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F O R E W O R D &
A C K N O W L E D G M E N T S
700.000 years ago, in the Northwest of Italy, longtime extinct glaciers
have carved through the high Alps and left behind smooth rocks and
an amphitheater of hills. In the parterre of that opera house I grew up
three decades ago, a spectator to the mountains of the Aosta Valley
and the Dora river flowing out of it. Those waters, turquoise from
sediments of granite and schist, have unexpectedly left a mark on my
perspective on humans and the environment. Those mountains - a
stark contrast to the gentle hills and flat agricultural land around a
young me - would become, in the most literal way, my compass.

from the water. Fall in Northwest Italy always brings abundant
precipitations and breaks the dry stretches of summer. As the season
progresses, the snow pack starts thickening with fresh flakes up high
and rain drenches the soil. There is a period, typically in between the
months of October and November, when precipitation are rich, and
temperatures high enough to limit the accumulation of snow; water
flows down the mountainside and in rivers. Hydro-geological risk
peaks: rivers risk overflowing, landslides may occur.

In the autumn of 2000, an exceptional cyclonic system dropped
500mm of rain in few hours. The Dora river, as many other in the
region, overflew its banks and flooded the city of Ivrea, menacing
the millenia-old roman bridge. The villaged where I lived went un-
derwater. While my house suffered only minor damages, the entire
surroundings seemed to me, 11 at the time, a bittersweet mix of calm
and chaos, silence and worry. Water reached ceiling levels at a friend’s
house.

In the years that followed, banks where reinforced and new in-
frastructure projects appeared with the intent to prevent another
catastrophe. The floods silently changed my understanding of the
environment. They did not leave me with the idea of dangerous nature
we ought to protect ourselves from. On the contrary, it became clear
that flood damages where the consequence of the urban geography
and of the management of, in this case, hydraulic risks.

A decade and a half later I was writing the thesis for my MSc
on the long-term consequences of another major flood. I thank my
mentor Valentina Bosetti for believing in that sprout of research in
environmental economics and cultivating it.

from the mountain Where I grew up, it is easy to orient oneself:
North is where the mountains are. Two in particular, named Cavallaria
and Mombarone, are the most prominent and most visible landmark.
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Growing up, I could easily find the way with some mental trigonome-
try keeping Cavallaria and Mombarone as reference point. At the age
of 13 or 14 I once travelled to the Champagne region in France, where
the land is flat and the sky high and grey, and found myself - to my
amusement - that I was lost and had no clue where North was. Long
before I realized it, my eyes were looking for mountain-like shapes to
help me navigate.

This dissertation and been a long journey with intense navigation.
If I have not lost direction is thanks to many people who have been
with me along the way or have shaped me as the person I am. Thank
you, you are my mountains and my reference point.

A special mention goes - again, because one is not enough - to my
mentor Valentina Bosetti. Thank you for believing in me.

I am grateful for having crossed paths with incredible human beings,
for short or long times, and I appreciate every single moment we’ve
spent together. A special thanks to Nicolo’ Dalvit, a great friend and
distiller of precious advice from econometrics to perspectives on life.

A journey in good company is a good journey. I am grateful for
having shared the PhD one with amazing individuals as Benedetta,
Chiara, Samir, Selin and Rita. I have learned so much you.

I have found a thriving intellectual community and the sense of
family in the researchers at the RFF-CMCC European Institute on
Economics and the Environment. I am a better researcher today
thanks to them and thanks to the many co-authors I have worked
with, in particular Alexandros Cavgias, Lara Aleluia Reis, Bernardo
Bastien-Olvera and Frances Moore.

As an upside of the COVID-19 lockdowns, I have found a good
friend in Claudio Brenna. Social isolation has been less bitter because
of you.

Thanks to my mountaineering partners I shared rope and skin tracks
with. A special thought goes to Giovanni.

To Deda e Bebo. For your boundless love.
Thanks to Paula Rettl, a loyal companion for many years and con-

stant source of moral and intellectual inspiration.
Who could I be, who would I be, without my family? Words are

scarce and cannot describe how much of what I am is because of them.



I N T R O D U C T I O N

This dissertation is concerned with the impacts of environmental
stressors on people’s health and welfare. In particular, it focuses on
air pollution and temperatures anomalies. Air pollution is consid-
ered the fifth leading mortality risk factor worldwide (Cohen et al.,
2017). Despite impressive improvements in air quality over the last
half-century, air pollution remains a global challenge, especially in
rapidly urbanizing countries. On an even larger scale, anthropocentric
emissions of greenhouse gases have been pushing a shift in the world’s
climate that is projected to widen in the coming decades. The ability
of economies to cope with changing temperatures is paramount to
limiting the damages from climate change. The three chapters of this
thesis should be read in the framework set by these challenges. In
each chapter, a specific question is brought to the surface, and the
road to address it is outlined.

Chapter 1 investigates the negative effect of air pollution on physical
ability. A large share of the world’s population is employed in manual
labor. Yet, our understanding of the productivity cots of air pollution
for physically intense work remains limited. The chapter identifies
in track and field competitions a natural experiment where cognition
plays a minor role. Combining half a million competition results
with weather and air quality data, it estimates the change in physical
performance induced by variations in air pollution.

Chapter 2 considers the methodological tools available to estimate
the causal change in air pollution concentrations following a reduction
in emissions. It recognizes the challenges to identification posed by
fluctuations and trends in atmospheric conditions and proposes a
machine learning approach to address them. The chapter then ap-
plies this strategy to quantify the reduction in pollution and related
health benefits induced by the COVID-19 lockdown of Lombardy,
Italy, in spring 2020. This work is a joint effort with Lara Aleluia Reis
(RFF-CMCC European Institute on Economics and the Environment),
Valentina Bosetti (Bocconi University), and Massimo Tavoni (Politec-
nico di Milano). The chapter has been published under the same title
on Environmental Research Letters.

Chapter 3 is concerned with the persistence of the effects of temper-
ature anomalies on economic growth. If an adverse temperature shock
damages the determinants of economic growth, we can expect losses
from climate change - a permanent shift in the mean temperature - to
be cumulative over time and, therefore, very costly. Despite the pri-
mary importance of this question for modeling the climate-economy
interactions, data constraints and data-hungry approaches have led to
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inconclusive answers. This chapter presents a new and more efficient
method to test for the persistence of effects; using three different GDP
datasets, evidence emerges that temperature effects are indeed persis-
tent. This chapter has been the output of joint work with Bernardo A.
Bastien-Olvera and Frances C. Moore of the University of California at
Davis, and has been published under the same title on Environmental
Research Letters.



1 H E T E R O G E N E O U S E F F E C T S O F
A I R P O L L U T I O N O N P H Y S I C A L
TA S K S : E V I D E N C E F R O M
A M AT E U R T R A C K A N D F I E L D

abstract Although a large share of the world’s population is em-
ployed in manual labor, our understanding of the productivity costs
of air pollution for physically intense work remains limited. This
paper estimates the effect of fine particulate matter (PM 2.5) on purely
physical tasks by analyzing half a million amateur track and field
competition results, a setting where cognition plays a minor role.
Exploiting the panel nature of the data and high dimensional fixed
effects, I find that a 10 µg/m3 increase in PM 2.5 reduces performance
by 1% of a standard deviation. The effect grows with the duration of
effort, indicating that productivity losses may be larger for occupa-
tions requiring low-intensity and sustained effort, such as construction
workers.
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10 air pollution and physical productivity

1.1 introduction

A large share of the world’s population is hired in manual labor,
in both developed and developing economies. At the same time,
air pollution is pervasive throughout the globe, often at unhealthy
concentrations. In urban centers, blue-collar workers can be exposed to
high concentrations of industrial pollution as PM 2.5 easily penetrates
indoor for its small diameter (J. He, H. Liu, and Salvo, 2019); in rural
areas, unregulated biomass burning is a significant source of harmful
airborne pollutants (Rangel and Vogl, 2018; Graff Zivin, T. Liu, et al.,
2020; G. He, T. Liu, and Zhou, 2020).

While a growing number of studies find that fine particulate matter
(PM 2.5) reduces cognitive performance1, to date the evidence on the
causal effects of ambient air pollution on the physical component of
tasks remains limited.2

This paper estimates the effects of PM 2.5 on physical tasks where
cognition plays a marginal role and task content is easily codified. I
assemble a dataset on the universe of track and field competitions held
in Italy from 2005 to 2019 and match individual performances with
air pollution data. In this environment, young individuals repeatedly
perform highly standardized tasks (running, jumping, throwing) un-
der varying environmental conditions. Leveraging the panel structure
of the data, I estimate the effect PM 2.5 on performance using a set of
high dimensional fixed effects.

I find that an increase in PM 2.5 of 10 µg/m3 reduces performance
by 1% of a standard deviation, equivalent to a loss of one-third of a
percentile in nationwide rankings. Conversely, ozone does not have a
discernible effect when accounting for concentrations of particulate
matter. The detrimental consequences of PM 2.5 on performance
appear at medium level of concentrations between 25 and 50 µg/m3.
The overall effect is the same for males and females, and greater for
high-ability athletes. While the data comes from competitions held in
Italy, there are no apparent reasons for the link between air pollution
and athlete performance to be specific to the Italian context.

1 Evidence covers standardized tasks such high-stake exams (Ebenstein, Lavy, and
Roth, 2016; Persico and Venator, 2019; Graff Zivin, T. Liu, et al., 2020) cognitive tests
(Bedi et al., 2021), brain games (Nauze and Severnini, 2021), chess matches (Künn,
Palacios, and Pestel, 2019), and referee calls in baseball games (Archsmith, Heyes,
and Saberian, 2018). Air pollution, in particular PM 2.5, has also been found to
interfere with decision making, more broadly defined. For instance, Burkhardt et al.,
2019 and Bondy, Roth, and Sager, 2020 find that PM 2.5 increases violent crimes,
but not property crimes. Heyes, Neidell, and Saberian, 2016 link increases in PM
2.5 in Manhattan with reduced returns in the New York Stock Exchange. Chen,
2019 provides a detailed summary of the physiological and psychological pathways
through which pollution is believed to affect cognitive performance and behavior.

2 Beyond direct productivity losses, exposure to PM 2.5 reduces life expectancy. It is
estimated the fifth leading cause of premature mortality worldwide (Cohen et al.,
2017).
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I then investigate the effect of PM 2.5 by type of physical require-
ment to inform the productivity losses of common occupations. Short-
lasting competitions require explosive strength, whereas longer races
require stamina and are more dependent on the pulmonary and car-
diovascular systems, which, following the medical literature, bear
most of the effects of PM 2.5 (Pope and Dockery, 2006).3 In line with
expectations, I find larger impacts of PM 2.5 on the performance of
longer-lasting races. The results suggest that jobs requiring prolonged
physical effort incur, under the same conditions, greater productiv-
ity losses than jobs requiring short bursts of intense exercise. Most
athletes in the sample are below working age, thus the generalization
of results to manual laborers should be done with care. Yet, to an
extent, results can be informative for jobs with prolonged efforts: for
instance, according to the Bureau of Labor Statistics, in the United
States stamina is an important ability for as many as 8.5 million work-
ers in the country (Table 9). Explosive strength is important for half a
million workers.4 More generally, 13.7% of all civilian jobs and 45.5%
of jobs in Construction and Extraction require heavy work (Table 10)
(U.S. Bureau of Labor and Statistics).

This paper enters the stream of literature on the consequences of
air pollution on labor productivity. Several works have found that
PM 2.5 hampers productivity in a variety of settings where physical
effort is important, such as in a packing plant (Chang et al., 2016) or
in textile and garment plants (Adhvaryu, Kala, and Nyshadham, 2018;
J. He, H. Liu, and Salvo, 2019). Their external validity is however
limited by the narrow scope. One exception is offered byFu, Viard,
and Zhang, 2021, who expand previous work and estimate nationwide
effects on short-run productivity for China’s manufacturing sector.
They report suggestive evidence that PM 2.5 reduce both cognitive
and physical productivity. Nevertheless, generalization of results
remain challenging without an understanding of the mechanisms at
work. Unpacking the causal links is still work in progress. While the
evidence on cognitive effects is growing (e.g. Ebenstein, Lavy, and
Roth, 2016; Graff Zivin, T. Liu, et al., 2020; Bedi et al., 2021; Carneiro,
Cole, and Strobl, 2021; Nauze and Severnini, 2021), less is known
about the impacts on physical productivity.

Sports have proven attractive grounds for economists to do research
(Kahn, 2000) for their richness of data and, in particular, the availability
of readily-observed productivity measures. As Archsmith, Heyes, and

3 The Occupational Information Network (O*NET) of the U.S. Bureau of Labor Statistics
describes the abilities, defined as "enduring attributes of the individual that influence
performance", required by 923 occupations, quantifying the importance and level
required of each ability. It defines explosive strength as "the ability to use short bursts
of muscle force to propel oneself (as in jumping or sprinting), or to throw an object".
Stamina is defined as "The ability to exert yourself physically over long periods of
time without getting winded or out of breath".

4 Important is here defined as a 3 or more on a 1-5 scale from ’Not Important’(1) to
’Extremely Important’ (5).
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Saberian, 2018 puts it, sports provide a "microcosm for things that
might be happening more broadly in society", context rather than an
object. For instance, several sports contexts have been used to link
air pollution to productivity, providing new understanding of the
mechanisms depending on the context, method, and analysis. Data on
distance running has been employed to study peer effects (Emerson
and B. Hill, 2018) and the gender gap in competitiveness (Frick, 2011).
In the literature covering the productivity effects of air pollution, most
papers have used data from professional athletes, for whom data is
more abundant. Archsmith, Heyes, and Saberian, 2018 finds that
baseball umpires are more likely to make incorrect calls when exposed
to higher CO and PM 2.5. Lichter, Pestel, and Sommer, 2017 find that
the productivity of football players is hampered by particulate matter.

Closest works to this paper are Marcus, 2021, Austin, Heutel, and
Kreisman, 2019, and Mullins, 2018. Marcus, 2021 studies the link
between ozone and cardiopulmonary performance of school children
aged 10 to 15, assessed yearly by the California Department of Ed-
ucation measured with a test of aerobic capacity. She finds that an
increase in ozone from 0-25% of the U.S. National Ambient Air Quality
Standards to levels above the safety standard increases the share of
students with poor aerobic capacity by 5.4 percentage points. Austin,
Heutel, and Kreisman, 2019 estimate the changes in cardiopulmonary
fitness of students aged 8 to 14 in Georgia, USA, induced by the
retrofitting of diesel school buses and the subsequent improvement in
air quality inside the vehicles. They find that school district-average
VO2max would improve by 4% if a district retrofitted 100% of its
fleet.5

Mullins, 2018 estimates the effects of ground ozone, a pollutant often
linked to heat and sunlight, on the performance of US collegiate track
and field athletes.6 In contrast to Mullins, 2018, this paper assesses the
impacts of PM 2.5, a pollutant that can penetrate indoor and is the fifth
leading cause of premature death worldwide due to a combination of
near-ubiquity and harming potential (Cohen et al., 2017).7 In addition,
I consider a population of mostly amateurs, whose team membership
or income (such as scholarship) are not tied to performance, diluting
concerns of positive self-selection on fitness.8

5 VO2max is the maximum rate that oxygen can be taken into and used by the body
during exercise (A. V. Hill and Lupton, 1923).

6 Sexton, Wang, and Mullins, 2021 use the same data as Mullins, 2018 to study effect of
heat on physical performance.

7 In a robustness check, Mullins, 2018 controls for multiple pollutants, including both
coarse and fine particulate matter (PM 10 and PM 2.5), whose coefficient are not
statistically significant. However, the latter are correlated as PM 10 is a superset
of finer PM 2.5. Including both in the regression, Mullins, 2018 ensures that the
coefficient for ozone is not driven by particulate matter. On the other hand, it cannot
be ascertained whether the lack of significance for PM 2.5 is explained by lack of
causality, or standard errors inflated by the correlation with PM 10.

8 With the exception of a few elite athletes, who are hired for a moderate stipend.
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The next section discusses the main characteristics of track and
field competitions that are relevant to this study. Section 3.2 describes
the data, and Section 1.4 presents the empirical strategy. Section 1.5
discusses results, and Section 1.6 the robustness checks. Section 1.7
concludes.

1.2 track and field competitions as stan-
dardized physical tests

The use of sports data in economics is not novel (Kahn, 2000). Beyond
the contributions of Mullins, 2018 discussed above, the most similar
work in this regard is Lichter, Pestel, and Sommer, 2017, who quantify
the effect of PM 10 on the productivity of professional soccer players,
measured as the number of passes per match. However, the interac-
tion of team strategies and individual responses does not allow for
separating physical effects from behavioral responses, although they
provide suggestive evidence that both factors are at work.9 Produc-
tivity spillovers between players further complicate the attribution of
individual productivity (Arcidiacono, Kinsler, and Price, 2017).

Ideally, a researcher could retrieve a pollution-physical productivity
function asking subjects to perform a measurable and standardized
task at randomly supplied pollution levels. Such an experiment would,
however, raise ethical concerns of primary importance.

Track and field is a set of individual sports disciplines that require
running, jumping, or throwing in a very standardized setting. Com-
petitions are held on a stadium track, or its inner field, whose char-
acteristics are regulated in detail by international standards (World
Athletics, 2019). As an illustration, the inside lane of a running track
must be 400 meters long, and each lane must be 1.22m ± 0.01m wide;
equipment, such as hurdles and throwing implements, must respect
standards of shape and weight (World Athletics, 2020). Performance
of all track events (foot races) are measured electronically, whereas all
field events (jumps and throws) are measured manually yet precisely.
While regular competitions can be held in indoor tracks, this study
is restricted to outdoor contests as air quality in indoor tracks can be
worsened in unmeasurable ways by the smoke of starting guns and
can differ substantially from outdoor conditions. Road competitions
such as marathons are excluded from this study as they take place on
non-standardized race courses.10

9 Track and field competitions differ from road races as the former take place in
standardized stadiums while the latter on unstandardized road courses. Guo and Fu,
2019 find a negative effect of air pollution on the performance of marathon runners
in races events in China. However, and self-selection out of a marathon, before or
during the race, makes causal identification challenging.

