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It aims at introducing two semiparametric Bayesian models for the estimation of
tail probabilities for skewed distributions. f :

The first model is based on a mixture of gamma distributions. The main feature
of the model is that only one parameter # (in addition to the mixture weights“) is
used throughout. The parameters are estimated using a two-block Gibbs sampling.
[ will show how it is possible to implement a more efficient estimation-algorithm
by integrating out the parameter . In a simulation study on a real dataset the
method is then compared to some other competing approaches. Results show the
good predictive performance of the model in the estimation of tail probabilities.
Moreover I present an analysis of the Medical Current Beneficiary Survey (MCBS)
based on this model.

The second proposed model aims at exploiting the information provided by the
data showing how in a two-sample problem the informative content of one sample
can be used to better predict quantities related to the other sample. The context
for this second model is still the estimation of skewed distributions. The model is
based on SQUARE, a novel estimator of the mean difference of two non-negative
random variables proposed by Donminici et al. [22]. The good features of the model
are shown in an application to the e_stiniation of a tail probability related to medical
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Chapter 1

Introduction

1.1 Some Examples ‘of Problems to which the
Methods can be Applied-

»
L

It is very common in practice to find problems where the ob jective is the estimation
of a density and the corresponding parameters of interest, such as tail probabilities.
For example, consider the situation of an insurance company or a governmental
health agency that needs to predict the number of customers or citizens that will
ask for a reimbursement higher than a given threshold on the next hospitalization.
It would be very useful in this situation to have a detailed model of the distribution
of the medical costs because it would allow to estimate such a probability. On this
output the company or the agency would base a lot of strategic decisions for the
future. Similarly, financial institutions would like to estimate the potential loss
that could occur in a future time. In all these situations what is of interest is
the tail of a distribution. Thus it is important to devellop methods that do not
simply smooth the distribution of the data but that are able to perform well in
a predictive sense (especially on the ta,ils),' taking into account the uncertainty of
the model adopted. 7

Moreover these methods should exploit all the information that is available in
the data. So if more than one samplza is available, like for every treatment and
control analysis, it would be very useful to borrow strength across samples for a

more efficient estimation of the parameters of ‘interest.



2 Introduction

1.2 Structure and Aims

This thesis is about density modeling and quantile data analysis. The main goal is
to develop flexible Bayesian models for the analysis of skewed data. In particular,

the main ideas used in the next chapters are:

» set a theoretical framework which allows to estimate a density function very

flexibly with the use of few parameters,

¢ exploit the information provided by the data as much as possible, showing
how in a two-sample problem it can be possible to use the informative content

of one sample to better prediét quantities related to the other sample,

» do everything described above in a Bayesian setting, where additional infor-

mation can be conveyed by using appropriate prior distributions. .

In Chapter 2 I present a critical review of the relevant literature. The aim
of this chapter is to briefly collect some material available in the literature about
mixtures estimation and quantile data analysis and highlight the pros and cons
of each method with respect to the ones presented in this thesis. In Chapter 3
I provide a flexible Bayesian model for the estimation of skewed densities. The
model is based on a mixture of gamma distributions that are parametrized in a
non-conventional way. In Chapter 4 I extend the model illustrated in Chapter 3
to a two-sample problem, such as 2 control and a treatment. Thé objective of the
model developed in this chapter is still the estimation of skewed densities, but the
more information provided by the two sample will allow a more efficient estimation
of some quantities of interest. Chapter 5 concludes with some indications about
future research directions.

1.3 Statement of Originality

The main stimulus for writing this thesis has come from the ascertainment that
few papers and books exist at the moment on quantile-based techniques for data
analysis. Even less has been produced for what regards Bayesian methods based
on quantiles, the existing litérature being almost exclusively on Bayesian quantile
regression (for some examples see the works by Kottas et al. [52],[31],{51] and by
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Yu et al. [109]). Working with quantile functions enabled me to understand their
.power and just catch a glimpse of their potential applications in many scientific
situations (an evident example is quantile regression, see Koenker [48]).

While Chapter 2 is a review of very well known material, the originality for
the method presented in Chapter 3 is claimed for the introduction of a mixture of
gamma distribution, about which I found very few works in the literature. Even
if the approach used in this chapter for the estimation of the parameters of a
mixture distribution is not new, I will show that the proposed rﬁixture of gamma
distributions represents a parsimonious model to fit long-tailed distributions. An
efficient sampling algorithms is also developed.

The second section of Chapter 4 contains a review of SQUARE, a novel estima-
tor of the mean difference of two non-negative distributions proposed by Dominici
et al. [22]. They showed that this estimator is more efficient than alternative
methods, but it is not conceived for prediction purposes. Prediction is typically
a task which can be tackled easily within tht? Bayesian framework. This is pre-
cisely what I do rin the remaining sections of Chapter 4. Building on the SQUARE
idea. and on the results of the previous chapter, I present a Bayesian version of
SQUARE, called B-SQUARE, which I will use almost exclusively for predicting
certain tail probabilities. The motivation for this application of B-SQUARE lies
on the fact that medical costs typically have a distribution which is characterized

by the following features:

e very few hospitalizations with huge costs which cause a long tail in the dis-

tribution,
e in the two-sample situation the cases are often less than the controls,
¢ 3 significant fraction of zeros in the data.

In that chapter I introduce an explicit form for the controls response density
function. This is an innovation which has not been addressed in the original
SQUARE paper. This density could be used to propose a likelihood-based version
of SQUARE, which originallly'is formulated as an empirical-based (i.e. nonpara-
metric) model. -

I want to spend few words about the title of this work. Strictly speaking the

models considered here could not be referred‘ to as semiparametric because they
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do not contain any inﬁnite—dimensional parameter. They are definitely parametric
models since just finite-dimensional parameters are involved. [ decided to use that
terminology to stress the fact that the parametric hypotheses adopted are very
weak. In fact, on one side a mixture distribution is used (in particular it is a fi-
nite mixture distribution, but it can be considered as a sub-case of a more general
continuous mixture distribution), and on the other side the controls response dis-
tribution function is not given explicitly but in terms of the SQUARE hypothesis
(i.e. the link between the two quantile functions).



Chapter 2

Mixture Distributions and
Quantile Functions for Statistical
Modeling: A Review

2.1 Introduction

In this chapter I briefly review the literature which is relevant for presenting the
material contained in the next chapters. The aim here is to critically highlight the
pros and cons of some of the tools available in the literature and at t‘.}ie same time
anticipate the motivations at the ground of this thesis.

In the first section I summarize the approaches frequently used in pi'actice
for estimating mixture of distributions, both from the frequentist and Bayesian
perspective. In the second section the objective is the review of the available tools
for data analysis using quantile functions. This is a non-conventional but very
powerful approach for data analysis (see Parzen [71],(72] and Gilchrist [33]) and in

this section I emphasize the advantages to embrace such a view.

2.2 Finite Mixtures: a Flexible Tool for Distri-
bution Fitting i |

Mixture methods have received an increasing attention and and attracted new

research in the last few years. This growth of interest is due on one side to the

SmPerille, - a— -



6 Mixture Distributions and Quantile Functions

fact that mixtures represent a highly flexible but parametric tool for modeling a
random variable (see Titterington et al. {101}, Lindsay [58] and MacLachlan et al.
[64] for the frequentist literature and Diebolt et al. [19], Robert {85] and Marin
et al. [61] for the Bayesian literature). On the other side the development is the
consequence of the availability of an ever increasing computing power. All these
reasons are true especially for the Bayesian estimation of mixture models thanks to
the increasing and widespread availability of Markov Chain Monte Carlo (MCMC)
methods. However, although based on standard distributions, mixture models
still pose highly complex computational and conceptual challenges that slow the
" systematic application of these models in practice.
After a brief review'of some basic definitions, in this section I present the
most used approaches for estimating the parameters of a mixture highlighting the
weaknesses of each of them.

2.2.1 General Framework

Given a set of distributions [, a finite mizture is simply defined as the convex

combination

J | J
Z’”jfj(y): Zﬂ'j=1, 0<m <1, J>1.
j=1

j=l -

~ The f; are called mizture components while the m; are the mizture weights. Simi-

larly it is possible to define a continuous mizture as
oW = | fulonie)dd,

but they will not be considered in this work (for a short introduction see Carlin et
al. (12) and O'Hagan et al. [70]). Most of the times the f; belongs to a parametric
family and each depend f"upon ‘an unknown set of parameters 8;, leading to the

parametric (finite) mixture model

J .
. mifi(u16;). | (2.1)
j=1 .

The number of mixture components J is an unknown parameter that should
be estimated using the available data as well. The disadvantage of this rep-

resentation is that a lot iinformation is required to estimate all the parameters
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(6h,...,04,m,...,7;-1,J) of the model. The proposal of the next chapter allows
to define a much more parsimbnious model (with only J parameters, that is the
(J — 1) weights and one additional parameter shared by all the components) that
still retain the flexibility of the mixture represehta.tion.

An important feature of mixtures is that all the moments are convex combina-

tions of the f; moments, that is

J
EYT] =Y mES[YT].
j=1
Mixture models are mainly used for modeling heterogeneity in a cluster analysis
context and in regression analysis, for example t6 model multilevel components.
~ For this reason they have been widely applied in many different fields. Another
frequent af)plication is for density estimation, especially in a nonparametric setting.

The most important example is the kernel density estimator (sec Hastie et al. [35])

==K (152,

i=1

where the number of components is equal to n, the number of observations, © =
1/n, the components f; are set to A~ K ({y—y;)/h) and h is the so called bandwidth.
" The most used in practice is the normal components mixture. The reason is
mainly that normal distributions have parameters that are easily interpretable with
respect to the phenomenon to which they are applied. The mixture proposed in
the next chapter uses gamxﬁa distributions. This is motivated by the motivating

application of the model, that is about medical costs, a strictly positive quantity.

2.2.2 Identifiability

In general a parametric family of densities f(y|@), where 8 = (6,,...,6 1), 1S iden-
tifiable if distinct values of the parameter # determine distinct members of the
family of densities {f(y|@) : @ € 8}, for a fixed y and where © is the parameter

space. In other words a parametric family of densities is identifiable if

1wl6) = 416")

if and only if
- . 0=6".
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This definition of identifiability needs to be adapted to be suited for mixtures
(see MacLachlan et al. [64]). Let
i

F(18) = mifi(yl6;)

j=1
and
Ji
Fylen) =Y £(l65)
=1
be two members of a parametric family of mixtures. This class of finite mixtures
is said to be identifiable for 8 € O if

f(10) = Fl8") (as.)

if and only if J = J* and it is possible to permute the component labels so that
my=nf and  f;(yl6;) = £;(vl6;) (G=1,...,7).

The lack of identiﬁa;bility of @ due to the interchanging of the component labels
is generally handled in practice by imposing an appropriate constraint on 8. A
typical choice in thie case of a mixture of normal distributions is to impose an
ordering of the means, such as

i <o <o S fgey S UJ-

Often it happen in practice that there is a natural ordering of the comi)onents
according to the size of their means. Some other times the constraint imposed has
no practical meaning. For the mixture proposed in the next chapter there will not
be any identifiability problem and no constraint is needed because the mixture is

defined such thai the means and the variances are automatically ordered.

2.2.3 The Missing Data Formulation

For the estimation of parameters in a mixture distribution it is convenient to intro-
duce the so called missing data formulation of a mixture model. This formulation
is well suited not only when the missing data have a physical interpretation but
also when they possess no practical interpretation. In general the missing data
formulation can be thought of as a way to generate random values from a mixture

model.
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Consider an iid sample ¥ = (y1,.+.,¥a) from a mixture with density f;(y|@) =
E_;I:l 7; f(y|6;) and introduce also other unknown quantities * = (zy,...,z,) that
represent the component labels of each . The quantities (y,z) together are
called the complete data. Note that Pr(z; = j|r, 8) = m;, where 7w = (my, ..., 7;),
j=1,...,Jand i=1,...,n These missing data simplify a lot the structure of a
mixture because usually, conditional on the z, the Yy are assumed to be independent

" observations from the densities
g(yilz: = 4, m,8) = f;{vil0;) .

Integrating out the missing data z1,:..,z, allows to write the mixture as

J ] )
9(uiw. 0) = pr(fci=j|7f=9)9(yi|$i=j»‘ﬂ',9)

i=1
J .
= ) mifi(wld;). (2.2)

L=
1

Sometime the components of the mixture have a physical interpretation. In
these occasions inference for the z may be of interest in itself, and one may be

interested in quantities such as the classiﬁcatibn probabilities

Pr{z; = jly;, ,8) o< Pr(z; = jlm, 8)g{yilz; = j, 7, 0)
o< 5 fi(yilf;)
which, calculating the normalizing constant, gives

i fi(wilds)
s Tk (3il6e)

PI'(.I??; = jlyi: ™, 9) =

These will be used in the next chapter.

An obvious way to generate random values from a mixture is to think of the
missing data z; as a J-dimensional random vector x; which elements are either 1
or 0. In particular only one of the J elements can be equal to 1, the j-th element,
and the other are equal to 0. These random vectors x, ..., x, are thus distributed
according to a multinomial distribution consisting of one draw on J categories with

probabilities my, ..., m;, that is : '

Pr(X; = x;) = a{"my® - -7,



10 Mixture Distributions and Quantile Functions

or
X~ ML)

At this point it is possible to generate values first from the J populations

filylér), .., fo(yl6s)

and then from the multinomial distribution above to get the J components mixture-
(2.1).

'2.2.4 Maximum Likelihood and the EM algorithm

Before the advent of the EM algorithm and the MCMC technology, maximum
likelihood (ML) estimation has been the most coﬁmon approach to the fitting of
mixture models. As it is well known, the ML approach is based on the estimation
(7’1",5)- of the mixture parameters (7, 8) obtained by maximizing the likelihood
function

Lim, 8ly) = [ I Alwsld) + -+ + 7o o wilé)]. o (23)

Unfortunately the ML approach is beset with difficulties mostly‘caused by the
fact for many choices of the f; the }ikelihood is unbounded. Moreover ML estima-
* tion involves the expansion of (2.3) into J* terms which is too expensive for more
than a few observations.;-'rhis situation precludes analytical solutions.

However for ML combutations it is possible to use numerical optimization pro-
cedures. One of these is the expectation-mazimization algorithm, or EM algorithm
(see MacLachlan et al. [63]). This algorithm (as well as the MCMC procedures
that are used for Bayesian estimation) is based on the missing data representation
of a mixture. Using this formulation it is possible to write the (non-observed)

log-likelihood of the complete data as
J n

logLé(ply, @) = 35 z;: [log m; + log f5(wlé;)]

j=1 i=1
where ¥ = (m,8). The algorithm then proceeds in two steps:
1. ‘E (expectation) step: calculate the conditional expectation of the complete-

data log-likelihood,"given the observed the observed data y and the current
value for 4, that is '

Q (¢|¢(t—1),y) = Eu’;“‘” [log H—‘c(rw'y:m)] ? | (24)




;iw
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2. M (magzimization) step: this step requires the global maximization of (2.4)

with respect to 4 to give the update
w9 = argmex Q (¥l y) .
The E- and M-steps are then iterated till the difference

L(3®y) — L(x* Vy)

changes by an arbitrarily small amount. It is possible to show that the EM algo-

rithm produces a sequence of likelihood values that is increasing (see MacLachlan
et al. [63]). So to get convergence one just needs a likelihood that is bounded

above,

2.2.5 Bayesian Estimation

1

Only after the advent of the MCMC technology, and still with the help of the
missing data representation it has been possible to estimate mixture models in the
Bayesian framework. The first and most used solution to Bayesian estimation of
mixtures involves the Gibbs sampler with data augmentation, as detailed in Diebolt
and Robert [19]. This algorithm for mixture estimation will be fully presented in
the next chapter and there applied to a particular case of the general theory where
the components f; belong to the exponential family as well as the prior distributions
(see Marin et al. [61]). For this reason here I discuss only some of the difficulties
that the choice of the priors arises.

In Bayesian analysis one can represent “ignorance” or lack of information about
a parameter of a model in different ways. The first and mostlfamo—us approach has
been proposed by Jeffreys {45}, the Jeffreys prior. More recently in the literature
it has been accepted that any prior distribution will eontain some information
about the parameters, and the emphasis has shifted towards the calculation of

reference priors which result in posteriors which depend most heavily on the data.

. Reference priors provide a suitable starting point for a Bayesian' analysis of the

data, guaranteeing scientific objectivity without claiming to represent a definitively

correct prior. More details and references may. be found in Bernardo and Smith

gl o :

TR
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Unfortunately the reference prior for most mixture models gives an indepen-
dent improper prior on the mixture model parameters, which cannot be used in
a mixture context as it leads to improper posteriors for the component-specific
parameters 6,...,68;. It is possible to see this by considering the posterior dis-
tribution of #; given complete data (y,z), where x assigns no observations to
the first component. 1f #,,...,8, are considered a priori independent then (y,z)
contains no information about the parameter ,, and so the posterior distribution
p{th|y, =), will be the same as the prior distribution p(6;). If this prior distribution
is improper then the poéterior p(6:1ly, =) will also be improper.

In this thesis [ will use proper priors. Sometimes they will be chosen to be only
weakly informative about the parameters. However, I will emphasize that inference
can be very heavily influenced -by the priors used, even when the priors appear
to be relatively fiat. For sure much further work is required on the appropriate
specification of priors. ’

A second known problem involved by Bayesian mixture estimation is the so
called label switching, that 1 discuss briefly in the next section.

2.2.6 Label Switching

The problem of label swit"chz'ng is one of the main challenges of Bayesian estimation
of mixtures and it is caused by the nonidentifiability of the components. That is,
if exchangeable priors are used for the parameters of a mixture model, then the
resulting posterior distribution will be invariant to permutations in the parame-
ters labels. As a result, the marginal posterior distributions for the parameters
will be identical for each mixture component. Therefore, during MCMC simula-
tion, the sampler encounters the symmetries of the posterior distribution and it is
then meaningless to draw inference directly from the MCMC output using ergodic
aver§ging. '

The simplest solution to this problem is just to impose an identifiability con-
straint like the ones reviewed in Section 2.2.2. Unfortunately in the Bayesian
context these constraints do not always perform adequately and different solutions
have been proposed among which tempering seems very promising (for a recent -

review of these methods see Jasra et al. [44]).

The important point here is that label switching is mainly a problem if one
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wishes to use a mixture for clustering. Since this is not the case in this thesis and,
as already mentioned, identifiability constraints are automatically imposed in the

models proposed, label switching will not be a concern in what follows.

- 2.2.7 Estimation of the number iof components

A further difficulty in mixture estimation arises when one assumes that the num-
ber of componehts is unknown. Again, different methods have been proposed for
density estimation and for clustering. In a frequentist context information criteria,
like the Akaike's information criterion (AIC) and some other indexes are the most
preferred choices for the former types of problems, while testing for the number
of mixture components {mainly with likelihood ratio tests) are used for the latter
{see McLachlan and Peel [64] for a detailed review). |

From a Bayesian point of view when testing is the objective either Bayes factors

s

(see Kass and Raftery [47]) or entropy distance methods (see Sahu and Cheng [90])
can be used. If the perspective is instead on estimation, two important methods
have been proposed: one is known as reversible jump M'CMC'(see Richardson an
Green (81]) and the other as birth-and-death MCMC (see Stephens [99]). For a
recent review of all these methods for mixtures estimation see Marin et al. [61].
In the model proposed in the next chapter the number of components J will
be treated as a fixed nonrandom quantity and therefore it is not estimated using
the data. For the mixture presented there J will be used in a way tha;t is not”
common in practice, being the problem neither one of clustering nor of density
smoothing. I would say that the mixture will be used for density modeling. During

the presentation [ will provide some advices on how to fix it.

