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Abstract

This chapter considers how to treat spoken and unspoken assumptions and how to use
uncertainty quantification and global sensitivity analysis to make them transparent. We analyze
the broad role of assumptions (or hypotheses) in scientific modeling. We investigate how they
impact alternative elements of a model. We address models of data (machine learning) and
models of phenomena (simulators). We then discuss the impact of varying assumptions on
the output of a mathematical model highlighting the role of uncertainty quantification and
sensitivity analysis. We single out four main sensitivity analysis goals emerging from the
literature.
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Assumptions are a fundamental pillar of any scientific investigation. There is no theory or
modeling exercise that can live without assumptions. A search of the term “assumption”in the
Stanford Encyclopedia of Philosophy does not find a dedicated entry but finds the presence of
this term in 839 entries, that comprise “scientific method”, “scientific discovery”, “scientific logic”.
Specifically, Assumptions play a fundamental role in scientific modeling and scientific simulations.
Then, what are Assumptions? Is there a way in which we can converge on a definition of the term?
While this is certainly out of the reach of this chapter, we will try to provide some initial reflections
and insights.

According to the Cambridge dictionary, an assumption is something that you accept as true
without question or proof. In a scientific modeling exercise, an assumption is a statement that
establishes the value of a parameter or takes away elements that may not be of concern. Let us
refer for a second to the Archimedean model of the lever.
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Figure 1: A possible representation of the Archimedean model of the lever. We draw the effort
arm, the force arm, the pivot and the two forces at their extremes. The model does not have any
reference to the color or the material of the lever, but assumptions strip away irrelevant elements.

Its typical graphical representation is composed by two lines, possibly one triangle and two
arrows, representing, respectively, the effort, the load arm, the pivotal point and the forces. This
model was first conceived in the Opus On the Equilibrium of Planes by Archimedes and has, since
then, been fundamental in statics. The model is, for instance, at the basis of trolleys we carry in
airports. However, Archimedes does not consider the type of material, the color, or the brand of
the trolley. These aspects have a relevance in marketing the trolley, but not in its physics. The
discussion of Frigg and Hartmann (2020) is illuminating in this respect: assumptions help stripping
away unessential elements from scientific models.

On the other side, we can regard assumptions as at the set of hypotheses (or statements) that
need to hold before we can substantiate the use of a given scientific model. In other words; suppose
that in the problem at hand a set of conditions has to be realized simultaneously in order for a
certain equation to become applicable; then an equation with a known form would be adequate
to simulate the system or phenomenon at hand. Here, the definition of adequacy would need a
separate chapter and we refer to Frigg and Hartmann (2020) and Winsberg (2019) for a thorough
treatment. We content ourselves with an illustration: Einstein’s prediction of the deviation of light
is based on the theoretical principles of general relativity. These principles yield the mathematical
equation from which to calculate the deviation. The light indeed undergoes the deflection forecasted
by the model, as physical experiments indicate. We have all three corners of the scientific triangle:
a theory (first vertex) that produces a mathematical model (second vertex) that actually predicts
a real world phenomenon.

However, in several scientific investigations, we do not have all three vertices: Scientists build
mathematical models that try and reproduce a given phenomenon, often before a scientific theory is
developed. In some cases, it will be impossible to achieve a complete scientific theory with axioms
from which propositions are derived and that, in turn, yield the equations of the phenomenon at
hand. This is likely the case in artificial intelligence investigations where a complete theoretical
background about the phenomenon of interest (think of the case in which data come from social
networks) is likely to remain out of reach. Under these conditions, we then encounter all those
assumptions that a modeler makes in creating a simulation: they range from the selection of the
mathematical form of the equations to the value of inputs and parameters.

We are then dealing with the vast class of models represented by computer simulators. Simu-
lators help the scientist in obtaining a numerical portrait of a system or phenomenon of interest.
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Figure 2: A non-exhaustive set of elements of a scientific modeling problem.

