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A B S T R A C T

Predictive models are increasingly used for managerial and operational decision-making. The use of complex
machine learning algorithms, the growth in computing power, and the increase in data acquisitions have
amplified the black-box effects in data science. Consequently, a growing body of literature is investigating
methods for interpretability and explainability. We focus on methods based on Shapley values, which are
gaining attention as measures of feature importance for explaining black-box predictions. Our analysis follows
a hierarchy of value functions, and proves several theoretical properties that connect the indices at the
alternative levels. We bridge the notions of totally monotone games and Shapley values, and introduce new
interaction indices based on the Shapley-Owen values. The hierarchy evidences synergies that emerge when
combining Shapley effects computed at different levels. We then propose a novel sensitivity analysis setting
that combines the benefits of both local and global Shapley explanations, which we refer to as the ‘‘glocal’’
approach. We illustrate our integrated approach and discuss the managerial insights it provides in the context
of a data-science problem related to health insurance policy-making.
1. Introduction

Machine learning (ML) tools are increasingly used in operations-
research and the management sciences (ORMS) (De Bock et al., 2023).
Decision-makers adopt recommendations from algorithmic sources in
a variety of applications and sectors such as health-care (Naumzik
et al., 2023; Ni et al., 2020), insurance (Florez-Lopez, 2007) and
finance (Chen et al., 2024; Kriebel & Stitz, 2022; Nazemi et al., 2022).

While ML tools hold a promise of efficiency and of improving
decision-making, they are associated with risks related to their opacity
and lack of transparency. Lebovitz et al. (2022) report that health pro-
fessionals in high-stake decisions do not trust machine learning advice
when perceived as opaque. Fu et al. (2022) and Rudin (2019) outline
the fairness problems associated with ML tools that are proprietary and
not open-source. This creates a need for methods that aid the explana-
tion of ML models decisions, as set forth in the XAIOR (Explainable
Artificial Intelligence for Operational Research) framework of De Bock
et al. (2023).

Methods that allow us to open the model black-box become crucial
to increase trust in predictions. Murdoch et al. (2019) discuss the
respective roles of interpretability and explainability. Interpretability
is a modus operandi, in which the analyst favors a more transparent
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model over a more complex one when predictive accuracy is similar.
Explainability entails generating post-hoc explanations through tools
that inspect the input–output mapping after it has been trained. As
underlined by Guidotti et al. (2018), model inspection involves visual-
izing marginal effects, determining feature importance, and identifying
feature interactions. Recent literature has noted the overlap between
explainable AI tasks and sensitivity analysis (Scholbeck et al., 2023). To
illustrate, variance-based methods (Saltelli et al., 2000; Wagner, 1995),
distribution-based techniques (Baucells & Borgonovo, 2013; Chatterjee,
2021; Wiesel, 2022), and Shapley values (Owen, 2014) are commonly
used in both realms.

Shapley values have been introduced by Shapley (1953) as a mech-
anism to distribute the value of a game among its players. They have
been intensively studied as an allocation method in Economics and they
have found extensive applications also in ORMS. Studies like Balog
et al. (2017), Bergantiños et al. (2023), Csóka et al. (2022), and Linde-
lauf et al. (2013), have applied Shapley values to identify key drivers
in terrorist activity networks, in financial risk allocation, in liability
negotiation for insolvent firms, and fleet allocation, respectively. They
have also been intensively used to define feature importance measures
in machine learning applications (Cohen et al., 2007; Štrumbelj &
vailable online 22 June 2024
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Kononenko, 2010; Štrumbelj et al., 2009; Sundararajan & Najmi, 2019).
In ORMS, the Shapley-additive explanations (SHAPs) of Lundberg and
Lee (2017) are widely used as post-hoc explanations. Ahmed et al.
(2024), Chen et al. (2024), Senoner et al. (2022), and Sobrie et al.
(2023) employ them, respectively, in a data-driven analysis to improve
process quality in semiconductor manufacturing, in the context of
imbalanced credit scoring, in a data-driven approach for improving effi-
cacy in railway operations, and in developing an integrated framework
(from descriptive to prescriptive analytics) for predicting car accident
severity.

One of the advantages of formulating feature importance measures
through Shapley values is the flexibility in choosing the value function.
This versatility allows us to obtain a variety of importance indices (Sun-
dararajan & Najmi, 2019). However, it also leads to a fragmentation
of the definitions and to the absence of a systematic approach for
inferring managerial insights. To illustrate, choosing a value function
that anchors the Shapley value to a given instance as in Štrumbelj
et al. (2009) yields indices that explain individual predictions, while
choosing a value function that considers the variance of the target as
in Owen (2014) yields global indices that provide an overall (dataset-
level) importance of a feature. However, what is the insight that the
analyst finally looking for?

Our goal is to strengthen the link between Shapley values and
sensitivity analysis for the extraction of modeling and managerial
insights. To do so, we proceed as follows. We start connecting value
functions hierarchically from a local to a global scale. At the local
level, we introduce the notion of finite-change Shapley values and study
them in connection with the decomposition of a finite change in the
model predictions. We then set out a glocal approach that bridges the
local and global scale to provide an increased understanding of the
model’s behavior across data. We finally consider global value functions
that allow a full uncertainty quantification, focusing on the target
variance as in Owen (2014) and on the target distribution as in Sarazin
et al. (2020). We complete the framework with the recent proposals of
generalized Shapley values (called Shapley-Owen values) (Dhamdhere
et al., 2020; Rabitti & Borgonovo, 2019) for the quantification of joint
contributions, and show that these measures for interactions can be
directly obtained in parallel to the Shapley values in this common
framework.

To illustrate how the sensitivity indices support the viewpoints of
alternative stakeholders, we discuss a data-driven analysis of insur-
ance premia, considering the perspective of an insured individual, a
regulator, and an insurance company.

The remainder of the paper is organized as follows. Section 2
provides a concise literature review and introduces the Shapley value.
Section 3 presents the hierarchical framework of the value functions
adopted in the literature. Section 4 presents the finite-change Shapley
values and describes their connection to partial derivatives as mea-
sures of importance. Section 5 presents the aggregation methods of
partial derivatives producing global importance measures. Section 6
introduces the Shapley effects based on the variance decomposition.
Section 7 introduces the generalized Shapley values for interaction
quantification and extends previous results for individual Shapley val-
ues. Section 7.4 contains a discussion. Section 8 presents an application
to a real dataset of medical insurance premiums. Section 9 concludes
and provides future research directions.

In the Appendix in the Supplementary material, we provide the
proofs, an introduction to the cohort estimation of Shapley effects, the
Shapley chain rule for neural networks, and we extend the Shapley
value framework to value functions that consider the whole output
distribution instead of its variance.

2. The Shapley value

Consider a function 𝜈 ∶ 2𝑁 → R, with 𝜈(𝑧) ∈ R and 𝑧 ⊆ 𝑁 ,
where 𝑁 = 1, 2,… , 𝑛 , such that 𝜈(∅) = 0. This function is called
912
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value function and quantifies the value of a game played by the 𝑧
players. We denote the Shapley value for the player 𝑖 as 𝑆ℎ𝑖, where
= 1, 2,… , 𝑛. Shapley (1953) states the following axioms:

1. (Efficiency) ∑𝑛
𝑖=1 𝑆ℎ𝑖 = 𝜈 (𝑁);

2. (Symmetry) If 𝜈(𝑧 ∪ 𝑖) = 𝜈(𝑧 ∪ 𝑗) for every 𝑧 ⊆ 𝑁 ⧵ {𝑖, 𝑗}, then
𝑆ℎ𝑖 = 𝑆ℎ𝑗 ;

3. (Additivity) Given two value functions 𝜈 and 𝜈′ with associated
Shapley values 𝑆ℎ and 𝑆ℎ′ respectively, then the game with the
value function 𝜈(𝑧) + 𝜈′(𝑧) has Shapley value 𝑆ℎ𝑖 + 𝑆ℎ′𝑖 for all
𝑖 ∈ 𝑁 .

and shows that the following is the unique attribution method that
satisfies them:

𝑆ℎ𝑖 =
1
𝑛

∑

𝑧⊆𝑁⧵{𝑖}

(

𝑛 − 1
|𝑧|

)−1
(𝜈 (𝑧 ∪ 𝑖) − 𝜈(𝑧)) . (1)

Intuitively, the quantity 𝑆ℎ𝑖 is a weighted mean of the differences
n the value of the game caused by the participation of player 𝑖 to
ll possible coalitions. Besides the three above mentioned properties,
hapley also shows that if 𝜈(𝑧∪ 𝑖) = 𝜈(𝑧) for every 𝑧 ⊆ 𝑁 , then 𝑆ℎ𝑖 = 0.
player satisfying this condition is called a null player.
The same quantity can be obtained through an alternative axiomatic

haracterization in which a central role is played by the Moebius
ransform of the value function (Rota, 1964):

(𝑣) =
∑

𝑢⊆𝑣
(−1)|𝑣|−|𝑢|𝜈(𝑢) (2)

or any subset of inputs 𝑣 ⊆ 𝑁 . Note that 𝑚(∅) = 0 and 𝑚({𝑖}) = 𝜈({𝑖})
or all 𝑖 = 1,… , 𝑛. Using Eq. (2) it is possible rewrite the 𝑖th Shapley
alue as:

ℎ𝑖 =
∑

𝑧⊆𝑁,𝑖∈𝑧

𝑚(𝑧)
|𝑧|

, (3)

here 𝑚 is the Moebius transform of 𝜈. When 𝑚(𝑣) is non-negative for
very 𝑣 ⊆ 𝑁 , the game is said to be totally monotone (Owen, 2014). In
ection 4.2 we connect the notion of totally monotone games to a form
f monotonicity of the black-box model to be learned. This allows us
o characterize the Shapley values when the analysts incorporate this
unctional knowledge on it.

