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Abstract

This doctoral thesis focuses on the interpretability of the machine learning (ML) consid-

ering two specific topics to achieve a better interpretation of machine findings: feature

importance and feature effects. Feature importance helps to identify features that drive

the ML model response, while feature effects provide a visualization of the partial behavior

of the ML model as a function of a subset of features. Exploiting one of the most pow-

erful visualization tool, Accumulative Local Effect (ALE) plot, I develop new approaches

to obtain insights on feature importance. Moreover, I employ these new techniques in

combination with other promising ML methods in hydrological applications. First, I aim

to understand a catchment hydrological response by investigating how sub-basins of a se-

lected natural watershed contribute to its stormflow response. Second, I prove that using

ML tools and feature importance measures helps to enhance an early warming system

based on monitored discharges in specific watershed cross-sections.
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General introduction

My research interests focus on the interpretability of the ML models applied to hydrolog-

ical applications.

Due to their complex structure, ML models are regarded as black boxes. Interpretabil-

ity is crucial to provide insights on the predictions of the ML models. Nowadays, statistical

ML models play an important role in data science. In several applications, the size and

variety of data, and the non-linear relationships between targets and features force ana-

lysts to resort to complex architectures for reaching suitable levels of prediction accuracy.

Dunson (2018) highlights the tangible risks in relying on non-interpretable ML model

predictions if this application is not complemented by a thorough uncertainty quantifi-

cation. Rudin (2019) suggests that, whenever the required level of accuracy is at reach,

analysts should prefer simpler and directly interpretable models, especially for high-stakes

applications. At the same time, we register an expanding literature on methods that can

help analysts in making the use of black-box models more transparent. In a recent survey,

Murdoch et al. (2019) group these methods into two classes: model-based and post-hoc.

The former class refers to methods that work at the modelling phase itself and is espe-

cially related to the choice of white models that are easier to interpret (Chen et al., 2020).

The latter refers to methods that are applied after fitting a complex architecture to yield

additional insights on the black-box internal structure and marginal behavior. Post-hoc

methods are under severe scrutiny (Rudin, 2019) and their success depends heavily on

their ability to deliver correct insights on three aspects: on the partial behavior of the

7
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model as a function of a subset of covariates, on the features that drive the ML model

response (i.e., the feature importance), and on the ML model structure (i.e., the presence

of interactions). Regarding marginal behavior, the literature makes available several vi-

sualization tools. Friedman (2001)’s Partial Dependence plots (PD-plots, henceforth) are

a prototype. PD-plots display the marginal behavior of the target as a function of one

or more features of interest, while other features are marginalized, providing an average

indication of the trend. Goldstein et al. (2015) enrich PD-plots by adding individual con-

ditional expectation functions that display a marginal behavior of the output response

with all remaining features at one of their possible values. However, the works of Molnar

et al. (2020); Apley and Zhu (2020); Hooker et al. (2021) evidence that the marginaliza-

tion procedure associated with PD-plots may lead the ML model to extrapolation errors

when features are correlated, making the corresponding graphical indications unreliable.

To remedy these shortcomings, Apley and Zhu (2020) propose a new visualization ap-

proach, called Accumulated Local Effects (ALE) plot (ALE-plot, henceforth): not only

ALE-plots avoid the forced extrapolation, but Apley and Zhu (2020) show that ALE-plots

are computationally advantageous with respect to PD-plots and they provide even more

reliable indications for datasets of relatively small sizes. Consider for a moment the case

of models with several predictors: inspecting the marginal behavior of the response for all

features may be overwhelming, for the analyst as well as for a non-technical stakeholder.

One then follows the procedure of focusing on the most important predictors (Hastie

et al., 2009a). However, graphical tools do not allow us to obtain insights concerning the

relative importance of features directly.

In the first chapter, I present the theoretical background for the thesis. In particular,

I describe some recently introduced ML tools (graphical tools and feature importance

measures), and some well-known sensitivity indices from Sensitivity Analysis. Finally, I

introduce the ML models used in this work.

In the second chapter, I develop a method to address this aspect. Specifically, I propose
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a new approach to calculate the feature importance measures from the ALE algorithm.

The method consists of computing three different indices which provide additional insights

on marginal behavior and feature importance. I also study their link to permutation-based

importance measures and prove their equality under a square loss function and in the

absence of estimation (extrapolation) errors. This chapter is joint work with Emanuele

Borgonovo, Elmar Plischke, and Cynthia Rudin.

In the third chapter, I employ some relevant techniques from Machine Learning and

Sensitivity Analysis to address one of the most critical problems in hydrology, which is

the understanding of the response of a catchment and dissecting the role of sub-basins in

the watershed dynamics. In this work, I collaborate with Flavia Tauro, Ciro Apollonio,

Andrea Petroselli, Emanuele Borgonovo, and Salvatore Grimaldi.

In the fourth chapter, I design an early warning system, a complex procedure that

includes several alternatives concerning the method used to make predictions, its calibra-

tion, and the monitoring network. In particular, I propose a framework that combines

hydrological-hydraulic synthetic scenarios for selecting and calibrating machine learning

tools for forecasting discharge values and feature importance measures for identifying the

influential sub-basins where to install the discharge measurement instrumentation. This

work is the result of a collaboration with Flavia Tauro, Ciro Apollonio, Andrea Petroselli,

Elena Volpi, Emanuele Borgonovo, and Salvatore Grimaldi.
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Chapter 1

Introduction

1.1 Interpretability Methods in Machine Learning

Despite their popularity, ML models are often regarded as “black boxes” whose internal

working is not transparent to the analyst (Molnar, 2022).

Interpretability and rigorous post-hoc explanations are the keys to avoiding misleading

or biased selections when the decision-making process is supported by forecasts of ML

models fitted on complex data structures (Rudin, 2019; Rudin et al., 2022). Two relevant

post-hoc explanations are frequently sought: the visualization of marginal effects and the

determination of feature importance.

Visualization of marginal effects helps analysts appreciate the behavior of the ML

model as a function of one or more feature(s) of interest. This insight can then be used to

check whether the ML response is consistent with an underlying theory or business intu-

ition before answering a specific managerial question or satisfies a given interpretability

constraint (e.g., monotonicity). Partial dependence (PD) (Friedman, 2001) and individual

conditional expectation (ICE) plots (Goldstein et al., 2015) are widely used to visualize

marginal effects. However, the findings in Apley and Zhu (2020) and Molnar et al. (2020)

show that, when features are correlated, the marginalization procedure associated with

11
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PD and ICE plots may lead to extrapolation errors that make the corresponding graphical

representations unreliable. To remedy these shortcomings, Apley and Zhu (2020) intro-

duce an alternative visualization tool, called accumulated local effect (ALE) plot, that

reduces the forced extrapolation, is computationally advantageous, and yields reliable

indications even for samples of small sizes.

Information about feature importance aids analysts in tasks ranging from dimension-

ality reduction to the determination of whether machine findings are at risk of unfair

discrimination. Permutation-based indices play a central role, since their introduction in

Breiman (2001a) (see also Fisher et al. (2019)). However, recently, Hooker et al. (2021)

show that also their indications are affected by extrapolation issues if permutations are

unrestricted.

Towards correctly interpreting ML model findings, diagnostic tools (such as feature

importance measures, marginal effect indicators, etc.) may be beneficial. Among ML

diagnostic techniques, feature importance measures provide knowledge about the key-

drivers of uncertainty that drive the response of the ML model. Several methods have

been developed to assess feature importance. They can be distinguished in model-specific

and model-agnostic methods (Molnar, 2022). Model-specific methods can be used solely in

conjunction with the ML model with which they are associated. Model-agnostic methods

apply to general classes of models (Murdoch et al., 2019; Dong and Rudin, 2020). To

illustrate, the split-count importance tailored to regression trees proposed by Breiman

et al. (1984) is a representative of the first family of methods. Model-agnostic methods

comprise techniques such as Shapley values (Owen, 2014; Lundberg and Lee, 2017), and

permutation feature importance (PFI) (Breiman, 2001a). In the present thesis, we focus

on model-agnostic methods.
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1.2 Theoretical Background

This section offers a concise review of diagnostic tools. Section 1.2.1 presents graphical

visualization tools and feature importance measures applied in ML. Section 1.2.2 presents

some sensitivity measures used in SA. In Sections 1.2.3 and 1.2.4, we describe the ML

models and performance measures used in this work.

1.2.1 Graphical Tools and Feature Importance Measures in Ma-

chine Learning

Consider the reference framework of Hastie et al. (1994) and Zhao and Hastie (2021) in

which analysts have a dataset of realizations of features X and targets Y at their disposal,

and face the task of determining the relationship

Y = g(X, E), (1.1)

where X, Y and E are regarded as random variables on a probability space (Ω, B(Ω), F ),

where Ω is the set of all possible outcomes, B(Ω) is a Borel-sigma-algebra, F : B(Ω) →

[0, 1] is the probability measure, X ∈ X , X ⊆ Rp is the support of X, g : X → Rm and

E : X ×Ω → R. Throughout the work, we suppose that X = X1 ×X2 · · ·×Xp, where Xj is

the support of Xj, j = 1, 2, ..., p and we assume that m = 1. Depending on the application,

g(x) can be either a simulator or an ML model fitted on given data. In the simulation

case, the structure of the feature-output mapping g is developed by analysts accordance to

theoretical or business principles. Examples include the classical economic order quantity

(EOQ) model (Harris, 1913) for which an analytical expression of g is known, as well as

simulators for which g is not known in closed form, but whose output can be calculated

via computer experiments, such as agent-based models (Rahmandad and Sterman, 2008),

the assembly to order model of Hong and Nelson (2006), or the DICE model for climate
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change (Hu et al., 2012) or SEIR models - which are largely used nowadays to support

predictions in association with the COVID-19 pandemic (Currie et al., 2020). In ML,

analysts face the challenging task of approximating (learning) g by fitting a model on a

given set of data. Examples of ML models are classification trees (Bertsimas and O’Hair,

2013), support vector machines (Cecchini et al., 2010), artificial neural networks (Kim

et al., 2005) and others. To introduce the ML setup, it is convenient to write the ML

model as ĝ(x; θ), ĝ : X × Θ → Rp, where θ ∈ Θ is a set (vector) of parameters, or

hyperparameters or rules (parameters, henceforth). The parameters are instrumental for

determining ĝ via the solution of the optimization problem:

min
θ∈Θ

E[L(Y, ĝ(X; θ))], (1.2)

where L : Y × Rp → [0, ∞) is a loss function, with L(a, a′) = 0 if a = a′ for all a, a′.

In practice, for a dataset D = {(xn, yn) : n = 1, 2, . . . , N} containing N realizations

of (X, Y ). Problem (1.2) requires minimizing the empirical expected value of the loss

function, namely to find θ∗ = arg min{ 1
N

∑N
n=1 L(yn, ĝ(xn; θ))} with (xn, yn) ∈ D. Then,

the model ĝ(x; θ∗) is used for further analysis. We refer to Friedman (2001) and Hastie

et al. (1994) for a more complete description and to the recent review of Gambella et al.

(2020) that highlights the link between machine learning and optimization for various

types of ML algorithms. We also refer to Bertsimas and Kallus (2018) for formulations

of data-driven optimization problems alternative to Problem in Equation (1.2).

Denoting the permutation feature importance of Xj by υj, one writes

υj,perm = E
î
L(yn, ĝ(xn

j ; θ∗))
ó

− E
î
L(yn, ĝ(xn

j,π; θ∗))
ó

, (1.3)

where the first term E
î
L(yn, ĝ(xn

j ; θ∗))
ó

is the expected minimal loss for the sample and

second term is E
î
L(yn, ĝ(xn

j,π; θ∗))
ó

is the loss that we register if we permuted the entries
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of feature Xj. An estimate of the υj,perm of feature Xj is given by

υ̂j,perm = 1
N

N∑
n=1

L
Ä
yn, ĝ(xn

j ; θ∗)
ä

− 1
N

N∑
n=1

L
Ä
yn, ĝ(xn

j,π; θ∗)
ä

. (1.4)

This importance measure quantifies the variation in the accuracy of the ML model fitted

on the (original) training data after permuting a feature of interest. A high value of

υ̂j,perm means that the predictive performance of the ML model drops significantly when

the dependence between Y and Xj is broken as a result of the permutation of Xj. The

method is model-agnostic.

However, for a given dataset, the same feature Xj may be assigned a different value

of υ̂j depending on the model ĝ under scrutiny. To remedy this shortcoming, Fisher et al.

(2019) introduce the notion of model class reliance to study how the importance of a

feature varies across the Rashomon set, that is a set of predictive models that provide

near-optimal accuracy (for a thorough discussion of the notion of Rashomon set, please

see Semenova et al. (2022)). Because the selection of the best model is not a central part

of this work, in the remainder we shall restrict attention to a generic model. We shall

also use the simplified notation ĝ(X) instead of ĝ(X; θ∗), when the context is clear. For

ease of presentation, we consider Xj to be an absolutely continuous random variable, with

distribution and density functions denoted by FX(x) and fX(x), respectively. We denote

with X−j the random vector of the features that does not involve Xj. Correspondingly,

we let Xj and X−j = X \ Xj denote the supports of Xj and X−j, respectively. We denote

the observed value of the j-th feature as xj = (x(1)
j , ..., x

(N)
j )′ and the i-th observation

as x(i) = (x(i)
1 , ..., x(i)

p ) ∈ XP associated with the corresponding target value y(i) ∈ Y . In

the remainder, it will be useful to write X as X = (Xj, X−j), where X−j = {Xl : l =

1, ..., p, l ̸= j}. We also have x = (xj, x−j). The data is divided into training data and

testing data. We denote the generalization error for a given fitted ML model on unseen

test data, i.e., ge(ĝ) = E(L(Y, ĝ(X; θ)).
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Due to their popularity, permutation feature importance measures have been set under

intensive scrutiny. Hooker et al. (2021) criticize these measures since they may lead

to misleading results when there is a strong statistical dependence among features. In

particular, the authors show that when features are correlated, permuting Xj implies

breaking of the dependency structure between Y and Xj and Xj and X−j. In the latter

case, the ML model might be forced to extrapolate outside the region in which it has been

trained. Therefore, such measures emphasize excessively the importance of correlated

features. To overcome this drawback, numerous alternatives have been explored in the

literature (Strobl et al., 2007; Candes et al., 2018; Casalicchio et al., 2018; Hooker et al.,

2021).

Hooker et al. (2021) propose several importance measures. Among them, we recall the

Permute-and-Relearn Importance measure. It is defined as

VIπL
j = E[L(Y, ĝ(Xj, X−j))] − E[L(Y, ĝπ,j(Xj, X−j))]. (1.5)

where ĝπ,j denote the model trained on the training set in which Xj has been permuted.

Equation (1.5) quantifies the variation of the prediction performance between the ML

model trained on the original data and the ML model trained on data after Xj has been

permuted. This approach allows the ML model to re-learn the relationship between the

feature and the target variable reducing the extrapolation bias (Hooker et al., 2021).

Starting from the idea behind the PFI of Breiman (2001a), Strobl et al. (2007) suggest

to rely on a conditional PFI defined as

cPFIj = E[L(Y, ĝ(XCπ
j , X−j))] − E[L(Y, ĝ(Xj, X−j))], (1.6)

where XCπ
j follows the conditional distribution of Xj given X−j. This is equivalent to

computing the PFI importance using a conditional permutation scheme. Specifically, the

support of Xj is partitioned based on X−j, and then the values of Xj are conditionally
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permuted within each partition. This approach preserves the data dependence structure

without breaking the relationship between the feature and the target variable: see also

Debeer and Strobl (2020).

A further extension of the PFI measure is Shapley PFI (SPFI) proposed by Casalicchio

et al. (2018). The Shapley PFI is based on the notion of Shapley value (Shapley, 1952), a

method from game theory that is known for its attractive fairness properties (Lundberg

and Lee, 2017).

Consider a coalitional game with a payoff in which a group of p players, denoted by P

plays by joining coalitions K ⊆ P . We denote the coalition value function by v : 2p → R⩾0

with v(∅) = 0, where ∅ denote the empty set. The Shapley value of the j-th player is

given by

ϕj(v) =
∑

K⊆P \{j}

|K|!(|P | − |K| − 1)!
|P |! [v(K ∪ {j}) − v(K)], (1.7)

where v(K ∪ {j}) − v(K) is the individual contribution of the j-th player in coalition K.

Shapley values assign players a fraction of the overall value by averaging their contribu-

tions to all coalitions.

Ribeiro et al. (2016) and Lundberg and Lee (2017) define the value function v(K)

as the conditional expectation of the target variable on a specific observation when the

features in coalition K are known, that is

v(K) = E[ĝ(X) | XK = xK ] = EX−K |XK
[ĝ(xK), X−K ]. (1.8)

Based on this result, Casalicchio et al. (2018) propose the SPFI measure as follows:

SPFIj =
∑

K⊆P \{j}

|K|!(|P | − |K| − 1)!
|P |! [vge(K ∪ {j}) − vge(K)], (1.9)

where vge(K) = geK(ĝ) − ge∅(ĝ) is the value function associated with the predictive

performance of an ML model. Note that geK(ĝ) is the generalization error computed
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using features in coalition K and ge∅(ĝ) is the error when no features are considered.

SPFI is designed to quantify the individual contribution of each feature to the prediction

on each observation x. Casalicchio et al. (2018) show that an estimate of SPFIj is given

by ’SPFIj = 1
P !

∑
π

[“geBj(π)∪{j}(ĝ) − “geBj(π)(ĝ)], (1.10)

where π is a permutation of the features. Given a permutation π, Bj(π) is the set of

features preceding Xj. For instance, if we assume that p = 5, for j = 3 and π =

{2, 5, 3, 4, 1}, we have that B3(π) = {2, 5}.

Recently, Mase et al. (2020) propose the cohort Shapley, that is a new explanation

method to quantify the feature importance using only actually observed data. Given a

target subject z and feature j, we define a function sz,j such that sz,j(xi,j) = 1 if xi,j is

similar to xz,j and 0 otherwise. For a subset u ⊆ {1, ..., p} and subject z, we define the

cohort as

Cz(u) = {i ∈ {1, ..., N} : sz,j(xi,j) = 1, all j ∈ u} (1.11)

with Cz(∅) = {1, ..., N}. Mase et al. (2020) select as value function

v(u) = 1
|Cz(u)|

∑
i∈Cz(u)

ĝ(xi). (1.12)

By substituting the proposed value function in Equation 1.7, one can define the cohort

Shapley value ϕj that explains the difference between the mean of ĝ(xi) over the fully

refined cohort Cz({1, ..., p}) and the global mean (1/N) ∑
i ĝ(xi) (Mase et al., 2020).

Regarding the visualization tools that describe how features influence the prediction

of an ML model, we recall the definition of PD and ALE-plots. Friedman (2001) defines

the partial dependence function of Xj

hj(xj) = EX−j
[ĝ(xj; X−j)] =

∫
X−j

ĝ(xj; x−j)dFX−j
(x−j), (1.13)
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where FX−j
(x−j) is the marginal distribution of X−j. The corresponding data-driven

estimator is

ĥj(xj) = 1
N

N∑
k=1

ĝ(xj; xk
−j). (1.14)

As observed by Goldstein et al. (2015), Equation (1.14) shows that ĥj(xj) is the average

of N individual conditional expectations zr
j (xj) = ĝ(xj; xr

−j), r = 1, 2, . . . , N . These are

known as one-way sensitivity functions in the management sciences and are widely studied

(Castillo et al., 1997; Bhattacharjya and Shachter, 2008). Apley and Zhu (2020) observe

that, when features are dependent, the marginalization in Equation (1.14) may lead to

points (xj; xr
−j) that fall far from the original data. The ML model may then be forced

to extrapolation errors. If ĝ(·) is differentiable, the ALE main-effect of Xj is defined as

the univariate function

ALEj(xj) =
∫ xj

xmin,j

EX−j |Xj
[ĝ′

j(X)|Xj = zj]dzj, (1.15)

where ĝ′
j(X) is the partial derivative of ĝ with respect to Xj and xmin,j is a chosen value

close to the lower bound of the support of the distribution of Xj. Apley and Zhu (2020)

introduce a centered version of ALE plots by subtracting a constant in Equation (1.15).