10 The setting and design of road competitions make good environment to address
different questions, such as peer effects in productivity (Emerson and B. Hill, 2018).
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The cognitive efforts in track and field events are minimal. First,
athletes compete individually, irrespective of the performance of other
team members.11 Second, they typically compete in running the
fastest, jumping the longest or highest, and throwing the farthest. A
notable exception is mid- and long-distance races. In conditions where
victory is more important than timing, the stronger athletes might
strategically slow down the race pace if they believe they have an
edge in a closing sprint. These conditions are most common at the
end of the sports season when peak events are held; throughout the
season, strategic races are comparatively less common as athletes chase
qualifying timings for championships of varying degrees. Section 1.6
shows that results are not driven by mid- and long-distance events.

Males and females are usually equally represented and perform the
same or very similar tasks (see Figure 7 in Appendix for a breakdown
of types of competitions by gender). This contrasts with other occupa-
tional contexts in the literature on pollution and physical performance.
For instance, among agricultural laborers studied by Graff Zivin and
Neidell, 2012 women are more likely to harvest crops that require less
energy. The textile workers examined by J. He, H. Liu, and Salvo, 2019

are predominantly females.
In Italy, track and field competitions are supervised by the Italian

Athletics Federation (FIDAL), which guarantees the uniformity and
the validity of results through its referees. Athletes are members of
clubs, whose catchment area is typically local and are independent
of the school system. Entry barriers into the sport are very low,
and competitions are comparably accessible across socio-economics
backgrounds. However, it should be noted that the average age of
track and field competitors is low, in the teens. Individuals positively
select into the sport, but conditional on being in the sport, selection
into competing is small.

1.3 data

1.3.1 Track and field

The analysis uses data on the universe of regular track and field
competitions held in Italy from 2005 to 2019. Results are systemat-
ically collected by FIDAL in near real-time and are made available
on its website.12 Most outdoor competitions take place from April to
September.

Race distances and equipment vary with category and gender to ac-
commodate for physiological differences. For example, the 100-meter

11 With the exception of relay runs, in which each member of a team runs part of the
race. Relays are excluded from this study.

12 Data have been scraped from the FIDAL website at http://www.fidal.it/.

http://www.fidal.it/
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dash is typically not run until 16 years old; the equivalent competition
for a 14-year old is the 80-meter dash. To ensure comparability across
events, age categories, and gender, results are transformed into a
standardized score. For every event, years of age, and gender, I trim
the top 99 and bottom 1 percent to exclude outliers, then demean and
divide by the group standard deviation. The objective of field events
is to jump or throw the farthest, whereas in races athletes aim for the
shortest time. Therefore, the standardized result of races is reversed in
sign so that greater values reflect greater performance for both jumps,
throws, and races. The dependent variable is constructed as

Ỹi,age(t),event,gender(i) = (1)

=
Yi,age(t),event,gender(i) − µage(t),event,gender(i)

σage(t),event,gender(i)
· Event typeevent

where Yi,age(t),event,gender(i) is the performance of athlete i on day
t on event event. µage(t),event,gender(i) and σage(t),event,gender(i)

are the mean and standard deviation of results in groups defined by
age, event and gender.13 Event typeevent is equal to 1 for jumps and
throws (field events), to -1 for races (track events).

The standardization leads to a straightforward interpretation of
regression results: a change in standardized score Ỹ is equivalent to a
change in unstandardized result Y as percent of a standard deviation
in the reference group:

∆Ỹi,age(t),event,gender(i) =
∆Yi,age(t),event,gender(i)

σage(t),event,gender(i)
.

FIDAL only records information on the city in which races have been
held, though not on the location of the stadium. However, it maintains
a geo-localized database of track stadiums in Italy. To precisely assign
pollution readings to race days, I assign to each city, whenever possible,
the geographic coordinates of track stadiums. In case a city contains
more than one stadium, and it is impossible to assign results to a
specific one, that city is excluded. Thus, a few stadiums are excluded
from the sample. 14 The location of municipalities with track and field
events in the final dataset is shown in Figure 1.

The result is an unbalanced panel of 95336 athletes, for more than
half a million competition results in 3555 stadium-race days in 137

stadiums. Given the disproportionately large number of young ath-
letes, the average age is 15.2, and about 90% of them take part in 59

competitions or fewer during the period and cities covered by the

13 In a comparable setting, Mullins, 2018 standardize results with respect to world
records. However, world records do not exist for many events in which younger
athletes participate.

14 The pollution monitoring network is denser in the more polluted and populated
North (Figure 6).
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Figure 1: Location of Italian track and field stadiums in the data. Circle size
indicates the amount of observations per each stadium.

database.15 About half of the events are races, 27% are jumps, 23% are
throws. Female athletes make up 48% of the sample (Table 1).

1.3.2 Pollution

Daily pollution readings of PM 2.5 and ozone measured at monitor-
ing stations come from AirBase, the European air quality database
maintained by the European Environment Agency. Where hourly
readings are available, a daily measure of PM 2.5 is constructed as the
average of hourly measures from 10 AM to 6 PM, as track and field
competitions take place mostly during the afternoon. The maximum
reading is used instead for ozone. For every race day, PM 2.5 and
ozone readings from monitoring stations within 10 kilometers are
interpolated at track stadiums with inverse distance weighting. Hence,
pollution in the data varies by stadium and day.

A considerable share of the Italian population is exposed to harm-
ful levels of air pollution. According to the European Environment
Agency, 75% of the urban population in Italy was exposed to concen-
trations of PM 2.5 above EU standards (Ortiz, 2020). The more densely
populated Northern regions are some of the most polluted regions in
OECD countries. However, track and field competitions take place
mostly from April to September, when concentrations are lowest. The
average PM 2.5 concentration in the data is 14.4 µg/m3, and surpasses
the EU annual limit value of 25 µg/m3 in about 9% of observations
(Figure 2).

15 Data for a large number of athletes aged 35 and older had to be discarded for lacking
a precise date of birth.
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Table 1: Descriptive statistics

Mean Std. Dev. Median Minimum Maximum N.
Std result 0.03 0.98 0.09 -5.66 3.39 553,171

PM 2.5 14.35 8.36 13.00 0.00 147.04 553,171

Ozone 108.31 28.36 106.40 7.00 247.45 509,494

Female 0.48 0.50 0.00 0.00 1.00 553,171

Age 15.24 3.45 14.78 5.30 40.37 553,171

Temp. max 23.94 5.06 24.32 5.64 37.52 553,171

Precipitation 2.43 5.21 0.19 0.00 48.49 553,171

Wind 2.04 0.76 1.95 0.13 7.95 553,171

Wind assist 0.02 0.55 0.00 -7.50 8.20 553,171

Duration, minutes 0.84 2.35 0.00 0.00 29.70 553,171

Note: Standardized competition results Std result are defined as results minus
the average result of a group defined by age, gender, and event (e.g., 17-old,
female, long jump), divided by the standard deviation of results of the same
group. PM 2.5 and ozone are expressed in µg/m3; temperature in degree
Celsius; precipitation in millimeters; wind in m/s.

Figure 2: Within-month distribution of PM 2.5. Most competitions occur
from April to September, when concentrations of PM 2.5 are lower.
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1.3.3 Weather data

The performance of track and field athletes is sensitive to environ-
mental conditions beyond air pollution, such as temperature, relative
humidity, precipitation and wind. At the same time, atmospheric
conditions are key to the process of pollution formation, transport and
dispersal.

I combine performance data and pollution readings with atmo-
spheric conditions from ERA5-Land hourly reanalysis data on a 0.1◦

by 0.1◦ grid (Copernicus Climate Change Service, 2019). I construct
measures of mean temperature, total precipitation, mean wind speed,
and mean relative humidity from 12 PM to 9 PM. Like air pollution,
weather conditions are interpolated at stadiums with inverse distance
weighting.

Performance in a number of events is particularly susceptible to
the wind blowing in favor or against the direction of an athlete.16

International standards mandate that results in these events cannot be
valid as a record on any level if the tailwind exceeds 2 m/s. However,
results are still valid for establishing rankings within the competitions.
Thus, wind speed during such events is measured inside the stadium
with anemometers and recorded with individual results. It can take
positive values (tailwind) or negative ones (headwind). For all other
events, the variable is set to zero. To distinguish it from the meteo-
rological wind described above, I will refer to this variable as wind
assist.

1.4 empirical strategy

The richness of the data allows identifying the effects of PM 2.5 on
track and field competitions using a high-dimensional set of fixed
effects. First, I exploit the panel nature of the data and include
individual fixed effects. Athletes compete multiple times at varying
environmental conditions throughout their career. The analysis relies
on variation in performance and air pollution within individuals.

Second, to adjust for the confounding role of atmospheric condi-
tions, I introduce a flexible specification of weather variables. Controls
include wind assist, fixed effects for 2

◦ C bins of maximum temper-
ature and their interaction with wind speed, relative humidity, and
binned precipitation.17

16 Namely: races until 200 meters of length, the triple jump and the long jump. The
benefit or burden of wind blowing is clear in events where the athlete moves in one
direction. When races involve running one or more laps of a track, a stable wind
blows cyclically both in favor and against athletes.

17 Temperature bins at extreme temperatures, with fewer observations, are wider. Bins
are constructed as: (0 10], (10, 14], (14, 16], (16, 18], (18, 20], (20, 22], (22, 24], (24,
26], (26, 28], (28, 30], (30, 32], (32, 34], (34, 36], (36, 40]. Cumulative precipitation in
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Third, concentrations of PM 2.5 are lowest during summer, when the
most important competitions are held and the sport season peaks. The
relationship between PM 2.5 and performance might be downward
biased unless the two trends are accounted for. For this reason, all
specifications include fixed effects for year, week, and day-of-the-week.

Finally, stadiums and their locations may correlate in unobserved
ways with performance and pollution levels. A large city might host
high-level competitions and suffer from high levels of pollution, for
instance. I include stadium fixed effects to account for stadiums’
constant characteristics, their surroundings, or the competitions they
host. Athletes can travel to other cities to compete. I interact stadium
fixed effects with fixed effects for athletes’ team, a proxy for the city of
origin. Given that Italian track and field teams are predominantly local,
the interactions capture changes in performance caused by traveling
from the team’s home city to the stadium, and any potential home
advantage. Two thirds of the overall variation in PM 2.5 and half of the
variation in performance come from within individuals-stadiums cells,
further reducing the risk of confounding effects caused by traveling
(Figure 11 in Appendix) .

Most competitions take place in warm months, when solar radiation
accelerates chemical reactions to form ozone, a pollutant known to
irritate lung airways and increase respiratory problems (Neidell, 2009),
and reduce aerobic capacity (Mullins, 2018; Marcus, 2021). Given
the negative temporal correlation with PM 2.5, omitting ozone from
Equation 2 may lead to underestimation of the true effect of PM 2.5
on performance. All specifications adjust for concentrations of ozone.

The baseline specification then looks like:

Ỹi,s,t =β1PM2.5s,t +β2Ozones,t + Time ′tγ1+ (2)

+Weather ′t,sγ2 + γ3Wind assisti,s,t

+αi + Ss +Cc(i,t) + S ∗Cs,c(i,t) + ϵi,s,t.

The dependent variable Ỹi,s,t is the standardized results described
in Equation 1. Subscript i, s, and t respectively index individuals,
stadiums, and time. For ease of notation, I omit subscripts indexing
different competitions of the same individual on the same day.18 The
main parameter of interest is β1. The vector Timet contains time-
specific fixed effects and the vector Weathert,s contains the flexible
weather controls. Wind assisti,s,t is the wind assist measured inside
the stadium with anemometers. αi indicates individual fixed effects.
Ss, Cc(i,t) and S ∗Cs,c(i,t) are respectively stadium fixed effects, team

millimiters is binned in the following intervals: no precipitation, (0,1], (1, 5], (5, 10],
(10, 100].

18 Only Ỹ and Wind assist vary within an individual in a given day.
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fixed effects, and their interaction. Standard errors are clustered at the
stadium-date level.

1.5 results

Table 2 presents results for the baseline specification. I find that a 10

µg/m3 increase in concentrations reduces performance by 1% of a
standard deviation. For the median performance, this is equivalent
to the loss of a third of a percentile in nationwide rankings. It should
be noted that that most competitions occur in warmer months when
pollution levels are relatively low.19 Indeed 91% of performances in
the data happen below 25 µg/m3, the annual limit value set by the
European Union, and more than half below 15 µg/m3.

Column (2) tests whether the result is driven by the correlation
between ozone and PM 2.5. Since fewer stadiums are within a 10

km range of an ozone monitoring station, the sample size is slightly
reduced. The findings are partially at odds with Mullins, 2018: in an
environment with higher levels of both ozone and PM 2.5, I find no
statistically discernible effect of ozone, conditional on concentrations
of PM 2.5. On the other hand, he finds a discernible negative effects
of ozone only for endurance events. I show in Section 1.5.1 that while
performance losses attributable to both PM 2.5 and ozone increase with
duration of effort, a proxy for reliance on the cardio-pulmonary system,
the effect for PM 2.5 is substantially stronger and still discernible
for short-lasting events. For comparison with studies on the effects
of air pollution on cognitive abilities, Ebenstein, Lavy, and Roth,
2016 find that a 10 µg/m3 increase in PM 2.5 is associated with a
reduction of 3.9% of a standard deviation in the score of high-stake
school exams in Israel. Carneiro, Cole, and Strobl, 2021 estimate the
relationship between PM 10, particulate matter smaller than 10 µm

and including PM 2.5, and results in Brazil’s nationwide university
entrance examinations. They find that an increase of 10 µg/m3 of PM
10 on the day of examinations leads to a reduction of 8% of a standard
deviation in student’ scores. When PM 10 is above 20 µg/m3, the
effect is 13%. According to Roth, 2022, a 10 µg/m3 increase in indoor
PM 10 reduces test scores London-area university students taking
high-stakes exams by approximately 3% of a standard deviation. Bedi
et al., 2021 runs grammatical reasoning test in a lab with university
students, and find that +10 µg/m3 in PM 2.5 reduce scores by 3%.

19 The average effect on performance of increase in PM 2.5 of 10 µg/m3 is comparable to
the effect of a reduction in maximum daily temperature from 24-26 degrees to 10-14

degrees (Figure 8 in Appendix). As discussed in Section 1.3.3, the daily maximum
temperature is a better measurement of the temperature to which athletes are exposed.
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Table 2: The impact of PM 2.5 on physical performance. Main specifications.

(1) (2)
Std result Std result

PM 2.5 -0.0010
∗∗∗ -0.0010

∗∗

(0.0004) (0.0004)
Ozone -0.0002

(0.0001)
Individual FE Yes Yes
Time Yes Yes
Weather Yes Yes
Stadium, Team Yes Yes
Observations 553171 507718

Note: The table shows the effects of contemporaneous PM 2.5 on physical
performance, measured as track and field competitions results. The unit of
analysis is the competition result of an individual. The dependent variable is
standardized competition result, defined as results minus the average result
of a group defined by age, gender, and event (e.g., 17-old, female, long jump),
divided by the standard deviation of results of the same group. PM 2.5 and
ozone are expressed in µg/m3. Time indicates year, week, and day-of-the-
week fixed effects. Weather includes wind assist, as well as fixed effects for
2
◦ C bins of maximum daily temperature and their interaction with wind,

relative humidity, and binned precipitation. Stadium, Team includes stadium
fixed effects, team fixed effects, and their interactions. Standard errors are
clustered at the stadium-date level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

1.5.1 Aerobic and anaerobic activities

Next, I examine heterogeneous effects by duration of effort, a proxy
for the reliance on oxygen intake and on the respiratory system. At
low intensities of effort, the human body produces energy through the
combustion of oxygen and fuel,20 releasing carbon dioxide and water
as byproducts. This energy production process is termed "aerobic"
for the usage of oxygen. While efficient, it is relatively slow as it
relies on the circulatory system to deliver oxygen to the working
muscles before producing. When significant energy is required for
a short burst of activity, muscles fall back on the internal storage of
fuel and rapidly but inefficiently produce new fuel. Lactic acid, a
byproduct, accumulates until force generation and energy production
are inhibited. This energy production process is termed the "anaerobic"
pathway as it takes place in the absence of oxygen (Spurway, 1992).

Anaerobic and aerobic pathways are not mutually exclusive, and
which supply route is prioritized depends in part on the intensity
of the work and partly on the duration of the work. 21 In 400-m
track running, which on average lasts about a minute in my data,

20 Glucose, glycogen, fats, and proteins.
21 Intensity and duration are inversely proportional, as the accumulation of lactic acid

limits energy production
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the anaerobic (aerobic) component is responsible for approximately
40/60% for males and 45/55% for females; in 800-m running (2 and a
half minutes in my data) the contribution shifts to 60/40% and 70/30%
for males and females respectively (Duffield, Dawson, and Goodman,
2005).

The main hypothesized channel through which PM 2.5 alters the
body’s normal functioning is through inflammation in the lungs and
reduced oxygen intake (Pope and Dockery, 2006).22 The expectation is
that longer-lasting competitions, where oxygen intake is an important
element, will have larger losses to PM 2.5.

Following this rationale, I compute heterogeneous effects by the
typical duration of a competition, calculated as the average duration
of a given event by age and gender. Figure 3 shows that the marginal
effect of PM 2.5 on performance is negative and increases in magnitude
as the average duration of an event increases. The effect is twice as
large for events lasting on average 4 minutes than for very short events
(Table 3).23 The negative effect of ozone on performance also grows
with the duration of effort, consistent with Mullins, 2018; however, the
magnitude is substantially smaller and statistically discernible only
for competitions that last on average 3 minutes or longer. This suggest
that ozone affects mostly aerobic activities.