. A hierarchy of value functions for Shapley values in machine
earning

In machine learning, analysts deal with the problem of quantifying
r forecasting one or more quantities of interest, 𝑇 , typically called
arget, as a function of one or more independent variables 𝐗, typically
alled features. It is assumed that nature links 𝐗 and 𝑇 via a mathe-
atical model and this model can be learned via data collection. We

egard the machine learning model as an input–output function 𝑓 that
aps 𝐗 and 𝑇 through

= 𝑓 (𝐗), (4)

here 𝑓 ∶  → R, with  ⊆ R𝑛. One also regards both features and tar-
gets as random variables on the reference measure space (𝛺,(𝛺),P).
We assume that 𝐗 = (𝑋1, 𝑋2,… , 𝑋𝑛) admits a probability distribution
𝜇. We also assume that the function 𝑓 is measurable and that the input
space  ≡ 1 × 2 × ⋯ × 𝑛 is the Cartesian product space of the
individual input spaces 𝑖.

The symbols 𝑡 and 𝐱 denote, respectively, a realization of 𝑇 and 𝐗.
For instance, in a neural network, 𝑡 might be the output of a target
neuron of interest and 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛) the set of neuron values in one
or more preceding layers that are input to 𝑓 (Shrikumar et al., 2017).

The application of Shapley values in a machine learning context is
then based on two intuitions. The first is that features now represent
players. The second is that one creates a value function 𝜈 such that
the corresponding Shapley value are consistent with the application at
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Table 1
Main notation and symbols used in the paper.

Symbol Name Equation Note

𝜈(𝑧) Generic value function

baseline value, finite change (5) Local
all-baseline value (6) Glocal
(squared) cohort value (7),(8) Global
regression value (10) Global

𝑆ℎ𝑖 Generic Shapley value (1),(3)

𝑆ℎ𝐱0→𝐱
𝑖 Finite-change Shapley value (17) Linked to (19)

𝐷𝑖 Differential importance index (26) Linked to (28)
𝜁𝑖 Derivative-based global sensitivity measure (32) Proposition 10
𝑆ℎ𝑉 𝐵

𝑖 (Variance-based) Shapley effects (43) Theorem 11
𝑆ℎ𝑆𝐶

𝑖 Squared Cohort Shapley value Theorem 12

𝑆ℎ𝜈
𝑠 Generic Shapley-Owen value (48)

𝑆ℎ𝑇𝑠 Shapley-Taylor interaction index (53)
𝑆ℎ𝐱0→𝐱

𝑠 Finite-change Shapley-Owen value (51) Theorem 16
𝑆ℎ𝑉 𝐵

𝑠 Variance-based Shapley-Owen value (56) Theorem 17
𝑆ℎ𝑆𝐶

𝑠 Squared-cohort Shapley-Owen value Theorem 18
(
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hand. In the literature, a variety of formulations have been proposed.
These definitions are scattered all over the literature as they are often
application-dependent, and a unifying framework is missing. To pro-
pose a unifying view, we start with local formulations and move up to
global formulations (Table 1).

We start with the local formulation. We fix a base case value 𝐱0 in
the feature space and denote with 𝑡0 = 𝑓 (𝐱0) the corresponding model
prediction. We then consider an alternative point 𝐱, called sensitivity
case, and the corresponding prediction 𝑡 = 𝑓 (𝐱). Several works then
consider the problem of explaining the difference 𝛥𝑡 = 𝑡 − 𝑡0 = 𝑓 (𝐱) −
𝑓 (𝐱0) (Shrikumar et al., 2017; Sundararajan & Najmi, 2019). A natural
choice to define Shapley effects in this context is to rely on the so-called
baseline value function

𝜈(𝑧) = 𝑓 (𝐱𝑧 ∶ 𝐱0−𝑧) − 𝑓 (𝐱0), (5)

where (𝐱𝑧 ∶ 𝐱0−𝑧) denotes the point obtained by: (a) shifting the
features with indices in 𝑧 to the sensitivity case and (b) by keeping
the remaining features at the base case. This value function has been
used in the sensitivity analysis of neural networks in Sundararajan
and Najmi (2019) and in the DeepLIFT explanation model (Shrikumar
et al., 2017). Because the value function (5) produces Shapley values
which depend on the initial evaluation point 𝐱0, Mase et al. (2020)
and Sundararajan and Najmi (2019) call the resulting indices baseline
Shapley values.

The value function (5) does not take feature uncertainty into con-
sideration. Under uncertainty, Štrumbelj and Kononenko (2010) define
the value function

𝜈(𝑧) = E
[

𝑓 (𝐱𝑧 ∶ 𝐗0
−𝑧)

]

− E
[

𝑓 (𝐗0)
]

, (6)

where the point 𝐱 (and its projections 𝐱𝑧) are kept constant. Note that
the value function (6) is the average of the value function (5) over ini-
tial points. Štrumbelj and Kononenko (2010) use it to quantify feature
importance in classification problems (see also Janzing et al., 2019;
Mase et al., 2020). Mase et al. (2020) call the Shapley value generated
by the value function (6) all-baseline Shapley value. The intuition is that
the average of the model output constitutes the reference initial point
(the baseline). We also note that the first summand in Eq. (6) is the so-
called partial dependence function ℎ𝑧(𝑥𝑧) = E

[

𝑓 (𝐱𝑧 ∶ 𝐗0
−𝑧)

]

of Friedman
and Popescu (2008) (see also Hooker, 2004). This partial dependence
function is a marginal expectation with respect to a subset of inputs
and is commonly used to visualize the marginal relationship between
the output and the inputs in a reduced feature space (Goldstein et al.,
2015; Guidotti et al., 2018).

Alternatively, Štrumbelj and Kononenko (2014) consider the value
function

𝜈(𝑧) = E
[

𝑓 (𝐗)|𝐗 = 𝐱
]

− E 𝑓 (𝐗) , (7)
913

𝑧 𝑧 [ ] 3
where E
[

𝑓 (𝐗)|𝐗𝑧 = 𝐱𝑧
]

is the conditional nonparametric regression
curve. Shapley values based on (7) are used for explaining individ-
ual feature contribution in black-box predictive models in several
works (Aas et al., 2019; Datta et al., 2016; Lundberg et al., 2020;
Lundberg & Lee, 2017; Molnar, 2018; Štrumbelj & Kononenko, 2014;
Sundararajan & Najmi, 2019). The SHAP method of Lundberg and Lee
(2017) is based on partial dependence functions, and thus on the value
function in (6).1 Differently, starting from the conditional regression
curve in Eq. (7), Mase et al. (2020) take a data-driven approach. They
call Eq. (7) the cohort value function. When features are independent,
6) and (7) coincide.

Mase et al. (2020) introduce the squared version of the value
unction in Eq. (7) as

(𝑧) =
(

E
[

𝑓 (𝐗)|𝐗𝑧 = 𝐱𝑧
]

− E [𝑓 (𝐗)]
)2 , (8)

hich they call the squared cohort value function. Owen (2014) intro-
uces the value function

(𝑧) = V
[

E
[

𝑓 (𝐗)|𝐗𝑧
]]

(9)

o obtain global sensitivity measures in the context of the sensitivity
nalysis of computer simulators. The value function in Eq. (9) allows
ne to define variance-based sensitivity measures for models with
ependent features (Benoumechiara & Elie-Dit-Cosaque, 2019; Iooss &
rieur, 2019; Owen & Prieur, 2017; Song et al., 2016). One may observe
hat the expected value of the squared cohort value function (8) yields
9). Similarly, the value function in Eq. (9) can be obtained taking
he variance of the value function in Eq. (7). Thus, there is a strict
ink between the value functions (7), (8) and (9). The Shapley values
onstructed from these value functions are feature importance measure
n a global scale, because the uncertainty in 𝐗 is taken into account.

There is however an important point to raise. Differently from (9),
he value functions (7) and (8) depend on the specific conditioning
alue 𝐗 = 𝐱. This makes the sensitivity scale of (6), (7) and (8)
‘glocal’’. This glocal approach strikes a balance between local and
lobal explanations while still focusing on a single observation, making
t a useful tool to investigate the drivers of the model output given

target value of 𝐱. By identifying the most important features for a
pecific instance’s prediction, the glocal approach can lead to local
nsights that would otherwise be lost. To illustrate, assume that the
odel is an insurance pricing model used to assign policyholders a
remium based on their specific risk profiles. With reference to a target

1 See the Reading SHAP values from partial dependence plots Sec-
ion at https://shap.readthedocs.io/en/latest/example_notebooks/overviews/
n_introduction_to_explainable_AI_with_Shapley_values.html, accessed on May
0 2024.

https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An_introduction_to_explainable_AI_with_Shapley_values.html
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An_introduction_to_explainable_AI_with_Shapley_values.html
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policyholder, the most important features measured by the Shapley
values obtained from (7) and (8) can differ from the Shapley values
obtained for the whole portfolio using (9). We will illustrate this point
in our case study (Section 8).

When the machine learning problem involves linear regression mod-
els, Lipovetsky and Conklin (2001) introduce the Shapley regression
values for feature importance. Shapley regression values are studied
in Grömping (2007, 2015) and Huettner and Sunder (2012). The value
function in this case is

𝜈(𝑧) = 𝑅2
𝑧, (10)

where 𝑅2
𝑧 is the well-known goodness-of-fit measure when only the

features in 𝑧 are included in the model. Eq. (10) coincides with the
normalized version of Eq. (9) in the case of a linear model with
independent inputs (Saltelli et al., 2000), that is

𝑅2
𝑧 =

V
[

E
[

𝑓 (𝐗)|𝐗𝑧
]]

V [𝑓 (𝐗)]
.

Sarazin et al. (2020) have recently considered Shapley effects as-
ociated with the value function generated by a moment independent
lobal sensitivity measure. We address this value function in greater
etail in Appendix 4.