As regards implementation, Apley and Zhu (2020) consider the following strategy to

estimate the function ALEj(xj). Considering that Xj is an interval (or the union of a

possibly disjoint set of intervals) on the real line of the type Xj = [xmin,j, xmax,j], Apley

and Zhu (2020) partition Xj into K sub-intervals X k
j = [zk−1

j , zk
j ], with k = 1, 2, ..., K,

such that z0
j = xmin,j and zK

j = xmax,j. Then, let nj(k) the number of realizations of Xj

that belong to X k
j . An estimate of ALEj(xj) is given by’ALEj(xj) =

kj(xj)∑
k=1

1
nj(k)

∑
i:xi

j∈X k
j

(
ĝ
Ä
zk

j , xi
−j

ä
− ĝ

Ä
zk−1

j , xi
−j

ä)
, (1.16)

where kj(xj) is the interval containing xj. The calculation of ’ALEj(xj) requires averaging
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differences in predictions over the conditional distribution of the feature of interest and

also for points close to a given realization x(i). ALE functions have interesting properties,

as highlighted in Apley and Zhu (2020) and Borgonovo et al. (2021). In general, assuming

that the ML model ĝ is monotonic, a trend indicator is monotonicity consistent if it

preserves the intrinsic monotonicity of ĝ. Borgonovo et al. (2021) show that if ĝ(X)

is partially monotonic in Xj, the conditional expectation zj 7→ EX−j |Xj
[ĝ′

j(X)|zj] (in

Equation (1.15)) has the same sign (positive or negative) and, by the monotonicity of

the integral, also the function ALEj(xj) is positive/negative. We can summarise these

properties as follows:

1. Monotonicity Consistency: If ĝ is separately monotonic in Xj, the function ALEj(xj)

is consistent in sign.

2. Additive Recovery: If ĝ(x) = ∑d
j=1 ĝj(xj) is additive, then ALEj(xj) is equal to the

true effect ĝj(xj) up to an additive constant.

3. Multiplicative Recovery (for independent features): If the model is multiplicatively

separable and features are independent, that is ĝ(x) = ĝj(xj)ĝ−j(x−j), then ALEJ(xJ)

= ĝJ(xJ)E[ĝ−J(X−J)] + ∑
u⊂J hu(xu) for some lower-order functions hu(xu).

Moreover, if Y = ∏d
j=1 ĝj(xj), and E[ĝ(Xk)] = 0 for some k ̸= j, then under indepen-

dence we have ALEj(xj) = ĝj(xj) · E[∏d
k=1,k ̸=j ĝk(xk)] = ĝj(xj) · ∏d

k=1,k ̸=jE[ĝk(xk)] = 0.

That is, while Y depends on Xj, the resulting ALE plot does not show such marginal

dependence due to the null value of the expectation of one of the univariate functions in

the product. We call this the null conditional expectation effect (Borgonovo et al., 2021).

Note that PD plots possess the same additive and multiplicative recovery properties

(Hastie et al., 2009c). Greenwell et al. (2018) propose a way to obtain a feature importance

measure from PD plots. The intuition is that a flat PD curve implies that the feature

does not greatly affect the prediction of an ML model. The method is called feature
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importance ranking measure (FIRM). Formally, one writes

sPD
j = V

[
hj(xj)

]1/2 = V
[
E[ĝ(xj; X−j)]

]1/2 . (1.17)

An estimate of sPD
j is given by

ŝPD
j =

Ã
1

N − 1

N∑
k=1

[
ĥj(xk

j ) − 1
N

N∑
k=1

ĥj(xk
j )
]2

. (1.18)

In the remainder, we shall consider the squared version of Equations (1.17) and (1.18),

as, under input independence, they coincide with the well-known first variance-based

sensitivity measures, that we describe in the next section.

Moreover, Greenwell et al. (2020) propose a feature importance measure based on

ALE-plots. It is also used and improved in Christensen et al. (2021). This importance

measure is given by:

ALE-IMPj =
»
V(‘ALEj(xj)). (1.19)

An estimate of the ALE-based feature importance measure is given byŸ�ALE-IMPj =

√
1

N − 1

N∑
i=1

ï‘ALEj(xi
j) − ‘ALEj(xj)

ò2
, (1.20)

where ‘ALEj(xj) = 1
N

∑N
i=1
‘ALEj(xi

j). It is defined by computing the sample standard

deviation of ‘ALEj. So, this measure quantifies the variability of the ALEj(xj) curve

itself. It is defined exploiting the marginal relationship between the target variable and

the feature of interest. For a flat ALE curve ALE-IMPj ≈ 0 meaning that Xj has a small

influence on Y . Differently, a fluctuating ALE curve has a higher variability and so the

value of ALE-IMPj is larger. We use it for comparison purposes.
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1.2.2 Feature importance measures in Sensitivity Analysis

Identifying influential features is also a crucial task in Sensitivity Analysis (SA) (Saltelli

et al., 2008). More specifically, factor prioritization is the determination of the features

that drive variability in the model output (see Saltelli et al. (2004); Borgonovo and Plis-

chke (2016) for a review). Works such as Wagner (1995), Saltelli and Tarantola (2002),

and Oakley and O’Hagan (2004) set forth variance-based approaches. Wagner (1995) and

Homma and Saltelli (1996) define the first and total indices of feature Xj as

sj = V[E[Y |Xj]] = V[Y ] − V[E[Y |Xj]], (1.21)

and

τj = V[E[Y |X−j]] = V[Y ] − E[V[Y |X−j]], (1.22)

that is, as the expected portion of the variance of Y that remains unexplained given that

Xj is fixed (Equation (1.21)) or all other features are fixed but Xj (Equation (1.22)).

Let u ⊆ (1, 2, . . . , d) and |u| denote a subset of indices and its cardinality, respectively.

Assume that FX(x) = ∏d
j=1 Fj(xj) (feature independence) and that g is square integrable.

Efron and Stein (1981) and Sobol (1993) prove the following expansion of g in summands

of increasing dimensionality:

g(x) = g0 +
∑

u⊆(1,2,...,d),u̸=∅
gu(xu), (1.23)

where g0 = E
[
g(X)

]
and, for a set of indices u ⊂ {1, 2, . . . , d}, u ̸= ∅, gu(xu) is given by

gu(xu) = E
[
g(X)|Xu = xu

]
−

∑
v⊂u

gv(xu). (1.24)

The first-order terms, gj(xj), in Equation (1.23) are the main (individual) effect functions.

The higher-order terms are interaction effects.
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Under feature independence, the decomposition in Equation (1.23) is unique and Efron

and Stein (1981) and Sobol (1993) show that the effect functions gu(xu) are mutually

orthogonal, i.e.,
∫

gu(xu)gv(xv)dFX = 0 if u ̸= v. Orthogonality allows us to decompose

the variance of Y , σ2
y, as:

σ2
y =

∑
u⊂{1,2,...,d}

σ2
u, (1.25)

where σ2
u =

∫
· · ·

∫
[gu(xu)]2 ∏

dFxu . From the ANOVA decomposition, Sobol (1993) pro-

poses the variance-based sensitivity indices Su = σ2
u

σ2
y

. When u ≡ {j}, Sj is the first-order

variance-based sensitivity measure of Xj; for a group of indices u with |u| ≥ 2, Su repre-

sents the importance of the interaction terms σ2
u. Homma and Saltelli (1996) define the

total index of Xj by

τj =
∑

u:j∈u

σ2
u. (1.26)

Thus, τj includes all terms in the variance decomposition that contain a contribution

from Xj, including its individual and interaction contributions. We denote by Tj the

corresponding normalized total sensitivity index, Tj = τj

σ2
y

.

A brute force estimation strategy of the quantities mentioned above would call for

N2(2d − 1) model evaluations. This cost makes the computation prohibitive. However,

works such as Sobol (1993); Saltelli (2002b) and Gamboa et al. (2016) have obtained

notable computational burden reductions. In particular, Jansen (1999) shows that we

can write

τj = 1
2

Ç
E
ïÄ

g(X ′
j, X−j) − g (X)

ä2
òå

, (1.27)

where X′, X ∼ FX are two independent replicates of X. Recently, Owen and Hoyt (2021)

compare three strategies for searching such pairs of data points called naïve, radial and

winding stairs (Please see Chan et al. (2000) for a detailed description of the sampling

strategy), that require 2Nd, N(d + 1), and Nd + 1 evaluations of g, respectively. Owen

and Hoyt (2021) apply the designs under feature independence, to determine the mean
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dimension of g.

Under dependence, several of these properties do not hold anymore, and research on

the interpretation of total indices is still ongoing. Regarding first-order indices, they

remain well-defined. Because Equation (1.21) holds, they still share their interpretation

as expected reduction in model output variance after fixing Xj. Regarding total indices,

they lose their interpretation as the overall fraction of the output variance associated with

Xj because Equation (1.26) does not hold. However, they can still be written in terms

of finite differences as follows (see Kucherenko et al. (2012); Mara and Tarantola (2012);

Mara et al. (2015)):

τj = 1
2

∫
X

∫
Xj

(
g
Ä
x′

j : x−j

ä
− g (x)

)2
dFXj |X−j

(x′
j|x−j)dFX(x). (1.28)

Equation (1.28) is the extension to the case of dependent features of the formula proposed

by Jansen (1999), in which the values of X ′
j are sampled from the conditional cumulative

distribution function FXj |X−j
(x′

j|x−j) rather than from the marginal FXj
(xj). Regarding

interpretation, Hart and Gremaud (2018) show that total indices can still be interpreted

in terms of feature selection also when features are dependent: under a squared loss

function, they represent the L2 error that we incur for neglecting Xj. We also have

a link between the work of Hart and Gremaud (2018) and Theorem 2 in Hooker et al.

(2021). To avoid extrapolation, Hooker et al. (2021) list alternative importance measures:

conditional variable importance, dropped variable importance, permute-and-relearn im-

portance and condition-and-relearn importance. The authors show that when computed

under a quadratic loss, although these measures differ in their estimation procedure, they

are based on an expectation of the type E[g(x) − g−j(x−j)]2 which, aside for the factor 2,

is of the same form of the second term in Equation (1.28), and thus is in the spirit of a

total index.

Lastly, total indices lose the zero-independence property under feature dependence.
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That is, in spite of a null value of τj in Equation (1.28), g(x) may still depend on Xj (see

Kucherenko et al. (2012), among others).

Besides variance-based indices (Iman and Hora, 1990; Saltelli, 2002a), the identifica-

tion of the key-drivers that drive the model output response can be achieved with density-

based sensitivity indices (Borgonovo, 2007a) or cumulative distribution-based sensitivity

indices (Gamboa et al., 2018). These indices quantify the degree of statistical dependence

between output and features (Borgonovo, 2007a; Saltelli et al., 2008). The computation

of these indices can be performed using a data-driven approach (Plischke et al., 2013),

which enables us to estimate the corresponding measures directly from given data.

In the applications, we consider three feature importance measures from the SA liter-

ature belonging to different classes of sensitivity indices: first-order (η2) and distribution-

based sensitivity measures (δ and βKS). The sensitivity index η2 is based on the second

moment of the distribution of Y . Differently, δ and βKS indices quantify the probabilistic

effect of each feature on the distribution of Y without reference to any of its moments.

Therefore, they are also called moment-independent sensitivity measures. In addition,

such measures can handle the presence of dependencies among the features (Borgonovo,

2007a; Liu and Homma, 2009).

First-order sensitivity indices The first global sensitivity measure used to address

the sensitivity of Y on X is the first-order sensitivity measure of Xj proposed by Iman

and Hora (1990); Oakley and O’Hagan (2004)

η2
j = V[E[Y | Xj]]

V[Y ] = V[Y ] − E[V[Y | Xj]]
V[Y ] . (1.29)

This index quantifies the importance of Xj based on the expected reduction of the vari-

ance of Y when the value of Xj is fixed (see graph a in Figure 1.1). Note that Pearson

(1905) correlation ratio is an estimator of η2
j .
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Distribution-based sensitivity indices Borgonovo (2007a) proposes the density-

based sensitivity index, which considers the entire distribution of Y without focusing on

a specific moment. The δ-sensitivity measure is defined as follows (see graph b in Figure

1.1)

δj = 1
2E
ï∫

Y

∣∣∣fY (y) − fY |Xj
(y)

∣∣∣ dy

ò
, (1.30)

From Equation (1.30) the importance of feature Xj is defined as the expected discrepancy

between the unconditional model output density fY (y) and the conditional model output

density fY |Xj
over all possible values of Xj.

The second distribution-based method used in our investigation is the cumulative

distribution (cdf)-based sensitivity measure βKS proposed by Baucells and Borgonovo

(2013). Differently from δ-measure, the sensitivity index βKS is defined quantifying the

discrepancy using the Kolmogorov-Smirnov distance between FY , FY |Xj
, that are the two

cumulative distribution functions (see graph c in Figure 1.1). This sensitivity measure

can be expressed as

βKS
j = E

ñ
sup

Y

∣∣∣FY (y) − FY |Xj
(y)

∣∣∣ dy

ô
. (1.31)

The definition of the global sensitivity measures in Equations (1.29),(1.30),(1.31) suggest

that η2
j , δj and βKS

j are non-negative and normalized between 0 and 1. Note that the

indices δj and βKS
j possess the nullity-implies-independent property. This desirable prop-

erty states that a sensitivity measure has null value if and only if the target variable is

independent of Xj (Plischke et al., 2013). The null value of these measures indicates that

the model output is independent of Xj. The estimates of the three sensitivity measures are

obtained using the given-data approach proposed in Plischke et al. (2013). This method

requires to partition the support of Xj in M classes as follows: P = {Cm : m = 1, ..., M}

with Cm,j ∩ Cm′,j = ∅, Xj = ⋃M
m=1 Cm,j for m ̸= m′. We use Nm,j to refer to the number of

realizations of Y in the m-th class.
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Figure 1.1: (a) Unconditional V (Y ) and conditional variance V (Y |Xj = xj) of Y when Xj

is fixed at xj. (b) Comparison between the unconditional model output density fY (y) and
the conditional model output density fY |Xj

given that Xj is fixed at xj. (c) Comparison
between cumulative distribution functions (FY , FY |Xj

, respectively).

An estimate of η2
j can be written as

η̂2
j =

∑M
m=1 Nm,j(ym,j − y)2∑N

i=1(yi − y)2 , (1.32)

where ym,j = 1
Nm,j

∑
i:xi,j∈Cm

yi,j and y = 1
N

∑
i yi.

An estimate of the δ-measure is given by:

δ̂j =
M∑

m=1

Nm,j

N

∫
Y

∣∣∣p̂Y (y) − p̂m,j(y)
∣∣∣ dy, (1.33)

where p̂Y and p̂m,j are estimates resulting from a kernel-density estimation of all target

values y = {yi : i = 1, ..., N} and a subset ym,j = {yi : xi,j ∈ Cm}.

An estimate of βKS
j is“βj

KS
=

M∑
m=1

Nm,j

N
max

i∈{1,...,N}

∣∣∣P̂Y (yi) − P̂m,j(yi)
∣∣∣ dy, (1.34)

where P̂Y and P̂m,j are the empirical cumulative distributions of y and ym,j, respectively.
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1.2.3 Machine Learning models and performance measures

Artificial Intelligence, Machine Learning, and Deep Learning are technologies widely used

in several fields. There exist fundamental differences between these innovations. Artificial

intelligence includes tools that mimic human intelligence. It is used to automate and

optimize the activities typically performed by human beings, such as speech and facial

recognition, decision making, etc. Machine learning and Deep Learning are interrelated.

In particular, Machine Learning is a set of algorithms from which a system automatically

learns and improves from experience. Deep Learning is a set of methods based on artificial

neural networks, that are inspired by the functioning of the biological neural system.

These (complex) algorithms require large volumes of data for their training.

In the present work, we focus on Machine Learning. In particular, the ML feature

importance measures presented above are computed using fitted ML models. In the

literature, there exist several ML models. The most commonly used are ridge regression,

random forest, gradient boosting machine, extreme gradient boosting machine, and neural

network.

The linear model is one of the most commonly used statistical methods and it is used

as a benchmark model for comparison (Semenova et al., 2022). Ridge regression is a

regularized version of the linear model, where the loss function includes a penalty term

(Gruber, 2017). The magnitude of the penalty term is regulated by the hyperparameter

lambda. The introduction of the penalty term aims to reduce model complexity and

prevent over-fitting.

Random Forests (Breiman, 2001a), Gradient Boosting and Extreme Gradient Boosting

machines (Chen and Guestrin, 2016) (Friedman, 2001) are ensembles of classification and

regression trees (Breiman et al., 1984) which are composed of nodes and leaves. The tree-

based ensemble models can manage nonlinear and complex relationships among features.

Moreover, Breiman (2001b) shows that Random Forest is not affected by multicollinearity



1.2. THEORETICAL BACKGROUND 29

(Farrar and Glauber, 1967).

Random Forests rely on the bootstrap method to draw several random samples from

the original dataset with replacement (Efron, 1992). These samples are used to build a

large number of regression trees. Each tree is trained using a random subset of features

and produces its prediction. The final prediction of the Random Forest is defined as the

average of predictions of all regression trees (see plot panel (a) in Figure 1.2). The use

of the bootstrap technique and the choice of a subset of features used to train each tree

introduces a double source of randomness useful for improving forecasting accuracy with

respect to a single regression tree (Biau and Scornet, 2016). The implementation of a

Random Forest requires setting the following hyperparameters: the number of trees, the

number of features to split at each node, the fraction of observations to sample, and the

maximal tree depth (Wright and Ziegler, 2015), for a full description). This model includes

two main hyperparameters: the number of trees (n.trees) and the number of features

sampled for splitting at each node (mtry). For a full description see Liaw et al. (2002) and

Desai and Ouarda (2021). Gradient Boosting and Extreme Gradient Boosting machines

aim to construct, through multiple iterations, an ensemble learner using the residuals of

a set of base learners (usually regression trees). At each step, we train a decision tree

on the residuals from the previous sequence of trees. The resulting ensemble model is

built using an additive model defined through the contributions of each tree (see plot

(b) in Figure 1.2). The main differences between the two ML models are that the latter

provides additional characteristics, such as parallel computing, embedded cross-validation,

and the regularization (Chen and Guestrin, 2016). Regularization aims to reduce the

dimensionality of the model and prevent over-fitting. It is controlled by the regularization

term lambda. When lambda is equal to zero, then the two boosting methods produce

equivalent predictions. The main hyperparameters of a Gradient Boosting machine are

the number of trees in the ensemble, the learning rate, the minimum number of data points

in the terminal nodes of the trees, the tree depth, and the fraction of data points randomly
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Figure 1.2: ML algorithms: a) Random Forest, b) Gradient Boosting and c) one single
hidden-layer Neural Network.

selected and provided in the next tree (Kuhn, 2008; Fienen et al., 2018). In an Extreme

Gradient Boosting machine we have the following hyperparameters: the maximum number

of iterations, the learning rate, the regularization term, the depth of the tree, and the

fraction of data points randomly chosen and supplied to a tree (Chen et al., 2019).

Neural networks are a class of ML models well-known for their versatility (Dreiseitl

and Ohno-Machado, 2002). For this case study, we focus on a single-layer neural net-

work Hn, several input neurons Xn, and an output layer with the observed outcome O.

We denote the connection weights from the input to the hidden layer by Wn and the

connection weights from the hidden to the output layer by Wout
n . In the hidden and

output layer, the output is computed as the weighted combination of the outputs of the

neurons of the preceding layers processed by a predefined activation function σ, such as

the sigmoid function or the softmax function. Specifically, we have Hn = σ(∑ Wn) and

On = σ(∑ HnWout
n ), respectively (see panel (c) in Figure 1.2). The hyperparameters of

a single-layer neural network are the number of units in the hidden layer (size) and the
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regularization parameter to avoid over-fitting (decay) (Teweldebrhan et al., 2020).

