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Abstract

Data organized in array structures arise in various domains. Each entry of the array serves as
a statistical unit, while the dimensions correspond to indexing attributes. The inherent depen-
dence among statistical units along the indexing attributes makes the array representation more
suitable than the usual tabular format. Models for this type of data typically employ probabilistic
low–rank factorizations, where the latent factors attempt to capture patterns within the index-
ing attributes responsible for the values of the outcome. It is of primary importance to correctly
model the dependence within the latent factors eliciting structural information available from
data. Our contribution consists of novel structured Bayesian factorization models for array data,
with applications to mortality forecasts and network analysis.

We first address the problem of accurately forecasting future death–rate patterns for different
age groups and time horizons for a country of interest. This type of data exhibits smooth struc-
tures of different natures across ages and years, which we flexibly account for in our model. We
propose a novel b–spline process with locally–adaptive dynamic coefficients that outperforms
state–of–the–art forecasting strategies by explicitly incorporating the core structures of period
mortality trajectories within an interpretable formulation.

Next, we consider the problem of learning the underlying structure responsible for the con-
nectivity patterns in the human brain. We analyze a population of networks representing the
connections between brain regions for a set of subjects. These networks are characterized by a
hierarchical or multiresolution organization of the nodes responsible for the connectivity. We
propose a phylogenetic latent position model that effectively learns the multiresolution struc-
ture. Themodel reveals a tree organization of the brain regions coherent with known hemisphere
and lobe partitions. Such a result uncovers interesting new possible clusterings of the brain re-
gions at different levels of resolution. Finally, we explore the potential to incorporate additional
covariates to inform the tree structure of the model responsible for the latent positions.

We have considered two settings of array data that exhibit distinct structural properties.
Through Bayesian modelling, we have been able to leverage this information in the form of
prior specification. Our results highlight the importance of incorporating these structures ap-
propriately, leading to improved outcomes in both inferential and forecasting problems.
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Introduction

Technological advancements have facilitated the collection and storage of vast quanti-
ties of data, resulting in the emergence of big data. With big data, it is not only the
sample size to be large, but also the number of features. Using common statistical lan-
guage, in big data both 𝑛 and 𝑝 are large, with any of the two dominating the other. The
big attribute introduces unique challenges when it comes to statistical modeling of such
data. For example, a key characteristic of high–dimensional spaces is that the distances
between data points increase rapidly as the dimensionality of the space expands. This
phenomenon gives rise to a range of adverse implications, collectively referred to as the
curse of dimensionality, which are not encountered in low–dimensional spaces. Moreover,
big data present additional challenges stemming from the complexity of the data sources.
As George Box famously stated in 1976, “all models are wrong, but some are useful” (Box,
1976). This aphorism serves as a reminder that the natural world is invariably more in-
tricate than the mathematical descriptions we incorporate into statistical models. When
constructing a model, we must select which aspects of the data complexity to disregard,
while striving to provide a useful approximation of reality. The large sample size and di-
mensionality of big data magnify the significance of non-negligible internal dependence
structures that necessitate careful consideration in statistical modeling.

This thesis presents methodological advancements in the field of statistical modeling
of multidimensional array data. This particular type of data is characterized by an ar-
ray structure, where each entry within the array serves as a statistical unit, while the
dimensions of the array correspond to indexing attributes. Although it is possible to or-
ganize such data in traditional tabular format, with rows representing statistical units and
columns representing covariates, the inherent dependence among statistical units along
the indexing attributes makes the array representation more suitable.

Array structured data can be found in various domains, such as factorial designs and
contingency tables. In demography, life tables are employed to collect life indicators for a
population, stratified by age and observed over time. Image data is represented by arrays,
with two dimensions capturing the pixel position and potentially additional dimensions
accounting for colour channels. In the context of network analysis, the adjacency matrix
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Figure 1: Examples of array data from the applications of the thesis. On the left, the age–specific
logmortality rates of men in Italy from 1933 to 2019. On the right, one example of the connectivity
network between brain regions.

is a two–dimensional array, encoding the edges of the network.
Figure 1 shows two examples of array data, from the applications discussed in the

thesis. On the left, data are the age–specific log mortality rates for men in Italy from
1933 to 2020. Each entry is the log mortality rate for people in the population of a given
age and during a given year. Both the time and age components create dependence in the
mortality rates, as visible in the smooth patterns in the picture. On the right of Figure 1,
it is shown the adjacency matrix representing the non–directional connectivity network
of the brain of a subject. The nodes of the network represent the brain regions, which
index both axes of the array. The entries represent presence or absence of a connection,
respectively in black and white. Connections on the same row or column are dependent
since they relate to the same brain region.

A successful model has to carefully balance the trade–off between a low–dimensional
stochastic representation of the data generation mechanism, and proper modelling the
dependence structures, in order to achieve good inference and out–of–sample predictive
ability. Models for array data are typically based on probabilistic low–rank factorizations,
where factors are possibly combined in a non–linear way. Considering the simplified case
of a 𝑛1 × 𝑛2 array 𝐘 and two factor matrices 𝐔 ∈ ℝ𝐾1×𝑛1 and 𝐕 ∈ ℝ𝐾2×𝑛2 , we model the
array entries as follows, for 𝑖 = 1,… , 𝑛1 and 𝑗 = 1,… , 𝑛2:

𝑦𝑖𝑗
ind∼ 𝐹(𝑘(𝐮𝑖, 𝐯𝑗 ), 𝜉𝑖𝑗 ), (1)

where 𝜉𝑖𝑗 collects extra terms, such as covariates, 𝑘(⋅, ⋅) is a possible non–linear function
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combining the latent factors, 𝐮𝑖 and 𝐯𝑗 are the vectors corresponding to the 𝑖-th and
𝑗-th columns of 𝐔 and 𝐕, and 𝐹 is the distribution for the observed 𝑦𝑖𝑗 . For instance,
model (1) with 𝐾1 = 𝐾2 and a bilinear kernel 𝑘(𝐮𝑖, 𝐯𝑗 ) = 𝐮⊺𝑖 𝐯𝑗 encompasses a series of
probabilistic factorization models (Tipping and Bishop, 1999; Mnih and Salakhutdinov,
2007; Salakhutdinov and Mnih, 2008).

Occasionally, available data include additional covariates that can aid in predicting the
response. However, often, the only data at hand is the array itself. In these cases, it be-
comes even more critical to include the correct structural information to properly model
the response through the latent factors. Our contribution consists of novel structured
Bayesian factorization models for array data, with applications to mortality forecast and
network analysis. The Bayesian approach provides a natural way to flexibly incorporate
structural information in the form of prior specification.

We now provide a brief overview of the current methodologies employed in mortal-
ity forecasting and network analysis, highlights their limitations in the context of our
applications. Finally, we conclude summarizing the key contributions of the thesis.

Mortality forecasting

Several statistical models for mortality data are based on the structure of (1). The central
mortality rates of a country are obtained computing the ratio between the age–specific
period death counts and the average number of individuals at risk at the central time of
the period, i.e. half of the year for yearly data. Let 𝐘 ∈ ℝ𝑋×𝑇 be the array of age–specific
log mortality rates for 𝑛1 = 𝑋 ages and over 𝑛2 = 𝑇 years.

The Lee–Carter model (Lee and Carter, 1992), a seminal work for statistical modelling
of mortality data, factorizes the array of mortality rates with a bilinear product of age–
specific 𝐔 ∈ ℝ2×𝑋 and period–specific factors 𝐕 ∈ ℝ2×𝑇 , as follows

𝑦𝑖𝑗 = 𝐮⊺𝑖 𝐯𝑗 + 𝜖𝑖𝑗 , (2)

where 𝐮𝑖 = (𝑢1𝑖, 𝑢2𝑖)⊺ and 𝐯𝑗 = (1, 𝑣2𝑗 )⊺, and 𝜖𝑖𝑗 is a Gaussian noise error term. Un-
der suitable constraints, 𝑢1𝑖 captures the average mortality at age 𝑖, over all years. The
core of the model is given by the choice of the bilinear kernel 𝑘(𝐮𝑖, 𝐯𝑗 ) = 𝐮⊺𝑖 𝐯𝑗 , which
combines the contribution of the two latent factors. Similarly, Renshaw and Haberman
(2006) extend the factorization structure of the original formulation, including also a co-
hort regression term 𝜉𝑖𝑗 = 𝜉𝑗−𝑖. Forecasts are obtained by projecting the time–series of
the estimated period–specific factors, under certain model assumptions.

Both models suffer from an over–simplistic dependence structure. Specifically, the la-
tent factors𝐔 and 𝐕 do not encode anyhow the known smooth variations of the mortality
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rates both across ages and years. This leads to undesirable wiggly estimates of 𝐮𝑖 and 𝐯𝑗 ,
once models are fitted to data. Under suitable choices, the forecast strategy introduces
temporal–smoothness in the predictions. However, this mitigates only partially the prob-
lem of lack of proper smoothness in the mortality rates, leaving space for improvements
in the accuracy of the forecasts.

Subsequent proposals attempt at including more structure. For instance, Cairns et al.
(2009) impose a smoother dependence across ages via a linear basis expansion, as follows:

𝑦𝑖𝑗 = 𝑣1𝑗 + (𝑖 − 𝑋 )𝑣2𝑗 + 𝜖𝑖𝑗 , (3)

corresponding to a bilinear combination of the following factors:

𝐮𝑖 = (
1

𝑖 − 𝑋)
and 𝐯𝑗 = (

𝑣1𝑗
𝑣2𝑗)

, (4)

where 𝑋 is the average of the considered ages. The age–specific factor 𝐮𝑖 are determin-
istic and induce linear smoothness across ages through the second component, while the
period–specific factors 𝐯𝑗 have no constraints. As before, after the fit of the model, pre-
dictions for future periods are obtained by projecting 𝐯𝑗 for 𝑗 ≥ 𝑇 , under a time–series
model assumption. Similarly, Plat (2009) specify a piece–wise linear basis expansion over
ages with an additional cohort term. These attempts at including smoothness show an
increase interest at better eliciting prior information on the array structure in the model.
However, the linear structure and the combination of few bases is generally not sufficient
to flexibly characterize the broad spectrum of global and local changes in age–specific
mortality rates across years, thereby affecting forecasting performances (e.g., Camarda,
2019).

An effective option for addressing this problem is to rely on a more structured and in-
terpretable basis expansion that incorporates possible heterogeneity inmortality patterns
for different age groups. Currie et al. (2004) explore this direction via two–dimensional
penalized b–splines to jointly model age–period patterns. Hyndman and Ullah (2007),
instead, consider a functional principal component decomposition (Ramsay and Silver-
man, 2005) of a nonparametric smoothing estimate 𝑓 (𝑥)𝑗 ∣𝑥=𝑖= 𝑓𝑖𝑗 of the mortality, as a
function of age at each period,

𝑦𝑖𝑗 = 𝑓𝑖𝑗 + 𝜖𝑖𝑗 . (5)

The nonparametric smoothing function is composed of orthogonal basis functions 𝜙𝑗 (𝑥)
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and a location 𝜇(𝑥) as follows:

𝑓𝑗 (𝑥) = 𝜇(𝑥) +
𝐾
∑
𝑘=1

𝛽𝑗𝑘𝜙𝑘(𝑥) + 𝑒𝑗 (𝑥), (6)

where 𝑒𝑗 (𝑥) is a Gaussian noise term. The smoothness of the mortality trajectories over
time is obtained by modelling the dependence of the set of coefficients {𝛽𝑗𝑘}𝐾𝑘=1 over pe-
riods 𝑗 ∈ {1,… , 𝑇 } under a suitable stochastic process. The basis functions {𝜙𝑘(𝑥) ∣𝑥=𝑖}𝐾𝑘=1
evaluated at each age 𝑖 have the role of the age factors 𝐮𝑖 = (𝑢1𝑖,… , 𝑢𝐾𝑖)⊺ in our notation,
while the latent coefficients {𝛽𝑗𝑘}𝐾𝑘=1 stand for the period latent factors 𝐯𝑗 = (𝑣1𝑗 ,… , 𝑣1𝐾 )⊺.
Such amodel specification allows for smoothness both across ages and periods, while pre-
serving a flexible specification through the expanded functional basis expansion in (6).
Camarda (2019), instead, further extend the framework of Currie et al. (2004) eliciting
additional prior knowledge in form of spline constraints, obtaining improved forecasting
performance.

State–of–the–art predictive models for mortality rates (Hyndman and Ullah, 2007; Ca-
marda, 2019) prove that the effort of flexibly eliciting available information on the data
structure in the model effectively improves the goodness–of–fit and the forecasting ac-
curacy. However, these proposals still retain crucial limiting drawbacks. The flexible
functional decomposition of Hyndman and Ullah (2007) has limited interpretability of
the basis expansion, and consequently does not allow us to directly express known age
patterns. The interpretable b–spline construction of Camarda (2019) forces a constant
smoothing both across ages and periods, and prevents from treating the period compo-
nent as a time–indexed stochastic process on which to impose a suitable dynamic model
for principled inference and forecasting.

In the thesis, we provide a novel model for forecasting mortality rates that combines
the interpretability of a suitable basis expansion across ages with an extension of the
locally–adaptive Gaussian process of Zhu and Dunson (2013) capturing trajectories over
time periods. Our proposal overcomes the major limitations of the current approaches
that we mentioned above. Crucially, the model is able to directly learn the rate of changes
of the mortality rates across periods allowing us to build a robust forecasting procedure,
which has shown improved performances compared to state–of–the–art alternatives.

Network analysis

Networks, or graphs, are collections of edges between pairs of nodes. They arewidely used
to represent and model relational data. In this context, edges denote observed relations
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between pairs of agents. A network of 𝑛 nodes can be represented by a 𝑛 × 𝑛 adjacency
matrix 𝐘, with each entry [𝐘]𝑖𝑗 = 𝑦𝑖𝑗 representing the connection between nodes 𝑖 and
𝑗 . If the relations are dichotomous, e.g. absence or presence, and unidirectional, then 𝐘
is symmetric with binary entries. The two–dimensional data array 𝐘 is expanded with
additional dimensions in case of multilayer networks.

Let us consider here the case of a single undirected binary network. Statistical mod-
elling aims at representing the stochastic process responsible for the observed connectiv-
ity patterns in the data, preferably with a low–dimensional structure. Edges are drawn
independently from a Bernoulli distribution given the edge probability 𝜃𝑖𝑗 ,

𝑦𝑖𝑗 ∣ 𝜃𝑖𝑗
ind∼ bern(𝜃𝑖𝑗 ). (7)

Models differ in terms of the probabilistic construction that defines the pairwise connec-
tion probabilities 𝜃𝑖𝑗 . Both dimensions of the array 𝐘 are indexed by the same attribute,
which is the node index. In this context, model (1) represents the wide–class of latent
variable models. Popular statistical models, such as the stochastic block model (Nowicki
and Snijders, 2001), the latent position model (Hoff et al., 2002) and the eigenmodel (Hoff,
2007), belong to this class.

For instance, in the stochastic block model each node belongs to one of 𝐾 latent
blocks. The probability of a connection between two nodes only depends on the block
membership. Considering for each node the 𝐾–dimensional vector of block assignments,
with entries equal zero except for the correspondent block equal to 1, the factor matri-
ces 𝐙 ∶= 𝐔 = 𝐕 ∈ ℝ𝑛×𝐾 correspond to the collection of these vectors. If we denote
with 𝚯b ∈ [0, 1]𝐾×𝐾 the matrix of pairwise connection probabilities between blocks, the
stochastic block model assumes

𝜃𝑖𝑗 = 𝑘(𝐳𝑖, 𝐳𝑗 ) = 𝐳⊺𝑖 𝚯b𝐳𝑗 . (8)

In the latent positionmodel, instead, nodes are embed in a𝐾–dimensional latent space. In
this case, the factor matrices 𝐔 = 𝐕 ∈ ℝ𝐾×𝑛 represents the coordinates of the node latent
positions. Denoting with 𝐙 ∶= 𝐔 = 𝐕, the edge probabilities depend on the pairwise
distances in the latent space as follows:

𝜃𝑖𝑗 = 𝑘(𝐳𝑖, 𝐳𝑗 ) = expit (𝑎− ∣∣ 𝐳𝑖 − 𝐳𝑗 ∣∣) , (9)

where expit(⋅) is the inverse of the logit function. The original model of Hoff et al. (2002)
assumes independent Gaussian priors on the latent position. In many contexts, such as
in social networks, it is common to observe group of nodes characterized by high intra–
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connectivity, forming what is typically named a community. In order to better capture
these patterns, Handcock et al. (2007) propose the latent cluster model, where the latent
positions are drawn from a mixture of Gaussian distribution. This prior introduce de-
pendence among the nodes and the mixture component allows us to identify community
structures.

In the thesis, we consider multiple networks representing the structural brain connec-
tivity over a set of subjects. These types of networks have peculiar characteristics. Edges
correspond to white matter fibers connecting pairs of brain regions. The formation of
these connections is expensive in terms of material and energy costs, therefore regions
highly connected tends to be located closeby (Bullmore and Sporns, 2009). Moreover,
the connectivity between brain regions show a multiresolution or hierarchical structure,
shown also in common partitions such as the hemispheres and lobes ones. Therefore,
the prior specifications of the latent factors should attempt at eliciting this structural
information of the data.

The stochastic blockmodel has been extended to allow for nested partitioning of nodes
with several proposals, see e.g. Roy et al. (2006); Clauset et al. (2008); Schmidt and Morup
(2013). However, the limited ability of this class of models to recover certain connectivity
patterns, such as homophily and triangles, motivates the attempt tomodel brain networks
with a different approach. Fosdick et al. (2019) overcome this issue effectively combining
the stochastic block model with the latent positions model, but their approach is limited
to a single network.

We instead propose a new model belonging to the latent position class, the phyloge-
netic latent position model. This allows us to capture important connectivity patterns,
while at the same time organizing the nodes in a multiresolution structure shared across
multiple networks. This is achieved by imposing a tree–structured dependence on the la-
tent positions, which effectively generalises previous latent positions model such as Hoff
et al. (2002) and Handcock et al. (2007). The proposed model has demonstrated the ability
to infer meaningful multiresolution organizations of the nodes, both in the context of
simulated data and in the analysis of brain networks.

Summary of the specific contributions

The applications that we consider in the thesis have peculiar array structures that we
carefully leverage in our models. Figure 2 shows the two different types of structural
information included in the marginal factorizations of our proposed models of Chapter 1
and Chapter 2. One the left side, smoothness over consecutive ages and years, whereas
on the right side hierarchical structure of the brain regions.
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Figure 2: Same examples of Figure 1 under the model proposed in this thesis. On the left, the
smoothed log–mortality rates after model fit. Smooth dependence across ages and years is re-
spectively captured via b–spline basis expansion and Gaussian process dynamics. On the right,
the adjacency matrix of brain connections after reordering the brain regions according to the es-
timated hierarchical structure.

Life tables, such as the mortality rates, have an explicit local dependence and smooth-
ness, across ages and years. Available methods in the literature fail to properly express
such nature. In Chapter 1, we propose an interpretable and flexible b–splines basis ex-
pansion to capture patterns across ages together with an extension of the locally adaptive
Gaussian process of Zhu and Dunson (2013) that guarantees local adaptivity of the time
component. The latter allows us to properly account for possible shocks in the mortality
rates due to exogenous events, such as wars and epidemics. The Gaussian process di-
rectly learns the rates of change of the mortality rates through time, which are used to
provide more accurate forecasts compared to state–of–the–art alternatives.

The type of dependence in the brain connectivity networks is instead of a different
nature. Brain regions with similar functionality tends to be more connected. The classi-
fication in hemisphere and lobes reflects the hierarchical organization of the brain. The
model should encode this information in the low–dimensional factorization. In Chapter
2, we specify a new latent position model where the node latent positions are the realiza-
tion of Brownian motions over a phylogenetic tree. The latter allows us to directly infer
the multiresolution organization of the brain regions. This model fills a gap in the latent
positionmodel literature for networks with hierarchical node structures. Finally, Chapter
3 explores the possibility to leverage additional covariates to inform the tree structure of
the model.
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The content of Chapter 1 is based on the following publication:

• Pavone, F., Legramanti, S., and Durante, D. (2022). Learning and forecasting of
age-specific period mortality via B-spline processes with locally-adaptive dynamic
coefficients. arXiv preprint arXiv:2209.12047.

A first version of the model has been used in:

• Pavone, F., and Legramanti, S. (2022). Bayesian analysis of mortality in Iceland
via locally adaptive splines. In Book of the short papers SIS 2022. 520-525.
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Chapter 1

Learning and Forecasting of
Age–Specific Period Mortality via
B–Spline Processes with
Locally–Adaptive Dynamic
Coefficients
joint work with Sirio Legramanti and Daniele Durante

1.1 Introduction

Since the seminal contribution by Lee and Carter (1992) on stochastic modeling and fore-
casting of human mortality patterns, several efforts have been devoted towards the de-
velopment of effective strategies characterized by increasing accuracy in predicting the
future evolution of death rates for different age groups and countries (e.g., Booth and
Tickle, 2008; Currie, 2016; Hunt and Blake, 2021). Due to its direct impact in guiding so-
cial, economic, environmental and health–care policies, such an endeavor is of paramount
interest in a variety of fields, including demography (e.g., Lee andMiller, 2001; Li and Lee,
2005; Raftery et al., 2013; Li et al., 2013; Camarda, 2019), actuarial sciences (e.g., Renshaw
and Haberman, 2003, 2006; Cairns et al., 2006; Plat, 2009; Currie, 2016) and statistics (e.g.,
Lee and Carter, 1992; Dellaportas et al., 2001; Hyndman and Ullah, 2007; Alexopoulos
et al., 2019; Aliverti et al., 2022), among others. Nonetheless, despite this collective effort,
there is still a lack of consensus on a superior solution. In fact, several peculiar charac-
teristics of age–specific period mortality trajectories keep motivating active and ongoing
innovations in stochastic modeling and forecasting of death rates via increasingly flexible
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representations.

As illustrated in Figure 1.1, the age–specific period mortality surfaces exhibit a com-
bination of global and local variations. When expressed as a function of age, these mor-
tality trajectories display similar and generally–smooth shapes, whereas the overall dy-
namic evolution of these trajectories across periods exhibits a progressive downward
shift, whose rate of change varies locally with both age classes and years. Although
the inclusion of these core structures is expected to enhance both inference and fore-
casting performance, current literature still lacks a statistical model that can effectively
address such goals within a single formulation. In fact, while successful extensions of
the age–period bilinear formulation by Lee and Carter (1992) and of the additive age–
period–cohort representation in, e.g., Holford (1983) improve flexibility via more general
basis expansions of age effects with time–varying coefficients, the selected bases are ei-
ther simple parametric functions often active in the whole age range (Brouhns et al., 2002;
Czado et al., 2005; Cairns et al., 2006; Delwarde et al., 2007; Plat, 2009; Cairns et al., 2009;
Haberman and Renshaw, 2011; O’Hare and Li, 2012; Wong et al., 2018) or are inferred via
functional principal components analysis (Hyndman and Ullah, 2007; Hyndman et al.,
2013). This implies that the induced death–rate forecasts are mainly based on a combi-
nation of global trends in mortality across ages which do not explicitly account for local
heterogeneities in mortality levels and the corresponding rates of change for specific age
classes. Recalling Figure 1.1, the mortality patterns exhibit both global and local vari-
ations across years and ages, thereby suggesting that a suitable representation capable
of including these two behaviors would yield improved forecasts with respect to those
obtained under a mainly–global perspective.