Equations in computer codes aid engineers, physicists, medical doctors with a variety of tasks. As
defined in Winsberg (2019), we usually divide simulators into two main categories: equation-based
simulators and agent-based simulators. An outstanding example of the former type of model is
the simulator of the human hart developed by Alfio Quarteroni and his collaborators in a series of
mathematical works (Quarteroni et al., 2017). An example of the second model is the agent based
model of the financial market, developed by Le Baron (2006).

Assumptions impact all aspects of scientific modeling. For instance, assumptions are at the
basis of the theoretical principles that govern the model development itself. At the same time, they
concern the values we attribute to parameters entering the final equations of the model. In a sense,
it may well be handy to make a classification of assumptions, depending on the model element to
which they refer to. Assumptions can refer to the theoretical foundations of a model. We can call
these assumptions principles, to give them a stronger connotation (Figure 2). Principles are the
conceptual basis of a scientific model or investigation: They comprise axioms and hypothesis of an
underlying theory that grounds the model. As noted in Borgonovo et al. (2020), principles do not
include specific algorithmic implementations; rather, they are conceptual guidelines that influence
the modeler in formulating specific procedures or in choosing certain parameters.

Regarding principles, the distinction between models of phenomena and models of data becomes
relevant. In models of data, analysts ”assume” a form for the input-output mapping, typically
selecting a parametric family and then fitting the model through data. This assumption is not
necessarily dictated by a theory supporting the model. This is referred to as absence of theory in
Begoli et al. (2019), and is one of the main reasons of concern about the reliability of results of
machine learning models. Models of phenomena, instead, are developed by researchers following
theoretical principles and, if the assumptions concerning the equations being formulated are verified,
then these equations will produce an adequate description of the system behavior.
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To bring tangible examples, let us consider two representative works, one in the realm of risk
assessment, (Apostolakis, 1990), and the other in the business realm . These works deal with models
developed to forecast the reliability of complex technological systems. Apostolakis introduces the
notion of model of the world (MOW), to denote the system of equations that model the phenomenon
of interest — of course, we should read this as the model of the world of interest in the specific
investigation. To illustrate the notion, Apostolakis uses the Darcy equation for ground-water flow
in saturated media:

q = −K∂h

∂x
,

where q is the specific discharge in the x direction, h is the hydraulic head and K is the hydraulic
conductivity. Ford W. Harris introduces the economic order quantity model (Harris, 1913), which
is a cornerstone in operations research. Harris’s problem is that of determining the optimal lot
size in a production system. While his work is written for a business magazine, his approach is
strikingly scientific. Harris first states a sharp list of assumptions that clearly pin the reader down
to the heart of his problem. For instance, he assumes the movement is regular (Harris, 1913, p.
948)(i.e., stationarity). He then formulates an objective function (a total cost) based on the stated
elements of the problem, and derives the now famous economic order quantity (EOQ) formula from
a minimization:

Q =

√
240MS

C
, (1)

where Q is the optimal order quantity, S is the setup cost of an order, M is the monthly demand (the
movement of the stock (Harris, 1913, p. 947)), and C is the unit price of items in the stock. Under
Harris’s setting, this is the quantity that a rational manager should order. Nonetheless, Harris
himself recognized the limitations of the model and warns us about a careful use of the numbers
(Cárdenas-Barrón et al., 2014). “But in deciding on the best size of order, the man responsible
should consider all the factors that are mentioned [. . . ] Hence, using the formula as a check, is at
least warranted (Harris, 1913, p. 947).”

Such rule calls for a careful interpretation of any numerical indication obtained by models.
This warning matches recent alarms heard in the scientific community. Examples are the ethical
guidelines in scientific modeling of the manifesto of Saltelli et al. (2020), or the concerns related to
the use (or abuse) of machine learning methods in Rudin (2019) and Begoli et al. (2019).

These concerns call us to the application of methods that can perform a proper uncertainty
quantification of the results of the model. Let us take a step back and regard Equation 1 as a black
box model in which three factors, namely, C, M and S are fed into in a simulator that produces Q.
Clearly, if we fix C, M and S at nominal values C0, M0 and S0 we have an optimal order quantity
Q0.