Support Vector Machine proposed by Vapnik (1999) is a well-known ML model widely

used in the literature. It provides an elegant solution to classification, forecasting, and

regression problems. This ML model is based on the structural risk minimization prin-

ciple from statistical learning theory. It helps to avoid a) getting local minima and b)

overtraining. In particular, when this principle is applied both the empirical risk and the

ML model complexity should be minimised simultaneously.

To achieve a high performance of the ML models, we combine hyperparameter tuning

and cross-validation. Hyperparameter tuning is a process to search for a set of optimal

hyperparameters for an ML model to minimize the loss function (Hastie et al., 2009b).

In the literature there exist different approaches to performing this process. Among

these, we mention grid search and random search methods (Agrawal, 2021). The first

procedure builds an ML model for every combination of hyperparameters specified in

a predefined grid by the analyst and evaluates each ML model through a performance

measure using k-fold cross-validation. The second method requires defining a grid of

hyperparameter values from which a random subset is selected. In both procedures, among

all hyperparameter combinations, we select the ML model configuration that exhibits the

smallest performance metric. In the k-fold cross-validation scheme (Stone, 1974), the

data is partitioned into k training and validation subsets. The process is repeated for

different model configurations. The configuration that achieves the smallest validation

error, computed averaging over all k subsets, is selected as optimal.

1.2.4 Performance measures

The accuracy of the ML models is evaluated on the testing data using three criteria: the

root-mean-square error (RMSE), the mean absolute error (MAE), and the coefficient of
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model determination (R2). The RMSE is defined as:

RMSE =

√
1
N

N∑
i=1

(yi − ŷi)2, (1.35)

where y is the vector of observed target values and ŷ is the vector of predicted values.

The MAE is the mean of absolute values of differences between observed and predicted

values. The MAE is estimated by:

MAE = 1
N

N∑
i=1

|yi − ŷi|. (1.36)

Both performance measures range from 0 to ∞, where the value 0 indicates a perfect fit.

RMSE and MAE are measured in the same units as the model output response. MAE

is less sensitive to outliers compared to RMSE. The third performance measure is the

coefficient of determination (R2). It is equal to:

R2 = 1 −
∑N

i=1(yi − ŷi)2∑N
i=1(yi − yi)2 , (1.37)

where y is the average value of y. R2 is the proportion of variation in the response variable

that is explained by the machine learning model forecasts. It ranges from 0 to 1, where

the value 0 indicates that the trained ML model does not explain any variability in the

target variable. On the contrary, the value 1 indicates that the trained ML model explains

all variability in the target variable.



Chapter 2

Feature Importance and Marginal

Effects

2.1 Introduction

Analysts usually carry out the feature importance and marginal effect analyses separately.

On the theoretical side, they answer different goals, and on the practical side, they are

based on different algorithms which are often implemented in alternative software pack-

ages. However, Greenwell et al. (2018) propose to obtain feature importance from the

algorithms that generate graphical indicators. Notice that a purely visual inference from

the graphs may lead to misleading interpretations: an ALE or PD plot may display a

flat graph even if the feature under investigation is active in the model. If features are

denominated in different units, graph slopes are not directly comparable. These issues

then raise the question of whether/how to extract feature importance from the same al-

gorithms that produce graphical indicators. In this chapter, we investigate this question

formally, with a focus on the zero-independence property (Renyi’s postulated D (Renyi,

1959)). This property, whose relevance is highlighted in recent works such as Chatterjee

(2020) and Wiesel (2021), states that a feature importance index is null if and only if the

33
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target and the feature are independent. Using a feature importance measure that pos-

sesses this property allows analysts to avoid the error of regarding a feature as irrelevant

when, instead, it plays a role in the problem.

We then study the feature importance indicators that can be obtained from the effects

calculated by PD and ALE plot algorithms. For PD plots, we examine the proposal of

Greenwell et al. (2018). We show that the corresponding feature importance measure

is a first order variance-based sensitivity index when features are independent. How-

ever, its interpretation becomes unclear under feature dependence. Moreover, a PD-plot

importance measure does not possess the zero-independence property.

For ALE plots, we consider alternative ways to extract feature importance from the

underlying algorithm. A first proposal yields an importance index that complies with

Renyi’s postulate D, and, under feature independence, coincides with the total indices

of Wagner (1995) and Homma and Saltelli (1996). We also show that this index equals

Breiman’s feature importance measure under a square loss and in the case of a perfectly

accurate ML model. This result provides a connection with Theorem 2 in Hooker et al.

(2021), which suggests that a broad family of permutation-based importance measures

can be reinterpreted as total indices.

However, numerical experiments show that the index can be exposed to extrapolation

issues, and we study two alternatives. The first is based on avoiding variations that exceed

the grid in the ALE plot design. We derive the general expression of the corresponding

index and study its sensitivity to the grid. The second is based on considering the ALE

effects as Newton ratios and turning the effects into a derivative-based sensitivity index.

These two alternatives have the advantage of avoiding unrestricted permutations. We

discuss the conditions under which these indices possess the zero-independence property.

We investigate the insights produced by these indices through a variety of numerical

experiments. Through the Ishigami function, we show that the calculation of the indices

allows the analyst to avoid judging a feature as irrelevant, even if its PD and ALE plots are
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flat. Calculations for the Hooker et al. (2021) case study show that the ranking produced

by these indices is robust to the presence of correlations. We conclude by comparing

the new indices and Breiman’s feature permutation importance in the context of three

well-fitting models for the well-known Boston housing dataset.

The chapter is organized as follows. Section 2.2 presents the definition of the ALE-plot

based total indices and proposes new results for their properties. Section 2.3 investigates

different strategies for estimating ALE-indices. Sections 2.4 and 2.5 are devoted to nu-

merical experiments.

2.2 From Graphical Tools to Feature Importance

This section discusses in depth the link between the algorithms at the basis of graphical

tools and the formulation of feature importance measures from these algorithms. Regard-

ing PD plots, we note that the squared version of the variance-based measure in Equation

(1.17) coincides with the first order variance-based sensitivity index (Equation (1.21)).

However, when features are dependent, Equation (1.17) does not lead to a first order

variance-based sensitivity measure.

Consider now defining importance measures associated with ALE plots. First, we

note that the main constituent of an ALE plot is the difference between two values of

the machine learning models computed varying Xj between two alternative locations and

keeping the remaining inputs fixed. In particular, three points play a main role in an ALE

plot (see Figure 2.1): xk, the current location, (zk
j , xk

−j) and (zk−1
j ,xk

−j). Note that, taking

the difference between the values of ĝ at any of these locations is equivalent to finding a

main effect, i.e., a one-at-a-time sensitivity measure. In particular, we have three main

effects:

φ′
j(zk

j , xk
−j) = ĝ(zk

j , xk
−j) − ĝ(xk), (2.1)
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Figure 2.1: The finite differences generated by the ALE plots design.

φ′
j(zk−1

j , xk) = ĝ(zk−1
j , xk

−j) − ĝ(xk), (2.2)

and

φ′
j(zk

j , zk−1
j ,xk) = ĝ(zk

j , xk
−j) − ĝ(zk−1

j , xk
−j). (2.3)

Taking a step back, the first two indices are random variables of the type

Φ′
j(X ′

j, X) = ĝ(X ′
j, X−j) − ĝ(X). (2.4)

Let us start with the assumption that X ′
j is an independent replica of Xj. We will come

back to this important point later on. Then, we define the following quantity:

τ ′
j = 1

2E
ïÄ

Φ′
j(X ′

j, X)
ä2
ò

. (2.5)

The following holds.

Proposition 1. For τ ′
j in Equation (2.5), we have:

1) Under feature independence, τ ′
j is the total index of Xj for ĝ.
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2) Under feature dependence,

τ ′
j = 1

2

∫∫ (
ĝ
Ä
x′

j : x−j

ä
− ĝ (x)

)2
dFXj

(x′
j)dFX(x). (2.6)

3) τ ′
j = 0 if and only if ĝ(X) does not depend on Xj

4) Equation (2.6) holds when finite change indices are computed according to a winding

stairs, a naïve, or a radial design, under input dependence or independence.

Items 1 and 2 help with interpretation: τ ′
j is a total index under independence; under

dependence, Xj is more important than Xl according to τ ′
j if Xj is associated with a

higher dispersion of main effects than Xl. Item 3 suggests that τ ′
j possesses the nullity

implies independence property also when features are correlated, differently from total

indices.

Example 1. Consider

Y = f(X1, X2) = X2
1 X2

2 , (2.7)

with X1 uniformly distributed on the interval [0, 1] and perfectly negatively correlated (this

can be achieved forcing X2 = 1 − X1). The total indices τj and τ ′
j can be estimated

analytically (see Appendix 6.1.2). We register τj = 0 for j = 1, 2, while τ ′
j = 0.0176. Note

that, because σ2
y ≊ 0.00047, thus τ ′

j/σ2
y ≊ 37.

Item 4 takes a slight detour into the design of experiments. Notice that one-at-a-time

sensitivities can be estimated from well-known designs such as winding stairs and the

radial design. These designs are recently employed in Owen and Hoyt (2021) to estimate

the mean dimension of a neural network. However, they are employed under feature inde-

pendence. In Owen and Hoyt (2021), the designs are compared so that the corresponding

local effects yield total order indices, whose sum, in turn, equals the mean dimension of

a neural network. The next proposition shows that when features are dependent, the

ALE-indices in Equation (2.6) are the sensitivity measures associated with these designs.
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Example 2. Consider the normal model with correlated features of Benoumechiara and

Elie-Dit-Cosaque (2018). We explore the estimation of τ ′
j in Equation (2.6) when one uses

the winding stairs strategy of Jansen et al. (1994) (Please also see Chan et al. (2000) for

a detailed description of the sampling strategy). The feature-output mapping is Y =

g(X1, X2) = X1X2 with X ∼ N (0, Σ), where Σ =

Ö
1 0.75

0.75 1

è
. The analytical values

of the ALE-indices are τ ′
1 = τ ′

2 = 1.563 (see Appendix 6.1.2). We generate a dataset of size

106 and consider a winding stairs scheme, we obtain a set of 500000 first-order indices

per feature. We then apply Equation (2.8). The resulting estimates of ALE-indices are

τ̂ ′
1 = τ̂ ′

2 = 1.559, close to the analytical values.

Let us now consider estimation. An estimate of τ ′
j is given by

τ̂ ′
j = 1

2N

N∑
i=1

(
ĝ
Ä
x′

i,j, xi
−j

ä
− ĝ

Ä
xi

j

ä)2
. (2.8)

Then, the normalized version of τ ′
j is estimated from T̂ ′

j,N =
τ̂ ′

j

σ̂2
y

. Under feature indepen-

dence, it is possible to characterize the asymptotic behavior of τ̂ ′
j and T̂ ′

j .

Proposition 2. Assume that ĝ is square integrable. Under feature independence, for

N → ∞ we have
√

N
Ä
τ̂ ′

j − τ ′
j

ä
−→ N

Ç
0,

µ(4) − 4(τ ′
j)2

4

å
(2.9)

and
√

N
Ä
T̂ ′

j,N − T ′
j

ä
−→ N

Ä
0, ΓT ′

j

ä
, (2.10)

where

ΓT ′
j

=
µ(4) − 4(T ′

j)2 + 4(T ′
j)2
Ä
µ(4) − σ4

y

ä
− 4T ′

jCov
î
(Φ′

j)2,
(
ĝ(X) − µ

)2ó
4σ4

y

, (2.11)

where µ(4) is the fourth moment of ĝ.
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Then, as the sample size N increases, the finite difference-based estimators of total

indices are asymptotically normal and their variance tends to zero. From Equations (2.9)

and (2.10), one can build confidence intervals for T ′
j in the form

(
T̂ ′

j,N ± qα

»
ΓT ′

j

)
, where

ΓT ′
j

is the asymptotic variance defined in Equation (2.11). When features are correlated,

Proposition 2 does not hold. However, confidence in the estimates can still be obtained

via the bootstrap method (see Efron and Tibshirani (1993)). Alternatively, one can write

the following U-statistic for τ ′
j estimation:

τ̂ ′U
j = 1

2N(N − 1)

N∑
r=1

N∑
i=1,i ̸=r

(g(zi
j; x(i)

−j) − g(zr
j ; x(i)

−j))2. (2.12)

By the theory of U-statistics, this estimator is then asymptotically normal, with a known

rate of convergence. Note that τ̂ ′U
j asks for evaluating g(zi

j; xi
−j) at all possible permuta-

tions of X ′
j in the sample. Indeed, the following relationship between τ ′

j and Breiman’s

permutation feature importance measure υ̂j,perm holds.

Proposition 3. If the ML model is a perfect predictor, then, under a quadratic loss

function, we have

υ̂j,perm = 2τ̂ ′
j. (2.13)

Thus, under a quadratic loss function, with perfect predictions, τ̂ ′
j and υ̂j,perm rank

features in the same order. Differences between τ̂ ′
j and υ̂j,perm are then attributable to low

ML model performance or extrapolation errors.

The problem is reduced if we extract the main effects from the ALE algorithm because

such an algorithm reduces the risk of extrapolation. Let us write the main effects produced

by the ALE plot algorithm as

φALE
j (xk

−j; K) = ĝ(zk
j , xk

−j) − ĝ(zk−1
j , xk

−j), (2.14)

where K evidences the dependence of the indices on the partition selection. Correspond-
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ingly, we can define

τALE
j (K) = 1

2E
ïÄ

ΦALE
j (X−j; K)

ä2
ò

. (2.15)

Notice that τALE
j (K) ̸= τ ′

j when features are dependent. The difference between τALE
j (K)

and τ ′
j lies in that the effects ΦALE

j (K) are calculated varying the model between zk
j and

zk−1
j around X−j and these three points need to belong to the same partition set for all

realizations of X−j, while the effects Φ′
j are calculated with the new value X ′

j sampled

independently from X−j. Figure 2.2 offers a visual representation of the difference between

the two designs. The left graph of Figure 2.2 displays the points visited by an ALE
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Figure 2.2: ALE design (left graph) and Jansen design (right graph) for a correlated case.

algorithm. Note that the new points (zk
j , xk

−j) and (zk−1
j , xk

−j) (in light color) on which

the ML model is evaluated are always close to the original point xk (darker color) and

this reduces extrapolation issues. The right graph of Figure 2.2 shows points visited by an

algorithm in which X ′
j is sampled independently of the remaining features X−j. The new

points (x′
j, xk

−j) can be far away from the original point xk, with potential extrapolation

problems. Then, because of the differences in the points, τALE
j is not equivalent to τ ′

j. In

particular, the general expression of τ ′
j is given by:

τALE
j (K) =

K∑
k=1

E[(ĝ(Xk
j , Xk

−j)−ĝ(Xk−1
j , Xk

−j))2|Xk
j , Xk−1

j , Xk ∈ X k
j ]∗P(Xk

j , Xk−1
j , Xk ∈ X k

j ),

(2.16)
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where P(Xk
j , Xk−1

j , Xk ∈ X k
j ) is the probability that Xk, Xk

j and Xk−1
j belong to the same

partition set X k
j .

Example 3. Consider the input-output mapping proposed in Ishigami and Homma (1990):

g(X1, X2, X3) = sin(X1) + 7 sin2(X2) + 0.1X4
3 sin(X1), (2.17)

with Xj ∼ U [−π, +π], j = 1, 2, 3. In Table 2.1 the analytical values of the first order and

total sensitivity indices are reported. Setting z0
j = −π, zK

j = π, and
Ä
zk

j − zk−1
j = 2π

K

ä
,

Features X1 X2 X3
Sj 0.3138 0.4424 0
Tj 0.5574 0.4424 0.2436
τj 7.7169 6.1248 3.3725

Table 2.1: Sj, Tj and τj analytical values (Kucherenko et al., 2014).

the τALE
j (K) indices are analytically found from

τALE
j (K) = 1

2K(2π)2

K∑
k=1

π∫
−π

π∫
−π

(g(zk
j , x2, x3) − g(zk−1

j , x2, x3))2. (2.18)

Their values are reported in Table 2.2 for alternative choices of K.

τALE
1 (K) τALE

2 (K) τALE
3 (K) κALE

1 (K) κALE
2 (K) κALE(K)3

K = 10 1.47 4.32 2.08 1.77 5.10 2.50
K = 50 0.06 0.19 0.09 1.83 5.79 2.60
K = 100 0.02 0.05 0.02 1.83 5.81 2.61
K = 200 0.00 0.01 0.00 1.83 5.82 2.61

Table 2.2: Values of τALE(K) and κALE(K) for the Ishigami function.

The following holds.

Proposition 4. If ĝ(·) does not depend on Xj, then τALE
j (K) = 0. Conversely, if τALE

j (K)

= 0 for any choice of the partition of Xj, then ĝ(·) does not depend on Xj.
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Then, fixed a partition of Xj, a null value of τALE
j (K) does not necessarily reassure the

analyst that ĝ is independent of Xj. For instance, τALE
j (K) = 0 if ĝ(zk

j , Xk
−j) is periodic of

period 1
K

and we select zk
j −zk−1

j = 1
K

. To illustrate, consider g(X1, X2) = sin(2πX1)X2
2 ,

with X1 and X2 uniformly and independently distributed on [0, 10]2. Set K = 10, z0
1 = 0,

z10
1 = 10 and zk

1 − zk−1
1 = 1. Then, we have:

τ ′
j(10) =

10∫
0

X2
2 dX2

200
10∑

k=1
(sin(2πk) − sin(2π(k − 1)))2 = 0. (2.19)

Note that the corresponding ALE plot would also be flat. The problem is however easily

addressed by testing the calculation with alternative choices of the grid z1
j , ..., zK

j , that is,

with a different selection of the partition sets.

2.3 Large K, Numerical Noise, Bias, and an Alterna-

tive

An empirical estimate of τALE
j is provided by

τ̂ALE
j =

K∑
k=1

nj(k)
N

∑
i:xi∈X k

j

(
ĝ
Ä
zk

j , xi
−j

ä
− ĝ

Ä
zk−1

j , xi
−j

ä)2
. (2.20)

This estimate can easily be obtained from a similar algorithm used to produce ALE

plots: it is enough to square and average the local effects used to produce the graph.

However, it may happen that for large values of K a null value is obtained. Indeed,

consider the last row of Table 2.2. We note that the values of the indices are approxi-

mately null for the first and third inputs and the value is also close to zero for the second

input. The reason is that as K grows, the size of the partition decreases, and changes

in Xj becomes infinitesimal from a numerical viewpoint. That is, in the presence of a

smooth response, we may register ĝ
Ä
zk

j , xi
−j

ä
− ĝ

Ä
zk−1

j , xi
−j

ä
≈ 0 if zk

j ≈ zk−1
j for all
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values of k. Correspondingly, we calculate τ̂ALE
j ≈ 0. For instance, for K = 200 in the

Ishigami function the squared differences E
[
(ĝ
(
zk

1 , X−1
)

− ĝ
Ä
zk−1

j , X−1
ä
)2
]

range from

a minimum of 3.76 · 10−6 to a maximum 1.5 · 10−2, leading to τ̂ALE
j = 4.0 · 10−3. Then,

we would consider τ̂ALE
j null because of a numerical noise issue related to the choice of K

(small finite differences) and not because Xj is, in fact, an inactive feature. To remedy

this numerical noise effect, while still allowing large values of K, we propose alternative

strategies.