An effective option for addressing the aforementioned goal is to rely on a more struc-
tured and interpretable basis expansion that incorporates possible heterogeneity in mor-
tality patterns for different age groups. Within this framework, the contribution by
Heligman and Pollard (1980) provides a first effective answer which expresses the age
pattern of mortality via a combination of three basis functions corresponding to infant
mortality, accident hump and elderly–age mortality; see also Dellaportas et al. (2001),
Mazzuco et al. (2018) and Alexopoulos et al. (2019) for subsequent extensions. While
these formulations yield interpretable inference, the combination of only three bases is
generally not sufficient to flexibly characterize the broad spectrum of global and local
changes in age–specific mortality rates across years, thereby affecting forecasting per-
formance (e.g., Camarda, 2019). To overcome this issue, a possible solution consists in
specifying a richer set of basis functions, each active — i.e., non–zero — only in a sub-
set of the ages, with these subsets varying across bases to cover the whole age range.
Expressing the age pattern of mortality through a linear combination of these basis func-
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Figure 1.1: Graphical representations of the observed age–period log–mortality rates from 1933
until 2019 for Italy, and from 1933 to 2020 for United States. Top panels provide 3d visualizations
of the age–period log–mortality rate surface, whereas bottom panels comprise a 2d illustration
of the age–specific trajectories for each period. Data are retrieved from the Human Mortality
Database (https://www.mortality.org/).
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tions yields a globally–smooth, yet flexible, representation which additionally accounts
for possible local heterogeneities in specific age classes via the control on the coefficients
for the bases active in those classes. Such a direction has been partially explored in Currie
et al. (2004) via two–dimensional penalized b–splines to jointly characterize age–period
patterns of mortality; see also Camarda (2019) for a recent effective extension of this
approach which incorporates suitable constraints and prior knowledge to improve fore-
casting performance. Although both formulations provide a sensible representation of
age–specific period mortality surfaces, the two–dimensional b–splines perspective en-
forces a constant smoothing both across ages and periods, and prevents from treating
the period component as a time–indexed stochastic process on which to impose a suit-
able dynamic model for principled inference and forecasting. As shown in Figure 1.1
with a focus on two of the countries analyzed in our application, while the age pattern
of mortality often exhibits a smooth trajectory, the time changes in such a trajectory
fluctuate between periods of rapid and slow variations, affecting the age classes with dif-
ferent magnitudes. These peculiar characteristics necessarily require a careful statistical
model which can effectively combine interpretable basis expansions for the age patterns
of mortality with a flexible stochastic process having locally–varying smoothness for the
dynamic evolution of such patterns across periods. While the aforementioned contribu-
tions include some of these structures, there is still the lack of a unique representation
that can effectively incorporate all these characteristics within a single formulation.

Motivated by the above discussion and by themortality data discussed in Section 1.1.1,
we cover such a gap in Section 1.2 by defining a Poisson log–normal model for the
age–specific death counts whose rate is parameterized via a novel b–spline process with
locally–adaptive dynamic coefficients which extends the nested Gaussian process by Zhu
andDunson (2013) in a number of directions. Our novel process characterizes the age pat-
tern of mortality via a suitable combination of interpretable b–spline bases — each active
in different age intervals — and incorporates flexible dynamic changes in such patterns
by allowing the splines coefficients to evolve in time via a system of stochastic differential
equations that account for locally–varying smoothness in time trajectories, and facilitate
borrowing of information across coefficients of contiguous splines. This representation
is conceptually and practically more suitable than the bivariate b–splines approach in
Currie et al. (2004) and Camarda (2019) since it allows to properly treat the period com-
ponent as a dynamic locally–adaptive stochastic process rather than just a function of
time with constant smoothness. In addition, it yields a more flexible characterization of
age–period mortality patterns relative to classical parametric extensions of the Lee and
Carter (1992) model in, e.g., Brouhns et al. (2002); Czado et al. (2005); Cairns et al. (2006);
Delwarde et al. (2007); Plat (2009); Cairns et al. (2009); Haberman and Renshaw (2011);
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O’Hare and Li (2012) and Wong et al. (2018), while preserving interpretability via the use
of b–spline bases instead of those inferred from, e.g., functional principal components
(Hyndman and Ullah, 2007; Hyndman et al., 2013).

As clarified in Sections 1.2–1.4, these advancements yield a model which is both flex-
ible and interpretable, thereby improving accuracy in point forecasts, calibration of pre-
dictive intervals, and inference potentials relative to state–of–the–art formulations, at
no additional cost in computational tractability. In fact, in Section 1.3 we derive a prov-
ably accurate Gaussian state–space approximation of the proposed model that allows
the implementation of closed–form Kalman filter updates for smoothing, filtering and
forecasting of both the trends and the first derivatives for the trajectories of the spline
coefficients. This computational tractability is in contrast with recent flexible representa-
tions that requiremcmcmethods to benefit from a fully–Bayesian approachwhich further
allows the choice of priors for the structural model parameters (e.g., Wong et al., 2018;
Alexopoulos et al., 2019). Moreover, unlike for state–of–the–art extensions of the Lee and
Carter (1992) model which generally employ an arima formulation for the dynamic pa-
rameters (Brouhns et al., 2002; Czado et al., 2005; Cairns et al., 2006; Hyndman and Ullah,
2007; Plat, 2009; Cairns et al., 2009; Haberman and Renshaw, 2011; O’Hare and Li, 2012;
Hyndman et al., 2013), our proposal explicitly incorporates and flexibly learns not only
mortality trends but also the corresponding time–varying rates of change. Although the
importance of accounting for dynamic rates of change in mortality forecasting has been
recently illustrated in Camarda (2019), this concept has received limited attention to date
and there is a lack of models which explicitly include and learn these higher–level pat-
terns within a single formulation. The empirical performance illustrated in Section 1.4 for
our proposed model clarifies that this additional structure is not only beneficial in deliv-
ering improved point forecasts and predictive intervals than state–of–the–art competing
methods, but also allows to quantify and compare relevant mortality accelerations expe-
rienced both in past and recent years across different countries and age groups. For ex-
ample, our model reveals substantially different patterns in age–specific mortality across
countries during the last two decades and in the recent covid–19 pandemic. Concluding
remarks and future research directions are provided in Section 1.5, whereas codes and
tutorial implementations are available at https://github.com/fpavone/BSP-mortality.

1.1.1 Motivating Application

The novel b–spline process (bsp) developed in Sections 1.2–1.3 is meant to provide a gen-
eral modeling and forecasting solution that can be applied to any country. To this end,
the motivating application we consider in Section 1.4 aims at illustrating the practical
advantages of bsp in learning and forecasting several mortality patterns characterized by
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a broad range of different evolutions across years and ages, ranging from smooth trajec-
tories to more rapid shocks, over a broad time horizon. This motivates our focus on four
illustrative countries, namely Italy, Sweden, United Kingdom and United States, whose
gender–specific age–period log–mortality rates are available from the Human Mortal-
ity Database (https://www.mortality.org/) for a wide time range, that spans from 1933
until either 2019 or 2020 and displays different country–specific evolutions of mortality
over periods and age classes, along with fluctuations of varying magnitude due to shocks.

Although the Human Mortality Database comprises data also for other countries,
the corresponding time window is generally much shorter than those considered in Sec-
tion 1.4. In addition, Italy, Sweden, United Kingdom and United States exhibit a number
of peculiar characteristics which make these countries of particular interest not only in
forecasting, but also for inference. More specifically, as we will illustrate in Figures 1.4
and 1.5, Italy and the United Kingdom provide interesting examples to quantify the ability
of the proposed bsp in flexibly learning different magnitudes of the mortality shock, and
the corresponding rates of change, associated with the World War II. Recalling, e.g., Vau-
pel and Lundstrom (1994), Sweden is historically characterized by lowmortality rates, but
the recent evidence of slower rates of increment in the life expectancy relative to other
countries (Drefahl et al., 2014) and the less stringent policy adopted during covid–19
(Wang et al., 2022a; Juul et al., 2022) make Sweden an interesting case study. The United
States have also experienced a slower increment in life expectancy in recent years, which
culminated in a decreasing pattern over the past decade (Woolf and Schoomaker, 2019).
This specific behavior has motivated several explanatory studies mostly focused on pe-
culiar mortality patterns and vulnerabilities associated with young and adult age classes
(e.g., Remund et al., 2018; Glei, 2022), which could also explain particular differences in
the age–specific excess mortality in the United States during covid–19, relative to the
patterns observed for the other countries (e.g., Katzmarzyk et al., 2020; Wiemers et al.,
2020; Goldstein and Lee, 2020). The bsp formulation developed in Sections 1.2–1.3 is
carefully designed to flexibly incorporate all these multifaceted patterns and, hence, the
analysis of these four countries provides a comprehensive setting to obtain empirical evi-
dence of improved performance in inference and forecasting relative to state–of–the–art
alternatives.

As highlighted in Section 1.4, the proposed bsp yields improved forecasts also when
applied to a different subgroup of countries from theHumanMortality Database, such
as, for example, Czech Republic, Denmark and France. A discussion on future studies of
bsp performance for low– and middle–income countries, whose data are currently not
available in the Human Mortality Database, can be found in Section 1.5.
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1.2 Model Formulation

Let 𝑑𝑥𝑡 and e𝑥𝑡 be the total death counts and the average number of individuals at risk
(also known as central exposed to risk) at age 𝑥 in period 𝑡, within a given population.
Following the overarching focus in the literature on mortality modeling (e.g., Booth and
Tickle, 2008; Hunt and Blake, 2021) our aim is to improve inference and forecasting of
the observed central mortality rates defined as 𝑚𝑥𝑡 = 𝑑𝑥𝑡/e𝑥𝑡 .

To this end, let 𝑚𝑥𝑡 = 𝔼(𝑚𝑥𝑡 ∣ 𝑚𝑥𝑡) denote the underlying expected mortality rate at
age 𝑥 within period 𝑡, we introduce in Section 1.2.1 a Poisson log–normal model for 𝑑𝑥𝑡 ,
whose rate parameter e𝑥𝑡𝑚𝑥𝑡 is allowed to flexibly vary across both ages 𝑥 and periods
𝑡 via a novel b–spline process for log𝑚𝑥𝑡 . As clarified in Section 1.2.2, such a model
admits a provably–accurate Gaussian state–space approximation which expresses the
observed log–mortality rates log𝑚𝑥𝑡 = log(𝑑𝑥𝑡/e𝑥𝑡) as a linear combination of b–spline
bases whose dynamic coefficients and the associated derivatives vary in time via a system
of Gaussian state equations. This allows closed–form filtering, smoothing and forecasting
of the coefficients trajectories and, as a consequence, of the induced patterns in the log–
mortality rates log𝑚𝑥𝑡 via a direct application of standard Kalman filter updates (Kalman,
1960); see Section 1.3.

1.2.1 B–Spline Processwith Locally–AdaptiveDynamicCoefficients

Recalling the above discussion, we model the death counts 𝑑𝑥𝑡 , at each age 𝑥 ∈  ⊂ ℝ+

and period 𝑡 ∈  ⊂ ℝ+ via the Poisson log–normal distribution

(𝑑𝑥𝑡 ∣ 𝑚𝑥𝑡)
ind∼ Poisson(e𝑥𝑡𝑚𝑥𝑡), with (log𝑚𝑥𝑡 ∣ 𝑓𝑡(𝑥))

ind∼ N(𝑓𝑡(𝑥), 𝜎2𝑚), (1.1)

for every 𝑥 ∈  and 𝑡 ∈  , where 𝑓𝑡(𝑥) denotes a flexible function of age 𝑥 whose shape
is allowed to vary with time 𝑡, whereas 𝜎2𝑚 encodes the global amount of over–dispersion
within the observed death counts. The Poisson log–normal assumption in (1.1) has been
considered inWong et al. (2018) to account for extra variability in the Poisson Lee–Carter
model proposed by Brouhns et al. (2002) andCzado et al. (2005). Although this is a sensible
modification which allows to formally incorporate age–specific heterogeneity in period
mortality — possibly arising from differences in cohort effects — Wong et al. (2018) still
rely on the classical Lee andCarter (1992) parametric bilinear form for 𝑓𝑡(𝑥). As illustrated
in Table 1.1 (see column lc), such a form yields an overly–restrictive characterization of
age–period mortality patterns which affects both inference and forecasting performance;
see also Delwarde et al. (2007) for an additional example of a Poisson log–bilinear formu-
lation which employs the classical Lee and Carter (1992) construction.
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To address the above issues and incorporate the core patterns of mortality discussed
within Section 1.1 and illustrated in Figure 1.1, we combine the statistical model in (1.1)
with a flexible, yet interpretable, representation for 𝑓𝑡(𝑥) based on a novel b–spline pro-
cess with locally–adaptive dynamic coefficients. This formulation defines 𝑓𝑡(𝑥) via a lin-
ear combination of 𝑝 pre–selected b–spline basis functions of age, 𝑔1(𝑥),… , 𝑔𝑝(𝑥), whose
associated coefficients 𝛽1(𝑡),… , 𝛽𝑝(𝑡) jointly evolve in time via a system of stochastic
differential equations that induce locally–varying smoothness and borrowing of infor-
mation across contiguous bases. In particular, let 𝐛(𝑡) = [𝛽1(𝑡), 𝜕𝛽1(𝑡)/𝜕𝑡, 𝑎1(𝑡),… , 𝛽𝑝(𝑡),
𝜕𝛽𝑝(𝑡)/𝜕𝑡, 𝑎𝑝(𝑡)]⊺ be the (3𝑝 × 1)–dimensional process comprising the 𝑝 b–splines coef-
ficients 𝛽1(𝑡),… , 𝛽𝑝(𝑡), the corresponding first derivatives 𝜕𝛽1(𝑡)/𝜕𝑡,… , 𝜕𝛽𝑝(𝑡)/𝜕𝑡, and
the associated local instantaneous mean functions 𝑎1(𝑡),… , 𝑎𝑝(𝑡) which induce time–
varying smoothness by controlling the expected value of the second derivatives at time
𝑡, namely 𝑎𝑗 (𝑡) = 𝔼[𝜕2𝛽𝑗 (𝑡)/𝜕2𝑡 ∣ 𝑎𝑗 (𝑡)], for 𝑗 = 1,… , 𝑝. Moreover, denote with 𝜺𝑡 =
[𝜀𝛽1(𝑡), 𝜀𝑎1(𝑡),… , 𝜀𝛽𝑝(𝑡), 𝜀𝑎𝑝(𝑡)]

⊺ a (2𝑝×1)–dimensional vector encoding independent Gaus-
sian white noise processes. Then, leveraging these quantities and letting 𝜏 = 𝑡/𝜆 be a
reference time scale, the proposed bsp assumes

𝑓𝑡(𝑥) = ∑𝑝
𝑗=1 𝛽𝑗 (𝑡)𝑔𝑗 (𝑥), for any 𝑥 ∈  and 𝑡 ∈  , (1.2)

𝜕𝐛(𝜆𝜏)/𝜕𝜏 = 𝜆(𝐈𝑝 ⊗ 𝐂)𝐛(𝜆𝜏) + (𝐈𝑝 ⊗ 𝐃)(𝛀1/2𝜺𝜏), for any 𝜆𝜏 = 𝑡 ∈  , (1.3)

where 𝐈𝑝 is the 𝑝 × 𝑝 identity matrix, ⊗ denotes the Kronecker product, 𝜆 > 0 corre-
sponds to a length–scale parameter which allows to preserve time unit invariance, 𝛀 is a
suitably–specified 2𝑝 × 2𝑝 correlation matrix which induces local borrowing of informa-
tion across contiguous splines coefficients — via the correlation among the corresponding
derivatives and local instantaneous means — whereas 𝐂 and 𝐃 are known system matri-
ces defined as

𝐂 =
⎡
⎢
⎢
⎢
⎣

0 1 0
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎦

, 𝐃 =
⎡
⎢
⎢
⎢
⎣

0 0
𝜎𝛽 0
0 𝜎𝑎

⎤
⎥
⎥
⎥
⎦

, (1.4)

with 𝜎𝛽 > 0 and 𝜎𝑎 > 0 denoting two scaling parameters. As clarified in (1.4), these ma-
trices are pre–specified to induce the desired system of stochastic differential equations;
see Zhu and Dunson (2013, A.6) for a related definition of 𝐂 and 𝐃 in the univariate case.

As illustrated in Figure 1.2, the b–spline process construction in equations (1.2)–(1.4)
provides an effective formulation which treats 𝑓𝑡(𝑥) as a function of age 𝑥 , via a linear
combination of interpretable b–spline bases directly associated to specific age classes,
and as a stochastic process of time 𝑡 = 𝜆𝜏, leveraging a flexible system of stochastic dif-
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Figure 1.2: Illustrative example of a heatmap for 𝑓𝑡(𝑥), as defined in (1.2) via a linear combination of pre–
specified b–spline bases (right–side panel) with coefficients varying across periods according to (1.3) (top–
side panel). For illustrative purposes, three b–spline bases and the corresponding coefficients trajectories
are highlighted with different colors; see Section 1.4 for details on the choice of the number and location
of the b–spline bases.

ferential equations that jointly characterize the time trajectory of each spline coefficient
𝛽𝑗 (𝑡), for 𝑗 = 1,… , 𝑝, by explicitly modeling its smoothness across periods. In (1.3), such
a smoothness is measured by the second–order derivative 𝜕2𝛽𝑗 (𝑡)/𝜕2𝑡 which is in turn
centered on a higher level time–varying instantaneousmean function 𝑎𝑗 (𝑡) that allows lo-
cal adaptivity. Combining (1.2)–(1.4) with model (1.1) yields a unique representation for
age–period mortality patterns that (i) accounts for age–specific heterogeneity in death
counts via the log–normal assumption in (1.1), (ii) enforces a generally smooth trajectory
for the age pattern of mortality through the linear combination of b–splines in (1.2), and
(iii) explicitly allows these patterns to evolve in time between periods of rapid and slow
variations, affecting age classes with different magnitudes, via the system of stochastic
differential equations in (1.3)–(1.4) for the splines coefficients.

To further clarify representation (1.3)–(1.4), it shall be emphasized that such a con-
struction extends the nested Gaussian process of Zhu and Dunson (2013) in a number
of directions inherently motivated by our focus on modeling and forecasting of mortal-
ity rates. In fact, the original formulation by Zhu and Dunson (2013) does not consider
(1.2), and provides a simpler version of (1.3) with a focus on inducing locally–varying
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smoothness in a single trajectory via a Gaussian process (e.g., Rasmussen and Williams,
2006) for a derivative of selected order, which is in turn centered on a higher–level Gaus-
sian process characterizing the local instantaneous mean function. Although considering
separate nested Gaussian processes for the trajectories 𝑓𝑡(𝑥) of each age 𝑥 ∈  is a vi-
able option, this representation is not invariant with respect to the choice of the time
unit and, more crucially, it fails to borrow information among mortality patterns for con-
tiguous ages. Recalling, e.g., Currie et al. (2004) and Camarda (2019) the latter property
would be conceptually and practically useful since it is reasonable to expect that the
mortality patterns of close age classes display a natural dependence. To this end, equa-
tions (1.2)–(1.3) extends Zhu and Dunson (2013) to a structured multivariate formulation
which induces such a borrowing of information through the b–spline representation of
𝑓𝑡(𝑥) in (1.2) and by inducing dependence among the b–spline coefficients in (1.3) via the
introduction of correlation between the white noises through the matrix 𝛀. This matrix
has unit diagonal, and off–diagonal elements that are non–zero only for the entries 𝛀𝑗 ,𝑙
whose indexes (𝑗 , 𝑙) are either both even or both odd, so as to induce correlation among
the noises associated with the derivatives and local instantaneous means, respectively.
As clarified in Section 1.3, by defining these non–zero correlations via suitable covari-
ance functions (e.g., Rasmussen and Williams, 2006) allows to enforce a local borrowing
of information which decays as the distance between age classes grows. The introduction
of the length–scale parameter 𝜆 allows, instead, to preserve time unit invariance, so that,
if the time scale is changed — e.g., from 𝜕𝑡 to 𝑐 ⋅ 𝜕𝑡 — it is still possible to retrieve the
same model specification with a suitable specification of the parameters 𝜆, 𝜎𝛽 and 𝜎𝑎. In
fact, the scale of 𝑡 is often arbitrary in practice and, hence, it is desirable to define the
process in (1.2) with respect to the reference time 𝜏 = 𝑡/𝜆. This modification is in line
with similar operations considered in the Gaussian process literature when including a
length–scale parameter in popular covariance functions (e.g., Rasmussen and Williams,
2006). The empirical results in Section 1.4 confirm that these extensions yield substantial
gains in mortality forecasts relative to those obtained via a direct application of the orig-
inal nested Gaussian process by Zhu and Dunson (2013) to each trajectory 𝑓𝑡(𝑥), 𝑡 ∈  ,
separately for every age 𝑥 .

Besides including the core age–period structures of mortality, model (1.1)–(1.4) cru-
cially admits a provably accurate Gaussian state–space approximation, as described in
Section 1.2.2 below. This representation further clarifies the proposed model and allows
efficient computation via standard Kalman filter updates; see also Section 1.3 and refer to
Section 1.4 for details on the choice of the number and location of the b–spline bases.
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1.2.2 Gaussian State–Space Approximation

As a first step towards the derivation of an accurate and computationally tractable Gaus-
sian state–space representation of the proposed formulation in (1.1)–(1.4), Proposition 1
proves thatmodel (1.1) induces a distribution on the observed log–mortality rates log𝑚𝑥𝑡 =
log(𝑑𝑥𝑡/e𝑥𝑡)which can be closely approximated, for e𝑥𝑡 large enough, by the N(𝑓𝑡(𝑥), 𝜎2𝑚)
assumed in (1.1) for the expected log–mortality.

Proposition 1. Under model (1.1), log𝑚𝑥𝑡 = log(𝑑𝑥𝑡/e𝑥𝑡) → N(𝑓𝑡(𝑥), 𝜎2𝑚) in distribution,

as e𝑥𝑡 → ∞, for any 𝑥 ∈  and 𝑡 ∈  .

Proposition 1motivates direct focus on the observed log–mortality rates log𝑚𝑥𝑡 , which
are of overarching interest in state–of–the–art studies (e.g., Land, 1986; Booth and Tickle,
2008; Currie, 2016; Hunt and Blake, 2021). In addition, it justifies the adoption of the
Gaussian regression model log𝑚𝑥𝑡 = 𝑓𝑡(𝑥) + 𝜈𝑥𝑡 , with 𝜈𝑥𝑡

i.i.d.∼ N(0, 𝜎2𝑚) for any 𝑥 ∈  ,
𝑡 ∈  , and 𝑓𝑡(𝑥) as in (1.2), which is arguably more tractable than the Poisson log–normal
representation for the death counts in (1.1). Recalling Proposition 1, this approximation
is provably accurate in settings with large enough e𝑥𝑡 , a common situation in mortality
studies by country, where e𝑥𝑡 is typically in the order of tens–to–hundreds of thousands.

Although Proposition 1 yields a simpler construction, to obtain a fully tractable for-
mulation it is also necessary to derive an alternative representation for the stochastic dif-
ferential equations in (1.3)–(1.4) which is amenable to efficient computation, direct fore-
casting, interpretable inference and effective uncertainty quantification. Proposition 2
proves that, when observed at a finite collection of times 𝑡1,… , 𝑡𝑛, as in the mortality–
data context, equations (1.3)–(1.4) admit a tractable representation via a linear system of
Gaussian state equations.