2.2.8 Nonparametric ,alternatii}es |

The- nonpa.fametric estimation é;f mixtures has been proposed both within the
ML and the Bayesian setting. In the case of ML each of 8,,...,8; in a finite
mixture is an element of the same parameter space ©. It is then possible to
think of w = (my,..., ;) as defining a discrete probability distribution G(f) over
9 with G(8;) = Pr(§ = §;) = =;, 5 = 1,...,J. The function G is called the
mazing distribution and it is a discrete probability measure on ©. Lindsay [57], [58]

considered the nonparametric ML estimation (NPMLE) of the mixing distribution
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G (actually in a more general situation) and showed that it involves a standard
problem of convex optimization. One of the consequences is that, even if one relaxes
the hypothesis of finite support of G, under the condition that the likelihood is
bounded, the NPMLE of G is concentrated on a support of cardinality at most
equal to the number of distinct data points in the sample. This is a very useful
result, especially from a computational point of view. This framework provide also
the basis for empirical B!atyes estimation (see Robbins [82), [83], Laird [54], Carlin
and Louis [12]). “

The most common approaches in Bayesian nonparametricé 1s to use a Dirich-
let process distribution D(Fp,a) on G (see Ferguson [29] and Antoniak [5]). The
application to mixtures is quite straightforward (see O'Hagan [70}}, even if the
distribution presents some limitations. Another approach in Bayesian nonparﬁ-
metrics is due to Petrone [74] under the name of Bernstein polynomials, where
bounded continuous densities with support on [0, 1] are approximated- by (inﬁnite)
beta mixtures with integer parameters. _

In the next chapters two paraﬁetric Bayesian models are proposed. Further
generalizations are possible within the framework of Bayesian nonparametrics, es-
pecially for B-SQUARE in Chapter 4. There have been rare attempts to. build
nonparametric Bayesian models starting from the quantile function. One of these
is Hjort and Petrone [37], where methods for carrying out nonparametric Bayesian
inference for the quantile function @, when the prior for F' is a Dirichlet process,

are developed and applied to several interesting situations.

2.3 Quantile Functions: a Complete View of the
Data at hand

Frequentist and Bayesian data analyses are usually performed by fitting models
based on a given density function f. Apart from few cases, like quantile regres-
sion which is a deeply studied topic especially in econometrics (see Koenker et al.
{49] and Koenker {48]), quantile methods for data analysis are not widely used in
practice. And the reasons for this choice are not clear, given that they are able to

exploit more efficiently the information contained in the sample.

Quantile methods were pioneered by Galton [30], who computed medians and
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quartiles of conditional distributions of heights of sons given heights of parents, and
discovered that they had constant scale and linear location. Moreover many facts
about quantiles have a long history and were known before 1900 (see Hald [34]).
Only recently, starting from the late 70s, these methods have been revitalized and
developed mainly by Emanuel Parzen (see Parzen [71], [72]).
The objective of this section is to review the tools nowadays available for ana-

lyzing data using quantiles. As in the previous section on mixtures, [ will insist on
the characteristics of these methods that are most relevant for the next chapters.

For some really basic definitions and propertiés see Appendix A.

2.3.1 Q-Q Plot: the Basic Tool

Used mainly for identifying the distribution of a set of data, the Q-@Q plot is by
far the most famous tool that exploits the quantiles. Suppose to have a statistical
model stated in terms of the quantile function ¢ instead of the distribution function
F (the quantile function @ of a given distribution function F' is defined as the
generalized inverse function of F and it is usually denoted as F~'{p); see A). Then
cbllect a sample of n iid observations {1, --,¥a). This sample can be restated in
terms of the order statistics (yq),...,%w)) (the order statistics are the sample
version of the population quantiles @(p1),...,Q(pn), where p; = i/(n + 1), 7 =
1,...,n). The Q-Q plot is a plot of the points (y), @(p:)), i.e. the n sample
quantilés Y¢) against the corresponding model quantiles Q(p;). If model Q is a
good representation of the quantity under study, then the Q-Q plot should result
approximately in a straight line. An inappropriate model will show some systematic
curvature. As an example consider the Q-Q plots in Figures 2.1 and 2.2, where the
order statistics for samples of log non-zero medical costs for people with (cases)
and without (controls) a certain disease are plotted against the quantile of a fitted
normal distribution. From the figures it is clear that the log-normal distribution
is not a good model to use for these data. In general it may be that the overall
shape of the plot corresponds to that of a simple function h of the model Q. In
this case then a transformation of the model would be checked in the next Q-Q
plot (for a review of the transformation rules for quantile functions see Appendix
A). The theory of weak convergence of empirical processes forms the basis for the

construction of confidence bands around the graphs, leading to hypothesis testing
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Figure 2.1: Q-Q plot of log non-zero medical costs for cases versus quantiles of a
normal distribution.
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Figure 2.2: Q-Q plot of log non-zero medical costs for controls versus quantiles of
a normal distribution.
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(see Shorack et al. [96], van der Vaart et al. [103], Van der Vaart [102] and Shorack
[95]). . '

The main merits of Q-Q plots stem from the following properties, taken from
Embrechts et al. [26] and David [15]. |

(a) Comparison of distributions. If the data were generated'froudl a random sam-
ple of the reference distribution, the plot should look roughly linear. This

remains true if the data come from a linear transformation of the distribution.

(b) Outliers. If one or a few of the data are contaminated by gross error or for any
reason are markedly different in value from the remaining values, the latter
being more or less distributed like the reference distribution, the outlying

points may be easily identified on the pl_z)t.
: 3

(c) Location and scale. Because a change of one of the distributions by a linear
transformation simply transforms the plot by the same transformation, one
may estimate graphically (through the inicercept‘ and slope) location and scale
parameters for a sample of data, on the assumption that the data come ffom

the reference distribution.

(d) Shape. Some differences in distributional shape may be deduced from the plot.
For example if the reference distribution has heavier tails (tends to have more

large values) the plot will curve down at the left and/or up at the right.

The Q-Q plot will be the main tool used in Chapter 4, actually the tool that

motivated the entire model.

2.3.2 Other Useful Quantities

Once a reasonable model @ has been identified using the Q-Q plot, one can then
estimate the parameters of the‘ model.‘by- using some known methods, like maxi-
mum likelihood (see Appendix A). Using the. chosen model it is then possible to
calculate a series of interesting quantities, like moments, quartiles, skewness and
kurtosis indexes, and many others {see Gilchrist [33}). The most useful quanti-
ties for the model in Chapter 4 are the quantile density function g(p), the density
quantile function f (Q(p)), and the tailweight f';mction TW (p). The quantile den-
sity function is the derivative of the quantile function Q(p) with respect to p, that

i a
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is
a(p) = dQ(p)/dp.

It is an alternative way to state a model and it corresponds to the standard density
function f when a model is stated using a distribution function F. The density
quantile function is the density function f expressed as a function the percentile P,
that is f(Q@(p)) = f(F~:(p)) = f(x), given that p = F(z). Finally the tailweight
function is defined as

‘ TW@);%, O<p<l. (2.5)

Note that TW(p) is the derivative of the log quantile function Q(p). The tail-
weight function is used to compare the tail heaviness of different distributions, i.e.
a distribution G will have heavier tail than a distribution F' if TWs(p) = TWr(p)

for p — o0. The tailweiéht function will be a useful in maﬁy places in Chapter 4.

2.3.3 Relating Two Distributions: The Shift Function and

The Comparison Distribution

Lehmann [55] proposed the following model of two-sample treatment response:
Suppose the treatment adds the amount A(z) when the response of the untreated subject would
be z. Then the distribution G of the treatment responses is that of the random variable X+ A(X)
where X is distribut;ed according to F.

Special cases include the location shift model, A(X) = Ay, and the scale shift
model, A(X) = A¢X. If the treatment is beneficial in the sense that A(z) > 0 for
all z, then the distribution of treatment responses, G, is stochastically largef than
the distribution of control responses, F.

Doksum [20] introduced the so called shift function for both describing and
testing the differences between two distributions F and G. He showed that if A(z)

is defined as the “horizontal distance” between F and G at z so that
F(z) = G(z + A(z)),
then A(z) is u.niquely defined as

Alz) = GHF(z)) ~z
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so that A(X) + X has the same distribution 53 the treatment responses G. Thus,
on changing variables so 7 = F(z), the quantile treatment effect is given by

8(1) = A(F~Hr)) =G () — F~Y(r).

" Note that it is possible to recover the mean treatment effect by integrating the

quantile treatment effect over 7, that is

S| 1 1 -
§ =/ 6(7’)()!1":‘/. G~ Y(r)dr —f FY1)dr = p(G) — u(F),
0 0 0 g
where p(F) is the mean of the distribution F'. The Doksum’s shift function is also
closely related to quantile regression (see Koenker [48]).
Given two iid samples from F’ and from G the function has been estimated by

Doksum with the natural nonparametric estimator
A(z) = G (ﬁ(m)) ~z,

where F and G are the empirical distribution functions of # and G.

The idea behind the shift function is that, if evidence exists in the Q-Q plot
against the linearity, one possibility to model the cases and controls distributions
is to assume that @ r(p), the quantile function of the cases, is an arbitrary function
of Qg(p), the quantile function of the controls, that is Qr(p) = 9(Qc(p)), or
equivalently F'(z)} = G(h(z)). Doksum and Sievers {21] define A(-) as the “amount
of shift” .needed to bring the controls up to cases in distribution. For example, one
might assume that Q#(p) is a smooth function of Q¢ (p) with A degrees of freedom,
Qr(p) = s(Qc(p), A), where s is a parametric or a non-parametric smoother.

Another quantify useful for distribution comparisons has been proposed by .
Parzen (see Parzen [71]). He called it the comparison distribution and is defined as
D(p) = G(F~'(p)), 0 < p < 1. This function, or an estimate of it, may be plotted
against the percentile p. If the two distributions are equal the graph of D(p) would
be a 45 straight line (see Parzen (72] for some examples).

As it is shown in Chapter 4, the approach adopted in SQUARE is to assume
that the log-quantile mﬁo of the two distributions F' and G is a smooth function
of the percentile p. This choice presents many advantages over the shift function

and the comparison distribution.



Chapter 3

Bayesian Density Estimation for
Skewed Data

The aim of this chapter is to introduce a semiparametric Bayesian model for tail
estimation of skewed distributions. This model will provide the distributional
assumption that will be used in the next chapter. The model introduced in the
next sections is based on a mixture of gamma distributions. The main feature of
the model is that only one parameter @ (in addition to the mixture weights) is used
throughout. The parameters are estimated using a two-block Gibbs sampling. I
will show how it is possible to implement a more efficient estimation algorithm
by integrating out the parameter #. In a simulation study on a real dataset the
method is then compared to some other competing approaches. Res{llts show the
good predictive performé,nce of the mode! in the estimation of tail probabilities.
An analysis of real data on the Medical Current Benéﬁciary Survey (MCBS) will

also be shown.

3.1 Introduction

Skewed distributions are very common in data analysis. The typical situation that
gives rise to a skewed distribution is the presence of few large values of the quantity
under examination. It is a very well known fact that these observations heavily
influence the results of a statistical analysis. To put a remedy to these situations

many robust methods have been developed (see for example Huber [39],[40]). The
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aim of these methods is to downsize the importance of the unusual large data.
However there are occasions where these large observations are the focus of the
analysis. Insurance companies and governmental health departments, for example,
need to predict how many customers or citizens will ask for a reimbursement above
a certain threshold. Similarly, financial institutions would like to know the poten-
tial loss that could occur in the next day, week or month with a given probability.
In all these situations what is of interest is a tail of a distribution. Thus it is
important to develop methods that do not simply smooth the distribution of the
data but that are able to perform well from a predictive perspective, taking into
account also the uncertainty of the model parameters.

One way to address these problems is to model the distribution of the data
at hand using a mizture of distributions. Mixture models represent probably the
best example of a serniparametric statistical model, that is a parametric model
which is flexible enough to represent a large spectrum of different phenomena,
This flexibility is particularly useful when one needs to model skewed distributions
like those described in the examples above. But since the objective of the analysis
is to set up a model with a good predictive performance, using a mixture model
would not be sufficient. The best way to solve this second part of the problem
is to use a Bayesian approach, because it allows to bring into consideration also
the important issue of parameters uncertainty. Thus the keywords for the model
presented below are mixture models and Bayesian predictive estimation.

The model introduced in this chapter is a mixture of gamma distributions that
share a common parameter &, the only one in the model (apart from the mixture
weights). This allows to create a parsimohious model that is flexible enough to
fit a wide range of skewed distributions. Although the model is based on the
Bayesian literature on exponential family mixtures, I did not find prior reference
to a similar model. The works published in the literature are mainly about mixtures
of normal distributions. This is motivated by the fact that just a set of three or four
heteroschedastic normal components can originate a wide variety of density shapes
(see for example McLachlan and Peel [64], Section 1.5; for a comprehensive list of
applications see the monograph by Titterington et al. {101] and the more recent
article by Titterington [100]). Most of the works related to non-normal components
involve instead mixtures of generalized linear models (GLM), which are capable

to handle also the regression case and the presence of overdispersion (that is an
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observed mean-variance relationship that does’E not match the hypothesized one)
especially for discrete data (see Jansen [43], Wedel and deSarbo [105], Aitkin [1],[2]
and Scallan [91]).

. For what regards asymmetric distributions, the standard apﬁroach in the litera-
ture is to first transform the data using a Box-Cox transformation. I will follow the
latter approach whenever it is convenient from a strictly practical point of view.
It is important to stress right from now that this transformations do not have any
influence on the results, since the objective of our approach is exclusively to es-
timate a tail probability. This is immediateh% clear if one considers the problem

formally, that is given a monotone function g, then

P(X > k) =P(g(X) > g(k)) .

A further difference of.my approach with respect to the literature is the impor-
tance often given in the latter to the determination of the number of components.
This is a consequence of the type of applications to which mixtures are usually
applied, that is clustering and classification. Some other times a mixture is used
not for modeling but just for exploratory puf_poses, in which case n components
are used (as in kernel density estimation}. The purpose ofl this chapter is neither
clustering nor smoothing. The aim of the'm_odel here is to provide a good rep-
resentation of the data distribution and at the same time to produce an accurate
estimate of its right-tail. '

The remainder of this chapter is structured as follows. In Section 2 I introduce
the gamma mixture model, some of its properties, the estimation approach and
I provide some advices on how to choose the hyperparameters of the § prior. In
Section 3 I use the Medicare Beneficiaries Survey (MCBS) dataset both in the
simulation study and the data analysis is presérited. In Section 4 I test the gamma
mixture model on the MCBS dataset by comparing its predictive performance with
that of other competing models. In Section 5 I analyze the full MCBS ‘dataset.

Section 6 contains some concluding remarks.
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3.2 The Gamma Mixture Model

3.2.1 Likelihood__

Let Y be a positive random variable. In the applications presented in the next
sections they are the non-zero medical expenditures paid by a national health

program for a certain gfoup of people. The gamma mixture model is defined as
J
flylm, .. 70,8) =Y mif5(u16), (3.1)
. e :

where f;{y|€) is the density function of a gamma Ga(j, §) random variable, that is
g1
I

The number of componéhts J is a fixed nonrandom quantity. = = (my,...,7;) is
n J'

fi(ylf) = =y le™™. (32)

the vector of mixture weights, namely 0 <7; <1(j=1,...,J) and Y1 T =1,
while é is the scale parameter of both the components and the whole model, in

fact it satisfies

1 1
f(y|7r11"':7r.])9) = If(_l‘y‘ﬂ].:‘"')ﬂ..f)
8

g
= 0f(0-ylm,...,my)

(see Lehmann and Casella [56], page 167, and Carlin and Louis [12], page 31).
In what follows, model (3.1) will be referred to as MizGa (m,8|J). Note that,
since the means anq variances of the components are equal respectively to % and
EG=1..J)a density with an “as thick as you want” right tail can be ob-
tained by setting J big enough. This represents the main motivation for proposing
the gamma mixture model. In Figure 3.1 some of the gamma densities for the
MizGa ((my, ..., mw), 1|10) model are shown.

A nice property of a Imixture 15 that moments-are convex combinations of the

morments of the f;. For the mixture of gamma this implies that

J J .
EY) =Y mEN) =Y mj, (33

J \ J (51
IE[Yz]:zij[}g]:Z:wf—%j——)
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Figure 3.1: Some gamma densities for the MizGa ((m, ..., T1g), 1/10) model.

and thus ’
LG+ (& i)
var [Y] = Z?Tj—ég—— - (Z ﬂljﬁ) : (3.4)
j=1 j=1
Given a sample ¥ = (¥1,...,¥s) of iid observations from (3.1), the likelihood is of
the form
(m,0ly) HZWJ Fi (wilf) - (3.5)
=1 j=1

Unfortunately this expression is unsuitable for; the derivation of any Bayes estima-
tors since it is made up by J™ different terms. This implies a similar combinatorial
expansion also for the posterior expectation of the parameters, even though con-
jugate priors are used. Hence, the computational burden becomes too high to be
used for more than a few observations. This is a consequence of the representation
of the mixture given in (3.1). In a next section I will show a widely used alternative
representation that is able to solve this problem.

As already mentioned in Chapter 2, another important issue to consider for
a mixture is its invariance to- permutations of the indexes of the components.
This problem is often called label switching (see Jasra et al. [44]). A typical
solution is to impose an identifiability constraint. The constraints usually adopted
in the literature are either an ordering of the components means or variances or an

ordering of the mixture weights (see Aitkin and Rubin {4]). The gamma mixture
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I

model (3.1) automaﬁif_éally imposes a constraint on the means and variances of the

components since I

T2 . J=1_J
; e 8 g @

for the means and
- 1 2 J=-1 J

e g NTE <@

for the variances, so the model is always identified and label switching is not a
problem.

:a

To have an idea of lt;he possible density shapes that can be generated by a gammea,
mixture model, in Fiigure 3.2 some examples are reported. These densities have
been obtained by generating the weights from a Dirichlet Dy(1,...,1) distribution
and the  parameter igrom a gamma Ga(1.5,1.5) distribution.
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Figure 3.2:. Some gamma mixture densities for J = 3 (first row), J = 10 (second
row), J =25 (third"ro;w) and J = 100 (last row).

3.2.2 Priors |

I propose a conjugate prior for #, that is a gamma Ga(e, #) distribution. Indications
about intenpretationﬁo'f'the hyperparameters and choice of their values will be given
in a next section. For the mixture weights a conjugate prior, that is a Dirichlet

Diln,.-vs) dlstrlbutlon is used as well. Rather than following the common
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choice adopted in the literature (see Robert [85] and Marin et al. [61]), that is to
set v; =1for all § = 1,...,J, I suggest to use the following specification

(1 1
= e ~Dsl=,...,=].
™ (Wla 171-.]) J (J: J)
| |
The Dirichlet distribution is a multivariate generalization of the beta distribution

defined on the unitary simplex. For the beta distribution the effect of setting the
parameters at values that are lower than one is to produce a U-shaped density.

The same is true for the Dirichlet distribution, as is shown in Figure 3.3 for J = 3.

The prior distribution for the weights is hence informative'. The advantage of this

Figure 3.3: Dirichlet D; (3, 3, %) prior distribution.

choice is that it allows to select with high probability only a small subset of the
mixture weights that are thus relatively larger than the others. This avoids to get
a model that is too smooth (see the examplesfin the next sections). The complete
specification of the model is summarized in Figure 3.4.

|
}

1Being D (1,...,1) the noninformative case.
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Model : f(yjm, .. .l,m, ) = Z;;l 7; fi(y|6) ., fj(y|é) = Ga(j, 8)

Prior structure : 8~ Ga(a, 3)

m=(m,...,7s)~Ds(3,..., 1)

8, 7 independent

- Figure 3.4: The gamma mixture model.

