice of the hyperparameter.

We observe how the hyperparametgrworks as a smoothing parameter in this example too.
Indeed, assumings = 1 (small) leads to a wave trend in the estimated survival fongtthat
indicates a multimodality in the relative density (see FFéyd.8). In particular in this case, also
the posterior joint density af = (a1, a2) seems to have two modes. This can be imputed to the

presence of influential points, as theth observation, in the data.

To evaluate the performance of the models considered wddskbback how well the model
predicts. We consider a cross-validation method (see Gelf®ey, and Chang, 1992). Let
Ti,...,T, be asample from the NPHM model (4.5), andiet . . , t,, be the observed values from
the sample. In a cross-validation approach we want to cheeblbserved non-censored survival
timet; against the predictive distributiorf(-|¢;, x;) arising from the model, all the observations
tj, 7 # 1, and the covariates value of th#h patientx;. Actually, if the model holdst; could be
viewed as a random observation frofp (-|t(V)). To do this we considereg(T;;t;) == T; — t;
whose median undefr, (-[t(?) has been calculated and denotedrby= Med(T;|t®)) — t;. We
used the set ofr;,i = 1,...,n}, calledgeneralized residualsor model assessment (various

possible choices af(-; -), calledchecking functionsare discussed in Gelfaret al, 1992). We
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considered

s; == Med (abs(n — Med(T; [t x,)) |t(i),xi) (4.27)
to standardize the generalized residuals by letting- Z— fori =1,...,n. Then the quantity
L= || (4.28)
=1

can be considered as as index of the model fit.

This approach can be viewed as the Bayesian analogue to thikenaen frequentist strategy
of examining the studentized residuals. We point out thaaillg in the Bayesian framework the
residuals are computed through the conditional mean ofttbeking functiong(77;¢;). Since in
our model the predictive distributioﬁr].(-|t(j)) does not admit mean, here we decided to use a
median estimate.

We computed the predictive fit index (4.28) when = 14.8480, v, = 1 andE(k|n) =
6.5108, obtaining/ ;¢ = 108.97 andIp;r = 103.06, indicating a slightly better fit of the DPM
model. The Figures 4.14, 4.15 and 4.16 show the plots of trelatdaized residual$ upon the

continuous covariate; o, = 1,...,n.
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Figure 4.8: Estimated survival functions under the Dirichlet processrdotted red) and the N-IG prior
(dashed blue) for 2 patients (covaridte0.5) in the left column and covariai®, 0.5) in the right column)
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Figure 4.9: Estimated survival functions under the Dirichlet processrdotted red) and the N-IG prior

(dashed blue) for 2 patients (covari@te0.5) in the left column and covariat®, 0.5) in the right column)
from Example 2 whers, = 10 andm = 14.85.
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Figure 4.10: Estimated survival functions under the Dirichlet processrdotted red) and the N-1G prior

(dashed blue) for 2 patients (covariéte0.5) in the left column and covariat®, 0.5) in the right column)
from Example 2 when, = 100 andm = 14.85.
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Nig-mixture prior

M=0.01 | M=10
| || @2 =0.5156 (0.3318;0.8661) | 41 = 0.4859 (0.2497;0.8056)
g = 4.8386 (1.4532;15.7634) | Go = 4.6024 (1.3554;16.0212)
10 || @1 =0.4052 (0.1549;0.7794) | Gy = 0.3984 (0.1489;0.7818)
2 g = 8.6771 (0.9026;38.1015) | 4o = 10.2115 (1.1436; 34.2550)
100 || 1 =0.4305(0.1967;0.7867) | G1 = 0.6581 (0.2342; 1.3701)
g = 4.3092 (0.9009; 10.3039) | G2 = 13.7599 (1.6032;46.6534)
@)
MDP prior
a=2.1478 | a=16.3390
| || @1 =0.5107 (0.3337;0.8258) &1 = 0.5070 (0.3434;0.7914)
g = 5.3749 (1.4407;16.4946) | do = 5.3749 (1.4403;16.0518)
10 || 61 =0-4282(0.1557;0.7722) &y = 0.4338 (0.1555; 0.8062)
2 G = 7.8721 (1.0260;21.4419) | &g = 8.3606 (1.0105; 30.8108)
100 || G1 = 04980 (0.2053;0.9722) &y = 0.4851 (0.1955;0.9497)
g = 10.5538 (1.1902;44.7378) | é = 10.1354 (1.1850; 36.3112)