Proposition 2. Let 𝐛𝑡𝑠 denote the realization at a generic time 𝑡𝑠 of the process 𝐛(𝑡) defined
in Section 1.2.1, i.e., 𝐛𝑡𝑠 = [𝛽1(𝑡), 𝜕𝛽1(𝑡)/𝜕𝑡, 𝑎1(𝑡),… , 𝛽𝑝(𝑡), 𝜕𝛽𝑝(𝑡)/𝜕𝑡, 𝑎𝑝(𝑡)]

⊺
|𝑡=𝑡𝑠 . Then, for

each finite grid of times 𝑡𝑠 = 𝑡1,… , 𝑡𝑛, with 𝑡1 < ⋯ < 𝑡𝑛, the system of stochastic differential

equations in (1.3)–(1.4) admits the Gaussian state–equation representation

𝐛𝑡𝑠+1 = 𝐓𝑡𝑠𝐛𝑡𝑠 + 𝜼𝑡𝑠 , 𝜼𝑡𝑠
ind∼ N3𝑝(𝟎,𝐐𝑡𝑠), for 𝑡𝑠 = 𝑡1,… , 𝑡𝑛, (1.5)

where 𝐓𝑡𝑠 denotes a 3𝑝 × 3𝑝 block–diagonal transition matrix defined as

𝐓𝑡𝑠 = 𝐈𝑝 ⊗
⎡
⎢
⎢
⎢
⎣

1 𝜆𝛿𝑠 𝜆2(𝛿2𝑠 /2)
0 1 𝜆𝛿𝑠
0 0 1

⎤
⎥
⎥
⎥
⎦

, (1.6)
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with 𝛿𝑠 = (𝑡𝑠+1 − 𝑡𝑠)/𝜆, while 𝐐𝑡𝑠 is a 3𝑝 × 3𝑝 covariance matrix having generic block

𝐐𝑡𝑠[𝑗 ,𝑙] = 𝜌𝛽[𝑗 ,𝑙]

⎡
⎢
⎢
⎢
⎣

(𝛿3𝑠 /3)𝜆2𝜎2𝛽 (𝛿2𝑠 /2)𝜆𝜎2𝛽 0
(𝛿2𝑠 /2)𝜆𝜎2𝛽 𝛿𝑠𝜎2𝛽 0

0 0 0

⎤
⎥
⎥
⎥
⎦

+ 𝜌𝑎[𝑗 ,𝑙]

⎡
⎢
⎢
⎢
⎣

(𝛿5𝑠 /20)𝜆4𝜎2𝑎 (𝛿4𝑠 /8)𝜆3𝜎2𝑎 (𝛿3𝑠 /6)𝜆2𝜎2𝑎
(𝛿4𝑠 /8)𝜆3𝜎2𝑎 (𝛿3𝑠 /3)𝜆2𝜎2𝑎 (𝛿2𝑠 /2)𝜆𝜎2𝑎
(𝛿3𝑠 /6)𝜆2𝜎2𝑎 (𝛿2𝑠 /2)𝜆𝜎2𝑎 𝛿𝑠𝜎2𝑎

⎤
⎥
⎥
⎥
⎦

(1.7)

for each 𝑗 = 1,… , 𝑝 and 𝑙 = 1,… , 𝑝, with 𝜌𝛽[𝑗 ,𝑙] and 𝜌𝑎[𝑗 ,𝑙] denoting those entries of𝛀 in (1.3)
that measure the correlation among the derivatives of the coefficients associated with splines

𝑗 and 𝑙, and between the corresponding local instantaneous means, respectively.

Proposition 2 yields a simple state–space representation expressing the value of 𝛽𝑗 (𝑡𝑠+1)
at time 𝑡𝑠+1 via a second–order stochastic Taylor expansion of the trajectory 𝛽𝑗 (𝑡) around
the previous time point 𝑡𝑠, for each 𝑗 = 1,… , 𝑝; see the form of 𝐓𝑡𝑠 in (1.6). This al-
lows to explicitly model and forecast not only class–specific mortality trends encoded in
𝛽1(𝑡),… , 𝛽𝑝(𝑡), but also the associated rates of changemeasured by 𝜕𝛽1(𝑡)/𝜕𝑡,… , 𝜕𝛽𝑝(𝑡)/𝜕𝑡
and the corresponding instantaneous means 𝑎1(𝑡),… , 𝑎𝑝(𝑡). Recalling Section 1.2.1, the
choice of the time scale of 𝑡 is often arbitrary in practice. In fact, the actual values of
𝑡𝑠 = 𝑡1,… , 𝑡𝑛 are not necessary in equations (1.5)–(1.7), which only require to pre–specify
the time lags 𝛿𝑠 among consecutive observations under the reference scale 𝑡/𝜆. In our
equally–spaced context we set lags to 1, and then learn the appropriate scaling 𝜆 via
maximum likelihood under (1.5)–(1.7).

The above representation is both flexible and interpretable, and further allows to bor-
row information across coefficients of different b–splines via the covariance matrix 𝐐𝑡𝑠
of the noise 𝜼𝑡𝑠 ; see (1.7). The core parameters regulating the strength of this depen-
dence are 𝜌𝛽[𝑗 ,𝑙] and 𝜌𝑎[𝑗 ,𝑙], for 𝑗 = 1,… , 𝑝 and 𝑙 = 1,… , 𝑝. Letting 𝜌𝛽[𝑗 ,𝑙] = 1(𝑗 = 𝑙)
and 𝜌𝑎[𝑗 ,𝑙] = 1(𝑗 = 𝑙) yields no borrowing of information and, as a consequence, sep-
arate state–equations for each b–spline coefficient, whereas, whenever 𝜌𝛽[𝑗 ,𝑙] ∈ (0, 1]
and 𝜌𝑎[𝑗 ,𝑙] ∈ (0, 1], the 𝑗–th and 𝑙–th splines display a dependence in the trajectories
of the associated coefficients. More specifically, large values of 𝜌𝛽[𝑗 ,𝑙] and 𝜌𝑎[𝑗 ,𝑙] imply
high correlation between the first derivatives and local instantaneous means functions,
respectively, of the coefficient trajectories for splines 𝑗 and 𝑙. This allows to borrow in-
formation in terms of both the overall trend and smoothness, while inducing dependence
among the actual trajectories 𝛽𝑗 (𝑡) and 𝛽𝑙(𝑡) under (1.5)–(1.7).

Recalling the above discussion and extending related ideas from p–splines represen-
tations (Eliers and Marx, 1996; Lang and Brezger, 2004), we define 𝜌𝛽[𝑗 ,𝑙] and 𝜌𝑎[𝑗 ,𝑙] to
induce a local borrowing of information whose strength decays with a suitable distance
between the 𝑗–th and 𝑙–th splines. More specifically, let �̄�𝑗 and �̄�𝑙 denote the ages at
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which the b–spline functions 𝑔𝑗 (𝑥) and 𝑔𝑙(𝑥) are maximized, respectively, we define

𝜌𝛽[𝑗 ,𝑙] = (�̄�𝑗 , �̄�𝑙; 𝜸𝛽), and 𝜌𝑎[𝑗 ,𝑙] = (�̄�𝑗 , �̄�𝑙; 𝜸𝑎), (1.8)

for every spline 𝑗 = 1,… , 𝑝 and 𝑙 = 1,… , 𝑝, where (�̄�𝑗 , �̄�𝑙; 𝜸𝛽) and (�̄�𝑗 , �̄�𝑙; 𝜸𝑎) denote
user–selected covariance functions (e.g., Rasmussen and Williams, 2006, Ch. 4), which
decay to zero as |�̄�𝑗 − �̄�𝑙 | grows, and are defined such that(�̄�𝑗 , �̄�𝑗 ; 𝜸𝛽) = (�̄�𝑗 , �̄�𝑗 ; 𝜸𝑎) = 1
for 𝑗 = 1,… , 𝑝. As a consequence, the time patterns of mortality are allowed to effectively
share local information across contiguous age classes, and the strength of this dependence
progressively decreases for distant ages with a pattern that depends on the selected co-
variance functions and on the associated parameters 𝜸𝛽 and 𝜸𝑎. Routinely–implemented
examples of covariance functions are the squared exponential and the Matérn, among
others (e.g., Rasmussen and Williams, 2006, Ch. 4); see Section 1.4 for details on suit-
able specifications of these covariance functions and the corresponding parameters in
the mortality–data context.

Combining Propositions 1 and 2 yields the tractable Gaussian state–space model for
the observed log–mortality rates

log𝐦𝑡𝑠 = 𝐙𝑡𝑠𝐛𝑡𝑠 + 𝝂𝑡𝑠 , 𝝂𝑡𝑠
ind∼ N𝑘(𝟎,𝐇𝑡𝑠), (1.9)

𝐛𝑡𝑠+1 = 𝐓𝑡𝑠𝐛𝑡𝑠 + 𝜼𝑡𝑠 , 𝜼𝑡𝑠
ind∼ N3𝑝(𝟎,𝐐𝑡𝑠), (1.10)

for every time 𝑡𝑠 = 𝑡1,… , 𝑡𝑛, where log𝐦𝑡𝑠 = (log𝑚𝑥1,𝑡𝑠 ,… , log𝑚𝑥𝑘 ,𝑡𝑠)
⊺ is the (𝑘 × 1)–

dimensional vector of the log–mortality rates observed for ages 𝑥1,… , 𝑥𝑘 at time 𝑡𝑠, 𝐙𝑡𝑠 =
[𝐠1,𝟎, 𝟎, 𝐠2,𝟎, 𝟎,… , 𝐠𝑝,𝟎, 𝟎] denotes the (𝑘×3𝑝)–dimensional design matrix with non–zero
columns 𝐠𝑗 = [𝑔𝑗 (𝑥1),… , 𝑔𝑗 (𝑥𝑘)]⊺, 𝑗 = 1,… , 𝑝 comprising the values of the pre–selected
b–splines bases at the observed ages 𝑥1,… , 𝑥𝑘, 𝐇𝑡𝑠 = 𝜎2𝑚𝐈𝑘, whereas 𝐛𝑡𝑠 , 𝐓𝑡𝑠 and 𝐐𝑡𝑠 are
defined as in Propositions 2.

As clarified in Section 1.3, the above Gaussian state–space formulation allows closed–
form filtering, smoothing and forecasting via simple recursive equations obtained from a
direct application of classical Kalman filter updates (Kalman, 1960; Koopman and Durbin,
2000); see also Durbin and Koopman (2012) and Chopin and Papaspiliopoulos (2020) for a
general treatment of the Kalman filter and smoother in linear–Gaussian state–spacemod-
els, and refer to the r package kfas (Helske, 2017) for an effective implementation. This
tractability is in contrast with the recently–proposed flexible mortality models which
require mcmc routines (e.g., Wong et al., 2018; Alexopoulos et al., 2019) and, unlike for
state–of–the–art formulations discussed in Section 1.1, model (1.9)–(1.10) holds not only
for equally–spaced time grids 𝑡1,… , 𝑡𝑛 but also for unequally–spaced ones. Such a gen-
erality is conceptually and practically useful in allowing inference and forecasting for
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different time horizons, which is of interest, for example, during periods of mortality
shocks to rapidly revise forecasts in the short term, e.g., within months, trimesters or
semesters.

1.3 Filtering, Smoothing and Forecasting

In Section 1.3.1 we leverage model (1.9)–(1.10) to derive tractable strategies for proba-
bilistic inference and prediction of the coefficients vector 𝐛𝑡𝑠 defined in Proposition 2
and, as a direct consequence, of the (𝑘 × 1)–dimensional log–mortality rates mean vec-
tor 𝐟𝑡𝑠 defined as 𝐟𝑡𝑠 = 𝐙𝑡𝑠𝐛𝑡𝑠 = [𝑓𝑡𝑠(𝑥1),… , 𝑓𝑡𝑠(𝑥𝑘)]⊺, with each 𝑓𝑡(𝑥) as in equation (1.2).
To this end, we employ the classical Kalman filter (Kalman, 1960) under the model in
(1.9)–(1.10) to obtain simple and closed–form recursive formulas for the filtering 𝑝(𝐛𝑡𝑠 ∣
log𝐦𝑡1 ,… , log𝐦𝑡𝑠), predictive 𝑝(𝐛𝑡𝑠+1 ∣ log𝐦𝑡1 ,… , log𝐦𝑡𝑠), and smoothing 𝑝(𝐛𝑡𝑠 ∣ log𝐦𝑡1 ,
… , log𝐦𝑡𝑛) distributions of 𝐛𝑡𝑠 , for 𝑡𝑠 = 𝑡1,… , 𝑡𝑛. Since 𝐟𝑡𝑠 = 𝐙𝑡𝑠𝐛𝑡𝑠 , with 𝐙𝑡𝑠 known, the
filtering, predictive and smoothing distributions for 𝐟𝑡𝑠 can be directly derived from those
of 𝐛𝑡𝑠 , for each 𝑡𝑠 = 𝑡1,… , 𝑡𝑛. Leveraging these results, we further develop in Section 1.3.2 a
modern version of the celebrated Lee and Carter (1992) approach. Our proposed strategy
provides future probabilistic projections of the b–splines coefficients via a simple random
walk plus drift model where the drift component exploits the possibility of our formu-
lation to explicitly learn not only mortality levels but also the corresponding rates of
change. As illustrated in Section 1.4, this solution yields improved probabilistic forecasts
of log–mortality rates relative to state–of–the–art alternatives.

The above formulas require the knowledge of the parameters 𝜎2𝑚, 𝜎2𝛽 , 𝜎
2
𝑎 and 𝜆. Due

to the Gaussian form of model (1.9)–(1.10), these quantities can be estimated via maxi-
mization of the marginal likelihood for the Gaussian vectors (log𝐦𝑡1 ,… , log𝐦𝑡𝑛), which
is available in closed form, thereby allowing direct estimation; see Durbin and Koop-
man (2012, Ch. 7) and Chopin and Papaspiliopoulos (2020, Ch. 7) for further details on
maximum likelihood estimation of system parameters in Gaussian state–space models,
and refer to the r package kfas (Helske, 2017) for an effective implementation. As dis-
cussed in the tutorial code at https://github.com/fpavone/BSP-mortality, in practice it is often
recommended to add suitable penalizations and initialize the estimation procedure at dif-
ferent starting points, selecting as final estimate the one that yields the highest marginal
likelihood, thereby avoiding possible issues associatedwith local modes. The covariance–
function parameters 𝜸𝛽 and 𝜸𝑎 in (1.8) are instead fixed at default values which allow to
induce suitable borrowing of information across spline coefficients; see Section 1.4 for
details.
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1.3.1 Filtering, Prediction and Smoothing

Due to the Gaussian form of model (1.9)–(1.10), the filtering, predictive and smooth-
ing distributions for 𝐛𝑡𝑠 are still multivariate normals N3𝑝(𝝁𝑡𝑠 |𝑡1∶𝑠 ,𝚺𝑡𝑠 |𝑡1∶𝑠), N3𝑝(𝝁𝑡𝑠+1|𝑡1∶𝑠 ,
𝚺𝑡𝑠+1|𝑡1∶𝑠) and N3𝑝(𝝁𝑡𝑠 |𝑡1∶𝑛 ,𝚺𝑡𝑠 |𝑡1∶𝑛), respectively, with the mean vectors and covariance ma-
trices that can be derived sequentially in time via recursive equations (Kalman, 1960).
More specifically, let 𝝁𝑡𝑠 |𝑡1∶𝑠−1 and 𝚺𝑡𝑠 |𝑡1∶𝑠−1 be the predictive mean vector and covariance
matrix for 𝐛𝑡𝑠 given the log–mortality rates observed until time 𝑡𝑠−1. Then, recalling,
e.g., Durbin and Koopman (2012, Ch. 4), the filtering distribution for 𝐛𝑡𝑠 is a 3𝑝–variate
Gaussian with mean vector 𝝁𝑡𝑠 |𝑡1∶𝑠 and covariance matrix 𝚺𝑡𝑠 |𝑡1∶𝑠 equal to

𝝁𝑡𝑠 |𝑡1∶𝑠 = 𝝁𝑡𝑠 |𝑡1∶𝑠−1 + 𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐙
⊺
𝑡𝑠(𝐙𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐙

⊺
𝑡𝑠 + 𝐇𝑡𝑠)

−1(log𝐦𝑡𝑠 − 𝐙𝑡𝑠𝝁𝑡𝑠 |𝑡1∶𝑠−1),

𝚺𝑡𝑠 |𝑡1∶𝑠 = 𝚺𝑡𝑠 |𝑡1∶𝑠−1 − 𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐙
⊺
𝑡𝑠(𝐙𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐙

⊺
𝑡𝑠 + 𝐇𝑡𝑠)

−1𝐙𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑠−1 .
(1.11)

The above results are a direct consequence of the closure under conditioning of multivari-
ate Gaussians and, when combined with (1.10), directly yield themean vector 𝝁𝑡𝑠+1|𝑡1∶𝑠 and
covariance matrix 𝚺𝑡𝑠+1|𝑡1∶𝑠 for the predictive Gaussian distribution of 𝐛𝑡𝑠+1 . More specif-
ically, leveraging the closure under linear combinations of multivariate Gaussians, we
obtain

𝝁𝑡𝑠+1|𝑡1∶𝑠 = 𝐓𝑡𝑠𝝁𝑡𝑠 |𝑡1∶𝑠 ,

𝚺𝑡𝑠+1|𝑡1∶𝑠 = 𝐓𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑠𝐓
⊺
𝑡𝑠 + 𝐐𝑡𝑠 .

(1.12)

Equations (1.11)–(1.12) provide simple closed–form formulas that allow to filter and fore-
cast 𝐛𝑡𝑠 recursively from time 𝑡1 until time 𝑡𝑛 by iterating among filtering and prediction
steps. Recalling, e.g., Durbin and Koopman (2012, Ch. 4), such a recursion is initialized
at 𝑡1 from a N3𝑝(𝝁𝑡1|𝑡0 ,𝚺𝑡1|𝑡0). Although several starting strategies can be considered (e.g.,
Durbin and Koopman, 2012), we rely on a data–driven approach and fix 𝝁𝑡1|𝑡0 at a fre-
quentist estimate based on a simple spline regression, while 𝚺𝑡1|𝑡0 is set to 10𝐈3𝑝 to induce
a relatively diffuse initialization.

The forward recursions within (1.11)–(1.12) can be also combined with backward it-
erations to obtain the mean vector 𝝁𝑡𝑠 |𝑡1∶𝑛 and covariance matrix 𝚺𝑡𝑠 |𝑡1∶𝑛 of the Gaussian
smoothing distribution for each 𝑡𝑠, by iterating backward in time from 𝑡𝑛 to 𝑡1 via the
expressions

𝝁𝑡𝑠 |𝑡1∶𝑛 = 𝝁𝑡𝑠 |𝑡1∶𝑠−1 + 𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐫𝑡𝑠−1 ,

𝚺𝑡𝑠 |𝑡1∶𝑛 = 𝚺𝑡𝑠 |𝑡1∶𝑠−1 − 𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐕𝑡𝑠−1𝚺𝑡𝑠 |𝑡1∶𝑠−1 ,
(1.13)

where 𝐫𝑡𝑠−1 and𝐕𝑡𝑠−1 are obtained from the backward equations 𝐫𝑡𝑠−1 = 𝐙⊺𝑡𝑠(𝐙𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐙
⊺
𝑡𝑠+
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𝐇𝑡𝑠)−1(log𝐦𝑡𝑠 − 𝐙𝑡𝑠𝝁𝑡𝑠 |𝑡1∶𝑠−1) + 𝐋⊺𝑡𝑠𝐫𝑡𝑠 and 𝐕𝑡𝑠−1 = 𝐙⊺𝑡𝑠(𝐙𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐙
⊺
𝑡𝑠 + 𝐇𝑡𝑠)−1𝐙𝑡𝑠 + 𝐋⊺𝑡𝑠𝐕𝑡𝑠𝐋𝑡𝑠 ,

with 𝐋𝑡𝑠 = 𝐓𝑡𝑠 − 𝐓𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐙
⊺
𝑡𝑠(𝐙𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑠−1𝐙

⊺
𝑡𝑠 + 𝐇𝑡𝑠)−1𝐙𝑡𝑠 , and initialization 𝐫𝑡𝑛 = 𝟎 and

𝐕𝑡𝑛 = 𝟎3𝑝×3𝑝; see Durbin and Koopman (2012, Ch. 4.4) for a detailed derivation of (1.13)
leveraging again standard properties of multivariate Gaussian distributions.

Since 𝐟𝑡𝑠 = 𝐙𝑡𝑠𝐛𝑡𝑠 , it immediately follows that the filtering, predictive and smoothing
distributions for the log–mortality rates mean function 𝑓𝑡𝑠(𝑥), 𝑥 = 𝑥1,… , 𝑥𝑘, can be di-
rectly obtained from those of 𝐛𝑡𝑠 in equations (1.11), (1.12) and (1.13), respectively. This
implies

(𝐟𝑡𝑠 ∣ log𝐦𝑡1 ,… , log𝐦𝑡𝑠) ∼ N𝑘(𝐙𝑡𝑠𝝁𝑡𝑠 |𝑡1∶𝑠 ,𝐙𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑠𝐙
⊺
𝑡𝑠),

(𝐟𝑡𝑠+1 ∣ log𝐦𝑡1 ,… , log𝐦𝑡𝑠) ∼ N𝑘(𝐙𝑡𝑠+1𝝁𝑡𝑠+1|𝑡1∶𝑠 ,𝐙𝑡𝑠+1𝚺𝑡𝑠+1|𝑡1∶𝑠𝐙
⊺
𝑡𝑠+1),

(𝐟𝑡𝑠 ∣ log𝐦𝑡1 ,… , log𝐦𝑡𝑛) ∼ N𝑘(𝐙𝑡𝑠𝝁𝑡𝑠 |𝑡1∶𝑛 ,𝐙𝑡𝑠𝚺𝑡𝑠 |𝑡1∶𝑛𝐙
⊺
𝑡𝑠),

(1.14)

for each 𝑡𝑠 = 𝑡1,… , 𝑡𝑛. These results yield closed–form Gaussian distributions that fa-
cilitate probabilistic inference on mortality levels and the corresponding rates of change
across ages and periods, beyond currently–available analyses. Moreover, as clarified in
Section 1.3.2, this perspective allows to improve point forecasts and predictive intervals
of future log–mortality rates at different times. Crucially, these quantities can be read-
ily computed via user–friendly and optimized r packages for state–space models. For
example, the filtering, predictive and smoothing distributions in (1.11)–(1.14) can be ob-
tained via the kfs function from the kfas package (Helske, 2017), after specifying model
(1.9)–(1.10) via the function SSModel.

1.3.2 Forecasting

As is clear from (1.9), the results in Section 1.3.1 are useful not only for inference, but also
to obtain probabilistic forecasts for the vector of future log–mortality rates log𝐦𝑡𝑠∗ =
(log𝑚𝑥1,𝑡𝑠∗ ,… , log𝑚𝑥𝑘 ,𝑡𝑠∗ )

⊺ for 𝑡𝑠∗ = 𝑡𝑛+1,… , 𝑡𝑛+𝑛∗ , from the predictive distribution of 𝐟𝑡𝑠 .
While such an approach is expected to yield accurate results for short–term forecasts, the
quantitative studies in Section 1.4 suggest that the inherent local adaptivity of the model
developed in Section 1.2 might yield less stable and shock–robust mortality projections
for those medium–to–large time horizons that are of interest in demography.