3.2.3 Missing .i:)ata Structure

A very useful alternative representation for a mixture model is the one that uses
the missing date approach (see Robert [85]). Consider a random sample y =
(Y15 - Yn) from the-!,j: mixture model (3.1), then it is possible to rewrite y ~
f(y|m,8) as y ~ foly|@), where z is an integer between 1 and J identifying the
¢omponent of the mixture generating the observation y. The variable z, which
can be considered as a latent variable, takes value j with prior probability =,
1<j<J The vectc;_lr- z = (z1,...,Zy) of components labels is the missing data
part of the sample, sipce it is not observed. To illustrate this modification of the
model consider the diagra,m in Figure 3.5, where the key idea is that y is condi-
tionally independent: i;‘ironi the mixture weights 7, given the missing data z. This
suggestion will be exploited in the next sections.

I 0

Figure 3.5: Directed Qcyclic graph (DAG) for the missing data representation of
the gamma mixture. 'i
)

Suppose the: missing. data zy,...,z, were available, then the model can be
ii
i
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written as

P(yl,---:yn|$1,---,$m9) = H fz.(y:w H f.—c.(%w

=1 i Ti=J
n

T1 £ @:16)

i=1 [}

QE?=1 T4 id . _pgen .
= H r.(x (Hy i l) e 03 i1 . (36)

i=1

Thus, using (3.6) and the priors, the posterior, distribution is obtained as

p(“l:'"17TJ:9|y11"'1ynaml:'~': ) x p( :yﬂlxla 'smrng)x
p(Z1, ..y Tn|TL, ., W) X
( ..., %5)p(f)
J
o ﬂ_JJ+nJ—1) 9a+(2‘_ E,) 1
=1
é',"(.a'{’E?:l I;"l')a1 (3.7)

where n; = > o I(zi=j),  =1,...,J, and I(-) is the indicator function. The
main consequence of this conditional decomposition is that for a given missing data
structure 1, . .., Z, the conjugacy is preserved and therefore the simulation can be

performed conditional on the missing data :cl: RO, A

3.2.4 Posterior calculation

The posterior distribution of (my,...,7,8), g_:iven the sample (y1,...,¥s), can be
written as
J
1 21 - -1 .-
p(wl)""wliglylv--',yn)0( (HW; ) o 1 '68]:[(2 )y] 1 By.).
i=1 =1 \j=1

As for the likelihood function, the computation’al burden that this equation requires

is due to the J™ terms involved, each of the form

(ﬁ ﬂ-j%*“i“l) geH{(Tio1d-ns)-1,~(6+T 7 y-')ﬂ,
j=1

where ny + --- +ny = n. As explained in the previous section, this combinatorial
calculation can be carried out using Gibbs sampling, by introducing a set of missing

data as part of the sample.
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il
The implementati{{)n of the Gibbs sampling is straightforward and involves
the iterative simulation from (3.7) for the parameters of the model and from
Ty, -y Tn|Ty, - ey 2 6,41, .. .,¥n) for the missing data. The steps for the simu-
lation, using the properly calculated full conditional distributions, are described in
Figure 3.6.

Step 1. Simulate

aly:msﬂ' ~ ga (a+zxi:ﬁ+zyl) (38)
. i=1 i=1
|y, x, 8 D —1—+n l+n (3.9)
u,z, J.J 11"')J J | (M
wheren; =5 I(z:=13),7=1,...,J.

Step 2. Simulate, for every i =1,...,n

7
p(zily, my, ..., 7m,8) = z'frijl[(mi =j) (3.10)

where

7 f5(y:16)
> T Fewil8)
| Step 8. Update n;, j=1,...,J.

Bl

G = i=1...,J (3.11)

Figur_e 3.6: Algorithm 1, Gibbs sampling.
i!

As it is stated in tlie literature (see Robert [85], page 448), Algorithm 1 is quite
efficient, and 5,000 iterations are usually enough to get a reliable estimate of the
stationary dlstrlbutlon of the chain. However it is possible to modify the algorithm
in order to get rid of, 9 This can be done by mtegratmg it out from (3.6). The
consequence of this modlﬁcatlon is that the full conditionals of the missing data will
no longer depend upog § and so their chains will not be influenced by its sampling
varistion during the simulation. Even.if I do not provide a formal proof for this,
intuitively this changé contributes to increase the efficiency of the algorithm. So
in this last part of thélf section'] show how the Gibbs sampler is modified.
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L]

First take equation (3.6) and integrate out:G

025 [y s oxi,w B paci-p0
o(y1, - YnlZ1, . Z0) = ot @) (Hy ) 1 e )9“ df

= B ™ [ per(Shm)-1-(3+ T w)s
(@ H,_lrx.)/ e
_ B T ™y Tla+ i, o)

T TN TE) (g1 50 gy ot Eme) (3.12)

This expression correctly depends only upon & and 3, the hyperparameters of 6.
Then (3.7) becomes

Ty, YLy -y Yny Z1y e 3 Bn) X P{YLs -y YnlBLy oo Tn) X
oy, Ta| T, ) X

p(ﬂ-h R :7rJ)

J
g Lin.-
o Hﬂ'r’+ i (3.13)
hence the full conditional of the mixture weights is still the Dirichlet distribution

1
7T|y,ﬂ3~DJ(J+ﬂ1, ,J-HU) .

The next step is to find the new full conditional of the missing data, that will
substitute (3.10). Note first that in Algom’thml 1 the missing data @ = (z4,...,%x.)
were independent, conditionally on the samplé ¥ and the weights 7, that is

P(-Tl:-~-;mn|yla---:ym7"1:~ ':ﬂ-‘fs Hp mily‘l?ﬂ-li y I, )
< 3=l

The modification introduced (i.e. the integration of #) implies that the observations
y (given the components labels ) are no lonéer conditionally independent among
themselves (compare in fact (3.6) with (3.125). An intuitive explanation is that
§ was a parameter shared by all the (y;, z;) pairs, 1 = 1,...,n. Removing & has
introduced dependence among the data.

A possible solution that can be suggested is to decompose the full conditional

P(T1,y .y Talyty oy Uny Ty, W)
into its buﬁ"di'r"i’g'.bl'ocks, that is into the full cénditionals

P(-’Er‘yl: e Y T Trely Ty Ty T - - 171-.])1
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with r € {I,...,n}. ’I‘f‘hese expressions:can be obtained by first noting that

) . ) p(z!y,ﬂ-).
PlEAY, B=r)y ) = /T .
(@rly, 2or) |) p(ainly,7)
v B(@lyim)
¥ a1 Plaly, w)

= ({since plely, )} - ply|m) = p(y|z, =) -p(wl'ﬂ))
- _ __pylz, ) ple|w)
| Toaipyle,m) - plelw)
p(yiz) - p(z|m)
=1 P(Y|2) - ple|m) "

forz, € {1,...,J}, = € {1,...,n} and:where the notation (.., means the vector
T = (T1,...,Zn) witﬁ»ilthe» r-th element deleted. Thus substituting (3.12)

g ™ | D(etEd, =)
P(a) H¢=1 P(Ii) (ﬂ+z 1 ‘) a+(2?=1 z‘)

p(mrly; (- 1f‘m) = _
) g Mo D(etTi, =)
| zr=k=1 ] T(a} [Ii, [{=i) (ﬁ+2.=1 )°‘+(E?=1 #
I n W=
X[Tic1 3—1 J( &

Bz =
X Tl H, 1 g(m })
- H“"_l F(G+2(_r? 3a+$r)
5 T(ar) (B+Ti )
bl an M| “”"”“) ’
Zk—-l Tk I‘(k) (B AT, y‘)

where the notation: E(_T) z; means to sum all the z; apart from the r-th one. If
one further assumes® o €N, then (3.14) can be simplified to

, yer~? {o+En ?i+zr—1)zr x (a+ Ty mi—1)!

(_ | - Hl ) _ TrJ F(g’rf) (ﬂ+21—1 y;) =
p fL',- y’ m(_r)"-‘rr i - (G+E(_’.) E|,+k 1) (G+E(_f) a:.‘—l) |
' Ek =1 ﬂ-k F(k) (ﬁ"’zl:l :v‘)k |

zr o (a+E(,_'_) a:.-}-z,.-l)
.: _ my I‘iz.-) i5+2s=1 m; (3 14)
- ey T N G e 0, '
k=1 Tk T{ky (ﬁ+E.=1 y") '

whit {n)i. = n-(n.— If:‘)&:'---(n— 1).+ « - «(n—k+ 1).denoting the Pochhammer symbol.

2This is really an innocuous request.
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The steps of this algorithm, to which I will refer to as Algorithm 2 (i.e. the

modified version of the Gibbs sampler), are summarized in Figure 3.7.

4

Step 1. Simulate

J J
where n; =3 o Mz =74),i=1,...,J.

1 1 \
1F|_’y.,$ ~ Dy (—-{-nl_,...,———l-nJ) v

Step 2. Simulate, for every i =1,...,n,
I J
p(milyh s Uy Ty T, Bty - T Ly - e ey WJ') = Zﬁzy]l(xz = .?):
Jj=1
(3.15)
where m; is given by (3.14), 5 =1,...,J.

Step 8. Update nj, =1,...,J.

Figure 3.7: Algorithm 2, Gibbs sampling with & integrated out.

3

3.2.5 Choice of the Hyperpararﬂeters

In this section I give some suggestions on how to choose the values of the hyper-
parameters o and 3 for the prior on €. Only this prior will be considered because
I already said in Section 3.2.2 that, for modeiing purposes, the weights hyperpa-
rameters {y1,...,7J) are set exclusively to (%,g e -}) I then avoid to consider any
other value for them. ;

Remind first that the 6 prior is a gamma Ga(ca, #) distribution. To understand
how to choose o and § it is useful to note that the mean and variance of model

(3.1) are given by (3.3) and(3.4), that I report here for convenience

J,' R
p=E}] = f;' (3.16)
7=1
J vr .
7 =varlt] = Y m; 4 x D_.e (3.17)

e B Sl
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These formulas suggést that, once:a:simulated chain is available from the Gibbs
sampling, the postenor distributions of the model mean and variance can be ob-
tained just by substlt':utmg the values of ﬂ‘( } and (™) at each iteration m of the
Gibbs sampling. So the mean.and variance values at the m-th. iteration are given
by I

i
li

i‘ L) = Z o I . (3.18)
. =1

L

oy 5 m 0+ o m)

.(a ) leﬂj (e(m)) ( ) (3.19)

These expressions can be used to monitor if the simulated values of @ are going in
the right direction. Or it is' better to say that they represent a preliminary check
of the goodness of thé proposed model. In fact if the posterior distribution of
and o? are centered respectively on the sample mean and the sample variance then
this is an indication that the model is a reasonable representation of the data at
hand. As is stated in Section 3.1, this is the main objective of the chapter.

To be able to cheose “good” values for o and B one should first think about
the interpretation of the parameter. In the case of 8, I already stated that
a scale parameter. for the entire model, but: it is possible.to say something more.
Equation (3.16) for tl{e model mean suggests in fact that

.: JJ‘
I o
: g = 2z ™] (3.20)
7}
i
To better understand: this: expression, consider to standardize the data dividing
them by the mean g, jthat is to fit the: model'to % = y/u. This allows to rewrite

the previous equation as

J¢
! 0= mj, (3.21)

=¥
from which it is poss{bl’e'- to interpret & as the average. of the components labels
weighted with the mixture weights:

A similar informaali.flinterpnetaﬁion-' can: be provided also for-o and'3. Usually this
statements. are' drawn; whenr the posterior distribution-is available in closed form.
This is not the case hére for §. However some remarks can be given by examining

b
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the full conditional distribution (3.8). It follows in fact that

Efly,a] = Goasmt®
8+ Ei:l Yi
_ B LD VST NPT
ﬁ + 2?:1 yi 18 Lﬁ + Ei:l y'i Z?:l yi
« I
= w-Z+({l-w) —, ' 3.22
g (1-«) ) (3:22)
where w = FEQ‘_TM Note that the last expression is a linear convex combination

of the 8 prior mean and a sample estimate of it (see (3.20)). w is then interpretable
as the weight given to the prior information, while (1 — w) is the weight of the
sample information borne by the sample. Moreover notice that when the data are
transformed as ¥ = y/u, these expressions can be further simplified because in that

case ) ;¥ = n, hence

o+ Y
B+n:
8 n

ﬂ+n'ﬁ+ﬁ+n.

To sum up one can conclude that 3 represents the prior sample size and o deter-

E[6ly, «]

z. (3.23)

mines the § prior mean value. When both «;— 0 and 8 — 0 the prior becomes
noninformative.

For a given value of J, a strategy for choosing o and 3 is reported below:

1. Calculate the quantity § = —Jy’s and check that ‘3‘ < min(yy, - .-, Yn);
the idea is that on average # should take values that allow the set of gamma
distributions in (3.1} to completely cover the observed range (the last gamma.
distribution should have a mean not smaller than the maximum observation
and the first gamma distribution a mean not greater than the minimum

observation). 8 is then a guess for the prior mean 3

2. Choose a value k for the weight of the prior information w in (3.22). Values
between 0.2 and 0.5 are usually reasonable choices. Then choose § as Eif—'iik’-ﬁ

[

3. Then « can be set by rounding to the c%osest integer® the quantity g- 5.

3The rounding is needed because of the assumption used to get (3.14).

e ——
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Last but. nothl’easﬁi; some words about J.. Thegoodness. of. fit-of the gamma
mixture- model. is-the: result of'the interplay. among, the grid ‘of means

v F~1 g

iBJ' g 7 6 9’
the:grid of variances: -.i

I

12 -1

'92 ] 62' ! t 92 b 92*

and- the sequence: of: ordered- observations. The idea is that these grids should
contain sufficient’ elements (the gamma distributions) to fit the data. So J and 8
together affect the ﬁna.l result. Thus it is difficult to provide general advices, but
the: best solutien is: a&axeful calibration of J to every single case is (usually two

o three attempts sufﬁce) Sometimes a transformation of the data (like a log, a
power or a root) can: li)e useful.

3.3 Data ,

I
The dataset. on which. I based both the simulation study and the data analy-
sis shown in the nex‘é two sections is the Medicare Current Beneficiary Survey
(MCBS). It is a. con’cmuous multipurpose survey of a U.S. nationally represen-
tative sample of Medu:are beneficiaries- (NMedicare is a national health insurance
program that prowdes coverage for. people:aged:65 or older, some people under age
65 with disabilities and for: people with permanent kidney failure requiring dialysis
or & kidney transplant). The central goals of MCBS are to determine expenditures
and: sources of paymeq':i:‘ for all'servicesiused by Medicare beneficiaries. The sample
for MCBS is drawn-from the Medicare enrollment; file. Newly eligible beneficia-
ries are added to the:isample: once a year. In the dataset 26,834 hospitalizations
distributed on four yeﬁ'u's% (from 1999 tor 2002) werezavailable, for a total of 9,782
people and an average: of: 3;900. people:per year:.

4Sources: Johns prl“ci‘:‘risfSe,"hoonfiPublic Heglth and’ Centers for. Medicare & Medicaid Ser-
vices oo
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3.4 Simulation Study

The simulation study reported in this sectioél aims at assessing the predictive
performance of the gamma mixture model in tfle estimation of the right tail of the
medical expenditures distribution for the MC_]éS dataset. Some words are needed
before describing the study. First I am con:Scious that to conduct a complete
comparison of the gamma mixture model for this kind of predictions it should
be compared with some methods specifically s:tructured for tail estimation, like a
mixture of heavy tailed distributions (for example of Pareto distributions), maybe
with tails that converge at different rates. This*; has not been done here because the
reasons that motivated the application were n(j)t simply the estimation of the tails
of the distribution but also the provision of an overall fit to the density of the data.
Methods for estimation of upper order statistics, often called extreme value theory
(EVT) (see Embrechts et al. [26] and Beirlant et al. [6]), have been conceived to
model the distribution of the maximum or ofé‘;)ther extreme values, without any
intention to fit also the density of the data. ;The second comment is that I am
aware also that a simulation study with 50 sub-samples is certainly not enough
to draw firm conclusion. The enlargement of tfhis simulation study is needed, but
I expect that using a larger simulation will II{ESult in a clearer indication of the

goodness of the gamma mixture.

3.4.1 Setup of the study

From the complete MCBS dataset described a:bove 50 sub-samples of size equal to
10% of the original sample, the training sets, have been randomly drawn, while the
remaining 90% constitute the test sets. i

On each training set three estimators of the tail probability p = P (y* > k|y)
have been calculated: :

i
e the empirical distribution function (ECDF),
e a fitted log-normal distribution (LN),

k

¢ 3 gamma mixture model (MG).

The estimators of the tail probability for the ECDF and LN cases are straightfor-

e T b e e
- n
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ward, while for.the MG

Py > kly) = /]P (y* > k|y;9; ) (8, n|y) do dm , - (3.24)

is the quantity of mteresj: . where ' F;(y|@} is the. distribution function. of a Ga(j, 8)
random variable: ’I?lz'lel; predictive probability (3.24)-can be estimated with

= i 1 M - s
Bly' > kly) = HZP(y > ke [65™), ™)

m=1'

P L
L3S A - F e o))

m=1 j=1

i

H

On each test set tfihe:-'sample proportion #{y > k}/nyeq is calculated.and the
analysis is repeated. for different values of the threshold £, in particular for £ equal
to $10,000, $15,000, $:20*0@0"~,, $30,000; $50,000, $80,000 and $100,000.

Before- calculatmg,the tail probability with the MG model the data have been
transformed with a cubxc root transfermation. This dose not introduce any bias in
the results since

P(X >.k) =IP(¢V)_( >€ﬁ)

The parameters cilibgen: for the simulation are: J=200, «=96,000, 8=32,000,
11,000 iterations (I‘r,,OOO of which for burn-in), 100 bootstrap replications for the
ECDF and: LN estimgtors-. These have been chosen by following the indications
provided in Section 3.::2'.51'.

| i‘i
3.4.2 Results .

In Figures 3.8 and 3.9 the:comparison of the estimators with respect to the test
set is reported. Each: #)_Iot- contains the.output of the simulation for a certain value
of the threshold.k. The vertical axes contain the absolute value of the difference
between the tail pro]faébili’ty‘estimatedf‘.-‘on. the-training set and on the test set. The
lowet: the: difference: tl#e best the: prediction: Squares indicate the performance of
the log-normal model} triangles. of the empirical distribution function and circles
of the gamma, rmxture In eacli sub-sample:of the simulation study the estimator
with.the Best-’perfbpméncé'e izindicated by the-cerrespondent.marker which is filled.
Legends summarize f(f:ir-. each thresheld value the: number of simulations in which

e LT
each estimator has been the best..
|
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Threshold k = $10,000 Throshold k = $20,000

| Prtrsining-Pr{test) |
0.020
| Pritraining)-Pr(test) |

0.010

Figure 3.8: Predictive performance comparison of the estimators.

Figures 3.8 and 3.9 indicate that the mixture of gamma performs better than
the empirical distribution as long as the threshold value increases. The log-normal
model is always the worst. The main reason for this result is that the log-normal
distribution is not sufficiently heavy-tailed to mimic the right tail of the these data.

In Figures 3.10 and 3.11 for each estimator the following quantities are reported:

. 30 500 . .
e bias = &55%]”— — p TrRUE, Where p Trug is the sample proportion ﬂ’f—kl from

the whole sample,

=32, [#9-p Tauz]’

® Imse =

50 !
> LS
o relative bias (in %) = —3C 2 TRUE _ bies
P TRUE P TRUE
. ' ' = mseggpp—mse
relative mse (in %) rr— H

These figures allow to assess the statistical performance of the estimators. In
each plot the tail probability estimates for a threshold value are represented through
a box plot for each estimator. The width of each box plot is proportional to
the mean squared error. The horizontal dashed line is the estimate of the tail
probability on the whole sample (this can be'considered as the true value of the
tail probability). The means are indicated with asterisks and joined with a solid
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Figure 3:9: Predictive performance comparison of the estimators.
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Figure 3.10: Statistical comparison of the estimators.
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line. From: these: figures; the conclusion:is:that the gamma mixture is alternatively
more or less: biased tllla.n the empirical distribution function:for different values of
the threshold; but: more efficient for almost all the thresholds. This can be further
checked by inspecting Figures 3.12-and: 3.13.

cm:{mam-m- Comparison of sstimstors {§ samplee = B&)

Eatvration

Figure 3.11: Statistical comparison of the estimators.