Table 4.5: Estimates ofv; andas, with 90% probability credible intervals, for the Feigl & Zelen dagas

(b)

under the N-1G mixture (a) and DPM (b) priors.
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Figure 4.11: Traces and estimated autocorrelation functions of the blackain sampléagj), aéj)} under
the Dirichlet prior wherE(k|n) = 18.4, m=14.85 andy2 = 10
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Figure 4.12: Traces and estimated autocorrelation functions of the blackain sampléagj), aéj)} under
the N-IG prior wherE(k|n) = 18.4, m=14.85 andy2 = 10
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Figure 4.13: Scatter plots of the serie{mﬁj), aéj)}j under the N-IG process prior (left column blue) and
Dirichlet process prior (right column red), when = 10 andm = 14, 84. E(k|n) = 6,5 in graph (a-b)
andE(k|n) = 18.4in (c-d).
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Figure 4.14: Standardized residuals, on the Feigl & Zelen data set, quattspect to the continuous
covariatex.o, under the Dirichlet process prior. The Influent points aigelled with the identification
numbery; = 1, m = 14.84 andE(k|n) = 6.5
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Figure 4.15: Standardized residuals, on the Feigl & Zelen data set,qulattspect to the continuous co-
variatex.o, under the N-IG process prior. The Influent points are l&gelith the identification number.
72 =1, m = 14.84 andE(k|n) = 6.5
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Figure 4.16: Standardized residuals against the continuous covandaerioth the N-IG (blue) and Dirich-
let (red) priors-y. = 1, m = 14.84 andE(k|n) = 6.5
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4.7.3 Dataset involving censoring

As a third example, we considered survival times in thousarfdlays of small-cell lung cancer
data patients with right censoring from Ying, Jung and W&i98), and studied also in Walker
and Mallick (1999), Yang (1999), Kottas and Gelfand (20®4anson (2006). The standard ther-
apy is to use a combination of etoposide (E) and cisplatin {@yever the optimal sequencing
and administration schedule was not defined (the originalséé and a more complex study were
originally presented in Maksymiugt al. (1994)). The data, see Table 4.6, consishof 121
survival times in days of patients with limited-stage sntalll lung cancer who were randomly
assigned to two different regimens (TreatmdntP followed by E, administered to 62 patients,
and Treatmeni3: E followed by P, administered to 59 patients); moreover &Bepts were ad-
ministratively right-censored. In this case the covasaeex; = (x;1,z;2)’, with z;; = 0 if
patienti was assigned to Treatmedf andzx; » denoting the patient’s entry age.

As in the previous example, an explorative parametric aiglyas performed, and the com-
puted estimates were used in the nonparametric model gaeicifi. The prior median of the error
variablelV was assumed to be equal to the parametric estimate of themedi 2.4356, and the
prior ona = (a1, az) was assumed to be a product of independent garhitag, ), 7 = 1,2,
such thatf(a;) = 1.559 andE(ap) = 1.113, with an elevate variability, Vdry;) = 1.000, j =
1,2. Figures 4.17, 4.18 and 4.19 display the estimated surgligafibutions, under the two semi-
parametric Bayesian models considered here, for 2 patigtitsovariateg1, 36) and(0, 36), for
different values of the hyperparameters. The estimatedvslifunctions are practically indistin-
guishable for small values a¥/ (or a), see figure 4.17. As before, a different behaviour on the
tails arises when/ (a) increases, but unlike the previous example the predistiveival function
under the Dirichlet prior have heavier tails than those urlde N-IG prior. We argue that the
N-IG process is particularly sensible to the presence aitels in the data. In the Feigl-Zelen data

set the presence of influential points with high survivaldingsee Figure 4.16) generates a cluster

95



that returns heavy tails in the survival estimates. Thisabehr is accentuate when the N-IG is

used as prior.