While generalization of results should be done with care, given
the young age of individuals considered, the estimates suggest that
tasks relying on pulmonary system and oxygen intake bear greater
costs of air pollution. The findings can be seen in light of the work
done by the US Bureau of Labor Statistics, which for each of almost
a thousand occupations defines the importance of different physical
abilities, and the level of ability required. According to the Bureau, in
the United States stamina is an important ability for as many as 8.5
million workers in the country (Table 9); explosive strength is important
for half a million workers. 24 More generally, 13.7% of all civilian jobs
and 45.5% of jobs in Construction and Extraction require heavy work
(Table 10) (U.S. Bureau of Labor and Statistics).

22 Some particles can pass from the airways directly into the bloodstream (Brook et al.,
2010)

23 The coefficient for duration is positive and significant. Recalling that the identifying
variation is within-individual, this means that, on average, individuals perform better,
relative to themselves, in longer-lasting events.

24 Important is here defined as a 3 or more on a 1-5 scale from ’Not Important’(1) to
’Extremely Important’ (5).
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Figure 3: Marginal effect of PM 2.5 and ozone on performance by average
event duration.

Table 3: Heterogeneous effects by task requirements.

(1) (2)
Std result Std result

PM 2.5 -0.0008
∗∗ -0.0008

∗∗

(0.0004) (0.0004)
Duration, minutes 0.0120

∗∗∗
0.0180

∗∗∗

(0.0017) (0.0030)
PM 2.5 × Duration, minutes -0.0003

∗∗∗ -0.0002
∗∗

(0.0001) (0.0001)
Ozone -0.0001

(0.0001)
Ozone × Duration, minutes -0.0001

∗∗∗

(0.0000)
Individual FE Yes Yes
Time Yes Yes
Weather Yes Yes
Stadium, Team Yes Yes
Observations 553171 507718

Note: The table shows the effects of contemporaneous PM 2.5 and ozone on
physical performance, measured as track and field competitions results. The
unit of analysis is the competition result of an individual. The dependent
variable is standardized competition result, defined as results minus the
average result of a group defined by age, gender, and event (e.g., 17-old,
female, long jump), divided by the standard deviation of results of the same
group. Duration is the average duration of competitions (in minutes) for
groups defined by age, gender, and event. PM 2.5 and ozone are expressed in
µg/m3. Time indicates year, week, and day-of-the-week fixed effects. Weather
includes wind assist, as well as fixed effects for 2

◦ C bins of maximum daily
temperature and their interaction with wind, relative humidity, and binned
precipitation. Stadium, Team includes stadium fixed effects, team fixed effects,
and their interactions. Standard errors are clustered at the stadium-date level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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1.5.2 Gender, ability effects, and nonlinearities

To test whether the performance cost of PM 2.5 differs across individ-
uals, I explore the heterogeneity across gender and ability (Table 4).
There exists little large scale causal evidence on the costs of pollution
by gender, in particular on physical abilities. It appears that PM 2.5
has no different impact on the performance of females and males, as
Columns (1) and (2) show.

Columns (3) and (4) interact PM 2.5 with an indicator for athletes
that perform in the top decile at least half of the time when com-
pared to their peers. The latter identifies high ability athletes that
systematically perform well. The performance loss caused by PM
2.5 is greater for top athletes, approximately 2.5 times as large. One
possible explanation is that low ability athletes have more margin to
compensate losses from air pollution.

Economics theory states that protection from air pollution should
be set so that the marginal cost of investment matches the marginal
benefits. Threshold effects and non-linearities in productivity losses
imply that protective investments should not scale linearly as well. I
test for non-linearity with multiple specifications, namely: restricted
cubic splines with three and four knots; quadratic form of PM 2.5;
binning PM 2.5 by half, tercile, and quantile. Results are shown in
Figure 4. From all specifications we can deduce that exposure to PM
2.5 appears to be having a non-discernible effect at low concentra-
tions (<25 µg/m3), but negative effects on performance are evident at
medium concentrations. Results are not driven by high concentrations
of PM 2.5. Table 5 shows the estimates for a restricted sample with PM
2.5 less than 50 µg/m3 (Column(1)); and less than 75 µg/m3 (Column
(2)). Estimated coefficients are almost unchanged.

1.6 robustness

As noted in Section 1.1, races on mid and long distances can require
a degree of strategy if incentives nudge competitors to run for the
win, but not for the timing. In such conditions, athletes may decide
to maintain an artificially slow pace throughout the race and bet on
their abilities to win a late-race acceleration. This requires runners to
carefully evaluate their ability to maintain an optimal pace and the
ability to outperform competitors in a final sprint. It is possible that
inhalation of PM 2.5 might disrupt the necessary mental processes
and reduce performance in these races.

Strategic running inherently reduces performance as measured in
seconds. Estimates of the impact of PM 2.5 might be biased away
from zero if strategic running is more common on polluted days; for
instance, if important championships are held in large and polluted
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Table 4: Heterogeneous effects by gender and ability.

Gender High ability

(1) (2) (3) (4)
Std result Std result Std resultStd result

PM 2.5 -0.0011
∗∗∗-0.0011

∗∗∗ -0.0009
∗∗ -0.0008

∗∗

(0.0004) (0.0004) (0.0004) (0.0004)
Female × PM 2.5 0.0002 0.0004

(0.0004) (0.0004)
Ozone -0.0002 -0.0002

(0.0001) (0.0001)
PM 2.5 × High ability -0.0016

∗∗∗ -0.0015
∗∗

(0.0006) (0.0006)
Individual FE Yes Yes Yes Yes
Time Yes Yes Yes Yes
Weather Yes Yes Yes Yes
Stadium, Team Yes Yes Yes Yes

Observations 553171 507718 553171 507718

Note: The table shows the effects of contemporaneous PM 2.5 on physical
performance, measured as track and field competitions results. The unit of
analysis is the competition result of an individual. The dependent variable is
standardized competition result, defined as results minus the average result
of a group defined by age, gender, and event (e.g., 17-old, female, long jump),
divided by the standard deviation of results of the same group. High ability
is an indicator for athletes that perform in the top decile at least 50% of the
time. Time indicates year, week, and day-of-the-week fixed effects. Weather
includes wind assist, as well as fixed effects for 2

◦ C bins of maximum daily
temperature and their interaction with wind, relative humidity, and binned
precipitation. Stadium, Team includes stadium fixed effects, team fixed effects,
and their interactions. Standard errors are clustered at the stadium-date level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

cities. While such a scenario is plausible, the amount of bias should
be limited once stadium and time fixed effects are included in the
regression.

To address the remaining doubts, and to ensure results do not pick
up a cognitive effect, I estimate the main specifications excluding all
race competitions of distance over 400 meters and report results in
Table 6. Table 12 in Appendix further addresses strategic behavior in
multi-stage competitions including qualifiers. Results are unaltered,
confirming that strategic races do not drive the observed impacts of
PM 2.5.

Individuals may avoid competing in locations with high pollution
levels if they fear their health is at risk (Graff Zivin and Neidell, 2013).
Although unlikely given the low concentrations during spring and
summer, they might choose whether and where to compete depending
on factors, such as weather conditions, that correlate with pollution.
The inclusion of individual fixed effects assures that the identifying
variation does not come from the selection of less performing athletes
into high pollution days. Nonetheless, I test whether concentrations
of PM 2.5 predict participation in competitions. Table 7 reports the
results of a regression of the log number of participants in a given
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Table 5: The effect of air pollution on performance: excluding high concen-
trations.

PM 2.5 < 50 PM 2.5 < 75

(1) (2)
Std result Std result

PM 2.5 -0.0008
∗∗ -0.0010

∗∗

(0.0004) (0.0004)
Ozone -0.0002 -0.0002

(0.0001) (0.0001)
Individual FE Yes Yes
Time Yes Yes
Weather Yes Yes
Stadium, Team Yes Yes
Observations 505347 507508

Note: The table shows the effects of contemporaneous PM 2.5 on physical
performance, measured as track and field competitions results. The unit of
analysis is the competition result of an individual. The dependent variable is
standardized competition result, defined as results minus the average result
of a group defined by age, gender, and event (e.g., 17-old, female, long jump),
divided by the standard deviation of results of the same group. Column
(1) reports results after excluding events with PM 2.5 greater or equal to
50 µg/m3. Column (2) reports results after excluding events with PM 2.5
greater or equal to 75 µg/m3. Time indicates year, week, and day-of-the-
week fixed effects. Weather includes wind assist, as well as fixed effects for
2
◦ C bins of maximum daily temperature and their interaction with wind,

relative humidity, and binned precipitation. Stadium, Team includes stadium
fixed effects, team fixed effects, and their interactions. Standard errors are
clustered at the stadium-date level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Figure 4: Nonlinear effects of PM 2.5 on performance. Panel a and b show
the predicted performance estimated with a restriced cubic spline
with three and four knots, respectively. Knot locations are based
on Harrell’s (2001) recommended percentiles. Panel c, d, e, and f
report the marginal effects of PM 2.5 on performance for difference
specifications: quadratic (c), by sample half (d), tercile (e), and
quartile (f). Histograms at the bottom report the distribution of
PM 2.5 in the sample period. The few (0.05%) observations larger
than 50 µg/m3 have been excluded from the graphs for clarity.
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stadium-date on PM 2.5, progressively adjusting for stadium, time of
the year, and weather. If anything, on days with higher pollution, more
athletes take part to competitions (Column (1)). However, once the
invariable characteristics of stadiums are accounted for, neither PM
2.5 nor ozone predict participation to contests (Columns (2), (3) and
(4)).

Finally, to further assess the robustness of results I perform a placebo
test replacing contemporaneous concentrations of PM 2.5 and ozone
with those observed in the same city one year later. Future concentra-
tions do not predict competitions results (Table 8). This is reassuring
that previous results are not driven by unmodeled seasonality pat-
terns.

Table 6: Excluding events where strategic behavior is possible.

(1) (2)
Std result Std result

PM 2.5 -0.0010
∗∗∗ -0.0009

∗∗

(0.0004) (0.0004)
Ozone -0.0002

(0.0001)
Individual FE Yes Yes
Time Yes Yes
Weather Yes Yes
Stadium, Team Yes Yes
Observations 468162 428623

Note: The table shows the effects of contemporaneous PM 2.5 on physical
performance, measured as track and field competitions results. The unit of
analysis is the competition result of an individual. The dependent variable is
standardized competition result, defined as results minus the average result
of a group defined by age, gender, and event (e.g., 17-old, female, long jump),
divided by the standard deviation of results of the same group. The sample
excludes all race competitions of distance over 400 meters. PM 2.5 and ozone
are expressed in µg/m3. Time dummies include year, week, and day-of-the-
week fixed effects. Weather includes wind assist, as well as fixed effects for
2
◦ C bins of maximum daily temperature and their interaction with wind,

relative humidity, and binned precipitation. Stadium, Team includes stadium
fixed effects, team fixed effects, and their interactions.
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Table 7: Testing for presence of avoidance behavior.

(1) (2) (3) (4)
Log(Partecipants) Log(Partecipants) Log(Partecipants) Log(Partecipants)

PM 2.5 0.0042
∗ -0.0012 0.0037 0.0008

(0.0026) (0.0024) (0.0024) (0.0029)
Ozone 0.0048

∗∗∗
0.0023

∗∗∗
0.0004 -0.0006

(0.0008) (0.0008) (0.0009) (0.0016)
Time No No Yes Yes
Weather No No No Yes
Stadium No Yes Yes Yes
Observations 3246 3246 3246 2926

Note. The table tests whether concentrations of PM 2.5 and ozone predict
participation to competitions. The dependent variable is the log-number of
participants to competitions in a given stadium-date. Time indicates year,
week, and day-of-the-week fixed effects. Weather includes wind assist, as
well as fixed effects for 2

◦ C bins of maximum daily temperature and their
interaction with wind, relative humidity, and binned precipitation. Stadium
includes stadium fixed effects. Standard errors are clustered at the stadium-
date level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 8: The impact of PM 2.5 on physical performance. Placebo test with
future air pollution measures.

(1) (2)
Std result Std result

PM 2.5, 1-yr lead -0.0005 -0.0006

(0.0004) (0.0004)
O3, 1-yr lead 0.0002

(0.0001)
Individual FE Yes Yes
Time Yes Yes
Weather Yes Yes
Stadium, Team Yes Yes
Observations 469297 430911

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is standardized competition result, which
is the competition results minus the average result of a group defined by
age, gender, and event, and dividing by the standard deviation of results
of the same group (e.g., 17-old, male, long jump). PM 2.5, 1-yr lead and O3,
1-yr lead are the concentrations of PM 2.5 and ozone observed one year later.
PM 2.5 and ozone are expressed in µg/m3. Time dummies include year,
week, and day-of-the-week fixed effects. Weather includes wind assist, as
well as fixed effects for 2

◦ C bins of maximum daily temperature and their
interaction with wind, relative humidity, and binned precipitation. Stadium,
Team includes stadium fixed effects, team fixed effects, and their interactions.
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1.7 conclusions

A body of studies has assessed the effect on worker’s productivity
of environmental stressors such as pollution and temperature. To
overcome limits to portability of results, a growing number of works
studies the impacts on standardized tasks as it allows comparison of
outcomes between individuals with the same assignment. However,
generalization does not always follow from standardization, as the
mechanisms at work often remain fuzzy. Moreover, most works focus
on the effects on cognition and the evidence on the productivity effects
through physical channels remains limited.

This paper offers new evidence on the impacts of PM 2.5 leveraging
on a large dataset of track and field competitions, a set of highly
standardized and primarily physical activities. The simplicity of
the tasks involved - running, jumping, throwing - and their well-
understood physiology make extension to other physical activities
more transparent. The richness of the data allows for assessing the
link between short-term exposure to PM 2.5 and performance, and
then to explore one particular driver of the effects: the duration of
continuous effort and, implicitly, the reliance on stamina.

I find that an increase in PM 2.5 of 10 µg/m3 reduces performance
by 1% of a standard deviation after including a battery of fixed ef-
fects, including individual fixed effects and a flexible modeling of
weather. The impact of PM 2.5 on performance grows as the duration
of competitions - and the dependence on the pulmonary system -
increase. The results suggest that jobs requiring exertion of muscle
force continuously over time incur, under the same conditions, greater
productivity losses than jobs requiring short burst of intense exercise.
While track and field competitions differ from most physical work
in intensity and participants, the analysis explores heterogeneity that
might extend to common manual jobs. The findings highlight poten-
tially unequal costs of air pollution across the hundreds of millions
of workers worldwide employed physical labor, adding to current
concerns over distributional consequences of environmental stressors
(Hsiang, Oliva, and Walker, 2019).
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a appendix

a.1 Figures

Figure 5: Within-month distribution of ozone.

Figure 6: Location of pollution monitors in 2013. The monitor network is
dense in the more populated and polluted North.
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Figure 8: The impact of PM 2.5 on physical performance. Comparison with
the effect of temperature. Reference temperature bin is [24-26) de-
grees Celsius. The dependent variable is standardized competition
result, which is the competition results minus the average result
of a group defined by age, gender, and event, and dividing by the
standard deviation of results of the same group (e.g., 17-old, male,
long jump). The regression includes fixed effects for year, week,
and day-of-the-week; stadium fixed effects, team fixed effects, and
their interactions. Standard errors are clustered at the stadium-date
level.

Figure 7: Share of observations by gender and type of event: races (sprints,
hurdles, mid and long distance), jumps and throws.
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Table 11: Decomposition of variance of PM 2.5 and performance.

Standard Deviation
PM 2.5 Standardized result

Overall 8.36 0.98

Within individual 7.05 0.62

Between individuals 5.65 0.83

Within stadium 7.43 0.97

Between stadiums 4.81 0.25

Within individual-stadium 5.50 0.52

Note: The panel is unbalanced. Standardized competition result is defined
as competition results minus the average result of a group defined by age,
gender, and event (e.g., 17-old, female, long jump), divided by the standard
deviation of results of the same group.

Table 12: The impact of PM 2.5 on physical performance. Excluding events
where strategic behavior is possible. Races over distances greater
than 400 meters are excluded and for each athlete only the best
result in a given day in a given event is included. For instance,
qualifying rounds with poorer results than finals are excluded.

(1) (2)
Std result Std result

PM 2.5 -0.0010
∗∗∗ -0.0009

∗∗

(0.0004) (0.0004)
Ozone -0.0002

(0.0001)
Individual FE Yes Yes
Time Yes Yes
Weather Yes Yes
Stadium, Team Yes Yes
Observations 463175 423859

Note: The table shows the effects of contemporaneous PM 2.5 on physical
performance, measured as track and field competitions results. The unit of
analysis is the competition result of an individual. The dependent variable is
standardized competition result, defined as results minus the average result
of a group defined by age, gender, and event (e.g., 17-old, female, long jump),
divided by the standard deviation of results of the same group. Races over
distances greater than 400 meters are excluded and for each athlete only the
best result in a given day in a given event is included. PM 2.5 and ozone are
expressed in µg/m3. Time dummies include year, week, and day-of-the-week
fixed effects. Weather includes wind assist, as well as fixed effects for 2

◦ C
bins of maximum daily temperature and their interaction with wind, relative
humidity, and binned precipitation. Stadium, Team includes stadium fixed
effects, team fixed effects, and their interactions.
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a.3 Tasks vs occupations

Trunk Strength

Packers

Near Vision

Laborers

Static Strength

Figure 9: Example of jobs (circles) requiring an overlapping set of abilities
(squares).