Note that in the relative mean squared error plot positive values correspond
to greater efficiency of the estimator. From all these pictures results that the

log-normal model is by far thesmost biased and less efficient.
ji

3.5 Data Aﬁalys.i's

In this section I provide a complete data analysis of the MCBS dataset presented
above. The aimris fo: étoyid’e an estimation of the risk to exceed a given threshold &
for the medical costs in a single hospitalization. While in the previous simulation
study all the ava.ilabl(!a- data have.been- used; in the next data analysis only the
first hospitalization: for each case (i.e. for each subject with a smoking attributable
disease) is used. The: reason for this choice is that the hospitalizations for each
subject are evidently ﬁot independent and nothing has been done in the model for
taking into account th'ls dependence. The size of this reduced sample is n = 2, 833.
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Figure 3.12: Relative bias of the estimators for different threshold values.
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Figure 3.13: Relative mean squared error of the estimators for different threshold
values. {
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!
The: parameters for the Gibbs sampler: have: been set to J=200, -a=44,520,
8=12.720:- 6,000, samphng iterations;: (1;000- of’ Wh.lch for- burn-in): The data have
been transformed: aga,m with.a eubicreot tra.nsformatlon

cublc root of Medical costs for cases

Fi’guhre 3.14:.Fit of the gamma mixture model.
'CJ

From: the Figure (3 14) and (3.15) it is clear that the gamma mixture provides
a very good: representa.tlon of the data at hand.

In the next.four plctures the output of the Gibbs. sampling is reported. Figure
3.16: allows  to: understand-how the: model handles the number of components of
the mixture. Note that even: if J==200 components were available the estimation
process select every tlme just' a small subset of them. A posteriori the number
of selected: components is-between & and 18. The solid line overimposed on the
histograms: arer the eorrespondent:kernel density estimators.

Pigure 3.19 reports the plot of (3.18). and (3:19}, where the vertical dashed lines
indicate-the sample m"ean and the:sample variance.

Figure 3:20 is the final:result of the data analysis. It reports the estimates of
the tail probability fbl? different; values of the threshold, i.e..the “risk” of exceeding
a-given medical costg;i threshold i & sing:le_ ho_spita\lizati’am. In the plot the 95%
credible intervals for each estimate are also reported. Asexpected the risk decreases

5
|
I

h
b
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Figure 3.15: Fit of the gamma mixture model with credible interval.
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Figure 3.16: Missing data and number of selected mixture components.
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Figure:3:17: Posterior mean of the mixture: weights.
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Figure 3.19: Posterior distribution for the model mean and variance.

as the threshold increases (in other words this is the estimated right tail of the
medical costs distribution). Some caution should be used to conclude that the
estimates for higher values of the threshold are more reliable.

3.6 Discussion

In this chapter I developed a parsimonious mixture model that involves just an
additional parameter with respect to the set of mixture weights. This advantage is
counterbalanced by fixing J at & high value (this allows to have a suffictently large
“basis” in the model). The results provided in the data analysis suggest that the
model is able to select the appropriate number of components.

Even if it has not been formally proved, in this chapter I have shown how to
increase the efficiency of the Gibbs sampler used for the estimation of the mixture
paraineters

The simulation study has shown that the gamma mixture model is able to
outperform in a predictive sense other available estimators of the tail probability
of a medical costs distribution. I have shown iﬁ particular that the gamma mixture
model is more efficient than the competitors, Which I included in the study.

i
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Figure 3.20: Risk to exceed a given medical costs threshold in a single hospitaliza-
tion with 95% credible intervals.

Future work will regard a more extensive simulation study, both by including
other methods more s:hitedi for tail estimation and by enlarging the study to more
than 50 sub—samples.',1 Part of future research will also be the assessment of the
sensitivity of the results to the prior choice.

I



Chapter 4

Bayesian Smooth QUAntile Ratio
Estimation (B-SQUARE)

4.1 -Introduction '

In this chapter I present a flexible Bayesian method based on the idea of borrowing .
strength across two samples to get more efficient estimates of certain quantities of

interest. The approach is based on the mixture of gamma distributions described in

the previou;. chapter and is build upon the previo_us work on SQUARE of Dominici

et al. (2005) [22]. I show an application of the method to the estimation of a tail

probability related to medical costs. The dataset used in the data analysis is the

National Medical Expenditures Survey (NMES). ' .

4.2 Background: Smooth QUAntile Ratio Esti-
mation (SQUARE)

4.2.1 Basic idea

SQUARE (Dominici et al. |22]) is a semiparametric approach for estimating the
mean difference between two skewed distributions. The work was motivated by an
application involving the estimation of the medical costs attributable to smoking.
The available data were medical costs paid by a national health insurance pro-

gram for subjects with and without smoking attributable diseases (i.e. lung cancer
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and coronary obstructive pulmonary disease). The challenge of that situation was
represented by the following unique features of the data:

1. both medical costs distributions were highly skewed,

2. the set of cases (subjects with smoking attributable diseases) were much
smaller than the set of contraols,

3. in the samples there were many subjects with zero expenditures.
) [

Orne possible approach (quite used in practice) to deal with these problems is
to transform the data, typically with a logarithm, and assume that these have
a normal distribution {in other words assume that the medical expenditures are
log-normally distributed). This way to proceed presents the drawback of assum-
ing that the distribution of the log-transformed costs is symmetric. One way to
view the limitation of this approach is using a Q-Q plot {(quantile-quantile plot).
In this graph the sample quantiles of the two distributions are plotted against
each other (Wilk and Gnanadesikan [107], Doksum and Sievers [21], Parzen [71],
Wilcox [106], Gilchrist [33]). Under the assumption that the two sub-populations
are log-normally distributed, that is log Y]u1, 0% ~ N (p1,02) and log Ya|ug, 02 ~
N (p2,03), it follows that

log Qu(p) = g + 0,27 (p), g=1,2,

and then the sample log-quantiles should satisfy the linear relation
: o o
08 Q1) = (1o = 2 ) + 2105 Qule)
(251 23}

This hypothesis is often belied by the data. In Figure 4.1 an example about
medical costs for cases and controls is reported. From the figure it is evident that
the assumption of log-n?ci)rmai expenditures, or of a linear relation between the
quantiles, is not correct.

A proposal to solve the problem is to fit a non-linear smooth function to the
Q-Q plot. However this idea has the undesirable property of conditioning on @,
(as in any regression ap'broach) rather than treating the two quantile functions
symmetrically. Moreover the smooth function would take values on the positive

real line making the choice of its degrees of freedom critical. On addition, by
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Figure 4.1: Q-Q plot of log non-zero medical expenditures.

smoothing the Q-Q plot one would estimate the mean difference by the sample
mean difference which is unbiased but highly variable.
In SQUARE an alternative approach is proposed, where the_assurlnption_ is to

smooth the log quantile ratio across percentiles, that is assume

og 2P _ x(p 08, 0<p<l, (4.1)

Qa(p)

v

where X(p, A) is the design matrix of a smooth function and X are its degrees of
freedom.  For an example see at Figure 4.2, where the data are the same as in
Figure 4.1.

This proposal has the advantage to treat the two quantile functions symmetri-
cally and to spend the A degrees of freedom over the space (0,'1), hence imposing
stronger constraints in the tails where little information is available in the smaller

sample.
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Figure 4.2: Log quantiié ratio across percentiles with a smooth fitted function.

4.2.2 Definition .

Consider two positive random variable Y; and Y; with cumulative distribution

functions (cdf) F] and F; and quantﬂe functions ¢, and ;, where

Q;(p) = Fg‘l(p) = inf{y : Fy(y) > p}

for 0 <'p<1and g =12 The aim of SQUARE is to estimate the following
quantity

& =Bl -E¥) = [ {0u0) - Qulp)) o (42)
assuming
log%:%=)((p,)\)ﬁ, D<p<l, o (4.3)

that is the ratio of the quantiles is a smooth function of the percentiles with A
degrees of freedom.

The SQUARE assumf)tion (4.3) allows to rewrite A as

A= /0 Qi(p) [1- f:fx(”-*"’] dp = /0 Qolp) [e¥PNP —1ldp.  (4.4)
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The most important point here for the development of the model in the next
sections is that SQUARE is a nonparametric estimator, because no distributional

assumptions are made neither for ¥) nor for Y5.

4.2.3 Estimation

Let us have two samples' % = (yi1,...,%1n,) and Y2 = (Y21, .., Y1n,) TeSpPEC-
tively from F) and F3, define the order statistics for the two samples as y,) =
(Yg(1)s - - -1 Yatng))» 9 = 1,2 and suppose first that n, = n; (the case ny << ny will
be discussed later).

The estimation procedure in SQUARE is composed of two steps. In the first
step 3 is estimated by ordinary least squares (OLS) assuming the regression model

log? =X MB+e, i=1,...,n, (4.5)
2(5) -

where n = min(n1,n;) and p; =¢/{n+1). In the original formulation of SQUARE
it is assumed that X(p;, \) = 3 t_o Xi(pi)Bx where X, (p) are orthénormal basis.
funetions with Xqy(p) = 0.

In the second step define u; = (y(, y{l)) and uz = (Y2, y&,)), two samples of

size 2n, where

Y = vage P
Yoy = ype XPNP
with E estimated from the previous step and ¢ = 1,...,n. Then estimate A as

AN = 84— 1T

l ¢ “x@nB] L L v B
= o > ne [1 - X(p")‘)ﬁ] U™ > v [EX@"AJB - 1] - (49)
i=1 i=1

Hence A is estimated as the sample mean difference of the two “extended samples”
ug, g = 1,2, that is the original vector or order statistics y(g) augmented with the
mapped values y; from the other sample. " Note that E\(/\) is symmetric with

respect to the two samples and that it is a linear combination of order statistics

INote that the two distributions F, and Fy are linked due to the SQUARE assumption on
the two quantile functions (4 and Qq. So the two sample are conditionally independent given
the two distribution functions F; and F5.
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with weights estimated from the data, so it is related to L-estimators (see Serfling
[93] and Huber [40]).

To extend SQUARE to the case in which n; < ny the authors propose to
calculate a(}\) as in (4.6) but replacing ya by ga, the linear interpolation of the
order statistics yyyy to the grid of points p;; = i/(my + 1), i =1,...,n.. A similar
substitution can be dong if ny > no.

The solution adopted to take into account also the problem of possible zero-cost
observations is to define m, = P(Y, > 0) and g, = E[Y|Y; > 0], for g = 1,2. Then
redefine the mean difference as A = mu; — oMy, 1t follows that A can now be
estimated by ' '

A(N) = TGy — Tl ,
where 7, is the proportion of non-zero costs for sample g.

The estimation of A is done by B-fold cross validation {see Efron and Tibshirani

25]).

4.2.4 Special cases

Two special cases arise for specific choices of s(p, A;8) = X(p,A)8) and of the
basis functions X,(p). In particular here it is of interest to consider two of these
situations. '

1. If Y, ~ U[0,8,], g = 1,2, then Q1(p)/Q2(p) = 6 /6,, that is the smoothing
function of the log quantile ratio is a constant, and A = (8, — 6,)/2. The
SQUARE estimate of A is then

AUnif, A =0) = % [@1 (1 - e_E") ~7, (1 . eBO)] ,

where fy = log v~ logy,.

2. 1E Yy ~ Lnfug,07), g = 1,2, then log Q1(p)/Q2(p) = Bo + B127'(p), that
is the smoothing function of the log quantile ratio is linear in ®~!(p) (the
quantile function of a standard normal random variable), where Gy = (1 —u2)
and By = (01 — 02), and A = exp{py + 0}/2} — exp{uz + 03/2}. The
SQUARE estimate 3.([371, A =1) is obtained by fitting the regression model
(4.5) with Xo(p) = 1 and X;(p) = ®~!(p), and using the estimated B3 in
(4.6). Note that A(Ln, A = 1) is not the MLE of A, which is defined as
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Arn = exp{logy, + s2/2} — exp{logy, +.52/2}, where s is the standard

deviation of the log-transformed data.

4.2.5 Statistical prope}'ties

In their work on SQUARE Dominici et al. [22] show that under certain conditions
ﬁ is consistent and asymptotically normal and that A is asymptotically normal
as well. In both the cases they also report the explicit form for the asymptotic
variances. For a detailed proof of these statements see Cope [14].

From the simulation study performed in the original work by Dominici et al.
(22] it follows that SQUARE is slightly biased but far more efficient then other

competing estimator of the mean difference.

4.3 The Bayesian SQUARE (B-SQUARE) Model

The main idea implicit in the SQUARE approach is to borrow strength across
the two samples in order to estimate more efficiently the mean difference A. This
is particularly important because one sample (typically the set of cases) is often
much smaller than the other. This approach can in principle be further improved
by incorporating it in a Bayesian setting. This can be done by following either a
parametric or a nonparametric formulation. In this thesis T will use a parametric,
but flexible, Bayesian approach. On the one side, the introduction of parameters in
SQUARE has the disadvantage to impose some constraints on the model. On the
other side, a Bayesian approach takes into account also the uncertainty of these
parameters, allowing the possibility to incorporate prior information that is not
possible in a frequentist framework. As I will show, sometimes this trade-off is in
favor of the Bayesian approach and other times in favor of the frequentist approach.
To summarize, I am interested here in understanding how much one can gain in

terms of efficiency by including prior information-in the SQUARE setting.

4.3.1 Likelihood

Consider two conditionally independent positive random variables V) and ¥, given:

Fy and F; with quantile functions @1 and (5. In the aipplication, for example, ¥}
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is the medical bill paid by a national health program (like the Medicare program
in US) for the cases (typically subjects with a disease) in each hospitalization and
Y; is the medical bill for the controls. Assume that the SQUARE assumption

Q1{p) _
logm—){(p,)\)ﬁ, O<p<1 (4.7)

holds, where A are the degrees of freedom of the smooth function whose design
- matrix is X(p, A). I will discﬁss different choices for this smooth function, the
most frequently used being a natural cubic spline or a polynomial.

Assume also that Y3 {n ~ Fy(+; n), where F} is a given distribution function and 7
aset of parameters. In the next sections I will mainly use Fi = MizGa (w,8]J), but
other choices will also be considered. The idea here is that the specification of F,
together with the link between @, and Q, implicitly determines also a distributional
assumption for F3. This is a consequence of the well known fact (see Gilchrist [33})
that to describe the prot;ability structure of a (continuous) random variable X one

can indifferently choose one of the following alternatives:

o cumulative distribution function F(z) =P(X < z),

density function f(z) = %“’—),

quantile function Q(p) = F~'(p) = inf{z : F(z) > p}, -

H

quantile density function q(p) = —ld‘jﬁ,”

density quantile function f,(z) = f(Q(p)).

Unfortunately often it is not possible to convert a model stated in one form to
another. For example, if X ~ Ln(u,o?), then the cdf is known explicitly, but the

quantile function is not, since

Q(p) = e#to e )

where ®~(p) is the quantile function of a standard normal random variable, that
has no explicit form. For details about some properties of and relations among
these objects see Appendix A. '

I now show that givenI the assumptions above it is possible to obtain the explicit

form of the density for Y. This density is actually a density quantile function since
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it expressed as a function of the percentile p. Then it will be possible to calculate
the likelihood for the parameters of the model. This is something different from
SQUARE since it provides a completely nonparametric estimation approach.

Note first that (4.7) implies t

0up) = Qulp) Y8 O<p<l, (4.8)

and it is useful to remember that for a generic random variable X with density
- f(z) and quantile function Q(p) the quantile density and density quantile functions

are linked through the following relation

d o1

q(p) = &E?(P) = F00) (4.9)

(see Appendix A for more details about this definition}.
Differentiate now (4.8),

0(®) = () e XPYB 1 X' (p, 1) B Qalp) e XPNB, (4.10)

where X'(p, A) is the derivative of X(p, A} with respect to p, 0 <p < 1.
Then apply (4.9) to ¢:(p) and go(p) obtaining

1 1
K@)~ HQ:p)n.B)

eXPNE+ X'(p,A) BQalp) ¥PNP, (411)

0_1'

- _ fu(@i(p)in)
F@I0 = xens - F @) X Bem ¢
Then substituting (4.8) '
X{pA) B
f2(@(p)In, B) = £ (Qalp) e ) (4.13)

e XA B — f1(Qalp) e XN PIn) X'(p, A) BQa(p)’

with0<p< 1.

A first remark is that f, correctly depends both upon the SQUARE parameters
B and the Y| parameters 7 through the f density. Secondly f, is expressed in
terms of the percentiles p. This will cause SOHIIG prdblems in the computation of
the likelihood (see next section). Finally, note-that nothing in (4.13) assures f; to

be positive. The following constraint on the feasible 8 has thus to be imposed

. 1
NGOGk

X'(p, ) O<p<l. (4.14)
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This constraint is a consequence of a known property about the product of two
positive quantile functions (see Appendix A, Equation (A.5)).
Using the previous r!ésult and some known facts about quantile _functions (see

Appendix A) it is possible to write explicitly the likelihood for the model. This is
given by

L{m Blyi - - Yiny» Yar, - - - ;y2n2) = Hfl(yul’f]) X HfQ(Qz(Pzi)P?,ﬁ) - (4.15)

i=1 i=1 .

The drawback of this expression is that it depends on the true py, defined as

P = Fa(n), it = 1,..". ,nz. In the next section I propose a way to solve this
situation. "

4.3.2 Likelihood approximation

Unfortunately the likelihood (4.15) cannot be calculated directly because it involves
the true percentiles ps;, that is the percentiles generated by F3, which are unknown.
In particular the problem arises for the quantities X (px, A) and X' (p2i, A) needed
to compute f2(Q2(pai)[7, B).

In the following steps I describe a way to go around the impasse by opportunely
approximating the likelihood.

1. Since (y11,-..,Y1n,) 15 assumed to be a sample from Fi, calculate p;; =
F1 (yl(i)): for i = ].:,‘ e, T

2. Calculate Yo = yi(me”*®+MP, such that (py;, a(;)) define an approximation
Q. (p) of the true quantile function Qy(p) evaluated at {p;;},.

3. Invert ég(p) to find (Pa1, ..., D2n,) such that yey) = @2 (Pz), i=1,...,n,.

Using these calculations the (4.15) can then be approximated as

s
-

L(0,Bly1s- > Vi Y21, Vomg) = | [ Ailwsln) x [] f2(@2(pz)ln, B)
i=] '

i i=1

Q

[T AGiln) x [T f2(@@)ln 8),
i=1 i=1

where Qy(p) is the approximation to the true quantile function Q(p) and py; are
approximations to the true py; = Fy (yagi))-
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Note finally that, contrarily to SQUARE, here there is no need to distinguish
between the cases ny = ng and n; # ny. The model uses all the information
available from the two samples without any ne?d to interpolate the order statistics
of the larger sample with the percentile of the'smaller one.

+

4.3.3 Special cases

Tt is useful at this point to examine two special cases: the first where Y] is a uniform
random variable and the smooth function is a constant, and the second where Y}
is a log-normal and the smooth function is linear in ®~1(p). These exercises are
helpful on one side to check the correctness of the expressioﬁ for f2(Q:2(p)|n, B)
and on the other side to present B-SQUARE with log-normal data, that will be
used later in the simulation study. These examples clearly show that knowing two
of the three elements {F}, Fy, log Q1 (p)/Qa(p)} fully specify the third one.

Special case 1: F} Uniform and X(p,A=0)=1

Assume Y1[6; ~ U[0,6;] and log Q1(p)/Q2(p) = fBo. Thus the density, distribution

and quantile functions for Y are given by

1

filvi|01) = @'1‘]1[0.91]{3!1}
Rwlh) = 35 welos)
1

Qu{plf) = 6ip, O0<p<l.

