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Introduction

In the first chapter of this PhD Thesis, we investigate why large cross-sections of long-

short anomaly portfolios predict the market excess return. We develop an econometric

model for the prices of the long and short legs of the anomalies. Using dimension reduction

techniques, we show that their deviations from equilibrium predict the aggregate market

return. This result holds at multiple horizons and is mostly driven by the long components

of the anomaly portfolios. We interpret these findings through an asymmetric limits of

arbitrage model with slow-moving capital.

In the second chapter, we compare the information contained in the headlines and the

full text of more than 400, 000 business news articles. We show that sentiment measures

extracted from the two sources are highly correlated. Using state-of-the-art machine

learning methods, headline-based forecasts of macroeconomic indicators have equal or

greater accuracy out-of-sample than forecasts based on the whole text. We interpret our

findings through a model of news with attention costs and beauty contest elements.

In the third chapter, we investigate whether measures of sentiment extracted from

quarterly earnings conference-calls affect the dynamics of stock prices. Using a cross-

section of publicly traded companies, we show that sentiment positively correlates with

price deviations from their long-run trend, estimated via an error correction model. We

document that even though sentiment does not predict future stock returns, it impacts

the speed at which prices revert to equilibrium. We find asymmetric effects on overpriced

and underpriced stocks.
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Chapter 1

Price Trends and Return Predictability

1.1 Introduction

Recent empirical evidence shows that large cross-sections of long-short anomaly portfolios

predict the market excess return (Dong et al., 2022). This chapter investigates why. I

show that the price deviations of the long and short legs of the anomaly portfolios predict

the market excess return. This result holds at multiple horizons and it is mostly driven by

the long components of the anomalies. I interpret these findings through an asymmetric

limits of arbitrage model with slow-moving capital.

First, I develop an econometric model for the prices of the long and short components

of anomaly portfolios. I consider 100 anomalies from the cross-sectional asset pricing

literature. They are long-short portfolios built by sorting stocks into deciles based on a

given characteristic (e.g. the book-to-market ratio), and going long (short) the tenth (first)

decile. I consider the long and short legs of each portfolio separately and, in the spirit

of Fama and French (1988), I decompose their prices into a permanent and a transitory

component. The former is common across assets. Following Bai (2004) and Banerjee and

Marcellino (2009), I estimate it via cross-sectional principal components of prices. The

transitory component is the asset-specific deviation of the prices from the common trend.

9



10 CHAPTER 1. PRICE TRENDS AND RETURN PREDICTABILITY

This permanent-transitory decomposition gives rise to an error correction mechanism,

through which current price deviations predict future returns. Indeed, suppose that the

price of a given asset is above the equilibrium. Its returns in the following periods will

necessarily be lower, so that the price can move back towards the trend-implied level and

the temporary mispricing is corrected.1 Favero et al. (2021) find evidence for this error

correction mechanism in a large cross-section of equity portfolios. The authors show that

such predictability channel holds at the individual asset level, that is the mispricings of a

given asset predict its own future return. In this chapter, I document that this mechanism

can be used to predict the return of the aggregate market as a whole from the individual

assets.

After estimating the common stochastic trends and the error correction terms for each

portfolio leg, I use them to predict the market returns. I regress the return of the market

between time t and t+ h on all the error correction terms at time t. Since the number of

regressors is potentially large (2 legs × 100 portfolios), I use dimension reduction methods

that guard against overfitting. In particular, I use shrinkage techniques such as principal

components and Elastic Net. I compare my results with Dong et al. (2022), using the

(lagged) returns of each anomaly leg as regressors. I evaluate the models through out-

of-sample tests, since they are the most relevant evidence for stock return predictability

(Welch and Goyal, 2008; Martin and Nagel, 2021).

I find that the mispricings of the long and short anomaly legs predict the market

excess return one month in the future. The principal component method delivers an out-

of-sample R2 (R2
OS) of 0.56%, which is above the 0.5% threshold for economic significance

by Campbell and Thompson (2008). This figure is also statistically significant, according

to the Clark and West (2007) test. I run the out-of-sample exercise on the sub-samples

of long and short legs to disentangle their respective contribution. The R2
OS for the long

1I consider a framework in which deviations from the long-run equilibrium reflect mispricing, as in
Dong et al. (2022). While I do not consider a risk-based environment, this could be an interesting avenue
for future research.
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portfolios ranges from 0.74% to 1.41%, both economically and statistically significant.

Instead, the short legs deliver insignificant figures. Repeating the same exercise on the

anomaly returns, rather than the error correction terms, gives an opposite picture. When

using both long and short portfolio returns, the R2
OS is either negative or statistically

insignificant. As in Dong et al. (2022), the short leg returns forecast the market, while

the out-of-sample predictive ability of the long legs is weak.

I repeat the same out-of-sample exercise at longer horizons and the results are even

stronger. The error correction terms of both anomaly legs strongly predict the market

one quarter and one year in the future. These results are mostly driven by the strong R2
OS

of the long legs, which ranges from 1.38% to 2.07% at the quarterly horizon, and from

2.81% to 13.10% at the annual one. These figures are both economically and statistically

significant. On the contrary, the out-of-sample performance of the short legs remains

weak. These findings are in stark contrast with Dong et al. (2022), since the anomaly

returns do not predict the market at horizons longer than one month. This fact shows

the importance of modeling prices directly in the empirical analysis, as the information

on long-run relations is differenced away in the cross-section of returns.

As a robustness test, I conduct an asset allocation analysis. I consider a risk-averse

investor who can invest in the equity market and a risk-free asset. I compare the portfolios

built using the error correction terms vis-a-vis the historical average to forecast the market

excess return. The performance of the two portfolios is ranked in terms of the utility to

the investor, which is a measure of the economic value of the forecasting strategies. In

line with my previous results, the mispricings of the long legs lead to sizable utility gains,

that range from 1.22% to 6.38% and increase with the investment horizon. The opposite

holds for the short legs, with utility gains from −2.72% to 0.14%.

I interpret my findings within an econometric framework that combines the permanent-

transitory price decomposition (Fama and French, 1988) with asymmetric limits of arbi-

trage (Shleifer and Vishny, 1997). I consider a data generating process in which the short
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(long) legs are characterized by more (less) persistent over-pricing (under-pricing) shocks.

This assumption is consistent with the fact that i) short legs are over-priced, so that

they deliver lower returns and the anomaly portfolios generate “alphas”; ii) arbitrage with

respect to overpriced shares is less aggressive, e.g. because of short-selling constraints

(Miller, 1977); iii) in the data, the persistence of the short legs’ error correction terms is

larger. In this econometric framework I prove that, ceteris paribus, the more persistent

mispricings of the short legs have lower predictive power. (Intuitively, in the limit of per-

manent price deviations, the short legs would be useless for forecasting.) I also show that

modeling directly price deviations, rather than the bare returns, improves the forecasting

performance, especially at longer horizons.

Finally, I provide a microfoundation to the data generating process that underlies my

analysis. I develop a model with slow-moving capital (Duffie, 2010), in which a mass

of inattentive investors can only trade once every k periods. I show that such a model

can account for temporary deviations of prices from their fundamental value, which are

slowly corrected towards the equilibrium. I study the implications of asymmetric limits of

arbitrage for the price dynamics in such a setting, introducing short selling costs (Gromb

and Vayanos, 2010). As posited in the econometric framework, this financial friction

significantly affects the persistence of price deviations.

Related Literature This chapter is related to Dong et al. (2022), which studies the link

between cross-sectional and time series stock return predictability. By using dimension

reduction techniques, the authors show that i) a large number of anomaly returns predict

the market excess return one month ahead; ii) this result is mostly driven by the short leg

returns; iii) the predictability vanishes at longer horizons. They argue that these findings

are consistent with a data generating process with stationary components in the prices of

the long and short legs of the anomaly portfolios. In this chapter, I bring their theoretical

framework to the data and I focus on anomaly prices rather than returns. I predict the
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market at horizons up to one year – a key advantage of estimating long run relations

in the cross-section of prices. Moreover, recent contributions by Cakici et al. (2024)

challenge the approach followed by Dong et al. (2022), claiming that anomalies cannot

predict aggregate market returns. According to their analysis, any predictability cannot

be extended beyond the US stock market and it is driven by groups of specific anomalies.

Even though my analysis still focuses on the US stock market (while the latter authors

use an international dataset), I show that using prices rather than returns reconciles this

gap, improving the forecasting performance, and there is evidence of robustness.

This work is also related to a literature that models both asset returns and prices,

which starts with the seminal contribution by Fama and French (1988). Recent studies

in this area include Baba Yara et al. (2020), van Binsbergen et al. (2021), Cho and Polk

(2020), Cohen et al. (2009). In particular, Favero et al. (2021) perform a permanent-

transitory decomposition of anomaly portfolio prices and study its implications for return

predictability. The authors focus on predicting the return of each anomaly separately.

Instead, this chapter uses the deviations from equilibrium of the anomaly portfolios to

forecast the aggregate market excess return. I also propose a new way to estimate the

common stochastic trends in the cross-section of test assets.

This chapter relates to the literature of non-stationary factor models. I use the meth-

ods introduced by Bai (2004), Banerjee and Marcellino (2009) and Banerjee et al. (2014) to

estimate the common stochastic trends in the cross-section of prices. This chapter brings

their insights to the equity market. Differently from these studies, I use the deviations

from equilibrium of each series to predict the market excess return.

1.2 The Econometric Framework

In this section I describe the econometric framework that guides my empirical analysis.

The model is based on Dong et al. (2022). I derive some predictions that I will later test
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in the data. I consider a data generating process that will be microfounded in Section

1.6, in a model with slow-moving capital.

1.2.1 The Model

Consider a securities market in which the assets are sorted in two portfolios according to

an observable characteristics X. The Long (Short) portfolio, indexed by l = L (l = S),

contains the assets with the highest (lowest) value of X. As an example, if X were the

book-to-market ratio, the L and S portfolios would correspond to the value and growth

stocks respectively. I denote the log-price of each portfolio at time t by logPl,t, so that

its h-period log-return (cum-dividend) is rl,t,t+h = logPl,t+h − logPl,t.

In the spirit of Fama and French (1988), I assume that the log-prices of the portfolios

are driven by a permanent and a transitory component, denoted with logFl,t and ul,t

respectively. That is

logPl,t = logFl,t + ul,t, (1.1)

ul,t = ρlul,t−1 + ηl,t, (1.2)

logFl,t = logFl,t−1 + νl,t, (1.3)

with ρl < 1 for l = L, S. In contrast with Dong et al. (2022), the two legs are driven by

two different trends, i.e. logFL,t ̸= logFS,t. This latter assumption implies that the price

of the anomaly long-short portfolio logPL,t− logPS,t is non stationary, which is consistent

with recent empirical evidence on the cross-section of asset prices (Favero et al., 2021).

By taking first differences of Equation (1.1), we have

rl,t,t+1 = fl,t,t+1 + (ρl − 1)ul,t + ηl,t+1, (1.4)

with fl,t,t+1 := logFl,t+1 − logFl,t. If ρl < 1, i.e. if there is cointegration, then ul,t is
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an error correction term (ECT, henceforth) which implies that prices move towards the

equilibrium. As an example, suppose that ul,t > 0, i.e. the price of portfolio l at time t is

above the equilibrium level implied by the trend. Since (ρl − 1) < 0, the return from t to

t+1 will be lower, and logPl,t+1 will move downwards to correct the mispricing. Another

key implication is that ul,t is a predictive term in Equation (1.4): it is estimated at time

t, and it provides information on the return between time t and t+ 1.

So far I have described an error correction mechanism that drives the dynamics of

prices, and that can be exploited to predict the returns of each portfolio. Now I will

explore its implications for the aggregate portfolio, i.e. the market. In the context of my

simplified framework, the market portfolio is an equally weighted portfolio of L and S.

Its return between time t and t+ 1 is

rM,t,t+1 =
1

2
rL,t,t+1 +

1

2
rS,t,t+1 (1.5)

= ft,t+1 +
1

2
(ρL − 1)uL,t +

1

2
(ρS − 1)uS,t + ηt+1, (1.6)

with ft,t+1 = 1/2fL,t,t+1 + 1/2fS,t,t+1 and ηt+1 = 1/2ηL,t+1 + 1/2ηS,t+1. Equation (1.6) is

obtained by substituting rL,t,t+1 and rS,t,t+1 with their expressions from Equation (1.4).

Interestingly, Equation (1.6) shows that the return predictability at the individual port-

folio level has implications for the overall market. The deviations from equilibrium of the

two portfolios, uL,t and uS,t, predict rM,t,t+1, as long as ρL, ρS < 1.

The same line of reasoning can be applied to compute h-period returns. Starting from

Equation (1.1) the return between time t and t+ h of portfolio l is

rl,t,t+h = fl,t,t+h +
(
ρhl − 1

)
ul,t +

h−1∑
i=0

ρiηl,t+h−i, (1.7)

with fl,t,+h := logFl,t+h − logFl,t. Equation (1.7) is in stark contrast with Dong et al.

(2022), who argue that the predictability channel due to deviations from equilibrium is
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short lived. Due to their persistence ρl, the mispricings are not necessarily corrected in

one period. This fact implies that they hold information to predict the market at longer

horizons. The same insights apply to the market portfolio, whose h-period return is

rM,t,t+h =
1

2
rL,t,t+h +

1

2
rS,t,t+h (1.8)

= ft,t+h +
1

2

(
ρhL − 1

)
uL,t +

1

2

(
ρhS − 1

)
uS,t + ηt+h, (1.9)

with ft,t+h = 1/2fL,t,t+h + 1/2fS,t,t+h and ηt+h = 1/2ηL,t+h + 1/2ηS,t+h. Notice that the

error term in equation (1.9) is a sum of error terms over multiple horizons, as the last

term in Equation (1.7). Equations (1.7) and (1.9) highlight the importance of modeling

both prices and returns. Empirical analyses that only focus on the latter omit relevant

information to predict at longer horizons.

The persistence of mispricing ρl of the two portfolios is key in this framework. Indeed,

the (cointegration) condition ρl < 1 implies that the residuals ul,t predict future market

returns. ρl is related to the speed with which the price of portfolio l goes back to the

equilibrium level. It is therefore natural to differentiate the Long and the Short portfolios

in terms of their mispricing persistence. In particular, I assume that ρL < ρS, which is in

line with asymmetric limits of arbitrage.

Assumption 1 (Asymmetric Limits of Arbitrage). The transitory component of the Short

portfolio price (uS,t) is more persistent than the one of the Long portfolio price (uL,t). That

is, ρL < ρS < 1.

To understand the intuition behind Assumption 1, recall that the long and short port-

folios in the theoretical framework mirror the long and short legs of the anomaly portfolios

from the cross-sectional literature. That is, the long legs are expected to generate rela-

tively high returns, and they are considered to be underpriced. The opposite holds for the

short legs, so that the long-short anomaly portfolios generate “alphas”. Under asymmetric

limits of arbitrage, it is “easier” to correct underpricing rather than overpricing (Shleifer
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and Vishny, 1997). As an example, short-sale constraints should make overpricing more

prevalent and persistent than underpricing (Miller, 1977). Imposing ρL < ρS captures

this financial friction in reduced form.

1.2.2 The Predictions

Suppose we have data on the prices of the two portfolios and we want to predict the

market returns. Knowing that the data generating process is as in Equation (1.1), we run

regressions in the form

rM,t,t+1 = αl + βlul,t + ϵl,t+1, l = L, S. (1.10)

The coefficient βl and the mean squared forecast error are the objects of interest. Com-

paring Equation (1.10) with the expression for the market returns in Equation (1.6), I

derive the following proposition.

Proposition 1 (Long vs Short Legs). Under Assumption 1, the ratio between the Long

and Short portfolios standardized regression coefficients is

∣∣∣∣∣ β̃L

β̃S

∣∣∣∣∣ =
√

1− ρL
1− ρS

√
1 + ρS
1 + ρL

> 1. (1.11)

Moreover, the ratio between the mean squared forecast errors is

E
[
ϵ2L,t+1

]
E
[
ϵ2S,t+1

] < 1. (1.12)

Proof. See Appendix A.

According to Proposition 1, the ECT of the Long portfolio is a better predictor than

the ECT of the Short one: the former delivers a larger (in absolute value) standardized

β and lower expected forecast errors. To see why this result holds in an intuitive way,
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consider the limit ρS → 1. Equation (1.6) shows that the coefficient on uS,t would be zero.

Indeed, in this case any mispricing shock to the Short portfolio would be permanent, and

there is no mechanism to reverse it towards the equilibrium. Hence, the predictability

channel would be off.

Consider now an alternative regression model, in which the predictive term is the

lagged return of the individual portfolios. That is

rM,t,t+1 = αr,l + βr,lrl,t−1,t + ϵr,l,t+1, l = L, S, (1.13)

as in Dong et al. (2022). I use Equation (1.4) to obtain an analytical expression for βr,l,

and I compare it to the ECT coefficient βl in the following proposition.

Proposition 2 (ECT vs Returns). Under ρl < 1, the ratio between the standardized

regression coefficients is ∣∣∣∣∣ β̃r,l

β̃l

∣∣∣∣∣ < 1. (1.14)

Moreover,
E
[
ϵ2r,l,t+1

]
E
[
ϵ2l,t+1

] > 1. (1.15)

Proof. See Appendix A.

Proposition 2 shows that the ECT ul,t is a better predictor than the lagged return

rl,t−1,t. This fact holds in terms of both the standardized regression coefficients and the

mean squared forecast errors, as long as ρl < 1. The proof of the Proposition shows why

rl,t−1,t still predicts the market as in Dong et al. (2022). Intuitively, rl,t−1,t can be consid-

ered as an instrument for ul,t: it depends on ul,t−1 through the error correction mechanism

in Equation (1.4), thus containing information on ul,t due to the ECT persistence.

Finally, consider a regression in the form

rM,t,t+k = αk
l + βk

l ul,t + ϵl,t+k, l = L, S, (1.16)
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predicting the k-period ahead market return. Equation (1.9) let us obtain the analytical

expression for βk
l and compare it at different horizons.

Proposition 3 (Multi-horizon Regressions). Under cointegration (ρl < 1), the ratio be-

tween the standardized regression coefficients is

∣∣∣∣∣ β̃k+n
l

β̃k
l

∣∣∣∣∣ > 1, n ≥ 1. (1.17)

Moreover,
E
[
ϵ2l,t+k+n

]
E
[
ϵ2l,t+k

] < 1. (1.18)

Proof. See Appendix A.

Proposition 3 shows that the predictive power increases with the forecast horizon.

Once again, this result stems from the persistence of the ECTs and the fact that it takes

more than one period (month) to correct the temporary mispricing. This feature is in

stark contrast with Dong et al. (2022), and it highlights the importance of modeling both

prices and returns.

1.3 The Empirical Framework

This section describes the empirical setting, which is guided by the econometric framework

of Section 1.2. I introduce a model to decompose the cross section of prices into a common

permanent trend component and an idiosyncratic stationary one. Then, I describe the

dimensionality reduction techniques I use to extract information from the cross section of

error correction terms. I finally describe the out-of-sample procedure I follow.
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1.3.1 Estimating the Trends

The first step in my empirical analysis is to decompose prices into a permanent and

a transitory component, as in Section 1.2. The former is common across assets, while

the latter is idiosyncratic. There are two potential approaches to estimate the common

stochastic trends. The first one starts from a set of factors for the cross-section of returns,

and it cumulates them to obtain the non-stationary trends (Favero et al., 2021). The

second approach estimates the permanent components directly from the cross-section of

prices (Banerjee and Marcellino, 2009). In this section I introduce both methods, and I

explain why I will mostly rely on the latter for the empirical analysis.

Favero et al. (2021) introduce a way to estimate the common stochastic trends. Con-

sider a candidate factor model for the cross-section of returns, such as the 5-factor model

by Fama and French (2015), and denote the factors by ft. Proxies for the common trends

logFt can be obtained by cumulating the factors, i.e. logFt = logFt−1 + ft. From an

economic point of view, logFt contains the values of buy-and-hold portfolios that replicate

the factors ft. Favero et al. (2021) show that these integrated factors are cointegrated with

the prices of the long-short anomaly portfolios, giving rise to the error correction mecha-

nism described in Section 1.2. This procedure is in line with my theoretical framework,

but it has two main drawbacks.

First, this method does not allow the long and short legs of the anomaly portfolios to

be driven by different trends. Indeed, the trends are built by cumulating factors which are

designed to explain the cross-section of long-short portfolios, not of the long and short legs

separately. As a consequence, integrating these factors may not be appropriate to capture

the common drivers of my test assets. A possible solution could be to develop a set of

factors for the long and short returns separately (e.g. with principal components), and

to later cumulate them. However, this solution does not perform optimally, which brings

me to the second drawback of this trend estimation method: factors built for returns are

not guaranteed to describe prices. A key assumption of the empirical analysis is that the
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portfolio prices must be cointegrated with the trends, so that their mispricing shocks are

stationary. This condition may not be satisfied by the cumulated factors, especially as

the number of assets increases.

The approach I will use to estimate the common stochastic trends follows Bai (2004)

and Banerjee and Marcellino (2009)’s Factor-augmented Error Correction Model (FECM).

This method is useful to study large datasets with cointegration relationships which are

unknown or difficult to model explicitly, as in this empirical setting. In particular, consider

a cross-section of assets labeled by i = 1, ..., N with I(1) log-prices logPi,t. Suppose the

data generating process for the prices is

logPi,t = λ′
i logFt + ui,t, (1.19)

logFt = logFt−1 + νt, (1.20)

with ui,t being I(0), logFt = (logF1,t, ..., logFr,t)
′, and νt is a vector of I(0) processes that

drive the stochastic trends. Bai (2004) proves that the principal components of logPi,t

consistently estimate logFt as N diverges2. Moreover, the number of factors r can be

consistently estimated using information criteria (the Integrated Panel Criteria). I thus

estimate the common trends logFt as the cross-sectional principal components of the

portfolio prices. I do so separately for the long and the short legs, ending up with the two

set of factors logFL,t and logFS,t respectively.