We observe also that, for high values/dfor a (strong confidence in the prior), the estimated
survival functions have an undesirable trend near zerd¢sexample Figure 4.19 (e) or (f)). This
is imputable to the choice of the marginal prior of the errariableV’, which has an asymptote
in zero for each choice of the hyperparameters. Clearlylbisaviour is emphasized when the

confidence on the prior, quantified by the paraméte(a), is high.

The survival estimates we just described, are based on aoMagmple{ (9, o9) 3-7:1 from

the posterior joint distribution of, ), obtained with the MCMC procedure in Section 4.6. As
usual, we run several independent chains for each choicgpairparameters. We noted that the
autocorrelation in each sample was quite high, likely dudégresence of censored observations,
that increases the number of parameters in the algorithmveZgence, however, was sufficiently
fast. We run long Markov chains with a burn-in period16f 000 iteration and a thinning of 100
observation. The final sample size was= 1,000. Figures from 4.20 to 4.22 show the tipical
traces, the autocorrelation functions and the scattes fitotthe chaingal/) = (agj), agj)) 3’:1
for one choice of the hyperparameters. The Bayesian egtintdty; andas, together with the

90% credible intervals, are presented in Table 4.7-foe= 2.4356 and different values of,.

As before a cross-validation method to evaluate the prigdiperformances of the two models

under study was set. LetT;,t;) = T; — t; the checking function, the generalized residuals
ri := Med(g(T;, )|t x;),

can be computed only for the non-censored observationeftrer if S* denotes the index set of

non-censored data in the sample, we quantified the goodnegsgvision of the models by the
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Treatment A Treatment B
Survival time Survival time Survival time Survival time
Entry age (thousand days) Entry age (thousand days)Entry age (thousand days) Entry age (thousand days)
56 0.73 52 0.998 72 1.225 60 0.511
70 1.98F 52 0.311 55 0.556 44 0.372
56 0.26 51 1.843% 68 0.17 60 1.82%1
54 1.8837F 68 0.455 60 0.174 68 0.728
74 1.194 59 0.315 58 0.219 70 0.613
65 1.6241 50 0.624 62 0.241 36 0.352
60 0.967 69 0.473 72 0.394 51 0.343
66 1.7797F 71 0.354 64 0.731 57 1.232
74 0.643 55 0.893 72 0.395 65 0.232
63 1.6451 64 0.577 58 0.687 68 0.428
39 0.749 55 0.441 67 0.23 42 1.573F
64 0.882 69 0.478 75 0.209 68 1.457F
65 0.164 57 1.4337F 55 0.703 65 0.398
71 1.221 64 1.043 72 0.799 70 0.166
47 0.523 47 0.465 58 1.315 56 0.364
75 0.201 68 0.524 72 0.265 72 0.789
66 0.288 55 0.529 60 0.199 63 0.083
57 1.123F 53 0.49 62 0.426 45 0.757
67 0.442 62 0.755 59 0.34 69 0.329
56 1.133% 64 1.008 68 0.488 56 112t
57 1.2047F 62 0.525 66 0.292 61 0.181
49 0.429 59 0.22 59 0.426 67 0.49
74 0.47 65 0.464 54 0.305 72 0.285
65 0.667 58 1.1027F 68 1.005F 59 1.043F
62 1.11t 72 0.938 63 0.382 65 0.435
66 0.622 63 0.597 7 0.325 58 0.8971
68 0.98% 53 0.476 52 0.916% 79 0.44
57 0.935 69 0.251 73 0.172 71 0.251
79 0.152 71 0.539 78 0.339 63 0.254
55 0.552 52 0.746F 65 0.371
52 0.256 54 0.835F