To address this aspect and deliver accurate probabilistic forecasts at different time
horizons, we derive a simple strategy that combines the proposed b–spline construc-
tion in Section 1.2 with the celebrated random walk plus drift projections by Lee and
Carter (1992), in order to obtain an improvement in log–mortality rates forecasts rela-
tive to state–of–the–art competitors. In fact, despite its simplicity, the random walk plus
drift construction is empirically supported by the globally–linear trend of log–mortality
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rates in medium–to–large time horizons, which make Lee and Carter (1992) projections
still competitive. Nonetheless, as mentioned in e.g., Hyndman and Ullah (2007), these
forecasts still rely on an age–period bilinear formulation that fails to account for het-
erogeneity in age–specific mortality dynamics, and, in addition, the estimation of the
drift component is not robust to mortality shocks. The model we propose in Section 1.2
accounts for both effects, thus suggesting that incorporating the random walk plus drift
forecasting strategywithin the proposed b–spline process with locally–adaptive dynamic
coefficients would yield improvements over the original Lee and Carter (1992) strategy
and, as clarified in Section 1.4, also with respect to other state–of–the–art methods, both
in terms of point forecasts and quality of the predictive intervals.

Consistent with the above discussion, and recalling equations (1.2) and (1.9), we obtain
point forecasts for the future log–mortality rates log𝐦𝑡𝑠∗ , via

𝐟𝑡𝑠∗ = [𝐠1,… , 𝐠𝑝]�̂�𝑡𝑠∗ for 𝑡𝑠∗ = 𝑡𝑛+1,… , 𝑡𝑛+𝑛∗ , (1.15)

where [𝐠1,… , 𝐠𝑝] denotes the (𝑘 × 𝑝)–dimensional b–splines matrix having columns
𝐠𝑗 = [𝑔𝑗 (𝑥1),… , 𝑔𝑗 (𝑥𝑘)]⊺, 𝑗 = 1,… , 𝑝, whereas �̂�𝑡𝑠∗ = [𝛽1(𝑡𝑠∗),… , 𝛽𝑝(𝑡𝑠∗)]⊺ is the (𝑝 × 1)–
dimensional vector comprising the forecasts for the b–splines coefficients at 𝑡𝑠∗ > 𝑡𝑛 from
the 𝑝–variate random walk plus drift model

𝜷𝑡𝑠∗+1 = 𝜷𝑡𝑠∗ + �̂�𝛿𝑠∗𝚫𝑡𝑠∗ + 𝝎𝑡𝑠∗ , 𝝎𝑡𝑠∗
i.i.d∼ N𝑝(𝟎,𝐖),

𝚫𝑡𝑠∗+1 = 𝚫𝑡𝑠∗ + 𝝐𝑡𝑠∗ 𝝐𝑡𝑠∗
i.i.d∼ N𝑝(𝟎, 𝜎2Δ𝐈𝑝).

(1.16)

In (1.16), each 𝐖[𝑗 ,𝑙] is set equal to 𝜎2𝜔𝜌𝛽[𝑗 ,𝑙], for 𝑗 = 1,… , 𝑝 and 𝑙 = 1,… , 𝑝, with
𝜌𝛽[𝑗 ,𝑙] as in (1.8), �̂� is the maximum marginal likelihood estimate of 𝜆 discussed in Sec-
tion 1.3, whereas the starting values �̂� and �̂� for 𝜷𝑡𝑛 and 𝚫𝑡𝑛 = [Δ1,𝑡𝑛 ,… ,Δ𝑝,𝑡𝑛]⊺, respec-
tively, are defined in order to ensure flexible, yet shock–robust, point forecasts at each
𝑡𝑠∗ = 𝑡𝑛+1,… , 𝑡𝑛+𝑛∗ . More specifically, �̂� corresponds to the mean of the smoothing dis-
tribution for 𝜷𝑡𝑛 , whereas �̂� is defined as the median of the estimates of 𝜕𝛽𝑗 (𝑡)/𝜕𝑡, over
the last 25 years 𝑡𝑛,… , 𝑡𝑛−24 computed under the smoothing distribution in (1.13), for ev-
ery 𝑗 = 1,… , 𝑝. Since the smoothing distribution in (1.13) is Gaussian, these estimates
coincide with the elements having position 2+ 3(𝑗 −1) in 𝝁𝑡𝑠 |𝑡1∶𝑛 , for each 𝑗 = 1,… , 𝑝 and
𝑡𝑠 = 𝑡𝑛,… , 𝑡𝑛−24. Rather than projecting forward in time a single global dynamic compo-
nent, as in Lee and Carter (1992), strategy (1.15)–(1.16) gains accuracy by extrapolating
multiple time dynamics corresponding to different age classes, while relying on a natu-
ral initialization for the drift terms which leverages the ability of the proposed model to
explicitly learn dynamics also in the first order derivatives quantifying rates of change
in mortality levels. To ensure robustness to shocks while adapting to the most recent
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globally–linear trend dynamics, the starting drift term �̂� is set to the median, rather than
the mean, of these estimates over the last 25 years, which was found to be a robust default
time horizon in the application to multiple countries in Section 1.4. This is in line with
similar results in Lee and Carter (1992) on the time horizon to condition on.

Although the above strategy yields improved point forecasts, the derivation of effec-
tive predictive intervals requires accurate estimates of 𝜎2𝜔 and 𝜎2Δ in (1.16), along with
the variance parameter 𝜎2𝜓 in the observation equation which yields the forecasted 𝐟𝑡𝑠∗ in
(1.15), namely

log𝐦𝑡𝑠∗ = [𝐠1,… , 𝐠𝑝]𝜷𝑡𝑠∗ + 𝝂𝑡𝑠∗ , 𝝂𝑡𝑠∗ ∼ N𝑘(𝟎, 𝜎2𝜓𝐈𝑘). (1.17)

Consistent with the strategy adopted for deriving the point forecasts, these three vari-
ances are obtained via maximum marginal likelihood under model (1.16)–(1.17) applied
to data from 𝑡𝑛−24 until 𝑡𝑛. To suitably connect model (1.9)–(1.10) with the simpler formu-
lation in (1.16)–(1.17), 𝚫𝑡𝑛−24 is initialized at N𝑝(�̂�𝚫, diag(�̂�2

Δ)), where �̂�𝚫 is the median of
the estimated 𝜕𝛽𝑗 (𝑡)/𝜕𝑡, for each 𝑗 = 1,… , 𝑝, under the smoothing distribution in (1.13),
over the 25 years preceding 𝑡𝑛−24, while the generic entry �̂�2Δ𝑗 in �̂�2

Δ corresponds to the
sample variance of the median estimate �̂�Δ𝑗 , for 𝑗 = 1,… , 𝑝, computed via a set of sim-
ulations from the smoothing distribution. The initial vector 𝜷𝑡𝑛−24 is instead assumed to
follow the 𝑝–variate Gaussian distribution where the mean vector is obtained from the
one–step–ahed projection under (1.16) of the smoothing estimate for 𝜷𝑡𝑛−25 provided by
model (1.9)–(1.10), whereas the covariance matrix coincides with that of the predictive
distribution at 𝑡𝑛−25 under model (1.9)–(1.10).

From a practical perspective, the above strategies can be still implemented via stan-
dard r libraries for time series analysis, and, as previously–discussed, are reminiscent of
the two–step approach by Lee and Carter (1992), which relies on an in–sample estimate
of the global time–specific effect and then fits, for future projections, a random walk
plus drift model on the subset of these time effects corresponding to a suitably–defined
most recent window.

1.4 Learning andForecasting ofMortalityAcrossCoun-
tries

In order to quantify the improvements provided by the novel bsp developed in Sec-
tions 1.2–1.3, we consider extensive analyses and performance comparisons with a main
focus on the gender–specific age–period log–mortality rates for the countries discussed
in Section 1.1.1, across a wide time horizon that spans from 1933 until either 2019 or
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2020 depending on data availability in the Human Mortality Database at https://www.
mortality.org/.

In modeling the age–period log–mortality rates for the four countries analyzed we
follow common practice in demographic studies (e.g., Haberman and Renshaw, 2011;
Currie, 2016; Camarda, 2019) and consider a separate analysis for each combination of
gender–country, leading to a total of eight different implementations of the bsp model
in Sections 1.2–1.3 and of selected state–of–the–art competitors. More specifically, for
each combination of gender and country we study the age–period log–mortality rates
via the Gaussian state–space approximation in (1.9)–(1.10) of the bsp model defined in
Section 1.2.1, employing the 𝑝 = 20 b–spline bases 𝑔1(𝑥),… , 𝑔20(𝑥) illustrated in Fig-
ure 1.3, and considering Matérn covariance functions for(�̄�𝑗 , �̄�𝑙; 𝜸𝛽) and(�̄�𝑗 , �̄�𝑙; 𝜸𝑎) in
(1.8) (e.g., Rasmussen and Williams, 2006, Ch. 4). The specification of a total of 𝑝 = 20
bases over the observed age range 𝑥1 = 0,… , 𝑥101 = 100 is motivated by a similar choice
for the age dimension in the bivariate b–splines construction of Camarda (2019). Con-
sistent with the graphical evidence in Figure 1.1, these b–splines are more dense at early
and late ages to achieve increased flexibility in capturing local dynamic variations for
such classes. For the same reasons, the first b–spline 𝑔1(𝑥) is the only one that is ac-
tive at 𝑥1 = 0 since mortality at age 0 is known to display peculiar patterns relative
to those from age 1 onward, thereby requiring increased flexibility relative to the other
classes (Camarda, 2019). The Matérn covariance functions parameters 𝜸𝛽 are instead set
at (0.5, 1) to induce local borrowing of information only across close ages, whereas no
correlation is enforced on the instantaneous means to increase the flexibility in modeling
shocks affecting only specific age classes. Although these covariance parameters could
be estimated, together with 𝜎2𝑚, 𝜎2𝛽 , 𝜎

2
𝑎 and 𝜆, via maximum marginal likelihood under

model (1.9)–(1.10), as clarified in Table 1.1 and in Figures 1.4–1.5, the suggested settings
provide robust default choices to accurately learn and forecast several mortality patterns
across different countries. In fact, moderate changes in the Matérn covariance parame-
ters as well as in the number and location of the b–spline bases did not change the final
conclusions. Notice also that, although the squared exponential covariance function pro-
vides another routinely–implemented alternative, such a function can be recovered as a
special case of the Matérn one which, therefore, yields a more general class with a higher
degree of flexibility.

As a first assessment, we evaluate in Table 1.1 the performance in point forecast-
ing of the bsp formulation proposed in Sections 1.2–1.3, and quantify the improvements
relative to the state–of–the–art competitors discussed in Section 1.1. These include the
classical Lee and Carter (1992) (lc) and age–period–cohort (apc) (Holford, 1983; Osmond,
1985) models, along with the subsequent developments and extensions in Renshaw and
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Figure 1.3: Graphical representation of the 𝑝 = 20 selected b–spline bases 𝑔1(𝑥),… , 𝑔20(𝑥) along with
a heatmap clarifying the intensity of each spline in the corresponding age range. The number �̄�𝑗 associated
to each spline 𝑔𝑗 (𝑥) in the top panel denotes the age at which such a spline takes its maximum value, for
each 𝑗 = 1,… , 20. For illustrative purposes, three bases and the corresponding active range of ages are
highlighted in blue.

Haberman (2006) (rh), Cairns et al. (2006) (cbd), Hyndman and Ullah (2007) (hu), Plat
(2009) (plat) and Camarda (2019) (cp), which currently represent the leading methods
in mortality forecasting. As illustrated in the code available at https://github.com/fpavone/
BSP-mortality, these models can be readily implemented via standard r functions in the
packages StMoMo (Villegas et al., 2018), demography (Hyndman et al., 2014) and in
the r code within the supplementary materials of Camarda (2019). Recalling Section 1.3,
parameter estimation, inference and forecasting under the Gaussian state–space formu-
lation of the proposed bsp approach can be instead effectively implemented via the r
package kfas (Helske, 2017).

Table 1.1 summarizes the performance in point forecasting of the above strategies
over different time horizons, ranging from 1–step–ahead to 10–step–ahead. For the eight
gender–country combinations, these forecasts are obtained by sequentially fitting each
model on the observed age–period log–mortality rates from 1933 up until a last year
ranging from 1990 to 2010, and then predicting, for each of these final years from 1990
to 2010, the age–period log–mortality rates in the subsequent ten years. This produces,
under each model and step–ahead predictive horizon, a total 2 × 101 × 21 forecasts per
country — except for Italy whose data are available only until 2019 — which correspond
to the different combinations of gender, ages and last observation time, thereby provid-
ing a large sample of predictions to accurately compare the different methods. Table 1.1
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displays the overall median of the absolute differences between these forecasts and the
actual observed log–mortality rates, across countries, gender, ages and the last obser-
vation times. Results provide empirical evidence for the improved forecasting accuracy
of the proposed bsp, which outperforms all the state–of–the–art alternatives for every
predictive horizon. As expected, cp (Camarda, 2019) and hu (Hyndman and Ullah, 2007)
are the most competitive alternatives. Recalling Section 1.1, also these strategies rely on
a flexible basis expansion, but are not as effective as the proposed bsp in incorporating
all the core structures of age–period mortality surfaces, thereby allowing our procedure
to further improve forecasting accuracy. Notice that, although the magnitude of these
improvements is not always remarkable, the bsp approach remains systematically more
accurate than all the methods considered, both in terms of medians and the two quar-
tiles. Such a finding was further confirmed in additional studies of other countries in
the Human Mortality Database (i.e., Czech Republic, Denmark and France) and when
comparing the forecasting performance of the different methods via the mean squared
error, rather than the median of the absolute error. The latter measure is preferred in Ta-
ble 1.1 since it provides a more robust and direct measure of the actual distance between
the forecasted and observed mortality rates. We shall also emphasize that, in these con-
texts, even a small reduction in the predictive errors for the log–mortality rates can have
a major impact in population forecasts since, as is clear from equation (1.1), such rates
are multiplied by the central exposed to risk e𝑥𝑡 when modeling the total death counts
𝑑𝑥𝑡 , with e𝑥𝑡 in the order of tens–to–hundreds of thousands in common population anal-
yses at the country level. This reasoning applies also to other demographic measures
derived as a function of the mortality rates, such as, for example, the life expectancy at
birth whose forecasts can be directly obtained via the r package demography from those
produced for 𝑚𝑥𝑡 . Also in this case, bsp was still found to outperform all the state–of–
the–art competitors and almost halved the 10–step–ahead predictive errors of both cp
and hu. Finally, we want to highlight that our model has shown consistent forecasting
accuracy across countries when computing the country–specific median absolute errors.
The results, which we do not report here, are in accordance with the values shown in
Table 1.1.

From a computational perspective, all the methods analyzed in Table 1.1, including
the proposed bsp strategy, facilitate tractable and scalable implementations which yield
runtimes for estimation, inference and forecasting always below one minute. This is
several orders of magnitude lower than the yearly time scale at which mortality data are
typically analyzed, thereby providing effective solutions for rapid updating of inferences
and forecasts.

To further clarify the major advantages of the bsp construction, we also considered
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Step ahead bsp cp hu plat rh apc lc cbd
1 𝟎.𝟎𝟑𝟐 [0.01, 0.07] 0.033 [0.01, 0.07] 0.038 [0.02, 0.09] 0.097 0.067 0.126 0.107 0.141
2 𝟎.𝟎𝟑𝟕 [0.02, 0.08] 0.040 [0.02, 0.08] 0.047 [0.02, 0.09] 0.104 0.075 0.137 0.114 0.149
3 𝟎.𝟎𝟒𝟒 [0.02, 0.09] 0.048 [0.02, 0.10] 0.056 [0.03, 0.11] 0.113 0.085 0.150 0.123 0.159
4 𝟎.𝟎𝟓𝟎 [0.02, 0.10] 0.057 [0.03, 0.11] 0.064 [0.03, 0.12] 0.121 0.094 0.161 0.129 0.171
5 𝟎.𝟎𝟓𝟔 [0.03, 0.11] 0.066 [0.03, 0.12] 0.072 [0.03, 0.14] 0.131 0.103 0.175 0.138 0.182
6 𝟎.𝟎𝟔𝟑 [0.03, 0.12] 0.073 [0.03, 0.13] 0.080 [0.04, 0.15] 0.140 0.113 0.190 0.145 0.193
7 𝟎.𝟎𝟕𝟎 [0.03, 0.13] 0.081 [0.04, 0.15] 0.088 [0.04, 0.16] 0.150 0.127 0.206 0.154 0.204
8 𝟎.𝟎𝟕𝟔 [0.03, 0.14] 0.088 [0.04, 0.16] 0.094 [0.04, 0.18] 0.160 0.141 0.224 0.162 0.218
9 𝟎.𝟎𝟖𝟑 [0.04, 0.16] 0.095 [0.04, 0.17] 0.102 [0.05, 0.19] 0.168 0.155 0.237 0.172 0.241
10 𝟎.𝟎𝟗𝟑 [0.04, 0.17] 0.105 [0.05, 0.19] 0.110 [0.05, 0.21] 0.179 0.174 0.260 0.180 0.253

Table 1.1: For the eight methods under analysis and ten predictive horizons, overall median of the abso-
lute difference between the forecasted and observed log–mortality rates computed from all the country–
gender–age–year combinations. Bold values denote the best performance for each predictive horizon,
whereas the gray column corresponds to the proposed b–spline process with locally–adaptive dynamic
coefficients. For the three top performing methods, the first and third quartiles of the absolute differences
are also reported within brackets.

predictive comparisons against direct implementations of the simpler building–blocks
underlying the proposed formulation and forecasting approach. More specifically, instead
of relying on the strategy outlined in Section 1.3.2, we considered forecasts obtained ei-
ther under the predictive distribution (1.12) of the original bsp formulation in (1.9)–(1.10),
or from the direct use of separate nested Gaussian processes for the trajectories 𝑓𝑡(𝑥) of
every age 𝑥 ∈  rather than employing the more structured formulation proposed within
equations (1.2)–(1.4). Focusing again on a time horizon ranging form 1–step–ahead to 10–
step–ahead forecasts, the overall medians of the absolute differences between the fore-
casted and observed log–mortality rates were [0.035, 0.045, 0.057, 0.067, 0.078, 0.091, 0.103,
0.115, 0.128, 0.144] for the first alternative strategy and [0.058, 0.109, 0.179, 0.264, 0.370,
0.490, 0.630, 0.785, 0.958, 1.149] for the second. Comparing these results with those in the
first column of Table 1.1 clarifies the key advantages of the proposed bsp construction
that achieves improved predictive accuracy by carefully borrowing information across
ages via a structured b–spline representation with dependence across the dynamic co-
efficients, which is subsequently leveraged to develop the parsimonious, yet effective,
forecasting strategy outlined in Section 1.3.2.

Let us conclude the analysis of forecasting performance by assessing the calibration of
the predictive intervals under the different methods considered in Table 1.1. To this end,
Table 1.2 displays the relative proportion, computed from all the different combinations
of country–gender–age–year, of the 95% predictive intervals which contain the observed
log–mortality rates. Also in this setting, the bsp intervals computed under the methods
illustrated in Section 1.3.2 achieve improved overall calibration relative to those obtained
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Step ahead bsp cp hu plat rh apc lc cbd
1 𝟎.𝟗𝟓𝟓 0.497 0.980 0.428 0.377 0.309 0.230 0.328
2 𝟎.𝟗𝟓𝟓 0.466 0.982 0.493 0.441 0.312 0.295 0.395
3 𝟎.𝟗𝟓𝟑 0.436 0.982 0.513 0.457 0.370 0.330 0.469
4 𝟎.𝟗𝟓𝟐 0.415 0.984 0.521 0.464 0.406 0.364 0.498
5 𝟎.𝟗𝟓𝟎 0.388 0.984 0.532 0.464 0.421 0.384 0.466
6 𝟎.𝟗𝟒𝟖 0.357 0.982 0.511 0.468 0.403 0.396 0.513
7 𝟎.𝟗𝟒𝟖 0.331 0.979 0.522 0.453 0.424 0.406 0.505
8 𝟎.𝟗𝟒𝟔 0.311 0.977 0.551 0.436 0.413 0.413 0.506
9 𝟎.𝟗𝟒𝟓 0.300 0.976 0.565 0.421 0.430 0.429 0.503
10 𝟎.𝟗𝟑𝟕 0.286 0.972 0.570 0.404 0.422 0.429 0.512

Table 1.2: For the eight methods under analysis and ten predictive horizons, relative proportion, com-
puted from all the country–gender–age–year combinations, of the 95% predictive intervals containing the
observed log–mortality rates. Bold values denote the best performance for each predictive horizon, whereas
the gray column corresponds to the proposed b–spline process with locally–adaptive dynamic coefficients.

under the competing strategies. Comparing results in Table 1.2 with those in Table 1.1,
the poor performance of plat, rh, apc, lc and cbd is mainly attributable to the bias in the
point forecasts at which such intervals are centered, whereas cp suffers from an underes-
timation of the predictive variance, possibly due to challenges in the implementation of
the employed bootstrap strategy within a time–series context. As illustrated in Table 1.2,
hu is the only competitive strategy, although it exhibits an over–coverage tendency with
intervals having a similar length to those obtained under the proposed bsp construction.
We shall emphasize that, when stratifying by age, the calibration of the bsp intervals is
generally less accurate at younger ages than older ones, thus motivating additional future
refinements.

The improvements in forecasting performance of bsp motivate additional analyses
and country comparisons of age–period mortality surfaces, which are further facilitated
by the interpretable construction of the proposed model in Sections 1.2–1.3. In fact, as
illustrated in Figures 1.4–1.5, bsp allows to formally study and compare changes in mor-
tality patterns across years and specific ages via inference on the location and variability
of the smoothing distribution for the coefficients of the splines active in those age classes.
These selected trajectories are displayed in Figure 1.4, along with the corresponding first
derivatives, and highlight interesting differences across countries in the dynamic evolu-
tion of age–specific mortality rates. For instance, in the first row of Figure 1.4, bsp learns
a peculiar trajectory for infant mortality in Italy, characterized by a structural break soon
after the World War II which leads to a faster decay in infant mortality with respect to
other countries. This remarkable change is aligned with the so–called Italian miracle, a
phase of rapid economic growth and improved life conditions after theWorldWar II (e.g.,
Ginsborg, 1990), progressively bringing infant mortality in Italy to even lower levels than
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Figure 1.4: For females (left) and males (right), and the four countries under analysis, time trajectories of
three representative b–splines coefficients along with the corresponding first derivatives, as obtained from
the smoothing distribution under the proposed bspmodel. The straight lines correspond to the trajectories
of the means, whereas shaded areas denote the pointwise 95% credible intervals.
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those registered in countries such as the United Kingdom and United States. The local
adaptivity of bsp can be instead appreciated in the second row of Figure 1.4, where the
proposed model learns the rapid mortality increment corresponding to the World War II,
which, as expected, is mainly evident for Italian males, albeit visibile also for males in
the United Kingdom. Notice that, since most of the United States military deaths hap-
pened abroad, these counts do not contribute to us mortality as recorded in the Human
Mortality Database. In the second row of Figure 1.4, bsp also learns an evident excess–
mortality peak in Italy for both young males and females in the late ’80s and early ’90s.
This provides quantitative evidence for the rapid and severe combined effect of aids, car
accidents and overdoses in Italy during those years for young age classes (e.g., Conti et al.,
1994, 1997). Despite this shock, Italy displays a generally decreasing trend in the splines
coefficients associated to young age classes, which interestingly departs from the gen-
eral stagnation, or even increasing trend, that bsp learns for the other three countries,
especially in the last two decades. This is particularly remarkable in the United States
which display peculiar mortality patterns characterized by slower mortality decrements
or even increments, mainly evident since the ’80s, for all the three age classes analyzed in
Figure 1.4. These quantitive findings further support a number of studies on the recent us
mortality crisis as a consequence of specific disparities and vulnerabilities associatedwith
young and adult age classes (Ho and Preston, 2010; Woolf and Schoomaker, 2019; Glei,
2022; Preston and Vierboom, 2021; Case and Deaton, 2021). As is clear from Figure 1.4,
all the smoothing distributions analyzed are characterized by limited uncertainty, thus
supporting the reliability of these findings.