At level closer to the practice of modeling, besides assumptions about the characteristics of the
system, i.e., stationarity or the fact that agents behave rationally, we have assumptions that regard
parameters. As discussed in Borgonovo et al. (2020), parameters are are cardinal quantities that
influence the evolution of the model but are determined outside of the simulation run.

In general, one regards the model as a black box, in which a set of inputs X is fed into a
simulator g(X) to produce an output Y of interest (in our case it would be X = [C,M,S]) (Figure
3).
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Figure 3: The black-box view of the input-output mapping of a computer model.

Consider now an analyst needing (willing) to determine the EOQ, and whose available infor-
mation allows her to set the following values for the inputs: M0 = 4500, S0 = 3.5, C0 = 75.
The corresponding EOQ calculated by the model is Q = 224.5 units. Note that if we were to be
commuting this quantity to management, we would be exposed to the risk of a-critically accept the
results of the model. Reporting a point value in a context full of uncertainties is evidently a poor
scientific practice (see the recent manifesto of Saltelli et al. (2020)). The Nobel prize for economics
Paul Samuelson, in his work that established the foundations of sensitivity analysis in Economics,
writes: “If no more than this could be said, the economist would be truly vulnerable to the gibe
that he is only a parrot taught to say ”supply and demand” (Samuelson, 1947, p. 97).”The risk is
that of undermining the whole efforts of the modeling exercise.

In this context, we are interested in the variation of the model output that follow variations
in the inputs. This task comprises two important subtasks: sensitivity analysis and uncertainty
quantification.

Regarding uncertainty quantification, we refer to the monographs of Saltelli et al. (2008), Sulli-
van (2015), Borgonovo (2017), as a complete treatment is out of our reach in this chapter. However,
let us briefly review the notion and procedure. The purpose of an uncertainty quantification is to
assess the variability of the output of a model. If the model output is numerical, this variability
can be expressed in the form of a variation range and, if possible, of a probability distribution of
the model output over this range. These quantities are obtained by propagating the uncertainty
in the model inputs through the model input output-mapping. To illustrate, the analyst assigns
plausible ranges to the inputs and, if possible, a corresponding probability distribution. Uncer-
tainty is then propagated through the model via a Monte Carlo simulation1. To illustrate, suppose
that the scientist dealing with the Harris EOQ model sets the following ranges: M ∈ [2000, 7000],
S ∈ [2, 5], C ∈ [50, 100] and assigns uniform distributions to the inputs over these ranges. Monte
Carlo propagation would lead to the distribution of Q whose density is reported in Graph a) of
Figure 4.

1For a characterization of Monte Carlo uncertainty propagation, please refer to Metropolis (1987) for a historical
account, to Glasserman (2003) for a technical treatment, and to Winsberg (2019) for the epistemological viewpoint.
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Figure 4: Model output density, as a possible visualization of the outcome of the uncertainty
quantification for our EOQ model in Equation 1.

Graph a) Figure 4 shows that the EOQ varies between 100 and 400 units. It is then up to the
analyst or the manager to understand whether such variation is reasonable enough to proceed with
the order, or if new analysis needs to be carried out to reduce the variability.

In general, the derivation of insights from sensitivity analysis can be made formal by the notion
of sensitivity analysis setting. A setting is a way of framing the sensitivity quest in such a way that
the answer can be confidently entrusted to a well-identified measure(Saltelli et al., 2008, p. 24).
In the case of Figure 4, we the setting a stability setting. This setting indeed comprises all those
situations in which analysts wish to determine whether the robustness of the indications they are
providing based on the numerical output of the model. For instance, consider an analyst dealing
with a linear programming problem. Here, an important information to the modeler is the range
of variation in the model inputs over which the optimal plan remains the same. A specific methods
that helps the analyst answering this question, besides the uncertainty propagation we have seen,
is Wendell’s tolerance sensitivity (Wendell, 1985). 2 Similarly, in a decision analysis problem
expressed in the form of a decision-tree or an influence diagram or even in a generic optimization
problem, we find several techniques for assessing stability. One in particular is value of information
Oakley (2009). If the value of information of a certain input is null, then the analyst can conclude
that the optimal plan is insensitive to variations in that input.