Equation (1.19) describes a factor model for prices, rather than returns. Estimating

trends directly from prices delivers a larger number of cointegrated portfolios. This feature

is key for the empirical strategy, which relies on the stationarity of the mispricing shocks.

The method also proves to be flexible enough to account for the different trends driving

the long and short legs. Therefore, I will use it as the baseline approach to estimate the

common stochastic trends.

2To be precise, the principal components consistently estimate the space spanned by logFt.
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The literature on the predictability of returns has proposed other cointegrating frame-

works. As an example, Campbell and Shiller (1988) use the assumption that prices and

dividends are cointegrated in a dynamic dividend growth model. Lettau and Ludvigson

(2001) model the cointegrating relation between consumption, income and wealth, with

implications for the predictability of excess stock returns. Lettau and Ludvigson (2005),

Bansal et al. (2009) and Bansal and Kiku (2011) model a relation between consumption

and dividends, useful to model excess returns in the long-run. As I already mentioned,

Favero et al. (2021) propose to cumulate the returns of cross-sectional factors to proxy for

the common stochastic factors in a cross-section of prices. The papers mentioned above

model relationships at the “aggregate” level (e.g. for the aggregate equity market). As I

will show later in the empirical analysis, it is important to allow for different trends be-

tween the long and short components of anomaly portfolios, a feature which comes with

the cointegrating framework I proposed above. Indeed, since the prices of long-minus-

short portfolios are non-stationary, we need to allow for a difference in the permanent

components of their legs (which would otherwise cancel out). The other cointegrating

framework I mentioned, working at the aggregate level, would not allow for such flexibil-

ity. They could allow for different permanent components only through different loadings

of the long and short legs on the common trends.

1.3.2 Predicting the Market

After estimating the common stochastic trends and thus the error correction terms for

each asset, I use them to predict the market returns. In particular, I run regressions in

the form of Equation (1.16) and (1.13), comparing the predictive performance of ECTs

and lagged returns. The baseline regression I run is

rM,t,t+h = α + δft,t+h +
N∑
i=1

βi,Lui,L,t +
N∑
i=1

βi,Sui,S,t + ϵt+h, (1.21)
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in which rM,t,t+h is the log-return of the market portfolio between time t and t + h;

ft,t+h = logFt+h−logFt is the first difference of the common stochastic trends; ui,L,t (ui,S,t)

is the ECT of the long (short) leg of portfolio i at time t; N is the number of portfolios

in the cross-section (N = 100 in the baseline regressions). In some specifications I will

simply use the long or short legs, in which case I will use
∑N

i=1 βi,Lui,L,t or
∑N

i=1 βi,Sui,S,t

as predictive terms, respectively.

The regression in Equation (1.21) does not only contain predictive terms, as ft,t+h is not

observed at time t. I include this term in order to better identify the predictive coefficients

βi,L and βi,S, and to get closer to the econometric framework. Indeed, FECM models are

particularly sensitive to omitted variables (Banerjee and Marcellino, 2009; Banerjee et al.,

2014). In the out-of-sample exercises I will make sure to only use information up to time

t, and I will substitute ft,t+h with its historical average to forecast the future value of the

market return. This last step is consistent with the data generating process of Equation

(1.20).

Since the number of portfolios N is large (100 in the baseline regressions), estimating

Equation (1.21) with Ordinary Least Squares (OLS) would lead to overfitting and over-

reacting to noise. Indeed, OLS maximizes the in-sample fit by construction, which can

easily lead to poor out-of-sample performance. It is thus important to use methods to

extract a signal in the high-dimensional setting and to protect against overfitting. I use

two of the shrinkage techniques in Dong et al. (2022), principal components and Elastic

Net.

Principal Component I consider the first principal component of the predictors ui,l,t

with l = L, S, and I use it as a regressor alongside ft,t+h (which is left unchanged).

Whenever the regressions are restricted to the sub-samples of long or short legs, I consider

the first principal component as well. The advantage of this method is that the information

is condensed in a single series. It is thus possible to analyze the recursive estimates of the
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slope coefficients and their evolution over time, which would be complicated in a ENet

framework. This feature will be useful for the in-sample analysis. I will refer to this

method as U-PCA.

ENet I estimate the predictive regression of Equation (1.21) via Elastic Net (Zou and

Hastie, 2005). ENet combines both ℓ1 and ℓ2 penalties from lasso and ridge models. It

still shrinks some coefficients to zero due to the ℓ1 penalty, but it outperforms the lasso

(e.g. when there are high correlations among predictors). I modify the standard ENet

and I apply the shrinkage only to the predictors ui,l,t with l = L, S, leaving the regressors

ft,t+h untouched. I follow Dong et al. (2022) and I use a modified Aikaike information

criterion to select the value of the regularization parameter (Flynn et al., 2013). I will

refer to this method as U-ENet.

1.3.3 Forecast Evaluation

I evaluate the forecasting performance of the ECTs using the the Campbell and Thompson

(2008) out-of-sample R2, henceforth R2
OS. The R2

OS statistics compares the forecast errors

of a candidate model to a benchmark. In particular,

R2
OS = 1− MSFE1

MSFE0

, (1.22)

in which MSFE1 (MSFE0) is the Mean Squared Forecast Errors of the candidate (bench-

mark) model. R2
OS > 0 implies that the candidate model has a superior forecasting perfor-

mance than the benchmark. I follow the asset pricing literature and I use the the trailing

mean of the market excess returns as benchmark model (Welch and Goyal, 2008). Given

my forecasting horizon, which ranges from 1 to 12 months, this is the most appropriate

benchmark to assess out-of-sample predictive performance (Goyal et al., 2023).

I test the null hypothesis H0 : R2
OS ≤ 0 against the alternative HA : R2

OS > 0 using
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the Clark and West (2007) procedure. Let r̂0t−1,t and r̂1t−1,t be the forecasts of the market

return under the benchmark and candidate model respectively. The forecast errors ê0,t

and ê1,t can be obtained as

êj,t = rM,t−1,t − r̂jM,t−1,t, j = 0, 1. (1.23)

Clark and West (2007) propose to fit the regression

ê20,t − ê21,t +
(
r̂0M,t−1,t − r̂1M,t−1,t

)2
= µ+ ϵt (1.24)

via OLS and to do a t-test of H0 : µ ≤ 0 against HA : µ > 0. Since µ ≤ 0 is equivalent

to MSFE0 ≤ MSFE1, this procedure let us test H0 : R2
OS ≤ 0. I compute t-statistics

using heteroskedasticity and autocorrelation consistent (HAC) standard errors (Newey

and West, 1986).

As a final remark, I will inspect not only the statistical significance of the R2
OS, but

also its magnitude. Campbell and Thompson (2008) show that a monthly R2
OS of 0.5%

is already economically significant. Therefore, I will always compare my estimates with

this threshold.

1.3.4 Economic Value

As outlined in Section 1.3.3, I mostly evaluate competing models according to their R2
OS.

I complement this approach by analyzing their economic value to investors. I perform a

portfolio allocation exercise and I compute the utility gains for a risk averse agent who

can invest in the market portfolio and a risk-free asset.

Consider a risk-averse investor who maximizes

max
wj

t,t−1

wj
t,t−1r̂

j
M,t,t−1 −

1

2
γ
(
wj

t,t−1

)2
σ̂2
M,t,t−1, j = 0, 1, (1.25)
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where γ is the parameter governing the degree of relative risk aversion; wj
t,t−1 is the weight

given to the market portfolio according to forecasting model j, with j = 0 (j = 1) referring

to the benchmark (competing) model3; σ̂2
M,t,t−1 is the forecast of the variance of the market

excess return, that I assume to be the same across the two forecasting strategies.

The optimal portfolio weight under model j is

wj,∗
t,t−1 =

1

γ

r̂jM,t,t−1

σ̂2
M,t,t−1

. (1.26)

Given wj,∗
t,t−1, I compute the returns realized by the investor’s portfolio in an out-of-sample

exercise. I denote the mean and variance of such realized returns as r̄j and σ̂2
j respectively.

The average utility realized by the investor is

Ūj = r̄j −
1

2
γσ̂2

j , j = 0, 1. (1.27)

The economic value of the competing forecasting strategy over the benchamrk is estimated

via the average utility gain

∆U = Ū1 − Ū0. (1.28)

∆U can be thought of as the fee that the investor would be willing to pay in order to

access the forecasts of the competing model.

I follow the literature and I use a “mixed” scheme to perform the asset allocation

exercise (McCracken and Valente, 2018). That is, the investor uses a recursive window

to compute r̂jM,t,t−1, but estimates σ̂2
M,t,t−1 as the sample variance of the market excess

return over a 60-months rolling window. I consider a risk aversion coefficient equal to 3.

I rule out extreme portfolio weights by constraining them between −1 and 2.

3While the investor allocates 1− wj
t,t−1 to the risk-free asset.
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1.4 Data

In the empirical analysis I use the cross-section of long-short anomaly portfolios of Dong

et al. (2022). This dataset includes 100 portfolios that are representative of anomalies from

the cross-sectional asset pricing literature. For each anomaly, these long-short portfolios

are built by sorting stocks into decile portfolios based on a given characteristic. The

anomaly portfolio goes long (short) the tenth (first) decile portfolio. As an example, if

we sorted stocks according to their book-to-market ratio, the anomaly portfolio would go

long the value stocks, and short the growth ones, reproducing the value-growth anomaly.

I will consider separately the long and the short legs of these portfolios, so that in total

I have a cross-section of 200 assets. In the case of the book-to-market ratio, I end up

considering the value and the growth stocks as two separate portfolios.

The sample period goes from 1970:01 to 2017:12 at the monthly frequency. I present

some summary statistics for the returns in Table I. (It mirrors Table I in Dong et al.

(2022), I report it here for convenience). We can see that most of the portfolios are

indeed anomalies, i.e. they generate statistically significant alphas with respect to the

Fama and French (1993) three factor model. As an example, 75 anomalies out of 100

have an alpha which is positive at the 10% confidence level.

The correlation across the returns of the long (short) legs of the anomalies is on average

0.76 (0.86), a large value. On the contrary, the correlation for the long-short returns is low

on average (0.08). Dong et al. (2022) interpret these facts as consistent with a common

component in the returns of the long and short legs, which cancels out in the long-short

portfolios. I argue that these statistics are misleading, as they only focus on returns.

The empirical analysis of Section 3.4 will show that a different picture emerges when

considering prices. I plot the (log)prices of the long, short and long-short portfolios in

Figure 1.1. Euristically, the long and short legs seem to be driven by different trends, and

the long-short anomaly portfolio prices are not stationary.
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Table I
Summary Statistics

The table reports summary statistics for monthly anomaly portfolio returns for 100
anomalies. The sample period is 1970:01 to 2017:12. For each anomaly, stocks are
sorted into value-weighted decile portfolios according to the characteristic underlying the
anomaly. The long-short anomaly portfolio goes long (short) the tenth (first) decile port-
folio.

Number of anomalies 100
Fama and French (1993) three-factor model alpha

Number of long-short anomaly portfolio returns with |t-stat.| ≥ 1.645 75
Number of long-short anomaly portfolio returns with |t-stat.| ≥ 1.96 71
Number of long-short anomaly portfolio returns with |t-stat.| ≥ 2.58 56
Number of long-short anomaly portfolio returns with |t-stat.| ≥ 3 49

Average correlation across anomaly decile rankings 0.05
Average correlation across monthly anomaly excess returns

Long leg 0.76
Short leg 0.82
Long-short 0.08

Long-leg anomaly portfolio excess returns
Average of sample means 0.71%
Average of sample standard deviations 5.16%

Short-leg anomaly portfolio excess returns
Average of sample means 0.33%
Average of sample standard deviations 6.20%

Long-short anomaly portfolio returns
Average of sample means 0.38%
Average of sample standard deviations 4.37%
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Figure 1.1: Each panel depicts the log-prices of the (a) long, (b) short, (c) long-short
anomaly portfolios.

1.5 Empirical Results

This section presents the empirical results. I start by describing the in-sample analysis. I

later turn to the out-of-sample exercise, which is the bulk of my findings. Finally, I show

the results at multiple forecasting horizons.

1.5.1 In-Sample

I start by describing the results using the full sample, from 1970:01 to 2017:12. This

section focuses mainly on the estimated common trends and the properties of the error
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correction terms. This cointegration analysis is important to see whether the error cor-

rection mechanism of Section 1.2 is present in the data. I will also provide evidence for

asymmetric limits of arbitrage, focusing on the persistence of the long and short portfo-

lio ECTs. Finally, I discuss the estimates of the predictive coefficients in the principal

components framework.

I estimate the common stochastic trends of (1.19) using the cross-sectional principal

components of the log-prices. I use information criteria to obtain the number of factors.

I apply the information criteria in Bai (2004) to the data in levels, and the ones in Bai

and Ng (2002) to the differenced series. This procedure captures both the I(1) and I(0)

factors, which is important as omitting relevant variables in FECM models is problematic

(Banerjee and Marcellino, 2009). The long and short legs are driven by 3 factors each,

while the cross-section of both long and short legs’ prices (L&S for brevity) requires 5

factors.

The larger L&S cross-section requires more drivers. This fact is consistent with the

long and short legs being driven by different trends. Were this not the case, we would

expect to find only 3 factors when considering them together. This simple finding also

sheds new light on the evidence of Favero et al. (2021). The authors show that the

prices of the long-short anomaly portfolios are not stationary, which is consistent with i)

heterogeneous trends in the long and short legs ii) heterogeneous exposures of the legs

to the same trends. Having more factors in the L&S cross-section brings new evidence in

favor of the former hypothesis.

I plot the common trends for the long, short, long and short portfolios in Figure 1.2. All

the drivers appear to be quite persistent, as they are constructed from the cross-section

of prices. Once again, we can visually see that the factors that drive the two legs are

different. By inspecting panel (c), which includes both types of portfolios, it appears that

the two only share one common factor, the one depicted in red.4 This is to be expected,
4This common trend is basically the cumulative aggregate market, as the two series share a 99%

correlation.
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as the information criteria estimated 5 rather than 3 + 3 factors. After estimating the
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Figure 1.2: Each panel depicts the common cross-sectional trends for the log-prices of
the (a) long, (b) short, (c) long and short legs.

trends, I compute the error correction terms ûi,L,t and ûi,S,t by fitting Equation (1.19) for

each portfolio leg. In line with the framework of Section 1.2, I estimate the persistence

of each ECT series, obtained as the autoregressive coefficient of an AR(1) model. I show

their histogram in Figure 1.3. Interestingly, the persistence distribution is different for the

long and short portfolios: the latter have more counts in the bins close to one. This fact

is consistent with the asymmetric limits of arbitrage of Assumption 1. Moreover, I run a

statistical test on the means of the two distributions. The mean persistence of the long

legs is smaller than for the short legs, at the 10% level. This fact is robust to changing
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the number of drivers used to compute the mispricings.
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Figure 1.3: The figure shows histograms for the persistence ρ of the error correction
terms ui,L,t and ui,S,t for the (a) long and (b) short legs respectively.

Finally, I look at the recursive estimates of the slope coefficients in the predictive

regressions, i.e. βi,L and βi,S in Equation (1.21). I use the dimension reduction methods

of Section 1.3.2 to avoid overfitting, since the number of regressors is large. The principal

component method is more suitable than ENet for an in-sample analysis. Indeed, suppose

to fit the regression

rM,t,t+h = αl + βlu
PCA
l,t + ϵl,t+h, (1.29)

with uPCA
l,t being the first principal component of the long (l = L) or short (l = S)

portfolios ECTs. This approach delivers a single slope coefficient to compare across the

long and short sample, i.e. βL and βS. On the contrary, ENet shrinks the slope coefficients

to zero, but in general more than one coefficient will survive. It is difficult to interpret

the results if the selected coefficients for the long and short samples belong to different

portfolios. I will thus focus on the principal component method.
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Figure 1.4 shows the recursive estimates of the slope coefficient used to compute one-

month ahead forecasts (h = 1). It includes 90% confidence intervals, computed according

to Bai and Ng (2006). In the case of the long (short) legs, I set the sign of the principal

component so that it is positively correlated with 1/N
∑N

i=1 ui,L,t (1/N
∑N

i=1 ui,S,t). In

this way, an increase in the principal component can be interpreted as a general increase

in the ECTs.

The slope coefficients of the long and short legs have opposite signs. The estimates

for the long legs are negative and statistically significant towards the end of the sample.

They are also fairly stable over the estimation window. On the contrary, the slopes of

the short legs are mostly insignificant and, if anything, positive. They also show a shift

around 2010, which may signal a structural break due to the Financial crisis. Consistently

with Proposition 1, the slope coefficients for the long leg βL are negative, statistically

significant, and larger (in absolute value) than βS. These findings are in line with the

larger persistence of the short portfolio ECTs, as documented in Figure 1.3. This latter

fact may also explain the positive estimates of βS after 2010, which are at odds with the

error correction framework of Section 1.3.2: if the short portfolio prices were cointegrated,

we would expect their deviations from equilibrium to negatively predict the market.

1.5.2 Out-of-Sample

This section describes the results of the out-of-sample analysis, which is the most appro-

priate way to test market efficiency questions (Welch and Goyal, 2008; Martin and Nagel,

2021). I use the period 1970:01 to 1999:12 as the initial in-sample estimation period. I

later use expanding estimation windows and the out-of-sample period is thus 2000:01 to

2017:12. I present results at multiple forecasting horizons, highlighting the advantages of

focusing on prices rather than returns. Throughout my out-of-sample analysis I will use

the historical mean as benchmark, which is the relevant benchmark given my forecasting

horizon. Indeed, recent empirical evidence shows that it is hard to find predictors that
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Figure 1.4: The solid line depicts the recursive estimates of the slope coefficients of the
principal component forecasts (one-month ahead) from the (a) long and (b) short ECTs.
The dashed lines denote 90% confidence intervals.

consistently outperform the mean (Goyal et al., 2023).

I start with one-month ahead forecasts (h = 1) of the market excess returns. The

forecasts are based on the estimates of Equation (1.21) using either the first principal

components (U-PCA) or ENet (U-ENet) on the error correction terms. I conduct the

out-of-sample exercise on three separate sample, first considering all the portfolios, and

then focusing on the long and short ones separately. I compare the results with forecasts

based on simple lagged returns as in Dong et al. (2022). For the sake of comparability,

I use also in this case the first principal component (R-PCA) or ENet (R-ENet) on the

returns for the three portfolio samples. I will also conduct the same out-of-sample exercise

using the cross-section of long-short anomaly portfolios. As outlined in Section 1.3.3, I

evaluate the forecasting performance of the different approaches via the Campbell and

Thompson (2008) out-of-sample R2 (R2
OS).

I present the results in Table II. In the first row I use as regressors the error correction

terms of both the long and the short legs (L&S). Columns (1) and (2) are obtained using
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Table II
R2

OS Statistics

The table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) in percent

for market excess return forecasts one month in the future. The out-of-sample period is
2000:01 to 2017:12. U-PCA (R-PCA) forecasts are based on the first principal component
of the cointegrated error correction terms (returns) of the portfolios. U-ENet (R-ENet)
forecasts are built from elastic net predictive regressions that include all the cointegrated
error correction terms (returns) of the portfolios. L&S, L, S, LMS refer to the cross-
section of long and short, long, short, long minus short portfolios. ∗, ∗∗ and ∗∗∗ indicate
significance at the 10%, 5% and 1% level respectively for the positive R2

OS, based on the
Clark and West (2007) test.

(1) (2) (3) (4)
U-PCA U-ENet R-PCA R-ENet

L&S 0.56∗∗ -1.88 1.20 -0.88
(1.86) (-0.35) (1.19) (1.53)

L 0.74∗ 1.41∗∗ 0.79 -1.85
(1.63) (1.68) (0.98) (0.96)

S -0.63 -2.08 1.57∗ 4.00∗

(-1.24) (-0.39) (1.34) (1.37)
LMS -1.01 -1.15 1.33∗ 2.46∗∗

(-2.10) (0.34) (1.35) (1.86)

the U-PCA and U-ENet methods respectively. The former approach delivers an R2
OS of

0.56%, which is both statistically (at the 5% level) and economically significant. Indeed,

it is larger than the 0.5% threshold of Campbell and Thompson (2008) for economic

significance. The U-ENet method, instead, does not beat the historical mean benchmark

(R2
OS = −1.88%). This fact is probably due to an overfitting of the signal from the short

portfolio ECTs, as will be clearer later on. Columns (3) and (4) refer to the R-PCA

and R-ENet approaches respectively. Using both the long and short leg returns does not

improve the forecasting performance with respect to the historical mean. R-PCA delivers

a large but insignificant R2
OS of 1.20%, which is negative under the R-ENet specification

(−0.88%). The lack of statistical significance for the long and short returns is probably

due to overfitting the former, as I will discuss shortly.
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I run the forecasting exercise on the subsamples of the long and short portfolio legs,

to disentangle their respective contributions. The results can be found in the second

(L) and third (R) rows of Table II respectively. In the case of the long portfolios, both

the U-PCA and U-ENet methods deliver economically and statistically significant out-of-

sample R2. U-ENet outperforms U-PCA, with an R2
OS of 1.41% against 0.74%. In line

with Proposition 2, constructing the forecasts from the long leg returns delivers weaker

results. The R-PCA approach gives an out-of-sample R2 of 0.79%, which is large but not

statistically significant. R-ENet is instead beaten by the historical mean (−1.85%). The

deviations of prices from equilibrium are key to predict the market, and the information

they carry is lost when only the returns are considered.

The picture is reversed for the short legs. The third row of Table II shows that

neither U-PCA nor U-ENet outperforms the historical mean. They both have negative

R2
OS , −0.63% and −2.08% respectively. This finding is consistent with Proposition 1.