The first strategy is based on permuting the indices k = 1, 2, ..., K. Consider a permu-

tation π : {1, 2, . . . , K} → {1, 2, . . . , K}. We apply such permutation and assess the

differences ΦALE
j (zπ(k)

j , zk−1
j ; X−j) = ĝ(zπ(k)

j ; X−j) − ĝ(zk−1
j ; X−j). The intuition is that by

permuting the indices k, the differences z
π(k)
j − zk−1

j on the Xj axis have a high chance

of not being infinitesimal and correspondingly, we register finite values of ΦALE
j even if

K used for building the ALE plot is large. This strategy, however, is directly applicable

only if features are independent and exposes us to the risk of extrapolation under feature

dependence. A second strategy is based on using a constant size for the variations in Xj.

The following result holds.

Proposition 5. Let ∆j = zk
j − xk

j for all k = 1, 2, ..., K, we can exploit a bias correction.

Φ′
∆j ,j = g(Xj + ∆j, X−j) − g(X), (2.21)

where ∆j is a constant difference between two values of Xj and we assume that the point

(Xj + ∆j, X−j) belongs to the domain of g. Then, the quantity

θ′(∆j, X ′
j, X) =

∆2
j

2 E

[
(Φ′

∆j ,j)2

∆2
j

]
+ 1

2E[(g(X ′
j, X−j) − g(Xj + ∆j, X−j))

· (g(X ′
j, Xj) + g(Xj + ∆j, X−j) − 2g(X))]

(2.22)

is an unbiased estimator of τ ′
j.
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This strategy relies on the intuition that even if ϕ′
j is close to zero, the corresponding

Newton quotient ϕ′
j/∆j is finite. A Newton quotient approximates the partial derivative

of ĝ with respect to Xj. This idea is also close to a recent result in Borgonovo and Rabitti

(2021), which links total indices to Morris’ elementary effects under feature independence.

However, Proposition 5 does not require feature independence and, the bias correction

that it implies holds for τ ′
j also in the case of dependent features. Moreover, if we assume

that E[(g′
j(X))2] is finite, Equation (2.22) yields (see at the end of the proof of Proposition

5)

lim
∆j→0

θ′(∆j, X ′
j, X) = τ ′

j, (2.23)

which implies that θ′(∆j, X ′
j, X) remains finite also for small values of ∆j. Thus, an

estimation strategy based on θ′(∆j, X ′
j, X) can potentially solve the small-∆ problem.

However, despite these attractive theoretical premises, numerical experiments performed

by the authors show that for this strategy to work, one needs to sample values of X ′
j

independently of X−j to get the appropriate value of the bias-correction term in Equation

(2.22). This then leads us back to the problem of extrapolation.

We then propose to use the following index:

κALE
j (K) = 1

K

K−1∑
k=0

E

( ĝ(zk
j , X−j) − ĝ(zk−1

j ; X−j)
zk

j − zk−1
j

)2
 σ2

j

σ2
y

. (2.24)

This definition exploits the local effects of ALE plots in an alternative way than in τ̂ ′
j. The

resulting index can be seen as a normalized expectation of Newton ratios computed at

randomized locations in the input space (thus exploiting the same intuition of Proposition

5). Because Newton ratios are, in turn, approximations of partial derivatives, κALE
j (K)

can be interpreted in the spirit of derivative-based sensitivity measures of Sobol’ and

Kucherenko (2009) (see also Kucherenko and Iooss (2017) and Song et al. (2019)). Indeed,

it is an ALE-plot based version of sensitivity measures defined by works such as Bier



2.4. NUMERICAL EXPERIMENTS: ANALYTICAL TEST CASES 45

(1983) and Helton (1993) inspired by the Taylor expansion of the variance of ĝ(X) (see

Borgonovo (2006) for a review). The index is also close in spirit to the second sensitivity

measure proposed by Morris (1991), which is the basis of the well-known Morris screening

method.

Proposition 6. We register κALE
j (K) = 0, if ĝ(·) is not a function of Xj. Conversely, if

κALE
j (K) = 0 for any choice of the partition of Xj, then ĝ(·) does not depend on Xj.

Thus, a null value of κALE
j (K) is not sufficient to reassure the analyst that the ML

model response is independent of Xj. However, this problem can be alleviated by forming

different partitions and repeating the calculation, since runs are usually inexpensive once

the ML model is trained. (This result is similar to Proposition 4; however, we have

reported it separately because the proof is slightly different due to additional technical

detail.)

Example 4 (Example 3 continued). For the same setting as in Example 3, we obtain

the values of κ̂ALE
j (K) in Table 2.2 for the selected values of K. One notes that the non-

null values of κ̂ALE
j (K) suggest that the model response is dependent on all features at all

sample sizes.

The results in Example 4, signal that κ̂ALE
j (K) indeed correctly reports indications

regarding whether ĝ(·) depends on Xj. We note however a difference in ranking between

κ̂ALE
j (K) and the total indices due to the different nature of the sensitivity indices.

2.4 Numerical Experiments: Analytical Test Cases

Here, we illustrate the calculation of feature importance measures and graphical effects

simultaneously. In Section 2.4.1, we perform experiments with the Ishigami function. In

Section 2.4.2 we analyze the linear model proposed in Hooker et al. (2021).
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2.4.1 Ishigami function

This section presents results for a series of experiments on the Ishigami function in Equa-

tion (2.17). Given the distribution of X in Example 3, the variance-based sensitivity

indices are analytically known (Kucherenko et al., 2014). Because the feature-output

mapping g is known in this case, we compare results obtained using the simulator first

and then substituting the simulator with a trained ML model.

Results using g. Figure 2.3 displays the point estimates of T̂ ′
j as the sample size in-

creases from N = 50 to N = 105 and the corresponding 95% confidence intervals of

Proposition 2 ( Equation (2.10)). Graphs 2.3a and 2.3b display results obtained using the
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j estimates using permutation strategy.
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j estimates using bias correction strategy.

Figure 2.3: Ishigami function: behavior of estimates of T ′
j with corresponding 95% confi-

dence intervals (dashed lines) as the sample size N increases. Dotted lines correspond to
analytical values.

permutation and bias correction strategies of Section 2.3, respectively. They show that

the strategies produce unstable estimates for small sample sizes, N ≤ 100. For N > 100

the estimates tend towards the analytical values, with the confidence intervals rapidly

shrinking as the sample size increases. At N = 105, we find T̂ ′
1 = 0.5557, T̂ ′

2 = 0.4468 and

T̂ ′
3 = 0.2453 with 95% confidence intervals given by [0.5485; 0.5628], [0.4401; 0.4535] and

[0.2391; 0.2514], respectively. The analytical values are included in these intervals.
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Now, for K = 10, we show that the estimates of the two alternative indices τALE
j and

κALE
j converge towards the analytical values as N increases. The results are reported in

Figure 2.4. Note that τ̂ALE
j and κ̂ALE

j are stable with a moderate sample size. Moreover,
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Figure 2.4: Ishigami function: behavior of estimates of τALE
j and κALE

j as the sample size
N increases. Dotted lines correspond to analytical values.

at N = 105, we find τ̂ALE
1 = 1.47, τ̂ALE

2 = 4.23, τ̂ALE
3 = 2.07 and κ̂ALE

1 = 1.77, κ̂ALE
2 = 5.14,

κ̂ALE
3 = 2.52.

Let us now analyze graphical insights. Figure 2.5 reports the ALE plots obtained

with N = 104 and K = 100. Note that, the graph of ALE2(x2) (second panel in Figure

2.5) reports the marginal dependence of Y on X2 exactly, because the Ishigami function is

additive in X2. Moreover, the ALE plot of X3 is a flat line. This is a consequence of a null

conditional expectation effect. In fact, simultaneous calculation of the feature importance

measures T ′
3, τALE

j and κALE
j and their non-null values clarifies that X3 is active in the

model.

Finally, we present results of the first order sensitivity indices computed using Equation

(1.17) (The PD plots report similar insights with respect to the ALE plots in Figure 2.5

and we do not report them for the sake of space). We find ŝPD
1 = 0.3140, ŝPD

2 = 0.4425

and ŝPD
3 = 0.00, in agreement with the analytical values in Table 2.1. Note that the first
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Figure 2.5: ALE plots for the Ishigami function for the true feature-output mapping g
with the addition of T ′

j .

order index of X3 is null as a reflection of the null conditional expectation effect.

Results using ĝ. We use the data generated in the previous part of the experiment to

train a single hidden-layer neural network (ĝ, in the remainder of this section). We use

a sample of size N = 105 and K = 100. The data is divided into 80% training and 20%

testing. The R2 value at the end of testing is 0.97.

We can then also compute the permutation feature importance measures for this test

case. We register ν̂1 = 14.6, ν̂2 = 12.1 and ν̂3 = 5.96. X1 is ranked as the most important

feature and X3 as the least important feature. Note that τ̂ ′
1 = 7.26, τ̂ ′

2 = 6.04, τ̂ ′
3 = 2.97

which correspond to about half of the estimates of the permutation feature importance

measures. This result is in accordance with Proposition 3. In fact, the neural network

approximates the true feature-output mapping g with great accuracy, and we have no

extrapolation problems because the features are independent.

Finally, for τALE
j and κALE

j computed using K = 10, we register τ̂ALE
1 = 1.09, τ̂ALE

2 =

4.61, τ̂ALE
3 = 0.99 and κ̂ALE

1 = 1.30, κ̂ALE
2 = 5.48, κ̂ALE

3 = 1.17, respectively. These

estimates are close to the analytical values obtained for the true input-output mapping.
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2.4.2 Hooker et al. (2021) test case

In this section, we present results for experiments carried out for the case study presented

in Hooker et al. (2021), designed to study the effect of extrapolation on the feature

importance ranking. The target is generated using a known linear model of the features.

Specifically, Hooker et al. (2021) write:

Y = X1 + X2 + X3 + X4 + X5 + 0 · X6 + 0.5 · X7 + 0.8 · X8 + 1.2 · X9 + 1.5 · X10 + ϵ, (2.25)

with Xj ∼ U [0, 1] and ϵ ∼ N (0, 0.12). The features are independent, except for X1

and X2, which are made statistically dependent via a Gaussian copula with correlation

coefficient ρX1,X2 .

On the input-output dataset generated by this model, Hooker et al. (2021) fit a linear

model, a random forest, and an artificial neural network. Then, they compute νj for

alternative values of ρX1,X2 . Their results show that the ranking induced by νj changes as

ρX1,X2 varies. In particular, for high values of ρX1,X2 , the importance of these two features

increases, and due to extrapolation errors, the feature ranking loses its correspondence to

the coefficient (weight) of X1 and X2 in the linear model.

In conducting our experiments, we consider ρX1,X2 = 0 and ρX1,X2 = 0.9, we obtain

the ALE plots using the algorithmic implementation of Apley (2018) and calculate τ̂ ′
j,

τ̂ALE
j and κ̂ALE

j in addition to ν̂j for comparison. We compute these indices both on the

trained ML models and on the original model. We generate two datasets of size N = 2000

for each of 50 simulations, with ρX1,X2 = 0 and ρX1,X2 = 0.9, respectively. We train the

same ML models of Hooker et al. (2021), with an 80%/ 20% training/testing split. On

the testing data, the linear model and the neural network show similar performance, with

MSE = 0.01 and R2 = 0.99 both with ρX1,X2 = 0 and ρX1,X2 = 0.9. The random forest

registers an MSE = 0.11 and R2 = 0.66 at ρX1,X2 = 0, and MSE = 0.12 and R2 = 0.76 at

ρX1,X2 = 0.9.
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For the proposed test case the feature importance is determined by the magnitude of

the coefficients βj in the model. Specifically, the first five features are equally important.

X10 is the most important feature, followed by X9. One observes that X6 is inactive.

Figure 2.6 reports results for the feature ranking with νj (graphs 2.6a and 2.6b, respec-

tively) for ρX1,X2 = 0 and ρX1,X2 = 0.9, with τ ′
j (graphs 2.6c and 2.6d, respectively), with

τALE
j (graphs 2.6e and 2.6f, respectively) and with κALE

j (graphs 2.6g and 2.6h, respec-

tively). The feature importance induced by each index is the average over 50 simulations.

This ensures the reduction of variability in the results. In each graph in Figure 2.6, the

horizontal and vertical axes report the feature number and corresponding rank (from 1 to

10) respectively, analogously as in Hooker et al. (2021); each graph reports the ranking

obtained with the linear model (△), the random forest (+), the artificial neural network

(×) as well as with the original model (◦).

The graphs 2.6a, 2.6c, 2.6g and 2.6g show that, under independence, the ranking

induced by all indices (ν̂j,τ̂ ′
j, τ̂ALE

j and κ̂ALE
j ) perfectly agree with the theoretical ranking

arising from the feature weights βj in the model. Specifically, we obtain the same ranking

when the feature-output mapping g and the predictions of the three ML models are used

in the ALE plot subroutine. However, under dependence, we observe that using ν̂j,τ̂ ′
j

and τ̂ALE
j leads to the same insights. In particular, we note that when the original model

or the predictions of the linear model and the neural network (both well-performing ML

models) are applied the resulting ranking is not affected by the correlation between X1

and X2 (graphs 2.6b, 2.6d and 2.6f). In contrast, in all three cases, when random forest

predictions are used, X1 and X2 become more important and X9 becomes less important.

Moreover, the graphs 2.6g and 2.6h provide the rankings resulting from κALE
j . We observe

that the same ranking is obtained when the original model and the predictions of the ML

models are used for the correlated as well as for the uncorrelated case.

The results suggest that the rankings of the accurate models are not impacted at all

by correlations when νj, τ ′
j and τALE

j are used. Overall a comparison of all graphs in
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Figure 2.6: Comparison between feature rankings using ν̂j,τ̂ ′
j, τ̂ALE

j and κ̂ALE
j for the

Hooker et al. (2021) test case. Dashed lines indicate the theoretical rank of the features.
Each of these lines is an average of 50 replications.
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Figure 2.6 shows that the ranking of κALE
j is much less exposed to extrapolation issues.

2.5 Application: Boston Housing dataset

The Boston Housing dataset (Harrison and Rubinfeld, 1978) is a well-known publicly

available dataset widely used as a reference for machine learning studies. It has been

recorded in 1978, with 13 features listed in Table 2.3, with 506 entries per feature. The

target is the median value of owner-occupied houses.

Acronym Description
CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built before 1940
DIS weighted distances to five Boston employment centers

RAD index of accessibility to radial highways
TAX full-value property-tax rate per 10, 000[/10k]

PTRATIO pupil-teacher ratio by town

B The result of the equation B = 1000(Bk − 0.63)2

where Bk is the proportion of blacks by town
LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in 1000′s[k]

Table 2.3: The description of the features in the Boston dataset.

We train five ML models (a linear model, a random forest, an artificial neural net-

work, a gradient boosting machine, and a support vector machine (SVM)) splitting the

data into 80% for training and 20% for testing. We employ the following R-packages:

randomForest, gbm, nnet and e1071 (Andy and Matthew, 2002; Ridgeway, 2005; Ripley

et al., 2016; Meyer et al., 2019). Hyperparameter optimization is performed using the grid

search method (Agrawal, 2021) implemented using the R-package caret (Kuhn, 2009).

We report the performance results in Table 2.4. Based on these values, we define the

Rashomon set. Although it consists of an infinite number of models, in our analysis we

only consider the random forest, the gradient boosting, and the support vector machine

as a representative subset of the ML models providing near-optimal accuracy.
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Measures LM GB RF NN SVM
MAE 3.02 2.02 2.03 2.27 2.03
MSE 18.92 7.50 7.61 9.24 8.47

R2 0.72 0.90 0.90 0.89 0.91

Table 2.4: Performance measures estimated for the five ML models.

We then obtain the ALE and PD plots using the R-packages flashlight and iml

(Mayer, 2020; Molnar et al., 2018). For the implementation of ALE plots we choose

K = 40 as suggested in Apley and Zhu (2020). The permutation feature importance

measures are computed using the R-package vip (Greenwell et al., 2020). Extracting

the corresponding local effects, we also compute the resulting indices τ̂ ′
j, τ̂ALE

j and κ̂ALE
j .

The estimates of τ̂ ′
j and the corresponding ranks are reported in Figures 2.7a and 2.7b,

respectively. There is agreement in ranking LSTAT, RM, and DIS as the three most
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Figure 2.7: Bostong Housing: feature importance and ranking based on τ̂ ′
j for the ML

models in the Rashomon set.

important features for the ML models in the Rashomon set. However, a qualitative

inspection shows a higher agreement between the ranking for the random forest and the

gradient boosting machine, and a lower agreement between the ranking for the support

vector machine and the other two ML models.

To make these observations quantitative, we calculate the Spearman (Spearman, 1904)

and the top-down (Iman and Conover, 1987) correlation coefficients. Given a sorted list,

these quantities yield insights about the agreement between the (raw) ranks and among a

weighted version of the ranks, respectively. The top-down correlation coefficient is based
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on Savage score (Savage, 1956) as follows. One defines

SavScorj =
n∑

i=Rank(j)
1/i, (2.26)

where Rank(j) is the rank of Xj. The top-down correlation coefficient of Iman and

Conover (1987) is then the Pearson correlation coefficient calculated using Savage scores

instead of the ranking.

The simultaneous calculation of the Spearman and top-down correlation coefficients

delivers insights on whether the ranking agreement (or disagreement) is at the level of

the most important features: a top-down correlation coefficient greater (lower) than a

Spearman correlation coefficient signals that the agreement among the most important

features is higher (smaller) than average ranking agreement. Table 2.5a reports the values

of these two coefficients given the ranking of features induced by τ ′
j for the three ML

models. The values of the top-down correlation coefficients evidence a strong agreement

τ̂ ′
GB τ̂ ′

RF τ̂ ′
SVM

τ̂ ′
GB 1

(1)
0.94

(0.92)
0.92

(0.79)

τ̂ ′
RF - 1

(1)
0.89

(0.73)

τ̂ ′
SVM - - 1

(1)

(a) Ranking induced by τ̂ ′
j

τ̂ ′
GB τ̂ ′

RF τ̂ ′
SVM

ν̂GB 0.998
(0.993)

- -

ν̂RF - 1
(1)

-

ν̂SVM - - 0.988
(0.979)

(b) Ranking induced by ν̂j and τ̂ ′
j

Table 2.5: Top-down vs Spearman correlation coefficients (in brackets) for comparing the
rankings induced by τ̂ ′

j and ν̂j for the ML models in the Rashomon set.

among the ranks arising from the estimates of τ ′
j. Differently, the Spearman coefficients

show that there is only a high correspondence between the ranks produced using the two

ensemble models (the random forest and the gradient boosting), while the support vector

machine overall ranking is different.

To investigate this aspect further, Figure 2.8 reports the ALE plots for the three most
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important features. For LSTAT (% lower status of the population) and DIS (the distance

from the main centers of employment), the ALE functions are decreasing, independently

of the ML model used for the forecasts. For RM (the number of rooms) we have a positive

impact again for all ML models. These results are in accordance with intuition and with
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Figure 2.8: ALE plots. Vertical axis: median value predictions of the ML models in the
Rashomon Sets. Horizontal axis: LSTAT, RM, and DIS.

previous experiments on this dataset: for instance, the higher the number of rooms, the

higher the median house price. Similarly, distance from the main centers of employment

has a decreasing effect on housing prices. Note that the support vector machine ALE plot

shows a steeper descent (with a lower value at 17.5) for DIS than the ALE plots of the

random forest and the artificial neural network, which display a flatter behavior. This

result allows us to further appreciate the different behavior of the support vector machine,

confirming the insight about the low agreement of the ranking in the feature importance

analysis.

Now, we provide the estimates of τALE
j and κALE

j for the ML models in the Rashomon

set. The results are reported in Figure 2.9. We observe that several features are active

in the ML models. In particular, Figure 2.9a displays that applying the predictions of

the three ML models we recognize LSTAT, RM, DIS, and CRIM as the key-drivers in

predicting the target variable. From Figure 2.9b we have that using the gradient boosting

predictions the estimates of κALE
NOX and κALE

TAX are significantly higher than the estimates

of τ ′
NOX and τ ′

TAX reported in Figure 2.7a. In addition, when the random forest and the



56 Feature Importance and Marginal Effects

0.0

0.5

1.0

1.5

AGE B CRIM DIS INDUS LSTAT NOX PTRATIO RAD RM TAX ZN

Features

κ
jA

L
E
 E

s
ti
m

a
te

s

measure

κ̂RF

ALE

κ̂GB

ALE

κ̂SV

ALE

(a) Estimates of τALE
j .