This discussion offers a hierarchical path through value functions
sed to formulate Shapley values in machine learning. These formula-
ions allow us not only to investigate the relationships between Shapley
ndices formulated using alternative value functions, but also the rela-
ionships between Shapley indices and other sensitivity measures used
n machine learning as well as computer simulation literature.

. Finite-change sensitivity analysis for local model explanations

This section focuses on the Shapley formulated using the finite-
hange (or baseline) value function in Eq. (5). In the first part, we
onnect the sensitivity measure of Lundberg and Lee (2017), Shrikumar
t al. (2017) to the forward-difference decomposition of a finite change
n the model predictions. In the second part, we outline a bracketing
roperty for Shapley values that holds when the input–output map-
ing satisfies a given monotonicity requirement. In the third part, we
iscuss the limiting behavior of the Finite Change Shapley value and
emonstrate the link to differential importance measures.

.1. Shapley values for Finite Changes

We consider the finite change 𝛥𝑡 = 𝑡 − 𝑡0 = 𝑓 (𝐱) − 𝑓 (𝐱0) which
represents the difference in the target registered when the features vary
from the base case to the sensitivity case. Shrikumar et al. (2017) define
the contribution score 𝐶𝛥𝑥𝑖𝛥𝑡 of 𝛥𝑥𝑖 = 𝑥𝑖−𝑥0𝑖 as the amount of difference-
from-reference in 𝑡 that is attributed [...] to the difference from-reference in
𝑥𝑖 (p. 3). They impose the condition

𝛥𝑡 =
𝑛
∑

𝑖=1
𝐶𝛥𝑥𝑖𝛥𝑡. (11)

Now, it is known that one can expand 𝛥𝑡 through finite differences
as Borgonovo (2010), Kuo et al. (2010) and Rabitz and Alis (1999)

𝛥𝑡 = 𝑓 (𝐱) − 𝑓 (𝐱0) =
𝑛
∑

𝑖=1
𝜙𝐱0→𝐱
𝑖 +

∑

𝑖<𝑗
𝜙𝐱0→𝐱
𝑖,𝑗 +⋯ + 𝜙𝐱0→𝐱

1,2,…,𝑛. (12)

In Eq. (12) the 2𝑛 − 1 finite-change terms are found from

⎧

⎪

⎨

⎪

⎩

𝜙𝐱0→𝐱
𝑖 = 𝑓 (𝑥𝑖 ∶ 𝐱0−𝑖) − 𝑓 (𝐱0),

𝜙𝐱0→𝐱
𝑖,𝑗 = 𝑓 (𝑥𝑖,𝑗 ∶ 𝐱0−𝑖,𝑗 ) − 𝜙𝐱0→𝐱

𝑖 − 𝜙𝐱0→𝐱
𝑗 − 𝑓 (𝐱0),

…

(13)

The first order terms 𝜙𝐱0→𝐱
𝑖 , 𝑖 = 1, 2,… , 𝑛, are called main effects and

the higher-order terms are called interaction effects. The superscript
0

914

𝐱 → 𝐱 makes explicit that every effect is referred to the finite
change from the reference point 𝐱0 to the sensitivity case 𝐱. Given the
decomposition in Eq. (13), it is possible to define the total finite-change
effect of feature 𝑥𝑖 as Borgonovo (2010) and Borgonovo and Rabitti
(2023)

𝑇𝜙𝐱0→𝐱
𝑖 = 𝜙𝐱0→𝐱

𝑖 +
𝑛
∑

𝑘=2

∑

|𝑧|=𝑘,𝑖∈𝑧
𝜙𝐱0→𝐱
𝑧 , (14)

which includes all the effect terms to which 𝑥𝑖 contributes to. Thus,
𝑇𝜙𝐱0→𝐱

𝑖 is a measure of the total impact of 𝑥𝑖 to the target change 𝛥𝑡.
Similarly, we can define the overall interaction effect associated with
𝑥𝑖 as the difference between the total and the main effects of 𝑥𝑖:

𝐼𝜙𝐱0→𝐱
𝑖 = 𝑇𝜙𝐱0→𝐱

𝑖 − 𝜙𝐱0→𝐱
𝑖 . (15)

Analogously to the global sensitivity analysis setting (Owen, 2014),
we define the lower and upper sensitivity indices of 𝑧 for the finite
change from 𝐱0 to 𝐱 as

𝜏𝐱
0→𝐱

𝑧 =
∑

𝑢⊆𝑧
𝜙𝐱0→𝐱
𝑢 and 𝜏𝐱

0→𝐱
𝑧 =

∑

𝑢∶𝑢∩𝑧≠∅
𝜙𝐱0→𝐱
𝑢 . (16)

These indices allow analysts to understand the role of the 𝑧th features
in determining the change 𝛥𝑡. The upper index 𝜏𝐱

0→𝐱
𝑧 is a measure of

the total effect of the feature group: if it is close to zero then the 𝑧th
features can be considered uninfluential. Note that if 𝑧 = {𝑖} then
𝜏𝐱

0→𝐱
𝑧 equals 𝑇𝜙𝐱0→𝐱

𝑖 . Instead, a large absolute value of the lower index
𝜏𝐱0→𝐱
𝑧 indicates that the group of features contribute significantly to the

change 𝛥𝑡. We can then link these finite-change sensitivity indices with
the Shapley value.

Definition 1. For the finite change 𝐱0 → 𝐱 we call the Shapley value
with value function 𝜈(𝑧) = 𝜏𝐱0→𝐱

𝑧 the finite-change Shapley value of the
feature 𝑖.

We denote the finite-change Shapley value with 𝑆ℎ𝐱0→𝐱
𝑖 . It holds

𝑆ℎ𝐱
0→𝐱

𝑖 = 1
𝑛

∑

𝑧⊆[𝑛]⧵𝑖

(

𝑛 − 1
|𝑧|

)−1
(

𝜏𝐱
0→𝐱

𝑧∪𝑖 − 𝜏𝐱
0→𝐱

𝑧

)

= 1
𝑛

∑

𝑧⊆[𝑛]⧵𝑖

(

𝑛 − 1
|𝑧|

)−1
∑

𝑣⊆𝑧
𝜙𝐱0→𝐱
𝑣∪𝑖 ,

(17)

here the terms 𝜙𝐱0→𝐱
𝑣∪𝑖 are the finite changes in Eq. (13). In addition,

e have the following characterization.

heorem 2. Given the value function 𝜈(𝑧) = 𝜏𝐱0→𝐱
𝑧 , the finite-change

Shapley value of 𝑋𝑖 is

𝑆ℎ𝐱
0→𝐱

𝑖 = 𝜙𝐱0→𝐱
𝑖 +

𝑛
∑

𝑘=2

1
𝑘

∑

|𝑧|=𝑘,𝑖∈𝑧
𝜙𝐱0→𝐱
𝑧 . (18)

All proofs are in Appendix 1. The Shapley value 𝑆ℎ𝐱0→𝐱
𝑖 in Eq. (18)

and the finite-change total effect 𝑇𝜙𝐱0→𝐱
𝑖 of the feature 𝑥𝑖 in (14) contain

the same finite changes. Nonetheless, the sum of 𝑆ℎ𝐱0→𝐱
𝑖 equals to

𝛥𝑡. The finite-change Shapley effect 𝑆ℎ𝐱0→𝐱
𝑖 can be connected to the

contribution score used in Lundberg and Lee (2017) and Shrikumar
et al. (2017) as follows.

Proposition 3. 𝐶𝛥𝑥𝑖𝛥𝑡 is a finite change Shapley value, i.e.

𝐶𝛥𝑥𝑖𝛥𝑡 = 𝑆ℎ𝐱
0→𝐱

𝑖 . (19)

Next, we establish the equivalence of finite-change and baseline
Shapley values.

Theorem 4. Consider two points 𝐱0 and 𝐱. Then, the baseline value
function 𝜈𝐵𝑆 (𝑧) = 𝑓 (𝐱𝑧 ∶ 𝐱0−𝑧) − 𝑓 (𝐱0) and the finite-change value function
𝜈𝐹𝐶 (𝑧) = 𝜏𝐱0→𝐱 coincide.
𝑧
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An important consequence of Theorem 4 is that the Shapley values
for the baseline and the finite-change value functions coincide. By The-
orem 2, the expression of these Shapley values is given by Eq. (18). Mase
et al. (2020) already proved this characterization for the baseline
Shapley values but only in the specific case of a function 𝑓 defined
on {0, 1}𝑛 with reference point 𝐱0 = (0, 0,… , 0) and the sensitivity point
𝐱 = (1, 1,… , 1). Thus, Theorem 2 extends the result of Mase et al. (2020)
showing that this characterization holds in general.

4.2. The case of monotonic models

We now explore the situation in which the response variable is
required to be monotonic with respect to some input variables. Au-
thors include monotonic constraints on the model for interpretabil-
ity reasons (Rudin et al., 2022) and to increase the predictive accu-
racy (Dugas et al., 2009). For instance, several neural network architec-
tures have been developed for totally and partially monotonic relation-
ships (Daniels & Velikova, 2010; Dugas et al., 2009; Sill, 1998). Sun-
dararajan and Najmi (2019) prove that, if the model is monotone in one
feature, then the Shapley value of this feature increases as this variable
increases. In this section, we focus our attention on a particularly useful
notion of monotonicity due to Rüschendorf (2013).

Definition 5. A multivariate function 𝑓 is said to be 𝛥-monotone if
𝜙𝐱0→𝐱
𝑧 ≥ 0 whenever 𝑥𝑖 ≥ 𝑥0𝑖 for all 𝑧 ⊆ 𝑁 .

This notion of 𝛥-monotonicity is stronger than monotonicity, be-
cause it implies that 𝛥𝑡 ≥ 0 and all the finite-changes are positive.
Using this notion, we can show that the following inequality holds for
finite-change Shapley values.