The short leg ECTs are more persistent than the long ones, due to asymmetric limits of

arbitrage, and they are worse predictors. Interestingly, the short returns are useful to

predict the market. The R-PCA and R-ENet methods achieve an R2
OS of 1.57% and 4%.5

The fourth row of Table II presents the results on the cross-section of long-short

anomaly portfolios. From the econometric framework, there is no reason to expect that

the ECTs of these portfolios lead to market predictability. Indeed, the i-th anomaly

portfolio deviations from equilibrium are in the form ui,L,t − ui,S,t. The latter expression

is a noisy signal for ui,L,t or ui,S,t which enter the expression of the market return (see

e.g. Equation (1.7)). U-PCA and U-ENet consistently deliver a negative R2
OS, −1.01%

and −1.15% respectively. Instead, the long-short anomaly returns predict the market as

in Dong et al. (2022).6

5The latter number is considerably larger than the one in Dong et al. (2022), due to different out-of-
sample periods. Indeed, the authors start their out-of-sample exercise in 1985:01. I consider a shorter
window because my analysis relies on long-run relations, that need more observations to be estimated.

6Computing the prices of the long-minus-short anomaly portfolios either as the prices of long legs
minus the prices of short legs, or by cumulating the long-minus-short portfolio returns, virtually does not
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1.5.3 Multiple Horizons

So far I have described the results for the one-month ahead forecasts. This section presents

the analysis for horizons of one quarter and one year in the future. According to the

econometric framework of Section 1.2, I expect the error correction terms to provide

valuable information at multiple forecasting horizons.

I present the forecasting results at multiple horizons in Table III. The first row repli-

cates Table II. For the sake of brevity, I do not report the forecasts based on the portfolio

returns, whose R2
OS are small and insignificant beyond the one month horizon (Dong

et al., 2022). If we consider both the long and the short legs (L&S), we can see that the

ECTs contain information to predict the market at multiple horizons. Under the U-PCA

method, the R2
OS at the 3 and 12 months horizon is 1.21% and 1.36% respectively. Both

figures are statistically and economically significant. Even though the U-ENet forecasts

are beaten by the historical average at the quarterly horizon, they deliver a remarkable

14.87% one year in the future.

If we focus on the long (L) and short (S) leg subsamples, a similar picture emerges.

In the case of the long legs, both U-PCA and U-ENet deliver positive and large R2
OS at

the quarterly and annual horizon. The statistics get larger as the horizon increases, in

line with Proposition 3: since the mispricings are not corrected in just one period, they

contain valuable information to forecast at longer horizons. On the contrary, the short

legs do not achieve predictability at any horizons.

In light of these findings, I compare the recursive estimates of the slope coefficients

for the long and short ECTs for one-year ahead predictive regressions. The case of one-

quarter ahead forecasts is similar and is not reported for the sake of brevity. As already

explained in Section 1.5.1, I only focus on the principal component regressions to interpret

the results. Figure 1.5 depicts the slope estimates, together with 10% confidence intervals.

In line with Proposition 3, the long legs coefficients βL for the annual horizon forecasts

affect the results.
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Table III
R2

OS Statistics - Multiple Horizons

The table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) in percent

for market excess return forecasts at horizons of one month, one quarter and one year.
The out-of-sample period is 2000:01 to 2017:12. U-PCA forecasts are based on the first
principal component of the cointegrated error correction terms of the portfolios. U-ENet
forecasts are built from elastic net predictive regressions that include all the cointegrated
error correction terms (returns) of the portfolios. L&S, L, S refer to the cross-section of
long and short, long, short portfolios. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%
and 1% level respectively for the positive R2

OS, based on the Clark and West (2007) test.

L S L&S

U-PCA U-ENet U-PCA U-ENet U-PCA U-ENet

RM,t,t+1 0.74∗ 1.41∗∗ -0.63 -2.08 0.56∗∗ -1.88
(1.63) (1.68) (-1.24) (-0.39) (1.86) (-0.35)

RM,t,t+3 1.38∗∗ 2.07∗∗ -2.38 -8.06 1.21∗∗∗ -7.54
(1.87) (1.76) (-1.86) (-1.26) (2.33) (-0.79)

RM,t,t+12 2.81∗∗∗ 13.10∗∗∗ -10.12 -11.49 1.36∗∗ 14.87∗∗∗

(2.28) (4.29) (-3.34) (-1.46) (1.67) (5.04)

are larger (in magnitude) than for the monthly case of Figure 1.4. The estimates are

always negative and statistically different from zero. Concerning the short legs, until

2010 their slope coefficients are non-significant and clearly smaller than in the long leg

case. However, after 2010 there appears to be a structural break, that leads to a shift of

the estimated coefficients. Once again, this fact may hint at a structural break due to the

Financial crisis, which would deserver further investigation.

1.5.4 Economic Value

In this section, I compare the forecasting models in terms of their economic value to a

risk-averse investor. This procedure tests the robustness of the out-of-sample results. An

asset allocation exercise also provides a direct measure of the economic significance of the

results, which was so far assessed via the threshold of R2
OS ≥ 0.5%.

I compute the utility gains for an investor with a risk aversion coefficient of 3 following
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Figure 1.5: The solid line depicts the recursive estimates of the slope coefficients of the
principal component forecasts (one-year ahead) from the (a) long and (b) short ECTs.
The dashed lines denote 90% confidence intervals.

the procedure in Section 1.3.4. I perform the asset allocation exercise at horizons of one

month, one quarter and one year in line with the previous sections. I will compare

the portfolios built starting from the ECT-based forecasts (U-PCA and U-Enet) with the

historical mean. The utility gains are always expressed as an annualized percentage. They

can be interpreted as the management fee an investor would pay in order to construct the

portfolio according to the ECT-based forecasts.

Table IV presents the results, overall corroborating the findings from the previous

sections. If we consider only the long legs (L), both the U-PCA and U-ENet methods

lead to sizable utility gains, at every investment horizon. The gains range from 1.22%

to 6.38%. For each horizon, the U-ENet method systematically outperforms U-PCA, in

line with the larger R2
OS of Table III. If instead we consider the short legs (S), the utility

gains are always negative or small, ranging from −2.72% to 0.14%. Using this subsample

to forecast the market excess return, a mean-variance investor would have a larger utility

by simply using the historical mean, in line with the previous findings.
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Table IV
Utility Gains

The table reports the annualized average utility gains (∆U) in percent for a risk-averse
investor at horizons of one month, one quarter and one year. The out-of-sample period
is 2000:01 to 2017:12. U-PCA forecasts are based on the first principal component of
the cointegrated error correction terms of the portfolios. U-ENet forecasts are built from
elastic net predictive regressions that include all the cointegrated error correction terms
(returns) of the portfolios. L&S, L, S refer to the cross-section of long and short, long,
short portfolios. The results are obtained by using a risk-averse coefficient of 3 and a
60-month rolling window to estimate the sample volatility.

L S L&S

U-PCA U-ENet U-PCA U-ENet U-PCA U-ENet

∆U1 1.77 5.06 −1.93 0.14 0.82 −0.61
∆U3 2.28 6.15 −2.72 −1.8 1.22 −0.73
∆U12 1.22 6.32 −1.93 −1.19 0.06 9.48

The results are mixed when considering the long and short legs together (L&S). The

U-PCA method delivers utility gains that go from 0.06% to 1.22%, always lower than

in the long legs case, but still positive. However, the U-ENet presents gains which are

negative at the horizon of one and three months (−0.61% and −0.73% respectively), but

largely positive at the annual horizon (9.48%). As already highlighted in the previous

sections, this fact may be due to U-ENet overreacting to noise from the short legs, which

are less likely to be stationary.

1.5.5 Additional Results and Robustness

Finally, I show additional results that qualify the behavior of the expected returns gener-

ated by the model. Following Bianchi et al. (2023), I impose an economic restrictions on

the forecasts coming from the model. In particular, I impose that investors require a non-

negative equity premium. That is, I impose that the predicted excess return is non-zero.

I present the results in Appendix C, Table V. Most of the results coming from the U-PCA
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model are virtually unaffected, both in terms of magnitude of the R2
OS and its statistical

significance. This could be a sign that the predictions generated by the model are in

line with economic theory. However, the predictions generated by the U-ENet model are

worsened by such non-negativity constraints, even though mostly for the non-long-only

cases.

I also test the robustness of my results by applying the same procedure to another

dataset. In particular, I use the anomaly set from Jensen et al. (2023), who provide 154

portfolios, and apply the same statistical procedure described above. I present the results

in Appendix C, Table VI. Due to the limitation of the dataset, I can only perform the

analysis on the bare anomaly portfolios, and cannot divide them into their long and short

components. However, extracting a signal still delivers smaller forecast errors than for

the historical mean case, as show by all the R2
OS measures for the U-PCA model. In the

U-ENet case the results are less clean, even though they become stronger by increasing

the forecasting horizon.

1.6 The Model

This section provides a microfoundation for the data generating process of Section 1.2.

I present a standard model with slow-moving capital (Duffie, 2010), in which a mass of

inattentive investors can only trade once every k periods. I show that such a model can

account for temporary deviations of prices from the fundamental value, which are slowly

corrected towards the equilibrium. I later generalize the setting to study the implications

of asymmetric limits of arbitrage for price dynamics. I do so by introducing short selling

costs, in the spirit of Gromb and Vayanos (2010). Departing from the previous literature,

I specify the constraints in logistic form as to obtain analytical expressions. I show that

the financial friction significantly affects the persistence of price deviations, as posited in

the econometric framework.
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1.6.1 Price Dynamics with Slow-Moving Capital

I start by describing the model of Duffie (2010), which I use to study the dynamics of price

deviations from equilibrium. The model features both attentive and inattentive investors:

the former can always buy and sell assets, while the latter only trade once every k periods.

The inattentive agents do not react immediately to changes in the asset fundamentals,

such as a permanent increase in its supply, thus causing the price to overshoot and depart

from the fundamental value. However, these deviations are only temporary: as investors

slowly change their positions in the asset to account for the new information, the price

moves towards the new equilibrium value.

Consider an economy with two assets. Time is discrete and infinite. At time t there

are Zt units of a risky asset, whose price is Pt and which pays Xt dividends. There is a

risk-free asset, whose gross return R is assumed to be constant and exogenous. The risky

asset supply and dividends are exogenous and follow the vector autoregressive process

Zt

Xt

 = Λ

Zt−1

Xt−1

+ Σ1/2ϵt, (1.30)

in which Λ and Σ1/2 are 2× 2 matrices and ϵt = (ϵz,t, ϵx,t)
′. Σ1/2 is positive semi-definite

and symmetric, while I impose no restrictions on Λ.

There are two types of agents with constant absolute risk aversion (CARA) utility. A

mass 1− q of attentive investors trade assets in each period. Their aggregate demand for

the risky asset at time t is Kt. Appendix B shows that their demand is given by

Kt = (1− q)
Et [Pt+1 +Xt+1]−RPt

ϕVt [Pt+1 +Xt+1]
, (1.31)

with ϕ being the harmonic mean of the attentive investors’ risk-aversion coefficients.

Equation (1.31) is the usual demand for risky assets under CARA utility.

There is a mass q of inattentive investors who can only trade once every k periods.
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They cannot change their portfolio weights for k periods, and all the dividends from the

risky asset are reinvested at the risk-free rate. Their activities are uniformly distributed

across time, so that each period a fraction q/k can trade. I denote the inattentive investors’

aggregate demand at time t with Dt. Appendix B derives

Dt =
q

k

Et

[
Pt+k +

∑k
n=1R

k−nXt+n

]
−RkPt

θVt

[
Pt+k +

∑k
n=1R

k−nXt+n

] , (1.32)

in which θ is the harmonic mean of the inattentive investors’ risk-aversion coefficients.

At time t the total available supply of the risky asset is different from Zt, as a mass

of q(1− k) inattentive investors cannot trade and their positions are held off the market.

The market clearing condition therefore reads

Kt +Dt = Zt −Dt−1 − ...−Dt−k+1. (1.33)

I collect the inattentive investors’ positions currently unavailable for trade in the vector

Ht = (Dt−1, ..., Dt−k+1)
′. Since Ht affects the net supply of the risky asset, the relevant

state vector to find the equilibrium is Yt = (Zt, Xt, Ht)
′. It can be proved that in such

setting the risky asset price and demand are linear in the state vector, that is

Pt = c′Yt, (1.34)

in which c must be computed numerically.

I consider a simple case to show the intuition behind the model. I assume that at time

t = 1 there is a shock which brings the supply from Z0 to Z1, with a conditional mean

and variance of 0 and 0.1 respectively. The asset supply is constant after this shock, i.e.

Zt = Z1 for t ≥ 1. The dividends Xt are i.i.d., with 0 mean and variance equal to 0.1.
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Referring to Equation (1.30), for t ≥ 1 we have

Λ =

1 0

0 0

 , Σ1/2 =

0 0

0
√
0.1

 . (1.35)

The fraction of inattentive investors is q = 0.8, their period of inactivity is k = 32 and

they start with no asset holdings, that is H0 = 0. The gross risk-free rate is R = 1.01 and

the risk-aversion coefficients are ϕ = θ = 1. I consider a shock that brings the supply to

Z1 = 2.7

In this setting it is possible to compute analytically the “fundamental value” of the

risky asset, Vt, which I define as the price at the steady state. In the spirit of Anufriev and

Tuinstra (2013), I will focus on deviations of prices from this equilibrium value. Appendix

B shows that

Vt =
Zt

(1−q)(1−R)

ϕσ2
1

+
q(1−Rk)

θσ2
k

, t ≥ 1, (1.36)

with the expressions of σ2
1 and σ2

k provided in the Appendix.

Figure 1.6 shows the dynamics of price deviations from the equilibrium, that is Pt−Vt. I

interpret this difference as a proxy for the error correction term of the empirical framework.

After the massive shock at time t = 1, the supply of the risky asset increases dramatically.

However, only 22.50% of investors are available to absorb this shock8, implying a sizable

price decline. Even though the price is below the fundamental value, in the following

periods only a small fraction of investors can adjust their portfolios and buy it. One

period at a time, inattentive demand increases, and the price fluctuations following the

initial shock are dampened and fade away.

7Considering a time 0 conditional variance of 0.1, the shock is sizable.
8The number is obtained as 1− q + q/k = 0.225.
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Figure 1.6: The figure depicts the price deviations from the fundamental value after a
positive supply shock at time t = 1.

1.6.2 Short Selling Costs

This section builds on the framework of Duffie (2010) and adds a financial friction, to

study its impact on the price dynamics. This latter feature brings the model closer to

the empirical framework, in which I argued that asymmetric limits of arbitrage affect the

persistence of mispricings.

I model asymmetric limits of arbitrage through short selling costs, in the spirit of

Gromb and Vayanos (2010). If an agent holds x units of the risky asset, the holding costs

are given by a function κ (x). A natural choice would be to use κ (x) = −κ|x|1{x<0}, in

which κ > 0 is a constant and 1{x<0} is the indicator function. Since this functional form

complicates the analysis, I replace it with a logistic cost function

κ (x) = κx
e−γx

1 + e−γx
. (1.37)

The logistic costs in Equation (1.37) are positive for x > 0, which is a drawback. However,
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with a large enough value of γ, they provide an approximation of the usual step-function

short selling costs. Figure 9 in Appendix B shows a comparison between the two functional

forms.

I repeat the analysis of Section 1.6.1, adding short selling constraints in the form of

the logistic costs of Equation (1.37). I keep all the parameters as before, and I set γ = 6.

I present details on the solution method in Appendix B. The main difference is that, due

to the short selling costs, the price is not linear in Yt and it is not possible to obtain an

analytical expression. In the same way, Vt must be obtained numerically.

Figure 1.7 depicts the deviations of price from equilibrium, Pt − Vt, in the presence of

short selling costs. The left panel presents the results for a simulation time of T = 100

periods, at whose end the fluctuations are still material. I thus simulate the system

for T = 200 periods, showing the results in the right panel of the figure. The longer

simulation shows that the price deviations are progressively dampened. Comparing these

results with the price dynamics of Figure 1.6, short selling costs make deviations from

equilibrium more persistent. Fluctuations take more time to dampen. This fact is in line

with the results of Anufriev and Tuinstra (2013) and with the framework of Miller (1977).

Finally, I compare the effect of an over-pricing and an under-pricing shock. The goal

is to to see whether this framework accounts for the different impact on the ECT, in line

with my empirical analysis. I present my results in Figure 1.8. In both cases I impose a

supply shock such that the fundamental value changes by 10%. The blue line corresponds

to an underpricing shock, due to a sudden positive increase in supply, as in Figure 1.7.

The orange line corresponds instead to a decrease in supply, that delivers an overpricing

shock, as the price jumps above the fundamental value. We can think about this setting

as if we had the two legs of an anomaly portfolios, which receive an opposite shock. Given

an equivalent change in fundamental, the short leg (overpricing shock) has a larger ECT

on impact, which requires more time to dampen, thus being more persistent. Therefore,
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(b) T = 200

Figure 1.7: The figure depicts the price deviations from the fundamental value after a
positive supply shock at time t = 1. The model includes short selling logistic costs. Panel
(a) considers a simulation duration of T = 100 periods, while Panel (b) has T = 200
periods.

accounting for short-selling costs brings the model in line with the empirical framework,

accounting for the differential persistence that characterizes the long and short legs of

anomaly portfolios.

1.7 Conclusion

Large cross-sections of long-short anomaly portfolios predict the market excess return

(Dong et al., 2022). This chapter investigates why. I decompose the prices of the long

and short legs of the anomalies into permanent and transitory components. By using

dimension reduction techniques, I show that the latter predict the market excess return.

This result holds at multiple horizons and is mostly driven by the long components of the

anomaly portfolios. I interpret these findings through an asymmetric limits of arbitrage

model.

These results highlight the importance of modeling asset prices together with returns.

They also contribute to a new literature that links the cross-sectional and time-series pre-

dictability in the stock market. An extension of this work could be to develop theoretical
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Figure 1.8: The figure depicts the price deviations from the fundamental value after a
positive (blue line) and negative (orange line) supply shock at time t = 1. The shocks are
chosen such that the fundamental value changes by 10%.

models to study the price dynamics in closed form.
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A The Econometric Framework

Proposition 1 (Long vs Short Legs). Under Assumption 1, the ratio between the Long

and Short portfolios standardized regression coefficients is

∣∣∣∣∣ β̃L

β̃S

∣∣∣∣∣ =
√

1− ρL
1− ρS

√
1 + ρS
1 + ρL

> 1. (1.11)

Moreover, the ratio between the mean squared forecast errors is

E
[
ϵ2L,t+1

]
E
[
ϵ2S,t+1

] < 1. (1.12)

Proof. The standardized regression coefficient is

β̃l =
Cov (rM,t,t+1, ul,t)√

V (ul,t)
.

Calculations show

Cov (rM,t,t+1, ul,t)√
V (ul,t)

=
Cov

(
ft,t+1 +

1
2
(ρL − 1)uL,t +

1
2
(ρS − 1)uS,t + ηt+1, ul,t

)√
V (ul,t)

=

=
1

2
(ρl − 1)

√
V (ul,t).

Since we have an AR(1) process, V (ul) = V (ηl) / (1− ρ2l ). I assume V (ηL) = V (ηS).

Because of asymmetric limits of arbitrage, ρS > ρL, and

β̃L

β̃S

=
(ρL − 1)

√
V (uL)

(ρS − 1)
√

V (uS)
=

1− ρL
1− ρS

√
1− ρ2S
1− ρ2L

=

√
1− ρL
1− ρS

√
1 + ρS
1 + ρL

>

√
1− ρS
1− ρS

√
1 + ρL
1 + ρL

= 1.
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Now, concerning the MSFE,

ϵl,t+1 = rM,t,t+1 − αl − βlul,t

= ft,t+1 +
1

2
(ρL − 1)uL,t +

1

2
(ρS − 1)uS,t + ηt+1 − αl −

1

2
(ρl − 1)ul,t

= ft,t+1 +
1

2
(ρ−l − 1)u−l,t + ηt+1 − αl,

and since (1− ρL)
2 > (1− ρS)

2,

E
[
ϵ2S,t+1

]
> E

[
ϵ2L,t+1

]
.

Proposition 2 (ECT vs Returns). Under ρl < 1, the ratio between the standardized

regression coefficients is ∣∣∣∣∣ β̃r,l

β̃l

∣∣∣∣∣ < 1. (1.14)

Moreover,
E
[
ϵ2r,l,t+1

]
E
[
ϵ2l,t+1

] > 1. (1.15)

Proof. Consider the regressions

rM,t,t+1 = αr,l + βr,lrl,t−1,t + ϵr,l,t+1,

rM,t,t+1 = αl + βlul,t + ϵl,t+1,

and let us compute the beta coefficients:

βr,l =
Cov (rM,t,t+1, rl,t−1,t)√

V (rl)
=

ρl (1− ρl)
2 V (ul)

2
√
V (rl)

> 0,

βu,l =
Cov (rM,t,t+1, ul,t)√

V (ul)
=

(ρl − 1)V (ul)

2
√

V (ul)
< 0.
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The correlation between the trends is zero, as they are not at the same time. Let us look

at the ratio between the coefficients:

βr,l

βu,l

= ρl (ρl − 1)

√
V (ul)

V (rl)
= ρl (ρl − 1)

√
V (ul)

V (fl) + (ρl − 1)2 V (ul) + V (ηl)

=
ρl (ρl − 1)

(1− ρl)

√
(ρl − 1)2 V (ul)

V (fl) + (ρl − 1)2 V (ul) + V (ηl)
= −ρl

√
(ρl − 1)2 V (ul)

V (fl) + (ρl − 1)2 V (ul) + V (ηl)
.

Since ρl < 1 and the argument of the square root is smaller or equal to unity,

∣∣∣∣βr,l

βu,l

∣∣∣∣ < 1, (38)

i.e. the ECT predicts better. Notice there are also some predictions on the sign of the

coefficients. Now, concerning the MSFE,

ϵr,l,t+1 = rM,t,t+1 − αr,l − βr,lrl,t−1,t

= ft,t+1 +
1

2
(ρL − 1)uL,t +

1

2
(ρS − 1)uS,t + ηt+1+

− αr,l −
ρl (1− ρl)

2 V (ul)

2V (rl)

(
fl,t−1,t +

1

2
(ρl − 1)ul,t−1 − ηt

)
.