1

It follows then from (4.13)

% Lo, 6, {@2 (p)e®}
e—ﬁo

.f2(Q2(P)|91,ﬁ0) =

1
= mﬂ[o,ale-ﬂog{Qz(P)}, -

which is the density of a U[0,8,] random rvariable evaluated in Q9(p) with 6, =
@1e%. Note that the density of ¥, correctly depends both on the SQUARE pa-

rameter 8y and the Y] parameter 5 = 6,.

i T IR e
" [N
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Special case 2: F} Log-normal and X(p, A =1) = [1,9(p)]

Assume Yi|u, 07 ~ Ln(u, %) and log Q1 (p)/Qa(p) = Bo+ B, @' (p). The density,
distribution and quantile functions for Y, are then given by

f1('9'1|#1,03)

Fl(yl |!:{'1: gf)

‘Ql(ply'l’af)

_{logyy—u)?
1 e 201 .
Vvamro n

a1

= em-*-fn‘i"l(z?)’ "D<p<l.

where ®~(p) is the quaﬁtile function of a standard normal random variable. Then

from (4.12)

QD) i1, 0%, B0, Br) =

-1 2
!u3+a1¢ (p]—m!

1 [ o1

V2ro, etr1+o1 8~ 1(p)
_{mytero—lp—p)?
2u

—Bo—p1®-1(p)} —1 e 1
€ 1 Varo, er1to1d~m) By
.—112_ gk1+a1 27 (p)

o= 1(p}
1 -
o

2
Ir‘(m]
1 e

V2ro, emitor® 1(p)
e —Ba—-Hr2p) [1 - &jl
S )
-1 2
L brtel

\/’Eo‘l € ?
e (P‘l _ﬁDH‘(O'_:[ - )(I)"]- (p) (o1~01)
. o1

[’

1 € Z
V27(oy — By) e WPl to =519~ (p)

2
((o1-Ba)+1-B1)0 = @)= (1 -Bp) )
i e o1 -5)?

\'% 271'(0’1 - ﬁl) e(#l—ﬁo}+(01—ﬁ1)¢—1(p)
_LMZW_‘("LEEDH?.
1 e 2oy =57)

which is the density function of a £n(u,, 02) random variable evaluated in Q,(p)

with gy = (4 — fo) and o2 = (01 — 1) Note that the density of ¥ correctly
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depends both upon the SQUARE parameters ﬁ (Bo, £1) and the Y7 parameters
(!u'l: Ul)

) i
4.3.4 Prior Structure

Since in the simulation study I will consider itwo B-SQUARE models, one with
Yi|w, 8 ~ MizGa (m,8|J) and the other with 1”1|,u1, 0? ~ Ln{u,0?), in this section
I provide a prior structure for both the models.

For the model with Y;|w, 8 ~ MizGa (w, Gi'J ) the prior distributions for 7 and
8 are the same as in Chapter 3, that is 8 ~ ggz(a B)and m ~ Dy (3,...,4). For
B a noninformative (improper) prior will be used

For the model with Y1|u1,0% ~ Ln(p, o?) the prior for y; is a normal (v, (%)
distribution and the prior for o, is an inverse gamma ZG(¢, p) distribution. For 3
s noninformative (improper) prior is still used.';.r

The two models are summarized in Figure:'f4.3 and 4.4.
'

Model : 3|0, 7 ~ MizGa(8, =|J) /

Qu(p) = Qu(p) X6V ‘é’-

Prior structure : 8 ~ Ga(a, B) |
m= (T 1) ~ Dy (e, 3)

B=0060,-..,0)~ uni_form {improper) priot

8, = and B independent

Figure 4.3: The B-SQUARE model with gamma mixture Y; data.

4.3.5 Posterior calculation

The posterior distribution is obtained by simulation using a Metropolis-Hastings
algorithm with blocking (see Carlin et al. [12], O’Hagan [70] and Robert et al.
[86]). 1 still keep distinct the presentation forthe model with the gamma mixture
and the model with the log-normal distributic}n.




I :
62 Bayesian Smooth QUAntile Ratio Estimation (B-SQUARE)

i
I
|

Model : Yijir, 0% & Ln(js, 0?)
Qo) = Qulp) e XOV8
Prior structure : ‘u.l ~N (y; %)
01 ~ IG(¢, p)
,3;= (Bo, B1) ~ uniform (improper) prior
_u&,, o1 and B independent

t
{The B-SQUARE model with log-normal Y; data.

Figure 4.4;

1\
B-SQUARE w1th Y1|£r' T~ Mzmga(ﬁ 1r|J)

The proposal dlstnbutlon for @ is a gamma Ga (A, B) distribution where A and B
are chosen such that H

P Efft]=4=20
:‘ va.r[G*]=§§=Kg-§ ’

that is ‘

where § and 5a.re reséipectively the mean and the variance of the chain estimated
using only the first s;a.:li‘crrlple2 (Y11, - -1 ¥1n,) (see Chapter 3) and Kj is a constant to
be fixed such that the% @ subchain has a reasonable acceptance rate.

The proposal diétribution for 7 is a Dirichlet D Jv(K" T, - ..., Kr Ty) distribution
where (7y,...,7s) are the estimates of ® obtained using only the first sample
(11, - Y1n,) (seE Ch‘a.pter 3) and Ky is a constant to be fixed such that the =
subchain has a reasoqable acceptance rate. This choice of the proposal parameters
allows the expected. pfoposal 7* to be equal® to 7, while its variance to be inversely
proportional to Ky, ii;e. E[r*] = % and var[z*] x K;!.

Finally the prop.qﬁia.l for B is a A-multivariate normal N, (81, K5 Zors)

2The-algorithm for & is thus an indépendent Metropolis-Hastings.
3This means that the algorithm for 7 is an independent Metropolis-Hastings.
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14 and variance-

distribution with mean equal to the previcus it;eration value 8m-
covariance matrix equal to Yorg, the varianc?—cova.riance matrix of the ordinary
least squares estimator Bors. Kg is a constant to be fixed such that the 8 subchain
has a reasonable acceptance rate.

:

|
4
3

B-SQUARE with Yi|u;, 02 ~ Ln(ps, o2)

The proposal distribution for p,; is a symmetric triangular

- S m—1}s (M- s
Tr (l—‘gm R Kpﬁ,#g 1)11_!-"5 Y + Ku“‘ﬁ)

centered on the previous accepted value u(lm_l? and where s;/,/1; is the standard
error for the mean of the log-transformed 34 czlata {for a brief review of the trian-
gular distribution see Appendix B). K, is a constant to be fixed such that the g
subchain has a reasonable acceptance rate. !

The proposal distribution for oy is a log-normal Ln (a§"‘“1), Kg) distribution
with mean equal to the previous accepted value agm“l) and variance equal to K2,
where K, is a parameter to fix such that the &1 subchain has a reasonable accep-
tance rate.

Finally the proposal for 3 is a bivariate normal A, (8™~Y, Kg Zos) distribu-
tion with mean equal to the previous iteration value 8™~ and variance-covariance
matrix equal to Lgys, the variance-covariance matrix of the ordinary least squares
estimator Bors. Kg is a constant to be ﬁxéd such that the B subchain has a

reasonable acceptance rate.

4.3.6 Choice of the hyperparameters

The advices for choice of the hyperparameteré are the same given in Section 3.2.5
of the previous chapter. For what regards the choice of the proposal parameters,
they are the result of a calibration aimed at reaching a reasonable acceptance rate
for the Metropolis-Hastings algorithm.

4That is a random-walk Metropolis for 3.

.
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4.3.7 Qutput of the model:

The first output-of-the: modebis the: probability for ¥; to exceed & givén threshold
k, that:is i

| :

. . _ N W
P(yi > klyr 1) = ﬁPﬁyn > kliy, yo.87) f(8, 7| y1) dbdmr .

This quantity can berestimated with

i

l

PM?HW-J~ZW@Q%WWRW)

m=1

= 1- 1y T O Zw(m)F (k |6"™), .(4.16)

I! m'—l j=1
where Fj (-] 8) is theidistribution-function of a Ga(j,6).
It is also possible to produce a second output which is an estimate of the mean
difference A = gy —'ptp; Define pi™ = F (116", 7™ and ™ such that
=Q, (pz; ), then, calculate.

Am — _™ _ X0 ))5("‘)
A lr e {nl zyl(t) [1 e
L m fZWﬂ(MW”q L

This quantity can th}an be compared with the result produced with SQUARE.
The advantage of B-SQUARE is that it provides an estimate of the full posterior
distribution of Delta;j that is useful for assessing the uncertainty' inherent in the
estimation. |

4.4 Data

The dataset used in the following analysis is the National;Medical Expenditure-Sur-
vey (NMES). It prov}des-. data or: annual:medical’expenditures and disease status
for a representative: s'%a.mple of the U.S. civilian, non-institutionalized population.
NMES: data: derive: fré)m; 1987. Recent updates:(e.g: Medical Expenditure Panel

5Sources:t Johns Hopkms Schook of Public Health and US Department of Health and Human
Services; Public Health *Sigrvi'ce
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Table 4.1: Composition of the NMES dataset.

smokers | non smokers
cases 165 (64%) | 23 (70%) | 188 (65%)

controls | 4,682 (32%) | 4,546 (28%) | 9,228 (25%)

4,847 (32%) | 4,569 (18%) | 9,416 (25%)

Survey, 1997) have insufficient sample size, although an update to the analysis may
be possible with future data releases. In the dataset used in the analysis a total
of 9,416 individuals were available (see table ai:'aove, where numbers in parentheses
represent the percentage of people in that cell:with non-zero expenditures).

3
3
t

4.5 Data Analysis

In this section I present a data analysis of the NMES dataset using B-SQUARE.
Like in the previous chapter, the aim is to assess the risk to exceed a given threshold
for the medical costs of the cases (subjects with smoking attributable diseases, i.e.
lung cancer and coronary obstructive pulmona“ry disease). Y; are the medical costs
for the cases and Y, are the medical costs for the controls. B-SQUARE with
MizGa(8,m|J) is used. The parameters of the model are then J = 40, a = 845,
B = 13,000, X(p, A) is a polynomial of degree A = 6, data are transformed with a
cubic root function (this is an innocuous step, as is discussed in details in Appendix
A), 25,000 sampling iterations are used (5,0b0 of which for burn-in), Kp = 1,
K. =250 and Kz = 1.5.

Figure 4.5 reports the fitted values for B-SQUARE. The gray points are data
(under a cubic root transformation). On the vertical axis the log-quantile ratio is
plotted. The solid line inside the dashed lines';‘ (the predictions bands) is the OLS
estimate while the solid line inside the shaded band (the credible bands) is the
B-SQUARE estimate. The main difference between the two models seems to be
that B-SQUARE is less sensitive to extreme values.

In the next three pictures the output of ﬁhe Metropolis-Hastings is reported.
All the chains for the model. parameters mixéd well and the acceptance rate are
good, being 28% for 8, 25% for ¢ and less than 1% for s {this is the reason why

s e —— T
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BSQUARE vs. OLS estimates (n=118)

I_og quantile ratio

Figure 4.5: Fitted B-SQUARE model (on transformed data).

the output for the weights is not reported). The reason for the very low acceptance
rate for 7 is that their. starting values {an estimate using the model of the previous
-chpaterr, that is using just one sample for 1,500 {terations)'- were already close to
convergence. Moreover the acceptance of J = 40 parameters in one shot (through
the Dirichlet pr0posa1' distribution)-is quite difficult. The solid line overimposed
on the histogrmas are.the correspondent kernel density estimators.

For what regards 'h!:he output of the analysis, Figure 4.9 contains the risk to
exceed in one year a,given threshold & for the medical costs of a subject with
smoking attributable diseases.. The plot shows a reasonable behavior of this risk,
that is a decrease for increasing values of k. The vertical line attached to each
estimate is; the credible:interval. These interval are very narrow. Some caution
should Berused to corllclud'e that the estimates for higher values of the threshold
are more reliable.

Finally Figure 4.10. contains the-posterior distribution of the mean difference
A.in: (4:17), weighted:for the: percentage of non-zero costs among the cases and
the controls. Note thz%t the weighited simple mean difference is $5,990.54, which.is
depicted in the plot. using a vertical dashed:line. The other two vertical solid lines
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Figure 4.8: ?bsterior: distribution for  (on transformed data).
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Figure 49: Risk to exceed & given medical cost threshold.
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indicate the 95% credible interval for A, that o;ontains the simple mean difference.
ki
{

1. Histogram of delta

I R

Figure 4.10: Posterior dis_%ribution for A.
{

4.6 Discussion

In this chapter I developed a Bayesian model tlilat uses the information provided by
two samples to better estimate the tail proba?ihty of a medical costs distribution
and the mean difference of two populations, g,ypica.lly the population of the case
and the population of the controls. The model is based on the SQUARE approach
recently proposed by Dominici et al. [22], ini'which they assume a relation that
links the two quantile functions. ; ’

The main finding of the chapter is that the }jkelihood function for the SQUARE _
approach has been given thanks to the nice properties of the quantile and quantile
density functions. The exact likelihood canno}: be calculated so an approximation
has been proposed. The data analysis and numerous other analyses not reported
in the chapter show that this approximation can be considered satisfactory at least

from an applicative point of view. )

Future work will regard an extensive simuliation study that include other meth-

ods for tail estimation. Secondly future research will also study how to measure the
. . . 1

gain in efficiency from borrowing strength across samples, as well as an assessment
1

'
I

1
]
i
1
I
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'
of the sensitivity of t1:1e results.to the prior choice.
|
[
|
|
|
4.‘
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Chapter 5
Discussion and Extensions

In the previous chapters t\;vo new Bayesian methods for estimating the density of
skewed data have been proposed. These may have many potential applications in
practice (public health, finance, etc.). They represent an attempt to develop semi-
parametric Bayesian models that use quantile instead of cumulative distribution
functions. -

The first semiparametric Bayesian model for skewed data is based on a mixture
of gamma distributions which share a common scale parameter . This is the
only parameter in the model apart additional to the mixture weights. Thus an -
advantage of the gamma mixture model is the parsimony in the parametrization.
In Chapter 3 [ have also proposed an efficient computation algorithm obtained
by integrating out the parameter . The model predictive performance have been
compared to that of other competing approaches for tail estimation. The simulation
study shows that the model outperforms the other methods in terms of efficiency
of the estimation. Future work will be done about how to choose among different
gamma mixture models. One possibility wo.uld be to use the deviance information
criterion (DIC), but some preliminary results not reported in the thesis show that
further research is needed on this side.

The secbnd model, called B-SQUARE, builds on the previous gamma mixture
and extends it in the direction of exploiting the information content of two samples
(instead of only one) in estimating the skewed density. ' The idea of borrowing
strength across sample is certainly not new in the literature. The building block
of the model is in fact SQUARE, where this idea of gathering information from

two samples-for estimating a certain quantity is strongly implemented. The main
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innovation introduced is the explicit form for the density of the second population.
This allows to write the likelihood of the model providing in this way a likelihood-
based version of SQUARE. The main drawback of B-SQUARE remains instead the
computational burden required for the estimation. Further work should be done
also with respect to this point.

5.1 Directions for Future Research -

Several problems arise as themes of future research.

A first theme is the study of the statistical properties of the models introduced
in the last two chapters, that is the gamma mixture model and the B-SQUARE
model. In particular thie estimation algorithms properties need to studied more
deeply both to reduce their computational burden and to assess the efficiency that
they allow to reach. Moreover a thorough study of goodness of fit tests for the
models introduced would be very useful.

Secondly the B—SQUARE model can be extended in many directions, mainly
to allow multiple group comparisons. Another very interesting theme of research
is to extend B-SQUARE to a regression setting that involve the use of cox.ra.riates.
This has been already dene for the SQUARE approach by Dominici et al. [23].
Implementing a similar approach for B- SQUAR,E is quite challenging, especially
for the efficient computatlona.i algorithm that this would require.

A further research therne is the extension of B-SQUARE to a Bayesian nonpara-
metric setting. Some indications on how to proceed already exist in the literature
(see Ishwaran et al. [41] Gelfand et al. [31], Kottas et al. [51},{52], Hjort et al.
[37] and Petrone et al. [75]) but a lot of work remains to be done.

In general I think that a systematic development of Bayesian data analysis
techniques for quantile functions is really important and would be very useful both

from an applied and a n}‘ethodological point of view.



Appendix A

Some Useful Facts about Quantile

Functions

A.1 Basic Definitions and Properties

In this section I report some definitions and p}dperties that are used in the thesis

(for proofs of these statements see Shorack [95]).

Definition A.1 (Quantile function) For aity distribution function F(-) the quan-

tile function of F is defined' as
Qp)=F'p)=inf{zeR: Flz)>p}, O0<p<l,
with the convention that inf® = oo. .

Some of the properties of the quantile function are summarized in the next

proposition (for proofs see Resnick [79] and Shorack [95]).

Proposition A.1 (Properties of a quantile function) If F is a distribution
function?, then for p € (0,1) and z € R the following properties hold.

(a) Flz)2p <+  F(p)<=z

1Strictly speaking the quantile function of F is defined as the generalized inverse of the
distribution function F. To avoid confusion with the standard notation for the ordinary inverse

of a given function, some authors prefer to denote the quantile function with the notation F~(p).
?That is a right-continuous function..

Sy .
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) Flz)<p <« Flp)>z

(€) Flz)) <p< F(za) <  z1< Flp) <z
(d) F(F~Y(p)) > p, with equality for F' continuous.

(e) F~(F(z)) £ z, with equality for F increasing.

(f) F is continuous = F~! is increasing.

(g) F is increasing .4=> F~!is continuous.

(h) If X ~ F, then P[F~}(F(X)) # X] = 0.

Proposition A.2 (MOfnents or order k) If X > 0 and X ~ F, with quantile
function Q(p), then ‘
1
B} = [ (0. (A1)

More generally, if & is a non-decreasing function, then

E[A(X)] = f h(Q@))dp. (A2) |

From the previous relations it follows that

varl] = [ (Q(p) ~ EX) . (A3)

Proposition A.3 (Wasserstein distance) For k = 1,2 define

Fr = {F : F' is a distribution function, and / |z|*dF(x) < oo}

[
dk(Fl,Fz):'!/ |Q1(p)—Q2(P)lde for all [y, Fy € F.
0 .

Then dy, are distance functions and (Fy, d;) are complete metric spaces.

Proposition A.4 (Den;éity quantile function, Parzen [71]) Let X be a ran-
dom variable with p= F(a:) and £ = @(p) for any pair (aﬁ,p), with 0 < ‘p < 1.
Suppose also that f{z) = F’(z) is its density function and g(p) = @' (p) the quantile
density function. Then

flz)g(p) = f(Q(p))alp) =1 or f(Q(p)) 0<p<l. (A4)

_ 1
" q(p)’
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Proof. Consider the identity p = F(Q(p)) al;id differentiate it with 'I:espect to p,
then by the chain rule

dPQW) Q) _

0< <‘1,
dp dp P

from which the statement follows immediately. a

Remark A.1 This result allows to plot the density function (z, f(x))} entirely from
(Q(p), 1/¢(p)), that is from the quantile function and its derivative, without being
~ able to invert Q(p} to get F(z).

Example A.1 (Exponential Distribution) If X ~ £zp()), then the distribu-
tion function is
p=F)=1—e", A>0,z>0,

the density function is -
flz)=Are™, z>0,

the quantile function is
r=Qp)=-ln(l-p)/}, 0<p<l

and the quantile density function is

d@{p) 1
q(p) = 'dp _')\(1 —P) :

The previous proposition allows then to get the density quantile function

1
HQW) = 7 =22 -9

Example A.2 (Log-normal Distribution) If X ~ Ln(p,0?), then the distri-

bution function is

1 —
p=F(I)=<I>(” “), o >0,

a

where ®(-) is the distribution function of a standard normal random variable, the

)= o (RE2E),

4

density function is
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where ¢(-) is the density function of a standard normal random variable, the quan-
tile function is ¢

z=Qp) =¥ g<p<i,

where ®!(-) is the quantile function of a standard normal random variable, and

the quantile density function is

_ dQ(p) _ o'e#'*‘o'(p‘l(.p)
dp ¢(27'(p))
The previous proposition allows then to get the density quantile function

. alp)

£Qp) = —— = 2~ 2)

q(p) o ge#'i'o’qb'l(ip)

(see Figure A.1 for an example with 4 = 2 and o0 = 1.5).

density quantile
0.06 0.08 Q.10

0.04

0.02

0.00

0.0 0.2 0.4 0.6 0.8 1.0

percenlite

Figure A.1: Example of density quantile function for a log-normal random variable.