Table 4.6: Small cell lung cancer data. The superscript “+” indicatssoring

index

=y

jES* J
wheres; is the index of dispersion introduced in (4.27). We comptiedndex I for both models
for m = 2.4356, v, = 1 andE(K |n) = 12.4107, and obtained ;;, = 94.42 andl}};, = 99.99,
indicating a slightly better fit of the N-IG mixture model fthris dataset. Plots of the standardized
generalized residual are shown in Figure 4.23, 4.24, arfe} 4h2 graphics indicate a good fit of

both models, and no sign of curvature or heteroscedas@tprasent.
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Figure 4.17: Estimated survival functions under the Dirichlet processrdotted red) and the N-1G prior
(dashed blue) for 2 patients (covarigte 36) in the left column and covariai@, 36) in the right column)
from Example 3 whem = 2.4356 and~, = 0.1.
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Figure 4.18: Estimated survival functions under the Dirichlet processrdotted red) and the N-1G prior
(dashed blue) for 2 patients (covaridle36) in the left column and covariat®, 36) in the right column)
from Example 3 whem = 2.4356 andv, = 1
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Figure 4.19: Estimated survival functions under the Dirichlet processrdotted red) and the N-1G prior
(dashed blue) for 2 patients (covarigte 36) in the left column and covariai@, 36) in the right column)
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N-1G mixture prior
M=0.001 | M=1 | M=10
0.1 || 6 =1.1492; (1.1814;1.8193) [ ai = 1.4209; (1.1238;1.7623) [| oy = 1.4087; (1.1145; 1.7820)
: d2 = 1.0113; (0.9998; 1.0234) | dz = 1.0165; (1.0061; 1.0280) || 2 = 1.0180; (1.0071; 1.0284)
a1 = 1.5330; (1.2028; 1.9031) | a1 = 1.5289; (1.2010; 1.8953) || o1 = 1.5222; (1.1813;1.9260)
21 a2 = 1.0150; (1.0047; 1.0248) | dz = 1.0149; (1.0051; 1.0248) || o2 = 1.0152; (1.0060; 1.0239)
10 |[ @ =1.5210; (1.0221; 1.0418) | oy = 1.5311; (1.1676; 1.9406) || a1 = 1.5155; (1.1584; 1.9667)
a2 = 1.0318; (1.0221; 1.0418) | d2 = 1.0307; (1.0207; 1.0413) || o2 = 1.0290; (1.0206; 1.0387)
(a)
MDP prior

a=3.2713 | a=6.2467 | a=22.3172
0.1 | 6 =1.4365; (1.1492; 1.7719) [ ai = 1.4086; (1.1229;1.7532) [| a1 = 1.3867; (1.0961; 1.7613)
: d2 = 1.0141; (1.0032; 1.0251) | dz = 1.0163; (1.0049; 1.0279) || 2 = 1.0211; (1.0126; 1.0288)
a1 = 1.5149; (1.1741; 1.8865) | ay = 1.5123; (1.1922; 1.8694) || o = 1.5295; (1.1564; 1.9838)
21 a2 = 1.0160; (1.0070; 1.0253) | dz = 1.0176; (1.0090; 1.0267) || o2 = 1.0199; (1.0122; 1.0280)
10 |[ @ =T15178; (1.1499; 1.9471) | oy = 1.5214; (1.1277;1.9425) || a1 = 1.5369; (1.1226; 2.0492)
d2 = 1.0324; (1.0221; 1.0430) | dz = 1.0318; (1.0227; 1.0413) || o2 = 1.0331; (1.0245; 1.0423)

(b)

Table 4.7: Estimates ofy; andas, with 90% probability credible intervals, for the small-cell lungnezer
dataset under the N-1G mixture (a) and MDP (b) priors, whes: 2.4356.
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Figure 4.20: Traces and estimated autocorrelation functions of the backain sampléaﬁj) , agj)
the N-IG process prior whe(k|n) = 19.31, m=2.44 andy2 = 10.
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Figure 4.21: Traces and estimated autocorrelation functions of the backain sampléaﬁj) , agj)
the Dirichlet process prior whég(k|n) = 19.31, m=2.44 andy2 = 10.
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Figure 4.22: Scatter plots of the serie{mgj), aéj)}j under the N-IG process prior (left column blue) and