Proposition 3 (Multi-horizon Regressions). Under cointegration (ρl < 1), the ratio be-

tween the standardized regression coefficients is

∣∣∣∣∣ β̃k+n
l

β̃k
l

∣∣∣∣∣ > 1, n ≥ 1. (1.17)

Moreover,
E
[
ϵ2l,t+k+n

]
E
[
ϵ2l,t+k

] < 1. (1.18)
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Proof. Consider the regression

rM,t,t+k = αk
l + βk

l ul,t + ϵl,t+k.

The standardized regression coefficient is

β̃k
l =

Cov (rM,t,t+k, ul,t)√
V (ul,t)

.

Calculations show

Cov (rM,t,t+k, ul,t)√
V (ul,t)

=
Cov

(
ft,t+k +

1
2

(
ρkL − 1

)
uL,t +

1
2

(
ρkS − 1

)
uS,t + ηt+k, ul,t

)√
V (ul,t)

=

=
1

2

(
ρkl − 1

)√
V (ul,t).

We can show that
∣∣∣ β̃k+n

l

β̃k
l

∣∣∣ > 1. Indeed

∣∣∣∣∣ β̃k+n
l

β̃k
l

∣∣∣∣∣ = (1− ρk+n
l )

(1− ρkl )
> 1,

as ρl < 1 and ρk+n
l < ρkl . The second part of the Proposition is a consequence of writing

ϵl,t+k = rM,t,t+k − αk
l − βk

l ul,t

and substituting the expression for the coefficients, as in the previous Propositions.

B The Model

This section shows the details of the proofs of the model.



B. THE MODEL 53

B.1 Attentive Investors

Let Ki
t be the demand for the risky asset by individual investor i, with risk-aversion

coefficient ϕi. Each investor has constant absolute risk aversion (CARA) utility, so that

the maximization problem to be solved is

max
Ci

t ,K
i
t

Et

(
W i

t+1

)
− ϕi

2
Vt

(
W i

t+1

)
, (39)

subject to the budget constraint

W i
t+1 =

(
W i

t − Ci
t

)
R +Ki

t (Pt+1 −RPt +Xt+1) . (40)

Expectations are homogeneous. By considering the first order condition with respect to

Ki
t , the optimal demand is

Ki
t =

Et [Pt+1 +Xt+1]−RPt

ϕiVt [Pt+1 +Xt+1]
. (41)

The attentive investors’ aggregate demand is obtained by integrating,

Kt =

∫
diKi

t = (1− q)
Et [Pt+1 +Xt+1]−RPt

ϕVt [Pt+1 +Xt+1]
, (42)

in which ϕ is the harmonic mean of the risk-aversion coefficients9.

9The harmonic mean is defined as ϕ =
(∫

di (ϕi)
−1
)−1

.
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B.2 Inattentive Investors

Let Di
t be the demand for the risky asset of the i-th inattentive investor. The risk-aversion

coefficient is θi, and each investor agent has CARA utility. The maximization problem is

max
Ci

t ,D
i
t

Et

(
W i

t+k

)
− θi

2
Vt

(
W i

t+k

)
, (43)

subject to the budget constraint

W i
t+k =

(
W i

t − Ci
t

)
Rk +Di

t

(
Pt+k +

k∑
n=1

Rk−nXt+n −RkPt

)
. (44)

Solving for Di
t and integrating over the inattentive investors yield the aggregate demand

Dt =
q

k

Et

[
Pt+k +

∑k
n=1R

k−nXt+n

]
−RkPt

θVt

[
Pt+k +

∑k
n=1R

k−nXt+n

] , (45)

with θ being the harmonic mean of the risk-aversion coefficients.

B.3 The solution

At time t, the inattentive investors who were active in the previous k − 1 periods are

locked in their position. The market clearing condition reads

Kt +Dt = Zt −Dt−1 − ...−Dt−k+1. (46)

The relevant state vector is Yt = (Zt, Xt, Ht)
′, with Ht = (Dt−1, ..., Dt−k+1)

′. It can be

proved that Yt follows the process

Yt = AYt−1 +Bϵt. (47)
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In this setting, the demand and price are linear in Yt: Dt = aYt, Kt = bYt and Pt = cYt.

See the appendix in Duffie (2010) for the expressions. I find c with MATLAB. I specialize

my results to the case

Λ =

1 0

0 0

 , Σ1/2 =

0 0

0
√
0.1

 . (48)

Differently from Duffie (2010), I express my results in terms of deviations from the

equilibrium price Vt. I find Vt following the intuition in Anufriev and Tuinstra (2013),

that is as the steady state. This approach is appropriate given the special form of the Λ

and Σ1/2 matrices. In particular, I impose

K + kD = Z, (49)

with

K =
(1− q) (1−R)

ϕσ2
1

P, (50)

kD =
q
(
1−Rk

)
θσ2

k

q. (51)

The variances are

σ2
1 = V (X) = σ2

X , (52)

σ2
k = V

(
k∑

i=1

Rk−iX

)
=

k∑
i=1

(
R2
)k−i

σ2
X =

1−R2k

1−R2
σ2
X . (53)

Using the market clearing condition, we can express the fundamental value as

V =
ϕZ

(1− q) (1−R) /σ2
1 + q (1−Rk) /σ2

k

. (54)
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B.4 Short Selling Costs
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Figure 9: This figure depicts the short selling costs under a step function (dashed line)
and a logistic function (solid line).

C Additional Results
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Table V
R2

OS Statistics - Economic Restrictions

The table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) in percent for

market excess return forecasts at horizons of one month, one quarter and one year. The
model forecasts are forced to be greater than zero, to have a non-negative equity premium.
The out-of-sample period is 2000:01 to 2017:12. U-PCA forecasts are based on the first
principal component of the cointegrated error correction terms of the portfolios. U-ENet
forecasts are built from elastic net predictive regressions that include all the cointegrated
error correction terms (returns) of the portfolios. L&S, L, S refer to the cross-section of
long and short, long, short portfolios. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%
and 1% level respectively for the positive R2

OS, based on the Clark and West (2007) test.

L S L&S

U-PCA U-ENet U-PCA U-ENet U-PCA U-ENet

RM,t,t+1 0.76∗∗ 0.42 -0.63 -1.65 0.60∗∗ -2.00
(1.70) (1.05) (-1.24) (-0.65) (1.90) (-0.9)

RM,t,t+3 1.37∗∗ −1.05 -2.38 -5.94 1.21∗∗∗ -7.34
(1.88) (−0.02) (-1.60) (-1.19) (2.33) (-1.69)

RM,t,t+12 2.74∗∗∗ 2.09∗ -5.04 -8.70 1.36∗∗ −1.49
(2.26) (1.61) (-3.40) (-1.42) (1.67) (1.18)

Table VI
R2

OS Statistics - Alternative Dataset

The table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) in percent

for market excess return forecasts at horizons of one month, one quarter and one year.
The out-of-sample period is 2000:01 to 2017:12. U-PCA forecasts are based on the first
principal component of the cointegrated error correction terms of the portfolios. U-ENet
forecasts are built from elastic net predictive regressions that include all the cointegrated
error correction terms (returns) of the portfolios. The anomaly portfolios are the 154
anomalies from Jensen et al. (2023). ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%
and 1% level respectively for the positive R2

OS, based on the Clark and West (2007) test.

U-PCA U-ENet

RM,t,t+1 1.74∗∗ −2.64
(2.00) (−1.46)

RM,t,t+3 6.32∗∗∗ −0.08
(4.02) (−0.93)

RM,t,t+12 9.89∗∗∗ 5.86∗∗∗

(5.35) (3.97)
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Chapter 2

News Headlines

This chapter is based on the paper “News Headlines”, which is joint work with Massimil-

iano Marcellino.

2.1 Introduction

Text analysis has become pervasive. It unleashes a wealth of new information, which

can be used by researchers and policy makers to shed more light on the workings of the

economy. The type of text analyzed in the literature ranges from institutional documents

(Hansen et al., 2018) to earnings conference calls (Hassan et al., 2019), from social media

posts (Bianchi et al., 2021) to business news (Bybee et al., 2021). Text is used to construct

uncertainty indicators (Baker et al., 2016; Manela and Moreira, 2017), measure the state

of the economy (Bybee et al., 2021) and forecast economic variables (Kelly et al., 2021).

However, text data comes at a cost: it is ultra-high dimensional. Developing methods to

handle such complexity, balancing the information content of text and its interpretation, is

key. In this chapter, we focus on a specific type of text: the headlines of news articles. Our

main contribution lies in exploring the relevance of headlines for economic applications.

Headlines are a summary of the whole text, and they may be interpreted as a signal
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extracted from it. Empirical evidence shows that people focus on headlines while con-

suming and sharing information (Gabielkov et al., 2016), which makes them relevant to

model beliefs. On the other hand, the full text contains additional content by definition,

which may be crucial to measure the state of the economy and predict its future trajec-

tory. Since headlines are designed to catch the readers’ attention, they may also provide

a biased and distorted version of the true article’s content. Whether relying solely on

headlines in place of the complete text might hinder economic analysis, such as in the

context of forecasting, is an empirical question.

We provide some graphical intuition in Figure 2.1. The figure shows two standardized

measures of sentiment we extracted respectively from the headlines (orange line) and the

full text (blue line) of more than 400, 000 Wall Street Journal articles covering the period

from 2008 : 01 to 2022 : 04. The two series closely track each other, with the headlines

one assuming slightly larger absolute values during peak and troughs.

We compare the two sentiment series in an out-of-sample analysis. We use them

separately as predictors for 12 macroeconomic indicators, besides the top 5 principal

components from a large macro-financial panel (Stock and Watson, 2012). We consider

forecasting horizons from 1 to 12 months. Interestingly, the relative mean square forecast

error (RMSE) ratios for headlines and full texts are mostly close to 1, and none are

significantly different from 1, indicating that the forecasts from the two sources are equally

accurate.

We repeat our analysis using a Hurdle Distributed Multinomial Regression (HDMR)

model (Kelly et al., 2021), a state-of-the-art machine learning method for text-based

forecasting. We compare the RMSE obtained using only the headlines or the full text

in the out-of-sample exercise. Once again, the RMSE ratios are close to 1, and only a

handful of ratios are significantly different from 1.

As a robustness check, we restrict our sample to the front page articles. Our results are

even stronger. The only statistically significant RMSE ratios, e.g. for the S&P500 index,
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Figure 2.1: The picture depicts sentiment measures extracted from the headlines (orange
line) and the full text (blue line) of the Wall Street Journal, covering the period from
2008 : 01 to 2022 : 04.

are lower than 1, indicating that headline-based forecasts are more accurate. Moreover,

the front page forecasts are comparable to the ones built from the full set of articles.

We also split our out-of-sample evaluation window between pre and post Covid, and our

results are unaffected. Overall, our findings suggest that the additional content in the full

text does not add value to forecasting economic variables with respect to using headlines

only, despite the full text containing potentially much more information.

We interpret our findings through an accuracy-clarity trade-off, in the spirit of Myatt

and Wallace (2012). Our framework combines elements from the rational inattention

(Sims, 2003) and beauty contest (Keynes, 1936) literature. We build a model where
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the agents need to forecast an economic indicator using the information sent by a news

producer. These readers pay an attention cost for processing the information. Moreover,

the agents are incentivized to focus on what others are reading, as deviating from the

general consensus involves a penalty (Morris and Shin, 2002).

In our model, the news producer sends two signals for the underlying economic vari-

able: the headline and the full text. The headline is less accurate, i.e. it has more noise

than the full text. The readers receive a noisy version of the two signals. The headline

signal is clearer, i.e. it displays less noise on the receiver side. This modeling assumption

mirrors the fact that while headlines contain less information than the full text, they are

easier to interpret. Under simplified assumption, we show that if enough agents have a

high attention cost, there is an equilibrium where every agent only uses the signal from

the headlines. Despite having a more accurate signal, the full text is less relevant for

forecasting.

The remainder of the chapter is organized as follows. Section 2.2 describes our data.

Section 2.3 presents the methodology used in our analysis. Section 2.4 presents the em-

pirical results and discusses their implications. Section 2.5 describes a theoretical model

to frame our results. Section 2.6 concludes the chapter.

2.2 Data

This section describes the data we use.

Wall Street Journal We collected all the Wall Street Journal (WSJ) articles from

Factiva for the 2008 : 01 to 2022 : 04 period, at the daily frequency. We exclude articles

unrelated to economics, such as sports articles. Our final dataset includes more than

400, 000 distinct articles. In a robustness exercise, we will only consider the front page

articles, with an average of 166 items per month.
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Table I
Summary Statistics

This table reports the summary statistics for 12 macro-financial indicators we use as
targets. The sample goes from 2008 : 01 to 2021 : 12, at the monthly frequency. We
transform the series as in Stock and Watson (2012): we take first differences of logarithms
(growth rates) for real quantity variables, first differences for nominal interest rates, and
second differences of logarithms (changes in rates of inflation) for price series.

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max N

IP: total 0.616 2.623 -16.153 -0.702 0.845 2.191 8.314 230
Emp: total 0.353 0.755 -2.671 -0.064 0.474 0.899 1.801 230
U: all 0.012 0.150 -0.400 -0.100 0.000 0.100 0.500 230
HStarts: total 7.281 0.247 6.190 7.149 7.320 7.420 7.729 230
PMI 51.274 5.102 32.900 49.000 51.650 54.800 61.400 230
CPI-ALL 0.001 1.165 -4.467 -0.550 -0.002 0.647 4.302 230
Real AHE: goods 0.222 1.131 -4.211 -0.357 0.177 0.757 5.782 230
FedFunds -0.036 0.206 -0.960 -0.100 0.000 0.070 0.530 230
M1 -0.008 2.505 -10.512 -1.351 -0.044 1.394 7.485 230
Ex rate: avg -0.164 6.863 -19.402 -4.380 0.515 4.545 21.450 230
SP 500 1.456 14.873 -91.237 -4.988 2.617 10.643 42.821 230
Consumer expect -0.152 5.003 -14.400 -3.075 -0.400 2.575 22.500 230

Macro-financial Variables We have a panel of 92 monthly indicators from Stock

and Watson (2012), which we use to compute principal components, together with 12

headline indicators listed in Table I, which will be our targets. The sample is monthly,

from 2008 : 01 to 2021 : 12. We apply standard transformations, and treat outliers as in

Stock and Watson (2012). In particular, we identify outliers as observations with absolute

median deviation larger than 6 times the interquartile range, and we replace them with

the median of the previous 5 observations. We report some summary statistics in Table

I.

2.3 Empirical Framework

In this section we describe our empirical approach. We will conduct our analysis both

in-sample and out-of-sample. We first compare sentiment measures from the headline

versus the full body of news articles, which provides the most intuitive comparison. We

later use a state-of-the-art machine learning approach, to see whether our findings carry
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out to this case.

2.3.1 Measuring Sentiment

As we already mentioned, the goal of our analysis is to extract information from two

different types of text, the headline versus the full-body. The simplest approach is to

start from a simple sentiment measure, which is simple to compute and analyze. In this

section, we describe how we compute our sentiment measure. We implement the method

described below by using the R package sentimentr.

We compute sentiment following the lexicon approach, a commonly used method in

sentiment analysis. It involves using a pre-defined set of words with assigned positive,

negative, or neutral sentiment scores to compute a sentiment measure for a given text.

We first select an appropriate lexicon that matches the context of the text being analyzed,

i.e. a dictionary. Since we are dealing with economic and business news, we cannot use a

general purpose dictionary, such as the Harvard General Inquirer. The reason is that some

technical economic words have a different meaning in non-financial language1. Following

Shapiro et al. (2020), we combine a general purpose dictionary with the Loughran and

McDonald (2011) updated lexicon, which is specific to the domain of economics and

finance.

After choosing a dictionary, the next step is to preprocess the text being analyzed by

removing stopwords, punctuations, and other irrelevant information. After preprocessing,

the corresponding sentiment score for each word is retrieved. The sentiment scores of all

words in the text are then aggregated to obtain a sentiment measure for the entire text.

We later average the sentiment over all the text produced in a given period (such as a

month), and we down-weight the zeros. In this way, we make sure neutral sentences do

not have too much of a strong influence on our score.

1For example, the word “liability” would be misclassified as negative with a general purpose dictionary,
while it does not have a negative implication in finance.
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Moreover, we take into account the effect of valence shifters on the sentiment of a text.

Valence shifters are words that can change the polarity of the sentiment of a sentence or

phrase. For example, the word “not” is a valence shifter that can change a positive

sentiment to a negative sentiment. Other valence shifters include intensifiers such as

“very” and “extremely” that can increase the intensity of a sentiment, as well as negations

such as “never” and “no one” that can negate the sentiment of a sentence. We explicitly

account for such shifters in our sentiment algorithm.

The procedure described above extracts information from text, via a simple natural

language processing (NLP) algorithm. Shapiro et al. (2020) show that such a measure

is highly correlated with the consumer sentiment series coming from the University of

Michigan survey. Also our measure is highly correlated to consumer sentiment, with a

correlation coefficient close to 70% over the whole sample. This fact leads us to call this

series “sentiment”, giving to it a behavioral connotation.

We follow the steps above to compute a measure of sentiment first from the headlines

alone, and then from the full body of the articles (excluding the headlines). We aggregate

the sentiment to obtain a monthly series. Notice that we obtain a “level” indicator, that

looks at the overall difference between positive and negative counts. One might also try

to compute a “dispersion” measure, so that months with highly varying (in tone) news

that average to zero (e.g. several extremely positive and negative news that cancel out)

are treated differently from months with only neutral news. Adding a measure of news

dispersion to our setting does not affect our results and conclusions. However, it may be

a promising avenue to include such a dimension to text-based forecasting models.

2.3.2 Out-of-Sample Analysis

We run an out-of-sample analysis to compare the information contained in the headlines

and full text. We test whether including the additional information in the body leads to
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more accurate forecasts. We run regressions in the form

yt+τ = β′xt + γzs
t + ϵt. (2.1)

yt+τ is a headline macro-financial indicator at time t+τ . The vector xt = (1, PC1, ..., PC5)
′

contains a constant and the first 5 principal components, extracted from a large panel of

macro-financial variables as in Stock and Watson (2012). zs
t collects the variables which

contain the information extracted from text of type s, with s = h if only the headlines

are used to construct such measure, and s = f if the full body is used.

In the simplest case, zs
t only contains the sentiment extracted from s as explained

in Section 2.3.1. We also compute zs
t via a state-of-the-art machine learning model, the

Hurdle Distributed Multinomial Regression (HDMR) developed by Kelly et al. (2021).

We describe this method shortly in Section 2.3.3.

We obtain forecasts of yt+τ at different horizons τ , ranging from 1 to 12 months ahead.

We compute the Root Mean Squared Errors (RMSE) for each horizon τ and type of text

s, to later compute their ratio RMSEh
τ /RMSEb

τ . A ratio smaller than 1 means that the

signal extracted from the headlines forecasts better than the full body. We compare the

OOS performance using the Diebold and Mariano (2002) approach, with the Harvey et al.

(1997) correction.

2.3.3 Hurdle Distributed Multinomial Regression

We briefly describe the machine learning model developed by Kelly et al. (2021), the

Hurdle Distributed Multinomial Regression (HDMR). It allows to forecast economic in-

dicators starting from text data, using a two-part model which adapts Heckman (1979)

to a high-dimensional setting. HDMR combines a selection equation, which models the

text producer’s choice of whether or not to include a particular phrase, with a positive

counts model, which models the number of times that phrase is repeated. The advantage
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of such model is that it provides an accurate description of word counts in text data and

can be distributed across parallel computing units, which makes its estimation feasible.

Moreover, rather than extracting an independent sentiment indicator that is later used

to forecast a variable, this approach directly models the text information that is useful to

predict a given indicator. In this sense, it could be seen as a similar approach (in spirit)

to Huang et al. (2015).

The input of the model is a count matrix, whose entries ctj contain the number of

times phrase j is included in document t. t can be either a single document or, as in our

case, all the articles produced in a time period (e.g. all the WSJ articles in a month). For

our analysis, phrase j will be either a monogram (one word) or a bigram (two contiguous

words). Suppose we are interested in predicting a variable y using our text. While matrix

{ctj} is ultra high-dimensional, Kelly et al. (2021) prove that the text content that is useful

for predicting y is summarized by two low dimension sufficient statistics, z0t and z+t . z0t

contains all the information which is useful to predict y from the selection of phrases

in the text. z+t summarize all the information from repeating words in text t. These

two variables are collected in the vector zt and used as predictors in an out-of-sample

forecasting exercise of y.

Our empirical strategy consists in estimating zs
t using only phrase counts from the

headlines (s = h) or the full text (s = f) of the articles. In order to construct the count

matrix used as an input for HDMR, we apply standard text transformations, such as

removing case, common stopwords (e.g. “the”) and Porter Stemming to our sample. We

count the number of monograms and bigrams, going from the raw text to a matrix of

counts. We later estimate Equation (2.1) using one zs
t vector at a time, and we compare

the RMSE we obtain in each case as described in Section 2.3.2.

Finally, notice that we count the words (or n-grams) contained in the full text or the

headlines, but later aggregate our counts at the monthly level. We do so in line with the

literature. We do not specialize the analysis at the article level, as we would have too
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much noise and not enough repetitions.

2.4 Results

This section presents our main results. We start by comparing the sentiment measures in-

sample, which provides a simple graphical intuition behind our findings. We later conduct

an out-of-sample analysis, using both the sentiment measures and the more complicated

HDMR model.

2.4.1 Sentiment

We compute two different sentiment measures, starting from the set of all the headlines

and all the full body of the news articles in the Wall Street Journal. We plot them in Figure

2.1. The figure depicts the time series of the headline (orange line) and full body (blue

line) standardized sentiment. The two series closely track each other, with the headlines

one assuming slightly larger absolute values during peak and troughs. The correlation

coefficient is 0.87. The main difference is that the headline series is more volatile.