Example A.3 (Pareto Distribution) If X ~ Pa(a,b), then the distribution

function is i
p=Fz)=1-42"", z>0,0,b>0,
the density function is

i flz) = ab®z™o71,
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~ A.2 Quantile Function of a Transformed Random Variable

the quantile function is

b ' _
r=Q(p)=—>7=, 0<p<1,
(1-p)=
and the quantile density function is

_dQp) b
W="g = a(li— p)*s"

The previous proposition allows then to get the density quantile function

(see Figure A.2 for an example with a = 2 and b = 1).

1.5 2.0

density quantile
1.0

0.5

0.0

0.0 02 0.4 06 0.8 1.0

percentile
EA

Figure A.2: Example of density quantile function for a Pareto random variable.

A.2 Quantile Function of a Tra-'nsformed Ran-

dom Variable

:
A very interesting property of quantile functions is that it is possible to apply to

them a large set of transformations and still get a quantile function. These features

———— e A

o
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are particularly useful when one wants to model directly the quantile function of a
certain random variable, like in SQUARE and B-SQUARE. In this section I report

briefly the properties used in the chapters. The source for this section is mainly
Gilchrist [33].

Addition rule

If Q1(p) and Q2(p) are two quantile functions, then @, (p) + Q2(p) is also a quantile
function. This rule follows simply from the fact that a sum of two non-decreasing

functions is still a non-decreasing one.

Multiplicalion rule

The product of two positive quantile functions Q;(p) and Q.(p), that is Q(p) =

1(p) x Q2(p), is also a quantile function. This rule is important for SQUARE and
B-SQUARE since they are defined as

. Qu(p) = Qufp) X N8

so to ensure that the product is a quantile function eXPMB has to satisfy the
U

condition ¢ (p) = d@Q:{p)/dp > 0, that is
0(p) eXPM8 1+ X'(p, \)B Qa(p) XV > 0,

or !
1
 f2(Q2(p)) @2(p)

Then e*®»? can be decreasing for some values of p but it has to satisfy this

X'(p,A)B 2

O<p<l. (A.5)

requirement.

Note that (A.5) is equivalent to condition (4.14) required to find the f; density
in B-SQUARE.

Intermediate rule

If @1(p) and Q2(p) are two quantile functions, then Q(p) = 7Q\(p) + (1 — m)Qa(p),
0<£r<1 isalsoa qdhntile function. This means that a mixture of quantile

functions is a quantile fl.liﬁCtiOIl. Note that it is not true that the quantile function
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of a mixture is the mixture of the quantile functions of the components, that is

J J

Fle)=) mF(z) » Q®)=F"() =) mQp),
j:]_ j=1

where F; and @; are respectively the distribution and the quantile functions of the

mixture components. This result reflects a situation that can happen in practice,

i.e. the fact that a random variable may have an explicit distribution function but

the quantile function is not writable or vice versa.

h-transformation rule

If @x(p) is the quantile function of a random variable X and A is a non-decreasing
function, then for ¥ = A(X)

Qy(p) = h(Qx(p)}- (A.6)

This rule is very useful in B-SQUARE since it allows to work on a transformation
of the original variables (typically a power transformation) and then re-transform
back the result through

Qr(p) =h(@x()) = Qx()=h"[Qvr(). (A7)

For example, suppose that B-SQUARE is estimated on the transformed variables
Y, = h(Y}) = ¥} and ¥, = h(Y3) = Y, with & > 0, that is

Qy, (p) = Qy, (p) XPV2.

Then once (3 has been estimated it is possible to transform it back to the original

scale by noting that (A.7) implies

=

Qu(p) = [Q7 ()",

and so the model can be rewritten as

QYL (P) = QYz (p) X PP )

v;rhere 8 =pB/k.



80 Some Useful Facts about Quantile Functions

Addition rule for guantile density functions

"The sum of two quantile density functions ¢ (p) and go(p) is itself a quantile density
function, that is '

| o dp) =ap) + )
Note also that using (A4) this rule implies
1

FQEP) = ————
flQule)) * £(Q2(p)

where Q(p) = Q1(p) + Q2(p).

A.3 Maximum Likelihood Estimation and Quan-

tile Functions

Consider a sample (y1,...,9,) of iid observations from a distribution F(y|8) with
density f(y|6), where @ 'is an unknown parameter. Then the likelihood of 6 is
defined by

L6y, ym) = Hf(yz'W) .
i=1

It is possible to write the likelihood using the density quantile function f(Q(p)|8)
as

LBy, ) = [[ FlQ)I6),

where p; = Fyl0), i = 1,...,n, that is (p1,...,ps) are the actual p generated
by the observed y for the given 8 through model F.

In principle it is possible to restate all the maximum likelihood estimation
theory in terms of the quantile function (see Appendix 2 in Gilchrist [33]).



Appendix B
The Triangular Distribution

A continuous random variable X that takes valiles in the interval (e, ] is distributed

according to a triangular distribution 7r(a,b,¢) if its density is

b el = {c—a)(b-a)
f(:c|a, ! ) 2(c—x)

Goalen  orb<ese,

where b € [a, ] is the mode. The distribution is symmetric when (b— a) = (c—b).

For some examples see Figure B.1.

*
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Figure B.1: Some examples of the triangular distribution Tr(e, b, ¢).
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The mean and variance are
.
EX] = §(a +b+¢)
‘ 1
var[X] = ﬁ(o‘,2 + b +c* —ab— ac — be)?.

Since the cumulative distribution function and the quantile function are known
explicitly, to draw random numbers from this distribution one can apply the inverse
transformation method by generating deviates from a uniform %[0, 1] distribution

and then mapping themback through the quantile function (see the R code in the
Appendix C).
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R code

4

In this appendix I report all the R functions for the estimation of the models

presented in the thesis.

-

C.1 Functions for the M:izGa (,6]J) Model

mixgamma <- function(yy,JJ,GG,MM,a,b,alpha,std=F,cubic=F}{
NN <- langth(yy)
Yy-temp <- yy : — -
it (ecubic) yy <~ yy~(1/3)
mu <- mean{yy)
if (std) yy < yy/mu
yy-grid <- seq(min(yy)+.66,max{yy)+1.5,langth=GG) . B

atich <= matrix{NA,nrow=NN,ncol=MM)

pesi <- matrix{(NA,nrow=MM,ncol=JI) : ’ )

xx <- rep(1,NN}

we <= rep{1/JJ,J0)
theta <- rep(NA,MM)
logft <- matrix(NA,JJ,GG) ) .
£f <- matrix(NA,MM,GG)

for {m in t:MM){ . Y.
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R code

for

(on in 1:NN} {

tenp <~ log(seq(a+sum{xx)-xx{nn] ,a+sum(xx}-xx{oa]l+JJ-1))

pi <~ (1:33-1)%dog(yylunl) - lgampa(1:11) + cumsun{temp) - (1:JJ)*log(b+sun(yy))
pi <~ { wwrexp(pi) } / sum( wusaxp(pi) )

xx{nn] <- sample(1:JJ,1,prob=pi)

etich[nn,m] =xx[nn]

¥

xx.counts <- table{ factor(xx, levels=1:]J })

wvw <- rdirichlet(1l, xx.counts + alpha )

theotalm) <- rgamma( 1, sum(xx)+a, rate=sum(yy)+b )

for

}

{j in 1:J0{

t£[m,] <- apply( axp{ logff ), 2, sum )
pesilm,) < ww

}.

return(list(ff=1f,yy.grid=yy.grid,theta=theta,labal=etich,pasi=pesi))

}

mizgamea theta <- function(yy,JJ,GG,MM,a,b,alpha,std=F,cubic=F){

NN <-

langth(yy)

yy.temp <- yy
it (cubic) yy <= yy~(1/3)

mny <=

mean (yy)

if {std) yy <- yy/mu
yy-grid <- seq(min{yy)+.66,max{yy}#1.5,length=GG)

atich

1]
<~ matrix(NA,nrow=NN,ncol=M¥)

pesi <- patrix(NA,nrow=MM,ncol=]J]})

xx <=
vy <-
thata
logff
ff <-

rap(1,NN)

rep(1/3J,J1) .

<— rap(JJ/max(yy) ,MM+1}
<- matrix(NA,JJ,GGC) !
matrix{NA,MM,GG) H

for {m in 2:MM){

for

(oo in 1:NN) {

pi <- (1:3J-1)#log{yyinn)} - theta[m]*yy[nn} - lgamma(1:JJ) + (1:3J)+log(thetalm])
pi «- ( wukexp(pi) ) / sum( wwxexp{pi) )

xx[nn] <- sample(i:3J,1,prob=pi)

etich[nn,m)=xx[nn]

xx.counts <- tabla( factor(xx, levels=1:JJ })
ww <- rdirichlet{(l, xx.counts + alpha )

theta[m+1] <- rgamma( 1, sun{xx)+a, rate=sun(yy)+b )

for

(j in 1:3){

logf#[3,] <- log(ww[jl) + (j-1)*loglyy.grid) ~ thetalm+i]ls+yy.grid -

h

lgamma(j) + j*log{thatalme1])

£fim,] <~ apply( exp( logff ), 2, sum )

logff[j,] <~ logl(ww(j)) + (j-1)+log{yy.grid} - theta[m)*yy.grid - lgamma(j) + j*log(thatalm])
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pesilm,] <- ww H . .
}
return(list (£f=£f,yy.grid=yy.grid, theta=theta,label=etich,pesi=pesi})

}

plot.mixgamma <- function(vv.yy,ndens=5,xranga=c(min(yy),max(jy)),xxlab=“x“,yylab="density“.
nbin=10,histogram=F,std=F, cubic=F,bands=F){ ¥

yy-temp <- yy
if (cubic) yy.temp <- yy~(1/3)
ne <- mean({yy.temp)
if (std) yy.temp <- yy.temp/ﬁu
if (histogram) {
hist(yy.temp,freq=F,breaks=nbin,col="lightgray",border="gray",xlin=xranga,
xlab=xxlab,ylab=yylab,main="")
if (bands} {
yygrid <- clvvSyy.gzrid,revivvsyy.grid))
bb <- c(allcurves.q(vv$ff,0.05),rev{allcurves.q(vv$tf,0.95}))
. polygon(yygrid,bb, col="corafloverblue",lty=1,lwd=2, border=NA) }
1inas(c(0,vv$yy.grid).;(O,apply(VVSff.E.mean)),typs=?u") }
alse {
plot(c(0,vv8yy.grid) ,c(0,apply{vv$ff,2,mean)), typs="n", xlin=xrange, xlab=xxlab, ylab=yylab)
if (bands) {
yygrid <- c(vvlyy.grid,rev(vvSyy.grid)}
bb <- C(allcufvas.q(vv$ff,0.025),rev(allcurvas.q(vv$ff,0.975)))
polygon(yygrid,bb, col="cornflowerblua",lty=1,lwd=2,border=NA) } }
rug{yy.temp} '
for(i in sample(l:dim(vv$ff) (1) ,ndens}) lines(vvSyy.grid,vv$ff[i,],col="rad")
lines(vv8yy.grid,apply {vv${f,2 ,mean) ,lwd=2)

allcurves.q <~ function(data,perc){
n <~ dim(data) [2]

H
temp <- rep(NA,n} a
for (i in 1:n) temp(i] <- quantile(datal,il,perc)
return(temp} .
H
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loglik.poly <- function{prmt,yyl,yy2, degf,p2=FALSE){
nn2 <- length(yy2) .
p2.aﬁprox <= vaCtor(length=£L2)
numcomp <— length(prmt)-dagf—Q
yyl.0 <= gort(yyl)
¥y2.0 <- sort(yy2)

### calculating the approxi%éted p2 points ###

pl.tap <- pmixgamma(yyl.o,prot [(degf+2): (degf+numcomp+1)],prnt [degf +numconp+2] )
matrix.pl.tmp <- poly.dmaxrfi(pi,tmp,deg!,intercapt-TRUE) '

q2.top <~ yyl.owexp{-matrix.pi.tmp¥«iprmt {1:{degf+1}1)

pq2.tmp <- sortedXyData(pl.tmp,g2.tmp)

for (1 in 1:nn2) p2.approx[i] <- NLSstClesestX(pq2.tmp,yy2.o[il)

#8% calcylating the derivative of the polynomial of order ’degf’ ###
derivat <- poly.dmatriz{p2.approx,degf,first.deriv=TRUE)
dmatrix.p2.approx <- poly.dmhtrix(pZ.approx,degf,interceptﬂTRUE)

#4# calculating f2 in vhe approximated p2 points ###

densl <- dmixgamma{yyl.o,prmt[(degf+2):{degf+nuncomp+1)],prmt (degf+numconp+2])
yyl.o.tmp <- yy2.osexp(dmatrix.p2.approxi+/prmt{1: (degf+1)])

densl.top <- dmixgamma(yyl.o.tmp,prmt((degf+2): {degf+numconp+1}},prot [degf+numcomp+2])
A <- exp(-dmatrix.p2.approxi*/prmt[1:(degf+1)])

B <- derivat¥+/prmt [2: (degf+1)]

dens2 <- densl.tmp/(ﬂ-densl.7mp$yy2.ota)

toglikl <~ sum{log(densi[dens1>0]),na.rm=TRUE)

if (any(dens2<=0}} {loglik2 <~ NA} else loglik2 <~ sum(log{dens2(dens2>0]),na.rm=TRUE)}
if (p2) return(list(sum(loglikl,loglik2),p2.approx)) else raeturn(sum(leglikl,loglik2))

loglik.ns <- function{prmt,yyl,yy2,degf,p2=FALSE){
nn2 <- length{yy2)
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p2.approx <- vactor(length;nnE)
nuncomp <~ length{(prmt)-degf-2
yyl.o <- sort{yyl)
yy2.9 <~ sort{yy2) .

: LI
### calculating the approximated p2 peints ###
pl.tup <= pmixgamma(yyl.o,prmt[(degf+2):(dagf+numcompﬁ1)],prmt[degf+numcomp+2])
q2.tmp <- yyl.o*exp{-cbind{1,ns(pl.tap,degf)})i+¥prut[1: (dagf+1)])
pq2.tmp <- sortedXyData(pl.tmp,q2.tmp)
for (i in 1:nn2) p2.approx(i] <~ NLSstClosestX(pq2.tmp,yy2.oiil)

.

#4#¥ calculating the derivati;a of the natural cubic spline with ’'degf’' uniform knots B4
knots <- sort{c{rep(range(p2.approx),4),attr(ns(p2.approx,degf),”knots")})

derivat <- splineDesign(knots,p2.approx,4,rep(1, langth(pE approx)))

derivat <- derivat[,-1 drop=FALSE]

derivat.const <- splineDeslgn(xnots range(p2.approx),4,c(2, 2))

derjvat.const <- derivat.constf,-1,drop=FALSE]

gr.derivat.const <- gr{t{derivat.const))

derivat <~ as.matrix((t(qr.qty(qr.derivat.const, t(derivat))))[, -(1:2)1)

### calculating £2 in the approximated p2 points ##8

densl <- dmixgarma(yyl.o,pzmt [(degf+2): (degf+numcomp+1}], prmt[degt+numcomp+2])
yyl.o.tmp <~ yyz.otexp(cblnd(l,ns(p2.approx.degf))A*Zﬁrmt[1.(degf+1)])

densl.tmp <- dmixgamma(yyl.o.tmp,prmt[(degf+2): (degf+numcomp+1)],prmt ([degt +nuncomp+2])
A < axp(-cbind(l,ns(pz.approx.dagf))Z*Kprmt[l;(degf+f)]J* -

B <- derivati*¥prmt (2: (degf+1)]

dens2 <- densl.tap/(A-densl.tmp*yy2.0*B)

loglikl <- sum(log{densl(dens1>0]1),na.rm=TRUE)
if (any(dens2<=0)) {loglik2 <~ NA} else loglik2 <- sum(log(dens2[dens2>0]),na.ru=TRUE)
if (p2) return(list(sum(loglikl,loglil2),p2.approx)} else return{sum{loglikl,loglik2})

loglik.ln <~ function(prmt,yyl,yy2,p2=FALSE,exact=FALSE){
nn2 <- length(yy2}
p2.approx <- vector{leagth=nn2)
yyl.o <= sortkyyl)
y¥2.0 <~ sort(yy2)

if {lexact) {
lyyl <= log(yyl.o)}
lyy2 <- log(yy2.o)
### calculating the approxiﬁated p2 points #8#
pl.tap <~ pnorm{lyyl,mean=prmt[3],sd=prat(4])
q2.tmp <- lyyl-cbind(1,quorm{pl.tmp) Yixiprmt[1:2]
)

pq2.tmp <- sortedAyData(pi.tmp,q2.tmp)
for (i in 1:nn2) p2.approx[il <~ NL3stClosestX(pq2.tmp,lyy2[il)

### calculating £2 in the approximated p2 points ###
densl <- dlnorm{yyl.o,meanlog=prmt [3),sdlog=prmt[4])
lyyl.o.tmp <- lyy2+cbind(l,qnorm{p2.approx))%*}prot(1:2]
densi.tmp <- dnorm(lyyl.o.top,mean=prmt[3],sd=prmt[4])

-

LI L, B W __
e TEL
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B <- promt[2]/dnorm{qnorm(p2.approx})
dens2 <~ densl.tmp/(1-densl.tmp+B)
dens2 <= dens2/yy2.0 }

alsa {

densl <~ dlnorm{yyl.o meaﬁlog=prmt[3] sdlog=prms [41)
dens? <- dlnomm(yy2.o meanlog=(prmt[3]—prmt[1]) sdlog={prmt [4]-prmt [2]))

p2.approx <- ploorm(yy2.o maanlog-(prmt[al -prmt [1]},sdleg=(prmt [4]-prmt [2]))
}

loglikt <- sum(log(densl[densi>0]),na.rm=TRUE)

if (any(dens2<=0)) {loglik2 <~ NA} else loglik2 <- sum(log{dens2[dens2>0]1),na.rm=TRUE)

if (p2) return(list(sum(leglikl,loglik2),p2.approx)) elss return{sum(loglikl,loglik2})
li

baquare.poly <- function(mcmc,burnin,step,thata.init,yyyl,yyy2,ddff,JJ,prior,
weight.nonnag=c(1,1), cubicaFALSE, prat=TRUE){
!
nl <- length(yyyl} .
n2 <- length(yyy2) '
y¥yl.o <- sort(yyyl)
y¥y2.0 <- sort(yyy2)

prot <- vector{length={ddff+}J+2))
prat.ts <- matrix(N¥A,nrew=mcmc[2)+burnin[2] ,ncol=ddff+JJ+2)

prat.prop <~ matrix(NA,nrowsmcmc(2]+burnin(2] ,ncol=ddff+3J+2)
prot.curr <- matrix(NA,nrow=menc{2] +burnin(2},ncol=ddff+JJ+2)
all.lik <~ matriz(NA,nrow=mcmc[2]+burnin(2],ncol=6)