Suppose that we can approximate the productivity of J and Q with
linear functions: PJ = λ1A(e) + λ2B(e) and PQ = λ3B(e) + λ4C(e),
with e representing the level of the environmental stressor. An estimate
of the productivity effect of e on the output of J, ∂PJ

∂e = λ1
∂A
∂e + λ2

∂B
∂e

can provide little information on the productivity effect ∂PQ

∂e = λ3
∂B
∂e +

λ4∂C
∂e . However, suppose we can observe ∂B

∂e , the moderating effect
on B alone. We can say the effect is consequential for both J and Q to
the degrees λ2 and λ3 they rely on ability B.

Proxies for λ2 and λ3 can be The Occupational Information Network
(O*NET) database contains hundreds of standardized and job-specific
descriptors on nearly 1,000 jobs, covering the entire US economy. The
database, which is freely available to the public, is continually updated
with input from a wide range of workers in each occupation.
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abstract Evaluating the reduction in pollution caused by a sudden
change in emission is complicated by the confounding effect of weather
variations. We propose an approach based on machine learning to
build counterfactual scenarios that address the effect of weather and
apply it to the COVID-19 lockdown of Lombardy, Italy. We show
that the lockdown reduced background concentrations of PM2.5 by
3.84 µg/m3 (16%) and NO2 by 10.85 µg/m3 (33%). Improvement in
air quality saved at least 11% of the years of life lost and 19% of the
premature deaths attributable to COVID-19 in the region during the
same period. The analysis highlights the benefits of improving air
quality and the need for an integrated policy response addressing the
full diversity of emission sources.
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1 introduction

Exposure to airborne pollutants is detrimental to human health. Fine
particulate matter (PM2.5) increases mortality rates and hospitaliza-
tions due to respiratory and cardiovascular disease (Pope and Dockery,
2006; Ebenstein, Fan, et al., 2017; Deryugina et al., 2019). Additionally,
it leads to a decline in physical and cognitive productivity (Graff Zivin
and Neidell, 2012; Ebenstein, Lavy, and Roth, 2016; Xin Zhang, X.
Chen, and Xiaobo Zhang, 2018; J. He, H. Liu, and Salvo, 2019; Kahn
and P. Li, 2020). Similarly, exposure to nitrogen dioxide (NO2) leads
to an increase in hospital admissions and premature mortality (Mills
et al., 2015; Amini et al., 2019; Duan et al., 2019).

The design of effective pollution abatement policies requires a com-
prehensive understanding of the relationship between reductions of
emissions and concentrations. However, the processes of formation,
transport, and dispersion of pollutants are complex phenomena, intro-
ducing considerable uncertainty on the effect of policies on air quality.
Moreover, impact assessments need to address the confounding effect
of annual and daily weather variations, a significant driver of pollutant
concentrations.

This paper provides novel evidence on the change in concentrations
of PM 2.5 following a composite reduction in emissions across differ-
ent sources. Specifically, we exploit the dramatic decrease in Italy’s
mobility and economic activity in response to the COVID-19 outbreak
from late February to early May. We provide causal estimates of the
change in PM2.5 and NO2 over more than two months for Lombardy,
one of the most polluted regions among Organisation for Economic
Co-operation and Development countries, and one of the first areas
outside China that imposed a strict lockdown.

Using a machine-learning algorithm, we address the confounding
effect of weather and build a counterfactual scenario of the pollution
concentrations that would have occurred if the COVID-19 pandemic
had not broken out and no lockdown had been implemented. Finally,
we compute the years of life saved and the number of premature
deaths avoided by the improvement in air quality. We compare these
numbers against the years of life lost and premature deaths due to
COVID-19 in the region over the same period.

Ex-post studies can provide valuable estimates of the sensitivity of
concentrations to emissions. However, a host of confounding factors
can seriously hinder policy evaluation. In particular, the concentration
of airborne pollutants is highly dependent on atmospheric conditions.
Formation, transport, dispersion, and even emission of pollutants are
directly or indirectly affected by the weather (Kroll et al., 2020). For
instance, severe haze events in Beijing follow periodic cycles governed
by meteorological conditions, especially wind patterns (Guo et al.,
2014). Unless the confounding impact of weather is accounted for,
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the estimated change in concentrations following intervention will be
biased.

A common approach to impact evaluation of pollution control
policies is comparing areas that were affected by a policy and areas
that were not (e.g., G. He, Pan, and Tanaka, 2020 and Cole, Elliott, and
B. Liu, 2020 for the case of COVID-19 lockdowns). However, even
when differences in weather have been accounted for, unaffected and
comparable areas may not always exist. For the problem at hand,
a precise separation between affected and unaffected regions is not
possible, considering the ubiquitous adoption of measures to control
the spreading of COVID-19.

We turn the complex correlation of weather and pollution to our
favor, predicting concentrations as a function of weather variables
and season with machine learning. We follow a simple strategy,
similar to Petetin et al., 2020, that does not require the availability of
comparable but unaffected regions. For each air pollution monitoring
station in Lombardy, we train an extreme gradient boosting regressor
(Friedman, 2001), a tree-based machine learning algorithm, over daily
concentrations from 2012 to 2019 and predict concentrations for the
first four months of 2020. We show in Supplementary information
that this approach is more reliable than linear regression models.
To account for any constant error in our prediction, including inter-
annual trends (Silver et al., 2020), we adopt a difference-in-differences
strategy. We identify the average impact of the lockdown on air
pollution concentrations as the difference between the prediction error
before and during the lockdown.

We find that, despite the unprecedented halt in mobility and eco-
nomic activity, the concentrations of major pollutants only partially
decreased as a consequence of the lockdown. Background concentra-
tions of PM2.5 and NO2 decreased by 3.84 µg/m3 (16%) and 10.85

µg/m3 (33%), respectively. Nonetheless, the improvement in air qual-
ity saved at least 11% of the years of life lost and 19% of the premature
deaths attributable to COVID-19 in the region during the same period.

This paper contributes to several active strands of literature in air
pollution research. First, it speaks to works on the assessment of
pollution control policies, and in particular, to the growing corpus
of research employing machine learning and fine-grained data. The
paper illustrates an innovative procedure to quantify the implications
of a change in emissions on outdoor concentrations of pollutants, iso-
lating the effect of weather variability. While existing studies applying
a similar approach restrict the analysis to no more than a few days,
we show the conditions under which the procedure can be applied to
longer time windows, the length of weeks or months. We illustrate
the approach through a specific event - the lockdown of Lombardy, in
Northern Italy - but it can be generalized wherever spatially and tem-
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porally detailed data on air pollution concentrations and atmospheric
conditions are available.

Second, this paper is relevant to pollution control policies in the
domain of study. Lombardy is a high-income, densely populated
region, home to approximately 10 million people, and one of the
most polluted in OECD countries. The European Commission has
repeatedly referred Italy to the Court of Justice of the European Union
over persistently high levels of NO2 and PM10, mainly in Lombardy
and the rest of the Po Valley (European Commission v. Italian Republic,
2012; European Commission v. Italian Republic, 2019; European
Commission v. Italian Republic, 2020). This study sheds light on the
sectoral contributions to emissions of PM2.5 and NO2, offering tools
to regulators and policymakers.

Finally, our study relates to the literature on source apportionment
to different sectors, particularly agriculture, a topic of increasing
relevance (Lelieveld et al., 2015). During the study period, agricultural
production continued unaffected, and on average 11.6 µg/m3 (39%)
of PM10 in Milan, the largest city, were attributable to agriculture. We
acknowledge that missing sufficient data on 2020 sectoral emissions
and on the composition of PM2.5, source apportionment to different
sectors remains elusive. Were the data available, our machine learning
approach could be used to exactly estimate changes in the composition
of PM2.5.

2 sectoral emissions during lockdown

The timing and nature of the lockdown of Lombardy and Italy are
discussed in detail in the Supplementary information. We highlight
here two key moments. On February 21, 2020, the first outbreak of
COVID-19 in Italy was identified in the south of Lombardy. Within
24 hours, 11 municipalities in the region went under strict lockdown:
schools were closed, all non-essential economic activities had to stop,
and a stay-at-home order was in place. Teaching activities in the rest
of Lombardy also were suspended. On March 8, authorities extended
the lockdown to the rest of Lombardy; and to the rest of Italy on
the following day. Lockdown measures were kept in place almost
unaltered until May 4.

The progressive spreading of the virus in Northern Italy and the
tightening of containment measures have substantially reduced mobil-
ity and economic activity. As mobile phone data reveals, the movement
of individuals in Lombardy has followed a two-step response, follow-
ing the first outbreak of COVID-19 cases in lower Lombardy (February
21) and the lockdown of the entire country (March 9) (Figure 10a).
By mid-March, mobility dropped by three-fourths, according to data
compiled by Google and Apple (Google, 2020; Apple, 2020). Under
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lockdown, all non-essential industrial production halted. As a con-
sequence, energy demand in Northern Italy steadily decreased since
March 9, as businesses shut down, bottoming to 50% of pre-lockdown
levels after two weeks (Figure 10b).

However, not all major sources of emissions, especially those re-
leasing precursors of PM2.5, have been affected by restrictions. The
lockdown forced most people to home isolation; it is sensible to hy-
pothesize that emissions from residential buildings increased as a
consequence. On the other hand, emissions from non-residential
buildings might have decreased. Although data to confirm this is
lacking, it is plausible that emissions from heating systems have not
been affected substantially.

During the transition between winter and spring, agriculture be-
comes an important source of secondary PM2.5 in Lombardy (IN-
EMAR, 2017). The dispersal of animal liquids on open fields is a
common (though regulated) practice that releases ammonia in the
atmosphere, a precursor to secondary PM2.5. Public authorities have
not restricted agricultural activities during lockdown in the interest of
securing food supplies. These practices have continued virtually un-
changed compared to previous years (personal exchange with public
officials at the regional office for agriculture).

The agricultural sector is responsible for almost all emissions of
ammonia (NH3) in the region (INEMAR, 2017), a precursor to particu-
late matter as it combines into ammonium nitrates and ammonium
sulfates. Data on the decomposition of background PM10 in Milan
shows that ammonium nitrates and ammonium sulfates accounted for
almost 40% of PM10 concentrations during the lockdown (see Figure
13 in Supplementary information). This corroborates the evidence that
restrictive measures did not meaningfully alter agricultural emissions.
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Figure 10: Proxies of sectoral emissions. a, Mobility indices for Milan
Lombardy based on mobile phone data. Indices equal 100 on
February 23. Source: Google, 2020; Apple, 2020. b, Total load
of energy demand in Northern Italy in MW, 2019 vs 2010. The
time series of 2019 has been shifted to match the day of the week.
Source: TERNA, 2020.

3 methods

3.1 Machine learning

To identify the causal effect of the lockdown on concentrations with-
out directly observing emissions, we build a synthetic counterfactual.
We train a machine learning algorithm that can reproduce pollution
concentrations on a business-as-usual scenario, and then predict con-
centrations during the lockdown. The difference between observed
concentrations and the counterfactual, or prediction error, is the effect
of the intervention. To account for potential systemic bias in the coun-
terfactual, we adopt a difference-in-differences strategy. We identify
the average impact of the lockdown on concentrations as the difference
between the average prediction error before and during the lockdown.
This approach does not require identifying comparable regions whose
concentrations follow a business-as-usual trend.

We first assemble a dataset of air pollution, atmospheric conditions,
and calendar variables for the period 2012 to 2020 for the Italian region
of Lombardy. Pollution concentrations are measured at 83 monitoring
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stations. Data on daily minimum and maximum temperature, aver-
age wind speed and wind direction, average relative humidity, daily
cumulative precipitation, and atmospheric soundings come from 227

weather stations.
For every monitoring station, we build the counterfactual using an

extreme gradient boosting regressor, a tree-based model (Friedman,
2001).1 Next, monitor by monitor, we train the algorithm on data from
2012 through 2019 and predict concentrations of PM2.5 and NO2 in
2020. We use the pre-lockdown period from January 1 to February 22,
which was not included in the training set, to assess the validity of the
counterfactual.

As our ultimate goal is a reliable prediction of pollutant concen-
trations from January through early May 2020, cross-validation is
performed over four folds, each one consisting of the months from
January to April for 2016, 2017, 2018, and 2019. The more common
cross-validation on random subsamples, or folds, gives equal weight to
all seasons. However, with such validation strategy it cannot be ruled
out that an algorithm make good average predictions, while over-
predicting in one season and under-predicting in the opposite one.
Suppose, for instance, that the predictions of a learner are positively
biased in spring, negatively biased in fall, and unbiased in winter and
summer. In this case, testing predictions on the pre-lockdown period
(in wintertime) does not give correct estimates of the bias during the
lockdown (in springtime). For this reason, we perform cross-validation
over the months for which we want predictions to be reliable. Model
parameters are selected to maximize the cross-validated RMSE.

The identification strategy relies on two assumptions. First, input
variables should not be themselves affected by the intervention; other-
wise, estimated effects will be biased towards zero. To this end, we
exploit the sensitivity of concentrations to meteorological conditions
and build the counterfactual as a function of weather and season.
While emissions are affected by weather (e.g., lower emissions from
heating systems on warmer days), our identification assumption is
not violated as the weather is not affected by emissions. On the other
hand, the algorithm implicitly learns the patterns of emissions as the
weather varies and seasons pass.

Second, emissions that would have materialized absent the lock-
down, and once weather has been accounted for, should be equal
to emissions in the training period. One might be concerned that
differences in technology (such as upgrading of the vehicle fleet) or
economic activity between the training and prediction sample violate
this assumption (Silver et al., 2020). We address this concern adopting
a difference-in-differences strategy that excludes any constant predic-
tion bias from the estimated effects of the lockdown. As long as the
variation of observed values around the true counterfactual mean is

1 We use the python package xgboost (T. Chen and Guestrin, 2016).
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well reproduced, estimates will be valid. Furthermore, the learner is
cross-validated on data from 2016 through 2019; thus, recent years are
given more weight.

We estimate the average effect of the lockdown with the following
equation:

yit − ŷit = α+βLockdownt + ϵit (3)

where yit is concentration measured at monitor i on day t, ŷit is
the predicted value, and Lockdown is a dummy equal to 1 during
the lockdown and 0 prior to it. α captures any time-invariant bias
of the predictor; β is the parameter of interest; and ϵit is a random
term. The preferred specification then distinguishes treatment effects
by type of monitoring station.2 Since concentrations are consequential
to the extent that they reflect exposure, we weight observations by
population within 20 kilometers from monitors.3 We leave estimates
of unweighted regressions, which yield qualitatively similar results,
to the Supplementary information. To our knowledge, there is little
guidance in the literature on how to estimate standard errors in this
context properly. Thus, where reasonable, we cluster standard errors
by monitor; where the number of clusters is small, we use robust
heteroskedasticity-standard errors.

2 Namely background, industrial, and traffic monitoring stations.
3 Territory within 20 kilometers of two or more monitors is assigned to the closest

monitor. The construction of population weights is described in more detail in
Supplementary information.
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3.2 Data sources

We assemble a dataset of air pollution, atmospheric conditions and
calendar variables for the period 2012 to 2020 for the Italian region of
Lombardy. The region is the home to about 10 million people and is
the first contributor to national GDP by size. Its natural geography
is conducive to low winds and stable air masses throughout the cold
season. Mountain ranges to the North, West and South effectively
block transboundary air streams extending wintertime thermal inver-
sions and aggravating pollution events. For exceeding recommended
air quality thresholds, Italy has been fined and subject to infringe-
ment procedures by the European Commission. We describe the data
sources and pollution trends in Lombardy.

Air pollution

Data for air pollution is collected, checked, and published by ARPA
Lombardia, the regional environmental agency.4 We obtain readings for
NO2 and total PM2.5 for background, traffic, and industrial stations
as available. Hourly readings are averaged to daily readings. We
exclude all monitoring stations that are not functioning during the
lockdown or have been set up after 2015. Background stations account
for about 60% of pollution monitors, traffic stations for about 30%,
and the remaining 10% is located in industrial areas.

Average yearly concentrations of PM2.5 in Milan, the region’s capital,
are systematically above the safety levels established by the WHO (10

µg/m3); from December to the end of February, daily concentrations
average above 40 µg/m3. Average levels of NO2 during the period
are also well above WHO safety standards.

Weather data

Data on weather conditions at weather stations throughout the region
are also elaborated and made available by ARPA Lombardia. We retrieve
the daily minimum and maximum temperature; average wind speed
and wind direction; average relative humidity; and daily cumulative
precipitation. We further include a host of atmospheric sounding
indices measured at Milano Linate airport and made available by
the University of Wyoming, namely Showalter index, Lifted index,
SWEAT index, K index, and Cross Totals, and Vertical Totals indices.
All atmospheric variables enter as predictors in the form of contempo-
raneous and lagged values. Although monitor data and atmospheric
soundings have gone through quality checks at the source, we win-
sorize all atmospheric predictors at 1 and 99 percentiles to bound the
influence of extreme values.

4 Both air pollution and weather data are publicly available at https://www.dati.
lombardia.it/stories/s/auv9-c2sj.

https://www.dati.lombardia.it/stories/s/auv9-c2sj
https://www.dati.lombardia.it/stories/s/auv9-c2sj


50 covid-19 lockdown and air pollution

Additional predictors

The ratio of PM2.5 to PM10 in Lombardy is typically altered in pres-
ence of pollution transported from long distances. For instance, a mass
of dust from the Caspian Sea reached Northern Italy in late March,
substantially altering the ratio. We assume the PM2.5 to PM10 ratio
is independent of the lockdown and include it among predictors as
the concentration of PM2.5 is affected by such shocks. Additional pre-
dictors are calendar variables to capture trends over time and seasons.
We include year, month, week of the year, day of the month, day of the
week in the form of continuous variables as well as dummy variables.
We further include sine functions of time to mimic seasonality.