The previous analysis shows that the two series are highly correlated. Hence, we would

expect them to have a similar accuracy, if they were to be used as predictors. We conduct

an out-of-sample forecasting exercise as in Section 2.3.2, using one sentiment measure at a

time (together with the 5 principal components from Stock and Watson (2012)) to predict

12 different macro-financial variables. We use forecasting horizons of 1, 3 and 12 months.

The out-of-sample window is 2015 to 2021 for each horizon, and we use rolling windows

with monthly observations, as in Kelly et al. (2021).2 Table II reports our results on the

right panel.

The right panel of Table II confirms our intuition from Figure 2.1. Most of the RMSE

2Even though we can aggregate news data at a higher frequency, e.g. daily or weekly, we use a monthly
frequency, in line with Kelly et al. (2021). Using higher frequencies would imply a higher degree of noise.
Moreover, it would make the HDMR analysis unfeasible from a computational standpoint.
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ratios are close to 1, and none of them is significant. That is, we can never reject the

hypothesis that the forecasts from the headlines are not different from the full body.

This fact holds at all the forecasting horizons, and across all the indicators. This result

is striking, as the full text contains considerably more abundant information than the

headlines alone. However, it looks like this additional content does not add value to

forecast economic variables.

2.4.2 HDMR

Section 2.4.1 showed that headline and full text sentiment have the same forecasting

accuracy in predicting economic indicators. However, one could argue that our sentiment

measure is too simple, and cannot fully capture the information content of the articles.

We therefore use HDMR, a fully-fledged machine learning model for text-based forecasting

(Kelly et al., 2021).

We repeat the out-of-sample exercise using the HDMR method, and report our results

in the left panel of Table II. Once again, we use rolling windows, forecasting horizons of

1, 3 and 12 months, and the out-of-sample period goes from 2015 : 01 to 2021 : 12.

Even with the HDMR forecasting model, all the RMSE ratios are close to 1. Four

ratios are statistically significant, corresponding to the PMI and S&P500 targets. In the

case of 1-month ahead S&P500 forecasts, the headlines actually perform better than the

full body, even though this pattern is reversed at the quarterly horizon.

Since our out-of-sample window includes the Covid period, we may worry that this

influences our results. We present some robustness checks in the Appendix A. We split the

out-of-sample period between pre-Covid (2015 to 2019, Table VI) and post-Covid (2020

to 2021, Table VII). We can see that our conclusions are not materially affected.

Moreover, one could argue that during periods of higher uncertainty, the full text

becomes more relevant than the bare headlines. We proxy for uncertainty by using the

VIX. We specialized our analysis, computing the R2
OS statistics only for the top VIX
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Table II
RMSE Ratios

This table reports the out-of-sample RMSE ratios for HDMR- and sentiment-based fore-
casts of macroeconomic indicators. Each forecast is built from yt+τ = β′xt + γzs

t + ϵt.
yt+τ is a macro-financial indicator, τ months ahead. xt contains a constant and the top
5 principal components from a large panel of macro-financial series (Stock and Watson,
2012). zs

t contains either sentiment (first three columns), or the HDMR sufficient statis-
tics (last three columns) from the headlines (s = h) or the full body (s = f) of Wall
Street Journal news articles. Each ratio is built as RMSEh

τ /RMSEf
τ . p values, shown

in parentheses, are based on Diebold and Mariano (2002) equal predictive accuracy tests,
with the Harvey et al. (1997) correction. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%,
and 10% levels respectively. The out-of-sample period goes from 2015 : 01 to 2021 : 12.

HDMR Sentiment

τ (months) 1 3 12 1 3 12

IP: total 1.00 0.99 0.78 0.94 1.06 1.02
(0.78) (0.36) (0.36) (0.32) (0.33) (0.34)

Emp: total 1.00 1.30 0.99 0.93 1.09 1.01
(0.92) (0.32) (0.42) (0.32) (0.33) (0.33)

U: all 1.00 1.00 1.00 0.93 1.09 1.01
(0.81) (0.98) (0.80) (0.31) (0.33) (0.33)

HStarts: total 0.95 1.01 0.98 0.97 0.92 1.03
(0.19) (0.78) (0.67) (0.32) (0.29) (0.41)

PMI 1.09∗ 1.00 1.05∗∗∗ 1.05 0.98 0.93
(0.06) (0.95) (0.01) (0.58) (0.26) (0.30)

CPI-ALL 0.95 1.01 0.96 1.01 0.98 0.99
(0.14) (0.58) (0.59) (0.87) (0.22) (0.68)

Real AHE: goods 0.98 1.35 1.08 0.93 1.11 1.02
(0.18) (0.31) (0.39) (0.30) (0.33) (0.32)

FedFunds 1.14 0.94 0.98 1.02 1.01 1.04
(0.19) (0.19) (0.66) (0.41) (0.32) (0.40)

M1 1.00 1.00 0.99 1.01 1.01 1.02
(0.80) (0.96) (0.36) (0.33) (0.34) (0.35)

Ex rate: avg 0.98 1.01 1.06 0.87 1.05 1.00
(0.72) (0.93) (0.40) (0.29) (0.33) (0.84)

SP 500 0.85∗∗ 1.06∗ 0.99 0.98 0.96 0.98
(0.04) (0.08) (0.86) (0.49) (0.33) (0.36)

Consumer expect 1.02 1.04 1.04 1.02 1.12 0.97
(0.78) (0.68) (0.43) (0.62) (0.38) (0.16)
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quintiles. We do not find evidence for such a mechanism in the data, as the results

described before are virtually unaffected.

2.4.3 Front Page

In Section 2.4.1 and 2.4.2 we built our text-based predictors using the whole set of WSJ

articles, including approximately 3, 000 articles per month. One could argue that the

forecasting power of the headlines does not come from their content, but their number.

To tackle this issue we restrict our sample to the front page articles only, with on average

166 documents per month. We estimate our sentiment and HDMR statistics using this

smaller dataset, only choosing headlines or full text at a time. We repeat the same

out-of-sample analysis and report our results in Table III.

Once again, all the RMSE ratios are close to 1, and only a handful of them are

significant. Interestingly, all the significant RMSE ratios are below 1: the front page

headlines have higher forecasting accuracy. Our results are particularly strong in the case

of housing starts and the S&P500 index, over multiple horizons.

Lastly, we compare the first page and the full set of WSJ articles. We build the

forecasts first from the headlines of the front page articles, and later from the whole WSJ.

Table IV presents the results. Most of the RMSE ratios are close to 1. Restricting the

text data to the front page does not dramatically hinder the forecasting accuracy.

2.4.4 Benchmark

So far, we compared the forecasting accuracy of headlines against the full text of news

articles. We haven’t evaluated the overall ability of text to forecast macroeconomic indi-

cators. Kelly et al. (2021) already show that their HDMR model significantly improves

the forecasting performance of the 5 principal components of Stock and Watson (2012).

We reproduce their empirical analysis, comparing the RMSE of the following predictive
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Table III
RMSE Ratios - Front Page

This table reports the out-of-sample RMSE ratios for HDMR- and sentiment-based fore-
casts of macroeconomic indicators. These forecasts are built from the text on the first
page of the Wall Street Journal articles. Each forecast is built from yt+τ = β′xt+γzs

t +ϵt.
yt+τ is a macro-financial indicator, τ months ahead. xt contains a constant and the top
5 principal components from a large panel of macro-financial series (Stock and Watson,
2012). zs

t contains either sentiment (first three columns), or the HDMR sufficient statis-
tics (last three columns) from the headlines (s = h) or the full body (s = f) of Wall Street
Journal first page news articles. Each ratio is built as RMSEh

τ /RMSEf
τ . p values, shown

in parentheses, are based on Diebold and Mariano (2002) equal predictive accuracy tests,
with the Harvey et al. (1997) correction. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%,
and 10% levels respectively. The out-of-sample period goes from 2015 : 01 to 2021 : 12.

HDMR Sentiment

τ (months) 1 3 12 1 3 12

IP: total 0.97 0.99 0.98 1.03 1.03 0.98
(0.26) (0.82) (0.29) (0.36) (0.32) (0.34)

Emp: total 1.00 1.29 1.01 1.00 0.96 0.93
(0.96) (0.32) (0.32) (0.47) (0.33) (0.33)

U: all 1.00 0.98 0.99∗∗ 1.01 0.95 0.94
(0.66) (0.37) (0.03) (0.34) (0.33) (0.33)

HStarts: total 0.87∗∗ 0.95∗∗∗ 0.93 1.05 1.00 1.03
(0.02) (0.01) (0.34) (0.33) (0.92) (0.35)

PMI 1.43 1.17 1.00 1.05 1.06 1.37
(0.00) (0.11) (0.96) (0.20) (0.31) (0.32)

CPI-ALL 0.89∗∗∗ 1.03 0.96 1.00 1.21 0.78
(0.01) (0.40) (0.54) (0.97) (0.32) (0.34)

Real AHE: goods 0.98 1.37 1.04 0.97 0.91 0.81
(0.22) (0.33) (0.56) (0.32) (0.31) (0.33)

FedFunds 1.09 1.17 1.04 1.00 1.17 0.87
(0.45) (0.33) (0.22) (0.62) (0.32) (0.34)

M1 1.01 1.01 0.87 1.00∗ 1.02 0.98
(0.11) (0.85) (0.35) (0.08) (0.31) (0.45)

Ex rate: avg 0.92 0.89∗∗ 0.92∗ 1.00 0.80 0.95
(0.14) (0.01) (0.06) (0.60) (0.33) (0.35)

SP 500 0.82∗∗∗ 0.87 0.96∗∗∗ 1.05 1.00 0.92
(0.01) (0.35) (0.01) (0.30) (0.79) (0.33)

Consumer expect 1.53 1.16 1.18 0.98 0.82 0.95∗∗∗

(0.00) (0.28) (0.12) (0.72) (0.37) (0.00)



2.4. RESULTS 77

Table IV
RMSE Ratios - Front Page vs All Articles

This table reports the out-of-sample RMSE ratios for HDMR- and sentiment-based fore-
casts of macroeconomic indicators. These forecasts are built from the text on either the
first page of the Wall Street Journal or the full set of articles. Each forecast is built from
yt+τ = β′xt + γzs

t + ϵt. yt+τ is a macro-financial indicator, τ months ahead. xt con-
tains a constant and the top 5 principal components from a large panel of macro-financial
series (Stock and Watson, 2012). zs

t contains either sentiment (first three columns), or
the HDMR sufficient statistics (last three columns) from the headlines of the front page
(s = front) or the full set of articles (s = all) of the Wall Street Journal. Each ratio
is built as RMSEfront

τ /RMSEall
τ . p values, shown in parentheses, are based on Diebold

and Mariano (2002) equal predictive accuracy tests, with the Harvey et al. (1997) correc-
tion. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels respectively. The
out-of-sample period goes from 2015 : 01 to 2021 : 12.

HDMR Sentiment

τ (months) 1 3 12 1 3 12

IP: total 0.96 1.01 1.25 1.09 1.05 0.91
(0.11) (0.77) (0.35) (0.33) (0.32) (0.33)

Emp: total 1.00 0.99 1.02 1.07 1.02 0.88
(0.98) (0.27) (0.36) (0.32) (0.35) (0.33)

U: all 1.00 0.98 0.99 1.08 1.01 0.89
(0.56) (0.15) (0.25) (0.32) (0.40) (0.33)

HStarts: total 0.92∗∗∗ 0.95∗∗ 0.95 1.07 1.04 1.05
(0.01) (0.03) (0.22) (0.33) (0.29) (0.34)

PMI 1.31 1.18∗ 0.95 0.99 1.03 1.25
(0.00) (0.06) (0.51) (0.88) (0.31) (0.34)

CPI-ALL 0.94 1.02 1.01 0.90 1.25 0.76
(0.11) (0.59) (0.91) (0.43) (0.30) (0.31)

Real AHE: goods 1.00 1.01 0.96 1.09 0.99 0.78
(0.74) (0.62) (0.14) (0.31) (0.23) (0.33)

FedFunds 0.95 1.24 1.06 0.96 1.14 0.84
(0.37) (0.29) (0.43) (0.33) (0.32) (0.33)

M1 1.01∗ 1.01∗ 0.88 0.99 0.97 0.97
(0.06) (0.09) (0.35) (0.33) (0.29) (0.32)

Ex rate: avg 0.95 0.88 0.87∗∗∗ 1.19 0.83 0.91
(0.41) (0.14) (0.00) (0.28) (0.30) (0.32)

SP 500 0.96 0.82 0.97 0.93 1.07 0.92
(0.41) (0.19) (0.72) (0.34) (0.32) (0.32)

Consumer expect 1.51 1.12 1.13 0.96 0.88 0.95
(0.00) (0.45) (0.31) (0.35) (0.31) (0.27)
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models

yt+τ = β′xt + γzf
t + ϵt, (2.2)

yt+τ = β′xt + ϵt, (2.3)

where zft contains either sentiment or the HDMR sufficient statistics extracted from the

full body of news articles. We later compute the RMSE ratios for each macroeconomic

series at each horizon.

We present our results in Table V. RMSE ratios smaller than 1 indicate that text-

enhanced forecasts have smaller errors than the PC benchmark. Most of the ratios are

smaller than 1, especially for the HDMR model, in line with the evidence of Kelly et al.

(2021) . However, we fail to reject the null of no difference in forecasting accuracy for most

of the ratios, even though interestingly this is not true for consumer expectations. This

fact, at odds with the evidence of Kelly et al. (2021), might be due to the different out-of-

sample period we use, due to data availability. The larger degree of noise in our estimates

might also be related to the Covid period. Untabulated results show that limiting the out-

of-sample window to 2015− 2019 delivers more RMSE ratios to be statistically different

from 1.

2.5 The Model

We interpret our findings through an accuracy-clarity trade-off, in the spirit of Myatt

and Wallace (2012). A news producer sends two signals, the headline and the full text,

for an underlying economic variable. We assume the former is less accurate, i.e. it has

more noise than the latter. Readers are interested in forecasting an economic variable and

receive a noisy version of the two signals. The headline signal is clearer, i.e. it displays

less noise on the receiver side.
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Table V
RMSE Ratios

This table reports the out-of-sample RMSE ratios for HDMR- and sentiment-based fore-
casts of macroeconomic indicators. Each forecast is built from either yt+τ = β′xt+γzf

t +ϵt
or yt+τ = β′xt + ϵt. yt+τ is a macro-financial indicator, τ months ahead. xt contains a
constant and the top 5 principal components from a large panel of macro-financial series
(Stock and Watson, 2012). zf

t contains either sentiment (first three columns), or the
HDMR sufficient statistics (last three columns) from the full body of Wall Street Jour-
nal news articles. Each ratio is built as RMSEf

τ /RMSEτ , where RMSE is the model
without text data. p values, shown in parentheses, are based on Diebold and Mariano
(2002) equal predictive accuracy tests, with the Harvey et al. (1997) correction. ∗∗∗, ∗∗,
and ∗ indicate significance at the 1%, 5%, and 10% levels respectively. The out-of-sample
period goes from 2015 : 01 to 2021 : 12.

HDMR Sentiment

h (months) 1 3 12 1 3 12

IP: total 0.48 0.47 0.67 0.99 0.92 1.00
(0.32) (0.31) (0.28) (0.36) (0.33) (0.56)

Emp: total 0.38 0.56 0.46 1.00 0.87 1.00
(0.32) (0.32) (0.27) (0.31) (0.34) (0.61)

U: all 0.40 0.75 0.42 0.99 0.86 1.00
(0.32) (0.31) (0.27) (0.32) (0.35) (0.84)

HStarts: total 0.32 0.88∗ 0.42 1.00 1.12 0.97
(0.32) (0.10) (0.29) (0.26) (0.17) (0.40)

PMI 0.45∗ 0.31 0.50 1.00 1.03 1.15
(0.06) (0.20) (0.19) (0.43) (0.33) (0.23)

CPI-ALL 1.05 0.88 0.55 1.08 0.98 1.04
(0.20) (0.29) (0.30) (0.35) (0.35) (0.15)

Real AHE: goods 0.37 0.73 0.50 0.96 0.84 0.97
(0.32) (0.32) (0.29) (0.32) (0.35) (0.29)

FedFunds 0.97∗∗∗ 0.39 0.41 1.03 0.98 0.97
(0.01) (0.30) (0.23) (0.60) (0.33) (0.32)

M1 1.00∗∗ 0.95 1.05 1.00 1.04 1.01∗∗

(0.05) (0.21) (0.58) (0.90) (0.42) (0.04)
Ex rate: avg 0.79 0.47 0.56 0.92 0.93 1.02

(0.32) (0.30) (0.29) (0.30) (0.34) (0.66)
SP 500 1.14 1.30 0.65 1.13 1.07 1.04

(0.28) (0.11) (0.26) (0.40) (0.25) (0.27)
Consumer expect 0.45∗∗∗ 0.51∗∗ 0.75∗∗∗ 0.91 0.80 1.05

(0.00) (0.03) (0.00) (0.25) (0.24) (0.91)
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Our framework combines elements from the rational inattention (Sims, 2003) and

beauty contest (Keynes, 1936) literature, as explored in Hellwig and Veldkamp (2009),

Myatt and Wallace (2012) and Kim (2022). We consider a simplified model, which lets us

obtain analytical derivations. The readers need to forecast an indicator, and have access

to two signals with different variances. There is a cost for paying attention. Moreover,

readers are incentivized to focus on what others are reading, as deviating from the general

consensus involves a penalty (Morris and Shin, 2002). If enough agents have a high

attention cost, the model has an equilibrium where every agent only uses the signal from

the headlines.

Our framework is particularly relevant to study the impact on indicators such as the

stock market, in which the general consensus affects the future value of the indicator (Allen

et al., 2006). We can also use it to study the forecasting problem of an econometrician,

who needs to extract signal from text to predict an indicator.

2.5.1 Beauty Contest

Our model is close to Myatt and Wallace (2012). There is a continuum of agents indexed

by l ∈ [0, 1], who are interested in forecasting a variable y (e.g. the stock market return).

A news-producer sends two signals

ȳs = y + ηs, ηs ∼ N
(
0, k2

s

)
, (2.4)

where s = h stands for “headlines” and s = f for “full text”. We refer to 1/k2
s , the precision

of signal s, as its accuracy (Myatt and Wallace, 2012) or content (Banerjee et al., 2022).

We assume that the full text is more accurate than the headline, k2
f < k2

h, even though it

is not necessary for our results.

In line with Myatt and Wallace (2012), each reader l receives a noisy version of the

news signals, and decides how much attention to allocate to them. In particular, he
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receives

ys,l = ȳs + ϵs,l, ϵs,l ∼ N

(
0,

ξ2s
zs,l

)
. (2.5)

The precision of ys,l depends on two terms. zs,l is the attention that reader l pays to

signal s: ceteris paribus, a larger degree of attention leads to a more precise signal. We

refer to 1/ξ2s as the clarity of source s. We assume that ξ2f > ξ2h, so that the headline is

clearer than the full text.

To simplify our argument we make two assumptions. First, ξ2h = 0, which means that

the headlines are costless to receive and, as a consequence, every agent reads them. In

this model headlines are a public signal in the spirit of Morris and Shin (2002), which is

equivalent to having a prior distribution y ∼ N (ȳh, k
2
h). We also assume that zf,l ∈ {0, 1}.

If zf,l = 0, agent l pays no attention to the full text, and the signal he receives is only noise.

As a consequence, he forecasts y only using the headline ȳh. We model attention only at

the extensive margin, studying whether or not a reader uses the full text or only uses the

headline. This simplified model results in a unique equilibrium. Modeling a continuous

level of attention leads to less informative results, as we can find multiple equilibria.

The agents play a simultaneous move game. First, they decide how much attention to

devote to each information source. Second, they observe the signals given their attention

allocation. Third, they provide their best forecast of indicator y, which we denote al in

line with the literature. As already mentioned, we model a beauty contest environment,

in which the payoffs to each agent depend not only on their proximity to the true value,

but also to the average actions of the others. That is, the utility of reader l is

ul = ū− (1− γ) (al − y)2 − γ (al − ā)2 − 2cI (yl, ȳl) . (2.6)

γ is the beauty contest parameter, and determines the incentive . We assume 0 ≤ γ < 1,

i.e. there are strategic complementarities, the agents want to do what the others are

doing. ā :=
∫ 1

0
aldl is the average action across players. Notice that, since agent l has
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mass 0, it cannot influence it.

To solve the model, we only need to look for linear strategies in the form Al (yl) =

wh,lyh+wf,lyf,l, with the constraint that wh,l+wf,l = 1. That is, the strategy is a weighted

average of the signals received by the player. We explain the rationale for this choice in

Appendix B.1. In such case the expected utility is

min
z,w

∑
s=h,f

w2
s,l

(
(1− γ) k2

s +
ξ2s
zs,l

)
+ γ

∑
s=h,f

(ws,l − ws)
2 k2

s + c log

(
1 +

(
k2
f + k2

h

)
ξ2f/zf,l

)
. (2.7)

Notice that the second term can be neglected while minimizing, as any deviation from

a symmetric equilibrium is strongly penalized by mean of that beauty contest element.

That is, we will look for a symmetric equilibrium. See Appendix B.2 for more details.

We are considering a discrete attention variable, that lets us focus on the intensive

margin and makes the whole argument easier. We just need to focus on two cases. In the

case of zf = 0, we have wf = 0, that is the full body is not used and, as a consequence,

wh = 1. The expected utility in this case is

(1− γ) k2
h. (2.8)

Consider instead the case where zf = 1, i.e. the reader decides to devote his attention to

the full article. It is possible to derive the expressions for the full weights, which give rise

to the following Proposition, for which we present details in Appendix B.3.

Proposition 4 (Equilibrium). There is a unique symmetric equilibrium. There exists

c̄ ≥ 0 such that zf = 0 iff c > c̄. Such threshold cost is decreasing in γ.