0.0

0.5

1.0

AGE B CRIM DIS INDUS LSTAT NOX PTRATIO RAD RM TAX ZN

Features

τ
jA

L
E
 E

s
ti
m

a
te

s

measure

τ̂RF

ALE

τ̂GB

ALE

τ̂SV

ALE

(b) Estimates of κALE
j .

Figure 2.9: Bostong Housing: estimates of τALE
j and κALE

j for the ML models in the
Rashomon set.

gradient boosting predictions are used, we obtain that DIS, LSTAT, TAX, NOX, and

RM are the most important features. Moreover, when the support vector predictions

are employed, RAD is also identified as influential. In general, from the comparison

of the three indices (τ ′
j, τALE

j and κALE
j ) we note that some features (such as LSTAT,

RM, DIS, NOX, TAX, and CRIM) play an active role in the ML models. While the

remaining features (such as ZN, INDUS, PTRATIO, AGE, B and RAD) are slightly (or

not) influential and could be excluded from the ML models. Finally, experiments carried

out show a higher robustness of κ̂ALE
j than τ̂ALE

j with respect to the choice of the number

of partitions.

Let us now compare these insights with those of ν̂j and ŝPD
j . Figure 2.10a displays the

values of ν̂j for the ML models in the Rashomon set: also ν̂j identifies LSTAT, RM, and

DIS as the most important features. The quantitative comparison in Table 2.5b shows a
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Figure 2.10: Boston Housing: permutation feature importance and PD plot-based indices
for the ML models in the Rashomon set.

perfect agreement between the ranking induced by τ̂ ′
j and ν̂j. Also in this case, we have

τ̂ ′
j ≈ 1

2 ν̂j. Indeed, because the ML model accuracy is high this result shows that the only



2.5. APPLICATION: BOSTON HOUSING DATASET 57

possible source of discrepancy between and τ̂ ′
j would be extrapolation errors. The fact

that the relationship in Proposition 3 holds is then a signal that no relevant extrapolation

errors occur when computing feature importance measures in this case.

Finally, Figure 2.10b displays the estimates of sPD
j from Equation (1.17). In disagree-

ment with the estimates reported in Figures 2.7a and 2.10a, LSTAT is no longer the most

important feature. This is an unexpected outcome and suggests prudence in relying on

sPD
j as feature importance measures.
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Chapter 3

Hydrological application I - Feature

importance measures to dissect the

role of sub-basins in shaping the

watershed hydrological response: a

proof of concept

3.1 Introduction

Storm hydrographs have been traditionally associated with physical portions of a water-

shed (Betson, 1964; Hewlett, 1974), whereby watershed runoff has been described as a

threshold-driven interaction of phenomena (Ali et al., 2013; Bonell, 1998; Graham and

McDonnell, 2010; Graham et al., 2010; Lehmann et al., 2007; Uchida et al., 2005; Zehe

et al., 2005), whose prominence has been associated with rainfall, seasonality, and con-

nectivity (Detty and McGuire, 2010; Hopp and McDonnell, 2009; Iwasaki et al., 2020;

Jencso and McGlynn, 2011; Liu et al., 2019; McGuire and McDonnell, 2010; Scaife and

59
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Band, 2017; Subagyono et al., 2005). Efforts to investigate the contribution of individual

compartments to watershed-wide stormflow are limited (Asano et al., 2020; Beiter et al.,

2020; Bergstrom et al., 2016; Demand et al., 2019; Guastini et al., 2019; Jencso et al.,

2009). For instance, in Asano et al. (2020), the watershed-wide propagation of a storm-

flow peak was studied by quantifying flow paths in hillslopes and channels. According

to this study, during intense storms, the hillslope response may be quicker than theoret-

ically predicted, thus abruptly increasing stormflow. Despite several studies supporting

the relevance of sub-basins in governing the watershed-wide storm hydrograph, a quanti-

tative framework to describe their dynamics, and eventually, inform monitoring of critical

sub-watershed compartments is still lacking. Investigating the hydrological response at

the sub-watershed level involves coping with a large amount of hydrological data. In this

vein, recent and rapid technological advancements are providing new instrumentation,

impressive computational power, and huge data storage opportunities to deal with big

volumes of hydrological data (Butler, 2014; Tauro et al., 2018). In turn, big data man-

date advanced data analysis techniques (Chen and Han, 2016; Chen and Wang, 2018;

Blöschl et al., 2019; Sun and Scanlon, 2019; Papacharalampous et al., 2021).

Among emerging statistical and data mining methods, ML approaches have had an

impressive diffusion in the environmental sciences and specifically in hydrology. Several

ML techniques, such as ensemble and ordinary learning algorithms (i.e. Model Averaging,

Bagging, Boosting) have been extensively tested, compared, and applied in river flow, river

quality, sediment transport, rainfall-runoff, and groundwater modeling for simulation and

forecasting applications at diverse time aggregation scales. The success of such approaches

is due as well to the mentioned increasing data availability and to the complexity of

hydrological phenomena, which are difficult to model with linear or simple non-linear

statistical methods. For a full overview of the use of ML methods in hydrology, the reader

could refer to the following recent papers: Zounemat-Kermani et al. (2021a); Gharib and

Davies (2021); Rajaee et al. (2020a); Tyralis et al. (2021a).
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Nowadays, with the increasing use of ML models in hydrology, it is essential to ex-

tend the diagnostic tools (mentioned in Section 1.2) to this context in order to obtain

interpretable machine findings.

In this work we test seven feature importance measures combining ML model-agnostic

methods and global SA indices and, for the first time in hydrology, we employ Shap-

ley feature importance (Casalicchio et al., 2018), ALE-indices (Borgonovo et al., 2022)

and ALE-based feature importance (Greenwell et al., 2018). Such testing is performed

through a proof of concept that aims to understand a catchment hydrological response by

investigating how the sub-basins of a selected natural watershed contribute to its storm

response. More specifically, the aim of the proposed preliminary application is to verify if

it is possible (with the current results and/or in future research applications) to answer

the following questions:

1. Does one (or more) sub-basin exist that contributes more than others to the catchment-

scale hydrological response?

2. Do eventually dominant sub-basins exhibit distinctive morpho-hydrological charac-

teristics that control the feature importance measure analysis results?

To this end, we focus on a natural catchment divided into 15 sub-basins and analyze

their individual flow discharge signals along with the flow discharge at the catchment

outlet. Given the nature of the proof of concept, in this preliminary work, we opted for

the well-known Hydrologic Modeling System (HEC-HMS) semi-distributed hydrological

model for simulating runoff time series, and for a supervised ML model for forecasting the

catchment outlet discharge. This simple model configuration (maybe the simplest) will

help to verify if the feature importance measure could contribute to answering questions

1 and 2.

Addressing these outstanding questions bears remarkable implications for the compre-

hension of hydrological systems. Identifying sub-basins within the catchment as critical
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for the whole hydrological response is expected to open new avenues in rainfall-runoff

modeling as well as in environmental monitoring and engineering practice. For instance,

the design of monitoring networks and the installation of sensors in the catchment may

be optimized by insights on the areas that more significantly contribute to watershed

stormflow.

3.2 Materials and Methods

We consider a watershed with a dense hydrographic monitoring network that provides

discharge measurements at n sub-basin outlets and assume that an ML tool has been

selected to forecast discharge values. Calibration is based on available observations. We

aim to investigate whether the feature importance measures are able to distinguish the

sub-basin influence identifying those that most affect the discharge time series at the

outlet. With this general aim, in Section 3.2.1 we describe the watershed selected for this

application. In Section 3.2.2 we present the semi-distributed hydrology-hydraulic model

HEC-HMS used to generate a synthetic hydrologic scenario.

3.2.1 Watershed case study description

The selected study site is the Samoggia River basin, a tributary of the Reno River lo-

cated in the Emilia Romagna region, Italy (see Figure 3.1). We use a digital elevation

model at 20m resolution made available to the authors by the Italian Geographic Military

Institute. Land cover data related to the year 2018 are downloaded from the Coordina-

tion of Information on Environment (CORINE) database, and soil data are taken from

the soil map provided by the local administration. The elevation of the investigated

basin lies in the range 51–883m a.m.s.l., the total contributing area is 178.5km2 and the

basin average slope is approximately 19.1%. Regarding land cover, the site is character-

ized by valley bottoms that are mainly floodplains hosting farmland and urban areas,
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and by mountain areas in which there are mainly broadleaved woods. Regarding soil

data, the catchment can be classified as a mix between loamy sand and sandy loam.

Further details on the Reno River basin can be found in Castellarin et al. (2009) and

Di Prinzio et al. (2011). Regarding the available hydrological data, rainfall observations

are downloaded from Emilia Romagna regional agency for environmental protection web-

site (https://simc.arpae.it/dext3r/), selecting three years (from 1st January 2014 to

31st December 2016) at 1-hour time resolution.

Figure 3.1: a) and b) Samoggia river basin, located in northern Italy, c) Digital elevation
model, Raingauge and drainage network, d) Fifteen sub-basins.

3.2.2 HEC-HMS model implementation

The synthetic hydrologic scenario is carried out using the software HEC-HMS by the

Hydrologic Engineering Center of the US Army Corps of Engineers (2017). HEC-HMS

https://simc.arpae.it/dext3r/
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allows one to simulate hydrological processes using different options and modules (Chu

and Steinman, 2009; De Silva et al., 2014). In the present case study, we apply the HEC-

HMS to the Samoggia watershed selecting 15 sub-basins as shown in Figure 3.1 (panel

d). Hereafter, we employ the simplest configuration that includes:

• Spatial homogeneous rainfall estimation through Thiessen Polygons;

• Soil Conservation Service - Curve Number (CN) infiltration approach;

• Soil Conservation Service - Unit Hydrograph (UH) rainfall-runoff model;

• Muskingum method for hydraulic propagation.

We use the physical and hydrological parameters for the sub-basins obtained from HEC-

GeoHMS and available in previous literature (Ramly and Tahir, 2016; Ramly et al., 2020;

Mourato et al., 2021). As mentioned in Section 3.2.1, rainfall data are collected from

three rain gauge stations (see panel c in Figure 3.1). To emphasize the role of sub-basins,

we assume a spatially homogeneous rainfall. Thus, the well-known Thiessen method can

be adopted for computing the gauge-weighting factors. The Soil Conservation Service

dimensionless UH is used as the rainfall-runoff model. It includes the CN as the main pa-

rameter affecting infiltration and surface flow velocity defined using land use information.

The dimensionless UH is shaped using the concentration-time (Tc) and peak discharge

(Qp). In particular, Tc is linked to the time lag (TL), calculated by Mockus Formula

(Mockus, 1964), which depends on the maximum flow length, the mean slope, and the

CN value. The flow length is calculated as the sum of sheet flow, shallow concentrated

flow, and channel flow. Finally, we select the Muskingum model as the flow routing model,

setting its parameters (X, dimensionless attenuation, and K, travel time) equal to 0.5

and 1, respectively (Gilcrest, 1950).
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3.3 Results and discussion

In this section, we report and discuss the case study results. Firstly, the HMS model

implementation is presented in Section 3.3.1, where the characterization of the 15 sub-

basins and the 15+1 discharge time series are provided. In Section 3.3.2, the comparison

of ML models used is reported. Section 3.3.3 reports the feature importance measure

analysis. Section 3.3.4 discusses the results of the feature importance analysis.

3.3.1 Hydrologic synthetic scenario

The watershed case study simulated using the HMS model consists of 15 sub-basins (see

panel d in Figure 3.1) characterized by heterogeneous geomorphological properties (Table

3.1). The contributing areas span from 3.5km2 (W200) to 34.5km2 (W220), while slope

values are in the large range: 1.0% (W160) - 22.9% (W240), reflecting the watershed

characteristics shown in Figure 3.1 (panel c). In particular, the watershed case study

includes a mountainous area in the upper part and a flat area near the outlet. This is

also confirmed by outlet elevations that vary from 51m (W160) to 347m (W300). The

land use suggests a limited variability of CN values in the range 84.8 (W240) - 92 (for

six sub-basins), defined in the Antecedent Moisture Condition (AMC) II, characterizing

a soil in a moderate humidity condition. The hydrologic synthetic scenario is simulated

by applying the HEC-HMS model on the three years of rainfall observations at 1-hour

resolution, generating 15 discharge time series at the same time resolution in the outlet

sub-basins and the watershed outlet (hereinafter Outlet). An overview of the considered

scenario is provided in Table 3.2 and Figure 3.2. In particular, Table 3.2 reports the main

summary statistics. The time series distributions of flow discharge signals are positively

skewed due to the large proportion of zero values and exhibit sharp peaks. Note that

summary statistics reflect the typical hydrological behavior of small sub-basins with low

concentration times and high CN values. The discharge median value is zero and quantile
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Sub-
basin

Water-
shed
Area
[km2]

Aver-
age

Slope
[%]

Curve
Num-
ber
[-]

Mean
Eleva-
tion
[m]

Mini-
mum
Eleva-

tion [m]

Outlet
Flow

Length
[km]

Concen-
tration
Time
[min]

W160 4.4 1.0 88.6 61 51 0 253
W170 6.9 2.4 92.0 82 54 3 164
W180 5.2 3.8 92.0 96 54 3.1 134
W190 11.0 22.8 86.6 203 95 10.6 78
W200 3.5 15.1 91.1 175 95 11 53
W210 6.6 21.3 86.4 195 118 12.9 63
W220 34.5 19.8 90.1 303 118 13.1 131
W230 4.7 10.8 88.2 195 150 17.9 56
W240 7.1 22.9 84.8 250 150 18 60
W250 33.8 19.7 91.7 427 175 21.8 117
W260 19.2 19.8 91.7 419 175 21.5 81
W270 2.2 22.0 92.0 424 347 31 21
W280 7.1 23.6 92.0 550 347 31.1 37
W290 18.7 22.1 92.0 640 347 32.6 67
W300 15.7 20.9 92.0 645 347 32.7 71

Table 3.1: Main hydro-morphological properties of the fifteen sub-basins in the case study.

MEAN SD MIN MAX MEDIAN P0.75 P0.9 P0.99 P0.999
Outlet 5.63 20.79 0 351.68 0 1.3 12.81 103.17 252.3
W160 0.14 0.64 0 18.91 0 0 0.19 3.08 7.96
W170 0.21 1.02 0 30.09 0 0 0.3 4.87 12.6
W180 0.16 0.78 0 23.12 0 0 0.21 3.69 10
W190 0.34 1.67 0 49.31 0 0 0.44 7.87 21.33
W200 0.11 0.51 0 14.83 0 0 0.16 2.45 6.31
W210 0.21 0.94 0 25.86 0 0 0.32 4.6 11.7
W220 1.07 5.16 0 152.41 0 0 1.44 24.58 65.52
W230 0.15 0.7 0 20.78 0 0 0.19 3.33 9.03
W240 0.22 0.98 0 26.19 0 0 0.36 4.84 12.23
W250 1.06 5.04 0 148.99 0 0 1.45 24.03 63.65
W260 0.6 2.9 0 85.57 0 0 0.78 13.68 37.06
W270 0.07 0.32 0 9.41 0 0 0.1 1.54 3.96
W280 0.22 1 0 26.35 0 0 0.37 4.89 12.38
W290 0.58 2.56 0 64.65 0 0.01 0.98 12.77 31.15
W300 0.49 2.04 0 44.81 0 0.04 0.93 10.24 24.24

Table 3.2: Main summary statistics of the simulated runoff time series [m3/s]. SD is
standard deviation; P0.x is the percentile at 75%, 90%, 99%, 99,9%.
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values confirm the high time series intermittency.

Figure 3.2: The hydrologic synthetic scenario. Each plot displays the simulated runoff
hourly time series. y-axis dimension [m3/s].

Figure 3.2 displays the individual flow discharge signals of the 15 sub-basins along

with the flow discharge at the catchment outlet. Note that since rainfall is assumed
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spatially homogeneous, all recorded signals show similar behaviour over the considered

time interval.

3.3.2 Optimal ML method selection

We divide the feature-output data into 80% training and 20% testing. All features are

normalized, i.e., 0 ≤ Xj ≤ 1 (j = 1, ..., 15). We use four ML models: ridge regression,

random forest, gradient boosting machine, and one-hidden layer neural network. They are

implemented using the following R-packages: glmnet, randomForest, gbm, nnet (Fried-

man et al., 2009; Liaw et al., 2002; Ridgeway, 2005; Ripley et al., 2016) and caret (Kuhn,

2009) to perform hyperparameter optimization. After training the models, we obtain the

following values of the hyperparameters:

• Ridge regression: lambda = 0.001;

• Random Forest: mtry = 15 and n.trees = 500;

• Gradient Boosting: shrinkage = 0.071, n.trees = 951, interaction.depth = 7,

n.minobsinnode = 10 and bag.fraction = 0.65;

• Neural Network: size = 12 and decay = 0.1;

Note that in the Random Forest model, all features are used in each tree (mtry = 15).

Hence, it can be regarded as a Bagging model (Breiman, 1996). In Table 3.3 the estimates

of the performance measures of the ML models are reported. Random Forest is the

Performance
Measures

Ridge
Regression

Random
Forest

Gradient
Boosting

Neural
Network

MAE (10−4) 100 55 59 86
RMSE (10−3) 25 21 23 25

R2 (10−2) 87 89 86 82

Table 3.3: Performance measures estimated for the four ML models.
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best-performing model according to all three measures compared to all other models.

Consequently, we select such an ML model to carry out the discharge forecasting analysis.

Note that the results illustrated here and in the next sections refer to the case of lag

equal to zero. In such a case, the machine learning tool and the measure importance (later

described) investigate on the dependence among simultaneous flow discharge signals of

the 15 sub-basins and the flow discharge at the outlet. For offering a more complete

overview of the hydrological response the case of lag = 3 is reported in the Appendix. For

such time response, the results are in line with results for the lag = 0 case study.

3.3.3 Importance analysis

The importance analysis was performed using the feature importance measures summa-

rized in Table 3.4. We recall that the first four feature importance measures (cPFI, SPFI,

Importance Measure Definition Context

Conditional PFI cPFIj = E[L(Y, ĝ(XCperm
j , X−j))] − E[L(Y, ĝ(Xj, X−j))] (1.6) ML

Shapley PFI SPFIj = ∑ |K|!(|P |−|K|−1)!
|P |! [vge(K ∪ {j}) − vge(K)] (1.9) ML

ALE-plot total index T′
j = 1

2
E[(ĝ(Xk

j ,X−j)−ĝ(X−j))2]
σ2

Y
(2.5) ML

ALE-based importance ALE-IMPj =
√

V(ALEj(xj))∑
j

ALE-IMPj
(1.19) ML

Variance-based measure η2
j = V[E[Y |Xj ]]

V[Y ] (1.29) SA

Density-based measure δj = 1
2E
î∫

Y |fY (y) − fY |Xj
(y)|dy

ó
(1.30) SA

Cdf-based measure βKS
j = E

î
supY

∣∣∣FY (y) − FY |Xj
(y)

∣∣∣ dy
ó

(1.31) SA

Table 3.4: Feature importance measures calculated in this work. The last column refers to
the framework in which the importance measures are evaluated. ML: Machine Learning;
SA: Sensitivity Analysis.

ALE-IMP, T′), reported in Table 3.4, are computed using the predictions of the optimal

ML model and the remaining feature importance measures (η2, βKS and δ) are evalu-

ated directly from the data. For the computation of the sensitivity measures, we use

betaKS3.m.

https://zenodo.org/record/885332#.XgoB-kdKiUk
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In hydrology, Schmidt et al. (2020) use PFI measures to check whether the key-drivers

in forecasting the flood magnitude match among different ML models. Thorslund et al.