Population weights

Population weights for monitoring stations reflect the population
within 20 kilometers of monitors (Figure 3 in Supplementary infor-
mation). Population data on a 1 km by 1 km grid comes from the
Italian National Statistical Office (ISTAT).5 Grid cells within less than
20 kilometers from two or more monitors are assigned to the closest
one.

3.3 Health impact assessment

To compute the number of avoided deaths and years of life saved by
the reduction in PM2.5, we follow Fowlie, Rubin, and Walker, 2019

and take all-cause mortality relative risk (RR) ratios for PM2.5 from
two influential studies, Krewski et al., 2009 and Lepeule et al., 2012. In
addition, we use the RR ratio recommended by the WHO (Henschel,
Chan, Organization, et al., 2013) and adopted by the European Envi-
ronment Agency (European Environment Agency, 2019). For NO2,
we only use the WHO recommendations. The calculation of avoided
deaths and years of life saved from concentration-response functions
is described in Supplementary Information A.1.

The more conservative estimates are based on Krewski et al., 2009,
who report an hazard ratio 1.056 for an increase of 10 µg/m3 of PM2.5.
Lepeule et al., 2012 estimate instead a larger hazard ratio of 1.14 for
the same change in concentrations. The WHO recommends estimating
the long-term impact of exposure to PM2.5 in adult populations using
an RR of 1.062 for 10 µg/m3; it recommends an RR of 1.055 for 10

µg/m3 of NO2 above 20 µg/m3 in adult populations.

5 The data is available at https://www.istat.it/it/files//2015/04/GEOSTAT_grid_
POP_1K_IT_2011-22-10-2018.zip. Last accessed on July 23, 2020.

https://www.istat.it/it/files//2015/04/GEOSTAT_grid_POP_1K_IT_2011-22-10-2018.zip
https://www.istat.it/it/files//2015/04/GEOSTAT_grid_POP_1K_IT_2011-22-10-2018.zip
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4 results and discussion

4.1 Accuracy of predictions

To assess the accuracy of predictions, we test the counterfactual against
observed values during the pre-lockdown period from January 1 to
February 22, which has not been used for training. Table 13 reports
mean values of Pearson’s correlation coefficient (Corr), mean bias (MB),
normalized mean bias (nMB), and root mean square error (RMSE).
As we ultimately compute the difference-in-differences between ob-
served values and the counterfactual, we also report the centered
RMSE (cRMSE) and the normalized centered RMSE (ncRMSE).6 For
completeness, the table also includes statistics for the training set.

The correlation between observed and predicted values in the pre-
lockdown period is 0.87 and 0.88 for PM2.5 and NO2, respectively. The
counterfactual overestimates observed values by 1.34 µg/m3 (PM2.5)
and 4.7 µg/m3 (NO2), thus motivating the use of a difference-in-
differences strategy. The centered RMSE is 30% (PM2.5) and 27%
(NO2) of mean observed concentrations. A graphical summary of
model predictive performance, Taylor diagrams, can be found in
Supplementary information.

In air pollution forecasting, machine learning techniques are typi-
cally used to predict concentrations an hour to few days ahead, and
studies that can be used as benchmark are scarce. To the best of our
knowledge, Petetin et al., 2020 is the only work whose methodology
and length of forecast are comparable. They use machine learning
to build a counterfactual for NO2 concentrations in Spain during the
COVID-19 lockdown. They report a normalized mean bias of 2% to
7%, depending on the type of station, a correlation coefficient of 0.71

to 0.75, and normalized RMSE of 28% to 32%. Compared to their
study, our algorithm better mimics variation around the mean, than
the mean itself. However, in our estimation strategy, any constant bias
is captured by the constant in Equation 3.

6 The centered RMSE is computed as
[
1/N

∑
(ŷi − ¯̂y− yi + ȳ)2

]1/2.
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Table 13: Accuracy of predictions, average values across monitors

Pollutant Dataset Corr MB nMB RMSE cRMSE ncRMSE

NO2 Train 1 .004 0 .276 .275 .008

NO2 Test .875 -4.672 -.159 9.961 8.088 .261

PM2.5 Train .999 0 0 .443 .443 .015

PM2.5 Test .871 -1.335 -.049 8.764 8.476 .295

Notes: Corr: Pearson’s correlation coefficient. MB: Mean bias, where negative values
indicate observed values below predicted values. nMB: Normalized mean bias.
RMSE: Root mean squared error. nRMSE: Normalized RMSE. cRMSE: Centered
RMSE. ncRMSE: Normalized centered RMSE. Mean bias, RMSE and centered RMSE
are expressed in µg/m3. Mean bias, RMSE and centered RMSE are normalized
dividing by mean observed concentrations. The centered RMSE is computed as[
1/N

∑
(ŷi − ¯̂y− yi + ȳ)2

]1/2.
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4.2 Effect of the lockdown on air pollution

Following the lockdown, air quality in Lombardy improved only
partially. Figure 11 plots the population-weighted observed and coun-
terfactual values for PM2.5 (Figure 11a) and NO2 (Figure 11b). NO2

at background stations reached levels below the yearly limit set by the
WHO Air Quality Guidelines. However, background concentrations
of PM2.5 still exceeded the daily limit of 25 µg/m3 every one in four
days.

The counterfactual well mimics observed values in the pre-lockdown
period, corroborating the validity of the statistical approach. In con-
trast, a gap between observed and counterfactual values is evident as
restrictions are tightened. We show in Supplementary information
that the method outperforms a linear regression.

Suggestive evidence of the effect of the lockdown on concentrations
of NO2, which in Lombardy largely originate from motor vehicles, is
visible from the week of February 25, consistent with the reduction in
mobility documented in Figure 10a. The effect on PM2.5 only appears
as non-essential economic activities are halted in Lombardy and the
rest of Italy, and is smaller in magnitude.
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Figure 11: Population-weighted average of observed and counterfactual
values. a, PM2.5. b, NO2. Population is measured within 20

kilometers of a monitoring station. Territory within less than 20

kilometers from two or more monitors is assigned to the closest
one.

The lockdown may have affected PM2.5 concentrations mainly
through two channels: the reduction of primary PM2.5 emissions,
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such as black and organic carbon, and reduction of precursors of sec-
ondary PM2.5. We remark that NO2 is a precursor of secondary PM2.5;
a reduction in NO2 may, therefore, lead to a decline in PM2.5. How-
ever, as data on PM2.5 composition is insufficient, we cannot quantify
the contribution of NO2 to the reductions in PM2.5 concentrations.7

Therefore we treat both pollutants independently.

We estimate a population-weighted version of Equation 3 in Meth-
ods and report results in Table 14. Results of unweighted regressions
are qualitatively similar and can be found in Supplementary infor-
mation. From February 22 to May 4, the lockdown has on average
reduced daily concentrations of PM2.5 and NO2 by 5.32 µg/m3 and
13.56 µg/m3. That is a reduction of 21.8% and 35.6%, respectively,
from the average levels that would have been observed had not the
epidemic broken out.

Next, our preferred specification distinguishes effects of the lock-
down by type of monitor. Background monitors are located where
concentrations are representative of the ambient exposure of the gen-
eral population; industrial monitors are located in the proximity of
industrial sites or industrial sources; traffic monitors are located near
a major road.

Population-weighted average background concentrations of PM2.5

decreased by 3.84 µg/m3 from 24.42 µg/m3 (Table 15).8 The reduction
was almost twice as large in monitored industrial sites and near major
roads. Background concentrations of NO2 dropped by 10.85 µg/m3

from 33.22 µg/m3, by 10.66 µg/m3 near monitored industrial sites
and by 15.85 µg/m3 more at major roads.

7 At the time of writing, data on composition of PM2.5 has not been released. Data on
composition of PM10 is available only for 3 monitoring station.

8 The very low number of monitors by type makes clustered standard errors inappro-
priate. We thus use robust standard errors.
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Table 14: Population-weighted regression

∆Observed,Counterfactual

(1) (2)
PM 2.5 NO2

Lockdown -5.32
∗∗∗ -13.56

∗∗∗

(1.08) (1.21)
Constant 0.73 2.59

(1.37) (1.67)

Average baseline concentration 24.39 38.14

Observations 3555 10084

Notes: Regression weighted by population within 20 kilometers of a monitoring
station. Territory within less than 20 kilometers from two or more monitors is
assigned to the closest one. The dependent variable is the difference between the
observed values and the counterfactual. Lockdown is a dummy variable equal to 0

from January 1, 2020 to February 22, and equal to 1 after February 22, 2020. Average
baseline concentration is the population-weighted average of counterfactual values
during the lockdown, less the constant in case the latter is statistically significant at
10%. Standard errors, in brackets, are clustered by monitor. * p<0.1, ** p<0.05, ***
p<0.01.
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Table 15: Heterogeneous effects by type of monitoring station

∆Observed,Counterfactual

PM 2.5 NO2

Background Industrial Traffic Background Industrial Traffic

Lockdown -3.84
∗∗∗ -7.39

∗∗∗ -7.28
∗∗∗ -10.85

∗∗∗ -10.66
∗∗∗ -15.85

∗∗∗

(0.97) (1.54) (1.20) (0.64) (0.96) (0.75)
Constant -1.26 5.18

∗∗∗
2.79

∗∗
0.21 7.29

∗∗∗
4.04

∗∗∗

(0.84) (1.37) (1.07) (0.49) (0.84) (0.63)

Average baseline concentration 24.42 27.99 27.77 33.22 31.93 46.67

Number of monitors 18 2 10 53 6 24

Observations 2117 244 1194 6483 731 2870

Notes: Regression weighted by population within 20 kilometers of a monitoring station. Territory within less than 20 kilometers from
two or more monitors is assigned to the closest one. The dependent variable is the difference between the observed values and the
counterfactual. Lockdown is a dummy variable equal to 0 from January 1, 2020 to February 22, and equal to 1 after February 22, 2020.
Average baseline concentration is the population-weighted average of counterfactual values during the lockdown, less the constant in
case the latter is statistically significant at 10%. Robust standard errors are in brackets. * p<0.1, ** p<0.05, *** p<0.01.
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4.3 Human health benefits

As the reduction in road transport and the slowing of economic activity
reduced toxic emissions, the burden of pollutants on human health
eased. For calculations, we use the estimated change in concentrations
at background stations. Avoided deaths and YLS should be considered
a lower-bound estimate of total health benefits avoided deaths.

The reduction in PM2.5 prevented 10.2 to 24.8 premature deaths per
100,000 individuals and saved 72.1 to 175.9 years of life per 100,000

individuals, depending on the concentration-response function (Table
16). The reduction in NO2 prevented 28.8 premature deaths and saved
203.7 years of life per 100,000 individuals. Given the high correlation
between concentrations of PM2.5 and NO2, the concentration-response
function of these pollutants are interdependent. It is recommended
that avoided deaths and YLS be not aggregated across pollutants, lest
incurring in partial double counting.

As a comparison, in Italy in 2016 for every 100,000 individuals,
there have been 96.6 premature deaths attributable to PM2.5 and 24.1
attributable to NO2, or 23.8 and 5.9 premature deaths in three months,
respectively (European Environment Agency, 2019). Since most of
the premature deaths happen in the more polluted North of Italy,
including Lombardy, the lockdown has temporarily reduced the cost
of pollution by a substantial amount.

We compare the results against the number of deaths and the years
of life lost (YLL) related to COVID-19 in Lombardy during the same
period, computed from patient-level data.9 In Lombardy, from Febru-
ary 22 to May 3 2020, every 100,000 people 155 died after testing
positive for COVID-19 and 1891 years of life have been directly lost
to the virus. Avoided deaths from the reduction in PM2.5 are 6.5% to
16% of COVID-19 deaths; YLS are 3.8% to 9.3% of YLL to COVID-19.
Avoided deaths from the reduction in NO2 are 18.6% of COVID-19

deaths; YLS are 10.8% of YLL to COVID-19.

9 Data on the individual COVID-19 patients has been shared by regional health officers
under an institutional agreement.
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Table 16: Avoided premature deaths and years of life saved per 100,000 in
Lombardy due to improved air quality during lockdown.

Pollutant Source of HR Hazard ratio Avoided deaths

Avoided deaths NO2 EEA/WHO 1.055 28.8
PM 2.5 EEA/WHO 1.062 11.3
PM 2.5 Krewski et al. (2009) 1.056 10.2
PM 2.5 Lepeule et al. (2012) 1.14 24.8

Years of life saved NO2 EEA/WHO 1.055 203.7
PM 2.5 EEA/WHO 1.062 79.7
PM 2.5 Krewski et al. (2009) 1.056 72.1
PM 2.5 Lepeule et al. (2012) 1.14 175.9

In Lombardy, from February 22 to May 3 2020, every 100,000 people 155 died after
testing positive for COVID-19 and 1891 years of life have been directly lost to the
virus. The hazard ratio is the ratio of two concentration-response functions, or
hazard rates, between a high and a low concentration differing by 10 µg/m3.
Avoided premature deaths are calculated using the population-weighted change in
concentrations at background stations.
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5 conclusions

The dramatic reduction in emissions of airborne pollutants that has
come with the response to COVID-19 provides a unique natural exper-
iment to assess the sensitivity of pollutants concentrations and health
to emissions. We estimate a substantial yet partial improvement in
air quality in Lombardy following the outbreak, and suggest that the
improvement originates primarily from the reduction of road trans-
port; and to a lesser degree from the reduction in industrial activity.
Important sources of emissions as heating systems and agriculture
have not been substantially affected by the outbreak.

The methodology used to build the counterfactual does not re-
quire identifying comparable but unaffected regions, but relies on
the assumption of emissions absent the lockdown following historical
variation around the mean. The approach is not limited to this case
study, but can be applied in a variety of settings due to the increasing
and reliable availability of pollution and weather data.

Finally, we are nowhere near suggesting the pandemic has been
beneficial for the affected communities, yet the health benefits from
improved air quality are noticeable. While global pandemics are
rare phenomena, exposure to unhealthy levels of toxic air pollutants
is the rule, including in affluent regions of the world such as the
one considered here. This paper has emphasized some of the health
benefits of cleaner air, but also highlighted the variety of emissions
sources and the need for a broader policy response to solve Europe’s
biggest environmental health risk.
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a.1 Years of life saved

Concentration-response functions are typically estimated with log-
linear regressions of mortality risk on pollutants of the form ln(y) =

α+βC, so that y = AeβC. The change in mortality risk from y ′ to y ′′

is

y ′ − y ′′ = A(eβC ′
− eβC ′′

)

= AeβC ′
(1− eβ(C ′′−C ′))

= y ′(1−
1

eβ(C ′−C ′′)
)

with A = eα. Here y ′ is the baseline mortality risk and eβ(C ′−C ′′) is
the RR. The β coefficient is not typically reported, but is easily found
as β = ln(RR)/10.

For each gender g and age group a above 30, we multiply the change
in mortality risk from the baseline by the number of individuals in
Lombardy of that gender and age group (Ng,a).10 This gives us the
number of avoided deaths for a year-long reduction in pollutants. We
then multiply this number by gender- and age-specific life expectancy
to obtain the YLS.

Avoided Deathsg,a = y ′
g,a · (1− 1

eβ(C ′−C ′′)
) ·Ng,a · 1

6

YLSg,a = Avoided Deathsg,a · Life Expectancyg,a

YLS =
∑
g

∑
a

YLSg,a

It should be noted that we are assuming that avoided deaths and
years of life saved by a two-month improvement in air quality are
equivalent to a sixth of the benefits of a year-long improvement. In
addition, we assume that the gains are linear in reductions of concen-
trations.11

Gender- and age-group specific baseline mortality risk, population
size and life expectancy come from mortality tables for Lombardy
compiled by the Italian National Statistical Office (ISTAT). Avoided
deaths and YLS are computed using the lockdown on pollution (C ′ −

C ′′) estimated at background stations.

10 The benefits from reductions in NO2 are set to zero for values below 20 µg/m3, as
recommended by Henschel, Chan, Organization, et al., 2013.

11 This is in line with Henschel, Chan, Organization, et al., 2013, who recommend a
linear concentrations-response function.
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a.2 Accuracy of linear regression for construction of counterfactu-
als

We show a linear regression model does not perform as well as the
machine learning algorithm used for the main results. For every mon-
itoring station, we regress daily concentrations on a vector of daily
weather summaries, namely daily cumulative precipitation, average
temperature, average wind speed and average wind direction, in 2012

through 2019 (Equation 4). We then use the estimated coefficients to
predict concentrations in 2020 before and throughout the lockdown
(Equation 5). Finally, we assess the accuracy of predictions during the
pre-lockdown period from January 1 to February 21, 2020. Precipi-
tation, temperature, wind speed and direction on day t at any given
pollution monitor are interpolated with inverse distance weight from
the three closest weather stations within 0.2 degrees from the monitor.

yt2012−2019
= α+ ˛ ′Weathert2012−2019

+ ϵt2012−2019
(4)

ŷt2020 = α̂+ ̨̂′Weathert2020 (5)

Observed and predicted population-weighted average concentra-
tions are displayed in Figure 12. While approximating pre-lockdown
values on average, the predictions fail to capture a non-negligible
portion of the variability. The validity of predictions based on linear
regressions is especially poor for PM2.5. The same conclusions can
be drawn examining average accuracy measures for linear regression
predictions in Table 17.