Notably, the aforementioned patterns are also associated with differences in the rates
of change of mortality levels during covid–19, as inferred from the analysis of the first
derivatives of the three splines coefficients in Figure 1.4 for year 2020. The ability of bsp
to explicitly model and quantify uncertainty also in these rates of change in mortality
trends crucially allows to learn a mortality shock during covid–19 in young age classes
only for the United States and not for the other countries under analysis; see the panels
𝜕𝛽 in the second row of Figure 1.4. These findings are further expanded in Figure 1.5
where the focus is on the smoothing distribution of the differences between each spline
coefficient in year 2020 and its average in the previous five years, for Sweden, United
Kingdom and United States; data for Italy in year 2020 are not yet available in the Hu-
man Mortality Database at https://www.mortality.org/. Consistent with the discussion
of Figure 1.4, bsp infers a noticeably–high excess mortality in the United States, for both
females and males, which is surprisingly visibile from very young age classes onward,
and whose magnitude is much higher than in the United Kingdom and Sweden. This key
finding further corroborates recent studies on the association between covid–19 effects

35

https://www.mortality.org/


1.4 Learning and Forecasting of Mortality Across Countries Chapter 1

Female

−0.2

0.0

0.2

Male

New
bo

rn 1~
3

2~
7

4~
12

8~
17

13
~2

2

18
~2

7

23
~3

2

28
~3

7

33
~4

5

39
~5

4

46
~6

4

56
~7

1

65
~7

7

73
~8

2

78
~8

7

83
~9

2

88
~9

7

93
~9

9

98
~1

00

−0.3

0.0

Figure 1.5: For females and males, means (colored dots) and 95% credible intervals (colored boxes) of the
smoothing distribution for the difference between the spline coefficients in year 2020 and the corresponding
average over 2014–2019, for United States, United Kingdom and Sweden. Data for Italy in 2020 are not yet
available in theHumanMortality Database. This representation provides a summary of excessmortality
in 2020.

and the peculiar pre–existing us disparities and vulnerabilities, especially in relation to
risk factors (e.g., Wiemers et al., 2020). Despite the less stringent policies adopted in
Sweden, the covid–19 mortality shock for such a country is less evident than the one
registered in the United Kingdom and United States. It shall be emphasized that also
Sweden experienced an excess mortality during the first and second wave of the covid–
19 pandemic (e.g., Juul et al., 2022). However, when aggregating all–causes mortality at a
yearly scale, such increments become less visibile and systematic, pointing toward a pos-
sible mortality displacement effect (Juul et al., 2022), also known as harvesting; namely a
phase of excess deaths followed by a mortality deficit that has a balancing effect when
aggregating at a larger time scale.
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1.5 Conclusion and Future Research Directions

We propose a novel b–spline process with locally–adaptive dynamic coefficients for ac-
curate learning and forecasting of mortality patterns across ages and periods. Such a pro-
cess decomposes the age–periodmortality surface as a flexible, yet interpretable, function
of age, and crucially treats the dynamics of this function across periods via a suitable
stochastic process of time that explicitly incorporates the core structures of mortality
evolution through a set of stochastic differential equations. This allows to (i) incorporate
and learn differences in the time patterns of mortality across age classes, while borrow-
ing information between close ages, (ii) explicitly infer and project not only age–specific
mortality trends, but also the corresponding rates of change, (iii) characterize dynamics
that fluctuate between periods of rapid and slow variation, (iv) devise simple and accurate
forecasting strategies for log–mortality rates which are both flexible and shock–robust,
(v) develop computationally–efficient methods for filtering, smoothing and prediction of
mortality patterns via closed–form Kalman filter recursions.

To the best of our knowledge, none of the solutions currently available in the literature
accounts for all the above properties within a single formulation. In fact, as illustrated in
the application in Section 1.4, the proposed model generally improves forecasting perfor-
mance and crucially expands the set of findings which can be obtained from the analysis
of age–period mortality data. This can open new avenues to formally compare differ-
ences in mortality patterns across ages, countries and years, while quantifying possible
heterogeneities in the rate of change of mortality and in the impact of shocks, such as the
recent covid–19 pandemic for which we infer notable differences across countries.

Besides providing an important contribution to the literature on mortality model-
ing, the proposed formulation also motivates several future advancements. A relevant
direction is to extend the b–spline process in Section 1.2 for joint modeling of multiple
populations, possibly from high, middle and low income countries. Although theHuman
Mortality Database has data only for the first group, such an extension can be accom-
plishedwithin our formulation by considering amixture of b–spline processes that would
further allow to cluster countries characterized by similar age–period mortality patterns.
This facilitates borrowing of information for countries with low population size or studies
at a local level, and incorporates improved coherency in mortality forecasts, an important
aspect in recent multi–population studies (e.g., Li and Lee, 2005; Wen et al., 2021; Wang
et al., 2022b). Alternatively, it would be of interest to specify country–specific b–spline
processes with locally–adaptive dynamic coefficients and then induce dependence among
such processes via a suitable graphical model (Lauritzen, 1996), thus allowing inference
on conditional independence structures in age–period mortality dynamics among differ-
ent countries, while borrowing information to improve inference and forecasting. This
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can be particularly useful also in joint modeling of male and female mortality.
The above directions are also of interest when the focus is on joint modeling of mor-

tality patterns for different causes–of–death, rather than countries (e.g., Kjærgaard et al.,
2019).

1.6 Proofs of Propositions

Proof of Proposition 1. The proof adapts similar derivations considered by Liang et al.
(2014) in the context of binomial logistic–normals. More specifically, under the model
in (1.1), it holds that 𝑑𝑥𝑡 = ∑e𝑥𝑡

𝑖=1 𝑦𝑖,𝑥𝑡 , where 𝑦𝑖,𝑥𝑡 , 𝑖 = 1,… , e𝑥𝑡 , denote auxiliary variables
such that (𝑦𝑖,𝑥𝑡 ∣ 𝑚𝑥𝑡)

i.i.d.∼ Poisson(𝑚𝑥𝑡). Hence, for fixed 𝑚𝑥𝑡 , by the weak law of large
numbers we have that 𝑑𝑥𝑡/e𝑥𝑡 → 𝑚𝑥𝑡 in probability, as e𝑥𝑡 → ∞. This also implies con-
vergence in distribution, i.e., lime𝑥𝑡→∞ pr(𝑑𝑥𝑡/e𝑥𝑡 ≤ 𝑢 ∣ 𝑚𝑥𝑡) = 1(𝑚𝑥𝑡 ≤ 𝑢). Leveraging
this result and applying the dominated convergence theorem, it follows that

lim
e𝑥𝑡→∞

pr(𝑑𝑥𝑡/e𝑥𝑡 ≤ 𝑢) = lim
e𝑥𝑡→∞∫

∞

0
pr(𝑑𝑥𝑡/e𝑥𝑡 ≤ 𝑢 ∣ 𝑚𝑥𝑡)𝑝(𝑚𝑥𝑡)𝜕𝑚𝑥𝑡

= ∫
∞

0
lim

e𝑥𝑡→∞
pr(𝑑𝑥𝑡/e𝑥𝑡 ≤ 𝑢 ∣ 𝑚𝑥𝑡)𝑝(𝑚𝑥𝑡)𝜕𝑚𝑥𝑡

= ∫
∞

0
1(𝑚𝑥𝑡 ≤ 𝑢)𝑝(𝑚𝑥𝑡)𝜕𝑚𝑥𝑡 = pr(𝑚𝑥𝑡 ≤ 𝑢).

Hence, 𝑑𝑥𝑡/e𝑥𝑡 converges in distribution to the assumed log–normal for 𝑚𝑥𝑡 in equation
(1.1) and, as a direct consequence of the continuous mapping theorem, it follows that
log𝑚𝑥𝑡 = log(𝑑𝑥𝑡/e𝑥𝑡) → N(𝑓𝑡(𝑥), 𝜎2𝑚) in distribution, as e𝑥𝑡 → ∞, for any 𝑥 ∈  and
𝑡 ∈  .
Proof of Proposition 2. The proof follows directly from the results in Appendix A.6 of Zhu
and Dunson (2013) after replacing 𝐂 with 𝜆(𝐈𝑝 ⊗ 𝐂) and 𝐃 with (𝐈𝑝 ⊗ 𝐃)𝛀1/2.
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Chapter 2

Phylogenetic Latent Position Models
for Populations of Networks
joint work with Daniele Durante and Robin Ryder

2.1 Introduction

Networks are typically used in statistics to represent relational data. These consist of a set
𝑉 of 𝑛 individuals or units, corresponding to the nodes of the network, and observations
of relations between them, represented by the edges. The set 𝐸 = {𝑦𝑖𝑗 ∈ {0, 1},with 𝑖, 𝑗 =
1,… , 𝑛} collects the pairwise relationships, where 0 and 1 respectively represent the ab-
sence or presence of a connection.

There has been a rising interest in analysing this type of data in order to infer connec-
tivity patterns and topological properties of the network. The goal of statistical modelling
of networks is to describe the connectivity structure by a relatively low–dimensional
probabilistic model. This idea is enforced by the fact that real–world networks frequently
exhibit low–dimensional structures which are responsible for the overall connectivity,
such as homophily, core–periphery, and block connectivity. A variety of methods have
been proposed for the analysis of a single network, such as the exponential random graph

(Frank and Strauss, 1986), the stochastic block model (Nowicki and Snijders, 2001), and the
latent position or latent space model (Hoff et al., 2002). These have been followed by sev-
eral generalisations and extensions (e.g. Handcock et al., 2007; Hoff, 2007; Airoldi et al.,
2008; Krivitsky et al., 2009; Fosdick et al., 2019; Schweinberger et al., 2020; Legramanti
et al., 2022; Ricci et al., 2022).

In many domains, there is an increasing availability of replicated observations of re-
lational data. A separate analysis of each network would ignore the inherent dependence
between observations, given by the underlying common structure. For instance, in dy-
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namical networks the same network is observed at different time shots. Models attempt
at capturing the dynamics responsible for the change of the connectivity over time (Xu
and Hero, 2013; Xu, 2015; Durante and Dunson, 2014, 2016; Miscouridou et al., 2018).
In multilayer or multiplex networks, a set of nodes is observed under multiple contexts
corresponding to different observed set of edges, which share similar connectivity struc-
tures (Kivelä et al., 2014; Gollini and Murphy, 2016; Young et al., 2022). We focus here on
a particular case of multiplex networks, which we call populations of networks (see, e.g.
Scheinerman and Tucker, 2010; Durante et al., 2017; Arroyo et al., 2021; Lunagómez et al.,
2021). For a fixed set of nodes 𝑉 , we assume to observe multiple sets of edges {𝐸𝑚}𝑁𝑚=1
given by independent realisations of the underlying random graph representing the edge
generation mechanism. All observed networks {(𝑉 , 𝐸1),… , (𝑉 , 𝐸𝑁 )} share the same nodes
𝑉 . The multiple observations allow us to infer quantities of interest about the underlying
random graph.

In particular, we consider a frequent setting in biology and neuroscience, in which
the network of the brain connectivity has been recorded for a group of subjects (see,
e.g. Van Essen et al., 2012; Zuo et al., 2014; Zhang et al., 2018). We examine the brain
anatomical connectivity measured via diffusion tensor imaging (dti) for a set of 𝑁 = 20
individuals. dti records howwater molecules diffuse across brain tissues. The white mat-
ter fibres of the brain facilitate the diffusion of water, and thus dti allows for recovering
the structural brain network given by the white matter. See Craddock et al. (2013); Stam
(2014); Sporns (2022) for a technical discussion of the retrieval of the brain connectivity
via dti and other techniques.

The dataset we analyse comes from a pilot study of the Enhanced Nathan Kline In-
stitute Rockland Sample project1, see Figure 2.1 for an example. Networks obtained by
post–processing dti scans are subject to natural variability across individuals and inher-
ent measurement errors. This double stochastic nature of the observations motivates the
need of statistical modelling for such data.

Several models for populations of networks have been proposed in order to infer the
underlying structure responsible for the observed connectivity patterns in the brain (Du-
rante et al., 2017; Wang et al., 2019; Aliverti and Durante, 2019; Schweinberger et al.,
2020), or to build comparison between heterogeneous sets of subjects (Durante and Dun-
son, 2018; Carboni et al., 2021, 2023). For instance, Durante et al. (2017) leverage replicated
observations to learn the connectivity patterns with a latent space based mixture model,
in which the mixture components are shared across networks. Wang et al. (2019) extends
the eigenmodel (Hoff, 2007) to populations of networks allowing for a common term cap-
turing the baseline connectivity shared across networks, together with a subject–specific

1http://fcon_1000.projects.nitrc.org/indi/enhanced/
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Subject 1 Subject 7 Subject 11 Subject 19

Figure 2.1: Example of four adjacency matrices of the brain connectivity networks con-
sidered in Section 2.5. Network nodes corresponds to the 𝑛 = 70 brain regions defined
by the Desikan atlas (Desikan et al., 2006).

factor.
However, the existence of different widely used partitions of the brain at different level

of granularity – such as the Desikan atlas (Desikan et al., 2006), the division in lobes and
hemispheres – motivates a multiresolution view of the structure of the brain, eventually
affecting the connectivity (Hilgetag et al., 2000; Sporns et al., 2005; Moreno-Dominguez
et al., 2014; Betzel and Bassett, 2017; Urchs et al., 2019; Li et al., 2023). Previous attempts at
statistical modelling brain networks in the latent position model class (e.g. Durante et al.,
2017; Wang et al., 2019; Aliverti and Durante, 2019) fail at allowing for such structure in
the model specification.

We present a novel latent position model for populations of networks. Our proposal
is designed to capture multiresolution connectivity structures that are shared across mul-
tiple networks. This is accomplished by assuming that the latent positions of each net-
work are sampled from a branching Brownian motion. Crucially, all the Brownian mo-
tions associated with the networks share the same branching structure, which is effec-
tively represented by a phylogenetic tree. As a consequence, the latent positions within
each network exhibit a common dependence structure. Leveraging the phylogenetic tree
component enables us to infer the multiresolution organization of the nodes, thereby fa-
cilitating the identification of nested clusters that capture community–like connectivity
patterns within the networks.

Phylogenetic trees have been largely developed and extensively employed in the field
of evolutionary biology (see Felsenstein (2004) for an introduction). However, their util-
ity extends beyond this field and finds applications in various other domains, such as de-
mography (Opgen-Rhein et al., 2005; Drummond et al., 2005), and linguistics (Ryder and
Nicholls, 2011; Sagart et al., 2019). The evolutionary interpretation of the phylogenetic
tree is attractive and it opens new interesting research directions in network modelling.
However, we recognize that inference regarding the potential evolutionary processes of
networks necessitates domain–specific calibrations and assumptions. These considera-
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tions go beyond the scope of our current work. As a result, further investigations, along
with external validation by domain experts, must be conducted before employing our pro-
posal for inferring evolutionary processes. In our model, we utilise phylogenetic trees as
mathematical constructs that enable us to achieve a hierarchical representation of the
network nodes and effectively model their interdependence.

The objective of learning the multiresolution structure of networks arise in many do-
mains and it has been previously addressed in the literature. The main works in this
direction has been done primarily in the stochastic block model framework (Nowicki
and Snijders, 2001), and limited to single network modelling. Typically, network nodes
are placed at the leaves of a binary–splitting tree. Each internal node of the tree has a
parameter representing the probability of a connection between pairs of nodes that have
that tree node as the most recent common ancestor, e.g. see (Roy et al., 2006; Clauset
et al., 2008; Roy and Teh, 2008; Herlau et al., 2012). Schmidt and Morup (2013) generalise
binary splits to multifurcating trees via Gibbs fragmentation processes (McCullagh et al.,
2008). Schweinberger and Snijders (2003), instead, embeds the nodes of the network in
a latent ultrametric space. The ultrametric property of the space encodes the tree orga-
nization of the nodes. The probability of a connection between two nodes is treated as a
parameter depending only on the ultrametric distance between the nodes. The authors
assign uniform priors on both the distance and the probability parameters. Even though
the model embeds the nodes in a latent space, the structure is again one of a tree–based
stochastic block model, where the ultrametric distance prior is a distribution on the class
of partitioning trees, with probability parameters assigned to each internal node of the
tree.

It is worth noticing that in these works, while the tree parameter allows for inferring
the hierarchical clustering of the nodes, the connection probabilities are assumed to be
independent of the tree. This is a restrictive assumption, as one may expect that connec-
tions between similar pairs of blocks, characterized by most common recent ancestors
being close in the tree, have similar probabilities. Additionally, while the stochastic block
model effectively captures community structures and assortative mixing, it falls short
in accurately modelling crucial local connectivity patterns that are characteristic of the
brain structural connectivity (Bullmore and Sporns, 2009). For instance, brain regions
located nearby have higher chance to be connected as the material and energy costs to
form white matter fibres are high, thereby likely showing in the network patterns such
as homophily and triangles. Latent position models, instead, are able to represent well
these types of structures through the latent space representation (Kaur et al., 2023). Fos-
dick et al. (2019) overcome this problem combining the stochastic block model with the
latent positionmodel, respectively for the between–blocks andwithin–blocks connection
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probabilities, obtaining two levels of resolution of the network. While such an approach
has shown interesting results applied to social sciences (Ng et al., 2021), the methodology
is still limited to a single network and only allows for two levels of resolution.

Our contribution stands out from the previously mentioned approaches with the in-
troduction of the phylogenetic latent position model. This innovative framework com-
bines the benefits of the latent position model class with the ability to capture multireso-
lution structures and community–like connectivity patterns, shared across a population
of networks. Moreover, the connection probabilities are inherently dependent on the tree
component of the model responsible for the hierarchical organization of the nodes. In our
proposal, each network is associated with its own set of latent positions, differently from
Gollini and Murphy (2016), where the latent positions are shared across all networks. We
believe that this assumption is restrictive and can be relaxed by only sharing the latent
tree structure. By allowing network–specific latent positions, our model accommodates
a wider range of variations and captures the inherent diversity within the population of
networks.

The remaining of the Chapter is organized as follows. In Section 2.2, we introduce
phylogenetic trees. In Section 2.3, we define our model and discuss how to sample from
the posterior distribution. In Section 2.4 and 2.5, we respectively apply our model to a
set of simulated examples and to the brain networks data. Finally, we conclude with a
discussion in Section 2.6.

2.2 Phylogenetic Trees

We briefly introduce the topic of phylogenetic trees in order to facilitate the reading of
the remaining of the Chapter, for those who are not familiar with the subject.

Phylogenies are the natural object for thinking about evolution. The major contri-
butions in developing theory and methods for phylogenetic trees come from the evo-
lutionary biology and population genetics communities. A phylogenetic tree 𝑔 is a tree
endowed with branch lengths. From a mathematical perspective, there are different ways
of considering them. They can be defined as random trees with random branch lengths,
or equivalently as point processes in the product space of time and tree–node indexes, or
as branching processes (Aldous, 2001).

For what matters our work, we consider trees conditioned on having 𝑛 leaves cor-
responding to the network nodes, at the time of the observations. Let us consider an
example of the construction of a phylogenetic tree seen as a branching process, in the
simplest case where only bifurcations are allowed. It is a usual convention to consider
time to increase from the leaves to the root of the tree, placing the leaves at time 𝜏 = 0
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and the root at time 𝜏 = 𝜏0 > 0. In this case, time takes the meaning of age or depth
of a node, with the root of the tree being the oldest node at depth 𝜏0 and the leaves the
youngest at depth 0. Such convention is common in many mathematical derivations and
software implementations. However, when reporting results in applications it is natural
to use the opposite time orientation, which follows the evolutionary time 𝑡. In this case,
the time measure is also called the height of a node. The root is set to be at height 𝑡 = 0
and leaves at height 𝑡 = 𝑡0 = 𝜏0. The reader has to get used to both conventions.

The process starts from a single node, the root. At 𝜏0 the root gives birth to two
offspring nodes. The branch of each offspring grows independently from the other, for
some amount of time after which, in turn, it gives birth to two new offspring. The process
goes on recursively, like a growing tree. At time 𝜏 = 0, a snapshot of the tree shows the 𝑛
current offspring nodes, which we refer to as leaves, tips, or individuals. Notice that when
the tree node 𝑗 gives birth to 𝑙 and𝑚, we do not count 𝑗 anymore among the current leaves
or individuals of the tree.

If we assume that the amount of time between the generation of a node and the mo-
ment it gives birth to offspring is independent of the other nodes and follows an expo-
nential distribution with rate 𝑏 > 0, then the process described before is the Yule process
(Yule, 1925). The Yule process is a special case of the birth and death process (see, e.g. Har-
ris, 1963; Ross, 2014), where the birth rate is 𝑏 and the death rate is 0. For general birth
and death rates (𝑏, 𝑑 > 0), the process is changed by assuming that each node undergoes
two competing events: giving birth to two offspring with rate 𝑏, or dying with rate 𝑑.
If death happens before giving birth, then the branch of the tree related to the node is
removed from the tree.

Depending on the assumptions, there are different ways to compute the density of
a given phylogenetic tree under the birth and death process of rates (𝑏, 𝑑). If we con-
dition the process on having 𝑛 leaves at the present, on the root giving birth to two
sub–branching processes at time 𝜏0, and on both of them surviving with any descendant
to the present 𝜏 = 0, then we can write the density of a given tree 𝑔 with branching times
𝜏0 > 𝜏1 > ⋯ > 𝜏𝑛−1 > 0 as follows:

𝑓 (𝑔) = (𝑛 − 1)!(
𝑝1(𝜏0)

1 − 𝑝0(𝜏0))

2 𝑛−1
∏
𝑖=1

𝑏 𝑝1(𝜏𝑖), (2.1)
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Figure 2.2: Example of the realization of a branching Brownianmotion with the tree representing
the branching structure.

where the auxiliary functions 𝑝1(𝜏) and 𝑝0(𝜏) are defined as:

𝑝0(𝜏) = 1 −
𝑏 − 𝑑

𝑏 − 𝑑 𝑒−(𝑏−𝑑)𝜏

𝑝1(𝜏) =
(𝑏 − 𝑑)2 𝑒−(𝑏−𝑑)𝜏

(𝑏 − 𝑑 𝑒−(𝑏−𝑑)𝜏)2
.

(2.2)

See Stadler (2010, 2013) for the derivation of different density functions under different
assumptions, and Kendall (1949) for a detailed study of the birth and death process.

In many applications, the phylogenetic tree is the skeleton for some Markov process
which is observed at the leaves. For example, this can represent genetic variations of
nucleotides of a set of observed dna sequences (see, e.g. Felsenstein, 1981). In our frame-
work, instead, we consider branching Brownian motions (bbm) starting at the origin at
𝑡 = 0, see Figure 2.3 for an example.

The phylogenetic tree represents the branching structure of the Brownian motion. On
each branch, the process evolves as an independent Brownian motion with a given rate
𝜎2. It follows that the random vector collecting the values of the bbm at the tips of the
tree is distributed as a multivariate normal distribution. The marginal variance of each
component is given by the product 𝑡0𝜎2, between the total height of the tree 𝑡0 and the
rate of the Brownian motion 𝜎2. The branching structure affects the covariance between
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the tips values. By simple computations, one finds out that the covariance between two
tips is equal to the variance of the Brownian motion particle corresponding to the most
recent common ancestors of the tips in the tree. For instance, consider the following tree
example and let (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)⊺ be the random vector representing the Brownian
motion at the tips of the tree. It follows that the variance–covariance of, e.g., 𝑥3 and 𝑥5,
is given by:

1

2

3

4

5

6

0 t mrca t0

Var(𝑥3) = 𝑡0𝜎2

Var(𝑥5) = 𝑡0𝜎2

Cov(𝑥3, 𝑥5) = 𝑡mrca𝜎2.
(2.3)

In absence of historical observations, i.e. between time 0 and 𝑡0, the rate of the Brow-
nian motion is identifiable only for a fixed time scale, and vice versa. Therefore, we will
consider in our model a fixed and arbitrary age of the root 𝑡0. We discuss in Section 2.6
possible extensions of our model to, e.g., non–constant rate Brownian motions.