A second task with which analysts are (or should) be frequently concerned is the answer to the
question: how does the response of the model depend on each input marginally? Formally, we could
call this setting marginal behavior determination. The machine learning as well as the simulation
literature have made available several tools to answer this question, especially in association with
the urge to increase interpretability of machine findings. Much attention and several advancements
have been made in partial dependence indicators, and we can point the reader towards the works
of Friedman et al. (2001), Goldstein et al. (2015) and Apley and Zhu (2020), for further details.

In this chapter, we content ourselves with a visual interpretation. Consider Figure 5.

2Tolerance sensitivity is an approach tailored to linear programs. By exploiting the geometric properties of linear
optimization, tolerance sensitivity determines the range of simultaneous variation in the inputs such that the optimal
solution of the linear program remains stable. The inputs are the objective function coefficients, the right hand sides
or the elements of the coefficient matrix.
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Figure 5: Comparative statics with individual conditional expectation plots (Goldstein et al., 2015).
The black line displays the average marginal behavior of the EOQ as a function of each of the three
inputs.

The graphs in this Figure 5 immediately suggest us that the EOQ is increasing in M and S and
decreasing in C. The analyst can then infer answers to questions such as: Is this behavior consistent
with intuition? What should we suggest to a decision maker based on this behavior? Answering
the first question also provides a way to enter into a debugging mode. If an underlying theory
suggests that a model response should be decreasing in a given input and the sensitivity analysis
suggests the opposite, we need further investigation. We might either be at the verge of a scientific
discovery in which a common (mis)-conception is falsified or, more simply, there might be a bug,
with a minus placed instead of a plus at some point of the (usually complex) code.

The tool displayed in Figure 5 is one of the possible choices analysts have to determine marginal
behavior. Analysts can count on local approaches based on differentiation (Griewank, 2000), on the
sign of Newton ratios (Rakovec et al., 2014), or on one-way sensitivity functions van der Gaag et al.
(2007). Global approaches comprise methods such as partial dependence functions Friedman et al.
(2001) and individual conditional expectation plots Goldstein et al. (2015), as well as the recently
introduced Accumulated Local Effect plots Apley and Zhu (2020). A review and critical analysis
of these methods from a decision-making viewpoint is recently given in Borgonovo et al. (2021b).

An insight which is consider also crucial in machine learning for interpretability is input impor-
tance. For analysts it is relevant to know the factors that drive a model response. Knowing for
instance that a given input is extremely relevant for the prediction of an algorithm would help ana-
lysts understand that the algorithm might be easily biased. If the input is discriminatory in nature,
then the algorithm predictions themselves would become questionable from an ethical standpoint
(see the discussion in Rudin (2019)). Understanding feature importance goes under the setting of
factor prioritization (Saltelli, 2002; Saltelli et al., 2008). Analysts can find several methods that
accomplish this in the literature. On the one hand we have local methods such as elasticity or
the differential important measure Borgonovo and Apostolakis (2001), in which the indications of
partial derivatives are synthesized in dimensionless indicators (indeed, partial derivatives them-
selves may not be directly comparable because they carry the units on which the input and output
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are denominated and inputs may have different units). Or, in the well known representation of
Tornado Diagrams Howard (1988), one plots the effects of one-at-a-time variations in the inputs.
These methods are local. Alternatively, one can use global methods, with the families of regression-
based methods (Kleijnen and Helton, 1999), variance-based methods (Saltelli and Tarantola, 2002),
moment-independent methods (Borgonovo and Apostolakis, 2001; Da Veiga, 2015) and Shapley
Values (Owen, 2014). The literature here is vast and we refer the reader to works such as Razavi
et al. (2021), Saltelli et al. (2008), Borgonovo (2017), and the handbook of Ghanem et al. (2017)
for further details. To illustrate the insights, let us present a graphical result obtained for our EOQ
model.