Proposition 6. Assume that the input–output map 𝑓 is 𝛥-monotone. Then

0 ≤ 𝜙𝐱0→𝐱
𝑖 ≤ 𝑆ℎ𝐱

0→𝐱
𝑖 ≤ 𝑇𝜙𝐱0→𝐱

𝑖 . (20)

We call (20) bracketing property in analogy with Owen (2014),
here it is proven for the value function in Eq. (9) (see (44) in
ection 6).

.3. Connection to differential sensitivity measures

We now characterize the Shapley value (18) in terms of partial
erivatives. Shrikumar et al. (2017) define the multiplier 𝑀𝛥𝑥𝛥𝑡 as the
ontribution of the change 𝛥𝑥 to the change 𝛥𝑡 divided by 𝛥𝑥, that is

𝛥𝑥𝛥𝑡 =
𝐶𝛥𝑥𝛥𝑡
𝛥𝑥

, (21)

which by (19) becomes

𝑀𝛥𝑥𝛥𝑡 =
𝑆ℎ𝐱0→𝐱

𝛥𝑥
. (22)

This index is analogous to a partial derivative which leads us to the fol-
lowing observations, and indeed several approaches to the intepretabil-
ity of neural networks are based on partial derivatives (Baehrens et al.,
2010; Kowalski & Kusy, 2018b; Montavon et al., 2017; Yeung et al.,
2010). In particular, Engelbrecht et al. (1995), Zurada et al. (1994)
define the input–output sensitivity of the trained output as

𝑆(0)
𝑖 =

𝜕𝑓
(

𝐱0
)

𝜕𝑥𝑖
. (23)

We now prove the connection between Shapley values and partial
derivatives at the infinitesimal scale.

Proposition 7. Assume that the model 𝑓 is differentiable. As 𝐱 → 𝐱0 then
→

𝜕𝑓
(

𝐱0
)

for all 𝑖 = 1, 2,… , 𝑛.
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𝛥𝑥𝑖𝛥𝑡 𝜕𝑥𝑖
Proposition 7 shows the relationship between the finite-change
Shapley value of variable 𝑖 and the corresponding partial derivative.
Note that, when the model admits positive first-order partial deriva-
tives (Dugas et al., 2009), the finite-change Shapley values are positive.

Consider now that the features are denominated in different units.
Then, (23) cannot be used to rank them, as one is comparing heteroge-
neous quantities. However, one can recombine the gradient information
to construct importance measures. For instance, for the sensitivity
analysis of neural networks, Tsaih (1999) considers the importance
measure

𝐷∗
𝑖 =

𝜕𝑓
(

𝐱0
)

𝜕𝑥𝑖
∑𝑛

𝑘=1
|

|

|

|

𝜕𝑓(𝐱0)
𝜕𝑥𝑘

|

|

|

|

. (24)

On the other hand, Horel et al. (2018) consider as a measure of local
feature importance

𝐷∗∗
𝑖 =

(

𝜕𝑓
(

𝐱0
)

𝜕𝑥𝑖

)2

∑𝑛
𝑘=1

(

𝜕𝑓(𝐱0)
𝜕𝑥𝑘

)2
. (25)

Note that both (24) and (25) resemble the recombination of local
sensitivities in the differential importance measure given by Borgonovo
and Apostolakis (2001):

𝐷𝑖 =

𝜕𝑓
(

𝐱0
)

𝜕𝑥𝑖
𝛥𝑥𝑖

∑𝑛
𝑘=1

𝜕𝑓(𝐱0)
𝜕𝑥𝑘

𝛥𝑥𝑘
, (26)

but with a caveat. In the proof of Proposition 7 (see Eq. (D.4) in
Appendix 1) we have shown the approximation

𝑆ℎ𝐱
0→𝐱

𝑖 ≈
𝜕𝑓

(

𝐱0
)

𝜕𝑥𝑖
𝛥𝑥𝑖, (27)

which connects Shapley value to differential importance indices. We
have shown that, when 𝐱 → 𝐱0, the relevance scores for the local
ensitivity analysis of deep neural networks of Montavon et al. (2018)
re Shapley values.

roposition 8. The differential importance measure 𝐷𝑖 locally behaves as

𝐷𝑖 ≈
𝑆ℎ𝐱0→𝐱

𝑖
∑𝑛

𝑘=1 𝑆ℎ
𝐱0→𝐱
𝑘

=
𝑆ℎ𝐱0→𝐱

𝑖
𝛥𝑡

(28)

as 𝐱 → 𝐱0, or equivalently

𝑆ℎ𝐱
0→𝐱

𝑖 ≈ 𝐷𝑖 ⋅ 𝛥𝑡. (29)

When the features are expressed in the same units, we can assume
that the finite changes are uniform (i.e., 𝛥𝑥𝑖 = 𝛥𝑥𝑗) and hence the
differential importance measure (26) becomes

𝐷𝑖 =

𝜕𝑓
(

𝐱0
)

𝜕𝑥𝑖
∑𝑛

𝑘=1
𝜕𝑓

(

𝐱0
)

𝜕𝑥𝑘

. (30)

e conclude with a cursory observation on differentiation-based in-
ices. Gradients are one of the main sensitivity analysis tools used in the
tochastic simulation. When the model output is stochastic, it is natural
o assess the parametric sensitivity of the output response via sensitivity
ndices of the type

𝜕E𝐗[𝑓 (𝐗; 𝜃)]
𝜕𝜃

, where 𝜃 represents a parameter of
interest. The problem of correctly calculating these types of sensitivities
goes under the name of perturbation analysis (Glasserman, 1990).
Applications range from risk assessment to finance, and can be found
in works such as Hong and Liu (2009, 2010), Pesenti et al. (2021) and
Tsanakas and Millossovich (2016).
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5. From the infinitesimal to the global scale

In this section, we address those methods that are a bridge between
local and global approaches. We observe that they have been indepen-
dently developed in different research streams in the machine learning
and design of computer experiments communities. These methods are
based on the aggregation of local sensitivities computed at randomized
locations in the input space.

We start with the works in computer experiments. We recall first
the average importance index of Becker et al. (2018) and Campolongo
et al. (2007)

𝜇∗
𝑖 = E

[

|

|

|

|

𝜕𝑓 (𝐗)
𝜕𝑋𝑖

|

|

|

|

]

. (31)

he absolute value ensures that there are no cancellation effects when
ggregating partial derivatives. Another relevant index based on this
pproach is the derivative-based global sensitivity measure

𝑖 = E

[

(

𝜕𝑓 (𝐗)
𝜕𝑋𝑖

)2
]

(32)

introduced in Sobol’ and Kucherenko (2009). In the machine learning
literature, we find the same sensitivity indicators in Wang et al. (2008)
who use 𝜁𝑖 in Eq. (32) for identifying feature importance in neural
networks. Consider a set of points 𝐱1, 𝐱2,… , 𝐱𝐾 sampled from the
probability distribution 𝜇. Denote by 𝑆(𝑘)

𝑖 the partial derivative (23)
evaluated at the point 𝐱𝑘 for 𝑘 = 1, 2,… , 𝐾. Then, Engelbrecht et al.
(1995), Kowalski and Kusy (2018a, 2018b) and Zurada et al. (1994)
define for feature 𝑖

• the mean square average sensitivity index 𝑆𝑀𝑆𝐴
𝑖 as

𝑆𝑀𝑆𝐴
𝑖 =

√

√

√

√

√

∑𝐾
𝑘=1

(

𝑆(𝑘)
𝑖

)2

𝐾
; (33)

• the absolute value average sensitivity index 𝑆𝐴𝑉 𝐴
𝑖 as

𝑆𝐴𝑉 𝐴
𝑖 =

∑𝐾
𝑘=1

|

|

|

𝑆(𝑘)
𝑖

|

|

|

𝐾
; (34)

• the maximum sensitivity index 𝑆𝑀𝐴𝑋
𝑖 as

𝑆𝑀𝐴𝑋
𝑖 = max

𝑘=1,2,…,𝐾
𝑆(𝑘)
𝑖 . (35)

We can then establish the following relationships between the two
literature streams.

Proposition 9. The absolute value sensitivity index 𝑆𝐴𝑉 𝐴
𝑖 is an estimate of

he average importance index 𝜇⋆
𝑖 in Eq. (31). Moreover, the mean square

verage sensitivity index 𝑆𝑀𝑆𝐴
𝑖 is the square root of the estimate of the

derivative-based global sensitivity measure in Eq. (32), that is

𝑆𝑀𝑆𝐴
𝑖 ≈

√

𝜁𝑖.

Assume now that the analyst has performed a randomized evalua-
tion of finite-changes Shapley values. Note that, in the same spirit, we
can aggregate finite-change Shapley values computed at randomized
locations in the input space.

Proposition 10. The derivative-based global sensitivity measure in Eq. (32)
can be approximated using replicated Shapley values as

𝜁𝑖 ≈ E
⎡

⎢

⎢

⎣

(

𝑆ℎ𝐗→𝐗+𝛥𝐗
𝑖
𝛥𝑋𝑖

)2
⎤

⎥

⎥

⎦

(36)

or small values of 𝛥. Analogous approximations hold for the sensitivity
ndices 𝑆𝑀𝑆𝐴, 𝑆𝐴𝑉 𝐴 and 𝑆𝑀𝐴𝑋 .
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Propositions 9 and 10 suggest that it is possible to estimate the
differential importance measure 𝐷𝑖 in Eqs. (28), all global sensitivity
measures in Eqs. (31)–(35), as well as approximated finite-change Shap-
ley values at 𝐾 randomized locations. In our application, we suggest to
exploit the information yielded by the knowledge of Shapley values at
several points before performing the aggregation. In this way, we gain
additional insights at no further cost.

