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Introduction

This PhD thesis is composed of three projects concerning different, yet related, topics.

Chapter 1, which corresponds to the first project, is deeply applied in scope, but at

the same time it presents methodological challenges. Both classical and Bayesian statistics

techniques are exploited to deal with the complex missing data structure of the problem.

In that chapter we develop multi-state models for the natural history of breast cancer,

where the main events of interest are the age at the start of asymptomatic detectability of the

disease (through screening), denoted by TA, and the age at symptomatic detection (through

symptoms), denoted by TS. The time interval between these two events represents the latent

phase of the tumor, which is called sojourn time and which we denote by ∆.

The goal is to draw conclusions about quantities that are mostly unobservable. Indeed,

both TA and TS are never observed on any woman. Clearly, the distribution of the observed

ages at detection, asymptomatic or symptomatic, would not be a good estimate of the

underlying disease history, and the proportion of observed diagnoses is very different from

the probability of developing breast cancer for a woman in her lifetime.

The aim of the work is to reconstruct the underlying latent process through the probabilistic

description of the occurrence and subsequent evolution of the disease. We develop several

parametric specifications, which have in common a cure rate structure to take into account

that only a fraction of the women experience breast cancer in their lifetime.

We present the results of the analysis of data collected as part of a motivating study

1



from Milan. Participants in the study had a varying degree of compliance to a regional

breast cancer screening program. The subjects’ ten-year trajectories have been obtained

from administrative data collection performed by the Italian national health care system.

Additional covariates were collected by means of questionnaires.

We present a tractable model for which we develop the likelihood contributions of the

observed trajectories, and perform maximum likelihood inference on the latent process. As

likelihood-based inference is not feasible for more flexible models, we rely on Approximate

Bayesian Computation (ABC) for inference for more complex models, among which we

perform model selection. Issues that arise from the use of ABC for model choice and

parameter estimation are also discussed, including the problem of the selection of appropriate

summary statistics when implementing ABC.

The estimated parameters of the underlying disease process allow for the study of the

effect of different examination schedules (age range and frequency of screening examinations)

on a population of asymptomatic subjects, in terms of number and kind of diagnoses.

In Chapter 2, we report on an exploratory work that was motivated by our first project.

We focus on the use of dissimilarities among observations to define a measure of the distance

between two datasets. This problem is clearly relevant in the context of ABC, where observed

and model-generated data need to be compared. We consider simple models, where we can

investigate the ability of the dissimilarity approach to recover the true parameter values. As

part of this study, we propose a new likelihood-free estimation procedure. The new estimator

is based on calibration ideas, and makes more complete use of the datasets that are routinely

generated when one performs ABC inference.

Chapter 3 is devoted to a purely methodological study that concerns results and algorithms

developed for computing the optimal estimator in a size-biased sampling problem.

Size-bias can occur in a variety of contexts, whenever the sampling unit is the individual

and the population consists of clusters of individuals. For example, in the study of the family

2



history of cancer, larger families have higher probability to have at least one case of cancer

and to be, therefore, included into the Cancer Registry.

In this chapter, we obtain the uniformly minimum variance unbiased estimator (umvue)

for the sparsity index in size-biased Poisson sampling. We first propose two exact algorithms,

based on the enumeration of cases, where the second algorithm is the refined and speeded

up version of the first. Despite their exact nature, these algorithms become not feasible

already for quite small sample sizes. As an alternative, a third, approximate, algorithm,

based on the inverse fast Fourier transform, is also developed to compute the distribution of

the umvue. An exact confidence interval based on the umvue is also built by inversion of

the associated test. The performance of the estimation procedure is compared to classical

maximum likelihood inference, in terms of mean squared errors of the two estimators, as well

as with respect to the average coverage and width of the confidence intervals.
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Chapter 1

Statistical models for the natural

history of breast cancer, with

application to data from a Milan

cohort study1

1.1 Introduction

Cancer screening is defined as the examination of asymptomatic subjects in order to classify

them as likely or unlikely to be diseased [63]. The expected positive aspects of screening are

the reduction in mortality and the avoidance of advanced morbidity. However, along with

the benefits there may be negative effects of screening such as overdiagnosis, overtreatment,

and false positive results that may lead to psychological distress.

Three recent meta-analyses reviews [42], [25], [46] examined data from past randomized

clinical trials comparing breast cancer mortality in the treated (screened) and control group.