Figure 6: Input Importance measured with variance-based (left bars) and moment-independent
sensitivity measures (right bars).

The first triplet of bars in Figure 6 represents the relative importance of the three inputs of our
EOQ example computed using variance-based importance measures. The second triplet displays
the relative importance using a moment-independent sensitivity measure (the δ-importance — see
Borgonovo and Apostolakis (2001)). Both indices concur in evidencing M as the most important
input, followed by S and C.3

The last setting we address is model structure determination. In this setting, the analyst wishes
to understand whether the variations of the output are the sum of the variations induced by the
individual inputs. If this the case, then the model is said to be additive; conversely, interaction
effects are important. The study of interactions is a huge chapter in modelling. Often, interactions
are studied in association with causality, as detailed in the book of Vanderweele (2015). Relevant

3For the technically inclined reader, we have computed these sensitivity measures from the same input-output
dataset used for uncertainty quantification in Figure 4. The technique is called given-data estimation and is docu-
mented in works such as Strong et al. (2012) and Plischke et al. (2013).
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to the determination of interactions is the scale at which the analyst is looking at. We may consider
interactions at a global scale or at the local or at the infinitesimal scale. To illustrate, let us carry
out an analysis of interactions at the global scale for our problem. It can be seen that the difference
between 1 and the sum of variance-based sensitivity measures is an indicator of global interactions
(Owen, 2003; Saltelli, 1999). In our example, this difference is equal to 0.01, signalling that the
model behavior is additive over the range of interest.

Figure 7: Upper graph: Interactions on a global scale for our EOQ model running example. Lower
graph: Interaction on a local scale for the same model.

However, consider carrying a local analysis of the response of the EOQ model when the inputs
are between their extremes. That is, we consider the difference between the EOQ computed when
the inputs are fixed at [2000,2,50] and at [700,5,100]. Such difference is equal to 151.26. The
literature has shown that this change can be exactly apportioned to the individual effects of M,
S and C, to their pairwise interactions and to the remaining triple interaction. The result is
displayed in the lower graph of Figure 1. This graph shows that interactions matter in explaining
the EOQ variation, when the inputs jump from the lower to their upper extreme of their ranges.
In particular, we record positive (the interaction between M and S) as well as negative interactions
(the ones between M and C, S and C and M, S and C). The main message here is that the relevance
of the scale at which we carry out a model structure analysis. insights on a local or global scale
might be different. Space limitations do now allow us to enter into the technical aspects of these
results, but would point the reader to the recent work of Borgonovo et al. (2021a).

We would like to close with some further reflections concerning the choice of the assumptions
inspired by the critical review in Pfleiderer (2020). (Hornberger and Spear, 1981, p 8) state ... most
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simulation models will be complex with many parameters, state variables and non-linear relations.
Under the best circumstances, such models have many degrees of freedom and, with judicious fid-
dling, can be made to produce virtually any desired behaviour, often with both plausible structure
and parameter values. In his essay, Pfleiderer (2020) observes that scientists might cherry pick
assumptions to create models that produce a result they (consciously or unconsciously) aim at.
Indeed, in principle, the right set of assumptions will lead to a model of the form that produces
a pre-determined outcome Pfleiderer (2020) actually illustrates several examples and proposes the
use of filters on assumptions to prevent this from occurring. Pfleiderer (2020) underlines also the
ethical implications of such choices. Similarly, it is possible to manipulate inputs so that a given
model produces a desirable numerical value. In this chapter, we have made an introductory effort
to illustrate that carefully dealing with assumptions, and thoroughly performing sensitivity anal-
ysis should help analysts preventing this type of pitfalls. The analysis must be as transparent as
possible, even at the peril of displaying contradictory behavior from the same model. However, this
would allow stakeholders to make a fully informed decision about whether to retain or discard a
model’s results and predictions.
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