(2021) use conditional PFI measures to recognise key-drivers in predicting salinity levels.

Borgonovo et al. (2017) employ the three sensitivity indices to identify the most important

features in hydrological models of a river watershed generated using the Framework for

Understanding Structural Errors (FUSE) (Clark et al., 2008).

The conditional PFI measure is calculated using the algorithmic implementation of De-

beer and Strobl (2020). Both performance-based measures (cPFI and SPFI) are computed

using RMSE as a loss function. We use the R-packages permimp (Debeer et al., 2021) and

featureImportance1. The variance-based measures (ALE-IMP and T′) are computed

by partitioning the support of the feature of interest into 100 equally-spaced intervals

(K = 100). The ALE-IMP measure is calculated using the algorithmic implementation

proposed by Christensen et al. (2021). For both measures, we use the R-package ALEPlot

(Apley, 2018).

Figure 3.3 displays the estimates of the feature importance measures used in the case

study. The results of the ML feature importance measures show that only a few sub-

basins are influential in forecasting the watershed outlet discharge. Differently, the global

SA indices assign considerable importance to all sub-basins which is due to the presence

of a strong correlation between sub-basins. This shows that all of them are active in the

watershed dynamics.

From our analysis, we have that some estimates of conditional PFI are close to zero.

This means that permuting Xj does not produce a reduction in the performance of the

RF model. Then, such a feature has no impact on the predictive performance of the ML

model. Therefore, the corresponding sub-basin might be unnecessary. Differently, a high

cPFI value denotes that the sub-basin is important in the ML model. In order to have

a better understanding of the results presented in Figure 3.3, we provide the ranking for

1https://github.com/giuseppec/featureImportance

https://github.com/giuseppec/featureImportance
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each feature importance measure and the mean ranking resulting from the ensemble of

the importance measures used (Table 3.5). The latter is defined as the average ranking

resulting from the ensemble of the importance measures used (Kuncheva, 2014).

Figure 3.3: Estimates of seven feature importance measures used in the case study.

The results in Figure 3.3 and Table 3.5 suggest that we can identify three groups of sub-

basins based on their importance. The first group consists of sub-basins W300, W290, and

W280. Note that the seven feature importance measures defined on distinct aspects (i.e.

the predictive accuracy of the optimal ML model, the individual and total contribution to

the output variance, and the probabilistic effect on the output response) simultaneously

identify W300, W290, and W280 as the most influential sub-basins. The second group

consists of sub-basins W240, W210, and W270. Note that, almost all feature importance

measures identify W240 and W210 as the fourth and fifth most important sub-basins.
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Sub-basin cPFI SPFI ALE-IMP T′ η2 βKS δ Mean
Ranking

W300 1 1 1 1 1 1 1 1
W290 2 2 2 2 2 2 2 2
W280 4 3 3 3 3 3 3 3
W240 3 4 4 5 4 4 4 4
W210 5 8 5 4 5 6 6 5
W270 8 5 11 6 7 5 5 6
W260 14 7 8 7 6 7 7 7
W190 9 6 6 10 15 9 9 8
W180 6 9 7 11 14 12 12 9
W200 15 10 12 8 11 10 10 10
W170 7 11 13 13 13 8 8 11
W230 10 12 9 12 10 13 13 12
W160 13 13 10 9 12 11 11 13
W220 11 14 14 14 8 15 15 14
W250 12 15 15 15 9 14 14 15

Table 3.5: Ranking for each feature importance measure and the mean ranking.

While the ranking of W270 varies across the importance measures. Note that there is a

third group of sub-basins for which the estimates of all importance measures are generally

much lower than the estimates of the first two classes, showing that such sub-basins are

less (or not) influential in predicting the catchment outlet discharge. Interestingly, by

employing ML and SA feature importance measures one can obtain rankings that agree

with each other. Such correspondence produces more confidence about which sub-basins

are important for forecasting the flow discharge at the catchment outlet.

To increase our confidence in the ranking reported in the last column in Table 3.5,

we investigate the predictive accuracy of the optimal ML model fitting an incremental

sequence of Model Configurations built by including one sub-basin at a time. The order of

inclusion follows the ranking resulting from the importance analysis. To be more precise,

the sequence of Model Configurations is initialised including only the first ranked sub-

basin (W300). Then, Configuration 2 includes sub-basins W300 and W290; Configuration

3 includes sub-basins W300, W290, and W280 and, finally Configuration 15 includes all

sub-basins. For each configuration, we train a Random Forest model and evaluate the
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performance measures presented in Section 1.2.4. Based on predictive performances, we

aim to identify how many sub-basins we need to include in the optimal ML model to

achieve a desired high level of accuracy.
Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MAE (10−4) 110 61 58 58 58 56 56 56 56 56 56 56 56 56 56
RMSE (10−3) 37 24 22 22 22 21 21 21 21 21 21 21 21 21 21
R2 (10−2) 69 86 88 89 89 90 89 89 89 89 89 89 89 89 89

Table 3.6: Estimates of the performance measures for the configurations defined using the
mean ranking.

The results reported in Table 3.6 suggest that the first group of sub-basins (which

includes the three most important ones) explains 88% of the variability of the output

response. Including the second group produces only a slight improvement in the perfor-

mance measures. Table 3.6 also shows that including the least relevant sub-basins does

not improve accuracy further. Therefore, they can be excluded from the machine learning

analysis.

Conversely, if we were to include only the non-relevant sub-basins, we would obtain

the following values of the performance measures: MAE = 0.0164, RMSE = 0.0501, and

R2 = 0.2748. These values confirm that if we were to train the model using only the least

relevant sub-basins as inputs, we would not achieve a desirable prediction accuracy.

3.3.4 Discussion

Let us now come to the questions posed in the introduction. Regarding the first question,

feature importance measures have allowed us to identify the group of sub-basins that

influence the catchment-scale hydrological response the most.

Regarding the second question, the discussion is a bit more elaborate and we focus on:

a) the watershed and the hydrological model characteristics shown in Table 3.2 and b) the

insights arising from the ranking of the importance analysis (Table 3.5). In particular, the

sub-basin contributing areas do not allow us to distinguish the role of the sub-basins. The

largest sub-basins (W220 and W250) are included in the uninfluential group (red group
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in Table 3.5) and, interestingly, their contributing areas are twice those of the dominant

sub-basins. Differently, slope values are more consistent with the importance ranking.

Indeed, all six influential sub-basins are characterized by slope values higher than 20%.

However, high values are observed also for W190, W220, W250, and W260, which belong

to the uninfluential group. The Curve Number is almost homogeneous among the sub-

basins and it does not appear to be a distinguishing characteristic. Note that, although

the dominant sub-basins have the highest CN values, the same value is also observed for

W170 and W180 (red group). Moreover, the lowest value (84.8) is registered for W240

which is in the yellow group. The Average Elevation is also in partial agreement with the

importance ranking. In particular, the dominant sub-basins present the highest values,

nevertheless high values also characterize W220 and W260 (red group). Conversely, we

register an agreement between Minimum Elevation and the sub-basins ranking. In fact,

the first three ranked sub-basins are characterized by the highest minimum elevation. High

outlet elevation indicates that these three sub-basins are located in the upper part of the

watershed, as confirmed by the values of the hydraulic distance to the watershed outlet

listed in the sixth column of Table 3.1. The last comparison involves the concentration-

time parameter (Tc). This is estimated using several empirical equations which include

the slope, the drainage network length, the contributing areas, and the CN values. Such

a parameter offers a combination of the previously described topographic properties. Tc

is responsible for the UH shape and then for the sub-basin response function: small Tc

values refer to concentrated response functions while larger values refer to more spread

functions. Comparing the Tc parameter with the feature importance measure ranking,

one notes a good overall agreement, with all influential sub-basins having low Tc values.

In conclusion, even if the results do not suggest a clear agreement between watershed

ranking and specific hydro-morphological characteristics, useful for answering the second

paper question, it is possible to make some reasonable hypotheses. The dominant role

of sub-basins W300, W290, and W280 is not surprising since a) the watershed dimen-
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sion is above the average and b) they are located upstream and therefore they influence

the downstream watersheds. Indeed, the outlet flow length shows the maximum values.

Moreover, the sub-basin W260, characterized by the same distance to the outlet, is ranked

in the yellow group in Table 3.5. So, the contributing area and the upstream location

could be relevant characteristics for discriminating the role of the sub-basins.

However, making hypotheses for the other two sub-basins located in the yellow group

in Table 3.5 (W240 and W210) is more challenging. In this case, the time of concentration

could be the prominent concomitant characteristic, indeed, for both sub-basins it is very

low due to the steep slopes, therefore, the more concentrated hydrological response could

make their contribution more influential.

To properly answer the second question of the paper, a more descriptive modeling

approach should be applied, as the simplified hydrological model scenario was only used

here to investigate the potential of the importance measure approach. In future research,

a fully distributed hydrological model will be applied to a large basin (< 5000 km2),

calibrating it with observed data and referring to very long synthetic rainfall scenarios

(1000 years at 15 minutes temporal resolution). Such realistic and large case study will

allow to investigate on the watershed role at different spatial scale shedding the light on

the preliminary results here showed.



76 Chapter III



Chapter 4

Hydrological Application: Designing

flood forecasting systems using

machine learning, feature importance

measures and synthetic scenarios

4.1 Introduction

Flood forecasting frameworks are crucial for Early Warning Systems (EWS) in floodplain

areas (Parker and Maureen, 1996; Kaya et al., 2005; Winsemius et al., 2013; Liu et al.,

2018). Two main EWS elements are monitoring and forecasting (Cools et al., 2016).

The associated techniques range from process-based to data-driven approaches depen-

dent on real-time operational instruments, river network surveys, and response time of

catchments rainfall-runoff (Calver, 1988; Lee et al., 2005; Park and Markus, 2014; Kan

et al., 2017; Mosavi et al., 2018; Reichstein et al., 2019). The latter influences the EWS

structure. Indeed, in small basins (where floods occur) the forecasting framework is based

on precipitation and the related proxies. Conversely, in larger watersheds, the EWS input

77
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information is represented by discharges recorded at specific river cross sections.

The paucity of real-time observations is a common EWS bottleneck. In fact, discharge

monitoring in river cross-sections is particularly expensive. This limits the availability

of crucial information for hydrological-hydraulic model calibration and flood-forecasting

framework implementation. Consequently, the first aim of EWS design is to set up a

parsimonious monitoring network that ensures the necessary accuracy in forecasting the

discharge at a specific control section.

Data-driven models, i.e. artificial intelligence, Machine Learning, and deep learning

tools, are increasingly applied in EWS. Typically, these tools enable rapid responses,

a crucial aspect in early warning systems (Dawson and Wilby, 2001; Wu et al., 2009).

This makes them frequently preferred to physical-based rainfall-runoff models that need

more computational time (Adnan et al., 2021a,b). The use of ML techniques has been

rapidly evolving in hydrology (Lange and Sippel, 2020), with several studies focusing

on forecasting applications (Deka et al., 2014; Tyralis et al., 2019; Rajaee et al., 2020b;

Zounemat-Kermani et al., 2021b; Tyralis et al., 2021b). ML models represent an appealing

tool for their fast implementation. However, they need a large number of observations for

their calibration (Zhou, 2016).

Using a synthetic database for training the ML tools could be particularly beneficial

(Yoon et al., 2007; Shen et al., 2022). Commonly, the available observed datasets are

limited to a low number of flood events and are heterogeneous in their magnitude. The

availability of a large set of simulated floods ensures accurate training of the ML model

used.

The goal of this chapter is to propose a framework for designing an ML flood EWS

based on discharge input information. The novelty of our procedure is that it combines

(i) hydrologic-hydraulic synthetic scenarios for improving the ML calibration and (ii)

feature importance measures for identifying the most influencing cross sections where the

instrumentations should be installed. To create a transparent framework, we use two types
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of feature explanations: ML tools (Permute-and-Relearn importance (Hooker et al., 2021),

Shapley feature importance (Casalicchio et al., 2018), ALE-based feature importance

(Cappelli et al., 2022)) and data-driven tools from sensitivity analysis (Variance-based

sensitivity measure (Iman and Hora, 1990), Density-based and Cumulative distribution-

based sensitivity measures (Borgonovo, 2007b)). We combine the indications provided by

the alternative feature importance measures to make the ranking robust.

The approach consists of six steps:

1. Selecting a group of sub-basins for a given watershed;

2. Generating a synthetic database of flood events using a continuous rainfall-runoff

model;

3. Identifying an optimal sub-sample;

4. Selecting and calibrating the optimal ML model;

5. Applying the two types of feature importance measures;

6. Identifying the most influential sub-basins.

We challenge the approach through application to a realistic case study. We select the

Tiber river basin, one of the largest Italian watersheds.

The chapter is organized as follows: Section 4.2 introduces the proposed framework.

Section 4.3 describes the four ML methods (Linear Model, Gradient Boosting, Random

Forest, Extreme Gradient Boosting), the feature importance measures, and the perfor-

mance indices used. In Section 4.3 we also provide a complete description of the proposed

case study. Section 4.4 illustrates the results.
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4.2 The framework concept

In this section, we describe a six-step framework for designing an EWS system in an

ungauged or poorly gauged large watershed (Figure 4.1). The first step consists in se-

lecting a group of sub-basins. This selection should be carried out according to certain

criteria commonly related to the expected hydrological-hydraulic behavior, the role of the

sub-basins with the watershed outlet, and to the practical feasibility of creating instru-

mental cross-sections. The sub-basins outlets and the associated watershed outlet are the

starting point for the application of a semi-distributed continuous hydrological-hydraulic

model. The choice of the appropriate model depends on the data available for calibration.

In the case of fully ungauged basins one applies empirical-conceptual models (Grimaldi

et al., 2021, 2022), while in the case of fully gauged basins one applies distributed and/or

regional frameworks (Castelli et al., 2009). Adopting a modelling approach enables one to

simulate a large number of discharge time series at sub-basin outlets and watershed outlet.

The second step consists in simulating and analyzing the synthetic flood-event database

using a hydrological-hydraulic model. The third step consists in identifying the optimal

sample dataset (i.e., a sub-sample of the synthetic full database) on which to apply the

ML techniques. This step is defined following a preliminary analysis. First, we analyze the

Pearson correlation between the sub-basin outlets and the watershed outlet at different

lags. Then, we investigate the choice of the range of discharge values to build the desired

EWS. The fourth step consists in training and testing the ML models and comparing the

corresponding performance indices. The optimal ML model is then chosen to support the

design of the EWS. The fifth step consists in performing the feature importance analysis.

The goal is to identify a subset of sub-basins that ensures a highly predictive ML per-

formance. The last step consists in identifying the final EWS configuration based on the

resulting ML performance. Therefore, the 6 steps that compose the framework help to

recognize the areas in which it would be optimal to install instrumentations.
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Figure 4.1: The proposed framework for designing a parsimonious early warning system
based on six steps from the hydrological model simulation to the most influential water-
sheds.

To implement the approach, we make use of a case study with a massive dataset

of simulated floods (Natale and Ubertini, 2002). Therefore, having the simulated data

already available, we focus only on steps 3 to 6. In future research, we will investigate

the best approach for identifying the optimal sub-basin partition and for simulating flood

events.

4.3 Materials and methods

This section is structured as follows. Section 4.3.1 discusses the performance indices used

for evaluating the predictive accuracy of the ML tools. Sections 4.3.2 and 4.3.3 provide

a detailed description of the Tiber river case study and of the related extensive synthetic

flood database.
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4.3.1 Performance indices

In the application we use four ML models: the linear model, the random forest, the

gradient boosting and extreme gradient boosting machines. Their performance will be

evaluated at event-based scale (see Section 4.4.1 for additional details). Specifically, given

a sequence of flood hydrograph events, the comparison between the ML predictions and

the observed values is performed event by event. This allows a clearer evaluation and

interpretation of the machine findings. With this aim, we consider three different per-

formance measures expressed in absolute value: Mean Absolute Relative Error (MARE),

the Relative Peak Error (RPE), and the Bias Adjusted (BAdj).

The MARE is defined by averaging the absolute values of the errors between the

simulated and observed data relative to the observed data (Rientjes et al., 2013). It is

computed as follows:

MARE = 1
n

n∑
i=1

| ys
i − yo

i |
yo

i

, (4.1)

where ys and yo are the simulated and observed discharge values and n is the number of

observations in the event.

The RPE allows one to evaluate the ability of the ML model to forecast the peak

discharge. The RPE is defined as

RPE = | maxi ys
i − maxi yo

i |
maxi yo

i

. (4.2)

It is computed taking into account the simulated and observed peak discharge values in

a specific flood event.

The BAdj quantifies the difference between the sum of the simulated data and the

observed data. It focuses on the flood event volume above a threshold (the average
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discharge of the same event). It is calculated by

BAdj =
| ∑n

i=1,yo
i >T ys

i − ∑n
i=1,yo

i >T yo
i |∑n

i=1,yo
i >T yo

i

, (4.3)

where T is the average value of yo
i .

Note the value of MARE, RPE, and BAdj range between 0 and 1, with the value 0 indi-

cating a perfect prediction. Because these performance measures are calculated on several

events, we select as the final MARE value the average of the MARE computed for each

event, while as the final RPE and BAdj we select the 75th percentile as a representative

value.

4.3.2 Case study description: the Tiber river

The Tiber River basin (approximately 17,500 km2 of contributing area) lies in Central

Italy and includes the town of Rome (see Figure 4.2). Several inundation events occurred

in Rome in the past, with a rather long record of floods that have been reported over the

centuries (e.g. Calenda et al. (2009); Mancini et al. (2022)). In the following, we describe

the hydrological/hydraulic model employed for creating the synthetic flood database used

in the present study.

The flood hydrographs are simulated using the model employed by the Central Apennine

District Basin Authority (ABDAC, 2003), that schematizes the Tiber basin as composed

of 39 sub-basins and its main tributaries. Figure 4.2 provides a grouped representation

with the contributing area values of each sub-basins (notice that the large sub-basin n.

40 is included as constant discharge contribution).

The present study used an original model for generating hourly precipitation, devel-

oped since 1999 by Kottegoda et al. (2003): this stochastic model is parsimonious in the

number of parameters, is particularly efficient and easy to use, and respects the spatio-

temporal correlation of precipitation and the seasonal trend of the climate. The model,
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SBO code Area (km2) SBO code Area (km2) SBO code Area (km2) 
1 2033 14 96 27 59 
2 1956 15 96 28 59 
3 1084 16 144 29 215 
4 638 17 240 30 54 
5 48 18 53 31 53 
6 96 19 40 32 107 
7 96 20 139 33 107 
8 48 21 497 34 54 
9 48 22 93 35 54 
10 48 23 93 36 161 
11 64 24 93 37 54 
12 80 25 139 38 1435 
13 48 26 93 39 1340 

 

Figure 4.2: Tiber river watershed case study: (left) the grouped representation of 39
ABDAC model sub-basins, (top right) the geographical identification, (bottom right) table
with contributing area values related to each sub-basin outlet (SBO) and identification
codes. A large sub-basin (n. 40) is not included in the ABDAC model since the hydrologic
response is highly conditioned by hydraulic infrastructures.

which has been adapted to best exploit the characteristics of the problem under study,

consists of two calculation modules: a) procedure for generating daily rainfall series and

b) disaggregation of daily rainfall into hourly values.

Flood routing along the Tiber, from the Corbara reservoir to the sea, is modelled

by a one-dimensional (1D) hydrodynamic model. The rainfall field in the catchment is

represented by nine homogeneous areas, for each of which 20’000 years of synthetic rainfall

series with hourly resolution have been generated. The rainfall generator was calibrated

through the intense rainfall observation in the area, while the rainfall-runoff and flow

routing components of the model were calibrated based on numerous, significant flood

events in Rome (1937, 1965, 1969, 1976, 1979, 1984, 1992, 1997 and 1998).