Table 17: Accuracy of liner regression predictions, average values across
monitors

Pollutant Dataset Corr MB nMB RMSE cRMSE ncRMSE

NO2 Train 0.71 0 0 9.7 9.7 0.33

NO2 Test 0.7 -5.09 -0.16 13.22 11.45 0.37

PM2.5 Train 0.63 0 0 12.21 12.21 0.53

PM2.5 Test 0.59 0.35 0.01 14.43 14.21 0.5

Notes: Corr: Pearson’s correlation coefficient. MB: Mean bias, where negative values
indicate observed values below predicted values. nMB: Normalized mean bias.
RMSE: Root mean squared error. nRMSE: Normalized RMSE. cRMSE: Centered
RMSE. ncRMSE: Normalized centered RMSE. Mean bias, RMSE and centered RMSE
are expressed in µg/m3. Mean bias, RMSE and centered RMSE are normalized
dividing by mean observed concentrations. The centered RMSE is computed as[
1/N

∑
(ŷi − ¯̂y− yi + ȳ)2

]1/2.
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Figure 12: Population-weighted average of observed and counterfactual
values built with linear regression models. a, PM2.5. b, NO2.
Population is measured within 20 kilometers of a monitoring
station. Territory within less than 20 kilometers from two or more
monitors is assigned to the closest one.
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a.3 Supplementary tables

Table 18: Pollution monitors by type.

Pollutant Type of monitor Number of
municipalities

Number of
monitors

NO2 Background 50 53

NO2 Industrial 6 6

NO2 Traffic 20 24

PM2.5 Background 18 18

PM2.5 Industrial 2 2

PM2.5 Traffic 10 10

Background stations measure pollutions concentrations that are representative of the
average exposure of the general population, or vegetation. Industrial stations are
located in close proximity to an industrial area or an industrial source. Traffic
stations are located in close proximity to a single major road.
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Table 19: Unweighted regression

∆Observed,Counterfactual

(1) (2)
PM 2.5 NO2

Lockdown -4.37
∗∗∗ -9.19

∗∗∗

(0.41) (0.65)
Constant 1.19

∗∗
0.73

(0.47) (0.53)

Average baseline concentration 25.58 38.14

Observations 3555 10084

Notes: Unweighted regression. The dependent variable is the difference between the
observed values and the counterfactual. Lockdown is a dummy variable equal to 0

from January 1, 2020 to February 22, and equal to 1 after February 22, 2020. Average
baseline concentration is the average of counterfactual values during the lockdown, less
the constant in case the latter is statistically significant at 10%. Standard errors, in
brackets, are clustered by monitor. * p<0.1, ** p<0.05, *** p<0.01.
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Table 20: Heterogeneous effects by type of monitoring station - unweighted regression

∆Observed,Counterfactual

PM 2.5 NO2

Background Industrial Traffic Background Industrial Traffic

Lockdown -3.70
∗∗∗ -7.63

∗∗∗ -4.92
∗∗∗ -7.53

∗∗∗ -7.50
∗∗∗ -13.39

∗∗∗

(0.39) (1.33) (0.53) (0.19) (0.58) (0.39)
Constant 0.79

∗
5.10

∗∗∗
1.11

∗ -0.05 2.89
∗∗∗

1.98
∗∗∗

(0.34) (1.20) (0.46) (0.15) (0.48) (0.31)

Average baseline concentration 25.21 27.91 26.09 33.22 27.53 44.61

Number of monitors 18 2 10 53 6 24

Observations 2117 244 1194 6483 731 2870

Notes: Unweighted regression. The dependent variable is the difference between the observed values and the counterfactual.
Lockdown is a dummy variable equal to 0 from January 1, 2020 to February 22, and equal to 1 after February 22, 2020. Average baseline
concentration is the average of counterfactual values during the lockdown, less the constant in case the latter is statistically significant
at 10%. Robust standard errors are in brackets. * p<0.1, ** p<0.05, *** p<0.01.
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a.4 Supplementary figures
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Figure 13: Composition of background PM10 in Milan, Lombardy. Source:
ARPA Lombardia.
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Figure 14: Location of pollution monitors and weather stations in Lombardy
over a 1 km by 1 km population grid.
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Figure 15: Taylor diagrams are a practical way to display different dimen-
sions of model predictive performance (Taylor, 2001) . Each circle
represents the prediction of a model, that is, in this case, a mon-
itoring station for the pre-lockdown period from January 1 to
February 22. Isocurves from the origin outward measure the stan-
dard deviation of a model’s predictions relative to the standard
deviation of the observed values. The azimut measures Pearson’s
correlation coefficient. The ideal model prediction has a relative
standard deviation of 1 and a correlation coefficient of 1, and is
marked by the red diamond. We do not show the RMSE, as is
practice in Taylor diagrams, because it is graphically incompatible
with the relative standard deviation.
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Figure 16: Each polygon circumscribes the territory nearest to a monitor and
within 20 kilometers from it. Color represents population in grid
cells of 1 km2.
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a.5 Lockdown of Lombardy

Italy has witnessed one of the first major outbreak of COVID-19

outside China. The virus has first been identified in two Chinese
tourists who had arrived at Milano Malpensa Airport and, on January
31st, tested positive for the virus when visiting Rome (ANSA, 2020a).
For the next three weeks, only a handful of cases had been identified
and all had a direct link with known hot-spots, such as a student
returning from vacation in Wuhan and a couple of tourists from
Taiwan (ANSA, 2020b; ANSA, 2020c).

However, on February 21st, the first non-imported cases and the
first death related to COVID-19 in the country were confirmed in
lower Lombardy. By the end of the day, 17 individuals had been tested
positive, 15 of which in Lodi and surroundings, in lower Lombardia,
and 2 in the neighboring region of Veneto. The largest hotspot had
been identified in the hospital of Codogno, where 5 members of the
medical staff and 3 patients had tested positive to COVID-19. On
the same day, the Minister of Health announced severely restrictive
measures on 11 municipalities and over 50 000 people. Until further
notice, schools and all public and sporting events were suspended;
non-essential production, commercial activities and public offices had
to close doors; self-isolation at home was mandated and enforced;
access to the municipalities was monitored by police and armed forces
(Presidente del Consiglio dei Ministri, 2020a; ANSA, 2020d; La Re-
pubblica, 2020; Guidelli, 2020) Also, self-isolation for two weeks was
mandatory for whoever in the country had had contacts with con-
firmed cases. Violations of lockdown areas and self-isolation could
be sanctioned with fines and up to a three months prison sentence
(Presidente della Repubblica, 2020; Ministro della Salute, 2020a).

Over the next two days, local governments all over the country
imposed restrictions of heterogeneous degrees, with strictest measures
in the regions of Lombardia and Veneto. In Lombardia, the regional
government suspended all teaching activities in schools and univer-
sities, prohibited public events, and suspended religious gatherings;
pubs had to close by 6 pm (Ministro della Salute, 2020b).

Local measures were soon followed by the intervention of the central
government. On February 25th, the Prime Minister signed a Law
Degree to expand and incorporate containment efforts in hotspot
regions of Northern Italy. The decree closed schools and universities
(originally until March 15th) and recommended remote working in
Emilia Romagna, Friuli Venezia Giulia, Lombardia, Veneto, Liguria,
and Piemonte (Presidente del Consiglio dei Ministri, 2020b).

A week later, on March 1st, the government extends previous
measures and prescribes non-restrictive ones over non-affected re-
gions(Presidente del Consiglio dei Ministri, 2020c); on March 4th, it
announces all schools and universities in the countries will close.
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By March 7th, 5883 cases had been confirmed in Italy and 233

COVID-19-related deaths recorded (Protezione Civile, 2020). Despite
containment measures, the growing number of confirmed cases and
deaths pressured the Italian government to impose stricter controls.
With a Law Decree on March 8th, Italy became the first country in
Europe to impose a lockdown over Lombardia and 14 provinces of the
northern and central regions of Piemonte, Emilia-Romagna, Veneto,
and Marche. The restrictive measures were soon extended to the rest
of the country on the following day. The decree imposed compulsory
social distancing and self-isolation at home and the halt of all non-
essential economic activities (Presidente del Consiglio dei Ministri,
2020d; Presidenza del Consiglio dei Ministri, 2020).

The list of sectors and activities deemed essential had been furthered
narrowed on March 23rd; most notably, construction works were
stopped, and all public offices had to close (Presidente del Consiglio
dei Ministri, 2020e). The lockdown then continued under virtually
unaltered conditions until May 3rd.

a.6 Averaging wind speed and direction

Consider two vectors s ′ = [s1, . . . , sh, . . . , s24] and d ′ = [d1, . . . ,dh, . . . ,d24]

containing hourly data on wind speed and direction, respectively.
Speed and direction at hour h are sh and dh. To calculate average
wind speed and average wind direction we:

1. Convert wind direction from degrees to radians
r = d · π/180

2. Calculate the average of East-West and North-South speed com-
ponents and invert sign.
s̄EW = − 1

24

∑
si · sin(ri)

s̄NS = − 1
24

∑
si · cos(ri)

3. Calculate average wind speed
S =

√
s̄EW

2
+ s̄EW

2

4. Calculate average wind direction
r̄ = arctan2

(
s̄NS, s̄EW

)
5. Convert radians to degrees

d̄ = r̄ · 180/π

D =


d̄+ 180 if d̄ < 180

d̄ if d̄ = 0

d̄− 180 if d̄ > 180.

D is the average wind direction, and S is the average wind speed.
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a.7 Effects on economic activity and morbidity

We report here an estimate of the theoretical gains in GDP and lost
workdays from air pollution-related illness due to the improvement in
air quality, but absent the pandemic.

To calculate the aggregated productivity gains, we employ the re-
sults of Dechezleprêtre, Rivers, and Stadler, 2019, who use thermal
inversions to identify the causal impact of air pollution on economic
activity. They estimate that a one µg/m3 increase in PM2.5 concen-
tration leads to a 0.8% decrease in regional annual GDP. Accordingly,
the average reduction of PM2.5 by 3.84 µg/m3 for two months cor-
responds, for simplicity ignoring the exponential growth process, to
3.84 · 0.8/6 = +0.512% in regional annual GDP.

We compute the number of lost workdays from air pollution-related
illnesses as in Vandyck et al., 2018. They assume a fixed ratio of 547

avoided lost workdays per avoided premature mortality. The multi-
plier was derived from the WHO-HRAPIE recommendations, based
on earlier work, and applied in the context of the EU Clean Air Pack-
age. Following this methodology, we calculate that 5579.4 to 13565.8
lost workdays have been avoided by reducing PM2.5 concentrations;
and 15753.6 by the decrease in NO2 concentrations.
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abstract It is well established that temperature variability affects
a range of outcomes relevant to human welfare, including health,
emotion and mood, and productivity across a number of economic
sectors. However, a critical and still unresolved empirical question is
whether temperature variation has a long-lasting effect on economic
productivity and, therefore, whether damages compound over time in
response to long-lived changes in temperature expected with climate
change. Several studies have identified a relationship between temper-
ature and GDP, but empirical evidence as to the persistence of these
effects is still weak. This paper presents a novel approach to isolate
the persistent component of temperature effects on output using lower
frequency temperature variation. The effects are heterogeneous across
countries but collectively, using three different GDP datasets, we find
evidence of persistent effects, implying temperature affects the deter-
minants of economic growth, not just economic productivity. This,
in turn, means that the aggregate effects of climate change on GDP
may be far larger and far more uncertain than currently represented
in integrated assessment models used to calculate the social cost of
carbon.
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1 introduction

A large body of evidence now exists showing a relationship between
temperature fluctuations and economic productivity (Burke, S. M.
Hsiang, and Miguel, 2015; Dell, Jones, and Olken, 2012; Kalkuhl
and Wenz, 2020; Carleton and S. M. Hsiang, 2016). Temperature has
been shown to influence output at global (Burke, S. M. Hsiang, and
Miguel, 2015; Dell, Jones, and Olken, 2012), national (Deryugina and
S. Hsiang, 2017; Schlenker and Roberts, 2009), and regional scales
(Kalkuhl and Wenz, 2020), affecting a wide range of sectors in both
high-income and low-income countries. The persistence of these
impacts has first-order implications for the magnitude of climate
change damages: if temperature fluctuations affect the determinants
of economic growth (e.g., depreciation of capital or the total factor
productivity growth rate), then they have a persistent impact on the
level of economic output. In this case, climate change damages are
cumulative and may be orders of magnitude larger than currently
represented in models used for the cost-benefit analysis of climate
change, which mostly assume non-persistent damages (for example,
when temperature variations affect the productivity of labor or capital)
with a few recent exceptions (Dietz and Stern, 2015; Gazzotti et al.,
2021; Glanemann, Willner, and Levermann, 2020; Hänsel et al., 2020;
Frances C. Moore and Diaz, 2015; Moyer et al., 2014; Ricke et al., 2018;
Estrada, Tol, and Gay-García, 2015).

Despite its importance for determining the aggregate costs of climate
change, evidence on the persistence of the impacts of temperature
shocks is sparse and contradictory (Piontek et al., 2021). Dell, Jones,
and Olken, 2012 show that persistent and non-persistent effects can
produce identical contemporaneous effects on the growth rate but
can be distinguished using lagged temperature effects. Using global
national accounts data, they fit a reduced-form model with lagged tem-
perature terms and find evidence that effects of temperature shocks
in poorer countries do not revert within ten years, implying large
negative effects of higher temperatures on economic growth, at least
in the medium-term. Burke et al. (Burke, S. M. Hsiang, and Miguel,
2015) use a similar dataset to find robust evidence for a non-linear, hill-
shaped relationship between contemporaneous temperature and GDP
growth. However, evidence for persistent impacts on the economy
is weaker since the sum of lagged effects has large standard errors
with confidence intervals that include both zero and very large nega-
tive effects. In a model-selection exercise based on cross-validation,
Newell et al (Newell, Prest, and Sexton, 2021) show that total climate
damages are highly sensitive to the question of persistence and to
the functional form of empirical models used to estimate effects, but
also find that out-of-sample cross-validation tests are insufficiently
powerful to disambiguate between alternate models of impact persis-
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tence. At a smaller spatial scale, Deryugina and S. Hsiang, 2017 found
evidence of persistent but declining effects during the first ten years
after a temperature shock in individual U.S. counties. Deryugina and
S. Hsiang, 2017, and Colacito, Hoffmann, and Phan, 2019 found that
increases in summer and fall temperature could have persistent effects
on the gross state product of U.S. states.

A major empirical challenge is that estimating the sum of lagged
effects, particularly for a non-linear function, can produce large stan-
dard errors and high uncertainty. For instance, in the quadratic
specification used by Burke et al, identifying cumulative effects over
ten years requires estimating and summing 20 regression coefficients
(Burke, S. M. Hsiang, and Miguel, 2015). The uncertainty around this
statistic depends on the variance and covariance of all 20 parameter
estimates. More recent empirical investigations of climate impacts on
economic growth have focused on resolving detail at the subnational
scale (Kalkuhl and Wenz, 2020; Colacito, Hoffmann, and Phan, 2019;
Damania, Desbureaux, and Zaveri, 2020), or on resolving impacts
on the production process (Letta and Tol, 2018). While they suggest
some persistence in temperature effects, the uncertainty around this
key question relevant to understanding the aggregate costs of climate
change remains largely unresolved.

2 methods

Here, we propose a statistical test to identify the presence of persistent
effects of temperature on output using lower-frequency temperature
variation. We first use a simulation exercise to demonstrate the power
of the test to discriminate between cases with and without persistent
effects of temperature. Second, we implement this test on individual
country-level temperature and economic growth time-series. The
test complements previous approaches that have used either lagged
temperatures or out-of-sample tests to attempt to resolve the question
of impact persistence but which, as described above, have mostly
produced ambiguous results.

The essence of the approach is that persistent and transient impacts
on economic output can be distinguished using temperature variation
occurring at different frequencies. Internal variability of the climate
system gives rise to oscillations at different timescales. This is an
intrinsic characteristic of non-linear dynamic systems like the Earth’s
climate (Lorenz, 1963). While some of these fluctuations, such as
El Nino Southern Oscillation with a period of 2 to 7 years, are well
understood (Imbers et al., 2013), spectral analysis of atmospheric time
series reveal fluctuations at all possible frequencies (Hasselmann, 1976;
Michael E. Mann, Byron A. Steinman, and Sonya K. Miller, 2020).
Figure 17 Panel A shows this variability in the US temperature time



80 the persistence of temperature effects on economic growth

Figure 17: Temperature fluctuations (demeaned and detrended) and their
effects on GDP. Panel A. US population-weighted temperature
fluctuations after detrending and filtering higher-frequency varia-
tion (Matsuura and Willmott, 2018a). The top blue line shows the
US temperature time series. Lower lines show the filtered time
series, removing successively more higher-frequency variation.
The time series are spread across the y-axis for visual purposes;
all time series oscillate around zero because they were demeaned
and detrended before filtering. Panel B. Upper panel: Tempera-
ture shocks at decreasing frequencies. Mid panel: Effects of those
shocks on GDP growth under levels and growth models. Lower
panel: Effects of temperature shocks on GDP.

series between 1960 and 2017 [24,25]. We use a low-pass filter to
successively remove high-frequency variation and obtain temperature
time series that preserve only lower-frequency oscillations.

Temperature variability at different timescales will produce distinct
economic dynamics depending on the persistence of economic impacts.
This is illustrated in Figure 1b, which shows the change in GDP
growth and GDP level expected under temperature shocks of different
durations and alternate models of economic impact. Dell, Jones, and
Olken, 2012 derive a simple equation for a model that includes both
non-persistent level effects (β) and persistent growth effects (γ), given
baseline growth rate g:

gt = g+ γTt +β∆Tt (6)

Where Tt is the deviation in temperature from some mean value in
period t and Tt is the change in temperature between period t and
t− 1.1 Although it is likely that some economies experience both levels

1 We inherit the taxonomy of "levels effects" and "growth effects" from Dell, Jones, and
Olken, 2012. While we focus on GDP growth, the terms originate in reference to
effects on GDP. A level effect alters the level of GDP, and when temperature reverts
to the baseline so does production. A growth effect alters the growth rate, thus its
effects are cumulative and persistent.
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and growth effects simultaneously, we use two stylized cases in Figure
17b to illustrate how the timescale of temperature variation interacts
with the models of economic impact. In the pure "level effects" model
we set the growth effect to zero (i.e. γ = 0) so that:

gt = g+β∆Tt (7)

In the "growth effects" model, we set the level effect to zero (i.e.
β = 0) so that:

gt = g+ γTt (8)

A one-year temperature shock equally reduces GDP in a level effects
model and in a growth effects model (Figure Figure 17b, left column).
However, when temperature returns to the baseline so does GDP in the
level model, but not in the growth model (Figure Figure 17b, bottom-
left panel). The two models thus produce distinct long-term effects
on GDP: growth effects on GDP keep accumulating as the duration of
the temperature excursion increases, but level effects disappear when
temperature returns to its baseline. It is this effect of past temperature
shocks on the future level of GDP, occurring because temperature
affects the determinants of economic growth, that we refer to in this
manuscript as "persistent" impacts.