6. Shapley effects and variance-based global sensitivity measures

A further way for obtaining global importance measures consists
in considering Eq. (9) as the value function (Owen, 2014), and is
attracting increasing attention in the uncertainty quantification liter-
ature (Owen, 2014; Owen & Prieur, 2017; Plischke et al., 2021; Song
et al., 2016). In this context Shapley values are called Shapley effects,
following Song et al. (2016).

Assume for the moment that features are independent and that 𝑓
is square integrable. Then, 𝑓 can be written as Efron and Stein (1981)
and Hoeffding (1948)

𝑓 (𝐱) =
∑

𝑧⊆𝑁
𝑓𝑧(𝐱𝑧), (37)

here 𝐱𝑧 are the components of 𝐱 indexed by 𝑧 ⊆ 𝑁 and the functions
𝑧 are recursively defined by

𝑧(𝐱𝑧) = ∫

(

𝑓 (𝐱) −
∑

𝑙⊆𝑧
𝑓𝑙(𝐱𝑙)

)

𝑑𝜇(𝐱−𝑧).

q. (37) is called classical functional ANOVA expansion of 𝑓 . Com-
onent functions 𝑓𝑧(𝐱𝑧) represent the effects of the features 𝐱𝑧. The
omponent functions 𝑓𝑖(𝑥𝑖), 𝑖 = 1, 2,… , 𝑛, coincide with the partial
ependence functions (Friedman & Popescu, 2008; Hooker, 2004).
he ANOVA functional components are connected to the finite-change
erms in (13) as

𝑧(𝐱𝑧) = ∫ 𝜙𝐱0→𝐱
𝑧 𝑑𝜇(𝐱0), (38)

here the integral is taken with respect to the initial point (also called
nchor point in Kuo et al., 2010; Mase et al., 2020; Rabitz & Alis, 1999).

Letting 𝜎2𝑧 = V[𝑓𝑧(𝑋𝑧)], the orthogonality of the component func-
ions allows the decomposition of the variance of 𝑓 into 2𝑛 − 1 orthog-
nal terms (Efron & Stein, 1981):
2 = V[𝑓 (𝐗)] =

∑

𝑧⊆𝑁⧵{∅}
𝜎2𝑧 . (39)

y Eq. (38), one finds that a link between the variance-components and
he finite-change indices from Rabitz and Alis (1999):

2
𝑧 = V

[

E
[

𝜙𝐗0→𝐗
𝑧

]]

, (40)

here the external variance is taken with respect to the final point 𝐗
nd the internal expectation with respect to the initial (anchor) point
n the finite-change decomposition 𝐗0.

Natural sensitivity measures are then Sobol’ indices 𝜎2𝑧 (Sobol’,
993). The two importance indices for subset 𝑧 constructed from Sobol’
ndices are
2
𝑧 = V

[

E
[

𝑓 (𝐗) ∣ 𝐗𝑧
]]

=
∑

𝑙⊆𝑧
𝜎2𝑙 (41)

nd

𝜏2𝑧 = E
[

V
[

𝑓 (𝐗) ∣ 𝐗−𝑧
]]

=
∑

𝑙∶𝑙∩𝑧≠∅
𝜎2𝑙 . (42)

n particular, the index 𝜏2𝑧 represents the variance explained by 𝐱𝑧 and
can be considered as a natural importance measure for the subset of
features with indices in 𝑧. Conversely, 𝜏2𝑧 is usually called the total
effect of group 𝑧 (Homma & Saltelli, 1996) and it can be interpreted
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as the expected remaining variance once the variables 𝐗−𝑧 are known2.
These indices satisfy 𝜏2𝑧 ≤ 𝜏2𝑧 and 𝜏2𝑧 = 𝜎2−𝜏2−𝑧. These indices have been
pplied to the sensitivity analysis of neural networks in Cheng et al.
2019), Fernández-Navarro et al. (2017), Fock (2014), Kowalski and
usy (2018a, 2018b) and Li and Chen (2018).

Owen (2014) proposes the variance-based value function 𝜈(𝑧) = 𝜏2𝑧
nd proves that, under feature independence, the Moebius transform of
he value function 𝑚(𝑧) coincides with the Sobol’ index 𝜎2𝑧 for any 𝑧. In
subsequent work, Song et al. (2016) prove that the Shapley effects

sing value functions (41) or (42) coincide.
Hence, the representation formula (3) under feature independence

ecomes

ℎ𝑉 𝐵
𝑖 =

∑

𝑧⊆𝑁,𝑗∈𝑧

𝜎2𝑧
|𝑧|

. (43)

Owen (2014) proves the following inequality

0 ≤ 𝜏2𝑖 ≤ 𝑆ℎ𝑉 𝐵
𝑖 ≤ 𝜏2𝑖 , (44)

and calls it the bracketing property. It states that the Shapley effect
of the 𝑖th feature is always comprised between its individual variance-
based sensitivity measure and its total order index. This signals a
parallelism to finite-change Shapley values for 𝛥-monotone functions
(see Proposition 6). When features are independent, Shapley effects can
be explicitly represented in terms of finite-change sensitivity indices.

Theorem 11. Assume that 𝑓 is 𝐿2−integrable and that the features are
independent. Then, we can write

𝑆ℎ𝑉 𝐵
𝑖 = V

[

E

[

∑

𝑧⊆𝑁,𝑗∈𝑧

𝜙𝐗0→𝐗
𝑧
√

|𝑧|

]]

. (45)

This result has an operational implication. Suppose one has avail-
able sensitivity indices {𝜙𝐱𝐤→𝐱𝐤+𝟏

𝑧 }𝐾𝑘=0 calculated at 𝐾 + 1 randomized
locations. These indices can be aggregated in two ways: via Eq. (17)
to find 𝑆ℎ𝐱𝐤→𝐱𝐤+𝟏

𝑖 , or via Eq. (45) to find the variance-based Shapley
effects. Eq. (45) shows that 𝑆ℎ𝑉 𝐵

𝑖 provides information at a global
scale but it based on information at a local scale. At a global scale, we
obtain indication about the relative importance of the features. On a
local scale, knowledge of 𝜙𝑖 at randomize location provides additional
information about the local behavior of the model through the input
space. Thus, insights at the local and global scale can be simultaneously
obtained from the same machine learning model evaluations. Informa-
tion on local patterns can be particularly useful to identify non-regular
behavior of the model in localized regions of the input space, especially
when some features can have only local and not global importance.

It is possible to find an alternative characterization of 𝑆ℎ𝑉 𝐵
𝑖 relaxing

the input variables independence assumption in Theorem 11. Denote
by 𝜈𝑆𝐶 (𝑧) the squared-cohort value function in Eq. (8). As written in
Section 3, taking the expectation we find that

𝜈𝑉 𝐵(𝑧) = E
[

𝜈𝑆𝐶𝐗 (𝑧)
]

, (46)

where 𝜈𝑉 𝐵(𝑧) is the variance-based value function in Eq. (9). Then,
denote by 𝑆ℎ𝑆𝐶𝑖 (𝐱) the Shapley value of the 𝑖th feature generated by the
squared cohort value function 𝜈𝑆𝐶𝐱 (𝑧). The symbol 𝑆ℎ𝑆𝐶𝑖 (𝐱) evidences
the dependence on the point 𝐱 on which we condition in Eqs. (7) and
(8). By the additivity property of the Shapley value, the following holds.

Theorem 12 (Mase et al., 2020). Assume that 𝑓 is 𝐿2−integrable. Then,
for the 𝑖th feature one finds

𝑆ℎ𝑉 𝐵
𝑖 = E

[

𝑆ℎ𝑆𝐶𝑖 (𝐗)
]

, (47)

where the expectation is taken with respect to 𝐗.

2 Note that we are developing a parallel global framework to the local
ramework of Section 4.
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Eq. (47) shows that 𝑆ℎ𝑉 𝐵
𝑖 is, in fact, the aggregation of 𝑆ℎ𝑆𝐶𝑖 (𝐱)

at randomized locations. Then displaying 𝑆ℎ𝑆𝐶𝑖 (𝐱) at the locations
before the aggregation provides insights on the local model behavior. In
particular, this allows one to understand whether the importance of a
feature is regionally localized. Displaying this information is then a nice
bridge between local and global sensitivity. We illustrate this point in
our application, with a new graphical visualization of Shapley effects.
We extend the result of Theorem 12 to the generalized Shapley values
for interactions in Section 7.

7. Generalized shapley values for interaction quantification

This section is divided into three parts. Section 7.1 presents the
Shapley-Owen value for interactions. Section 7.2 discusses the compu-
tation of the Shapley-Owen index via randomization of high-order finite
differences. Section 7.3 presents variance-based Shapley-Owen effects
and new results about their estimation.

7.1. The shapley-owen value

The increasing attention in individual feature importance paral-
lels the interest for determining the relevance of feature interac-
tions (Dhamdhere et al., 2020; Plischke et al., 2021; Rabitti & Bor-
gonovo, 2019). Interaction quantification is a fundamental issue in
explaining predictions of black-box machine learning models. However,
classical Shapley values constitute an attribution method for individual
features. To address this issue, Owen (1972) defines the Shapley value
of the coalition of two features and Grabisch and Roubens (1999)
extend this notion to any coalition size. The resulting index is called
the Shapley-Owen value. This index represents the residual interaction
value of a coalition of features 𝑠 ⊆ 𝑁 whose components are indexed
by {𝑖1, 𝑖2,… , 𝑖𝑠}. The intuition is that computing the value of a coalition
helps to understand whether the coalition is producing more/less value
than the sum of individual feature contributions.

The Shapley-Owen value for a coalition 𝑠 with value function 𝜈 is
denoted by 𝑆ℎ𝜈𝑠 and is defined by:

𝑆ℎ𝜈𝑠 =
∑

𝑢⊆𝑁⧵𝑠

(𝑛 − |𝑢| − |𝑠|)!|𝑢|!
(𝑛 − |𝑠| + 1)!