2.5.2 The Econometric Framework

We consider now the case of an econometrician who receives two signals, and uses them

to forecast an indicator. We want to forecast y ∼ N (µ, σ2). In the spirit of our accu-



2.5. THE MODEL 83

racy/clarity tradeoff, the econometrician has two signals: the headline yh, and the full

text yf . The full text signal he receives is

yf = ȳf + ϵf , ϵf ∼ N
(
0, ξ2f

)
, (2.9)

ȳf = y + ηf , ηf ∼ N
(
0, k2

f

)
, (2.10)

while the headline signal is

yh = ȳh = y + ηh, ηh ∼ N
(
0, k2

h

)
. (2.11)

The signals ȳh, ȳf are sent by a news producer. The econometrician needs to analyze

them, and the signal he extracts is yh and yf . Even though we assume that k2
f < k2

h,

i.e. the full text is more accurate, it has an additional noise component. It is harder to

extract a signal from the full text.

We can show that, conditional on receiving a signal, the expected loss is

E
[
(y − ŷs)

2] = σ2σ2
s

σ2 + σ2
s

, (2.12)

σ2
f = k2

f + ξ2f and σ2
h = k2

h. We can show that

Proposition 5 (Forecaster Problem). The expected loss from the full text is smaller than

the one for the headlines iff
1

σ2
f

>
1

k2
h − k2

f

, (2.13)

that is if the clarity of the full text is large enough. The larger the accuracy of the headlines,

1/k2
h, the harder it is to switch to the full text.
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2.6 Conclusion

In this chapter, we compare the information contained in the headlines and the full text

of Wall Street Journal articles. Our findings reveal a strong correlation between the sen-

timent measures extracted from the two sources. We conduct an out-of-sample analysis,

forecasting macro-financial indicators using either sentiment or a state-of-the-art machine

learning model. We find that the predictors based on the headlines and full text have a

similar forecasting accuracy. If anything, it appears that the headlines lead to more accu-

rate forecasts. We interpret our findings in a model that includes both costs of attention

and beauty contest elements.
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A Robustness

Table VI
RMSE Ratios - Pre Covid

This table reports the out-of-sample RMSE ratios for HDMR- and sentiment-based fore-
casts of macroeconomic indicators. Each forecast is built from yt+τ = β′xt + γzs

t + ϵt.
yt+τ is a macro-financial indicator, τ months ahead. xt contains a constant and the top
5 principal components from a large panel of macro-financial series (Stock and Watson,
2012). zs

t contains either sentiment (first three columns), or the HDMR sufficient statis-
tics (last three columns) from the headlines (s = h) or the full body (s = f) of Wall
Street Journal news articles. Each ratio is built as RMSEh

τ /RMSEf
τ . p values, shown

in parentheses, are based on Diebold and Mariano (2002) equal predictive accuracy tests,
with the Harvey et al. (1997) correction. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%,
and 10% levels respectively. The out-of-sample period goes from 2015 : 01 to 2019 : 12.

HDMR Sentiment

τ (months) 1 3 12 1 3 12

IP: total 1.12∗ 1.12 0.99 1.01 1.00 1.02
(0.08) (0.10) (0.82) (0.59) (0.82) (0.40)

Emp: total 0.90 1.06 1.03 1.03 1.00 1.01
(0.12) (0.13) (0.80) (0.20) (0.89) (0.43)

U: all 0.98 0.98 1.04 0.99 1.00 1.01
(0.78) (0.79) (0.78) (0.68) (0.75) (0.70)

HStarts: total 0.90∗ 0.99 0.96 0.99 1.00 0.96∗

(0.08) (0.88) (0.67) (0.62) (0.43) (0.09)
PMI 1.04 0.97 1.08 0.99 0.99 0.99

(0.33) (0.66) (0.10) (0.58) (0.84) (0.69)
CPI-ALL 0.90∗ 1.00 1.05∗∗ 0.97∗ 0.99 1.05

(0.05) (0.93) (0.04) (0.07) (0.63) (0.28)
Real AHE: goods 1.00 1.03 1.10 0.98 0.98 1.01

(0.96) (0.77) (0.73) (0.22) (0.23) (0.20)
FedFunds 0.94∗ 1.05∗∗ 1.07∗∗∗ 0.99 1.00 0.98

(0.06) (0.03) (0.00) (0.64) (0.81) (0.70)
M1 0.94 1.00 1.00 1.00 1.00 1.01

(0.38) (1.00) (0.98) (0.89) (0.85) (0.90)
Ex rate: avg 0.97 1.07 1.10 1.00 0.99 1.03

(0.68) (0.44) (0.39) (0.97) (0.45) (0.60)
SP 500 0.96 1.06 1.11∗∗∗ 1.00 1.00 1.01

(0.45) (0.33) (0.00) (0.99) (0.79) (0.45)
Consumer expect 0.97 0.88 0.98 1.01 0.99 0.96

(0.64) (0.14) (0.77) (0.75) (0.58) (0.31)
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Table VII
RMSE Ratios - Post Covid

This table reports the out-of-sample RMSE ratios for HDMR- and sentiment-based fore-
casts of macroeconomic indicators. Each forecast is built from yt+τ = β′xt + γzs

t + ϵt.
yt+τ is a macro-financial indicator, τ months ahead. xt contains a constant and the top
5 principal components from a large panel of macro-financial series (Stock and Watson,
2012). zs

t contains either sentiment (first three columns), or the HDMR sufficient statis-
tics (last three columns) from the headlines (s = h) or the full body (s = f) of Wall
Street Journal news articles. Each ratio is built as RMSEh

τ /RMSEf
τ . p values, shown

in parentheses, are based on Diebold and Mariano (2002) equal predictive accuracy tests,
with the Harvey et al. (1997) correction. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%,
and 10% levels respectively. The out-of-sample period goes from 2020 : 01 to 2021 : 12.

HDMR Sentiment

τ (months) 1 3 12 1 3 12

IP: total 1.00 0.98 0.77 0.94 1.06 1.02
(0.99) (0.25) (0.22) (0.33) (0.34) (0.24)

Emp: total 1.00 1.30 0.99 0.93 1.09 1.01
(0.91) (0.32) (0.57) (0.32) (0.33) (0.13)

U: all 1.00 1.00 1.00 0.93 1.09 1.01
(0.80) (0.98) (0.88) (0.32) (0.33) (0.14)

HStarts: total 0.98 1.02 1.00 0.96 0.90 1.03∗

(0.79) (0.40) (0.97) (0.33) (0.30) (0.05)
PMI 1.15 1.02 1.03 1.07 0.98 0.92

(0.12) (0.75) (0.25) (0.57) (0.25) (0.17)
CPI-ALL 1.03 1.03 0.85 1.02 0.96 0.98

(0.49) (0.68) (0.19) (0.65) (0.24) (0.38)
Real AHE: goods 0.98 1.37 1.08 0.93 1.11 1.02∗

(0.18) (0.31) (0.26) (0.31) (0.33) (0.05)
FedFunds 1.20 0.92∗ 0.95 1.03 1.01 1.04

(0.16) (0.07) (0.37) (0.39) (0.33) (0.31)
M1 1.00 1.00 0.99 1.01 1.01 1.02

(0.86) (0.97) (0.89) (0.34) (0.34) (0.31)
Ex rate: avg 1.01 0.84 0.99 0.73 1.06 1.00

(0.97) (0.12) (0.85) (0.30) (0.31) (0.15)
SP 500 0.79∗ 1.07 0.91 0.98 0.93 0.97∗∗

(0.06) (0.12) (0.12) (0.48) (0.31) (0.04)
Consumer expect 1.04 1.13 1.08∗∗ 1.03 1.23 0.99

(0.57) (0.32) (0.04) (0.67) (0.37) (0.84)
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Table VIII
RMSE Ratios - Lead Paragraph vs Full Article

This table reports the out-of-sample RMSE ratios for HDMR- and sentiment-based fore-
casts of macroeconomic indicators. We replace headlines with the lead paragraph of each
article. Each forecast is built from yt+τ = β′xt + γzs

t + ϵt. yt+τ is a macro-financial
indicator, τ months ahead. xt contains a constant and the top 5 principal components
from a large panel of macro-financial series (Stock and Watson, 2012). zs

t contains either
sentiment (first three columns), or the HDMR sufficient statistics (last three columns)
from the headlines (s = h) or the full body (s = f) of Wall Street Journal news articles.
Each ratio is built as RMSEh

τ /RMSEf
τ . p values, shown in parentheses, are based on

Diebold and Mariano (2002) equal predictive accuracy tests, with the Harvey et al. (1997)
correction. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels respectively.
The out-of-sample period goes from 2020 : 01 to 2021 : 12.

HDMR Sentiment

h (months) 1 3 12 1 3 12

IP: total 1.03 0.99 0.98 0.94 1.06 1.00
(0.32) (0.31) (0.23) (0.33) (0.33) (0.33)

Emp: total 1.00 1.33 1.00 0.94 1.07 0.99
(0.64) (0.31) (0.91) (0.32) (0.33) (0.33)

U: all 1.00 1.01 1.00 0.93 1.08 0.99
(0.86) (0.30) (0.90) (0.32) (0.33) (0.33)

HStarts: total 1.00 0.96 0.99 0.97 0.95 1.02
(0.97) (0.29) (0.94) (0.33) (0.29) (0.34)

PMI 1.04 0.95 0.94 1.05 1.01 1.00
(0.43) (0.17) (0.16) (0.59) (0.43) (0.93)

CPI-ALL 0.95 1.11 0.93 0.99 0.99∗∗ 1.02
(0.17) (0.27) (0.21) (0.62) (0.04) (0.17)

Real AHE: goods 0.99 1.39 1.05 0.93 1.09 0.99
(0.72) (0.30) (0.43) (0.30) (0.32) (0.31)

FedFunds 1.00 0.99 1.02 1.02 1.01 1.00
(0.98) (0.47) (0.35) (0.31) (0.30) (0.36)

M1 1.00 0.98 1.28 1.01 1.02 1.03
(0.34) (0.58) (0.33) (0.33) (0.32) (0.32)

Ex rate: avg 0.95 0.99 0.87 0.82 1.05 1.02
(0.42) (0.91) (0.18) (0.28) (0.33) (0.19)

SP 500 0.86∗ 1.03 1.01 0.99 0.98 1.03
(0.07) (0.36) (0.88) (0.70) (0.53) (0.29)

Consumer expect 1.14∗ 1.08 1.11 1.04 1.08 1.00
(0.08) (0.29) (0.12) (0.31) (0.32) (0.93)
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Table IX
RMSE Ratios - Headlines vs Lead Paragraphs

This table reports the out-of-sample RMSE ratios for HDMR- and sentiment-based fore-
casts of macroeconomic indicators. We replace headlines with the lead paragraph of each
article. Each forecast is built from yt+τ = β′xt + γzs

t + ϵt. yt+τ is a macro-financial
indicator, τ months ahead. xt contains a constant and the top 5 principal components
from a large panel of macro-financial series (Stock and Watson, 2012). zs

t contains either
sentiment (first three columns), or the HDMR sufficient statistics (last three columns)
from the headlines (s = h) or the full body (s = f) of Wall Street Journal news articles.
Each ratio is built as RMSEh

τ /RMSEf
τ . p values, shown in parentheses, are based on

Diebold and Mariano (2002) equal predictive accuracy tests, with the Harvey et al. (1997)
correction. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels respectively.
The out-of-sample period goes from 2020 : 01 to 2021 : 12.

HDMR Sentiment

h (months) 1 3 12 1 3 12

IP: total 0.98 0.99 0.79 1.00 1.00 1.00
(0.51) (0.70) (0.34) (0.48) (0.34) (0.99)

Emp: total 1.00 0.98 0.99 1.00 1.00 1.00
(0.72) (0.24) (0.40) (0.75) (0.32) (0.37)

U: all 1.00 0.99 1.00 1.00 1.00 1.00
(0.99) (0.22) (0.86) (0.91) (0.23) (0.35)

HStarts: total 0.94 1.05 0.99 1.00∗∗ 1.00 1.00
(0.18) (0.18) (0.86) (0.05) (0.61) (0.38)

PMI 1.04 1.04 1.12∗∗∗ 1.00 1.00 1.00
(0.48) (0.31) (0.00) (0.80) (0.32) (0.38)

CPI-ALL 1.00 0.91 1.03 1.00 1.00 1.00
(0.95) (0.29) (0.84) (0.33) (0.79) (0.59)

Real AHE: goods 0.99 0.97 1.03 1.00 1.00 1.00
(0.50) (0.30) (0.22) (0.26) (0.28) (0.29)

FedFunds 1.14 0.96 0.96 1.00 1.00 1.00
(0.15) (0.28) (0.37) (0.36) (0.40) (0.63)

M1 1.00 1.02 0.77 1.00 1.00 1.00
(0.73) (0.58) (0.33) (0.71) (0.32) (0.36)

Ex rate: avg 1.02 1.01 1.21∗∗ 1.00 1.00 1.00
(0.75) (0.87) (0.02) (0.21) (0.31) (0.15)

SP 500 0.99 1.03 0.98 1.00 1.00 1.00
(0.78) (0.59) (0.60) (0.72) (0.10) (0.97)

Consumer expect 0.89∗ 0.96 0.94 1.00 1.00 1.00
(0.09) (0.56) (0.45) (0.55) (0.25) (0.92)
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B The Model

Throughout the model, the strategy that a player chooses is given by {zl, A (yl)}. We

omit the vector notation for the sake of clarity.

B.1 Linearity of Strategies

In the main text we claimed that A (yl) is linear in the signal yl, in line with the literature.

We now motivate this claim. Suppose that any other player l′ follows a strategy in the

form {zl′ , A(yl′)}. Taking the expected utility of player l, and computing the first order

conditions, we get

∂E [ul | yl]
∂al

= −2 (1− γ) (al − E [y | yl])− 2γE [al − ā | yl] = 0, (14)

which delivers

al = A (yl) = (1− γ)E [y | yl] + γE [A (yl′) | yl] . (15)

In the last line we used

E [ā | yl] = E [A (yl′) | yl] , ∀l′ ̸= l. (16)

Indeed, since ā =
∫
dl′al′ , we have E [ā | yl] =

∫
dl′E [al′ | yl]. As E [al′ | yl] is independent

of dl′, we can take it out of the integral. We later use al′ = A (yl′)

y follows a normal distribution, and by writing the posterior distribution y | yl we can

see that E [y | yl] is linear in yl. Moreover, since A() is linear, also E [A (yl′) | yl] is linear

in yl. As a consequence, the best reply of player l is still linear in the signal realization.

Having shown that we can use linear strategies, we now prove that the weights sum up

to 1. The linearity of A implies that we can write A (yl) = w′yl, with the vector of weights

w ∈ R2, as we have only two signals. Therefore, E [A (yl′) | yl] = w′E [yl′ | yl]. Because
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of normality, we can write the latter expectation, studying the posterior distribution, as

E [yl′ | yl] = Byl, with B being a 2 × 2 matrix whose rows sum to 1. In the same spirit,

we have that E [y | yl] = a′yl, with the elements of a summing to 1. If we compute the

optimal action via Equation (15), we get

w′yl = A (yl) = (1− γ)E [y | yl] + γE [A (yl′) | yl] (17)

= (1− γ) a′yl + γw′Byl (18)

= [(1− γ) a+ γB′w]
′
yl, (19)

so that

w = (1− γ) a+ γB′w. (20)

Since the elements of a sum to 1, and the columns of B′ sum to 1, Equation (20) implies

that the elements of w must sum to 1 as well. To see it more clearly, we can write

B =

b1 1− b1

b2 1− b2

 (21)

and, carrying out the calculations, we must have w′1 = 1 with 1′ = (1, 1).

B.2 Expected Utility

We gather the shocks that each agent receives in the vector η′ = (ηh, ηf ) and ϵl = (ϵl,h, ϵl,f ).

We can thus express al as

al = w′
lyl = w′

l (ȳ + ϵl) = w′
l (y1+ η + ϵl) , (22)
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in which 1′ = (1, 1). Since the weights sum to 1, w′
l1 = 1, we have

al − y = w′
l (η + ϵl) =

∑
s∈{h,f}

ws,l (ηs + ϵs,l) . (23)

The previous equation implies that

E
[
(al − y)2

]
= E

 ∑
s∈{h,f}

ws,l (ηs + ϵs,l)

2 =
∑

s∈{h,f}

w2
s,l

(
k2
s +

ξ2s,l
zs,l

)
, (24)

as the error terms are uncorrelated with each other.

Because of the law of large numbers, the average action is

ā =

∫
dl′al′ =

∫
dl′w′

l (y1+ η + ϵl′) = y +
∑

s∈{h,f}

wsηs. (25)

Indeed, by the law of large numbers
∫
dl′w′

lϵl′ = 0. We thus have

al − ā =
∑

s∈{h,f}

ws,lϵs,l +
∑

s∈{h,f}

(ws,l − ws) ηs, (26)

and we get the expected value

E
[
(al − ā)2

]
=
∑

s∈{h,f}

w2
s,lξ

2
s,l

zs,l
+
∑

s∈{h,f}

(ws,l − ws)
2 k2

s . (27)

The expected utility is thus

E [ul] = ū−
∑
s=h,f

w2
s,l

(
(1− γ) k2

s +
ξ2s
zs,l

)
+

− γ
∑
s=h,f

(ws,l − ws)
2 k2

s − c log

(
1 +

(
k2
f + k2

h

)
ξ2f/zf,l

)
. (28)

The last term comes from I (yl, ȳl), since we have gaussian noise. Indeed, if two variables
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X and Y are jointly gaussian, with correlation ρ, we have I (X, Y ) = 1
2
log 1

1−ρ2
. We can

thus compute

Cov (yf,l, ȳf ) = E [yf,lȳf ]− E [yf,l]E [ȳf ] = E
[
y2 + η2f

]
− E

[
y2
]
= k2

h + k2
f . (29)

We also have

σ2 (yf,l) = k2
h + k2

f +
ξ2f
zf,l

, (30)

σ2 (ȳf ) = k2
h + k2

f , (31)

which implies

I (yf,l, ȳf ) =
1

2
log

1

1− ρ2
=

1

2
log

1

1− k2h+k2f
k2h+k2f+ξ2f/zf,l

=
1

2
log

(
1 +

(
k2
f + k2

h

)
ξ2f/zf,l

)
. (32)

B.3 Equilibrium

To prove that there is a unique symmetric equilibrium, we start by showing that all

equilibria in the model are symmetric. Let us recall that the agents solve the minimization

problem

min
z,w

∑
s=h,f

w2
s,l

(
(1− γ) k2

s +
ξ2s
zs,l

)
+ γ

∑
s=h,f

(ws,l − ws)
2 k2

s + c log

(
1 +

(
k2
f + k2

h

)
ξ2f/zf,l

)
. (33)

We can limit our research to symmetric equilibria. Indeed, consider a symmetric equi-

librium, such that ws,l = ws for each player l. Because of the beauty contest term (the

second term in the previous equation), each agent has no incentive to deviate from such

equilibrium. This term represents the loss for a player that uses a strategy different from

the strategies of the other players. We are considering the case γ > 0, so that play-

ers have an incentive to coordinate, that in this simplified setting leads to a symmetric
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equilibrium.
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Chapter 3

Mispricing Proxies

This chapter is based on the paper “Mispricing Proxies”, which is joint work with Carlo

Ambrogio Favero and Ilaria Leoni.

3.1 Introduction

We investigate whether measures of sentiment extracted from quarterly earnings conference-

calls affect the dynamics of stock prices. Using a cross-section of publicly traded compa-

nies, we show that sentiment positively correlates with price deviations from their long-run

trend, estimated via an error correction model. We document that even though sentiment

does not predict future stock returns, it impacts the speed at which prices revert to equi-

librium. We find asymmetric effects on overpriced and underpriced stocks.

Financial markets are characterized by frequent deviations from their long-run equi-

librium (Favero et al., 2019). These deviations, which we interpret as mispricings1, can

result from various factors, such as overreaction to news (Gennaioli and Shleifer, 2018),

financial frictions (Duffie, 2010), or changes in market fundamentals. Extending stan-

dard factor models to incorporate these deviations improves their forecasting and asset

1We use a framework in which deviations from a long-run equilibrium reflect mispricing, as in Dong
et al. (2022). For the moment, we do not consider a risk-based environment.
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allocation performance. It is natural to investigate the role of investor sentiment in this

class of long-run asset pricing models. We explore the relationship between sentiment and

price dynamics drawing inspiration from the “diagnostic expectations” literature (Bordalo

et al., 2019). Accordingly, we interpret the deviations of prices from their long-run trends

as a consequence of investors’ overreaction to news. On the one hand, sentiment may

shed light on the channels that explain prices deviations from their long-run trends. On

the other, estimates of mispricing are often only available at low frequencies. Measures

of sentiment, which can be extracted at much higher frequencies, can help overcome this

limitation.

We provide some graphical intuition in Figure 3.1, which includes sentiment measures

vis-a-vis a measure of aggregate market mispricing. We compute the latter as an error

correction term (ECT), i.e. as the residual of the regression of the log-price of the aggre-

gate market on macroeconomic variables (Favero et al., 2019). The left panel (a) in Figure

3.1 shows the sentiment computed from online Wall Street Journal articles. This series

highly correlates with the ECT, with a correlation coefficient of 0.52. The right panel

(b) presents the sentiment indicator computed by Shapiro et al. (2022), available over a

longer period. The correlation between this indicator and the ECT is 0.34. Overall, the

results depicted in Figure 3.1 suggest that, at least for the aggregate market, sentiment

and ECT are correlated.

We carry out our empirical analysis considering a cross-section of publicly traded

companies. In particular, we focus on the companies in the Dow Jones Industrial Average

(DJIA) index. We construct a granular measure of sentiment for each firm in our sample

by analyzing their quarterly earnings conference-calls. Even though the earnings calls

are available at a lower frequency than business news, they let us treat each company

consistently, as some firms are sistematically overrepresented in the news (e.g. Apple).