In the Bayesian framework, phylogenetic trees are random entities. Inference on trees
is based on a set of tree samples from the posterior distribution of the model given data.
The uncertainty in the posterior can be visualised by plotting the trees under a common
leaf ordering (see, e.g. the bottom plot in Figure 2.6). However, this approach is limited by
the fact that, in some cases, the chosen ordering has a significant influence on the visual
impact of the graphical representation of the set of trees. Softwares such as densitree
(Bouckaert, 2010) and ggtree (Yu et al., 2017) implement different algorithms to choose
the optimal leaf ordering for better visualization.

Alternatively, one can build estimates or summaries from a set of trees. Defining
summary statistics for complex objects like trees is challenging. However, there is a very
common set of tools to summarize a set of trees with a single one, which are called the
consensus trees (see, e.g. Felsenstein, 2004, Ch. 30). We consider in particular themajority–

rule consensus tree of level 𝑝. The topology of the majority–rule consensus tree merges
two nodes in a subtree, if the branching occurs with a frequency of at least 𝑝 in the set
of trees. Given the consensus topology, branch lengths can be computed in several ways,
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e.g. as the mean or the least square length of the lengths of the branches in the set of
trees. As alternative summaries, it is also possible to consider the maximum a posteriori
topology or the maximum clade credibility tree.

Regarding implementations, there are several softwares for Bayesian phylogenetic
models like beast or RevBayes (Bouckaert et al., 2014; Höhna et al., 2016), together with
a wide universe of R packages (R Core Team, 2023) to explore, manipulate, and fit phy-
logenetic trees (see, e.g. Gearty et al., 2023).

2.3 Phylogenetic Latent Position Models

Consider a single network (𝑉 , 𝐸) represented by the 𝑛×𝑛 adjacency matrix 𝐘, with [𝐘]𝑖𝑗 =
𝑦𝑖𝑗 = 1 if nodes 𝑖 and 𝑗 are connected and 𝑦𝑖𝑗 = 0 otherwise, for 𝑖, 𝑗 ∈ {1,… , 𝑛}. We
focus on undirected networks with no self–loops, corresponding to symmetric 𝐘 with
null diagonal entries 𝑦𝑖𝑖 = 0.

We follow the latent position model approach (Hoff et al., 2002). Edges are drawn
independently from a Bernoulli distribution given the edge probability 𝜃𝑖𝑗 ,

𝑦𝑖𝑗 ∣ 𝜃𝑖𝑗
ind∼ bern(𝜃𝑖𝑗 ). (2.4)

Network nodes are embedded in a 𝐾 dimensional latent space, where each node 𝑖 is rep-
resented by a vector of latent coordinates 𝐳𝑖 ∈ ℝ𝐾 . The latent space representation is used
to model the connection probabilities. The closer are two nodes in the latent space, the
higher is the probability of an edge between them. This is obtain by modelling the edge
probabilities through a logistic regression depending on the Euclidean distance between
the latent positions, as follows:

logit 𝜃𝑖𝑗 = 𝑎− ∣∣ 𝐳𝑖 − 𝐳𝑗 ∣∣, (2.5)

where 𝑎 captures the overall edge density in the network. In case covariates are available,
these are included with an additional regression term to the right–hand side of (2.5).

Let us consider now the setting of populations of networks and introduce the phy-
logenetic latent position model. We have a set of networks {𝐘(1),… ,𝐘(𝑁 )}, represented
by 𝑛 × 𝑛 adjacency matrices with binary entries [𝐘(𝑚)]𝑖𝑗 = 𝑦(𝑚)𝑖𝑗 . We assume that con-
ditioning on the latent positions, the edges of each network are independent from the
other networks. The model likelihood (2.4) for a single network is directly extended to
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populations of networks as follows: independently for each 𝑚 ∈ {1,… , 𝑁 },

𝑦(𝑚)𝑖𝑗 ∣ 𝐙(𝑚), 𝑎 ind∼ bern(𝜃(𝑚)𝑖𝑗 ) 𝑖, 𝑗 = 1,… , 𝑛

logit 𝜃(𝑚)𝑖𝑗 = 𝑎− ∣∣ 𝐳(𝑚)𝑖 − 𝐳(𝑚)𝑗 ∣∣,
(2.6)

where 𝐙(𝑚) = [𝐳(𝑚)1 ,… , 𝐳(𝑚)𝑛 ] ∈ ℝ𝐾×𝑛 collects the latent positions of network 𝑚. We as-
sume that all networks are embedded in the same latent space ℝ𝐾 . For each network
𝑚 ∈ {1,… , 𝑁 }, the latent positions 𝐙(𝑚) are sampled from a 𝐾–dimensional branching
Brownian motion (bbm). All Brownian motions associated with the networks share a
common branching structure, which is represented by the phylogenetic tree 𝑔 . This im-
plies the following prior for the latent positions: for 𝑚 ∈ {1,… , 𝑁 },

𝐙(𝑚) ∣ 𝑔, 𝜎2 iid∼ bbm𝐾 (𝜎2, 𝑔)
𝑔 ∣ 𝑏 ∼ bdt𝑛(𝑏, 0)

(2.7)

where 𝜎2 is the diffusion parameter of the Brownian motion, and bdt𝑛 is the birth and
death process prior on a tree with 𝑛 leaves with birth and death rates 𝑏 and 𝑑 = 0, which is
equivalent to the Yule process. This prior choice has shown to provide enough flexibility
for the purpose of our applications and it reduces the number of parameters of the model.

The phylogenetic tree 𝑔 is responsible for capturing the correlation structure among
the nodes in each network and for each dimension of the latent space ℝ𝐾 . In particular,
the tree induces a 𝑛 × 𝑛 covariance matrix 𝚺𝑔 , see example (2.3). The vector of the 𝑘-th
components of the latent positions 𝐙(𝑚) of each network 𝑚, i.e. ([𝐳(𝑚)1 ]𝑘,… , [𝐳(𝑚)𝑛 ]𝑘)⊺,
follows a 𝑛–dimensional normal distribution centred in zero and with covariance 𝜎2 𝚺𝑔 ,
with independence across components 𝑘 ∈ {1,… , 𝐾 }. For a fixed 𝑚, this can be written as
follows:

𝐙(𝑚) ∣ 𝑔, 𝜎2 ∼ bbm𝐾 (𝜎2, 𝑔) ⟺
⎛
⎜
⎜
⎜
⎝

[𝐳(𝑚)1 ]𝑘
⋮

[𝐳(𝑚)𝑛 ]𝑘

⎞
⎟
⎟
⎟
⎠

∣ 𝑔, 𝜎2 iid∼ 𝑛(0, 𝜎2Σ𝑔), (2.8)

where the right–hand side is independently and identically distributed over the latent
space dimensions 𝑘 ∈ {1,… , 𝐾 }. The normal distribution is the result of observing the
evolution of the branching Brownian motion at the tips of the tree 𝑔 . Figure 2.3 shows an
example of the latent positions for three networks, together with the shared phylogenetic
tree.

We complete the model specification by setting independent priors for the remaining
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Figure 2.3: Example of the realization of a branching Brownian motion with 𝐾 = 2 over a tree
with 𝑛 = 10 leaves. On the left the underlying phylogenetic tree. On the right the 𝑛 network
nodes in the latent space for 𝑁 = 3 networks.

Figure 2.4: Graphical model representation of the phylogenetic latent position model.

model parameters as follows:

𝜎2 ∼ inv-gamma(𝛼𝜎 , 𝛽𝜎)
𝑏 ∼ inv-gamma(𝛼𝑏, 𝛽𝑏)
𝑎 ∼  (0, 𝜎2𝑎).

(2.9)

Figure 2.4 shows the graphical model of the phylogenetic latent position model. Dashed
boxes represent sets of replicated random variables. Edges between circles indicates one–
to–one dependence, whereas edges between circle and boxes indicates that the random
variable in the circle is a shared parameter for all random variables in the box.

For the remaining of the Chapter, we set the latent space dimension to 𝐾 = 3. We have
preliminary explored different values for 𝐾 with the latent position model of Hoff et al.
(2002) through the latentnet software (Krivitsky and Handcock, 2008) in the context of
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our experiments. The value 𝐾 = 3 has shown to achieve a good representation of the net-
works, while allowing for a low–dimensional model structure and reasonable computa-
tional costs. Finally, we fix the prior hyperparameters as follows: 𝛼𝑏 = 𝛼𝜎 = 𝛽𝑏 = 𝛽𝜎 = 1,
and 𝜎𝑎 = 2. In our experience, the model has proved to be robust to small deviations from
these default values.

2.3.1 Signal and Model Identifiability

From an inferential perspective, the main quantity of interest in our model is the latent
phylogenetic tree 𝑔 , responsible for the multiresolution structure of the network nodes.
The size 𝑛 of each network and the number of observed networks 𝑁 play two opposite
roles for what matters the identifiability of 𝑔 .

Considering a single network, data are indirectly placed at the leaves of 𝑔 due to the
latent position representation of the network. Conceptually, the flow of the information
from the data to the latent layers of the model has the following path. The observed edges
inform the probabilities of connection between nodes. These affect the latent positions,
since the pairwise distances define the connection probabilities. The latent positions
are instances of the branching Brownian motion at the leaves of 𝑔 . In this flow, the
topology of the tree is one layer more latent than the latent positions 𝐙(𝑚). The amount
of information contained in a single network of 𝑛 nodes is low to infer a tree with 𝑛 leaves.
The problem gets harder as 𝑛 increases, as the size of the tree increases as well. This is
somehow equivalent to the problem of estimating a 𝑛 × 𝑛 covariance matrix 𝚺 of a vector
of 𝑛 components observing 𝐾 replicates, with 𝐾 ≪ 𝑛, but in our case with constraints
on the structure of the covariance matrix (i.e., 𝚺 = 𝚺𝑔 ). Observing 𝑁 networks, instead,
corresponds to observing 𝐾𝑁 replicates of the same covariance structure Σ𝑔 . Therefore,
as 𝑁 grows there is increasing signal in the data to better infer the latent hierarchical
organization of the nodes given by the phylogenetic tree 𝑔 .

The connection probabilities depend on the latent positions only through their pair-
wise distance, see equation (2.5). In the classical latent space model, where the latent
positions follow a 𝐾 -dimensional isotropic normal distribution, the latent positions are
identifiable up to rotations, translations, and reflections (this class of transformations
forms an equivalence class for the latent positions). By post–processing the mcmc draws
via a suitable Procrustean transformation (Hoff et al., 2002; Handcock et al., 2007), it is
possible to obtain a set of posterior samples of the latent positions all belonging to the
same equivalence class.

In the prior (2.7), instead, the conditional distribution of the latent positions is not
isotropic, because the covariance 𝚺𝑔 is not diagonal. This is expected to improve the
identifiability of the latent positions, but it is likely not enough to have complete identifi-
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ability. If they are of direct interest, we suggest to rely on the Procrustean transformation
as in (Hoff et al., 2002). In our experience, we have observed that this condition is not
harmful for what matters the inference of the phylogenetic tree 𝑔 . In general, the weak
identifiability of the latent positions could potentially lead to a multimodal posterior of
𝑔 . The existence of different configurations of the latent positions with similar likelihood
and prior values may correspond to different tree topologies associated to each config-
uration, with similar posterior probabilities. However, we have not experienced this in
practice. In our experiments, we have observed good concentration of the posterior and
no signs of this behaviour in the convergence diagnostics of the posterior sampling. Nev-
ertheless, we believe that it is of primary importance to better study this aspect of the
model in the near future, ideally providing theoretical guarantees for the identifiability
of the tree.

2.3.2 Posterior Computations via Gibbs-Sampling

We design a Gibbs sampling algorithm targeting the joint posterior of the model (2.6)–
(2.7)–(2.9), given the data. We give here a detailed description of each sampling step of
the full conditional distributions of the algorithm, which leverages – where possible –
parallelization and conjugate updates. When conjugacy is not available, a Metropolis–
Hasting step is adopted.

Except for tree moves, all Metropolis–Hasting based moves use symmetric Gaussian
proposals. We target the ideal acceptance rate of �̄� = 0.23 through the adaptation algo-
rithm of Andrieu and Thoms (2008). Such value should guarantee a good balance between
sampling nearby the current parameter value of the chain – in a region of high posterior
probability – and exploring the remaining of the parameter space. In practice, at the end
of iteration 𝑠 we adapt the standard deviation 𝜂𝑠 of the proposal distribution for a given
parameter as follows:

log 𝜂𝑠 = log 𝜂𝑠−1 + 𝑠−0.8(𝛼𝑠 − �̄�), (2.10)

where 𝛼𝑠 denotes the acceptance probability computed at iteration 𝑠.
In the following, we provide formulas for a generic iteration 𝑠 of the sampler. We use

superscripts 𝑠 and 𝑠+1 for the parameter involved in the sampling, respectively indicating
the current value and the proposed value at the given iteration. In order to simplify the
notation, we do not explicitly indicate the iteration for the parameters not involved in
the sampling. Their values are assumed to be the most recently computed ones.

We denote the generic laws for observations and parameters with(⋅) and 𝜋(⋅). When
necessary, we explicitly denote the density function computed in a given value, separat-
ing distribution parameters with semicolons (e.g., (𝑥; 𝜇, 𝜎2) is the density of the normal
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distribution computed in 𝑥 , with mean 𝜇 and variance 𝜎2). Finally, the horizontal bar in
the writing 𝜋(⋅ ∣ —) denotes conditioning on all the other parameters and observations.

Parameter 𝑎 Due to conditional independence (see Figure 2.4), we factorize the full
conditional of 𝑎 as follows:

𝜋(𝑎 ∣ —) ∝ 𝜋(𝑎)
𝑁
∏
𝑚=1

(𝐘(𝑚) ∣ 𝑎,𝐙(𝑚)). (2.11)

At iteration 𝑠, the acceptance probability for the Metropolis–Hasting step is given by:

𝛼𝑠𝑎 = min

{

1,
 (𝑎𝑠+1; 0, 𝜎2𝑎) ∏

𝑁
𝑚=1(𝐘(𝑚) ∣ 𝑎𝑠+1,𝐙(𝑚))

 (𝑎𝑠; 0, 𝜎2𝑎) ∏
𝑁
𝑚=1(𝐘(𝑚) ∣ 𝑎𝑠,𝐙(𝑚))

}

, (2.12)

where the likelihood terms can be computed as follows:

(𝐘(𝑚) ∣ 𝑎,𝐙(𝑚)) =
𝑛

∏
𝑖,𝑗=1∶𝑖<𝑗

(𝜃(𝑚)𝑖𝑗 )𝑦
(𝑚)
𝑖𝑗 (1 − 𝜃(𝑚)𝑖𝑗 )1−𝑦

(𝑚)
𝑖𝑗

logit 𝜃(𝑚)𝑖𝑗 = 𝑎− ∣∣ 𝑧(𝑚)𝑖 − 𝑧(𝑚)𝑗 ∣∣ .

(2.13)

Alternatevely to Metropolis–Hasting with Gaussian proposal, it is possible to consider
the Polya–Gamma augmentation (Polson et al., 2013).

Birth rate 𝑏 The birth rate 𝑏 is a positive parameter, therefore we consider symmetric
Gaussian proposals on the log scale, as follows:

log 𝑏𝑠+1 = log 𝑏𝑠 + 𝜖𝑠𝑏, (2.14)

where 𝜖𝑠𝑏
ind∼  (0, 𝜂2𝑠 ). Due to conditional independence, the full conditional of 𝑏 only

depends on the tree 𝑔 . It follows that we can write the acceptance probability as follows:

𝛼𝑠𝑏 = min

{

1,
𝛾−1(𝑏𝑠+1; 𝛼𝑏, 𝛽𝑏)𝜋bdt(𝑔 ; 𝑏𝑠+1, 0)
𝛾−1(𝑏𝑠; 𝛼𝑏, 𝛽𝑏)𝜋bdt(𝑔 ; 𝑏𝑠, 0)

}

, (2.15)

where 𝛾−1(⋅; 𝛼, 𝛽) denotes the density of the Inverse–Gamma distribution, 𝜋bdt(⋅; 𝑏, 0) is
the density of the birth and death process given by (2.1).
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Tree 𝑔 In order to sample from the full conditional of the phylogenetic tree 𝑔 , we imple-
ment four different symmetric moves, which ensure ergodicity of the chains in the tree
space. In particular, we implement the followings, under the condition that they do not
violate the ultrametric constraint of the tree (i.e., tree leaves are all at the same height):

1. Tips interchange: it consists in randomly selecting two leaves of the tree and
swapping them;

2. Subtree exchange: it consists in randomly selecting two subtrees and swapping
them;

3. Tree-node age move: it consists in randomly selecting an internal node and shift-
ing his age. This corresponds to expand or contract the length of the branch con-
necting the selected node and its parent in the tree. Accordingly to this, the child
branches of the selected nodes are respectively contracted or expanded in order to
keep unchanged the total height of tree.

4. Subtree pruning and regrafting: it consists in randomly selecting a subtree,
pruning it and re–attaching it to another suitable position in the tree. Any branch
which will not violate the time order of the parent, selected node, and the children,
represents a suitable position.

The full conditional of 𝑔 is proportional to the prior on 𝑔 times the conditional distri-
bution of the latent positions (see Figure 2.4). It follows that we can write the acceptance
probability for any of the above moves as follows:

𝛼𝑠𝑔 = min

{

1,
𝜋bdt(𝑔𝑠+1; 𝑏, 0) ∏𝑁

𝑚=1 𝜋(𝐙(𝑚) ∣ 𝜎2, 𝑔𝑠+1)
𝜋bdt(𝑔𝑠; 𝑏, 0) ∏𝑁

𝑚=1 𝜋(𝐙(𝑚) ∣ 𝜎2, 𝑔𝑠)

}

. (2.16)

Denoting with [𝐙(𝑚)]𝑘 = ([𝐳(𝑚)1 ]𝑘,… , [𝐳(𝑚)𝑛 ]𝑘)⊺ ∈ ℝ𝑛 the vector collecting the 𝑘-th coor-
dinates of the latent positions of the nodes in network 𝑚, we can write the conditional
density of the latent positions 𝐙(𝑚) in the following way:

𝜋(𝐙(𝑚) ∣ 𝜎2, 𝑔) =
𝐾
∏
𝑘=1

 ([𝐙(𝑚)]𝑘; 𝟎, 𝜎2Σ𝑔), (2.17)

where 𝚺𝑔 is the covariance matrix induced by the tree 𝑔 .
The prior density (2.1) is invariant with respect to the tips interchange move, since

it does not depend on the labelling order of the leaves. Therefore, the ratio between
𝜋bdt(𝑔𝑠+1; 𝑏, 0) and 𝜋bdt(𝑔𝑠; 𝑏, 0) cancels out in the acceptance probability of this move.
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Brownian motion rate 𝜎2 The prior on 𝜎2 is conjugate with the conditional distribu-
tion of the latent positions. We can write the full conditional of 𝜎2 as follows:

𝜋(𝜎2 ∣ —) ∝ 𝜋(𝜎2)
𝑁
∏
𝑚=1

𝜋(𝐙(𝑚) ∣ 𝜎2, 𝑔), (2.18)

and leverage the conjugacy to sample from such distribution. The collection of the latent
coordinates related to a given dimension, for a given network, is a multivariate normal
with covariance 𝜎2𝚺𝑔 . If we denote with �̃� the vector piling all the latent coordinates of
all the networks,

�̃� = ([𝐙
(1)]⊺1 ,… , [𝐙(1)]⊺𝐾 ,… , [𝐙(𝑁 )]⊺1 ,… , [𝐙(𝑁 )]⊺𝐾)

⊺
∈ ℝ𝑛𝐾𝑁 , (2.19)

we can rewrite (2.18) as follows:

𝜋(𝜎2 ∣ —) ∝ 𝛾−1(𝜎2; 𝛼𝜎 , 𝛽𝜎) (�̃�; 0, 𝜎2𝐈𝐾𝑁 ⊗ 𝚺𝑔), (2.20)

where 𝐈𝐾𝑁 denotes the 𝐾𝑁–dimensional identity matrix and the operator ⊗ is the Kro-
necker product. Equation 2.20 shows the conjugate Normal–Inverse–Gamma model.
Therefore, the Gibbs sampler step for 𝜎2 requires sampling from an inv-gamma(�̃�, 𝛽),
with:

�̃� = 𝛼𝜎 +
1
2
𝑛𝐾𝑁

𝛽 = 𝛽𝜎 +
1
2
�̃�⊺ (𝐈𝐾𝑁 ⊗ 𝚺−1𝑔 ) �̃�.

(2.21)

Latent positions 𝑍 The full conditional of the latent positions 𝐙(𝑚) depends only on
network 𝐘(𝑚), 𝑔 and 𝜎2 (see Figure 2.4). The conditional independence of 𝐙(𝑚) from
𝐘(𝑙), for 𝑙 ≠ 𝑚, allows us to implement parallel updates of the latent positions of each
network. In each parallel update, there are 𝑛 ×𝐾 components to sample, which are the 𝐾
latent coordinates of the 𝑛 nodes of network𝑚. In our implementation, we jointly update
the latent coordinates of each node, cycling over all nodes. For every proposal relative to
network 𝑚, the acceptance probability is given by:

𝛼𝑠𝑧 = min

{

1,
𝜋(𝐙(𝑚) 𝑠+1 ∣ 𝑔, 𝜎2)(𝐘(𝑚) ∣ 𝑎,𝐙(𝑚) 𝑠+1)
𝜋(𝐙(𝑚) 𝑠 ∣ 𝑔, 𝜎2)(𝐘(𝑚) ∣ 𝑎,𝐙(𝑚) 𝑠)

}

, (2.22)

where the quantities (𝐘(𝑚) ∣ —) and 𝜋(𝐙(𝑚) ∣ —) can be computed from (2.13) and (2.17).
Notice that the possibility to parallelize over each network 𝑚 is highlighted from the fact
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that only index 𝑚 appears in equation (2.22).

2.3.3 Diagnosing Convergence of Markov Chain Monte Carlo for
Phylogenetic Trees

The reliability of Bayesian posterior inference based on Markov chain Monte Carlo al-
gorithms is based on the assumption that the Markov chains are correctly targeting the
posterior distribution, they have reached stationarity after the burnin period, and the
autocorrelation between samples is low. The first assumption is ensured by the proper
implementation of the Gibbs sampler. However, careful inspection of the posterior sam-
ples is required to ensure the validity of the other ones.

Assessing the convergence of the chains to the stationary distribution is an important
step in the modelling workflow. While plenty of tools have been designed to check the
convergence of numerical quantities (see, e.g. Brooks and Gelman, 1998; Brooks et al.,
2011; Vehtari et al., 2021), diagnosing convergence for trees is further more challenging.
A first inspection consists in checking the mixing of numerical summaries of trees, such
as branch lengths, total tree height (if random), and tree likelihood, using standard tools
for numerical mcmc.