∑

𝑙⊆𝑠
(−1)|𝑠|−|𝑙|𝜈(𝑙 ∪ 𝑢). (48)

or instance, consider this interaction index between the features of
nterest 𝑠 = {𝑖, 𝑗}. Eq. (48) becomes

ℎ𝜈
𝑖,𝑗 =

∑

𝑢⊆𝑁⧵{𝑖,𝑗}

(𝑛 − |𝑢| − 2)!|𝑢|!
(𝑛 − 1)!

[𝜈(𝑢 ∪ {𝑖, 𝑗}) − 𝜈(𝑢 ∪ {𝑖}) − 𝜈(𝑢 ∪ {𝑗}) + 𝜈(𝑢)] .

(49)

The term 𝜈(𝑢 ∪ {𝑖, 𝑗}) − 𝜈(𝑢 ∪ {𝑖}) − 𝜈(𝑢 ∪ {𝑗}) + 𝜈(𝑢) in Eq. (49) coincides
with the definition of two factors interaction used in the statistical
field of Design of Experiments (Wu, 2015). If this term is positive than
the interaction between 𝑖 and 𝑗 is profitable (i.e., synergistic). If it is
negative then the interaction is disadvantageous (i.e., antagonistic).
Thus, the intuition of Eq. (49) is that one averages this interaction
index for all possible coalitions to which the subgroup 𝑠 belongs. Note
also that, when 𝑠 = {𝑖}, the Shapley-Owen value (48) reduces to the
Shapley value (1). Recently, Lundberg et al. (2020) adopt the two-
features Shapley-Owen value in (49) for the explanation of tree-based
machine learning models.

Analogously to the Shapley value in Eq. (3), the Shapley-Owen
effect can be also expressed in terms of the Moebius inverse by inter-
preting the group 𝑠 as a single player (the team acts as one player).

Theorem 13 (Grabisch & Roubens, 1999). Given the value function 𝜈, the
Shapley-Owen value of the feature group 𝑠 can be written as

𝑆ℎ𝜈𝑠 =
∑

𝑢⊇𝑠

1
|𝑢| − |𝑠| + 1

𝑚(𝑢), (50)

where 𝑚 is the Moebius transform of 𝜈.
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The Shapley-Owen value is based on the following game-theoretic
axioms, that differ from the ones at the basis of the Shapley value (Gra-
bisch & Roubens, 1999):

1. (Linearity) 𝑆ℎ𝜈+𝑤𝑠 = 𝑆ℎ𝜈𝑠+𝑆ℎ
𝑤
𝑠 for every 𝑠 ⊆ 𝑁 and for any value

function 𝜈 and 𝑤.
2. (Dummy) If 𝑖 is a dummy feature for 𝜈, then 𝑆ℎ𝜈𝑖 = 𝜈({𝑖}) and

𝑆ℎ𝜈𝑠∪{𝑖} = 0 for every 𝑠 ⊆ 𝑁 ⧵ {𝑖} with 𝑠 ≠ ∅.
3. (Symmetry) For all 𝜈 and for all permutations 𝜋 on 𝑁 , 𝑆ℎ𝜈𝑠 =

𝑆ℎ𝜋𝜈𝜋𝑠 , where the game 𝜋𝜈 is defined by 𝜋𝜈(𝜋𝑠) = 𝜈(𝑠), where
𝜋𝑠 = {𝜋(𝑖), 𝑖 ∈ 𝑠} for all 𝑠 ⊆ 𝑁 .

4. (Recursivity) 𝜙𝜈 obeys the following recurrence formula for
every 𝑠 ⊆ 𝑁, |𝑠| > 1, any 𝜈 and any 𝑗 ∈ 𝑠: 𝑆ℎ𝜈𝑠 = 𝑆ℎ

𝜌𝑗
𝑠⧵{𝑗}−𝑆ℎ

𝜈𝑁⧵{𝑗}

𝑠⧵{𝑗}
where 𝜌𝑗 (𝑠) = 𝜈(𝑠 ∪ {𝑗}) − 𝜈({𝑗}) and 𝜈𝑁⧵{𝑗} denotes the value of
the game on 𝑁 ⧵ {𝑗} features.

Similarly to the procedure adopted for the Shapley value, in the
next subsections we specify Shapley-Owen values for alternative value
functions.

7.2. Finite-change Shapley-Owen index

In this section, we consider the definition of finite-change Shapley-
Owen values for the finite-change value function 𝜈(𝑧) = 𝜏𝐱0→𝐱

𝑧 . We
recall that this value function quantifies the impact of the 𝑖th feature
in the finite change 𝛥𝑡 caused by the features shifting from 𝐱0 to 𝐱. Let
𝑆ℎ𝐱0→𝐱

𝑠 denote the finite-change Shapley-Owen value of group 𝑠. We
an characterize the finite-change Shapley-Owen values as follows.

heorem 14. Assume that 𝜈(𝑧) = 𝜏𝐱0→𝐱
𝑧 . Then,

𝑆ℎ𝐱
0→𝐱

𝑠 =
∑

𝑢⊇𝑠

𝜙𝐱0→𝐱
𝑢

|𝑢| − |𝑠| + 1
, (51)

where 𝜙𝑢 is a finite-difference effect in (13).

Corollary 15. If 𝑓 is 𝛥-monotone, then

ℎ𝐱
0→𝐱

𝑠 ≥ 0

or all 𝑠 ⊆ {1, 2,… , 𝑛}.

We next provide a characterization of 𝑆ℎ𝐱0→𝐱
𝑠 at the infinitesimal

cale.

heorem 16. Consider the finite-change Shapley-Owen value of the
ubgroup 𝑠. Then,

ℎ𝐱
0→𝐱

𝑠 ≈
𝜕|𝑠|𝑓 (𝐱0)

𝜕𝑥𝑖1 ⋯ 𝜕𝑥𝑖𝑠
𝛥𝑥𝑖1 ⋯𝛥𝑥𝑖𝑠 (52)

for 𝐱 → 𝐱0 and for every 𝑠 ⊆ {1, 2,… , 𝑛}.

The approximation in (52) is consistent with the notion of Shapley-
Taylor interaction index defined in Dhamdhere et al. (2020). Pre-
cisely, Dhamdhere et al. (2020) consider the 𝑙th order Taylor series
approximation of the model 𝑓 (𝐱) and prove that the Shapley-Taylor
interaction index for feature group 𝑠, 𝑆ℎ𝑇𝑠, with |𝑠| < 𝑙, is the 𝑠-order
partial derivative

𝑆ℎ𝑇𝑠 =
𝜕|𝑠|𝑓 (𝐱0)

𝜕𝑥𝑖1 ⋯ 𝜕𝑥𝑖𝑠
. (53)

Note that if the input–output mapping is 𝛥-monotone, by (D.1) the
partial derivatives (and thus the 𝑆ℎ𝐱0→𝐱

𝑠 for small changes) are positive:
the positivity of the mixed partial derivatives is the assumption on the
target function 𝑓 in Dugas et al. (2009).

At the infinitesimal scale, 𝑆ℎ𝐱0→𝐱
𝑠 in (52) can be also connected

to the crossed derivative-based global sensitivity measure of Roustant
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et al. (2014). This latter sensitivity measure is defined as (Roustant
et al., 2014)

𝜁𝑠 = E
⎡

⎢

⎢

⎣

(

𝜕|𝑠|𝑓 (𝐗)
𝜕𝑋𝑖1 ⋯ 𝜕𝑋𝑖𝑠

)2
⎤

⎥

⎥

⎦

. (54)

The measure (54) extends to groups the derivative-based measure in
(32) of Sobol’ and Kucherenko (2009). Thus, rewriting Eq. (52) we find

𝜁𝑠 ≈ E
⎡

⎢

⎢

⎣

(

𝑆ℎ𝐗→𝐗+𝛥𝐗
𝑠

𝛥𝑋𝑖1 ⋯𝛥𝑋𝑖𝑠

)2
⎤

⎥

⎥

⎦

(55)

for small values of 𝛥𝐗. This equation is the extension of (36) to the case
of feature groups.

7.3. Variance-based Shapley-Owen effects

We now consider the Shapley-Owen values (48) when the value
function is the Sobol’ index 𝜈(𝑢) = 𝜏2𝑢. Rabitti and Borgonovo (2019) call
the resulting interaction index the Shapley-Owen effect, in analogy with
the terminology for Shapley effect (Song et al., 2016). The Shapley-
Owen effects are a promising tool for quantifying interaction effects in
the presence of feature dependence. These indices can be interpreted in
terms of the explanatory power of the features when taken together as a
group. Plischke et al. (2021) propose an algorithm for the computation
of Shapley-Owen effects.

When features are independent, we can represent Shapley-Owen
effects as Rabitti and Borgonovo (2019)

𝑆ℎ𝑉 𝐵
𝑠 =

∑

𝑢⊇𝑠

𝜎2𝑢
|𝑢| − |𝑠| + 1

. (56)

This leads to the bracketing inequality for Shapley-Owen effects:

𝜎2𝑠 ≤ 𝑆ℎ𝑉 𝐵
𝑠 ≤ 𝛶 2

𝑠 , (57)

where 𝛶 2
𝑠 =

∑

𝑢⊇𝑠 𝜎
2
𝑢 is the superset importance measure of Liu and

Owen (2006) and it quantifies the global impact of the feature subgroup
𝑠 in all higher-order Sobol’ interaction terms. We now show a further
characterization of Shapley-Owen effects in terms of finite changes
(13):

Theorem 17. Assume that 𝑓 is 𝐿2−integrable and that features are
independent. Then, we have

𝑆ℎ𝑉 𝐵
𝑠 = V

[

E

[

∑

𝑢⊇𝑠

𝜙𝐗0→𝐗
𝑢

√

|𝑢| − |𝑠| + 1

]]

. (58)

Eq. (58) has the same operational implication as (45). With the
finite-change terms (13) evaluated at multiple points, one can construct
both finite-change Shapley (17) and Shapley-Owen (51) values. From
the same finite-change effects, by Theorems 11 and 17 the analysts
can obtain the Shapley and Shapley-Owen variance-based effects and
derivative-based global sensitivity measures (Eqs. (36) and (55)). We
can generalize Theorem 12 of Mase et al. (2020) to Shapley-Owen
effects.