Earnings calls transcripts are available for each company in our sample, and they are

widely followed and covered by financial markets and the economic literature (Hassan
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Figure 3.1: The picture depicts some mispricing and sentiment measures. Panel (a) uses
a measure of sentiment extracted from Wall Street Journal headlines, while panel (b) uses
the sentiment measure from Shapiro et al. (2022). The error correction term ECT in both
panels is obtained as the residual from the regression of market levels on macroeconomic
variables.

et al., 2019). We compute the sentiment for each document using a state-of-the-art

natural language processing (NLP) model, FinBERT (Araci, 2019).

Our measure of company-level mispricing is obtained through an error correction

framework (Favero et al., 2019). We use an econometric model in which prices are driven

by a permanent and a temporary component, as in Fama and French (1988). The perma-

nent component, or long-run trend, is common in the cross-section of prices. We estimate

it using the values of buy-and-hold portfolios that reproduce the 5 Fama French factors

(Fama and French, 2015). The temporary component is asset specific, and we construct

it as the residual of a regression of the log-price of a company against the long-run trend.

If prices and trends are cointegrated, this residual is stationary and it can be interpreted

as an error correction term (ECT), which we will refer to as mispricing.

We compare our series of sentiment and ECTs for the companies in the DJIA. We
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consider a fixed effect model, and we show that the two variables are positively correlated

in the cross-section, in line with what we described for the aggregate market in Figure

3.1. We later compare them in a set of predictive regressions. In particular, we regress the

quarterly return of each company against its ECT or sentiment in the previous quarter.

We find that most of our estimates of the ECT coefficients are negative and statistically

significant. This fact is in line with an error correction framework. Indeed, suppose that

the price of an asset in quarter t is above its long-run trend, i.e. the ECT is positive. If

the ECT coefficient in the predictive regression is negative, a positive ECT implies a lower

return in quarter t + 1, so that the price reverts to its long-run trend. On the contrary,

we find that the sentiment coefficients in the predictive regressions are not statistically

different from zero, and in some cases they are even positive. This fact shows that, even

though sentiment and ECT appear to be correlated, we cannot simply use the former as

a proxy for the latter.

We later show that sentiment enters the error correction framework through the speed

of adjustment. Heuristically, if an asset is overpriced but investor sentiment remains high,

it will take longer to revert to equilibrium. We can frame this idea through a model of

diagnostic expectations in which investors’ beliefs are confirmed by the sentiment signal

(Bordalo et al., 2021). We regress the quarterly returns of each company against their

lagged ECT, and we impose that the speed of adjustment, i.e. the ECT coefficient, is

a linear function of sentiment. We account for an asymmetric reaction to positive and

negative mispricings. Our findings show that, when the price is above its equilibrium

level, a larger sentiment lowers the speed of adjustment, so that it will take more periods

to correct the overpricing shocks. We only find weak effects in the case of negative ECTs.

We further investigate the asymmetric effects of sentiment on price dynamics. We show

that this asymmetry holds conditionally but not unconditionally. In our sample, a model

with constant speed of adjustment would estimate the same coefficient for positive and

negative ECTs. On the contrary, allowing for time varying speed of adjustments shows
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asymmetric effects.

Finally, our main dataset and empirical strategy is at the quarterly frequency, due the

release schedule of the earnings calls. However, we potentially have more text information

at higher frequency from business news. In Appendix B we analyse whether this infor-

mation can be useful in the context of forecasting and asset allocation, within a long-run

error correction model, using a mixed data sampling (MIDAS) approach.

The remainder of the chapter is organized as follows. Section 3.2 describes the method-

ology used in our analysis. Section 3.3 presents our data. Section 3.4 presents the empirical

results and discusses their implications. Section 3.5 concludes the chapter and provides

directions for future research.

3.2 The Empirical Framework

In this section we describe our empirical strategy. We estimate the deviations of prices

from their long-run equilibrium via an error correction model, and we compare them to

sentiment measures extracted from text data.

3.2.1 The Error Correction Term

We follow Favero et al. (2019) to estimate the deviation of each asset price from its long

run equilibrium, which is our measure for mispricing. Let pi,t be the log-price of asset i

at time t, at the quarterly frequency. We estimate its deviation from the equilibrium as

the residual ui,t from the regression

pi,t = αit+ β′
i logF t + ui,t. (3.1)

Equation (3.1) includes both a deterministic linear trend, t, and a stochastic one, logF t,

which we assume to be shared across assets. In our empirical analysis, we will estimate
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each component of F t as the value of a buy-and-hold portfolio that replicates a macro-

financial factor. As an example, if we collect the log-returns of the 5 Fama-French factors

(Fama and French, 2015) in f t, we have

logF t − logF t−1 = f t. (3.2)

We will refer to ui,t as the error correction term (ECT). Even though all the variables

in Equation (3.1) are non-stationary, they can be shown to be cointegrated, in which case

ui,t is stationary (Favero et al., 2019). This cointegration relation lets us express each

asset’s return between time t and t+ 1 as

ri,t,t+1 = αi + β′
if t+1 + δiui,t + ϵi,t+1, (3.3)

with rt,t+1 = pt+1 − pt. If there is cointegration, δi < 0 and ui,t has predictive power

for the return over the next quarter, which helps improving factor models as in Favero

et al. (2019). As an example, suppose that ui,t < 0, which means that pi,t is below to

its long-run trend. Since δi < 0, the ECT term in Equation (3.3) will give a positive

contribution, i.e. the next quarter return will be larger. In this way, any deviation from

equilibrium is corrected, and we can talk about mispricings.

A special case of the error correction model we described so far applies when the asset

we consider is the aggregate market itself. In such case, we will use a different set of

factors than the one that describes the cross-section of assets. In particular, let pt be the

log-price of the market ((i.e. the level of an equity index). We will estimate the market

deviations from equilibrium via

pt = β′xt + ut, (3.4)

with xt = (1, dt,MYt,∆yt)
′. dt is the aggregate dividend, MYt is the middle-to-young

ratio and ∆yt is the potential output growth. The choice of demographic variables to
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model long-run trends follows Favero et al. (2011). We will later write the predictive

equation via

rt,t+1 = β′∆xt+1 + δut + ϵt+1, (3.5)

with ∆xt+1 = xt+1 − xt.

3.2.2 Measuring Sentiment

A simple way to estimate sentiment from text data is to use a lexicon approach. It involves

using a pre-defined set of words with assigned positive, negative, or neutral sentiment

scores. Even though we employed this method to produce the simple plot of Figure 3.1,

we rely on a more advanced model to analyze the earnings call transcripts in our main

analysis, to properly account for the complexity of financial documents. In particular, we

use FinBERT (Araci, 2019). FinBERT (Financial Bidirectional Encoder Representations

from Transformers) is a pre-trained Natural Language Processing (NLP) model. It is

based on another language model called BERT (Bidirectional Encoder Representations

from Transformers, Devlin et al. (2018)), and it is suitable to analyze financial text.

Since it was trained on a rich dataset of financial corpus, FinBERT is shown to correctly

account for the complex jargon of the financial domain, which generic models cannot

capture accurately (Loughran and McDonald, 2011). For instance, the term "exposure"

could refer to risk in one context or to the extent of investment in another. We provide

more details on the class of BERT models in Appendix A.

3.3 Data

This section describes our data sources. We obtain the transcripts of the quarterly earn-

ings calls from Bloomberg and Refinitiv, which we will use to compute sentiment. We

extract a sentiment variable for the aggregate market, which we showed in the Introduc-

tion, using the online version of the Wall Street Journal. We obtain our financial and
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macro-economic variables from standard data providers.

3.3.1 Earnings Conference-Calls

We compute our measure of sentiment by analyzing the text of quarterly earnings call,

which we obtain via Refinitiv and Bloomberg. We analyze them using a FinBERT model.

Earnings calls are conducted by companies with their board members, investors, analysts

and the press. These calls typically occur once every quarter and are used to discuss the

company’s financial results and performance. Earnings calls serve as a platform for the

company to communicate its financial performance and outlook to stakeholders. They

also provide an opportunity for investors and analysts to ask questions and gain insights

into the company’s operations and prospects.

Earnings calls usually follow a structured format, consisting of two parts: the main

presentation and a question-and-answer (Q&A) session. During the main presentation

portion, the company’s management, typically the CEO and CFO, provide a detailed

overview of the financial results for the quarter or year. Management may also discuss

strategic initiatives, market trends, and other factors that have influenced the company’s

performance. The main presentation is scripted and prepared in advance to ensure that

important information is communicated clearly and accurately. A Q&A session follows the

main presentation. In this session, analysts, investors, and the press have the opportunity

to interact with the company’s management. These questions can cover a wide range

of topics, including specific financial results, future guidance, industry trends, and more.

The Q&A session allows for direct engagement between the company and its stakeholders,

providing additional insights beyond the prepared remarks.

Additionally, earnings calls can offer insights into the company’s sentiment and risk

perceptions. This information is derived through textual analysis of transcripts from these

calls. Earnings calls are considered valuable because they provide timely information on

a company’s financial performance and offer insights into its management’s perspective
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on the business. Furthermore, they are used to monitor sentiment and risk trends, which

can offer valuable insights into the overall health of a company and its industry.

3.3.2 News Sources

In our analysis, we occasionally rely on measures of sentiment extracted from business

news. We consider two different sources. we estimate a sentiment measure from the online

version of the Wall Street Journal, 1998:01 − 2022:04. We have around 3, 000 articles

per month. We use the R package sentimentr, which accounts for valence shifters.

We include an updated dictionary that combines Loughran and McDonald (2011) with

a general purpose one. We also consider a measure of news sentiment from Shapiro

et al. (2022), 1980:01 − 2023:01. The authors filter out the economic news from 16

major newspapers (including the NYT), via LexisNexis and use lexical methods with a

combination of dictionaries.

3.3.3 Financial variables

As a representative sample of large and liquid stocks, we consider the companies in the

Dow Jones Industrial Average index (DJIA). This gives us a cross-section of 30 assets,

even though we will discard some of them due to lack of availability for the earnings calls.

While our cross-section is not excessively large, we deem it to be representative. We

estimate their common long-run trends starting from the 5 Fama-French factors (Fama

and French, 2015).

When we consider the aggregate market, we obtain the S&P500 index together with

its dividends from Robert Shiller’s website. In order to estimate the cointegration system,

we obtain data from the real potential Gross Domestic Product (GDP) from FRED, and

data for the demographic variables used to compute the middle-aged to young ration from

the U.S Census Bureau.
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3.4 Results

This section reports our results. We describe how to obtain measures of deviations from

trend for each asset. We later relate them to sentiment measures, and compare their

performance in an error correction framework.

3.4.1 Long-Run Trends in Equity Markets

As a preliminary step to our empirical analysis, we need to compute a measure of asset-

level mispricing. That is, we estimate a long-run stochastic trend, which is common in

the cross-section of prices and we compute the deviation of prices from such estimated

trend. We follow the approach in Favero et al. (2019), but we perform our analysis on

stock prices, rather than portfolios.

Our cross-section includes the companies in the Dow Jones Industrial Average index.

Following Section 3.2.1, we estimate the regression

pi,t = αit+ β′
i logF t + ui,t, (3.6)

in which pi,t is the price of asset i at time t; t represents a linear deterministic trend; F t

collects the levels of buy-and-hold portfolios that replicate the Fama and French (2015)

5 factors; and ui,t is the residual from the regression.

F t is the long-run trend, which is common across assets. We construct it starting

from a set of factors. In particular, let f t collect the return of the 5 Fama-French factors

at time t. We build the long-run trend by cumulating such returns over quarters, i.e.

logF t − logF t−1 = f t. Notice that, even though the long-run drivers of such trend is

common, the loadings βi are asset specific. Also notice that ui,t is a measure of deviation

from trend, which we interpret as mispricing, and it depends on both i and t. Such terms

can only be recovered through price regressions.

Our sample goes from 1980 : Q1 to 2023 : Q1, at the quarterly frequency. We consider
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28 out of 30 stocks in the DJIA due to data availability of their earnings call transcripts.

In the following Sections, we work under the assumption that ui,t is stationary for each

asset. We test the validity of such assumption by running cointegration tests. We want to

see whether prices and long-run trends are cointegrated, and if ui,t is an Error Correction

Term (ECT). For each asset in our cross-section, we perform an Augmented Dickey-

Fuller test. For 18 out of 28 series, more than 60% of our assets, there is cointegration

at the 10% level. This is in line with the findings in Favero et al. (2019), even though

in this manuscript we consider single stocks, rather than portfolios. Interestingly, the

cointegration relation still holds.

3.4.2 Sentiment vs Deviations From Trend

The first step in our analysis is to see whether measures of sentiment can be used as

a proxy for the ECT in our error correction framework of Equation (3.3). We conduct

an in-sample analysis. As a first evidence, we look at a simple panel regression, to see

whether sentiment and ECT are correlated. That is, we estimate

ui,t = βsi,t + αi + ϵi,t, (3.7)

and we use a fixed effect model for αi. ui,t is the ECT for company i in quarter t, while

si,t is the sentiment extracted with FinBERT from the earnings call transcript at time

t. We have an unbalanced panel, due to the availability of the sentiment measure. Our

data is at the quarterly frequency, and our estimation window goes from 2001 : Q1 to

2023 : Q2. We report our estimates in Table I.
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Table I
ECT vs Sentiment

This table reports the coefficient estimates for the panel regression ui,t = βsi,t + αi + ϵi,t.
ui,t is the ECT for company i in quarter t, the residual from a regression of the log-price
of asset i on risk-drivers. si,t is the FinBERT sentiment extracted from the earnings call
transcripts released by company i at time t. αi includes firm fixed effects. Our unbalanced
panel is made of the companies in the Dow Jones Industrial Average index (DJIA), and
the sample period is 2001 : Q1 to 2023 : Q2, at the quarterly frequency. Standard errors
are shown in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
levels respectively.

ui,t

si,t 0.215∗∗∗
(0.040)

N 2,169
R2 0.013
Adjusted R2 0.0004

The estimate of coefficient β from Equation (3.7) is 0.215, positive and statistically

different from zero. This fact shows that the ECT and sentiment are positively correlated.

That is, assets tend to be overpriced when their earnings statements are particularly

positive. Of course, this is a simple correlation and we claim no causal relation between

the two. The R2 is quite low, as we do not aim at explaining the variations in ui,t, which

is affected by many other factors.

Having shown that the ECT and the sentiment are correlated, we now investigate

whether the two variables share the same error correction properties. In particular, for

each asset i in our cross-section we estimate the regressions

ri,t,t+1 = αi + β′
if t+1 + δui ui,t + ϵi,t+1, (3.8)

ri,t,t+1 = αi + β′
if t+1 + δsi si,t + ϵi,t+1, (3.9)

and compare the coefficients δui and δsi . We keep the same estimation window as for Table

I, i.e. from 2001 : Q1 to 2023 : Q2. Even though we could estimate Equation (3.8) using
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a longer time series, we restrict the sample for the sake of comparability. We present our

results in Figures 3.2 and 3.3.

Figure 3.2 reports the estimates of δui for each company i, obtained by estimating

Equation (3.8). The horizontal bars represent the 90% confidence interval. All the coef-

ficients are negative, in line with our error correction framework. Since δui < 0, a price

higher than what implied by its long-run trend, such that ui,t > 0, will have a lower

return in the following quarter. The deviations from equilibrium are thus corrected over

time. Most of the coefficients are statistically different from 0. Interestingly, while Favero

et al. (2019) run the same estimation procedure in a cross-section of portfolios, we obtain

comparable results with single stocks, even though with a larger degree of noise. Figure
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Figure 3.2: The picture depicts the estimated coefficients δui in the regression ri,t,t+1 =
αi + β′

if t + δui ui,t + ϵi,t+1, for each company i in the Dow Jones Industrial Average. The
horizontal bars represent the 90% confidence interval.

3.3 reports the estimates of δsi for each company i, obtained by estimating Equation (3.9),

together with their 90% confidence interval. Interestingly, in this case no coefficient is
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statistically different from 0. The sentiment measure by itself does not predict future

returns. Moreover, even if we neglected the error bars, the δsi estimates are positive for

some assets. This fact is not consistent with an error correction mechanism. To sum up,
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Figure 3.3: The picture depicts the coefficients δsi in the regression ri,t,t+1 = αi+β′
if t+

δsi si,t + ϵi,t+1, for each company i in the Dow Jones Industrial Average. The horizontal
bars represent the 90% confidence interval.

we showed that measures of sentiment obtained from earnings calls and mispricings are

positively related. While the ECTs can be used as predictors for the assets’ future returns,

sentiment appears to have no predictive power. Sentiment by itself does not fit in a simple

error correction framework. Therefore, we cannot reliably use sentiment as a proxy for

asset mispricing. This fact may be due to the larger variance of our sentiment measure

compared to the ECTs. What the ECT captures is not included in the sentiment. In the

next sections we explore whether sentiment can still enter an error correction framework,

by affecting the speed at which the equilibrium is restored in a system.
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3.4.3 Speed of Adjustment

The evidence in the previous section leads us to conclude that sentiment measures cannot

be directly employed as a proxy for mispricings. In this section, we show that such a

measure can enter the error correction framework through the speed of adjustment. The

speed of adjustment is defined as the coefficient in front of the error correction term,

e.g. δi in Equation (3.3). The larger the coefficient, the faster the price gets back to its

long-run trend. Favero et al. (2019) assume that this coefficient is constant over time,

and we followed this approach in Section 3.4.2.

We now investigate whether the speed of adjustment is time-varying, and if sentiment

affects it. To understand why sentiment may affect the time to get back to equilibrium,

consider a behavioral model of diagnostic expectations as in Bordalo et al. (2019) and

Bordalo et al. (2021). When agents receive positive news about a company, they overreact

and increase their demand for it, which drives the price upwards. Over time, agents learn

about the true new fundamental value of the asset, and trade so that its price gets back

to equilibrium. However, the speed to which they update their beliefs may be affected by

sentiment. Receiving positive signals from an earnings call confirms their beliefs about

the higher price, which implies that prices will take more time to get back to equilibrium.

We develop an econometric model in which the speed of adjustment is a linear function

of sentiment. Since we are also interested in the forecasting and asset allocation properties

of such specification, we include the earnings call released in the same quarter as the ECT.

For each asset i, we estimate the regression

ri,t,t+1 = αi + β′
if t+1 + (δ0,i + δ1,isi,t)ui,t + ϵi,t+1. (3.10)

We have already discussed that we expect the overall coefficient in front of ui,t to be

negative, in line with an error correction framework. Therefore, we should have δ0,i < 0.

If sentiment really affects the speed of adjustment as in our heuristic argument, we expect
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δ1,i > 0. Indeed, suppose that the i-th asset is overpriced, ui,t > 0. If the sentiment is

positive, it will lead to a lower speed of adjustment, i.e. the overpricing will last for longer.

If a positive sentiment needs to lower the absolute value of the coefficient, we will have

δ1,i > 0. We present the estimates for δ1,i from Equation (3.10) in Figure 3.4. For most
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Figure 3.4: The picture depicts the coefficients δ1,i in the regression ri,t,t+1 = αi+β′
if t+

(δ0,i + δ1,isi,t)ui,t + ϵi,t+1, for each company i in the Dow Jones Industrial Average. The
horizontal bars represent the 90% confidence interval.

companies, the coefficient δ1,i appears to be positive but not statistically significant, due

to the large error bars. However, in the literature there is evidence of asymmetric reaction

to shocks, so we separate the speed of adjustment in the cases where ui,t is positive and

negative. In particular, our preferred approach is to estimate the regression

ri,t,t+1 = αi + β′
if t+1 +

(
δ+0,i + δ+1,isi,t

)
u+
i,t +

(
δ−0,i + δ−1,isi,t

)
u−
i,t + ϵi,t+1, (3.11)

in which u+
i,t = ui,t1 (ui,t > 0) and u−

i,t = ui,t1 (ui,t < 0). The specification in Equation

(3.11) lets us separate the speed of adjustment dynamics. We show the estimates of δ+1
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in Figure 3.5, and the ones for δ−1 in Figure 3.6 . The two figures display an asymmetric
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Figure 3.5: The picture depicts the coefficients δ+1,i in the regression ri,t,t+1 = αi +

β′
if t+

(
δ+0,i + δ+1,isi,t

)
u+
i,t+

(
δ−0,i + δ−1,isi,t

)
u−
i,t+ ϵi,t+1, for each company i in the Dow Jones

Industrial Average. The horizontal bars represent the 90% confidence interval.

behavior. In Figure 3.5, most of the δ+1 coefficients are positive. Even though the error

bars are large, a relevant number of estimates is statistically different from zero, as we

would expect from our heuristic reasoning. When prices are above their long-run trend,

positive sentiment reduces the speed of adjustment, while negative sentiment makes the

disequilibrium disappear faster. The width of the confidence intervals may be related to

the relatively low number of observations included in each separate regression. We will

soon tackle this issue by imposing restrictions on the coefficients.

A different picture emerges from Figure 3.6. Most of the δ−1 estimates are not statis-

tically different from zero and, if anything, most of them are negative. This evidence is

consistent with a model with asymmetric reaction to news. In particular, even though

an asset is under-priced, the arrival of positive news in the form of sentiment does not
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Figure 3.6: The picture depicts the coefficients δ−1,i in the regression ri,t,t+1 = αi +

β′
if t+

(
δ+0,i + δ+1,isi,t

)
u+
i,t+

(
δ−0,i + δ−1,isi,t

)
u−
i,t+ ϵi,t+1, for each company i in the Dow Jones

Industrial Average. The horizontal bars represent the 90% confidence interval.

dramatically affect the speed to go back to equilibrium.

We saw that most of the estimates for δ+1 and δ−1 have a similar magnitude. However,

their error bars are quite large, given that we estimate them for each asset, and we

necessarily have a small number of observations. We fix this issue by estimating a system

of equations and imposing restrictions on the coefficients. In particular, we will assume

that the speed of adjustment parameters are common across stocks. We are thus assuming

that, irrespective of the type of stock considered, given a level of mispricing, the path

towards equilibrium is comparable. This assumption can be defended in our case, as we

are considering some of the most liquid in the New York Stock Exchange (NYSE), as they

are all included in the DJIA. We estimate the system of equations

ri,t,t+1 = αi + β′
if t+1 +

(
δ+0 + δ+1 si,t

)
u+
i,t +

(
δ−0 + δ−1 si,t

)
u−
i,t + ϵi,t+1, (3.12)
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in which we have imposed δ±0,i = δ±0 and δ±1,i = δ±1 . We present the estimates the estimates

of the restricted coefficients of Equation (3.12) in Table II.