In Appendix Table 6.5 reports the main characteristics of the 39 sub-basins, including
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the contributing area, the curve number, the distance from the outlet and the concentra-

tion times.

4.3.3 Flood hydrographs database description

The synthetic database includes 19349 maximum annual flood hydrographs at hourly

time scale and a fixed duration of ten days, so each event is composed of 240 discharge

values. The database is sorted (in decreasing order) according to the peak discharge at

the watershed outlet. An example of a flood event is provided in Figure 6.3.2. This graph

shows the 39 sub-basins and the outlet hydrographs with the corresponding forecasts. We

recall that the 40th sub-basin is absent since it produces a constant discharge.

Simulated peak discharges at the watershed outlet are quite heterogeneous spanning

from 638 m3/s to the 7847 m3/s values (see Figure 4.3). Figure 4.3 shows the presence of

(a) (b)

Figure 4.3: (a) the first 500 of the 19439 hydrograph peak discharges simulated at the
watershed outlet in decreasing order; (b) right-skewed histogram of the peak discharges
at the watershed outlet.

heterogeneity that is common in large basins and for long-time series simulation. Hetero-

geneity plays a crucial role in the present analysis. Indeed, such variability suggests that

events with different peak discharges (i.e. the event n. 1: 7847 m3/s, event n. 500: 2173

m3/s, event n. 2485: 1489 m3/s ) could have a different dynamic in the flood generation

that could influence the dependence structure among the sub-basins outlet and the wa-
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tershed outlet (i.e., different rainfall distribution, different initial soil moisture, different

sub-basin contribution). An additional source of heterogeneity is detected among sub-

basin contributions. In particular, we observed that, except for very large flood events,

quite often not all sub-basins contribute with runoff to the flood generation. An example

is shown in Figure 6.3.3 where ten flood events are plotted for the 39+1 outlets.

4.3.4 Analysis

As described in Section 4.2, the third step of the proposed framework is to identify the

optimal dataset. It is defined based on the certain range of peak discharge at the wa-

tershed outlet chosen to design an EWS. With this aim, we investigate the synthetic

database focusing on the following three aspects: the role of the sample size; the role of

the heterogeneity of the peak discharges within the sample size; the contribution of each

sub-basin in heterogeneous scenarios. We expect that increasing the sample size and, so,

selecting a large number of flood events would assure a robust ML calibration and stable

performance. Conversely, increasing the number of events, their heterogeneity increases,

potentially making the ML performance unstable. Moreover, for large basins, such as the

Tiber river, a heterogeneous sub-basin response is likely. Specifically, some sub-basins

might not be affected by a flooding phenomenon while the remaining ones determine the

flood event at the watershed outlet.

To define the sample dataset, it is necessary to identify an appropriate interval of

the peak discharge values of interest for which the EWS would be useful. This range is

chosen considering all annual maximum synthetic flood events (see Section 4.3.3) and the

historical knowledge concerning the Tiber river. For the latter, it is known that only for

peak values exceeding 2500 m3/s there would be a real risk for the investigated outlet

area (historical center of Rome). Therefore, it is reasonable to discard all the flood events

with a peak value less than 2000 m3/s. Furthermore, for peak values higher than 3500

m3/s the flood is already in place. So, that and so the forecast is no longer useful for
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activating countermeasures.

Consequently, we analyze seven tests summarized in Table 4.1. Tests 1 and 3 include

the condition that all the sub-basins should actively contribute to the watershed outlet

hydrograph. For such tests, we select all the events where a single sub-basin shows at least

a threshold peak discharge value. Specifically, we set the 99th and 99.8th percentiles peak

discharge values (0,99 and 0,998) and we identify the related flood events. As a result,

in Test 1 we have 69 events in the ranking range 1-367 (discharges: 7847-2338 m3/s) and

in Test 2 we have 280 events in the ranking range 1-2485 (discharges: 7847-1489 m3/s).

In Test 2 the sample size is kept invariant but the flood events are subsequent in order

(decreasing order with respect to the peak discharge). Moreover, in this test, not all the

sub-basins play an active role in the watershed dynamics. In tests 4, 5, and 6 the sample

size and the heterogeneity of the peak discharges are varied. In Test 7 a compromise

between sample size and peak heterogeneity is balanced. In particular, we discard the

first 50 flood events that are particularly high discharge values, and they can be regarded

as outliers.

The last preliminary analysis on the simulated database is aimed to verify the Pearson

correlation coefficients among the sub-basin outlets and the watershed outlets. This is

useful to have feedback on the appropriate time lag of the forecasting analysis and so to

have a preliminary idea of the effectiveness of the EWS based on the chosen sub-basin se-

lection. Figure 4.4 shows that in the range 24-48 hours we detect the strongest correlation

between sub-basin outlets and watershed outlet. Moreover, since the correlation values

are quite similar, in the next sections we conduct the importance analysis by referring to

a lag equal to 24 hours. In addition, we provide the forecast performances of the optimal

ML for a 48-hour lag. Note that the ML feature importance measures are defined using

instantaneous predictions (i.e., prediction at lag 0). Then, to develop the forecasting

analysis we shift the outlet discharge values of 24 hours (or 48 hours). Consequently, each

flood hydrograph is composed of 216 hours (or 192 hours).
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Test Range of
Events

Range of
Discharges

Notes

Test 1
69 events in
the range

1-367

7847-2338
m3/s

All sub-basins contribute (99.8%)
Small sample size, high
heterogeneity of flows

Test 2 181-249 2765-2599
m3/s

Small sample size, low
heterogeneity of flows

Test 3
280 events in

the range
1-2485

7847-1489
m3/s

All sub-basins contribute (99%)
Medium sample size, high

heterogeneity of flows

Test 4 1-500 7847-2173
m3/s

High sample size, high
heterogeneity of flows

Test 5 101-300 3123-2291
m3/s

Medium sample size, medium
heterogeneity of flows

Test 6 101-500 3123-2173
m3/s

High sample size, medium
heterogeneity of flows

Test 7 51-500 3534-2173
m3/s

High sample size, medium
heterogeneity of flows

Table 4.1: Description of tests developed for selecting the optimal flood event dataset.

Figure 4.4: Cross-correlation values estimated among the sub-basins and the watershed
outlets for four different lags: 0, 24, 48, 72 hours.

4.4 Results

In Section 4.4.1 we report and compare the predictive performance results of the ML

models introduced in Section 4.3.1 for the seven tests described in the previous section.

The results will support the choice of the optimal ML tool and allow us to evaluate its
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prediction performance for different temporal lags. In Section 4.4.2 we report the results

of the importance analysis conducted. In Section 4.4.3 we comment on these results.

4.4.1 Machine learning models performance

In our analysis, the dataset is partitioned into a training and testing set. These are

obtained randomly by selecting the 80% (training) and 20% (testing) of the flood events.

For instance, Test 7 is composed of 450 events: 360 events (randomly selected) constitute

the training sample, and the remaining 90 events the testing sample. For each test, we

train the ML models and compute the predictive performance indices (Section 4.3.1).

The results are reported in Figures 4.5 and 4.6. Figure 4.5 shows that the three ML

Figure 4.5: Performance indices estimated for each test and for each ML tool.

tools (gradient boosting, random forest, and extreme gradient boosting) outperform the

linear model, as expected. In general Random Forest and extreme gradient boosting

show better results compared to gradient boosting. Note that Random Forest achieves

the best performances above all concerning the peak discharge (RPE index). Figure 4.6

displays the variability of the optimal ML model performance measures (Random Forest).

Specifically, for each test, we provide the box-plots of the three performance indices. The

first three tests show a higher dispersion compared to the remaining tests. This is probably

due to the small sample size (tests 1 and 2) and the high heterogeneity (Test 3). Note

that the remaining tests have similar performances.

Test 5 is associated with the highest values of the performance measures. Note that in this
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Figure 4.6: Box-plot of the three performance indices computed using Random Forest,
selected as the optimal ML model.

case, the range of discharge values is small. This implies that the potential efficiency of the

EWS could be reduced, as higher discharge values could be recorded. This is confirmed by

validating the Random Forest trained in Test 5 on flood events from 51 to 100 and from

300 to 500 (out of the original test range of peak values). Table 4.2 reports the estimates

of the associated performance measures evaluated without using the absolute value. As

expected, the Random Forest provides underestimated and overestimated predictions of

the discharge values for events in the range 51-100 and 300-500, respectively. In Test 7

Range of Events MARE RPE BAdj
51 - 100 0.018 - 0,127 - 0,146
300 - 500 0.199 0,175 0,078

Table 4.2: Performance measures of the Random Forest trained on the events in the range
100-300 (Test 5) and tested on the events in the ranges 51-100 e 300-500.

the range of peak discharge at the watershed outlet is from 2173 to 3534 m3/s. Note

that, although the discharge range is larger, the accuracy is preserved: i.e., for 75%

testing flood events (67 events) the peak discharge error is lower than 12,9%. Therefore,

Test 7 represents a good compromise between sample size and event heterogeneity. This

preliminary analysis allows us to identify the optimal ML model (that is the Random

Forest) and the optimal subset of flood events (that is the set of events with a peak
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discharge within the range 2173-3534 m3/s) on which to build the next steps of the

analysis.

Since the events in the training and testing set are randomly selected (80% and 20%,

respectively), we empirically verify the robustness of the performance results obtained

using the bootstrap method (Efron, 1992). Specifically, we randomly sample the training

and testing sets 10 times and then asset the accuracy of the optimal ML model. Figure

4.7a suggests that the variability of the three performance indices is reasonably low. As

discussed in Section 4.3.3, there is a stronger dependence at lag 24-hour and 48-hour

between sub-basins and outlet discharge signals. Then, we verify the consistency of the

results obtained from the previous analysis performed for Test 7 also at a 48-hour lag.

Figure 4.7b reports the estimates of the three performance indices. It is evident that the

results are comparable to the ones shown in Figure 4.6 (column Test 7) and Figure 4.7a.

(a) (b)

Figure 4.7: (a) Box-plots of the performance measures resulting from bootstrap approach
(10 simulations varying the training and testing samples) applied on the Test 7. (b) Box-
plot of the performance measures for the Test 7 using lag 48.

4.4.2 Feature importance measure results

The fifth step of the proposed framework aims to evaluate the role of the 39 sub-basins

applying alternative feature importance measures from ML and SA summarized in Table

4.3 to identify the influential sub-basins according to different aspects (such as predictive
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Importance Measure Definition Context

Permute-and-Relearn FI VIπL
j = E[L(Y, ĝ(Xj, X−j))] − E[L(Y, ĝπ,j(Xj, X−j))] (1.5) ML

Shapley PFI SPFIj = ∑ |K|!(|P |−|K|−1)!
|P |! [vge(K ∪ {j}) − vge(K)] (1.9) ML

ALE-plot total index T′
j = 1

2
E[(ĝ(Xk

j ,X−j)−ĝ(X−j))2]
σ2

Y
(2.5) ML

First-order measure η2
j = V[E[Y |Xj ]]

V[Y ] (1.29) SA

Density-based measure δj = 1
2E
î∫

Y |fY (y) − fY |Xj
(y)|dy

ó
(1.30) SA

Cdf-based measure βKS
j = E

î
supY

∣∣∣FY (y) − FY |Xj
(y)

∣∣∣ dy
ó

(1.31) SA

Table 4.3: Feature importance measures calculated in this work. The last column refers
to the framework of belonging. ML: Machine Learning; SA: Sensitivity Analysis.

performance, contribution to the output variance, the probabilistic effect on the output

distribution).

Figure 4.8 displays the estimates of the six feature importance measures evaluated for

Test 7 sample. The results in the left column of Figure 8 show that Permute-and-Relearn

importance, Shapley feature importance, and ALE-based feature importance agree to

identify a group of influential sub-basins and a group of less (or not) influential sub-basins.

In general, this suggests that the latter could be excluded, reducing the complexity of the

ML model. In the right column of Figure 4.8 the three SA importance measures (Variance-

based sensitivity measure, Density-based sensitivity measure, Cumulative distribution-

based sensitivity measure) also agree in recognizing the same group of sub-basins as most

influential. Moreover, from Figure 4.8, we observe that there are significant differences

between the estimates of the two classes of feature importance measures due to their

nature.

Figures 4.9 and 4.10 display the importance rankings resulting from the ML and SA

importance measures for the Test 7 sample. In abscissa, the sub-basins identification

number is reported. In the y-axis the ranking position, “1” is the most important, and

“39” is the least important. The results confirm that the ML and SA measures provide

similar insights in each of the two classes. Note that there is a stronger agreement among
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Figure 4.8: Estimates of the six importance measures for Test 7.

the SA importance rankings than the ML importance rankings. Now, exploiting the

importance rankings resulting from the two classes of feature importance measures, we use

the average rank for the ML and SA feature importance measures. Specifically, the final

ML (or SA) ranking is computed by averaging the resulting three importance rankings

(Kuncheva, 2014). Figure 4.11 displays the mean importance rankings based on ML and

SA importance measures. The order of the sub-basins on the abscissa is defined according

to the mean ML importance ranks. Comparing the results we observe a strong agreement

between the two classes of importance measures for the most influential sub-basins.

Now, in the spirit of the forward stepwise regression method (Efroymson, 1960), we

exploit the ML and SA importance rankings to identify the parsimonious ML model
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Figure 4.9: Importance ranking based on the ML importance measures.

Figure 4.10: Importance ranking based on the SA importance measures.

Figure 4.11: Mean importance ranking based on the ML and SA importance measures
sorted according to the ML ranking.
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with the best predictive performance. Specifically, we evaluate the performance measures

starting from a Random Forest that includes only the most influential sub-basin. Then,

we add one sub-basin at a time according to the ML and SA importance rankings shown

in Figure 4.11. We expect that as the number of included sub-basins increases, the

performance measures improve (i.e., their magnitude decreases).

Figure 4.12: Estimates of the performance measures for the configurations defined using
the ML mean rankings.

Figure 4.13: Estimates of the performance measures for the configurations defined using
the SA mean rankings.

Figures 4.12 and 4.13 describe how the estimates of the performance measures change

for the configurations defined using the ML and SA mean rankings. The label in the
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second abscissa of Figures 4.12 and 4.13 specifies the sub-basin code included in the ML

model for which performance measures are calculated. For instance, in the plot of Figures

4.12 the abscissa value 2 means that the optimal ML model trained and tested using

sub-basins 38 and 2 produces the following performance values: MARE = 0.26, RPE =

0.184 and BAdj = 0.182.

Figure 4.12 suggests including only the first 8 sub-basins, so we obtain an optimal

configuration. Note that this configuration is associated with the highest accuracy and

that the inclusion of additional sub-basins does not improve the three ML performance

measures. Figure 4.13 shows that the optimal configuration is achieved by including 9

sub-basins.

We then assess variability in the estimates of the six feature importance measures

using the bootstrap method. The results in Figure 4.14 confirm that the six importance

measures for all 39 sub-basins show a limited variability that does not affect the rankings.

4.4.3 Summary

Results described in the previous sections can be summarised as follows:

• Simulating flood events provides a large data sample that facilitates the ML appli-

cations showing a low variability in the estimates of the performance measures and

feature importance (Figures 4.7 and 4.14).

• The entire synthetic dataset could be characterized by a high flood event hetero-

geneity. To design an efficient EWS, one has to identify a range of peak discharges

at the watershed outlet of interest and then select an optimal subset. In the de-

scribed case study a compromise between sample size and flood event heterogeneity

is reached for the subset of events in Test 7. It includes 450 events in the range

of 3534 - 2173 m3/s. This range is defined by exploiting the historical knowledge
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Figure 4.14: Box-plot of the feature importance measures applied on 10 simulations.

concerning the Tiber river.

• For the selected subset, Random Forest appears to be the optimal ML model ac-

cording to the three performance indices adopted (Equations (4.1), (4.2), and (4.3)).

• Forecasting performances at the watershed outlet for 24 and 48 hours ahead are

promising. Indeed, the Relative Peak Error (Equation (4.2)) is around 0.13, which

means that for 75% of testing flood events the difference between the forecasted and

observed peak discharge values is lower than 13%.

• Our goal is to define an early warning system based on an ML model. Then, focusing

on the findings resulting from the ML importance measures, we are able to identify
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that the influential sub-basins are: 38, 2, 1, 39, 21, 3, 4, and 15.
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Conclusion

Regarding the present work we can drawn some conclusions. Calculating feature impor-

tance is of central importance for explainability. However, it is a challenging task. The

recent work of Hooker et al. (2021) highlights issues related to unrestricted permutations.

The same problem, but with reference to the assessment of marginal effects, is addressed

by Apley and Zhu (2020) with the creation of ALE plots.

In Chapter 2, we have carried out an in-depth investigation bringing the two points

of view on the same table. We have then inspected the extraction of feature importance

measures from the algorithms at the basis of ALE plots and PD plots. We have studied

the importance indices associated with the design of ALE plots. We have considered three

sensitivity indices: a generalization of total indices (τ ′), an alternative based on the exact

design of ALE plots (τALE) and a further alternative inspired by derivative-based indices

(κALE). The indices possess reasonable properties and impose minimum burden to the

analyst, as they can be derived directly from the algorithm at the basis of ALE plots.

We have seen that, when the ML model is perfectly accurate, τ ′ coincides with Breimen’s

feature importance measure. However, this index is then exposed to the extrapolation

risk, while τALE and κALE are not. A limitation of these indices, instead, is that their

value is related to the choice of the partition at the basis of the ALE plot. We have then

99
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examined their sensitivity to the partition selection choice.

We have tested the indices for several test cases, with particular reference to the

Hooker-Mentch-Zhou example as well as for the Boston housing dataset. In both exper-

iments, results are consistent with intuition. Also, we have seen that the calculation of

these indices in connection with graphical tools is in any case advantageous: they sum-

marize information contained in ALE plots in an importance at no additional cost and

we have seen that their evaluation eliminates the risk of erroneously considering a feature

inactive due to the null conditional expectation effect.

Our findings contribute to the literature on explainability, as the extraction of insights

on feature importance is brought closer to the indications of marginal effects. We also

contribute to the literature on variance-based sensitivity indices under feature dependence,

offering a machine learning extension of Sobol’ total indices as well as of derivatives based

indices. In future studies we will compare the proposed indices with other alternative

feature measures of importance such as Cohort Shapley values of Mase et al. (2020).

In Chapter 3, we have investigated the use of feature importance measures in hydrology

and, specifically, it provides some preliminary results on their use in dissecting the role of

sub-basins in hydrological response.

Our goal, partially reached with the simplified proof of concept here presented, has

been to verify: a) whether such measures are able to identify sub-basins that contribute

more than others to the outlet flow discharge and b) whether such sub-basins exhibit dis-

tinctive morpho-hydrological characteristics that influence the feature importance anal-

ysis. We use a well-known hydrological model (HEC-HMS) to simulate flow discharge

signals of the sub-basins along with the flow discharge at the catchment outlet in a water-

shed located in Italy. For this synthetic scenario, we have applied seven feature importance

measures, three of them for the first time in hydrology, from the machine learning and

the global sensitivity analysis framework. The importance analysis allows us to identify

3 sub-basins as highly influential, 3 as moderately influential and 9 as uninfluential. The
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role of the three “dominant” sub-basins is confirmed and quantified comparing their pre-

diction performances to the whole set of 15 sub-basins resulting in explaining the 88% of

the variability of the output response.

While the case study application is able to distinguish the sub-basins role, as expected,

it only partially contributes to identify the factors that characterize influential sub-basins.

Indeed, given the complex nature of the hydrological response, goal (b) is particularly

challenging and difficult to reach with a simplified model. Comparing the resulting ranking

to some morpho-hydrological properties we can only note that a combination of slope, CN,

distance from the outlet and concentration time plays a prominent role for predicting

the catchment outlet discharge. Surprisingly, the contributing area has a marginal role

compared to the above mentioned parameters.