Dirichlet process prior (right column redys = 10, m = 2.44 andE(k|n) = 19.31
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Figure 4.23: Standardized residuals, from the third Example, plottep@et to the continuous covariate
x.2, under the Dirichlet process priofs = 1, m = 2.43 andE(k|n) = 12.41
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Figure 4.24: Standardized residuals, from the third Example, plottepeet to the continuous covariate
2.2, under the N-1G process priofy = 1, m = 2.43 andE(k|n) = 12.41
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Figure 4.25: Standardized residuals against the continuous covandaterioth the N-I1G (blue) and Dirich-
let (red) priorssye = 1, m = 2.44 andE(k|n) = 12.41
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4.8 A non conjugate model

In the previous sections we observed that the marginal pfithre error term in the AFT regression

model, given by

19"91
fv(v) = /d191/d192 pP17leP20y oY1y 2 02

Y172
v(v +72) (11 + log(*£2))2’

is not flexible enough. Indeed, it is monotone with an asymepiio zero for each choice of the
hyperparameters. In practice, in spite of the knowledge awe fon lifetimes, we are not able to
introduce all prior informations in to the model. As seen @tt®n 4.7.1, this can produce an
undesirable behaviour in posterior estimates (see figlje 4o obtain a more flexible prior, we
propose to change the mean distribut@g(-) of the non parametric prior, both in the N-IG and

the Dirichlet cases. The hierarchical model for the vagafl ..., V,, is:

ind

Vi0: 2 k(0:),

0;1G @G, (4.29)

G ~q, Go(A):=E4(G(A)), AeB(O)

where{k(-|0),6 € ©} is a family of gamma kernels with = (1, 9>) and meany; /J,. We let
Gy be the product of two independent gamma distributions,inghe hierarchical specification,
we choose = (91, 1J2) such thaty}; andd, underG are independent gamma distributed with

parametefws, y1) and(ws, v2) respectively. The new marginal prior for the variablas:

w1 w2
/d791/ d192 2 191—16—1921; 71 ﬁwle_%ﬂl Y2 191-2026—72192

Llwn) ! [(w2)
7‘1‘“75”2 20 (9 - ws) )
(U + 72)%2 (y1 + log(¥£22) )« /0 v, I'(d,) ['(@1]s, r(v)), (4.30)
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whereI'(-|s,r) is the density of a gamma distributed random variable witippshparametes
and rate parameter, andr(v) = v + log(1 + ~1/v). Distribution (4.30) is more flexible than
distribution (4.7), it has an asymptote in zero, butder > 1 it admits a mode. In figure 4.26
the graphics offy (-) for some choices of the hyperparameters are depicted. Weesathat for
w1 andws big enough the asymptote ¢f (-) becomes negligible. The new marginal prior also
admitsk—th moment forw, > k. Indeed, ifV ~ fy (-) thenE(VF) = E(E(VF91,02)) =

E(9%)E(1/9%), and the second term of the last product exist if and onlyif> . In particular

, wg > 1. (4.31)

We derive the induced mean and variance of the gamma comisanehe mixture: leV’|(d,, J2) ~
I'(¥1,99) indicate a gamma distributed random variable with meas- ¢, /9, and variance

0'2 = 191/19% With (191,192) ~ F(wl,'yl) X F((JJQ,’}/Q), we have thaE(,u) = E(V), and

E(0?) = —2_E(V), ws > 2. (4.32)
w9 — 2
Finally we compute
Var(V) = | ———— + 1) E(¢7), w2 > 2. 4.33
( ) < (w2 — 1)71 ( ) 2 ( )

In this way we can use equations (4.31), (4.32) and (4.33)peess the prior information on the

problem at hand.