Note that the effects illustrated in Figure 17 Panel B do not include
any variation in the impact of temperature shocks as a function of
the shock duration. The question of whether longer-period tempera-
ture excursions, more analogous to the type of permanent warming
expected from climate change, produce either larger (via compound-
ing effects and intensification) or smaller (via adaptation) impacts
compared to shorter temperature shocks has been widely debated
(Frances C Moore and Lobell, 2014; Burke and Emerick, 2016; Mérel
and Gammans, 2021; Taraz, 2017; Kolstad and Frances C Moore, 2020).
The question of persistence - whether the level of GDP is affected
by past temperature shocks - is distinct from this issue however. The
distinction between persistent vs non-persistent impacts arises be-
cause of how temperature affects the economy; non-persistent effects
arise through temporary effects on productivity (crop yield losses
from extreme heat are one example) whereas persistent effects arise
from impacts on factors that have a long-lived effect on economic
production (destruction of capital in extreme events for instance).

Adaptation or intensification would somewhat alter the shape of the
responses shown in the right column of Figure 17b, but the levels and
growth models would still produce qualitatively different dynamics,
particularly in response to temperature shocks of different lengths.
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The duration of temperature excursions from a mean value is key
to identifying the presence of growth effects (Figure 17b top row). The
correlation between temperature and GDP growth in a growth effects
model does not depend on the duration of the temperature anomaly,
but breaks down in a level effects model as the length of the excursion
grows (Figure 17b, middle row). This happens because there are no
level effects if temperature is constant but away from the baseline.

Therefore it should be possible, in principle, to detect the presence
of persistent effects in empirical data using different timescales of
temperature variability. It is a common practice in signal processing
problems to decompose time series into a sum of periodic components
with varying frequencies, amplitudes and phases (?), widely used in
a variety of fields like audio processing, electrical engineering, and
climate science (Bergland, 1969; Ghil et al., 2002; Smith, 2007). This
approach allows the time-series to be reconstructed using a specific
subsets of desired frequencies. A low-pass filter is a version of the
time series that only preserves low frequency components. Following
studies in the climate literature (Michael E Mann, Byron A Steinman,
and Sonya K Miller, 2014), we use a low-pass filter to remove inter-
annual variations and obtain temperature time series that preserve
only lower-frequency oscillations. If changes in temperature do not
influence the underlying determinants of growth (levels only model),
the estimated effect of low-frequency temperature anomalies on GDP
growth should converge towards zero from the estimated effect of un-
filtered temperature data. In contrast, if changes in temperature alter
the determinants of growth (presence of persistent effects), the correla-
tion between temperature and GDP growth should be detectable after
the temperature data is filtered.

Figure 18 demonstrates this effect in a simulation exercise. It shows
results from time series regressions of simulated economic growth
on simulated temperature at different levels of filtering under two
stylized cases - one in which there are only non-persistent damages (i.e.
the level effects-only model, purple line) and one with only persistent
damages (i.e. the growth effects-only model, pink line), following
equations 7 and 8 respectively. Additionally, to illustrate one of the
many possible combinations, another semi-transparent line shows a
simulation with mixed growth and level effects with opposite signs.

The random temperature time series used in the simulations pre-
serve the frequency distribution of the Earth’s natural oscillations by
matching the spectral decomposition on 1500 years of pre-industrial
global temperatures based on the Last Millennium Reanalysis (Tardif
et al., 2019). Using this decomposition we generate 10,000 random 350

year temperature time series that preserve this frequency distribution
but with random phase shifts (Figwer, 1997) and then simulate eco-
nomic dynamics for each temperature time series under the two alter-
nate impacts models using equations 7 and 8, and the combined effect
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using equation 6, adding an independent and identically distributed
(iid) noise component. We regress the simulated economic growth
data on temperature after filtering out varying ranges of frequencies
from the temperature time series, and adjusting the regression esti-
mate to avoid a small bias introduced by the changing amplitude of
temperature variations at lower frequency filters (see Methods).

Figure 18: Simulation exercise demonstrating the divergence of regression re-
sults with increasing frequency filters under two alternate models
of temperature impacts on economic production, a non-persistent
"level only" model (purple) and a fully persistent "growth only"
model (pink). A third semi-transparent pink line shows a com-
bined model with opposite signs of growth and level effects.

Figure 18 shows the mean value of the estimated coefficients and
its confidence interval for all the simulations. Without any filtering
using only contemporaneous temperatures, growth and level impacts
are indistinguishable, as originally pointed out by (Dell, Jones, and
Olken, 2012). But filtering out high frequencies in the temperature
data produces divergent effects: the estimated effect under the growth
only model remains detectable while the coefficients in the level model
attenuates markedly. In other words, the different patterns in Figure
18 mean that these two possible worlds - one with and one without
persistent temperature impacts - could potentially be distinguished
using this method. In essence, a statistical test on the coefficient for
the filtered data is a test for the presence of growth effects, and is
independent of the presence, or sign, of level effects.

While previous literature used lagged temperature estimates to
test for growth effects, we show through a simulation that using a
low-pass filter is more efficient in distinguishing between levels and
growth effects at the medium to long term in a context where data is
limited to 70 years. Supplementary Figure 17 compares the coefficients
estimated with the filtering approach (left panel) and the sum of the
lagged coefficients for a full distributed lag model (middle) and a more
parsimonious version that reduces the number of estimated coefficients
by imposing smoothness on the lag structure (right). The distributed
lag model is as powerful at distinguishing levels from growth effects
when the number of lags and the length of filtering are small. However,
filtering grows more efficient for greater number of lags and longer
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filters, as the distributed lag model becomes increasingly noisy. This
suggests that the low-pass filtering test can be a helpful complement
to existing approaches using lagged temperature in investigating the
persistence of effects over the medium to long run in data scarce
contexts.

We use our test to investigate the persistence of temperature effects
on economic production. We use GDP data from the World Bank
covering 217 countries from 1961 to 2017 (World Bank, 2021), merging
this dataset with population-weighted temperature and rainfall data
from University of Delaware (Matsuura and Willmott, 2018a; Matsuura
and Willmott, 2018b). To identify whether country-level temperature
impacts have persistent effects we performed the following regression
for each country and length of filter:

gt = θfTt,f + πfPt,f + ϵt (9)

Where Tt,f and Pt,f are the population-weighted temperature and
rainfall in year t after demeaning, detrending, and filtering out fre-
quencies higher than f. The filters f are low-pass filters that filter-out
any oscillations with periods shorter than 3, 5, 10, and 15 years, or
f=unfiltered when no filter was applied. The low-pass filter algorithm
requires data that spans at least twice the upper bound periodicity,
which results in some countries not having estimates for all the levels
of filtering due to missing data at earlier time periods. Country-
specific quadratic time trends are removed from all variables (growth,
temperature and rainfall) prior to analysis to address concerns of
non-stationarity in the weather and economic time-series. Excluding
rainfall from Equation 9 would bias the estimate of θ, since rainfall
is known to correlate with both GDP growth (Kotz, Levermann, and
Wenz, 2022) and temperature (Fischer and Knutti, 2016). However, we
restrict the analysis to temperature and leave the discussion of results
on precipitation to the Supplementary Material.

Given the lack of strong prior empirical evidence for the persistence
of temperature effects, or strong theoretical or empirical evidence
regarding drivers of heterogeneity in the response, the analysis focuses
at the country level to give more flexibility and allow estimates to differ
across countries. On the other hand, this comes at the cost of larger
statistical uncertainty. We analyze the evidence for persistence across
all countries at the global scale by separately pooling the positive and
negative estimates of f and estimating the following regression model

θ̂f,c = Ff + ϵf,c (10)
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Where the value of the temperature coefficient estimate in country
c at filtering level f is regressed on a vector of indicators of the level
of filtering, clustering standard errors at the continent level.

3 results and discussion

The behavior of the estimates θ̂f for each country contains information
about the persistence of temperature effects on the economy. In par-
ticular, non-zero low-frequency estimates signal presence of growth
effects, as shown in the simulations (Figure 7). We find that 39 coun-
tries have low-frequency estimates that are statistically different from
zero at the 90% confidence level (of which 18 might be expected as
false positives given the number of comparisons). Further, looking
across all countries there is not strong evidence for systematic trends
in coefficients towards zero at lower frequency variation, as would be
expected if impacts operated only through non-persistent level effects.

Figure 19A shows the values of f for all countries at different levels
of filtering, binned into two broad categories: a converging-towards-
zero effect (blues), where the absolute value of f decreases at lower
frequencies (as expected by the presence of level effects only, or by the
combination of a level effect and a smaller growth effect), and a not-
converging-towards-zero effect (oranges), where the absolute value
of f increases at lower frequencies (explained only by the presence of
persistent effects). In addition, there is a third category we describe
as "unclassified" (grey) where the absolute value of f increases but
changes sign between the unfiltered and the most filtered estimates.
This behavior could be explained by levels and growth effects of
opposite signs; yet, these countries are conservatively not classified
as either converging or not converging. Within the two groups of
converging and not converging countries, we further identify subsets
of countries where the filtered estimates are either statistically larger
(i.e. intensifying; dark orange) or smaller (converging; dark blue) from
the unfiltered estimates.

Figure 19B tracks features of countries’ estimates that are key to
detect the presence of growth and levels effects. The left column
divides countries based on the statistical significance of the unfiltered
estimate, the middle column shows the statistical significance of the
countries’ most filtered estimate, and the right column shows whether
estimates show converging, not converging, or intensifying effects.
Among the 27 countries whose unfiltered estimate is statistically dif-
ferent from zero, the 15-year filtered coefficients of 18 countries are
not statistically different from zero, meaning only level effects were
detected in those countries (purple lines in Figure 19B). Presence of
growth effects (Figure 19B, pink lines) is detected in the remaining 9
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countries and in 30 other countries whose unfiltered estimate was not
statistically different from zero.

The middle column of Figure 19B shows that in 18 countries where
growth effects have been detected the filtered estimates are statistically
larger than the unfiltered estimates (i.e. "intensifying effect"), a pat-
tern that is consistent with level and growth effects of opposite sign.
Among the remaining 137 countries that do not attain conventional
statistical significance of the most filtered estimate, more countries
have non-converging estimates (n=65, orange lines) than converging
estimates (n=27, blue lines). There is no country where the filtered
estimate is significantly smaller than the unfiltered estimate.

Figure 19: Panel A. Country-level estimates of the temperature effect on
economic growth. For visualization purposes only, each line
connects the estimated coefficients from regressions at different
levels of filtering of the temperature data. Lines are color coded
depending on the trend from the unfiltered to the most filtered
estimate: orange when the absolute value of coefficients increases
with filtering ("Not converging to zero"); dark orange when the
difference between unfiltered and most filtered is significant at
10% ("Intensifying"); blue when the absolute value of coefficients
decreases with filtering ("Converging to zero"), and dark blue
when the trend is statistically significant at 10% ("*Converging
to zero"; not found in this results); grey when the most filtered
estimate is larger than the unfiltered but with opposite sign.
The graph only shows countries with estimates below the 99th
percentile for readability. Panel B. The left-hand side of the chart
displays the number of countries for which there is evidence of
growth effects, in pink, and evidence of level effects, in purple.
The right-hand side classifies 15-year filtered estimates by the
type of trend using the same color code as Panel A.



3 results and discussion 87

We performed the same analysis using two alternative economic
growth datasets that span a longer time period but include fewer
countries. Firstly we used the Barro-Ursua dataset, with annual data
on economic growth of 43 countries starting as early as 1790 to 2009,
developed to examine the persistence of macroeconomic shocks (Barro
and Ursúa, 2008; Barro and Ursua, 2010). Secondly, we use the
Maddison Project database that standardizes country-level GDP per
capita for 170 countries for several centuries (Bolt and Van Zanden,
2020). Due to the sparsity of temperature and rainfall records pre-
1900, we use only post-1900 data for both datasets. Supplementary
Figure 4 replicates Figure 3 for these two alternate datasets covering
different subsets of countries and much longer time-periods than the
World Bank data. We again fail to find strong evidence that estimates
systematically converge towards zero using lower frequency variation,
as would be expected if impacts to the economy operated through
non-persistent levels effects.

Pooling estimates from all countries, we are able to evaluate evi-
dence, at the global level, for converging estimates at lower frequency
filters. We thus estimate equation 10. Where the temperature coef-
ficient estimate θ̂f,c in country c at filtering level f is regressed on a
vector with the levels of filtering F, clustering standard errors at the
continent level to allow for cross-country correlation and weighting
the observations by the inverse standard error. Patterns such as diver-
gence or convergence towards zero as filtering increases would cancel
out if, as it shown in Figure 19, upper panel, there are both positive
and negative effects. We therefore perform the analysis separately
for countries with positive and negative unfiltered estimates. If only
non-persistent level effects were present, we would expect to see the
negative (positive) estimates converging towards zero, resulting in a
positive (negative) coefficient estimate on the filtering variables F.

Figure 20 shows the cumulative estimated effect for each level of fil-
tering, and shows that, across all countries, we do not see evidence for
this attenuating effect. Instead, the regression results show evidence
of persistent effect where the average value estimated using lower
frequency temperature variation is similar to the value estimated using
unfiltered data (See Supplementary Table 1).

Figure 20: Pooled estimates of countries with positive and negative unfil-
tered coefficients across different levels of filtering using three
alternative datasets.
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Finally, Supplementary Figure 5 examines evidence for heterogene-
ity in the marginal effect of temperature between countries, specifically
whether they are associated with either per capita GDP or mean tem-
perature. Using only estimates significantly different from zero at the
unfiltered and 15-year filter levels (i.e. countries for which evidence of
persistent effects is strongest), we find some evidence that impacts are
negatively correlated with countries’ mean temperature as found in
previous studies [1], but no systematic differences in the estimated ef-
fects between rich and poor countries (Supplementary Figure 8 shows
a similar pattern resulting from a distributed lag non-linear model
under a panel analysis).

4 discussion

The question of the persistence of climate damages is a first-order
problem for climate change economics. Studies that allow climate
change to affect the determinants of economic growth tend to produce
far larger aggregate climate change costs than studies that impose only
level effects on production (Frances C. Moore and Diaz, 2015; Ricke
et al., 2018; Estrada, Tol, and Gay-García, 2015; Piontek et al., 2021).
In response to the permanent shifts in temperature expected with
climate change, persistent impacts operate via effects on the growth
rate compound over time, producing far larger aggregate damages
over the long time frames relevant for assessing climate change costs.
Yet, impacts have been modeled as non-persistent by the numerous
integrated assessment studies that since the 1990s have calculated
climate damages and evaluated optimal climate policy.

In contrast with previous literature that models non-linear effects
of temperature on growth, we analyze the temperature-growth re-
lationship with country-level regressions. The smaller temperature
ranges allow us to accurately model the effects using a linear approxi-
mation. (see Supplementary Material and Supplementary Figure 2).
In addition, instead of using high-frequency, year-to-year tempera-
ture variation to estimate climate impacts on the economy, here we
use lower frequency variation. Our identification strategy focuses on
the persistent effect of temperature by adjusting for time trends and
country-specific dynamics (via demeaning and detrending) but uses
lower-frequency temperature variability instead of lags to distinguish
between growth and levels effects. Using a low-pass filter instead of
lags avoids adding noise terms together that could prevent identify-
ing medium run persistent effects (see Supplementary Material and
Supplementary Figure 1).

Applying this test to three different datasets of economic growth,
we fail to find strong evidence of only non-persistent effects. There
are two key pieces of evidence. First, we found statistically significant
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persistent temperature impacts on economic growth in 22% (19%;
8%) of the countries using the World Bank (Maddison Project; Barro-
Ursua) dataset. Significant effects in these regressions implies the
persistence of temperature impacts at least over the 15-year period of
our lowest-frequency regressions. Secondly, we examine how regres-
sion estimates change using lower frequency temperature variation.
The lack of persistent effects, as posited by the vast majority of IAM
studies estimating climate damages, would imply convergence of
these estimates towards zero. But we fail to find evidence of such
convergence. At the individual country level, only 15% (21%; 34%)
of countries have effects that converge towards zero. For many more
countries, the estimated effects either do not converge towards zero or
intensify over time, an effect that could be due to adaptation or coping
dynamics, competing growth and levels effects with different signs, or
a reduction in attenuation bias with longer filter lengths (though this
effect is likely small, as described more fully in Supplementary Figure
6). Pooling evidence from across all countries produces stable effect
sizes with lower frequency variation for all three datasets, at least over
the 10-15 year period. Therefore, the evidence suggests a sensitivity of
aggregate economic output to temperature shocks persisting over at
least the 10-15 year time frame and a conspicuous absence of evidence
for fully non-persistent levels impacts.

Like previous work, we find both positive and negative effects of
temperature on different countries. It should be remarked that decade-
long temperature excursions used to estimate the effects here are very
small in amplitude (the median amplitude for 15-year filtered tem-
perature is 0.11°C). While Figure 3 shows the effect of 1°C increase in
temperature, the actual magnitude of temperature variation over this
time-scale is much smaller and it is an open question whether these
effect sizes can be extrapolated to much larger changes in temperature
expected with climate change.