Overall, our study demonstrates that feature importance measures have a great po-

tential for investigating the sub-basin role, thus positively contributing to a variety of

possible investigation and applications: selecting “dominant” sub-basins for designing

Early Warning Systems (based on discharge), selecting sub-basins where installing in-

strumentations, setting automatic procedures for sub-basin selection in semi-distributed

models, calibrating machine learning tools, and offering another perspective to answer

the theoretical question concerning the distinctive morpho-hydrological characteristics of

sub-basins. A future research objective will include more complex hydrological modelling

and simulation for supporting in a more general context the final goal here presented.

Finally, in Chapter 4 a framework for enhancing the design of early warning system

based on machine learning tools and feature importance measures is described and tested.

The novelty rationale of the proposed procedure is to refer to large synthetic hydrologic-

hydraulic scenarios for improving the ML tools selection and training, and to adopt the

feature importance measures for dissecting the role of the sub-basins, proxy of the wa-

tershed outlet. These could be particularly useful for identifying the most influential

sub-basins where, in practice, planning to install instrumentation for making the EWS



102 Conclusion

operative.

The proposed framework includes six steps: watershed sub-basins selections (the out-

let proxy cross sections for the forecasting application), the hydrologic-hydraulic model

application for simulating a large dataset of flood events, the optimal subset identification

as a compromise between heterogeneity and sample size, the ML models comparison for

selecting the optimal one, the feature importance measures analysis, and the consequent

identification of the dominant sub-basins.

In the present contribution, other to describe the proposed framework, we have inves-

tigated on some of the six steps referring to the Tiber river case study. Since for this case

study it is available a large synthetic flood database (almost 20’000 events) simulated on

39 sub-basins and one watershed outlet, we skipped the first two steps of the proposed

procedure and we focused only on the remaining ones.

The resulting findings are encouraging since it was possible to fix some criteria for

identifying an optimal subset (450 events in the range of 3534-2173 m3/s) of the complete

database and to select the Random Forest as the optimal ML (resulting from the compari-

son among four ML methods: Linear Model, Gradient Boosting, Random Forest, Extreme

Gradient Boosting). Forecasting performances are promising as well: the peak discharge

error is lower than 13% for the 75% of the testing flood events. Most importantly, the six

feature importance measures analysis (Permute-and-Relearn importance, Shapley feature

importance, ALE-based feature importance, Variance-based sensitivity measure, Density-

based sensitivity measure, Cumulative distribution-based sensitivity measure) suggests 8

dominant sub-basins providing the same performances as when all the 39 sub-basin are

involved in the ML application.

While we consider successful this partial implementation and investigation on the

proposed framework still there are further analyses to be developed in future research.

Indeed, as mentioned before, we referred to a case study for which the simulated flood

events were available, so the first two steps of the procedure are still to be deeply inves-
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tigated. We believe that the sub-basin selection, that typically is performed referring to

practical criteria, could be automatically reached through a massive analysis. Similarly,

the rainfall-runoff model for flood event simulation should be investigated to verify its

role in the ML model. While we consider successful this partial implementation and in-

vestigation on the proposed framework still there are further analyses to be developed in

future research. Indeed, as mentioned before, we referred to a case study for which the

simulated flood events were available, so the first two steps of the procedure are still to be

deeply investigated. We believe that the sub-basin selection, that typically is performed

referring to practical criteria, could be automatically reached through a massive analy-

sis. Similarly, the rainfall-runoff model for flood event simulation should be investigated

to verify its role in the ML model performances, robustness, and dominant sub-basins

selection.

Lastly, the physical reasons behind the selection of the 8 dominant sub-basins should

be investigated as well. Moreover, it is clear that the contributing area of each sub-basins

influences such results, as relevant role (see Figure 2). However, the sub-basin ordering

and the presence of small watershed in the dominant set suggests a specific study that

allow one to make some assumptions on physical reasons of this behaviour. These aspects

are subject of ongoing research.
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Chapter 6

Appendices

6.1 Appendix: Chapter II

6.1.1 Proofs

Proof. Proof of Proposition 1. Item 1): It follows directly by Jansen (1999).

Item 2): it follows by Equation (1.28), with the observation that the design defined in

Apley and Zhu (2020) implies that the point x′
j is sampled from the marginal distribution

of Xj.

Item 3): Given Equation (2.6), suppose that τ ′
j = 0. Then, this quantity is null if the

integrand (ĝ(X ′
j, X−j) − ĝ(X))2 is null almost everywhere. Now, note that X ′

j is sampled

independently of the other features. Then, for τ ′
j = 0, because (ĝ(X ′

j, X−j) − ĝ(X))2 is a

positive or null quantity, it must be ĝ(X ′
j, X−j) − ĝ(X) = 0 almost everywhere. Hence,

ĝ(X ′
j, X−j) = ĝ(X) almost everywhere and, therefore, ĝ is insensitive to changes in X ′

j

almost everywhere. Thus, τ ′
j = 0 implies that ĝ is not functionally dependent on X ′

j.

Item 4): Consider a winding stairs, a radial or a naïve design. In these designs, we would

sample N points “X = {x1, x2, . . . , xN} from FX(x) and then we would move one-at-a-time

the features from these points, with the second extreme sampled independently. Then,

105
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Naive Winding Radial

Figure 6.1: Naïive, radial and winding stair strategies. Taken from Owen and Hoyt (2021).

Equation (2.2) still holds, with xk ∈ “X, k = 1, 2, . . . , N . Then, also Equation (2.6) still

holds, because FX(x) and FXj
are exactly the distributions from which we are sampling.

Proof. Proof of Proposition 2. Under independence the indices τ ′
j and T ′

j coincide with the

total indices τj and Tj in Borgonovo and Rabitti (2021). Then, the proof of Proposition

2 follows directly from their results, that are based on the delta method and the central

limit theorem.

Proof. Proof of Proposition 3. In the square loss case, we have:

υ̂j,perm = 1
N

N∑
n=1

(yn − ĝ(xn
j,perm; θ∗))2 − 1

N

N∑
n=1

(yn − ĝ(xn; θ∗))2. (6.1)

We can then write:

υ̂j,perm = 1
N

N∑
n=1

(yn − ĝ(xn
j,perm))2 − (yn − ĝ(xn))2. (6.2)

where we have suppressed the dependence on θ∗ for notation simplicity. Expanding the
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squares using Binomi’s formula, yields

υ̂j,perm = 1
N

N∑
n=1

Ä
ĝ(xn) − ĝ(xn

j,perm)
ä

·
(

2yn −
Ä
ĝ(xn) + ĝ(xn

j,perm)
ä)

. (6.3)

This expression can be rewritten as

υ̂j,perm = 1
N

N∑
n=1

Ä
ĝ(xn) − ĝ(xn

j,perm)
ä(

2yn −
Ä
ĝ(xn) + ĝ(xn

j,perm)
ä)

.

Now, if the model predictions are 100% accurate, then ĝ(xn) = yn, for all n and

υ̂j,perm = 1
N

N∑
n=1

Ä
ĝ(xn) − ĝ(xn

j,perm)
ä Ä

2ĝ(xn) − ĝ(xn) − ĝ(xn
j,perm)

ä
= 1

N

N∑
n=1

Ä
ĝ(xn) − ĝ(xn

j,perm)
ä2

= 2τ̂ ′
j.

Proof. Proof of Proposition 4. The “if” part is trivial. Conversely, suppose that τALE
j (K)

for all choices of zk
j and zk−1

j . By Equation (2.16), τALE
j (K) is the weighted sum of K

positive conditional expectations. Then, τALE
j (K) = 0 implies that

E[(ĝ(Xk
j , Xk

−j) − ĝ(Xk−1
j , Xk

−j))2|Xk
j , Xk−1

j , Xk ∈ X k
j ] = 0,

for all k = 1, 2, ..., K. Then, for a generic k, the corresponding conditional expectation is

null if ĝ(zk
j , Xk

−j) − ĝ(zk−1
j ; Xk) = 0 almost everywhere in Xk. Then, this last condition is

equivalent to say that ĝ does not depend on zk
j . Asking that this occurs for all selections

of zk
j completes the proof.

Proof. Proof of Proposition 5. We start observing that

Φ′
j = g(X ′

j, X−j) − g(X) (6.4)
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can be rewritten in terms of the constant difference ∆j as

Φ′
j = g(X ′

j, X−j) − g(Xj + ∆j, X−j) + g(Xj + ∆j, X−j) − g(X). (6.5)

Squaring, we obtain

(Φ′
j)2 =

Ä
g(X ′

j, X−j) − g(Xj + ∆j, Xj)
ä2

+
(
g(Xj + ∆j, X−j) − g(X)

)2

+ 2
Ä
g(X ′

j, X−j) − g(Xj + ∆j, Xj)
ä (

g(Xj + ∆j, X−j) − g(X)
)

.

(6.6)

which leads to

(Φ′
j)2 = (Φ′

∆j ,j)2 +
Ä
g(X ′

j, Xj) − g(Xj + ∆j, X−j)
ä2

+ 2
Ä
g(X ′

j, X−j) − g(Xj + ∆j, Xj)
ä

· Φ′
∆j ,j.

(6.7)

Hence, we have

(Φ′
j)2 = (Φ′

∆j ,j)2 +
Ä
g(X ′

j, Xj) − g(Xj + ∆j, X−j)
ä2

+ 2
Ä
g(X ′

j, X−j) − g(Xj + ∆j, Xj)
ä

· Φ′
∆j ,j.

(6.8)

Taking expected values and dividing by 2, we find

τ ′
j = 1

2E[(Φ′
∆j ,j)2] + 1

2E
[Ä

g(X ′
j, X−j) − g(Xj + ∆j, Xj)

ä
· Φ′

∆j ,j

]
+

1
2E
ïÄ

g(X ′
j, X−j) − g(Xj + ∆j, X−j)

ä2
ò

.
(6.9)

Finally, multiplying the first term by ∆2
j , we have:

τ ′
j =

∆2
j

2 E

[
(Φ′

∆j ,j)2

∆2
j

]
+ 1

2E[
Ä
g(X ′

j, Xj) − g(Xj + ∆j, X−j)
ä

·
Ä
g(X ′

j, X−j) + g(Xj + ∆j, Xj) − 2g(X)
ä
].

(6.10)

Hence the RHS of Equation (6.10) is an estimator of τ ′
j for all values of ∆2

j . Note also
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that if E[(g′
j)2] is finite, we have

lim
∆j→0

∆2
j

2 E

[
(Φ′

∆j ,j)2

∆2
j

]
+ 1

2E
[Ä

g(X ′
j , X−j) − g(Xj + ∆j , Xj)

ä
·
Ä
g(X ′

j , X−j) + g(Xj + ∆j , X−j) − 2g(X)
ä]

=

0 · E[(g′
j)2] + 1

2E
[Ä

g(X ′
j , X−j) − g(Xj , X−j)

ä
·
Ä
g(X ′

j , X−j) + g(Xj , Xj) − 2g(X)
ä]

=

= 1
2E
[Ä

g(X ′
j , Xj) − g(Xj , X−j)

ä
·
Ä
g(X ′

j , X−j) − g(X)
ä]

=

= 1
2E
ïÄ

g(X ′
j , Xj) − g(Xj , X−j)

ä2
ò

= τ ′
j

(6.11)

Proof. Proof of Proposition 6 The “if”part is trivial. Conversely, suppose that κ̂ALE
j = 0

for all of zk
j and zk−1

j . By definition, κ̂ALE
j is the weighted sum of K positive ratios

E

( ĝ(zk
j , Xk

−j) − ĝ(zk−1
j ; Xk)

zk
j − zk−1

j

)2
. Then, κ̂ALE

j = 0 implies that

E

( ĝ(zk
j , Xk

−j) − ĝ(zk−1
j ; Xk

−j)
zk

j − zk−1
j

)2
 = 0

for all k, because κ̂ALE
j is a sum of positive terms. Then, for any k, we have by construction

of ALE plots ∫
...

∫ ( ĝ(zk
j , Xk

−j) − ĝ(zk−1
j ; Xk

−j)
zk

j − zk−1
j

)2

dFXk(xk) = 0. (6.12)

For this quantity to be null we need to have
Å

ĝ(zk
j ,Xk

−j)−ĝ(zk−1
j ;Xk)

zk
j −zk−1

j

ã2
= 0 almost everywhere

in Xk. Because by construction zk
j − zk−1

j ̸= 0,
Å

ĝ(zk
j ,Xk

−j)−ĝ(zk−1
j ;Xk)

zk
j −zk−1

j

ã2
can be null only if

ĝ(zk
j , Xk

−j) = ĝ(zk−1
j ; Xk) for all k and for all values of Xk, with the exception of a set of

null measure of values of Xk. Then, this last condition is equivalent to say that ĝ(zk
j , Xk

−j)

does not depend on Xj on the finite set zk
j of values of Xj. Asking that this occurs for all

selections of zk
j complete the proof.
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6.1.2 Analytical calculations for Various Examples

The bivariate normal model We have that the marginal distribution of X1 is

fX1(x1) = 1
σ1

√
2π

e−(x1−µ1)2/2σ2
1 (6.13)

and the joint probability distribution of X1 and X2 can be written as

fX1,X2(x1, x2) = 1
2πσ1σ2

√
1 − ρ2 exp

ñ
− z

2(1 − ρ2)

ô
, (6.14)

where z ≡ (x1−µ1)2

σ2
1

− 2ρ(x1−µ1)(x2−µ2)
σ1σ2

+ (x2−µ2)2

σ2
2

.

Now, applying Equation (2.6), we have that

τ ′
1 = 1

2

∫ ∞

−∞

∫ ∞

−∞
[g(z, x2) − g(x1, x2)]2fX1(z) · fX1,X2(x1, x2)dx1dz = 1.563. (6.15)

Example 1 in Section 2.2 We have that the marginal distribution of X1 is

fX1(x1) = fX2(x2) =


1 for x1 ∈ [0, 1]

0 otherwise
(6.16)

and the joint probability distribution of X1 and X2 can be written as

fX1,X2(x1, x2) = fX1(x1)δ(1 − x2) (6.17)

where δ(·) is the Dirac-δ function. Then, applying Equation (2.6), we obtain

τ ′
1 = 1

2

∫ 1

0

∫ 1

0
[g(z, 1 − x1) − g(x1, 1 − x1)]2fX1(z) · 1dx1dz = 0.0176. (6.18)

Considering that σ2
y = 0.00047, we have Tj = 37.
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6.1.3 Additional Details on Hooker’s test case

In Table 6.1 we report the values of the top-down correlation coefficients given the rankings

of features induced by τ ′
j and νj both for the three ML models and when the feature-output

mapping is known. For ρ = 0 (Table 6.1a) and ρ = 0.9 (Table 6.1b), we observe a strong

ρ = 0
τ̂ ′

g τ̂ ′
LM τ̂ ′

RF τ̂ ′
NN

ν̂g 1.00 1.00 0.97 1.00
ν̂LM 0.00 0.94 0.89 0.94
ν̂RF 0.00 0.00 0.90 0.92
ν̂NN 0.00 0.00 0.00 0.94

(a) Ranking induced by τ ′
j and νj

ρ = 0.9
τ̂ ′

g τ̂ ′
LM τ̂ ′

RF τ̂ ′
NN

ν̂g 1.00 1.00 0.92 1.00
ν̂LM 0.00 0.96 0.85 0.96
ν̂RF 0.00 0.00 1.00 0.93
ν̂NN 0.00 0.00 0.00 0.99

(b) Ranking induced by τ ′
j and νj

Table 6.1: Hooker et al. (2021) test case: Top-down correlation coefficients for comparing
the rankings induced by τ̂ ′

j and ν̂j.

agreement among the ranks resulting from the estimations of τ ′
j and νj. However, there are

some disagreement at the lower level regarding the less important features. The results

reported in Table 6.1 also show that using well-performing models (such as the linear

model and the neural network) the relationship between τ̂ ′
j and ν̂j stated in Proposition

3 holds.
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6.2 Appendix: Chapter III

6.2.1 Table A3.1

Performance
Measures

Ridge
Regression

Random
Forest

Gradient
Boosting

Neural
Network

MAE (10−4) 57 54 52 64
RMSE (10−3) 16 17 17 17

R2 (10−2) 95 95 95 94

Table 6.2: Performance measures estimated for the four ML models for three hours time
response (lag = 3).

6.2.2 Figure A3.1

Figure 6.2: Estimates of seven feature importance measures used in the case study for
three hours time response (lag = 3).
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6.2.3 Table A3.2

Sub-basin cPFI SPFI ALE-IMP T′ η2 βKS δ Mean
Ranking

W300 1 1 1 1 1 1 1 1
W290 2 5 2 2 2 2 2 2
W280 3 3 3 3 4 3 3 3
W240 4 4 4 6 3 4 4 4
W210 5 2 5 5 5 5 6 5
W270 10 6 12 4 7 6 5 6
W160 9 8 14 8 8 9 11 7
W200 12 7 15 10 6 8 10 8
W260 14 10 9 7 12 10 7 9
W170 11 9 13 13 9 8 8 10
W190 8 12 6 9 14 12 10 11
W220 6 14 10 14 11 13 14 12
W250 7 15 11 15 10 12 15 13
W230 13 13 8 12 13 14 12 14
W180 15 11 7 11 15 15 13 15

Table 6.3: Ranking for each feature importance measure and the mean ranking for three
hours time response (lag = 3).

6.2.4 Table A3.3

Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MAE (10−4) 65 62 60 60 57 54 52 52 52 52 52 52 52 52 52
RMSE (10−3) 21 20 19 19 18 18 18 18 18 18 18 18 18 18 18
R2 (10−2) 92 93 94 94 94 95 95 95 95 95 95 95 95 95 95

Table 6.4: Estimates of the performance measures for the configurations defined using the
mean ranking for three hours time response (lag = 3).
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6.3 Appendix: Chapter IV

6.3.1 Table A4.1

Sub-basin name Code CN Area (km2) z (m.sm.) Pluviometric area
Pfelcio 1 73 2033 555 1

Chiascio 2 58 1956 555 2
Nestore 3 77 1084 334 3

Naia 4 78 638 334 3
F. Acqua Trav. 5 58 48 104 8

F. della Valchetta 6 58 96 149 8
F. Acquaviva 7 58 96 113 8
F. Bufalotta 8 58 48 105 8
F. Regina 9 58 48 95 8

F. Vallelunga 10 58 48 95 8
F. Ornetto 11 62 64 87 8

F. Chaiarano + Cdx 12 58 80 133 8
R. Pozzo 13 62 48 135 8

F. Leprignano 14 62 96 154 8
R. Moscio + Csx 15 51 96 170 8

F. Corese 16 58 144 201 8
T. Farfa 17 58 240 482 8
T. l’Aia 20 58 139 388 5
T. Treia 21 47 497 555 7

F. Borghetto 22 51 93 252 5
F. Campana 23 58 93 252 5

F. Fratta + Cdx 24 51 93 243 5
F. l’Aia + T. l’Aia 25 58 139 276 5

F. Rustica 26 51 93 287 5
R. Paranza 27 51 59 311 5
F. Fratta 28 58 59 311 5

R. Grande 29 58 215 488 5
F. Giove 30 58 54 278 5

F. Castello 31 51 53 278 5
T. Vezza 32 51 107 311 5
T. Rigo 33 55 107 303 5

F. Pescara 34 58 54 303 5
F. Piaggia 35 58 54 272 5

R.Chiaro+R.Torbido 36 58 161 286 5
F.S. Lorenzo 37 58 54 318 5

Aniene 38 55 1435 555 9
Paglia 39 64 1340 555 4

Table 6.5: Main hydro-morphological properties of the sub-basins in the case study.
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6.3.2 Figure A4.1
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Figure 6.3: Plots of 10 events (from 296 to 305) for all 39 sub-basins and the outlet.
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6.3.3 Figure A4.2
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Figure 6.4: Plots of 53rd event for all 39 sub-basins and the outlet. In the outlet plot the
observed and simulated values are reported.
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