4.8.1 A numerical example

We performed a nonparametric density estimate of the samplsa;, ..., t, of sizen = 100

from the mixture density (4.24), used in section 4.7.1. Wereel the marginal prior at the popula-
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Figure 4.26: Graphics of the marginal prior (4.30) of the variablef model (4.29) for some choices of the
hyperparameters. @w; =1, we =1, \; =0.002, \y =
0.01; (b) w1 = 3, Wy = 2, A = 1, Ao = 4; (C) w1 = 4, Wy = 4, A = 0007, Ay = 0.04; (d)
w1 = 149, wWg = 4, A= 1, Ay = 0.2;

tion mean, choosing the hyperparameters soliliat)=6. To have a benchmark with the estimate
obtained under the conjugate model we fixed the dispersidri tfrough the widthL,, of the
(a-)100% prior probability interval determined in Section 4.4, sithe approximation arising

from the Gaussian distribution:

Var(V) ~ Lo
221 a2

wherez,_,, , is the(1 — a/2) percentile of the Gaussian distribution. Moreover we usedf) =
5,10 and50 as a bandwidth parameter, controlling the dispersion ofgdmama-components of
the nonparametric mixture. We gave a strong confidence tanidugjinal prior (i.e, we chose

M = 5.39 anda = 14.1614) because the undesirable behaviour near the origin of #digtive

densities under the conjugate model (clearly) was morequnoced in this case.

For each choice of the hyperparameters we ran several ¢higing a data augmentation Gibbs

sampler algorithm as described in section 3.3, with an euyilvector of size3. The convergence
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was relatively fast, and we did not observe a significant emirsy with respect to the conjugate
algorithm. Then we run a long chain for each model, with a borof 10,000 iteration and a
thinning of 50 iterations.

As in the conjugate case the predictive performances uhaeNt|G and the Dirichlet prior
are equivalent. In the left column of Figure 4.27 we depidtedipredictive distributions for each
choice of hyperparameters, and in Table 4.8 we present skendke in the uniform metric between
the “true” distribution and the predictive ones. Under tba nonjugate model (with an appropriate
choice of hyperparameter) the posterior densities havdeahiged trend near the origin. Although
produce indistinguishable predictive densities, the tvwomlels make use of a different clustering
of the elementg. The right column of figure 4.27 shows the posterior estisafehe distribution
of the number of clusterk. We can see that whe(c?) takes the smallest value, the estimate
under the N-IG process tends to use a greater number of canfzowith respect to those used in
the estimate under the Dirichlet process prior. The oppastnd is observed when the prior mean
of the variance of the mixture component is set at the largasie. The N-IG process seems to
mitigate the influence of the choice of the total mass givetéd'mean” measure, but it is more

susceptible to change in the prior information given by theenparameters and-~.

_ E(0?)
E(k|n) = 30 9 10 50
N-1G 0.0508/| 0.0485| 0.0642
Dir 0.0682| 0.0647| 0.0754

Table 4.8: Errors in the uniform metric for the simulated dataset o¢ $i#0 between the true and estimated
distribution functions, under the non conjugate model.
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Figure 4.27: Histogram for the simulated data and density estimatesruth@eDirichlet process prior
(dotted red) and the N-IG prior (dashed blue) in the left owiu Posterior estimates of the distribution
of the number of cluster under the Dirichlet prior (dotted)rand N-IG prior (solid blue) in in the right
column. The hyperparameters are such B{af) = 6, Var(V) = 32.782 and~, = 2. The green solid line
denotes the true density.
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4.9 Conclusions

In this Thesis we studied the accelerated failure time nwidehe context of Bayesian semipara-
metric statistics. In the first two chapters we reviewed tlanncontributions in this area, and we
surveyed on nonparametric Bayesian modelling. In pagicule focused the attention on non-
parametric hierarchical mixture models, with the goal ahparing the performance of the well
known DPM model with N-IG process mixture model, recentliyaduced in literature. The two
competing models have been tested looking at the prediettienates they produce. The com-
parison between is carried out in the following way: first weadi the prior hyperparameters, in
such a way they carry as similar a prior information as péssthen we quantified the predictive
performances. With the simulated data sets we measuredstiaack between the predictive and
the “true” distribution. With the real data sets we usexiass validationprocedure to quantify the
predictive power of each model.

The estimation was carried out by MCMC simulation methodsthe third chapter we re-
viewed the mains strategies to handle DPM models. In péaticve focused on algorithms that
rest on the predictive structure of the Dirichlet proceserprThen we described how to extend
this algorithm to the N-1G mixture models, for both the caggte and the non-conjugate case.