Dedicated softwares, such as the r–package rwty (Warren et al., 2017), implements
more sophisticated diagnostics, such as topology trace plots for trees (Lanfear et al., 2016).
Given a distance in the tree space (see, e.g. Robinson and Foulds, 1981; Critchlow et al.,
1996), topology trace plots are based on the trace plot of the distances between the tree
samples and a fixed tree, named the focal tree. The latter can be, for instance, a random
sample from the tree prior, or one of the posterior samples. In a similar fashion, it is
possible to defined autocorrelation for trees. For instance, the topology autocorrelation
(Lanfear et al., 2016) is based on the pairwise tree distance between trees at given lags in
the chains. As the lag increases, the distances are expected to stabilise on a fixed average
value. Additionally, it is possible to monitor other quantities, such as the clade splitting
frequencies, and to inspect the projection of the tree samples on a low–dimensional space
via multidimensional scaling (Hillis et al., 2005). Nonetheless, assessing proper conver-
gence of mcmc remains still an important open problem of active research. See, e.g., Kelly
et al. (2023) for a recent advancement and a broader discussion on the topic.

In all our applications, we check the goodness of the sampling relying on the mcmc
diagnostics available in the r–package rwty (Warren et al., 2017).
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Figure 2.5: Prior simulation - Example of networks simulated under the model generating pro-
cess.

2.4 Simulated Networks

We apply the proposed model to various simulated scenarios for evaluation. Firstly, we
simulate data from the prior to assess the ability of the model to correctly identify the
parameters. Then, we examine two different types of simulated networks that exhibit
distinct structures: one lacks hierarchical organization among nodes, while the other
demonstrates a tree structure. The data generating processes for the these scenarios fol-
low Legramanti et al. (2022).

For all simulations, we run four chains initialised at random samples of the parame-
ters, each for 20000 iterations and with a thinning frequency of 20. We consider a burnin
window of 6000 iterations before thinning, based on the results of the mcmc diagnostic
analysis.

Prior simulation We simulate data from the process (2.6)–(2.7) for a total of 𝑁 = 20
networks, each with 𝑛 = 60 nodes. We fix 𝜎2 = 0.6, and 𝑔 to a sample from bdt𝑛(0.7, 0).
Based on these values, we sample the latent positions for each network according to
(2.7), choosing 𝐾 = 3. We fix 𝑎 = 2.6 and sample the networks edges according to the
observation equation of model (2.6). Figure 2.5 shows three of the simulated networks.

We fit the model on the sampled networks, initializing the chains at a random tree
scaled to have the same length of the true tree. All other parameters are randomly ini-
tialized at values sampled from their priors. Table 2.1 shows a summary of the posterior
draws for parameters 𝑎, 𝑏, and 𝜎2. Overall, there is good recovery of the true parame-
ters of the data generating process. Parameter 𝑎 showed slower mixing and a posterior
distribution centered on a slightly lower value than the true one.

Figure 2.6 and 2.7 summarise the posterior of the phylogenetic tree 𝑔 . In particular, the
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True value Mean Median Sd q5 q95
𝑏 0.7 0.67 0.66 0.10 0.52 0.82
𝜎2 0.6 0.67 0.66 0.06 0.57 0.78
𝑎 2.6 2.52 2.52 0.05 2.43 2.60

Table 2.1: Prior simulation - Summary of posterior samples.
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Figure 2.6: Prior simulation - True tree and posterior samples (subset of 100 samples).

first figure reports the true tree and a subset of 100 posterior samples of 𝑔 . It is interesting
to notice two things: firstly, the posterior samples recover part of the structure of the true
tree; secondly, the uncertainty in the posterior is higher closer to the root of the tree. This
is not surprising, as this part of the tree is the most difficult to identify since it relates to
pairs of nodes almost uncorrelated.

Given the difficulties of comparing two large trees as the ones in Figure 2.6, we show
in Figure 2.7 the consensus tree between the true tree of the data generating process and
the posterior consensus tree of level 0.6. Such a tree has sub–tree splittings if they are
present in both the true tree and the posterior consensus tree. The presence of many
sub–structures in the consensus tree shows the ability to recover most of the true tree.

Independent groups and hierarchical structures We consider now two types of
generating processes for networks with 𝑛 = 80 nodes, presenting different block struc-
tures, which we refer to as (a) the independent groups, and (b) the dependent groups
structure. In both cases, nodes are partitioned in 5 groups and the probability of an edge
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Figure 2.7: Prior simulation - consensus between the true tree and the posterior consensus tree
of level 0.6.

between two nodes depend on the group memberships.
The independent groups structure is given by 5 groups of nodes of size (20, 20, 15,

15, 10) with high intra–connectivity and low between–connectivity. In this setting, the
connectivity of each group is independent from any other group. The dependent groups
structure, instead, has 5 groups of size (25, 20, 15, 15, 5), eachwith high intra–connectivity.
The first and the fourth groups have high between–connectivity, whereas the fifth has
high between–connectivity with all the others, but the first one. This results in groups
which are more similar than others.

In this experiment, we simulate 𝑁 = 10 networks for each setting and fit the phy-
logenetic latent position model. Figure 2.8 shows, for each scenario, the matrix of the
true connection probabilities and the estimated consensus tree obtained from the poste-
rior samples. The matrices have entries of either high connection probability (set to 0.75
and corresponding to black areas), or low probability (set to 0.25 and corresponding to
gray areas). On the margins of the matrices, the five colors (red, blue, green, brown, and
orange) shows the affiliation of each node to one of the 5 groups. On the right, the con-
sensus trees have leaves with colored tips showing the same affiliation. The results we
show in this section do not change qualitatively when the same experiment is repeated
increasing the number of simulated networks to 𝑁 = 20. This is because the underlying
tree structure is relatively simple, and 𝑁 = 10 networks represents already a sufficiently
large sample to infer the tree.

In the independent groups scenario (Figure 2.8a), the estimated consensus tree shows
absence of hierarchy and correctly clusters nodes in their corresponding groups. In the
second setting displayed in Figure 2.8b, instead, the model identifies a tree structure.
Groups (1–4) and (2–3–5) are put on two different subtrees, coherently with their distin-
guishable connectivity patterns. Groups 1 (red) and 4 (brown) share similar edge proba-
bilities, which only differ for the connectivity with group 5 (orange) of small size. While
they are correctly put on the same subtree, the model however fails at separating the two
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(a) Independent groups structure
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Figure 2.8: Matrices of true connection probabilities and estimate consensus trees of level 0.6.
Black refers to high probability (0.75), whereas gray to low probability (0.25). The colours on
the sides of the matrices and at the tips of the trees refer to the original group structure of the
networks.

groups. Groups (2–3–5) have the same within and between connectivity structure and,
in this case, the model is also able to cluster each group correctly.

In order to highlight the benefits of the proposed model, we consider a comparison
with an alternative ad–hoc strategy for estimating the multiresolution structure of the
nodes of a set of networks. To the best of our knowledge, there are not other latent
position models that provide hierarchical clustering of the nodes. Therefore, we consider
a modification of the latent cluster model of Handcock et al. (2007) to incorporate the
information of multiple networks and infer the tree structure of the nodes. The latent
cluster model is a generalization of the latent position model of Hoff et al. (2002), in
which the latent positions are sampled from a mixture of Gaussian distributions. The
mixture components enforce a clustering structure of the nodes in the latent space.

We adapt the latent cluster model in the following way. We create a synthetic network
with an edge occurring when there are more than 5 edges between the two corresponding
nodes in the simulated population of 𝑁 = 10 networks. Note that since the true connec-
tion probabilities are either 0.75 or 0.25, the synthetic network is characterized on average
by a less noisy edge block structure than the single networks (see Figure 2.9). We fit the
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(a) Independent groups structure

Connection probabilities Ex. of a simulated network Synthetic averaged network

(b) Dependent groups structure

Connection probabilities Ex. of a simulated network Synthetic averaged network

Figure 2.9: Matrices of true connection probabilities (0.75 in black, 0.25 in gray), examples of
one of the simulated networks, and synthetic networks generated for the latent cluster model
combined with hierarchical clustering.

latent cluster model to such network with 𝐺 = 5 mixture components, corresponding to
the exact number of clusters of nodes of the ground truth, using the default options in
the latentnet r–package (Krivitsky and Handcock, 2008). We consider the maximum
likelihood estimate of the latent positions and perform hierarchical clustering based on
the Ward criterion (Ward Jr, 1963) with Euclidean distances. We have also considered –
as an alternative – the latent cluster model (Handcock et al., 2007) with binomial likeli-
hood applied to the network with weighted edges corresponding to the sum of the binary
entries in the adjacency matrices of the 𝑁 = 10 simulated networks. The binomial latent
cluster model can be combined with the hierarchical clustering of the estimated latent
positions with the same procedure described before. However, the result under the Bino-
mial model provides much worse clustering of the nodes, thereby we do not consider it
here.
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The dendogram of the hierarchical clustering of the latent cluster model is represented
with a dashed line in Figure 2.10. The consensus tree obtained with our model is instead
displayed with a solid line. In general, the dendogram obtained from hierarchical cluster-
ing has the challenge of identifying which bifurcations are capturing a nested clustering
structure, and which are instead only due to the binary–aggregating nature of the algo-
rithm. One common rule–of–thumb is to look at how stable (i.e. long) are the branches
in the dendogram. Conversely, the consensus tree for our model captures the uncertainty
about the tree structure and, by construction, it presents only the branching structures
which have a certain given posterior frequency.

In the simplest scenario of the independent groups structure (Figure 2.10a), both mod-
els correctly cluster nodes at the leaf level. The dendogram has the most stable branches
corresponding to the 5 groups of nodes, similarly to the consensus tree. However, in
the second scenario of Figure 2.10b, the dendogram captures only certain sub–clusters of
nodes at the leaf level, while failing at reconstructing any meaningful tree structure. The
estimated cluster assignments of the latent cluster model to the mixture components (not
shown here) provides better grouping then the dendogram, but it still results in a worse
clustering than the one inferred from the consensus tree from our model, and it lacks the
desired multiresolution property.

2.5 Brain Connectivity Networks

We analyze the brain connectivity networks from the Enhanced Nathan Kline Institute
Rockland Sample project. The brain parcellation in 𝑛 = 70 regions is based on the De-
sikan atlas (Desikan et al., 2006), which is considered a standard in neuroscience appli-
cations. The networks we analyse are obtained as post–processing of two dti scans of
𝑁 = 20 individuals. Each dti scan measures the water diffusion between brain regions
through white matter fibres. With such a procedure, for each individual it is obtained
a weighted network with edges counting the number of white matter fibres connecting
each pairs of brain regions, for each of the dti scans. An illustrative representation of
a post–processing procedure similar to our case is given in Figure 2.11, taken from Kim
et al. (2016).

In our application, we consider the binary networks having an edge between two
regions, if at least onewhitematter fibre is recorded in one of the two dti scans, see Figure
2.12. The inherent possibility of measurement errors in the post–processing procedure
together with the variability of the brain connectivity across subjects is suitably captured
by the random nature of the edges in the statistical model.

For each brain region, i.e. network node, we have a collection of additional informa-
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(a) Independent groups structure

(b) Dependent groups structure

Figure 2.10: Comparison of the inferred hierarchy of the network nodes between our proposal
(solid line) and the combination of the latent cluster model of Handcock et al. (2007) with hierar-
chical clustering (dashed line).

62



Chapter 2 2.5 Brain Connectivity Networks

Figure 2.11: Example of a processing procedure to obtain structural brain connectivity networks
from dti scans. Image from Kim et al. (2016).

tion on 3–d spatial locations, hemisphere and lobe memberships. We do not include this
information in our model, but instead we leverage them to assess the goodness of fit as
they are expected to correlate with the underlying tree characterising the connectivity
structure.

We fit the phylogenetic latent position model running four chains initialised at ran-
dom samples of the parameters, each for 105 iterations and with a thinning frequency of
50. We consider a burnin window of 15000 iterations before thinning, based on the re-
sults of the mcmc diagnostic analysis. In this case, the sampling has shown slow mixing
of the chains. We discuss in Section 2.6 possible future improvements on this side, based
on alternative mcmc algorithms.

Figure 2.13 shows the consensus tree obtained from the posterior samples. The tree
leaves report the indexing numbers and the names of the brain regions, together with the
lobe memberships represented by the coloured boxes on the right. The pie charts located
at few internal nodes of the consensus tree show the proportion of brain regions relative
to the two hemispheres in the subtree rooted at the given tree node.

The split at the root reveals an uncommon macro–partiton of the brain regions in
two groups, roughly corresponding to the frontal and the backward parts of the brain,
in contrast with the canonical two–hemispheres division. The smaller subtree – at the
bottom – collects mainly brain regions placed in the frontal lobe. The Rostralanteriorcin-
gulate and the Caudalanteriorcingulate, both for the left and right hemispheres, are the
only brain regions in the limbic lobe, specifically placed in the anterior part as the name
indicates. The subsequent split generates two subtrees, which reflect the right and left

63



2.5 Brain Connectivity Networks Chapter 2

Subject 17 Subject 18 Subject 19 Subject 20

Subject 13 Subject 14 Subject 15 Subject 16

Subject 9 Subject 10 Subject 11 Subject 12

Subject 5 Subject 6 Subject 7 Subject 8

Subject 1 Subject 2 Subject 3 Subject 4

Figure 2.12: Brain connectivity networks for the 𝑁 = 20 patients.
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hemisphere structures. The larger group generated from the root split – at the top of
the tree – collects regions belonging to all the other lobes, including few frontal ones.
Likewise, it subsequently divides the regions in right and left hemispheres. At the leaf
level, the lobe membership is partially a grouping factor.

The networks present also two unlabelled regions, corresponding to nodes 1 and 36.
These two regions are placed in the inter–hemispheric lobe of the brain, next to the Cor-
puscallosum, in the right and left hemispheres (Desikan et al., 2006). These two regions are
placed in the tree in accordance with other regions sharing the same hemisphere mem-
bership. Moreover, both of them form a subtree at the leaf level with the Corpuscallosum,
showing that the proximity in the brain relates to the similar connectivity patterns.

The white matter fibre connectivity of the brain is partially explained by spatial close-
ness of the brain regions. Connecting regions far apart is more expensive in terms of ma-
terial and energy costs, thereby highly connected neurones tends to be located closeby
(Bullmore and Sporns, 2009). Therefore, we expect that the latent positions of our model
partially reflect the true space distribution of the centroids of the brain regions. The left
plot in Figure 2.14 compares the posterior average pairwise distances in the latent space
against the centroid pairwise distances between brain regions available in the additional
data. The high correlation between the two proves that our model is correctly capturing,
through the latent space representation, one of the main reasons of the connectivity. The
colours refer to the age of the most recent common ancestor of the two nodes involved
in the pairwise distance. Age 0 corresponds to the leaves of the tree, and it is denoted
with the darkest colour. On the right, Figure 2.14 shows the matrix of the ages of the
most recent common ancestors. The rows and the columns corresponds to the brain re-
gions reordered according to the leaf ordering in the consensus tree of Figure 2.13. The
block–structures along the diagonal follow the nested grouping given by the tree repre-
sentation. The closer two brain regions are on the tree, the younger is the most recent
common ancestor of the two, and the higher is the correlation of their connectivity. As
expected, the largest distances in the left plot correspond to regions that are divided in
the tree closer to the root, which means they have an older most recent common ancestor.

2.6 Discussion

We propose a novel latent position model for populations of networks. As illustrated in
the simulations and in the analysis of the brain connectivity networks, the model is able
to infer meaningful tree structures underlying the connectivity patterns between nodes,
and shared across networks. This is achieved by assuming that the node latent positions
are sampled from branching Brownian motions, with the branching structure given by
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Figure 2.13: Consensus tree of level 0.6 for the brain connectivity networks. Coloured boxes at
the tips show the lobe membership, whereas the pie charts at the internal node of the tree report
the proportion of nodes in the right and left hemisphere in the respective subtrees.
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Figure 2.14: On the left, posterior average pairwise distances and centroid distances of the brain
regions. On the right, the matrix of the ages of the most recent common ancestors from the
consensus tree. Rows and columns of the matrix correspond to the network nodes reordered
according to the consensus tree of Figure 2.13.

a phylogenetic tree common to all networks. The Bayesian formulation of the model al-
lows us to obtain posterior samples of the phylogenetic tree. The posterior uncertainty
on the tree helps us building summaries which only report branching structures with
a posterior frequency higher than a chosen threshold, via the consensus tree. Incorpo-
rating the uncertainty, we can better distinguish cases showing absence of hierarchical
organisation of the nodes, as shown in Section 2.4. To the best of our knowledge, this is
the first work in the latent position model class having all the above features.

In the context of the brain application, the model has revealed an interesting multires-
olution view of the brain regions of the Desikan atlas (Desikan et al., 2006). This opens the
possibility to consider new different possible macro–partitions of the brain, coherently
with the structural connectivity. It would be interesting to study in the future the possi-
ble relation between these and the functional connectivity of the brain (Babaeeghazvini
et al., 2021). Moreover, several studies has shown that both the functional and structural
connectivity of the brain change between healthy subjects and those affected by mental
diseases (Stingo et al., 2013; Chekouo et al., 2016; Peterson et al., 2020). It would be of
great interest to examine how the multiresolution organization inferred by our model
may change in these cases, based on suitable comparisons between phylogenetic trees.

The phylogenetic tree component of the model makes it more challenging to effi-
ciently sample from the posterior. In this work, we have presented a Gibbs sampler
which leverages, where possible, parallelization of independent updates and conjugacy.
However, there is room for improvements for what matter sampling. State–of–the–art
softwares for phylogenetic inference implement advanced mcmc algorithms, such as par-
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allel tempering and coupling, in order to improve the computational efficiency and obtain
better mixing of the chains (Altekar et al., 2004; Müller and Bouckaert, 2020). These al-
gorithms represent interesting options worth to consider in the future.

There are several directions inwhich is possible to extend ourmodel. A possibility is to
generalise the phylogenetic component of the model allowing for rate correlation across
dimensions of the latent space, and rate changes across branches for the Brownianmotion
processes. Similarly, it would be of interest to study the effect of other prior choices for
the phylogenetic tree. Both aspects lead to increased flexibility of the latent positions,
allowing to better fit complex connectivity structures. The increased dimension of the
parameter space constitutes the main challenge in these directions.

Additionally, it is appealing the idea of leveraging field–knowledge to provide an evo-
lutionary interpretation of themodel, whenever applicable. This could open up newways
of forecasting the future evolution of a network. The generating process of the model
allows us to further grow the tree after 𝑡 = 𝑡0, the evolutionary time at which the obser-
vations are placed. Depending on the tree prior, the growing process can involve adding
new nodes to the network, if a new bifurcation happens, and removing some of the ob-
served nodes, if the death rate is positive 𝑑 > 0. It would be interesting to study the prop-
erties of these forward projections of the networks and consider possible applications,
also in other domains. For instance, in social sciences this may help forecasting how the
connectivity structure of sub–communities of people evolves as the number of affiliates
increases, represented by new bifurcations in the associated subtree. In ecology, mycor-
rhizal networks represent connections between trees and mushrooms that are known to
change over time as new species join the network (Simard et al., 2012). Under suitable ex-
tensions, the model might learn these patterns, allowing us to build predictions through
forward projections.

We have discussed in Section 2.3.1 the necessity of repeated measurements (i.e., mul-
tiple networks) in order to learn the tree organization of the nodes. Experimental results
support the growing ability of the model to recover the underlying tree for increasing
number of networks 𝑁 . An important line of theoretical research consists in studying
the asymptotic behaviour of the model in terms of consistency and posterior contraction
toward the true tree for the number of networks 𝑁 growing to infinity, assuming the
existence of a tree representing the ground truth. In addition, we believe it is also im-
portant to investigate the finite sample regime, in order to provide further guarantees of
reliable inference. For instance, it would be interesting to empirically check frequentist
finite sample properties of the tree estimator. Moreover, as discussed in Section 2.3.1,
we remark the necessity to further study the full identifiability of the tree related to the
identifiability of the latent positions.
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Similarly to other latent space models (e.g. Handcock et al., 2007), in our proposal
we specify the dependence structure at the level of the latent positions. We believe that
studying what type of dependence is induced at the level of the observable random vari-
ables constitutes an interesting change of perspective that might bring further theoretical
understanding of the model. Such reasoning does not restrict to our proposal, but it ap-
plies to other latent space models as well.

Finally, there are few interesting research directions concerning the specification of
the latent space itself. For instance, the optimal choice of the dimensionality 𝐾 is a com-
mon open problem of latent position models (Kaur et al., 2023). Additionally, the geome-
try of the latent space has shown to have a strong impact on the type of networks repre-
sentable by a given dimensionality of the latent space (Smith et al., 2019). In particular, we
believe it would be interesting to study the possibility to specify the phylogenetic latent
position model using a hyperbolic latent space, as this choice seems to better accommo-
date tree–like structures in the represented networks (Krioukov et al., 2010; Lubold et al.,
2023).
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Chapter 3

Incorporating Prior Knowledge of
Phylogenetic Structure in Latent
Position Models
joint work with Daniele Durante and Robin Ryder

3.1 Introduction

We consider again the brain connectivity networks from the Enhanced Nathan Kline
Institute Rockland Sample project, which we analyzed in Chapter 2. The data consist of
observations of the connectivity structure between 𝑛 = 70 brain regions, for 𝑁 = 20
patients. The brain parcellation is the same for all subjects. For each brain region, there
is additional information on hemisphere and lobe memberships, along with 3–d spatial
coordinates.

In this Chapter we aim at leveraging the available covariates in the form of a super-
vised prior for the phylogenetic tree. This is motivated by the fact that the additional
data show accordance with the phylogenetic tree inferred in Chapter 2.5. We first begin
by showing the latter in terms of phylogenetic signal. Later, we change perspective and
introduce the phylogenetic tree supervised prior.

In Chapter 2, we infer the tree structure underlying the node connectivity patterns
based on only observed edges, summarized in the consensus tree of Figure 3.1. The par-
tition induced by the phylogenetic tree reveals clustering patterns that align with the
physiological characteristics of the brain regions, such as their hemisphere and lobemem-
berships, as well as their spatial locations. This observation naturally raises an intriguing
question: is there any evidence of phylogenetic signal in the node attributes that corre-
sponds to the phylogenetic tree within our model? Or, equivalently, can we interpret
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the node attributes as realizations of a process evolving on the same tree as the latent
positions of the network?

We answer these questions by studying the presence of phylogenetic signal under the
assumption of a given model specification for each feature. In this case, there are both
continuous (𝑥–𝑦–𝑧 spatial coordinates) and discrete (hemisphere and lobe memberships)
measurements. The simplest model choices for these two types of data, in the context of
evolutionary trees, are the Brownian motion (Felsenstein, 1973) and the continuous time
Markov chain (ctmc) with discrete state space (Lewis, 2001).

In order to study the presence or absence of phylogenetic signal in the node attributes
with respect to the tree inferred from the observed networks, we rely on the widely used
Pagel’s 𝜆 (Pagel, 1999).

Pagel’s 𝜆 model combines the process describing the evolution of the observed at-
tributes (e.g., bbm or ctmc) with a tree transformation, in which branches are scaled ac-
cording to 𝜆 ∈ [0, 1]. Depending on the value of 𝜆, the transformation expands the length
of the terminal branches (i.e., those connecting to a leaf) and compresses the internal
branches, leaving the total length of the tree unchanged. Figure 3.2 shows an example of
the transformation for a given tree, with 𝜆 = 0, 0.5, 1. Values of 𝜆 = 1 and 𝜆 = 0 are the
limiting cases. The first one leaves the tree unchanged, while the second one compresses
to 0 the lengths of the internal branches, leading to a degenerate tree of star–like shape.

The effect of the transformation is to modulate the dependence structure induced by
the tree. As 𝜆 decreases to 0, the dependence between the components of the process at
the leaves diminishes. Eventually, in the star–like tree case, the original tree becomes a
nuisance parameter for the process and the components become fully independent.