1Joint work with Marco Bonetti, Denitsa Grigorova (Sofia University) and Antonio Russo (ATS Milano)
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CHAPTER 1. STATISTICAL MODELS FOR THE NATURAL HISTORY OF BREAST
CANCER, WITH APPLICATION TO DATA FROM A MILAN COHORT STUDY

They consider eleven RCTs, which were carried out in the US, in Sweden and in the UK.

The number of trials varies (eight or eleven) because three of them consist of two parts. The

earliest trial started in 1963 (New York Health Insurance Plan) and the most recent one

in 1991 (UK Age trial). Even if they are collecting information and results from the same

trials, the three meta-analyses reach very different conclusions. A first difference arises in the

way they classify trials depending on the level of the randomization procedure, which can be

adequate or sub-optimal

According to [42], the benefit can be quantified as a 20% relative risk (RR) reduction

in breast cancer mortality in women invited to participate in a 20-year screening program

In Figure 1.1 (Figure 1 of [42], p. 1780) they show this result, together with the marginal

estimates of each RCT. They also provide an estimate of overdiagnosis, which occurs roughly

in the 19% of cases, when expressed as a proportion of the cancers diagnosed during the

active screening period. From these results, they conclude that the UK breast screening

programs, which invite women aged 50− 70 every three years, confer significant benefit and

should continue.

In [46] the authors conclude that breast cancer mortality is generally reduced with

mammography screening, although estimates are not statistically significant at all ages, and

the magnitudes of the effect are small. Advanced cancer is reduced with screening for women

aged 50 years or older.

The Cochrane review [25], instead, is very skeptical about the benefit of breast screening

programs, stating that the only three RCTs with an adequate randomization do not show a

significant relative risk reduction. This estimate becomes statistically significant only when

trials conducted under a sub-optimal randomization procedure are included in the analysis.

While these three meta-analyses did not reach consistent conclusions, one could also be

concerned about the current validity of results provided by very old trials (28-56 years ago).

As pointed out in [25], “it is likely that the absolute effect of screening today is smaller

6



1.1. INTRODUCTION

Figure 1.1: Random effects meta-analysis of breast cancer mortality after 13 years of follow-up in breast

cancer screening trials.

than in the trials, because of substantial advances in treatment and greater breast cancer

awareness.”

Once a screening program is established in a country, it is difficult to conduct randomized

trials to assess the effectiveness of screening. Sound, updated, and country-specific evidence

is needed to decide whether to establish breast cancer screening programs and to identify the

optimal screening policy in terms of the age range of the women invited, and the lag between

successive examinations. As a consequence, there is a strong interest in learning about the

natural history of the disease.

Hu and Zelen [30] discuss a theoretical model for planning screening trials in order to

compare mortality rates between a control group and a screened group. The authors model

the natural history of the disease and how the disease could be detected by regular screening

examinations. The work is used for planning the National Lung Screening Trial.

More recent evidence about screening effectiveness has been obtained from observational
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CHAPTER 1. STATISTICAL MODELS FOR THE NATURAL HISTORY OF BREAST
CANCER, WITH APPLICATION TO DATA FROM A MILAN COHORT STUDY

data, even though a higher risk of bias and confounding must be dealt with.

Six groups were commissioned by the U.S. Preventive Services Task Force to evaluate

the benefits and harms of many possible breast cancer screening strategies and they were

carried out by the Cancer Intervention and Surveillance Modeling Network (CISNET) of

the National Cancer Institute [62]. Six universities collaborated to this project, proposing

each one a model. They believe that, since all models make assumptions about unobservable

events, it is appropriate to consider several models to provide a more comprehensive picture

of the problem and to illustrate the effects of differences in model assumptions.

Between 2007 and 2015, a very accurate evaluation of the Norwegian Breast Cancer

Screening Program (NBCSP) has been conducted by a scientific committee appointed by the

Research Council of Norway [61], in order to investigate whether the program was fulfilling its

intentions and purpose. They quantify the reduction in breast cancer mortality attributable

to the implementation of the NBCSP, compared to a situation with no screening program,

to be in the range 20-30% for women aged 50-79 years. They also focus on the estimation

of overdiagnosis which, together with lead time effect, makes the incidence rates of breast

cancer increase compared to a situation without screening and they propose several ways to

estimate those quantities.

A commentary by Aalen [1] introduces a different class of models whose aim is to understand

disease processes beyond the simple survival setting and integrating into the analysis all the

information collected at each clinical examination.[59, 21] In Sweeting et al.[59], the authors

implement multi-state Markov models to analyze the longitudinal disease progression when

transition times between disease states are interval censored, and taking into account different

assumptions on the possibly non-ignorable missing data process occurring during follow-up.