Theorem 18. Assume that 𝑓 is 𝐿2−integrable. Then, it holds

𝑆ℎ𝑉 𝐵
𝑠 = E

[

𝑆ℎ𝑆𝐶𝑠 (𝐗)
]

, (59)

where the expectation is taken with respect to 𝐗.

This new characterization is useful for the computation of Shapley-
Owen effects. It shows that the given-data estimation procedure for the
Shapley effects proposed by Mase et al. (2020) can be extended to in-
teraction quantification. The accuracy and robustness of the numerical
estimation of these indices constitute an open area of future research.
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Fig. 1. Graphical summary of the hierarchy of value functions and corresponding Shapley (Shapley-Owen) values. The double arrow between the Baseline Shapley and Finite-Change
hapley signifies their equivalence as per Theorem 4.
.4. An overview and the glocal scale

Fig. 1 provides a graphical illustration of the proposed hierarchy
f value functions for Shapley and Shapley-Owen values. The left part
isplays local methods, the middle part glocal methods, and the right
art global methods. Arrows denote their connections and numbers
efer to the corresponding equation in the text. At a local level the
nalysis can be carried out on an infinitesimal or finite scale. In the
ormer, we consider small perturbations of the features around their
ase case value. The sensitivity indices are gradients or differential
ensitivities [Eq. (28)]. In the latter, we consider variations of the model
cross two entries. These can be seen as scenarios in sensitivity analysis.
he sensitivity measures are finite-change indices in Eq. (13). Finite-
hange indices emerge from the exact decomposition of the change in
odel prediction across the two scenarios in 2𝑛 terms. They are related

o baseline Shapley values in Eq. (17) by Theorem 4 (the equivalence
s signaled by the double arrow).

Finite change indices are also related to partial dependence func-
ions, that are at the basis of the value function in Eq. (6) and,
nder independence, are equivalent to the conditional regression value
unction in Eq. (7). Squaring this value function one obtains the value
unction in Eq. (8) at the basis of cohort Shapley effects 𝑆ℎSC

𝑖 (𝐱)
in Eq. (47), whose value depends on the anchor point 𝐱. Note that av-
eraging these squared cohort Shapley values we obtain variance-based
Shapley values in Eq. (9), which are global indices.

However, displaying how the Shapley values vary as a function of
the reference individual provides additional insights into the model
behavior, and can be used to create regional representations of sen-
sitivity information. This would otherwise remain hidden if the local
Shapley values are simply combined to obtain global explanations. This
sensitivity analysis, which is intermediate between a local and a global
scale, is called glocal.

The right part of the figure refers to the global level. In a global
sensitivity analysis, one inspects the model at several locations in
the feature space. Global sensitivity measures, either variance-based
(Sobol’ indices) [Eq. (40)] or moment-independent [Eq. (D.12)] can
be both associated with Shapley values. In particular, variance-based
Shapley effects [Eqs. (9) and (43)] have been discussed in Owen (2014),
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Owen and Prieur (2017), while moment-independent Shapley values
are discussed in Sarazin et al. (2020).

8. Application

In this section, we explore the integration of local and global in-
sights using Shapley values and quantify interactions at different scales
using Shapley-Owen values analyzing the dataset Medical Insurance
Premium Predictions available at https://www.kaggle.com/datasets/
tejashvi14/medical-insurance-premium-prediction. In discussing the
managerial side of our results, we consider the perspective of three
stakeholders: an insurance company, a regulator and the individual.

This dataset contains 986 individual medical premiums based on 10
features related to the policyholder’s characteristics: age (continuous),
diabetes (discrete), blood pressure problems (discrete), any organ trans-
plants (discrete), any chronic diseases (discrete), height (continuous),
weight (continuous), any known allergies (discrete), history of cancer
in family (discrete), number of major surgeries (discrete). We have
fitted a feed-forward neural network with 2 layers with 10 and 1 nodes
respectively using the Matlab2019 Neural Network package. We split
the data into 75% for training and 25% for testing. The 𝑅2 coefficient
is equal to 0.93 on the training data and 0.80 on the testing data. From
now on we consider this ML model.

To investigate which features are responsible for moving the pre-
miums from the minimum to the maximum at any policyholders’ age
we use the local Shapley values in Eq. (17). Specifically, for any age
we consider the minimum and maximum premium as base case (𝐱0)
and sensitivity case (𝐱1), respectively. Namely, at a given age we set
as base case the feature values of the policyholder paying the lowest
premium, and as sensitivity case those of the policyholder paying the
highest premium. We then compute the finite-change Shapley values
via Eq. (17) shifting the features across the two individuals, and we
repeat it for all ages. Note that, since two policyholders with the same
age are always considered for the finite changes, age does not appear
as a model input in this analysis. Results are shown in Fig. 2.

In Fig. 2, we report on the horizontal axis the policyholder’s age,
and on the vertical axis the magnitude of Shapley values. At each age,
nine dots are plotted, corresponding to the finite-change Shapley values

that distribute the difference between the maximum and minimum

https://www.kaggle.com/datasets/tejashvi14/medical-insurance-premium-prediction
https://www.kaggle.com/datasets/tejashvi14/medical-insurance-premium-prediction
https://www.kaggle.com/datasets/tejashvi14/medical-insurance-premium-prediction
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Fig. 2. Finite-change Shapley values for the difference between the maximum and the minimum of the observed premiums as a function of policyholders’ age (in years).
premiums among the nine features of the policyholders. The sum of
these Shapley values is positive at any age, as it reflects the difference
in premiums. Fig. 2 shows that the presence of transplants (yellow
asterisk), chronic diseases (purple circle) and the body weight (blue cir-
cle) are generally the most important drivers of the difference between
the maximum and minimum premiums for any age. Notably, Fig. 2
evidences a clear pattern in the impact of these features across different
ages. In particular, the presence of transplants is the most important
feature in driving the premium up, but only when age is greater
than 30. Weight is the second most important feature in increasing
the premiums if age is greater than 50. For lower ages, the presence
of a chronic disease becomes an important feature. Transplants and
chronic diseases are conditions that require ongoing medical care and
treatment, which can result in higher healthcare costs and thus a higher
premium. Similarly, body weight is a known risk factor for a variety of
health problems, and it is well documented that individuals who are
overweight or obese show an increased likelihood of developing health
problems. Thus, these findings are consistent with medical knowledge.

Regarding managerial insights, individual finite change Shapley
values can be used to better inform the single policyholder, who
gains insights into how their intrinsic features contribute to the final
algorithmic decision. First, the policyholder can appreciate whether the
decision of the algorithm was based on fair or unfair attributes. Second,
they can determine whether the important features are actionable. To
illustrate, if weight appears to be a relevant factor for a policyholder
of age greater than 50, the person can decide whether or not to take
actions to reduce their body weight, towards decreasing the insurance
premium. Also, these results can be used by the insurance company and
the regulator: in analyzing the case of a particular policyholder, they
need insights to understand and explain the rationale of that specific
algorithmic decision. Moreover, the use of finite change Shapley values
can support the insurance company that can develop tailored health
insurance policies specific for the needs of different customer segments.
For example, they could provide optional coverage for certain pre-
existing conditions or lifestyle-related benefits, allowing customers to
personalize their plans.

Moving towards a glocal scale, we now consider the explanations
of all policyholders against the average individual. As base case, we
920
set 𝐱̄ = (𝑥̄1, 𝑥̄2,… , 𝑥̄10), which represents the average policyholder with
the mean feature values of all policyholders. As Mase et al. (2020) high-
light, this average policyholder is not necessarily a real individual in the
data. We then repeat the previous analysis calculating the finite-change
Shapley values with respect to this new base case. Fig. 3 displays the
results. Fig. 3 shows that age (blue circles) is the most important feature
in affecting premiums for policyholders younger than 30. The effect
of age significantly reduces insurance premiums for this age group.
However, for policyholders over 50, the effect of age increases the
insurance premium. This is intuitive, as younger people are less likely to
require healthcare and therefore incur lower expenditures compared to
older individuals. Additionally, the presence of any transplants (purple
circles) significantly increases the individual premium. In contrast, for
policyholders between 25 and 49, the presence of chronic diseases
(green circles) and a family history of cancer (red asterisk) increase
premiums. Moreover, Fig. 3 displays a clear pattern of how individ-
ual determinants change across different ages. At all ages, the most
influential feature driving the increase in the premium is having any
transplant. For policyholders aged between 18 and 24, family cancer
history has the next significant impact, while the presence of any
chronic disease becomes prominent for those aged 25 to 33. These two
features then alternate between the second and third positions until the
age of 49, after which policyholder’s age is the second most important
driver of the premium increase. Knowledge of how a specific feature
impacts premiums at different ages can inform managerial decisions,
such as designing and pricing individual health-insurance contracts.