This becomes clearer if we consider the example of the Pagel’s 𝜆 model with a Brow-
nian motion process. We use the same notation of Chapter 2, thereby 𝜎2 is the rate of the
Brownian motion and 𝑡0 is the total height of the tree. If 𝜆 = 1, i.e. no transformations,
the components of the Brownian motion at the leaves of a phylogenetic tree 𝑔 follows a
multivariate normal distribution, with covariance matrix given by:

𝜎2𝚺𝑔 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑡0𝜎2 𝑡12𝜎2 ⋯ 𝑡1𝑛𝜎2

𝑡12𝜎2 𝑡0𝜎2 ⋯ 𝑡2𝑛𝜎2

⋮ ⋮ ⋱ ⋮
𝑡1𝑛𝜎2 𝑡2𝑛𝜎2 ⋯ 𝑡0𝜎2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (3.1)

where the generic entry 𝑡𝑖𝑗 denotes the height of the most recent common ancestor in
𝑔 between leaves 𝑖 and 𝑗 . If we denote with �̃�𝜆 the tree obtained by transforming the
original tree 𝑔 with a given 𝜆, the covariance matrix of the components of the Brownian
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Figure 3.1: Posterior consensus tree at level 0.6 from the analysis of Chapter 2 and node attributes,
for the brain networks.
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Original tree

λ = 1 λ = 0.5 λ = 0

Figure 3.2: Example of Pagel’s 𝜆 transformations.

motion at the leaves of �̃�𝜆 changes as follows:

𝜎2𝚺�̃�𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑡0𝜎2 𝜆𝑡12𝜎2 ⋯ 𝜆𝑡1𝑛𝜎2

𝜆𝑡12𝜎2 𝑡0𝜎2 ⋯ 𝜆𝑡2𝑛𝜎2

⋮ ⋮ ⋱ ⋮
𝜆𝑡1𝑛𝜎2 𝜆𝑡2𝑛𝜎2 ⋯ 𝑡0𝜎2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (3.2)

The branch transformation is equivalent to changing the covariance matrix multiplying
by 𝜆 the off diagonal elements. This reduces the covariances, while keeping the marginal
variances fixed. For 𝜆 = 0, the covariance matrix becomes diagonal 𝜎2𝚺�̃�0 = 𝑡0𝜎2𝐈, corre-
sponding to the case in which each component follows an independent Brownian motion
process.

Given data and a fixed tree 𝑔 , the parameter 𝜆 and the rate of the process describing
the observations (e.g., 𝜎2 in the example of the branching Brownian motion) are typically
estimated via maximum likelihood. The obtained value of 𝜆 can be seen as a measure of
the intensity of the phylogenetic signal in the observations, with respect to the tree 𝑔 .
Clearly, the value of the phylogenetic signal is conditioned on the model assumptions for
the branching process, thereby the strength of the signal varies under different models.

In our application, we leverage Pagel’s 𝜆 as a measure of phylogenetic signal as fol-
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lows. For each posterior sample of the phylogenic tree 𝑔 obtained from the model fit
in Chapter 2, we perform maximum likelihood estimation for the Pagel’s 𝜆 model with
Brownianmotion and ctmc processes, respectively for continuous and discrete attributes.
The procedure estimates both the optimal value of 𝜆 and the rate parameter of the pro-
cesses. For the Brownian motions, we assume a constant rate 𝜎2, one for each of the
standardised spatial coordinates 𝑥 , 𝑦, and 𝑧. For the hemisphere and lobe membership
covariates, we use two ctmc’s with state space respectively given by {Left, Right} and
{Frontal, Inter–Hemispheric, Limbic, Occipital, Parietal, Temporal}, and uniform transition
rates between states, which are equivalent to 𝑀𝑘 models (Lewis, 2001).

Figure 3.3 shows the estimated rates and 𝜆’s, over the tree posterior samples. All
features show strong phylogenetic signal, corresponding to 𝜆 close to 1. Small deviations
from 1 suggest that a slightly different tree topology or rate assumptions may better fit
the data. The estimated rates are smaller for those features that show in Figure 3.3 a
stable grouping structure throughout the tree, see e.g. hemisphere membership and 𝑥–
locations. Intuitively, a feature that varies slowly from the root to the leaves will have
homogeneous values at leaves that are grouped in subtrees close to the tips – i.e. the root
of the subtree is a node closer to the leaves than to the tree root. Contrarily, heterogenous
values require a fast changing evolution of the process in other to change states over short
branches.

Pagel’s 𝜆 is a useful tool to investigate the presence of phylogenetic signal. However,
it is worth noticing that it does not represent a proper statistical testing procedure. More-
over, the branch transformation implied by 𝜆 is only one of the possible ways of modify-
ing the tree topology to better fit the data, under model assumptions. We leave to future
work the study of the results under different tree transformations (see, e.g. Gittleman and
Kot, 1990; Blomberg et al., 2003; Münkemüller et al., 2012) and model specifications.

The division in hemispheres and lobes derives from the knownmacro–organization of
the brain. The strong phylogenetic signal of these attributes shows accordance between
the known partitions and the one learnt from observed networks. This proves that the
phylogenetic latent position model is able to recover meaningful structures of the brain
regions.

The above one is a motivating result that suggests an interesting change of perspec-
tive. We want to consider these features as an actual source of information available in
the data. Can we include the node attributes in the model in order to inform the latent
tree structure?

In the remaining of the Chapter, we provide a first step in this direction. In Section 3.2,
we discuss how covariates are typically included in latent position models. In the context
of our model, we propose a novel supervised phylogenetic tree prior in order to lever-
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Figure 3.3: Estimated rates and 𝜆’s for testing phylogenetic signal in brain connectivity data.

age available features to inform the tree structure. This opens several new interesting
research directions, that we discuss in Section 3.3.

3.2 Leveraging Exogenous Covariates in Phylogenetic
Latent Position Models

When covariates are included in a statistical model, the underlying assumption is that
they are responsible for the distribution of the outcome. The way they are integrated in
the model should reflect the type of dependence between them and the response variable.

Let 𝐗 be the 𝑞 × 𝑛 matrix of covariates associated with the 𝑛 network nodes, where 𝑞
denotes the number of features. In latent position models, covariates are added as extra
regression terms affecting the edge probabilities (Hoff et al., 2002; Handcock et al., 2007).
Denoting with 𝐱𝑖 the 𝑖-th column of 𝐗, collecting the 𝑞 features of node 𝑖, the regression
terms are typically constructed through a certain map 𝑓 (𝐱𝑖, 𝐱𝑗 ) ∈ ℝ𝑝 building the 𝑝–
variate information for the edge connecting 𝑖 and 𝑗 . For instance, this map can measure
the similarity between the covariates of the two nodes.

Using the same notation of Chapter 2, we can include observed features in the phy-
logenetic latent position model in the same fashion of other latent position models as
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follows:
𝑦(𝑚)𝑖𝑗 ∣ 𝐙(𝑚), 𝑎,𝜷 ind∼ bern(𝜃(𝑚)𝑖𝑗 ) 𝑖, 𝑗 = 1,… , 𝑛

logit 𝜃(𝑚)𝑖𝑗 = 𝑎 + 𝜷⊺𝑓 (𝐱𝑖, 𝐱𝑗 ) − ∣∣ 𝐳(𝑚)𝑖 − 𝐳(𝑚)𝑗 ∣∣

𝐙(𝑚) ∣ 𝑔, 𝜎 iid∼ bbm𝐾 (𝜎2, 𝑔)
𝑔 ∣ 𝑏 ∼ bdt𝑛(𝑏, 0),

(3.3)

where 𝜷 ∈ ℝ𝑝 is the vector of regression coefficients for the edge attributes 𝑓 (𝐱𝑖, 𝐱𝑗 ). The
model is completed including suitable priors for 𝜷. Gormley and Murphy (2010) extends
this idea by considering additional possibilities to include covariates in the framework
of the latent cluster model of Handcock et al. (2007), e.g. affecting the weights of the
mixture representation.

The way covariates are included in (3.3) has consequences on the latent representa-
tion. In (3.3), the latent positions capture the residual connection probability that is not
accounted for by the covariates. However, in some cases, it is likely that the covariates
correlate with the latent space structure. Proceeding as in (3.3), the correlation is ig-
nored leading to possible harmful consequences for the inference of the latent hierarchi-
cal structure of the nodes. For instance, consider the extreme case where the covariates
fully describe the connection probabilities of a set of networks, whose nodes have a mul-
tiresolution organization. The latent positions would essentially capture random noise,
showing absence of any tree–structure regardless of the truth.

A similar point is raised in the discussion of Handcock et al. (2007), in which the latent
positions follow a mixture of normal distributions. Similarly to our case, the dependence
between the covariates and the mixture assignments can lead to poor clustering of the
network nodes. In the discussion, Gormley and Murphy (2007) suggest to allow the mix-
ture probabilities to depend on covariates, while Sylvia and Alex (2007) propose to specify
cluster–specific regression coefficients. Handcock et al. (2007) remark in their answer the
importance of working in the direction of jointly specifying the dependence between the
latent space structure and the covariates.

In the context of the phylogenetic latent position model, we argue that the interplay
that matters between features and the latent space structure of the nodes translates into
phylogenetic signal of the covariates, with respect to the underlying tree responsible for
the latent positions. This is the case, for instance, in the brain connectivity networks, as
showed in Section 3.1. Such type of dependence between the covariates and the latent
space is not the only possible one. However, if the objective of the inference is the phylo-
genetic tree 𝑔 , then this is the primary type of dependence which may negatively impact
the tree inference.

One option to account for the dependence between the node attributes𝐗 = [𝐱1,… , 𝐱𝑛]

77



3.2 Leveraging Exogenous Covariates in Phylogenetic Latent Position Models Chapter 3

and the latent positions in a principled way is to specify a supervised prior 𝜋(𝑔 ∣ 𝐗)
on the phylogenetic tree. Different ways of defining 𝜋(𝑔 ∣ 𝐗) are possible. A natural
option of doing this is to specify a probabilistic model for the covariates given the tree
𝜋(𝐗 ∣ 𝑔), and to define the supervised prior as the posterior of this model combined with
the unsupervised prior 𝜋(𝑔),

𝜋(𝑔 ∣ 𝐗) ∝ 𝜋(𝐗 ∣ 𝑔)𝜋(𝑔). (3.4)

In general, the term 𝜋(𝐗 ∣ 𝑔) can be any function expressing the coherence of the co-
variates 𝐗 with respect to the tree 𝑔 (also not representing a probabilistic model). It is
possible to tune how strongly the covariates should affect the tree by tempering the co-
variate likelihood 𝜋(𝐗 ∣ 𝑔) with a weight 𝜔,

𝜋(𝑔 ∣ 𝐗, 𝜔) ∝ 𝜋(𝐗 ∣ 𝑔)𝜔𝜋(𝑔), (3.5)

resulting, e.g., in a vanishing effect for 𝜔 → 0.

One advantage of decomposing the supervised prior as in (3.5) is that we only have
to slightly change the Gibbs sampler for the unsupervised model in order to sample from
the posterior of the supervised model. The only adjustment required is to modify the
acceptance probability for the tree 𝑔 by weighting the acceptance ratio by the ratio of the
covariate likelihoods as follows:

𝛼𝑠𝑔 = min

{

1,
∏𝑁

𝑚=1 𝜋(𝐙(𝑚) ∣ 𝜎2, 𝑔𝑠+1)𝜋(𝑔𝑠+1)
∏𝑁

𝑚=1 𝜋(𝐙(𝑚) ∣ 𝜎2, 𝑔𝑠)𝜋(𝑔𝑠)
𝜋(𝐗 ∣ 𝑔𝑠+1)𝜔

𝜋(𝐗 ∣ 𝑔𝑠)𝜔

}

, (3.6)

while all the other acceptance probabilities remain unchanged. As we have already men-
tioned in Section 3.1, simple default choices for the covariate likelihood can be Brownian
motion processes for continuous features, and continuous time Markov chains for dis-
crete features, with the state space corresponding to the set of possible values.

The supervised prior in (3.4–3.5) can be seen as a two–steps procedure of a fully
Bayesian model for the joint observations (𝐘(1),… ,𝐘(𝑁 ),𝐗). Figure 3.4 shows the cor-
respondent graphical model representation, in which 𝝓 collects possible parameters for
the covariate likelihood 𝜋(𝐗 ∣ 𝑔) ∶= 𝜋(𝐗 ∣ 𝑔,𝝓), such as the diffusion parameter of the
bm or the transition rates of the ctmc. Leveraging the fully Bayesian view, it is possible
to specify priors for 𝝓 and include an additional step in the Gibbs sampler. However,
evaluations of likelihoods that depend on trees, such as 𝜋(𝐗 ∣ 𝑔,𝝓) or 𝜋(𝐙(𝑚) ∣ 𝑔, 𝜎2), are
computationally expensive. An additional sampling step for 𝝓, which involves evaluating
𝜋(𝐗 ∣ 𝑔,𝝓), further increases the overall computational cost of the Gibbs sampler.
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Figure 3.4: Graphical model representation of the equivalent fully Bayesian model.

Even though a complete Bayesian approach is preferable, there are few possibilities
for setting 𝝓 in advance and easing computations, at least for a first exploratory model fit.
If possible, domain expertises can be leveraged to fix 𝝓 to reasonable values. Otherwise,
if the results of the unsupervised model are available, a reasonable heuristic is to set 𝝓 to
a value in line with the estimated ones obtained while checking for phylogenetic signal
(e.g., the average value), for instance using Pagel’s 𝜆 (Pagel, 1999). An interesting direc-
tion for future research regards the possibility to design procedures in order to estimate
𝝓 in a principled way, and ease the computational costs of the posterior sampling.

It is worth remarking that while the latent nature of the nodes latent positions makes
a simple process like a constant rate Brownian motion suitable, it is likely that in com-
plex real–world applications observed node attributes require more sophisticated model
choices than uniform rate ctmc or constant rate bm. Many generalizations are avail-
able in the evolutionary model literature (see, e.g. Yang, 2006), such as the early–burst
model (Harmon et al., 2010) or the acdc model (Blomberg et al., 2003), in which the rate
of evolution increases or decreases exponentially from the root to the tips, or Pagel’s
𝜆–𝜅–𝛿, which all perform different types of branch–rate transformations (Pagel, 1999).
The discussion on which better suits the covariates strictly depends on the context of the
application. The challenges for the implementation of such procedures is left for future
research.
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Figure 3.5: Matrix of connection probabilities of the data generating process. High probability of
connection (0.75) in black, low probability (0.25) in gray. The group structure (1–5) is represented
in the marginal colour bands.

3.2.1 Supervised Tree Prior: A Simulated Data Example

Let us consider the simulated networks with dependent groups structure of Section 2.4,
composed of 5 groups of size (25, 20, 15, 15, 5) with a total of 𝑛 = 80 nodes, for 𝑁 = 10
generated networks. Figure 3.5 shows the matrix of connection probabilities of the data
generating process, with marginal colours representing the groups. In Section 2.4, the
model with unsupervised prior was able to capture most of the structure of the networks,
but it failed at separating in different subtrees the first (red) and fourth (brown) groups
(see the consensus tree in Figure 2.8b). The difficulty of separating these two groups in
the latent space is in part due to the fact that they only differ for the connectivity with
the fifty block (orange), composed by only 5 nodes.

We define two binary covariates which partially inform about the true group structure
of the networks, in order to compare the posterior under the prior 𝜋(𝑔) and the supervised
prior 𝜋(𝑔 ∣ 𝐗). In particular, we define the 2 × 𝑛 matrix 𝐗 as follows:

[𝐗]𝑐𝑖 = 𝑋𝑐(𝑖), for 𝑖 ∈ {1,… , 𝑛} and 𝑐 ∈ {1, 2}, (3.7)
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where,

𝑋1(𝑖) =
⎧⎪⎪
⎨⎪⎪⎩

1 if node 𝑖 is in group 4 (beige) or 5 (orange),
0 otherwise,

𝑋2(𝑖) =
⎧⎪⎪
⎨⎪⎪⎩

1 if node 𝑖 is in group 1 (red) or 5 (orange),
0 otherwise.

(3.8)

Both 𝑋1 and 𝑋2 are correlated with the structure explaining the connectivity of the net-
works. The way they are defined ensures that groups 1 and 4 are distinguishable, whereas
there is no information regarding the difference between groups 2 and 3.

We set the supervised prior 𝜋(𝑔 ∣ 𝐗) using the weighted probabilistic formulation
(3.5). Let 𝐗𝑐, for 𝑐 ∈ {1, 2}, be the vector corresponding to the 𝑐-th row of 𝐗, which is
the collection of values of feature 𝑐 for all nodes. We assume independent models for the
covariates as follows:

𝜋(𝑔 ∣ 𝐗) ∝ 𝜋(𝐗1 ∣ 𝑔, 𝜙1)𝜔𝜋(𝐗2 ∣ 𝑔, 𝜙2)𝜔𝜋(𝑔), (3.9)

where 𝜋(𝐗𝑐 ∣ 𝑔, 𝜙𝑐) stands for the likelihood of the𝑀2model (Lewis, 2001), corresponding
to a ctmcwith homogenous transition rates 𝜙𝑐. Following Chapter 2, we assume the Yule
process as unsupervised prior 𝜋(𝑔). We set 𝜔 = 10, in accordance with the fact that the
same covariates are observed for all 𝑁 = 10 networks.

As tree–based likelihood evaluations are computationally expensive, we fix the rates
𝜙1 and 𝜙2. In order to choose suitable values, we consider the artificial tree �̃� obtained
by modifying the topology of the consensus tree estimated with the unsupervised model
(Figure 2.8b) in such a way to separate nodes of blocks 1 and 4 in two different subtrees.
We compute the maximum likelihood estimates �̂�1 and �̂�2 fitting two 𝑀2 models on �̃�
respectively using 𝐗1 and 𝐗2 as data. This strategy allows us to ease computations in the
context of this preliminary simulation study.

We fit the model to the simulated networks with the supervised prior 𝜋(𝑔 ∣ 𝐗), setting
𝜙1 = �̂�1 and 𝜙2 = �̂�2. As the tree total height is not identified, when fitting the model
we fix the tree height to the one of �̃� . In such a way, we ensure that 𝜙1 and 𝜙2 are on a
suitable scale.

Figure 3.6 shows a subset of posterior tree samples under 𝜋(𝑔) – Figure 3.6a – and
under the supervised prior 𝜋(𝑔 ∣ 𝐗) – Figure 3.6b. Comparing the two plots, we can see
the effect of the covariates on the posterior. Under the supervised prior, groups 1 (red)
and 4 (brown) split in two different subtrees. This is something which is not required
by the latent positions themselves – they do not split under 𝜋(𝑔) – but rather by the co-
variates. Under 𝜋(𝑔), group 3 (green) separates from groups 5 and 2 (orange and blue),
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(a) Posterior under prior 𝜋(𝑔)

(b) Posterior under supervised prior 𝜋(𝑔 ∣ 𝐗)

X1

X2

Figure 3.6: Posterior samples of the phylogenetic tree under the prior 𝜋(𝑔) and the supervised
prior 𝜋(𝑔 ∣ 𝐗). At the bottom, the node–specific binary covariates 𝐗1, 𝐗2 (values 1 and 0 respec-
tively in dark and light colours).
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X1
X2

Figure 3.7: Consensus tree at level 0.6 under supervised prior 𝜋(𝑔 ∣ 𝐗). At the bottom, the node–
specific binary covariates 𝐗1, 𝐗2 (values 1 and 0 respectively in dark and light colours).

and afterward groups 5 and 2 split. The topology is the result of a trade–off between the
latent positions disposal and the prior on the tree. Indeed, while groups (2, 3, 5) clearly
show different connectivity patterns from groups 1 and 4 (Figure 3.5), the ordering in
which they split in the tree is mostly affected by the prior, rather than by the observed
networks. Under the supervised prior, instead, the three groups split in any of the two
ordering (2,(3,5)) or (3,(2,5)) with roughly the same frequencies, corresponding to a trifur-
cation in the majority–rule consensus tree (Figure 3.7). The covariates do not privilege
any of the two orderings and assign the same value to groups 2 (blue) and 3 (green). It is
worth noticing that, in this example, the values of the log–likelihood for the two models
are roughly the same, indicating that both models similarly fit the data. In Figure 3.6b,
we can also notice a small number of sampled trees connecting among them groups with
same values in 𝐗1 and 𝐗2, but in contrast with the dominant topology learnt from the
connectivity patterns through the latent positions.

These preliminary results demonstrate the potential of utilizing a supervised prior to
leverage exogenous covariates in order to inform the tree structure responsible for the
latent positions. Nevertheless, it is important to acknowledge the challenges that accom-
pany this methodology, highlighting the need for further research, which we discuss in
Section 3.3.

3.3 Discussion

Including covariates in the model as additional regression terms can be harmful for the
tree inference, if they correlate with the structure of the latent positions. However, this
is a difficult condition to check in advance. A possible practical way to decide whether

83



3.3 Discussion Chapter 3

to use supervised or unsupervised prior on the tree consists in fitting the phylogenetic
latent position model to only observed edges, and check a posteriori the strength of the
phylogenetic signal, following some of the methods we mentioned in Section 3.1 (see, e.g.
Münkemüller et al., 2012).

In Chapter 2, we discussed how the ability of the phylogenetic latent position model
to identify the tree structure of the nodes increases with the number of observed net-
works. The inclusion of covariates through the supervised prior (3.5) is equivalent to add
observations of the dependence structure induced by the tree, in addition to the node la-
tent positions. The combination of these two sources of information might result both in
more concentrated posterior distributions or more uncertainty, depending on the agree-
ment between the tree structure of the latent positions and of the covariates.

The influence of the covariates can be tuned by weighting the covariate likelihood
with 𝜔. However, the choice of the weight is not trivial. Intuitively, 𝑁 networks mod-
elled with a 𝐾 dimensional latent space contribute to the tree with 𝑁𝐾 sets of 𝑛 latent
coordinates, while 𝑞 node–specific covariates with weight 𝜔 contribute with 𝜔𝑞 sets of 𝑛
values. Reasoning about the ratio 𝑁𝐾/𝜔𝑞 gives a rule of thumb to balance the contribu-
tion of the latent positions and the covariates, for what matters the tree inference. Better
understanding the effect of 𝜔 constitutes an important research topic, which hopefully
can lead to design principled procedures to choose its value, possibly according to prior
knowledge regarding the domain of the application. Additionally, future research is re-
quired to study the sensitivity of the model related to the choice of 𝜔 and the number of
observed networks 𝑁 .

Another significant challenge is the increased computational cost of the Gibbs sam-
pler. The computations of likelihoods based on trees are expensive operations. Under the
supervised tree priors, the calculation of the acceptance probability for the tree 𝑔 necessi-
tates 𝑞 additional evaluations of tree–based likelihoods. Moreover, treating 𝝓 as random
requires an additional sampling step which further amplifies the computational burden.
To mitigate these effects, one potential strategy, especially in cases where the model is
being initially explored, is to pre–specify and fix the value of 𝝓 in advance. In Section
3.2, we propose few heuristics tailored to specific scenarios. However, future research
should delve into developing suggestions and principled solutions that can be applicable
to general settings.

Lastly, it is important to note that utilizing a supervised tree prior does not preclude
the inclusion of covariates within the logistic regression term. Instead, it opens up an
intriguing avenue for future research to explore the optimal integration of these two
components. For instance, inspired by Sylvia and Alex (2007), one interesting direction
worth investigating involves specifying distinct sets of regression coefficients reflecting
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the macro partitions defined by the tree structure close to the root. The underlying idea
is that the effect of a given covariate may vary for nodes that are located at different
distances within the tree. This proposal represents just one among numerous potential
ideas that can guide an engaging path of research in this area.
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