This setting reflects the screening context in which, even though examination times are

scheduled, subjects can decide not to attend them and the decision to adhere to the scheduled

examinations is possibly not independent of the underlying disease status or of the (perceived

8



1.1. INTRODUCTION

or real) risk of the subject. Similarly, Chen et al.[21] is concerned with the analysis of

incomplete longitudinal data, where the observation process may contain information about

the life history of the disease. They consider progressive multi-state Markov response models

where the parameter estimation is performed by maximizing the likelihood function.

An alternative to multi-state Markov models consists in modeling the underlying biological

tumour growth as a continuous process. Recent work [3, 31] proposes a continuous tumour

growth model and derives theoretical results for jointly estimating tumour growth, time to

symptomatic detection and mammography screening sensitivity as a function of mammographic

density. These models evaluate mammography screening in terms of mortality, to estimate

overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times

between screen-detected cancers and cancers found outside of the screening program. The

models are fitted using likelihood-based estimation, but a recent work explores ways to move

to a likelihood-free approach, consisting of calibrating the parameters via summary statistics

at the population level [8].

The aim of this Chapter is to present a new class of statistical models to describe the

natural history of breast cancer, focusing on the insurgence of the disease, and on the

detection of cases as it progresses from asymptomatic to symptomatic.

In Section 1.2 we describe the motivating observational study conducted in Milan. While

observational studies do not typically provide trusted evidence to answer the same questions

as randomized trials do, here we reconstruct the underlying latent process through the

probabilistic description of the occurrence and development of breast cancer.

All the models that we discuss can be seen as multi-state semi-Markov models, where the

future evolution depends not only on the current state, but also on the entry time into that

state. The estimation procedure that we employ depends on the complexity of the model.

In principle, it is possible to compute the observed data likelihood[38] of each model, in

order to find the maximum likelihood estimates for the parameters. However, the likelihood
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CHAPTER 1. STATISTICAL MODELS FOR THE NATURAL HISTORY OF BREAST
CANCER, WITH APPLICATION TO DATA FROM A MILAN COHORT STUDY

calculation and maximization can be numerically complicated or infeasible, unless the model

has a simple structure.

Section 1.3 describes the modeling approach, and describes one such simple model for

which likelihood inference is feasible. In Section 1.4 we move to the Bayesian inferential

framework and develop a likelihood-free estimation procedure based on Approximate Bayesian

Computation (ABC)[57] that allows us to implement a variety of models and to perform both

model selection and parameter estimation on the motivating data. In Section 1.5 we discuss

the use of ABC in this modeling setting, and we close with some final remarks. Section 1.6

contains supplementary analyses and results about the models and the estimation procedures.

1.2 The motivating data

The data that motivated this study concern a cohort of n = 78051 women, aged between 41

and 76 years, resident in the municipality of Milan, who were invited to participate (with a

varying degree of adherence) to the mammographic screening program and in particular to

a study with the acronym of FRiCaM (Risk Factors for Breast Cancer: Fattori di Rischio

per il Carcinoma della Mammella), supported by a specific grant of the Italian League of

Cancer Prevention. Italy does not have a universal screening program for all regions in the

country. However, currently all Italian regions have implemented screening programs. [64]

Screening examinations in Milan are normally offered to women 50-74 years old every two

years (recently extended from the previous 50-69 policy), but under specific circumstances

high-risk women can also be included in the program earlier. All women had to be disease-free

when they entered the study.

To collect data for the motivating study, a questionnaire was sent by mail or handed out

to a total of 151246 eligible women who had received no diagnosis of breast cancer at the time

of entry, and about 60% of them completed it and returned it at their upcoming screening
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1.2. THE MOTIVATING DATA

examination, or through postal delivery. The date when a woman filled out the questionnaire

(which included the informed consent form) marked her date of entry into the study. Study

entry dates range from January 1st, 2003 to December 31st, 2007.

The subjects’ health trajectories were obtained from administrative data collected by the

Italian National Health Service and from the Cancer Registry database. Follow-up ended

when an invasive cancer diagnosis occurred or, for women without an observed diagnosis,

when censoring occurred. The censoring date coincides with the earliest among date of

administrative censoring (December 31st, 2016), date of cancellation from the study, date of

emigration, and date of death. The median follow-up was 12.29 years.