1l.za <- vector{length=mcmc (2] +burnin[2])

dic.tmp <- vector(length=(mcme[2] +burnin{2]))

delta <- vector({length={(mcmc[2]+burnin(2]))
I

accept_beta <- O

accept_weight <- 0

accept_theta <= 0

# weight and theta estimate using only yl

waight.0 <~ rep{1/JJ,JJ) :

wu_theta.tmp <- mixgamma(yyyi,JJ.(mcmc[1]+burnin{1]),weight.o,prior[[l}],prior[[2]],
priorf[3]1}

waights.ylonly <- mean{as.data.frame{ww_theta.tmp[{1]] {(burnin[1]+1}: (mcmc[1]+burn1n[1]) m
names (waights.ylonly) <- NULL

thota.zean.ylonly <- mean(ww_theta.tmp{[2]] ((burnin[1]+1):{mcnc(t]+burninf1]}]}
theta.var.ytonly <- var(wu_theta.tmp[[2]1]((burnia(1)+1): (memc(1)+burnin(13}]1)

prmt.c <= c(theta.init,uaighps.ylonly.theta.mean.ylonly)

for (sim in 1:{memc[2)+burnin(2])){
pimt.old <- prat.c

# updating the beta parameters
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prmt{1:(ddff+1)] <- rmvnorn(1,prmt.c[1:(ddff+1}],stepi[1]]+atep[[2]1])
prat ({ddff+2): (ddff+JJ+2)] <- prmt.c[(ddff+2):(ddff+JJ+2)]
while (check.beta.poly(prmt,yyyl.ddff)){

prat [1:(ddff+1)] <- rmvoorm(l,prat.cll: (ddff+1)],step[{1]]1+step([2]1]) }
prut.proplsim,1:{ddff+1}] <- prmt[1:(ddff+1)]
prot.curr{sim,i:{ddff+1}] <- prmt.c(1:(ddff+1)] )

E

11 .prop_beta <- try(loglik.poly{prmt,yyyl,yyy2.o,ddff p2=FALSE})
if (is.pa{ll.prop_beta}){

all.lik{sim,(2:2)] <~ c{"ERAOA","ERROR")

prmt.c <= prmt.old

prot . ts([sim,] <+ prat.c

11.na(sim] <- TRUE

next }
if (!is.numeric(ll.prop_beta)) {prmt.c <- prat.cld; next}
11.curr_beta <- try(loglik.poly(prmt.c,yyyi,y&y2.o,édif,p2=FALSE)]
if (is.pa(ll.curr_beta}){

all.lik(sim,{1:2)] <- c("ERROR",“ERROR")

prot.c <= prmt.cld

prat.tel[sim,] <- prmt.c

1l.na[sim} <- TRUE

naxt }
if (!is.numeric(ll.curr_beta)} {prmt.c <- prat.old; next}
all.lik[sim,(1:2)] <- ¢(11.prop_bata,ll.curr_bata)

AA_beta <- 1ll.prop_beta - 1ll.curr_beta [
BB_beta <- 0 )
CC_bata <- 0

ratio_beta <- exp{AA_beta + BB_beta + CC_beta)
u_beta <= runif(1}
if (u_beta < ratic_beta} {
prat.c <= prmt
accept_beta = accept_beta + 1 }
else {
prmt <~ prmt.c }

# updating the mixture weights parameters

prot [{ddf£+2) : (ddff+JJ+1)] <- rdirich(i,step[[3]]*weights_ylenly)
prat.proplsim, (ddf1+2) : (ddff+JJ+1)] <- prmt [(ddff+2): (ddff+1J+1)]
prot.curr(sim, (dd££+2) : (ddff+JI+1}] <- pramt.c[(ddff+2): (ddff+2J+1)]
prat [c(1: (ddff+1) ,ddff+J142)] <- prmt.clc(l: (daff+1),ddff+I1J+2)}

11.prop.weight <- try(loglik.poly(prmt,yyyl,yyy2.o,ddff ,p2=FALSE))
if (is.aa(ll.prop_veight)}{

all.lik([sim,(3:4)] <- c{“ERROR","ERROR"}

prmt.c <- prmt.old

prmt.ts(sim,] <- prmt.c

1l.nalsim] <- TRUE ‘ .

next }
it (tis.numeric(ll.prop_weight)) {prmt.c <- pramt.old; next}
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1l.curr_weight <~ try{loglik.pely(prmt.c,yyyl,yyy2.o,ddff,p2=FALSE))
it (is.na(ll.curr_weight}){

all.lik([sim,(3:4)] <- c("ERROR",“ERROR")

prot.c <- prmt.old

prut.tslsim,] <- pmt.c'

11.nalsim]) <- TRUE '

next }
if (!is.numeric(ll.curr_weight)) {prmt.c <- prmt.old; next}
all.lik[sim, (3:4)] <- c(l}.prop_weight,11.:urr_ueight)

AA_veight <= 11.prop_weight - 1l.curr_waight
BB_weight <- ddirich(prmt((ddff+2):(ddff+IJ+1)]),replprior[[3]1],JJ),logdens=TRUE) -
ddirich(prmt.c{(ddff+2): (ddff+JI+1)],raplprior ((31]1,JJ) ,logdens=TRUE)
CC_weight <- ddirich(prmt.c[(ddff+2):(ddf£+JJ+1}],step[[3]1]+veights.ylonly,logdens=TRUE} -
ddirich(prmt [{ddff+2) : (ddf£+JJ+1)],step[[3] J*weights.ylonly, logdensaTRUE)
ratio_weight <- exp(AA_veight + BB_weight + CC_weight)
u_vaight <- rumif{1)
if (u_weight < ratio_weight) {
prmt.c <~ prmt
aceept weight = accept_ﬁaight + 1}
alse {
prmt <- prmt.c }

# updating the mixture theta paramster

prut [ddff+JJ+2] <- rgamma(l,shape=(theta.mean.ylonly 2/ (theta.var.ylonly=step[[411)),
rate=(theta.mean.ytonly/{theta.var.ylonly*atep[[4]11}})

prmt.proplsim, (ddf£+J5+2)] <= prmt [Adff+1I+2]

prat.currlsim, (ddf£+3J+2)] <- prmt.c(ddff+JJ+2]

prat{l: (ddff+JJ+1)] <- prmt.c[1:(ddff+1I+1)]

11.prop_th <- try(loglik.poly(prmt,yyyl,yyy2.o0,ddff,p2=TRUE))
if (is.na(ll.prop_th[[111}){

all.lik[sim, (5:6}] <- c("ERRDR",“ERROR*)

prat.c <- prat.old

prot.ts{sim,} <= prmt.c

1ll.nalsim] <- TRUE

next }
if (!4s.numoric(1k.prop_thi[1]1)) {prmt.¢ <- prmt.old; next}
1l.curr_th <- try(loglik.pely(prmt.c,yyyl,yyy2.o,ddff,p2=TRUE))
if (is.na(ll.ecurr_th[{1113){

all.lix[asim,(5:6)) <- c("ERROR","ERROR")

prat.¢ <~ prmt.old

prot.ts[sim,] <- prmt.c

11.na[sim] <- TRUE

next } i
if (!is.pumeric(1l.curr_th[[111)) {prmt.c <- prmt.old; next}
all.lix[sim,(5:6)] <- c(11.prop_th[[1]],11.curr_th[[1]1])

AA_th <- 11.prep_th[[1]1} -~ 1l.curr_th{{1]]
BE_th <~ dganma(prmt [ddff+JJ+2] ,shape=prier [£1]],zate=prior[[2]]) -
dgamma{prut.c[ddff+]J+2] ,shape=prior [[1]],rate=prior [[2]11)
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CC_th <~ dgammaf(prmt c[dd#£+JJ+2] , shape=(theta.mean,ylonly~2/(theta 1wa.lr .ylonly+step[[4]11)}),
rate=(theta.mean.ylonly/{theta.var.ylonlysstep{[411)),leg=TRUE) -
dgamma (prmt [ddff+JJ+2] ,shape=(theta.mean.ylenly 2/{theta.var.ylonly*step[[4]11}),
Tate=(theta.mean.ylonly/{theta.var.ylonly»step[[4]]1)),log=TRUE}

ratio_th <- exp(AA_th + BB_th + CC_th) ‘
u_th <= runif{1) ,
if (u_th < ratio.th) { '
prmt.c <- prmt i
dic.tmp[sim] <- ~2#11.prop_thl[11] - . .
p2.approx <- 1l.prop_th{[2]] -
accept_theta = accept_theta + 1 } .
alse {
prat <- prot.c . i . .. i . '
dic.tmplsim] <- -2#11.curr_th{[1]] i ,
p2.approx <- 11.curr_th[{2]} } -
# storing information ‘ : : 5
praot.ts(sim,] <- prmt.c ‘

-

# computing delta . .
pl <- pmixgamma(yyyl.o,prmt.c [(dd.ff+2)‘: (ddf£+JJ+1)] ,prat.c [ddf.f+jJ+2] )
dreatrix.p2.approx <- poly.dmatrix (]52 .approx,ddff .,intarcept=TR[:l'E)
dmatrix.pl <- poly.dmatrix(pi,ddff,intercept=TRUE)

1

if (cublc) { - ' :
deltal[sim] <- ({sum{yyy1.9~3)+sun(yyy2.o 3+exp(dmatrix.p2, approxi+i
(*praot.c[1: {(ddff+1)]))) )*weight .nanneg[l]-(am(yyy2.o‘3)+sm(ﬁy1 .o“3taxp{-
dmatrix.plj+)(3sprot.cf1:(ddt1+1)]))})+weight .nonnegl2])/(n1+a2) }
elsa { . ’ )
deltalsim} <- {({sun{yyyl.o)+sum(yyy2.o*exp(dmatrix.p2.approxV«i
prot.cli: (ddff+1)])) Y*ueight nonnag[1]-(sum (yyy:ﬁ .oy +sun (yyy1 .omexp(-dmatrix.p1%*¥
prot.c[1:{ddff+1)1)) }sveight.nonneg[2] y/(ni+n2) }

# computing deviance information criterion (DIC)
dic.tmp.mean <- try(-2+loglik.poly(c(msean(as.data. frame (prot.tal{burnin[2]+1):
(meme [2] +burnin(2]),1:(dd££+1)1)), mean(as. data.fraze {prmt.ts ({burain[2)+1):
(nemc (2] +burnin[2}}, (dd££+2) : (ddff+JJ+1)])) ,mean{prmt.ts[(burnin [2]+1}:
(memc (2] +burnin[2]), {dd££+JJ+2)1)), yyyl, yyy2.0,ddfs ,p2=FALSE) ),
if (is.pumeric{dic.tmp.mean)) { X
pd <- mean(dic.tmp[{burnin[2]+1}:(memc[2] +burnin[23}]) - dic.tmp.mean
dic <- mean(dic.tmp[(burnin[2]+1): (mcme[2]+burein[2]1)]) + pd }

alse { ] N .
pd <= NA -
dic <- NA

} ]

return{list(accapt=c(accept_beta/sim,accept_weight/sim,accept_theta/sim),
chain=prut.ts,dic=dic,pd=pd,delta=delta, propsprut. pro;') ,curr=prmt . cury,
lik=all.lik,lik.na=11.na,yl.only=ww_theta.tmp))
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bsquara.ns <- function(meme¢,burnin,step,theta.init,yyyl,yyy2,ddff,JJ,prior,
weight .nonneg=¢(1,1),cubicaFALSE, prot=TRUE){

nl <- length{yyyl)
22 <~ length{yyy2)
yyyl.o <- sort{yyyl)
¥¥¥2.0 <- sort{yyy2)

prmt <- vactor{length={ddff+JJ+2))}
prmt.ts <- matrix{NA,nrow=mcme[2] +burnin(2) ,ncol=ddff+II+2}

pront.prop <- matrix(NA,nrow=mcmc[2]+burnin[2],ncel=ddff+JJ+2)
prmt.curr <- matrix(N¥A,nrousncmcl2]+burnin(?) ,ncol=ddft+1J+2)
alk.1ik <- matrix(NA.nrowamémc[2]+burnin[2],ncolss)

1l.ma <- vactor{length=menme [2]+burnin(2])

dic.tmp <- vector(langthn{mgmc[2]+buznin[2]))
delta <- vectnr(length=(ncmé[2]+burnin[2]))

accept _beta <= 0
accept_walght <= 9
accept_theta <- 0
I
# veight and theta estimate using only y1
weight.0 <- rep(1/1J,JJ} )
wv_theta.tmp <- mixgamma(yyyl,JJ, (mcmc[1]+burnin(i]},weight.@,prior{(1]],
prior[{2]11,prior[[311}
weights.yloaly <- mean(as.difa.frame(uv_theta.tmp[(l]}[(burnin[1]+1):(mcnc[1]+burnin[1]),]))
names{waights.ylenly) <- NULL
theta . mean.ylonly <- maan(ww_theta.top[[2]] [(burnial1]+1):(mcmc[1])+burnin[1])])
theta.var.ylonly <- var(ww_theta.tump((2]1} [(burnin(1}+1):(mcocf1]+burnin[11)1)

prat.c <~ c(theta.init,weights.ylonly,theta.mean. ylonly)
|

for (sim in 1:(meme[2]+burnin{2])}{
prat.old <- prmt.c

# updating the beta paramstars
prot[1:(ddff+1)] <- rmvnorm(l,theta.init,step[[1}]1+step[[2]1])
prot ((Adf£+2) : (ddff+JJ+2)] <- prmt.c[(ddf#+2): (ddff+JI+2)]
while (check.beta.ns{(prmt,yyyl,ddff)){

prot [1:(ddff+1)] <- rmvmorm(1,theta.init,step{(13]+step[[2]]} }
prot.proplaim,1: (ddff+1)] <- prmt[1:{ddff+1)]
prut.curr[sim,1: (ddff+1)] <- prmt.c[1: (ddff+1)]
1l.prop_beta <— try(loglik.ns(prmt,yyyl,yyy2.o,ddff,p2=FALSE})
if (is.na(ll.prop_beta)}{

all.lik[sim,(1:2)] <- c{"ERROR","ERROR"}

prmt.¢ <~ prat.old

prot.tssim,] <- prat.c

1l.na[sim] <~ TRUE
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next }
if (!is.numeric(ll.prop_beta)} {prmt.c <- prmt.old; next}
1l.curr_beta <- try(loglik.ns{prmt.c,yyyt.yyy2.o,ddff,p2=FALSE)) .
if (1is.numeric(11.curr_bata)) {prmt.c <- prmt.old; next}
atl.lik[sim,(1:2}] <- c{ll.prop_beta,ll.curr_beta)

AA_beta <- 1l.prop_beta - ll.curr_beta. ‘;
BB_beta <~ 0 i
CC_beta <- 0

ratio_beta <- axp(AA_beta + BB_bata + CC_beta}
u_bera <~ runif(1)
if (u_beta < ratio_beta) { .
prot.c <- prot
accept_beta = accept_beta + t } !
alse {
promt <- prmt.c }

# updating the mixture weights parameters .
prut {{ddff+2) : (ddff+JJ+1)] <- rdirich(l,step[[3]]+weights.ylonky)
prnt.proplaim, (ddf2+2): (ddf$+3J+1)] <- prmt{(daff+2): (ddif+JJ+1}]
prot.curr [sim, (ddff+2) : (ddff+IJ+1)] <- prmt-c[(ddif+2)}(ddtt+JJ+1)]
protlc(1: (Adf£+1) ,ddff+JJ+2)] <- prmt.clc(1:{ddff+1),daff+J5+2)] -

- 1l.prop_weight <- try(leglik.ns(prmt,yyyl,yyy2.o,ddff,p2=FALSE))
if (is.na(ll.prop_weight))q{ !
all.lik(sim,(3:4)] <- c("ERROR",“ERROR")
prmt.c <- prmt.old
prot.ts{sim,] <- prmt.c
1l.oalsim] <- TRUE
next }
if (ris.numeric(ll.prop_weighe)) {prmt.c <- prmt.old; next}
1ll.curr_weight <- try{leglik.ns(prmt.c,yyyl,yyy2.c,ddff,p2=FALSE))
if (!iB.numeric(ll.curr:weight)) {prmt.c <- prat.eld; next}
all.lik[sim,(3:4}] <- c{1l.prop_veight,ll.curr_weight)

AA_welght <- 1ll.prop_weight - ll.curr_weight

BB_welght <~ ddirich(prmt{(dd£f+2):(ddff+JJ+1}],rep(prior[[3]],JJ},logdans=TRUE) -
ddirich(prmt.c[{ddf£+2): (ddff+JJ+1)],rep(prior[[3]],J]) ,logdens=TRUE)

CC_weight <- ddirich(prot.c[{daff+2):(ddft+JI+1)],step{(3))+veights.ylonly,logdensaTRUE) -
ddirich(prmt [{ddff+2): (ddf£+JJ+1}],step{[3] ]*weights.ylonly, logdens=TRUE)

ratio_weight <- exp(AA_weight + BB_weight + CC_weight}
u_veight <- runif(1)
if (u_weight < ratio_weight) {
pramt.¢ <= prmt
accept_weight = accept_weight + 1 }
else {

prmt <- prmt.c }

# updating the mixture theta parameter
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i
prot (ddf £+1J+2] <- rgammal( 1,shape=(theta.mean.ylonly~2/(theta.var.ylonly*stapl[4]11)},
rate=(theta.mean.ylonly/(theta.var.ylonly*step{[4]11)))
prut.proplsim, (dd££+JJ+2}] <- prot[daff+J)+2]
prat.curr[sim, (@dff+JJ+2}] <- prat.c[ddff+IJ+2]
prot[1: {(ddff+JJ+1)] <~ prJt:nt.c [L: (ddf£+3T+1)]

11.prop_th <- try(loglik.#s(pmt,yyyl,yyyZ.c.ddff.p2=TRUE))
if (is.na(ll.prop_th[[l]]j){

all.lik[sim,(5:6)] <~ <{"ERROR","ERROR")

prat.c <- prmt.old

prot.talsim,} <= pmt.c

1l.nalsim] <- TRUE i

naxt }
it ('is.numeric(ll.prop_th[[1]11)) {prmt.c <- prmt.ocld; mext}
1l.curr_th <- try(loglik.ns{prmt.c,yyyl,yyy2.0,ddff,p2=TRUE)}
it (lis.pumeric(ll.curr_th[[1]]1)) {prmt.c <- prmt.old; next}
#ll.lik(sim, (5:6)] <~ c(1i.prop_th({113,11.eurr_th([1]])

AA_th <= 1l.prop.th[(1]] - 1l.curr_th[[1]}
BB_th <- dgamma(prmt{ddff+JJ+2],shape=prior[{1]],rate=prior[[2])) -
dgaama{prmt . ¢ [ddf£+JJ+2) ,shape=prior [[1}],rate=prier[[2]1])
CC_th <- dgamma(prmt.c [dd:!llf+JJ+2] , shape=(theta.mean.ylonly"2/(theta.var.ylonly*step[{211}),
ratew{theta.mean. ylonly/{theta.var. yionly*step[[4]1]1)),leg=TRUE) -
dgamma (prmt [ddf£+]1+2] , shape={theta.mean.ylonly"2/{theta.var.ylonly*stap[[4]1]1)},
rate=(theta.mean.ylonly/(theta.var.ylonly*step[[4]1])),Log=TRUE)
I
ratio_th <- exp(AA_th + Bg;th + CC_th)
u_th <- runif{1)
if (u_th < ratio_th) {
prmt.c <— prmt
dic.tmplsim] <- -2«11.prop_th[[1]]
p2.approx <- 1l.prop_th[{2]]
accept_theta = ac:ept,théta +11}
else {
promt <- prmt.c "
dic.taplsim] <- -2¢11.curr_th[[1]]
p2.approx <- ll.curr_th[{2]] }

# storing information
prut.ts[sim,] <- prmt.c

# computing delta

pl <- pmixgamma(yyyl.o,prmt.c[{ddff+2)}: (ddf£+JJ+1)] ,prat.c[ddff+JJ+2])

it (cubic) { i
dalta[simj <- ((sum(yyyl I.io'a) +sun(yyy2.0"3vexp(cbind(i,ns(p2.approx,ddff))¥%=%
(3«prmt.c[1:(ddf£+131))) ) »veight .nonneg (1] - (sum(yyy2.0™3)+sum(yyyl.o~ 3+
exp(-cbind{1,ns{pl,ddf£) ) %% (3+prmt.c[1 (ddfﬂl)] )}})*vwaight .nonneg(2])/(ol+n2) }

else { .
deltaleim) <~ ((sum(yyyl,o)+sum(yyy2.o+exp(cbind(i,na(p2.approx,ddff)) sy
prot.c[1:(ddf£+1)]}))+veight .nonneg[1)-(suz(yyy2.o)+sunlyyyl.o*
oxp(~¢bind(1,ns(pl,dafs) i'ﬁ*'fipmt .c[1:(ddff+1}])) y+weight .nonneg[21)/{(nl+n2) }
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x K