The fourth chapter contains the main results of the work. \&&cdbed in depth the hierar-
chical models adopted, and we matched the two nonparanpetarcs by centering the mixing
distributions at the same “meat, and assuming an equal prior mean of the number of compo-
nents in the mixture. Then the prior information on the stalviimes was passed to the model
through functionals of the marginal prior.

We presented three examples using a conjugate hierarchmaél: the first one on density
estimation (AFT with a null vector of covariates) with siratéd data; the second one on regression
for uncensored survival times; the third one on regresssomidht-censored data. Finally a non-

conjugate hierarchical model is tested on density estonatiith simulated data.
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A close inspection of the marginal error distribution legéal$o think that some artifacts near
the origin of the predictive density are due to the choicéefkernels and the “meaidr,. Indeed

the analysis of a non conjugate model, with a more ger@sadliminates this drawback.

From a predictive point of view, the illustrative examplé®w that there is not a substantial
difference between the DPM and N-IG process priors in m&idensity estimation. However
some differences arise in the posterior distribution ofrinenber of clusters the two models use
to “built” the predictive estimates: the more elaboratepreinforcement structure of the N-IG
process prior leads to estimates of the number of clustettseimixture that are difficult to in-
terpret. Indeed this posterior, for both the models, noy @dpends on the prior total mass of
the mixing distribution, it also depends on the hyperpatansewithin the mean distribution of
the non parametric prior processes. In our experiment, avithppropriate choice of these hyper-
parameters, the N-IG process prior seems to be better tleaDRM prior in finding clustering
structures in the data. Nevertheless we believe that sonme though is needed to give a good

statistical interpretation of this characteristic.

In the first regression example (see Section 4.7.2) the muitielthe Dirichlet process prior
error fits the data a little better. However, the second aémyt, on the Feigl and Zelen (1965)
leukemia dataset (see Section 4.7.3), gives the oppositdt.rén both cases we notice that the
difference in the predictive fitindexes is not dramatic, a@nmsldifficult to choose between the two
process priors based only on this. This uncertainty remaies if we consider that the result on
the Feigl and Zelen dataset is influenced by a few abnormalehisons, whose removal produces

essentially equal predictive fit indexes.

A similar conclusion worth looking at the concerns postedistribution of the regression
parametery. We can see from Table 4.5 and Table 4.7 as, the point and tievah estimates
obtained under the two competing priors do not differ in niegfial way.

The Dirichlet process prior is, maybe, the most studied acapetric prior in Bayesian statis-
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tics. One of the reasons of this popularity is its “relatianplicity. The Poélya urn and the
“stick-breaking” representation (see Section 2.2.1) titute, for example, a very useful tools to
work with. Furthermore, in the recent years the Dirichledgass prior has experienced a great
success in the context of Bayesian mixture modelling. Tka ©f overcoming the discreteness of
its realizations by exploiting it in hierarchical modelsnebined with the development of suitable
sampling techniques, constitutes one of the reasons objislarity.

The NIG prior represents a valid alternative to the Diricpigor in the NPHM models. Indeed,
it preserves almost the same tractability and has an ititegesustering property that makes use
of all the information contained in the data,in a predicsense.

Future extensions of the work will focus on models with onerenlevel in the hierarchical
structure, introducing some distributions for the totassmparameterg and M/, which determine
the prior distribution of the number of components in thetonig, so as to obtain a refined estimate
of this distribution. Other extensions can look at the usa ofore general nonparametric prior,
like the generalized gamma process (see lgjal., pear) that includes both the Dirichlet and the
N-IG prior as particular cases.

We mention also that the use of the N-IG prior requires a greatmputational effort. Indeed,
the computation of the weights (2.6) and(2.7) needs malgpécision arithmetics, because of the
presence of the sum of several incomplete gamma functidmex.efore we did all the computations
and the MCMC simulations using R (R Development Core Tean®620but we used Maple
for setting up a table with the necessary weights (which dochange during simulations). An
alternative to Maple is the PARI C library (The PARI Group0B), which can be used both at
initialisation and at run time, because C subroutines caloded into R. Given the availability
of these multiple precision computational tools, the dalton of the weights is not a serious

concern.
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