Table II
Speed of Adjustment

This table reports the coefficient estimates for the regression ri,t,t+1 = αi + β′
if t+1 +(

δ+0 + δ+1 si,t
)
u+
i,t +

(
δ−0 + δ−1 si,t

)
u−
i,t + ϵi,t+1. ri,t,t+1 is the log return of asset i between

quarter t and t + 1. f t+1 collects the log-returns of the 5 Fama-French factors. ui,t is
the ECT for company i in quarter t, the residual from a regression of the log-price of
asset i on risk-drivers; u+

i,t (u−
i,t) denotes its positive (negative) part. si,t is the FinBERT

sentiment extracted from the earnings call transcripts released by company i at time t.
We include the companies in the Dow Jones Industrial Average index (DJIA), and the
sample period is 2001 : Q1 to 2023 : Q2, at the quarterly frequency. Standard errors are
shown in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels
respectively.

δ+0 δ+1 δ−0 δ−1

ri,t,t+1 −0.17∗∗∗ 0.19∗ −0.09∗∗∗ 0.03
(0.04) (0.10) (0.03) (0.09)

Both the estimates of δ+0 and δ−0 are negative and statistically different from 0 and from

each other. Notice that we have not demeaned our sentiment measure, but our results

are not affected by this choice (except for the magnitude of the coefficients). Indeed,

the average sentiment in our sample is positive, as it is made by statements by the top

managers, who tend to speak positively about their performance. We notice that δ+1 is

positive statistically different from zero, in line with our findings in Figure 3.5. On the

contrary, δ−1 is smaller by an order of magnitude, and it is not statistically different from

zero.

3.4.4 Symmetry Tests

In the previous section, we showed that sentiment affects the speed of adjustment, pro-

vided that we separate between positive and negative mispricings. By looking at the

results in Table II, we can see that there is a clear asymmetry between the two cases.
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However, in this section we show that the speed of adjustment is symmetric uncondition-

ally, but asymmetric conditionally.

We start by testing the null hypothesis:

H0 : δ
+
0 + δ+1 E [Si,t] = δ−0 , ∀i. (3.13)

Equation (3.13) tests whether the speed of adjustment is symmetric unconditionally. We

are not explicitly including δ−0 in the H0, as we see from Table II that the coefficient is not

statistically different from zero, and it is smaller by one order of magnitude. We verified

that including it in the hypothesis does not affect the results. We test the null hypothesis

by using an F-test, which amounts to testing a set of joint restrictions on the coefficients

of a system of equations. We get a p value which is close to 1, therefore we clearly cannot

reject the null. We conclude that the speed of adjustment is symmetric conditionally with

respect to the sign of the deviation from the equilibrium.

Equivalently, another test of unconditional symmetry can be obtained by estimating

the regression

ri,t,t+1 = αi + β′
if t+1 + δ+u+

i,t + δ−u−
i,t + ϵi,t+1. (3.14)

Equation (3.14) imposes the restrictions that the coefficients in front of the error correction

terms, δ+ and δ−, are constant in the cross-section. Of course, these coefficients represent

a constant speed of adjustment. We report the results in Table III. In line with the F-test

of Equation (3.13), we can see that the speed of adjustment is uncoditionally symmetric,

as the two coefficients δ+ and δ− are clearly within each other’s 90% confidence intervals.

On the contrary, the speed of adjustment is conditionally asymmetric. We can look at

the time evolution of the speed, i.e. at the behavior of
(
δ+0,i + δ+1,isi,t

)
vs
(
δ−0,i + δ−1,isi,t

)
for

each company in our sample. We reject that the two objects are conditionally the same.

As an example, Figure 3.7 shows the time varying coefficient for AAPL (Apple Inc) and

AXP (American Express Co.). Figure 3.7 clearly shows that the “overpricing” speed of
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Table III
Speed of Adjustment - Unconditional

This table reports the coefficient estimates for the regression ri,t,t+1 = αi + β′
if t+1 +

δ+u+
i,t + δ−u−

i,t + ϵi,t+1. ri,t,t+1 is the log return of asset i between quarter t and t + 1.
f t+1 collects the log-returns of the 5 Fama-French factors. ui,t is the ECT for company i
in quarter t, the residual from a regression of the log-price of asset i on risk-drivers; u+

i,t

(u−
i,t) denotes its positive (negative) part. We include the companies in the Dow Jones

Industrial Average index (DJIA), and the sample period is 2001 : Q1 to 2023 : Q2, at
the quarterly frequency. Standard errors are shown in parentheses. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5%, and 10% levels respectively.

δ+ δ−

ri,t,t+1 −0.094∗∗∗ −0.080∗∗∗

(0.018) (0.016)

adjustment (i.e. when ui,t > 0) is statistically different from the “underpricing” one (i.e.

when ui,t < 0). The difference between the two series varies over time. The result seems

to be driven by the periods of particularly negative sentiment, as both δ+1 and δ−1 are

positive (therefore, a lower sentiment is associated with a higher speed of adjustment, in

absolute value).

3.5 Conclusion

In this chapter, we investigate whether measures of sentiment extracted from quarterly

earnings conference-calls affect the dynamics of stock prices. Using a cross-section of pub-

licly traded companies, we show that sentiment positively correlates with price deviations

from their long-run trend, estimated via an error correction model. We document that

even though sentiment does not predict future stock returns, it impacts the speed at which

prices revert to equilibrium. We find asymmetric effects on overpriced and underpriced

stocks. Potential future steps could include increasing our cross-section, and formally

deriving a model that explains the asymmetry behind our results. Moreover, we should

investigate the determinants of predictability in our framework, potentially in line with
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(b) American Express Co.

Figure 3.7: The picture depicts the speed of adjustment for Apple Inc (panel (a))
and American Express Co. (panel (b). The blue (orange) solid line represent the speed
of adjustment for a positive (negative) mispricing,

(
δ+0,i + δ+1,isi,t

)
(
(
δ−0,i + δ−1,isi,t

)
). The

dotted lines represent the 90% confidence intervals.

the market and volatility timing decomposition approach of Goulding et al. (2023).
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A BERT (Bidirectional Encoder Representations from

Transformers)

An important advance in the class of Natural Language Processing (NLP) models has been

the introduction of BERT (Bidirectional Encoder Representations from Transformers), a

model developed by Devlin et al. (2018). BERT’s architecture and training methodology

represent a substantial advancement in the field, enabling improved and unmatched per-

formances on a wide range of NLP tasks. BERT is built upon the Transformer model

introduced by Vaswani et al. (2017). The Transformer model eschews conventional recur-

rent or convolutional layers, focusing instead on self-attention mechanisms to process text.

Figure 8, which is take from Devlin et al. (2018) illustrates the architecture of a simple

BERT model. BERT’s training involves two stages: pre-training and fine-tuning. The

Figure 8: The picture depicts the BERT model architecture.

pre-training stage is unsupervised and utilizes two novel tasks: Masked Language Mod-

eling (MLM) and Next Sentence Prediction (NSP). The fine-tuning stage is conducted

after the pre-training, and fine-tunes BERT for specific tasks, wherein the entire model
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is slightly adjusted. This stage requires significantly less data compared to training a

model from scratch. Figure 9, which is taken from Devlin et al. (2018) depicts the pre-

training and fine-tuning stages. BERT’s input representation is a blend of WordPiece

Figure 9: The picture depicts the pre-training and fine-tuning stages for BERT.

token embeddings, positional embeddings, and segment embeddings. This approach al-

lows BERT to handle out-of-vocabulary words effectively and provides the model with

necessary positional and contextual information.

FinBERT’s fine-tuning on specialized NLP tasks has resulted in performances that

surpass those of traditional machine learning models, deep learning alternatives, and even

fine-tuned versions of the original BERT model. Each fine-tuned variant of FinBERT is

designed for a specific purpose and is readily accessible to the public via the Huggingface

platform. FinBERT’s pre-training encompasses a vast corpus of financial communication

texts, amounting to 4.9 billion tokens. This corpus includes 2.5 billion tokens from Cor-

porate Reports (10-K & 10-Q), 1.3 billion tokens from Earnings Call Transcripts, and 1.1

billion tokens from Analyst Reports.
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B MIDAS

Our main dataset and empirical strategy is at the quarterly frequency, due the release

schedule of the earnings calls. However, we potentially have more text information at

higher frequency from business news. In this Appendix, we see whether this information

can be useful in the context of forecasting and asset allocation, within a long-run error

correction model. Even though we cannot conduct this analysis for each company in our

sample, as some of them are overly represented in the news, we can do so for the overall

market.

As we discussed above, sentiment measures are available at a higher frequency than

the ECT. We want to test whether they help in forecasting the market, on top of what the

ECT already does. Since we have variables at different frequencies, we use a mixed data

sampling (MIDAS) approach (Ghysels et al. (2004), Armesto et al. (2010)). In particular,

we will compare regressions in the form

rt,t+1 = α + δut + ϵt+1, (15)

rt,t+1 = α + δut + γ1st+1/3 + ϵt+1, (16)

rt,t+1 = α + δut + γ1st+1/3 + γ2st+2/3 + ϵt+1, (17)

with st+k/3 denoting the sentiment at the end of the k-th month of quarter t. We add the

new sentiment information as it becomes available, and we forecast the same one-quarter-

ahead market return over the three specifications.

A potential problem in the MIDAS framework comes from the large number of high-

frequency coefficients that need to be estimated. The literature usually imposes a para-

metric structure on the coefficients (Armesto et al., 2010). Since we have a low number of

variables, we estimate all the coefficients without imposing any restrictions, which helps

with interpretation. In the case of long-horizon forecasts we will impose the functional
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form

γk = γk (θ) = γ
exp{(θk2)}∑J
j=1 exp{(θj2)}

, (18)

with θ being a hyperparameter and J being the total number of high-frequency lags.

B.1 Out-of-Sample

We compare the models discussed above in an out-of-sample exercise. We evaluate the

forecasting performance out-of-sample using the the Campbell and Thompson (2008)

out-of-sample R2, henceforth R2
OS. The R2

OS statistics compares the forecast errors of a

candidate model to a benchmark. In particular,

R2
OS = 1− MSFE1

MSFE0

, (19)

in which MSFE1 (MSFE0) is the Mean Squared Forecast Errors of the candidate (bench-

mark) model. R2
OS > 0 implies that the candidate model has a superior forecasting per-

formance than the benchmark. We follow the asset pricing literature and we use the the

trailing mean of the market excess returns as benchmark model (Welch and Goyal, 2008).

We test the null hypothesis H0 : R
2
OS ≤ 0 against the alternative HA : R2

OS > 0 using

the Clark and West (2007) procedure. Let r̂0t−1,t and r̂1t−1,t be the forecasts of the market

return under the benchmark and candidate model respectively. The forecast errors ê0,t

and ê1,t can be obtained as

êj,t = rM,t−1,t − r̂jM,t−1,t, j = 0, 1. (20)

Clark and West (2007) propose to fit the regression

ê20,t − ê21,t +
(
r̂0M,t−1,t − r̂1M,t−1,t

)2
= µ+ ϵt (21)
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via OLS and to do a t-test of H0 : µ ≤ 0 against HA : µ > 0. Since µ ≤ 0 is equivalent

to MSFE0 ≤ MSFE1, this procedure let us test H0 : R
2
OS ≤ 0. We compute t-statistics

using heteroskedasticity and autocorrelation consistent (HAC) standard errors (Newey

and West, 1986).

As a final remark, we will inspect not only the statistical significance of the R2
OS, but

also its magnitude. Campbell and Thompson (2008) show that a monthly R2
OS of 0.5%

is already economically significant. Therefore, we will always compare our estimates with

this threshold.

B.2 In-Sample

We run an in-sample analysis, simply comparing the time series of sentiment and and the

ECT. The first step is to see whether our claim that we can use the former as a proxy

for the latter is reflected in the data. We start by looking at the aggregate market index.

We do so, because we have to consider only one series, and only later will we go on to

consider the whole cross-section. We can thus see graphical evidence.

We report our results in Figure 3.1. The left panel (a) of the figure depicts a sentiment

measure computed from the headlines of the Wall Street Journal. We can see that, when

we have both the ECT and the sentiment, the two series strikingly move together, with

a correlation of 0.52. This result is even more intriguing, as they are computed from two

totally separated datasets and procedures.

Even though the WSJ sentiment highly correlates with the ECT, it is hard to use it

in an out-of-sample analysis due to limited data availability. Indeed, it is available for

roughly 25 years. Therefore, for our main analysis we will resort to the sentiment indicator

computed by Shapiro et al. (2022), who use several newspaper sources for economic news

over the whole span of our sample. The correlation between such indicator and the ECT

drops to 0.34, which is still high. The results are depicted in the right panel (b) of the

figure. It is clear that the two sentiment series track each other, which is reassuring.
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Table IV
In-Sample MIDAS

This table reports the coefficient estimates from the MIDAS regression rt,t+1 = α+β′xt+
ϵt+1. rt,t+1 is the market log return between quarter t and t + 1. xt contains different
regressors at different frequencies. u is the ECT, the residual from a regression of market
log prices on risk-drivers. st+k/3 is the sentiment at the end of the k-th month of quarter
t, from Shapiro et al. (2022). ∆st+k/3,t+j/3 is the sentiment difference between months j
and k of quarter t. We use quarterly observations for r and u, and monthly data for s.
p values are shown in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% levels respectively. The sample period is 1980Q1 : 2022Q3.

rt,t+1 rt,t+1 rt,t+1 rt,t+1

ut −0.23∗ −0.27∗∗∗ −0.23∗∗ −0.23∗∗

(0.05) (0.00) (0.04) (0.04)
st+2/3 0.80∗∗∗

(0.00)
st+1/3 −0.68∗∗∗

(0.00)
∆st+1/3,t+2/3 0.30∗∗∗

(0.00)
∆st,t+1/3 0.07 −0.22∗

(0.32) (0.06)
∆st,t+2/3 0.46∗∗∗

(0.00)
α 0.25∗∗∗ 0.19∗∗ 0.20∗∗∗ 0.20∗∗∗

(0.00) (0.04) (0.01) (0.01)

N 170 170 170 170
R2 0.06 0.16 0.16 0.16
Adjusted R2 0.05 0.15 0.14 0.14

After establishing such correlation between sentiment and ECT, we want to use the

former as a proxy for the latter in a forecasting exercise. The key point is that the two

series are available at a different frequency, and as we already mentioned we will use a

simple MIDAS framework. We run the regressions in Equations (15) and (17), and we

report our results in Table IV. Our sample goes from 1980Q1 to 2022Q3.

We can notice that the coefficient on ut is always negative and significant. This is in

line with Favero et al. (2019), who claim that this variable is indeed an error correction

term. Moreover, the coefficient is fairly stable across specifications, and it stays significant
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as we add the sentiment measures. We notice that the adjusted R2 dramatically increases

as we add the sentiment measures to the regression, going from 5% to 15%.

We can also see that, when estimating Equation (17), the coefficients on st+2/3 and

st+1/3 have comparable magnitudes, but opposite signs. This motivates us to run a re-

gression using variations in sentiment, ∆st+1/3,t+2/3 = st+2/3 − st+1/3 as the independent

variable. By doing so, we impose that the two coefficients have the same magnitude. We

report the results in column 3. The coefficient on this new variable is still positive and

highly significant. As expected, the adjusted R2 is still above the specification with the

simple ECT.

Finally, we run a regression in which we use ∆st,t+1/3 and ∆st,t+2/3 as independent

variables, we report the results in column 4. These indicators represent the cumulative

changes in sentiment from the start of the quarter to the end of the k-th month. Once

again, the coefficient on the ECT is not dramatically affected, the R2 is still higher than

in the first specification, and the sentiment coefficients are significant.

We increase the forecasting horizon by predicting the market return two quarters

ahead. We present our estimates in Table V. We report our results from Table IV in the

first column for convenience.

We can notice that the ECT is even more negative and significant at a longer horizon.

This is in line with the results of Favero et al. (2019), and with the cointegration literature.

As we add the sentiment measures in column 3, we see that the adjusted R2 increases from

12% to 23%. Most of the sentiment estimates are insignificant. Most likely, this is due to

not restricting the high-frequency coefficients, which we do for the ease of interpretability

(Armesto et al., 2010).

B.3 Out-of-Sample

This section presents our out-of-sample results. In our analysis, we estimate recursively

Equations (15) to (17), and we forecast the market return over the whole quarter. The
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Table V
In-Sample MIDAS - Longer Horizon

This table reports the coefficient estimates from the MIDAS regression rt,t+2 = α+β′xt+
ϵt+1. rt,t+2 is the market log return between quarter t and t + 2. xt contains different
regressors at different frequencies. u is the ECT, the residual from a regression of market
log prices on risk-drivers. st+k/3 is the sentiment at the end of the k-th month of quarter
t, from Shapiro et al. (2022). We use quarterly observations for r and u, and monthly
data for s. p values are shown in parentheses. ∗∗∗, ∗∗, and ∗ indicate significance at the
1%, 5%, and 10% levels respectively. The sample period is 1980Q1 : 2022Q3.

rt,t+1 rt,t+2 rt,t+2

ut −0.27∗∗ −0.33∗∗ −0.36∗∗∗

(0.00) (0.01) (0.00)
s(t+1)+2/3 0.56∗∗∗

(0.00)
s(t+1)+1/3 −0.02

(0.95)
s(t+1) −0.30

(0.25)
st+2/3 0.80∗∗∗ 0.29

(0.00) (0.18)
st+1/3 −0.68∗∗∗ −0.13

(0.00) (0.65)
st −0.16

(0.33)
α 0.19∗∗ 0.32∗∗ 0.25∗∗

(0.04) (0.01) (0.03)

N 170 169 169
R2 0.16 0.12 0.26
Adjusted R2 0.15 0.12 0.23
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spirit of this exercise is to progressively add new information, and to see whether it

improves our forecasts.

We present estimates for the Campbell and Thompson (2008) R2
OS int Table VI. We

always use the historical mean as a benchmark, in line with Welch and Goyal (2008). Our

out-of-sample period is 2001Q2 to 2022Q3, and we use recursive estimates. E
[
rt,t+1 | It+k/3

]
means that the forecast for the market return over quarter t and t + 1 is constructed in

the k-month of quarter t.

Table VI
R2

OS Statistics

This table reports the Campbell and Thompson (2008) out-of-sample R2 (R2
OS) in percent

for market log returns forecasts between quarter t and t + 1, at different months within
the quarter. E

[
rt,t+1 | It+k/3

]
means that the forecast is constructed in the k-month of

quarter t. The benchmark model is the historical mean. Recursive estimates. The out-of-
sample period is 2001Q2 : 2022Q3. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and
10% levels respectively for the positive R2

OS based on the Clark and West (2007) test.

E [rt,t+1 | It] E
[
rt,t+1 | It+1/3

]
E
[
rt,t+1 | It+2/3

]
R2

OS 1.98 −0.15 8.77∗∗∗

(0.43) (0.60) (0.01)

We notice that already the first column has an R2
OS greater than 0.5%, which is the

threshold for economic significance as of Campbell and Thompson (2008). However, this

estimate is not statistically significant. This is to be expected, as we are not using the

fully-fledged model of Favero et al. (2019), but a reduced version in which we only consider

the previous-quarter ECT. That is, the forecasting horizon is rather short, and we replace

the ∆xt,t+1 factors of Equation (3.3) with 0.

However, we can notice that when we use information at the end of the second month

in the quarter, the R2
OS dramatically increases, reaching 8.77%. Not only we get a better

forecasting power than for the ECT-only specification, but we improve with respect to

the historical average. This result is both highly economically and statistically significant.

Instead, when we only consider the first quarter sentiment, we get a negative R2
OS, i.e.
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this model performs worse than the historical benchmark. This could be related to the

fact that we are using the ECT at time t, and not another sentiment measure st.

So far, we presented evidence in favor of using sentiment as a high-frequency predictor.

We showed that adding it improves the forecasting power out-of-sample. We complement

our analysis by implementing a Pesaran and Timmermann (1992) sign test. That is, we

test whether each model helps predicting, if not the magnitude, at least the direction of

future market returns. We present the p values from such test in Table VII.

Table VII
Pesaran-Timmermann

This table reports the p values for the Pesaran and Timmermann (1992) sign test.
E
[
rt,t+1 | It+k/3

]
means that the forecast is constructed in the k-month of quarter t. Re-

cursive estimates. The out-of-sample period is 2001Q2 : 2022Q3. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5%, and 10% levels respectively

E [rt,t+1 | It] E
[
rt,t+1 | It+1/3

]
E
[
rt,t+1 | It+2/3

]
p 0.22 0.05∗ 0.00∗∗∗

We can see that, even though when using the ECT alone we cannot reject the null

hypothesis, we can do so whenever we add the sentiment measures. That is, sentiment

helps predicting the direction of the market. A natural next step is to perform an asset

allocation exercise in the Pesaran and Timmermann (1992) spirit: we invest the whole

portfolio in the market whenever we have a positive forecasts, and in the risk-free rate

otherwise.

B.4 Asset Allocation

We perform an asset allocation exercise. In each quarter t, you adjust your portfolio with

an investment horizon until quarter t+1. In each month, (so, at the beginning, at t+1/3

and t+2/3), you add a 1/3 weight to the market portfolio, if you forecast a positive excess

return, and you invest 1/3 less in the risk-free asset. Otherwise, you subtract 1/3, and
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invest the additional weight in the risk free rate. Weights must always be between 0 and

1, and we impose that the initial portfolio is all invested in the market. The benchmark

is the market portfolio. We include our results in Figure 10.
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Figure 10: The picture depicts the cumulated quarterly returns for MIDAS asset allo-
cation strategy (orange line) and the market portfolio (blue line).
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