§ 2

* .. 4

# computing daviance information critericn (DIC) .

dic.tmp.mean <~ try(-2+loglik.ns(c(mean{as.data.frame(prmt.ts[(burnin(2]+1}:
(meme [2]+burnin(23),1: (ddf£+1)])) ,mean(as.data. frane{prat.ts[(burninf2]+1):

(memc [2]+burnin(2]), (ddef+2) : (ddLt+JJ+1)]1) ) ,mean(prmt.ts [{burnin[2] +1):

{menc[2]+burnin[2]),(ddef+31+2)1)), oo '
¥ryl,yyy2.o,ddff ,p2=FALSE)) ‘ L
if (is.pumeric{dic.tmp.mean)) { i
pd <- mean(dic. tmp[(burnin[2]+1) : (wcme [2] +burnin (2] 1) - dic .tmp .zean
dic <= mean(dic.tmp[(burninf2]+1):{menc[2]+burnin(2])]) + pd } ~ .
elsa { o .
pd <= NA
dic <- HA '
} ' 1
- ' ¥

return(list (accept=c(accept_beta/sim,accept_weight/sim,accept_theta/sim),
chain=prmt.ts,dic=dic, pd=pd ,délta=dalta,prop=pmt .Prop,GUIr=prmt.curr,
lik=all.lik,lik.na=1l.na,yl.only=ww_theta.tmp)) i

} . .

bsquare.ln <- function(mcq:lc.burnin. step,theta.init,yyyl,yyy2,prior,veight .nonneg=c(1,1),
cubicaFALSE, exct=FALSE, prat=TRUE) { .

nl <~ length(yyyl) . Y
n2 <- length(yyy2)

yyyl.o <= sert{yyyl) ’ .

yyy2.0 <- sort{yyy2)

prmt <- vector{length=4) +
prmt.ts <- matrix(NA,nrow=meme[2]+burnin{2],ncol=4) .

pImt.prop <- matrix(NA ,nrow=mcmc-[2] +burnin[2] ,ncol=4)
‘prumt.curr <- matrix(NA,nrow=meme[2]+burnin[2],ncel=4)

all.lik <- matrix(NA,nrow=memc[2]+burninf2),ncol=8)

1l.pa <- vector(length=memc[2]+burnin[2])

dic.tmp <- vector{length=(memc[2]+burnin(2]1)}

delta <= vector(length={mcmc[2]+burnin[2])}

accept_heta <- 0
accept_logmu <- 0
accupt.logsigma <- 0

mlogyi <~ mean(log(yyy1))
sd_mlogyl <~ sd{log{yyyl)) ’ ’ * -
sa_mlogyl <- sd_mlogyl/sqrt(length(log(yyyl)})

¥
prmt.c <- theta.init :
for (sim in 1:(mcme [23+burnin[21))4
prut.old <- prmt.c : . 0
* A ¥ -
i ‘
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)
h
i
# updating the beta parameters

pratfl:2) <- rovaorm(l,prat.c[1:2],step[[1]11*stepl[2]])

prmt [3:4] <- prmt.c(3:4]

while (check.beta.ln(pras,yyyl)) prmt(1:2] <- rmvaorm(i,prmt.c(1:2),stepl[1]]*step[[2]]}
prmt . proplsim,1:2] <~ prmt([1:2]

prot.curr[sim,1:2] <- prmt.c[1:2]

11.prop_beta <- try(loglik.la(prmt,yyyl,yyy2.0,p2=FALSE,exact=exct))
if (is.na{ll.prop_beta)){

all.lik(sim, (1:2}) <~ <(“ERROR","ERROR")

prmt.c <- prut.old

prat.talsim,] <- prmt.c

11.nalsim] <- TRUE

next }
if (!is.pumeric(11.prop_beta)) {prmt.c <- prmt.old; next}
11.curr_beta <- try(loglik.la(prmt.c,yyyl,yyy2.o0,p2=FALSE,exact=exct))
if (!is.numeric(ll.cu:r_bgfta)) {prmt.c <- prmt.old; next}
all.lik[sim,(1:2)] <- c(1l.prop_beta,ll.curr_beta)

AA beta <- 1l.prop_beta - 1ll.curr_beta
)

BB_beta <~ 0

CC_beta <~ 0

ratio_beta ¢~ exp(AA_beta + BB_beta + CC_beta)
_beta <- runif(1)
1f {u_beta < ratio_beta) {
prot.c <— prmt
accept_beta = accept_beta + 1 }
else {
prmt <= prmt.c } "
# updating the logmu paramét:r
prut [3] <- rtriang(i,prut.c(3]-step[[3]1+se_wlogyl,prot.c(3],prmt.c[3)+stepl[3]1]+se_nlogyl)
prot.proplsim,3) <- prmt[3]
prot.curr[sim, 3] <- prmt.c[3]
prut[c(1:2,4)] <- prmt.c(c(1:2,4)}]

11.prop_logmu <- try{loglik.ln{prmt,yyyl,yyy2.0,p2=FALSE,exact=exct})
if (is.na(ll.prop_logmu)){,
all.lik{sim, (3:4)] <- c{"ERRGR","ERROR")
prat.¢ <= prat.old g
prot.ts[sim,] <- prat.c
11.nalsim] <- TRUE
next }
if (lis.pumeric(ll.prop_logmu)) {prmt.c <- prmt.old; next}
11.curr_logmu <- try(loglik.ln(prmt.c,yyyl,yyy2.o,p2=FALSE,exact=axct})
if ('is.oumeric(ll.curr_logmu}} {prmt.c <- prmt.old; next}
all.2ik[sim,(3:4)] <- c¢(1l.prop_logmu,ll.curr_logmu)

pricr.prop_logau <- dnorm(prmt[3],mean=prior{[1]],sd=prior[[2]],log=T)
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= prior.curr_logmu <- dnorm{pimt.c[3},mean=prior {7[1] J.ad=prior[[2}],log=T)}

AA_logmu <= 1ll.prop_logmu - 1l.curr_logmu
BB_logmu <- prior.prop_logmu - prior.curr_logmu
CC.logmu <~ O

L]

ratio logmu <- exp(AA_logme + BB_logmu + CC_logmu}
u_logmu <- runif(1) '
if (u_legmu < ratic_logmu) {

prumt.c <- prmt

accept_logmu = accept_logmu + 1 }
elsa {

pret <- prmt.c }

# updating the logsigma parameter '
prot(4] <- rlnorm(i,meanlog=log{prmt.c(4))},sdlog=step([4]])
prat.prop[sim,4] <- prmt[4]} .
prat.curr(sim,4) <- prmt.c[4l"”

prut[1:3] <- prmt.c[t:3]

11.prop_legsigma <= try(loglik.ln(prmt,yyyl,yyy2.o,p2=TRUE,exact=exct))
if (is.na{1l.prop_logsigmal{111)){ i .

all.lik[sim,(5:6}) <- <(“ERRQR®,"ERROR")

prmt.c <- prmt.old

prat.ts(sim,] <- prmt.c

11.na[sim] <- TRUE

next }
if ('is.numeric(ll.prop_logsigmal([1]])) {prmt.c <- prumt.old; mext}
1l.curr_logsigma <- try(loglik.ln(prmt.c,yyyl,yyy2.o,p2=TRUE,sxact=exct)}
if (lis.numeric{ll.curr_logsigmal[1}])) {prmt.c <- prmt.old; mext}
all.lik([sim,(6:6}] <- ¢(11.prop_logsigmalf1]],11.curr_ltogsigmaf[1]1])

prior.prop_logsigma <- log{dinvgamma(prmt[4] ,prior [[3j] ,prior([4]11))
prior.curr_logsigma <~ log(dinvgamma(prmt.c[4],prior([3]1},prier((4]11})

F)
prop_logsigona <- dlnorm(prmt{4],meanlogalog(prat.c[4]1),sdlog=stepl[4]],log=T)
prop.curr_logsigma <- dlnorm(prmt.c[4] .memloylog(f)mt [4}) ,sd1log=step[(41],log=T)

Ad_logsigma <- 1l.prop_logsigmal[1]] - 11.curr_logsigmal[[1]]
BB_ logsigma <- prior.prop_logsigma - prier.curr_logsigma
CC_logsigma <- prop.curr_logsigma - prop_logsigma

ratio_logsigma <- exp(AA_logsigma + BB_logsigma + CC_logsigma)
u_logsigma <- runif(1) ' '
if (u_logsigma < ratio_logsigma) {

prot.c <- prmt

dic.tmp(sim] <- -2+11.prop_logsigmal[[1]]

p2.approx <- 1l.prop_logsigma[[2]]

accept_logsigma = accept_logsigma + 1 }
else {

promt <- prmt.c
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dic.taplsim] <~ -2#11.curr_logsigmal(1)]
p2.approx <- 1l.curr_logsigmal[2]] }

# storing information

prat.ts[sim,] <- prmt.c

# computing delta

pl <- ploorn(yyyl.o,meanlog=prmt.c[3],sdleg=prat.c[4])
dmatrix.p2.approx <- cbind(1,qnorm{p2.approx))
dmatrix.pi <- cbind(l.qnoim(pl))

it (eubic) {
deltalsim] <- ((sum(yyyl.o"3)+sum{yyy?2.o 3+exp(dmatrix.p2.approx¥s*}
(3'prmt.c[1:2]))))*veight.nonnag[1]-(sum(yyy?.o‘3)+sum(yyy1.o‘3*exp(-dmatrix.p1%*1
(Stprmt.c[1:2]))))tueigﬁt.nonnag[2])/(n1+n2) }
else { : . :
deltalsim] <- ((sum(yyyl.o)+sum(yyy2.osexp{dmatrix.p2.approxfi+¥prnt.c[1:2])))+
weight .nonneg[1]-(sum(yyy2.0) +sum(yyy1l.ovexp{-dmatrix.pLi*%
prot.c{1:2])))#waight.nonneg{2)) /{nt+n2) }
} il

# computing deviance information criteriom (DIC)
dic.top.mean <- try(-2«loglik.ln(c(mean(as.data.frame{prmt.ts[(burnin[2]+1):
(ocme (2] +burein(2]},1:2])) \mean(prmt.ta [ (burnin(2)+1) : (meme [2] +burnin[2]),31),
mean (prmt . t5 [(burnin(2]+1) : (mewe [2] +burnin(2]1),41)},yyyl, yyy2.o, p2=FALSE, exact=axct))
if (is.numeric(dic.top.mean)) {
pd <- mean(dic.tmp[(hurnin[2]+i):(mcmc[2]+burnin[2]}]) - dic.tmp.mean
dic <- mean(dic.tmp[(burnin{2]+1): (meme{2]+burninf2]13]) + pd }

alse {
pd <~ NA
dic <= NA
}

return{list{accept=c(accept_beta/sim,accept_logmu/sim,accept_logsigma/sin},
chain=prot.ts,dic=dic,pd=pd,delta=delta, prop=prat.prop, cCurr=prut.curr,
lik=all.lik,lik.na=ll.na})

C.3 Utility functions

ddirich <- function(x,alpha,logdens=FALSE){
logDh <~ sum{lgamma(alpha)} -:lgamma(sum(alpha))
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8 <- sum((alpka - 1) =* log{x))
if (logdens) pd <- (sum(s) - logD) else pd <= exp{sum(s) - logD)
return{pd)

y

rdirich <- fuanction(m,a){
1 <- length{a)
x <- matrix{rgamma{l*z,a),ncol=1,byrow=TRUE)
sm <- x¥+frep(1,1}
return(x/as.vactor(sm})

h

dmixgamma <~ function{x,weight,rateparam}{ -
numcomp <~ length{weight)

mixcomp <- matrix(NA,nrow=length(x),ncol=numcomp}

for (1 in 1l:numcomp) mixcomp[,i] <- dgamma(x,shape=i,rate=rateparam)

dens <- mixcomp}*iwaight

raturn(dens}

pmixgamma <- function(x,weight,rateparam){
numcomp <~ length(weight)
mixcomp <~ matrix(¥NA,nrow=length(x},ncol=numcomp)
for (i in 1:numcomp) mircempl,i] <- pgamma(x,shape=i,rata=rateparam)
cdf <- mixcompi*iveight
raturn(cdf)

}

rmizgamma <~ function{n,ww,tt){
JJ <~ length(ww)
roixg <- vector(length=n}
tap.raixg <- matrix(NA,nrow=JJ,ncol=n)
tap.lbl <- matrix(Nn,nrowﬂll,gcol-n)
for {i in 1:J1) tmp.rmixgli,] <- rgamma(n,shape=i,rate=tt)
tmp.lbl <~ rmultinom(n,l,ww) N
for (i in 1:JJ) rmixg <- rmixg + top.lbl[i,)*tmp.rmixg(i,]

return(ronixg)

dtriang <~ function{x,a=0,b=1,c=2) { 1
if ((a<=b & b<c) | (a<b & be<tg)) {
dt <- vector{length = length(x))
for (1 in l:length(x}) {
if (x[i) >= a & x[i] <= ¢) {
it {x(i] <= b) { *
dt[i} = 2s{(x[i]-a)/((c-a)+(b-a)) }
alsa {
dt[il = 2+{c-x[1))/((c-a)*(c-b)) } }
- elae {
drl[i] = NA } }
return(dt) }

alse {stop{"Inconsistent parameter values.\n"}}
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ptriang <- function(x,a=0,b=1,c=2} {
if ((a<=b & b<c) | (a<b & bere)) {
pt <- vector(langth = i;ngth(x))
for (1 in Ll:lemgth{x)) k
if (x[i] >=a & x[1) <= ¢) {
if {(xfi) <= b} {
ptli} = (x[il-a}"2/((c-a)*(b-a)) }
else {
ptli] = 1-(c-x[1])-2/({c-a)*{c-b})) } }
elsa {
if (x[i) < a) ptlil,= ©
if {x[il > ¢} ptlill=1} }
return(pt) }
else {stop(“*Inconsistent parameter values.\n")}

1

"
qtriang <- function{prob,a=0,b=1,c=2} {
if ({a<=b & b<c) | (a<h & be+c)) {
qt <- vector{length = length{prob)}
temp <- ptriang(x=b,a=a,b=b,c=c)
for (1 in 1:13ngth(probj) {
if {(probli]l » 0 & prob(il < 1) {
if (problil <= temp) {
qt{i] = sqrt{prob[il+(c-a)+{b-a)})+a }
else { j
qt[i] = c-sqrt((1Lprob[1])*(c—a)*(c-b)) }}
else { i
it (probfi]l == 0} qt[i]l = &
if (prob[il == 1} qt[i) = ¢
if (probli} < 0} qt{i] = NA
if (problil » 1) qelil = NA } 3
return(qt) }
alse {stop("Inconsistent parameter values.\a")}

3 U

rtriang <- function(n=1,a=0,b=i,c=2){
if ((a<=b & b<c) | (a<b & b<+c)) {
it (> 1) {
rt <- vector{length = n)
tor {i in 1:0) {
u <- runif{l)
rt{i] = gtriang(u,a=a,b=b,c=c) } }
alse {stop("n must be greater than or equal to 1.\n*)}
return{rt) } ’
else {scop{"Inconsistent parameter values.\n")}

dinvganma <- function(x,shape,scale=1}{

if (shape <= O | scale <= 0) stop{“Shape or scale parameter negative in dinvgamma().\n")

alpha <- shape
bata <- scale

log.density <- alpha * log(beta) - lgamma{alpha) - (alpha+l) * log(x) - (beta/x)
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return(exp(log.denaity))
}

prob.predict <- function(mcme.w,memc.thata,thresh,prat=FALSE){
aumsim <= dim{meme.w) [1]
13 <~ dim(meme.w) [2]
pred.prob’ <~ vector{length=numsin)
for (i in 1:numsim}{ .
for (j in 1:JJ¥{
pred.prob[i] <- pred.probl[i].+ mcmc.w(i,jl*{(1-pgamma{thresh,shape=i,rate=mcmc.thetafi]))
}
}

return{pred.prob)

prob.predict.ln <- Iunction(mcmc.mu,ﬁcnc.ad.thresh){
numsim <- length(mcmc.mu) .
pred.prob <- vector {length=nunsim)
for (i in l:oumsim) pred.probfi] <- i-plnorm(thresh,meanlog=mcmc.auli],sdlog=meme.sd[i})
return(pred.prob)
}

poly.dmatrix <- function(p,df,intercept=FALSE,first.deriv=FALSE){
if (tfirat.deriv) { .
dmatriz <~ cbind(p}
if (df > 1} for (i in (2:df)} dmatrix <- cbind(dmatrix,p*i)
it (intercept) dmatrix <- c¢bind(1,dmatrix) }
alse {
dmatrix <- cbind(rep{1,leagth(p)))
if (df > 1) for (i in (2:df)) dmatrix <- cbind(dmatriz,i*p~(i-1)) }
di;namas(dmatrix) <= NULL
return(dnatrix)
}

check.-beta.poly <- function(prmt,yyl,degf){
numcomp <- length(prmt)-degf-2
qql <= sort(yyl)
danal.qi <- dmixgamma{gql,prut[{degf+2):(degf+aumcomp+1}],prut [degf+numcomp+2])
pl <- pmixgamma(qql,prmt [(degf+2): (degf+numcomp+1)],prmt [degf+numcomp+2] )
derivat <- poly.dmatrix(pl.degf,first.dariv=TRUEf
constr <- 1/(demsl.qlwqggl)
B <- derivat¥«’prmt[2: (degf+1)})
raturn{any(B > constr})

check.bata.ns <- function(prat,yyl,degf){
nuncomp <- length(prmt)-degf-2
qqt <- sort{yyl)
densl.ql <~ dmixgaoma(qql,prmt({degf+2): (degf+numcomp+1}],prut [degf+numcomp+2])
pl <- pmixgamma(gql,prmt({(degf+2}: (degf+numcomp+1)],prmt [degf+numconp+2])
knots <- sort(c(rep(range(p1),4),attr(ns{pl,degf),"xnots"})}
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derivat <- splineDesign(kmots,pl,4,rep(l,length(pl)))

derivat <- darivatt.-l.drop=FALSE]

derivat.const <- splineDesign(knots,range(pl),4,c(2, 2))

derivat.const <- derivat .cokﬁst[ ,~1,drop=FALSE]

gr.derivat.const <- qr{t(derivat.const))

derivat <~ as.matrix{{t{qr.qty(qr.derivat.const, t(derivat)))}[, -(1:2)])
constr <- 1/(dens1l.qlxgql) r;

B <~ derivati«fprmt [2: (degf+1)]

return{any(B > constr))

check.beta.ln <- function{prmt,yy1){
qql <- sort(yyl}
densl.ql <- dlnorm(qql,meanlog~prmt [3],sdlog=prmt(4])
pl <- plaorm{qql,meanlog=prmt [3], sdlog=prmt [4}}
derivat <- 1/doorm{qnerm(pi))
constr <- i/(densi.glsqql)
B <- prmt([2]*darivat
raturn{any(B > constr})
} ;|
DICmixgamma <- function(w,théta,obs){
nsim <~ length(theta)
dic.tmp <- rep(NA,nsim) !
for (i in 1:nsinm) dic.tmpld] <- -2¢sun{log{dnixgamaa(obs,wwi,], theta(i])))
dic.top.mean <~ -2+sum(log(dmixgamma(obs,nean{as.data.frame(ww)) ,mean(theta))})
pd <- mean(dic.tmp) - dic.tmp.mean
dic <- mean{dic.tmp) + pd
return{list(dic,pd))
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