As a subsequent glocal sensitivity analysis, we compute the indi-
vidual squared cohort Shapley values in Eq. (8). We estimate them in
two ways: by using a ML model (the neural network model previously
fitted) and directly through the cohort method of Mase et al. (2020)
- see Appendix 3 for a description. Results are plotted in Fig. 4.
Fig. 4 consists of two panels: the lower panel shows the squared-cohort
Shapley values estimated using the neural network model, while the
upper panel displays the cohort-based estimates. Both panels evidence
a similar pattern, indicating that the ML model does not distort the
indications coming from the original data. The blue circles in both pan-
els highlight the impact of age, showing that for policyholders younger

than 30, all blue circles are significantly above all other Shapley values.
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Fig. 3. Finite-change Shapley values for individual policyholders as function of their age, computed with the neural network. The base point is the average policyholder.
Fig. 4. Squared-cohort Shapley values for individual policyholders as function of their age, estimated from cohorts (upper panel) or with neural network (lower panel).
or ages between 30 and 40, the presence of any transplants and any
hronic diseases have the most significant impact on the insurance
remium. We can also compare the insights obtained from the two
local approaches. Figs. 3 and 4 are consistent, although Fig. 3 pro-
ides additional information on the direction of the effects, indicating
hether a feature increases or decreases the insurance premium.

Regarding managerial insights, results at the glocal level are now
eading insights at the population level. They are valuable for insurance
upervisors looking at their portfolio. Having access to the primary
rivers of the predictive model enables regulators to scrutinize for
921
potential discriminatory effects on a large scale, evidence, for instance,
by a significant importance of variables like ‘‘race’’ or ‘‘gender’’, —
however, these variables are not present in this dataset. The glocal
sensitivity analysis, which provides insights regarding individual pol-
icyholders compared to similar insured individuals in the portfolio, is
highly relevant for the insurance company. For example, if the company
discovers that a group of policyholders with certain characteristics
poses lower risk compared to others, it might offer them more compet-
itive rates or additional benefits to incentivize their loyalty. Similarly,
identifying individual policyholders who present significantly different
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Fig. 5. Shapley effects estimated with cohorts for the whole data (left panel) and for the age group 30–40 yo (right panel).
isk levels compared to their counterparts in the portfolio allows the
ompany to implement targeted risk management actions.

We then investigate the global drivers of the premiums. According
o Theorem 12, the average of the squared-cohort Shapley values pro-
uces the Shapley effects 𝑆ℎ𝑉 𝐵 , which are displayed in Fig. 5(a). This

figure shows that age is globally the key-driver of medical premiums.
With reference to Theorem 12, we can gain additional insights. The
globally most important feature might not necessarily be the most
relevant for a specific subgroup of individuals. Therefore, instead of
averaging the squared-cohort Shapley values over all policyholders, we
consider subjects in specific age groups, such as those between 30 and
40 years old, and compute the Shapley effects for this subgroup. Results
are shown in Fig. 5(b). This plot shows that for this specific age group
the most important feature is the presence of transplants.

These indications promote transparency and assist modelers in con-
structing and refining pricing models by monitoring their primary
drivers. For the modeler, they are appropriate to answer the question
of what are the dataset-level drivers of the algorithmic response and
are especially useful in the initial modeling phases, when analysts can
compare these dataset indications on model predictions with results
obtained from other measures of importance calculated at the dataset
level. For supervisors or insurance companies, they can be used to
compare portfolios. An insurer may compare two different portfolios
which they regarded as similar to have a confirmation of this intuition
or being open to discover that different features are instead relevant
for the portfolios. Detailed understanding of variable contributions to
insurance premiums enables more accurate risk management because
the company becomes aware of the risk drivers and can better prioritize
actions. For example, the company might decide to obtain a larger
rating class without changing significantly the individual premiums by
ignoring subgroups generated by the least important pricing variable.
Larger classes are more stable, as there is a greater solidarity effect
among the policyholders.

We now come to the interaction analysis conducted with Shapley-
Owen effects. Understanding how features interact is essential for
understanding how the insurance pricing model works.

We start considering the finite-change Shapley-Owen values with
the average policyholder 𝐱̄ as base case. We plot the most relevant
airwise finite-change Shapley-Owen values in Fig. 6(a) as a function
f age. Fig. 6(a) indicates that age and any blood problems have a
oint negative effect on the premium for younger ages but a positive
922
effect for older ages. Moreover, the joint effect of age and number
of surgeries greatly increases the premium for older ages. As shown
later in Fig. 7(a), this latter joint effect is globally the most relevant.
Specifically, Fig. 6(b) shows that being older than 50 and having had
at least 2 surgeries is the pair of features with the largest local effect
on the difference in insurance premium with respect to the average
policyholder.

Moving to the global scale, we consider the variance-based Shapley-
Owen effects which can be interpreted in terms of explanatory power
of two (or more) features taken together. Fig. 7(a) displays the Shapley-
Owen effects between age and all the other features computed via
Eq. (59). Fig. 7(a) shows that age and number of surgeries have a very
negative explanatory power when considered together, meaning that
these features provide globally redundant information to the pricing
model. By Theorem 18, the Shapley-Owen effects can be estimated
as the average of the squared cohort Shapley-Owen values. Thus,
to investigate the Shapley-Owen effects between age and number of
surgeries, we plot the squared cohort Shapley-Owen values between
these two features in Fig. 7(b). This figure shows that the joint contri-
butions of age and two or three surgeries are highly negative at ages
greater than 60. Thus, for these ages, age and the occurrence of two
or three surgeries provide redundant information for insurance pricing.
Figs. 6(b) and 7(b) allow us to highlight the similarities and differences
between finite-change and squared cohort Shapley-Owen values. Finite-
change Shapley-Owen values require the use of an ML model, such as
a neural network in this study, and can be interpreted to understand
the financial impact of local joint effects on the difference in premiums
between the base case and the sensitivity case. On the other hand, the
cohort approach can be used to compute Shapley-Owen indices from
given data, and these indices can help determine whether two features
provide redundant or enhanced information. Figs. 6(b) and 7(b) show
that having undergone two or three surgeries and being over 50 years
of age lead to an increase in premium. Additionally, these two features
provide globally similar information regarding the variability of the
premiums.

An interaction analysis can assist the insurance company as follows.
Identifying an important joint contribution that significantly increases
the premium can lead the insurance company to create tailored con-
tracts. Moreover, understanding how risk factors jointly influence insur-
ance premia allows the company to take targeted preventive measures

to mitigate the effects associated with certain feature combinations.
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Fig. 6. Finite change Shapley-Owen values. Some values are plotted in the left panel as function of age, while the right panel depicts a focus on those values between age and
number of surgeries.
Fig. 7. Interaction analysis for the age, which is the feature with highest interaction effects. Shapley-Owen effects for are displayed on the left panel, while squared Shapley-Owen
values for the interaction between age and number of surgeries is displayed on the right. Both are estimated using the cohort method applied to the predicted premiums with the
neural network.
9. Conclusions

The paper has analyzed the alternative formulations of Shapley
explanations developed in the literature. A take-away from our analysis
is that there is no universal strategy to analyze an ML model. We then
present in Fig. 8 a flowchart that might be useful towards a systematic
selection.

Given an available dataset, after fitting a machine learning model,
the first choice is establishing the goal of the analysis. If the analyst
is interested in explaining the difference between two individual pre-
dictions (first decision node), then the we are at a local scale and
baseline Shapley that descend from the value function in (5) are the
appropriate sensitivity indices. Otherwise, if the analysts’ goal is the
overall importance of the features, then a dataset-level formulation
becomes appropriate. We are at a global level and Shapley explanations
such as those in Eqs. (8) or (9) are appropriate. If none of these
is the goal, a bridge is the repeated calculation of local importance
923
values at multiple locations in the dataset. For instance, the SHAPs
subroutine yields as many Shapley values for a given feature as many
are the points in the dataset. Note that Senoner et al. (2022) take
the average the absolute values of the Shapley effects to obtain an
overall dataset importance. However, there is no unique way of aggre-
gating the repeated evaluation of sensitivities: one could also use the
largest magnitude or the upper 95 quantile. This way of proceeding
mixes a local formulation aimed at individual explanations with a
global explanation and may result in an ad-hoc aggregation. While
this is certainly possible, we would still recommend comparing the
results of such aggregation procedure with indications from dataset-
level indices, either Shapley values or measures of statistical association
(see Borgonovo et al., 2023).

Moreover, aggregating results at the local scale might undermine
the derivation of insights. A compromise between the local and global
approaches is attained in a setting that we have called glocal. By
visualizing glocal information, we gain precious additional regional
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Fig. 8. A flowchart guiding the choice of alternative Shapley Value formulations.
insights. Insights on how the model responds for specific subgroups
of features or realizations augment its explainability and deepen the
analyst’s understanding, as drivers of the model behavior might not be
the same for specific subgroups of subjects or specific feature variations.

Our investigation shows that the insights yielded by investigations
at the different scales are complementary rather than overlapping and
may be useful to different stakeholders. Individual policyholders focus
naturally on single predictions, while an insurance company may be
interested in managing risk at a portfolio level.

Similar considerations are valid for Shapley-Owen indices that
quantify the joint feature contributions to the model predictions and
that can be also computed at any scale. Their calculation yields indi-
cations on interactions that can be used to improve risk management.
In our application we have seen that determining whether the simulta-
neous variation in two or more individuals’ characteristics amplifies or
dampens their individual effects helps in formulating tailored insurance
contracts.

While the Shapley values can provide many insights into the ex-
planation of decision models, as we have shown, their main limitation
lies in their computational cost. Indeed, in the absence of closed form
expressions, the value functions of every possible coalition need to
be estimated, resulting in an exponential cost. Therefore, research
into algorithmic and statistical methods for calculating and approx-
imating Shapley values becomes fundamental to estimate them in
high-dimensional contexts. Also, at the dataset level, alternative and
less computationally heavy methods may produce robust indications
about feature importance. One can recall, for instance, measures of
statistical association based on alternative rationales, among which the
new correlation coefficient of Chatterjee (2021) or the Wasserstein
dependence measures of Nies et al. (2023) and Wiesel (2022). A
comparison of these methods and Shapley values is then an open future
research avenue.
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