This highlights a fundamental empirical challenge in estimating
the effects of climate change. Climate change will produce large
(≈ 2 to 4°C) and sustained changes in temperature. The historical
record contains both large but short temperature excursions and much
smaller but longer temperature variation. Previous papers (Burke,
S. M. Hsiang, and Miguel, 2015; Dell, Jones, and Olken, 2012) have
examined the effect of high frequency variation, raising the question of
whether these estimates can be extrapolated to longer-lasting tempera-
ture changes (e.g. due to effects of adaptation, compounding effects,
or the dynamics of persistent vs transient economic impacts). Here
we instead focus on the opposite - lower-frequency but much smaller
variation (at least in the filtered estimates). This gives more confidence
that effects estimated are representative of impacts of sustained tem-
perature change, at least over the medium run, while raising questions
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about whether these can be extrapolated to much larger levels of
warming expected with climate change.

Finally, we note that our approach is not able to distinguish be-
tween a levels effect that continues compounding over the 15 year
time-frame of our lowest-frequency estimates but then subsequently
reverses, and a "pure" growth effect in which there is no subsequent
reversal. Differentiating these two types of effects is a question of what
happens in time-frames longer than 15-years, which is an inherently
difficult empirical question due to the relatively short time span of
data available. However, either interpretation of the filtered results
(i.e. 15 years of continuously worsening levels effects followed by
reversal or a fully persistent effect) implies persistence of damages
over time periods longer than a decade. Either interpretation would
imply larger aggregate climate damages than the standard approach
to representing climate change costs in integrated assessment models,
which assumes no persistence or compounding effects.

While providing evidence of persistent impacts of temperature
shocks on growth, our framework does not isolate the mechanisms
by which they arise. Past studies have modeled persistent impacts
as resulting from a slow-down in total factor productivity growth
(Frances C. Moore and Diaz, 2015; Moyer et al., 2014), changes to the
capital depreciation rate (Frances C. Moore and Diaz, 2015), or impacts
to the stock of natural capital (Bastien-Olvera and Frances C. Moore,
2021). Other studies leave the mechanism of growth rate impacts
unspecified (Glanemann, Willner, and Levermann, 2020; Ricke et al.,
2018). Letta and Tol, 2018 investigate this question and suggest impacts
arise through effects on total factor productivity growth, but more
work is needed to understand exactly how these impacts manifest.

A consistent and unsurprising finding from past work is that al-
lowing for persistent damages, because of their compounding nature,
vastly increases the uncertainty in climate change impact projections.
For instance, Newell, Prest, and Sexton, 2021 estimate confidence in-
tervals on damage estimates that allow for growth-rate effects orders
of magnitude larger than those that restrict impacts to only the level
of GDP. Similarly, in a recent modeling study, Kikstra et al., 2021 show
that the persistence of economic damages is the most important param-
eter determining aggregate climate change costs. Our findings do not
show strong evidence for the presence of only non-persistent impacts
and instead suggest compounding effects over at least a decadal time
frame. Therefore, restricting modeling of climate change damages to
only non-persistent levels effects likely greatly under-states both the
uncertainty and the downside risk associated with climate change.
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a supplementary material

a.1 Further details on the methods

The general approach of using lower frequency temperature variation
to better understand the magnitude and dynamics of climate change
impacts is well established in the climate impacts literature. Several
papers contrast impacts estimated using high-frequency weather vari-
ation with those estimated using lower-frequency variation, either
average temperature differences over long intervals (i.e. "long dif-
ferences") or multi-decadal moving averages, to identify the effects
of adaptation on the levels of climate damages (Burke and Emer-
ick, 2016; Mérel and Gammans, 2021; Taraz, 2017; Kolstad and F. C.
Moore, 2020). Most notably, Hsiang, 2016 presents panel regressions of
US temperature and corn yield data, successively filtering out higher-
frequency temperature and yield variation and argues that the stability
of regression estimates using longer temperature variation indicates
agricultural adaptation to warming is either slow or ineffective.

While conceptually similar to our empirical approach, the question
this literature addresses is distinct in that, because the dependent vari-
able in each case is a level outcome (typically crop yields), these papers
address how adaptation does or does not attenuate the level of climate
damages as a function of the longevity of temperature variation. Since
our dependent variable is a growth rate, the question addressed is
whether the effects of short-term temperature shocks on the level of
GDP persist, and therefore whether damages compound over time in
response to sustained periods of warming. Most importantly, even
if the estimated growth effect attenuates to zero at lower frequencies
(i.e. the purple line in Figure 2), this is still consistent with an effect of
long-term warming on the level of GDP, for instance as modeled in the
damage function of most cost-benefit integrated assessment models
(Diaz and F. Moore, 2017).

For the simulation exercise (Figure 17), we first generated 10,000

random 350-year temperature time series that preserve the internal
dynamics and characteristic periodicity intrinsic to the climate system.
This dynamic was retrieved by performing a fast Fourier transform
(FFT) of 1500 years of global mean surface temperature data prior to
anthropogenic influence, obtained from the Last Millennium Reanal-
ysis project (Tardif et al., 2019). Simulated temperature time-series
were generated using the spectral profile given by this FFT but with
randomly chosen phases, generating 10,000 random counterfactual
time series that might have arisen from the Earth’s natural variability.

For each of the 10,000 temperature time series we generated two
alternative economic growth time series that reflected the two climate
impacts scenarios that we hope to distinguish: levels and growth.
Following Dell, Jones, and Olken, 2012, the levels model is given by
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gt = g+βTt −βTt−1 + ϵt and the growth model by gt = g+γTt + ϵt.
The growth baseline g was set at 0.01 representing 1% per year baseline
growth, the temperature coefficients β and γ were both set at -0.05

representing 5% decrease in growth per degree of warming, and a
random noise was drawn from a normal distribution with standard
deviation of 0.005, representing growth rate variability unexplained
by temperature.

The persistence test consists of regressing growth on temperature
after filtering the temperature time series to remove higher frequency
oscillations. We use a low-pass Butterworth filter in R (pass.filt from
dplR library) that removes all oscillations with periodicity between
2 and the desired upper boundary of the filter. We perform the
regressions of simulated growth on simulated temperature for 4 sets of
filters (upper boundary = 3, 5, 10 and 15 years), and an unfiltered case.
15 years is the longest periodicity we filter because the algorithm needs
data that spans at least twice the maximum period, so after 30 years
data for many countries started to be missing. The unfiltered case, in
both the simulations and the main regressions also includes a one-year
temperature lag. This is required for generating an unbiased estimate
of the levels effect - if temperature affects levels then Tt−1 determines
gt (i.e. Equation 7). Omitting Tt−1 will therefore bias estimates of the
effect of contemporaneous temperature shocks (Tt) if there is temporal
autocorrelation in the timeseries. Lags are not included in regressions
using filtered temperature data since these regressions are intended
to integrate the effect of persistent temperature excursions. Figure 17

shows the mean value of the estimates after filtering the temperature
data and the 95% confidence interval.

One concern is that applying a frequency filter reduces the ampli-
tude of the temperature time series, effectively attenuating unusual
temperatures related to some extreme events and therefore mechani-
cally inflating the estimates of the temperature coefficient, an effect
that could lead to spurious evidence of "non convergence" if not cor-
rected. Therefore we apply a correction factor to all estimates. Prior to
filtering, the time series is detrended and demeaned. We then com-
pute the median ratio of the amplitude between filtered and unfiltered
temperature time series to gauge the magnitude of the (multiplicative)
bias; and then divide the estimated coefficient by the ratio. Supple-
mentary Figure 6 illustrates the effectiveness of this approach using
the simulations also shown in Figure 17.

We retrieved yearly country-level data on economic growth for the
217 countries in the World Bank database (World Bank, 2021) for the
period 1960 to 2020. Gridded temperature and precipitation data
from the University of Delaware dataset (1900 to 2017; (Matsuura and
Willmott, 2018a; Matsuura and Willmott, 2018b)) was aggregated to
the country level using 2015 population weighting from the Gridded
Population of the World version 4 dataset (Doxsey-Whitfield et al.,
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2015). Two alternative datasets were used to check for the robustness of
the results (See Supplementary Figure 3). The first is the Barro-Ursua
economic dataset, covering 43 countries from the late 18th century to
2009 (Barro and Ursua, 2010). The dataset has been constructed with
the specific focus of studying periods of macroeconomic crisis during
the industrial era. The second is the Maddison Project economic
dataset that covers 169 countries during the study period (Bolt and Van
Zanden, 2020). The dataset is intended for analysis of the determinants
of growth and stagnation in the world economy, reflecting both current
international differences in GDP per capita as well as the current
knowledge on the historical patterns of growth. It combines multiple
approaches to historical time series reconstruction in order to minimize
the discrepancies with established historical benchmarks of income or
living standards (Bolt and Van Zanden, 2020). Due to the sparsity of
temperature and rainfall records pre-1900 and for greater confidence
in GDP data, we use only post-1900 data for both datasets. The
Supplementary materials list the countries contained in the three
datasets.

Temperature, rainfall and economic growth data was demeaned
and quadratic trends by country were removed to eliminate both time-
invariant country variation and smooth, non-linear, country-specific
trends in weather and growth rate. The residuals after demeaning
and detrending were used to estimate the temperature effect () on eco-
nomic growth by performing the following regression for each country
and filter: gt = θTf,c + πfPf,c + ϵt where the index f represents the
level of filtering applied to the temperature and rainfall data before
performing the regressions. We apply a low-pass Butterworth filter of
order 4 and periods f=3, 5, 10, 15.

As shown by our simulation (Figure 17, the persistence test consists
of identifying whether (θ) is different from zero after filtering higher
frequencies. That is, |θ15| > 0 is evidence for the existence of growth
effects.
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a.2 Comparison with lag models

Figure 21: Simulations comparing filtering and distributed lag models. We
created a random temperature time-series of 70 years (top) and
120 years (bottom) long and simulated growth and level effects
on economic growth as in the original simulation. We then re-
trieved the temperature coefficients using the three alternative
approaches: a low-pass filter (left), a regression with tempera-
ture lags (middle) and a regression with an imposed a degree-4
polynomial structure on temperature lags, which, by imposing
smoothness on the lag structure, reduces the number of coeffi-
cients that need to be estimated (right). In the latter two panels
the sum of lagged coefficients are plotted. The low-pass filter
becomes more efficient than the distributed lags models for larger
number of lags and longer filters.

a.3 Discussion of non-linearities

While in the literature there is evidence of non-linear effects of tem-
perature on growth, this comes from panels of countries where the
nonlinearity emerges over the very large cross-sectional variation in
country temperatures (i.e. from just above 0°C to almost 30°C). Since
we are interested in the within-country effect, where inter-annual
temperature variability typically spans 2°C or less, the responses we
estimate can be well-fit using a local linear approximation, even if the
global response function across all countries is non-linear. Using a
simulation, we show in Supplementary Figure 2 that an hypothetical
"true" non-linear curvature as estimated by Burke et al [15] could
be closely approximated by a linear relationship at a country-level.
Importantly, the test for persistence effects using a linear relationship
still successfully distinguishes between persistent and non-persistent
effects even if the global, cross-country effect is non-linear. In addition,
we test for the significance of a quadratic response at the country level
and do not find evidence for this effect. Since adding quadratic terms
greatly increases the number of coefficients that must be estimated and
complicates the interpretation of the findings, we restrict the analysis
to locally-linear, country-specific responses.
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Figure 22: Comparison between a true non-linear effect and a linear re-
gression model. Data for a hypothetical country with a mean
temperature of 25 C and a global, cross-country nonlinear effect
using the curvature estimated by Burke et al and an inter-annual,
within-country time series variability of roughly 2°C as shown
in their Extended Figure 1 b-c. Note that because this is a rela-
tively hot country far from the BHM-estimated optimum in the
response function, the non-linearity in the response will be larger
than that of most other countries that are closer to the optimum.
Top row: scatter plot of simulated GDP growth under temper-
ature level effects for the unfiltered (left) and 15-years filtered
(right) timeseries. The lines are fitted linear (red) and quadratic
(blue) regression models with the shaded area showing the 95%
confidence interval. Note that the slopes pass from being nega-
tive to be almost horizontal when the temperature time series is
filtered. Middle row: scatter plot of simulated GDP growth under
temperature growth effects for the unfiltered (left) and 15-years
filtered (right) timeseries. The lines are fitted linear (red) and
quadratic (blue) regression models with the shaded area showing
the 95% confidence interval. Note that the slopes are virtually the
same before and after filtering. Bottom: Persistency test using a
"misspecified" linear model.

a.4 Impacts of precipitation

While the article focuses on the effects of temperature, we report here
the results relative to the effects of precipitation. 67 countries exhibit
evidence of growth effects at 90% confidence levels (bottom left panel,
in pink). The larger share (60%) are negative growth effects, indicating
that variation in precipitation from the climate norm have persistent
adverse effects on the economy. In 51 countries, a switch in sign is
detected as the 15-year filter is applied, going from positive to negative
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estimates. In light of Figure 2, this trend can be interpreted as evidence
of positive level effects and negative growth, persistent effects.

Figure 23: Top panel. Country-level estimates of the effect of precipitation
on economic growth. Each line connects the estimated coefficients
from regressions at different levels of filtering of the precipita-
tion (and temperature) data. Lines are color coded depending
on the trend from the unfiltered to the most filtered estimate:
orange when the absolute value of coefficients increases with
filtering ("Not converging to zero"); dark orange when the dif-
ference between unfiltered and most filtered is significant at 10%
("Intensifying"); blue when the absolute value of coefficients de-
creases with filtering ("Converging to zero"), and dark blue when
the trend is statistically significant at 10% ("Converging to zero");
gray when the most filtered estimate is larger than the unfiltered
but with opposite sign. The graph only shows countries with
estimates below the 99th percentile for readability. Bottom panel.
The left-hand side of the chart displays the number of countries
for which there is evidence of growth effects, in pink, and evi-
dence of level effects, in purple. The right-hand side classifies
15-year filtered estimates by the type of trend using the same
color code as Panel A.
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a.5 Supplementary Figures

Figure 24: Replication of Figure 3 in the main text g using alternate economic
growth datasets. Top: Maddison Project economic dataset [14],
Bottom: Barro-Ursua project economic dataset [13].
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Figure 25: Estimates (only significantly different from zero) across countries
mean temperatures (top panel) and log of the GDP per capita
in 2019 (middle panel) for unfiltered (left) and 15-year filtered
estimates (right). The bottom panel shows that for the 15-year
filtered estimates there is a positive relationship between countries
that are statistically significant and the standard deviation of the
country’s yearly temperature, meaning that, on average, larger
variance in temperature helps to identify the effect. The blue lines
are smoothed linear regression models fitted to the data and the
shaded areas show the 95% confidence interval.
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Figure 26: Simulations as described for Figure 2 but adding iid noise of
growing magnitude to the temperature time series. True size
effect = -0.05% (shown by the black horizontal line in each panel).
Note that coefficients in the level model still trend towards zero at
longer filters, but impacts in the growth model intensify slightly
due to reduced attenuation bias from filtering out noise in the
temperature time series. Substantial measurement error in the
temperature variable could attenuate the estimated coefficient,
biasing it towards zero, and inducing an apparent intensification
effect as longer filters gradually filter out noise in the temperature
variable, producing larger coefficients closer to the true growth
effect. However, measurement error on temperature would need
to be very large (i.e of comparable magnitude to inter-annual
variation in temperature, bottom panel) in order to explain the
intensifying pattern observed in some countries.
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Figure 27: Simulations as described for Figure 2 but comparing adjusted and
unadjusted coefficients. True size effect = -0.05%. The filtering
of temperature data reduces the amplitude of the climate signal
and mechanically inflates the estimated coefficients (blue and
orange coefficient). Coefficients are adjusted by a multiplicative
factor equal to the median of the ratio of filtered to unfiltered
data (green and red coefficients). Longer filters are applied to
highlight the bias and bias correction

Figure 28: Marginal effect of temperature on GDP growth estimated with
distributed lag non-linear models with panel data. GDP growth
data comes from the World Bank.
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a.6 Supplementary Tables

Table 21: Results of regression model.

Dependent variable:
Estimated coefficient
Positive Negative Positive Negative Positive Negative
World Bank World Bank Barro-Ursua Barro-Ursua Maddison Maddison
(-) (+) (-) (+) (-) (+)

Constant (Unfiltered) -0.013*** 0.012*** -0.013*** 0.009*** -0.014*** 0.009***
-0.003 -0.004 -0.003 -0.001 -0.003 -0.001

Filter = 3 years 0.002 0.001 -0.002 0.00004 0.003*** -0.0003

-0.001 -0.002 -0.002 -0.002 -0.001 -0.001

Filter = 5 years 0.001 0.002 -0.005** 0.002 0.003 -0.0005

-0.003 -0.002 -0.003 -0.003 -0.003 -0.001

Filter = 10 years -0.002 0.007 -0.003 0.001 0.004 -0.001

-0.006 -0.004 -0.002 -0.003 -0.003 -0.002

Filter = 15 years -0.002 0.018*** -0.006* -0.008* 0.005 -0.002

-0.005 -0.007 -0.003 -0.004 -0.004 -0.002

Observations 427 342 95 85 259 260

R2 0.002 0.028 0.02 0.058 0.005 0.001

Adjusted R2 -0.007 0.017 -0.023 0.011 -0.011 -0.015

Residual Std. Error 0.186 0.239 0.117 0.108 0.178 0.158

In columns marked with (+) the dependent variable are the positive coef-
ficients obtained estimating equation (4). In columns marked with (-) the
dependent variable are the negative coefficients so obtained. World Bank,
Barro-Ursua, and Maddison are three different datasets of economic growth
used to estimated equation (4). Observations are weighted by the inverse
of the standard error from equation (4). Standard errors clustered at the
continent level. *p < 0.1, **p < 0.05, ***p < 0.01.
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