The available data also include the date of birth, the timing of the screening examinations

(either mammograms or ecographies, which we treat equally) that were performed, and the

dates of the outside-screening examinations and of the diagnoses (invasive tumors only). Due

to lack of permission to obtain such information, the data did not include the examination

results, and we had to infer whether each examination likely gave a positive or negative

result based on some assumptions. Different assumptions could lead to different conclusions,

and our analysis were therefore repeated under several scenarios. Even when changing the

assumptions on the examination outcomes and on the dates and kinds of detections, the

results did not show considerable change.

Below we present the results obtained under what seemed to be the most plausible set

of assumptions, also after discussion with an investigator who is familiar with the data. In

section 1.6 we include results produced under one different set of assumptions.

For those women without an observed diagnosis of breast cancer, we assumed that all

the examinations had given a negative result. For women having a breast cancer diagnosis

recorded in the Cancer Registry, we had to determine whether the detection was symptomatic

or asymptomatic, and to establish the date of the last negative examination before detection.

A key piece of information was available from the variable which differentiated between
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screening and non-screening examinations. Indeed, non-screening examinations may be due

to suspicious symptoms. We first checked if there were any screening examinations within the

six months prior to the diagnosis. If yes, then the last one before the diagnosis was assumed

to have yielded a positive result, and to have led to an asymptomatic detection. In this case

the date of detection was defined as the date of that positive exam.

If, instead, there were no screening exams within six months of the date of diagnosis,

we classified that detection as symptomatic, and we set the date of detection equal to the

date of the most recent non-screening exam, if there were any within the six months prior to

diagnosis. If no exams at all were recorded in the six months prior to diagnosis, then we set

the date of the symptomatic detection back by a number of days equal to the average shift

applied to the symptomatic detections which had that information (42.6 days).

Once the dates of detection were defined, we picked the last negative exam as the most

recent exam performed at least six months before the detection. We decided to impose a

distance of at least six months between the last negative exam and the detection because

most diagnoses are preceded by a few examinations very close to each other, and those were

likely performed to confirm the presence of the tumor.

These limitations of the available data are such that the results of our analyses should

be taken with some caution (for example, no sensitivity/specificity of the examinations can

be taken into account). However, also given the large sample size, we feel that they still

provide useful information in particular on the effect of covariates, and most importantly these

analyses let one explore the issues that one must address when developing and estimating

disease history models.

Out of the 78051 women in the sample, 3034 (3.89%) were diagnosed with invasive breast

cancer during the observation period and 75017 (96.11%) were without diagnosis at the end

of their follow-up. We do not consider DCIS (ductal carcinoma in situ) cases, which were

not included in the Cancer Registry database. Under the assumptions described above, the
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asymptomatic detections were 572 and the symptomatic ones 2462. The total number of

exams was 396183, performed on 74345 women. The remaining 3706 women did not undergo

any examination during the observation period. For additional descriptive statistics we refer

to Table 1.1.

Min Median Mean Max
Age at questionnaire 41.30 60.91 60.82 76.85
Age at first exam after entry 41.37 61.02 60.80 84.64
Age at asymptomatic detection 45.05 64.93 64.18 76.23
Age at symptomatic detection 46.40 67.74 67.34 86.35

# screening examinations Mammographies Ecographies Total
0 12215 (0.16) 75694 (0.970) 12213 (0.16)
1 21452 (0.28) 2219 (0.028) 21412 (0.27)
2 17679 (0.23) 131 (0.002) 17459 (0.22)
3 12612 (0.16) 7 (0.000) 12303 (0.16)
≥ 4 14003 (0.18) 0 14664 (0.19)

# outside-screening examinations Mammographies Ecographies Total
0 8812 (0.11) 62609 (0.80) 8256 (0.11)
1 10903 (0.14) 7866 (0.10) 10283 (0.13)
2 26900 (0.34) 2699 (0.03) 25063 (0.32)
3 18451 (0.24) 1466 (0.02) 17239 (0.22)
≥ 4 12985 (0.17) 3411 (0.04) 17210 (0.22)

Breast cancer diagnoses Yes No
3034 (0.04) 75017 (0.96)

Observed Follow-up Median Mean Min Max
12.29 11.66 0 13.93

Status at end of follow-up Alive Cancelled Dead Emigrated
(only for non-diseased subjects) 65494 (0.873) 232 (0.003) 7410 (0.099) 1881 (0.025)

No Yes Missing*

At least one birth (X1) 11933 63935 2183
High level of education (X2) 47315 29994 742
Family history of cancer (X3) 47419 30562 70

Table 1.1: Descriptive statistics of the data. Time is measured from birth (in years). *There
were 2845 subjects with one or more of these covariates missing.

Additional variables, including level of education, comorbidities, family structure and

family history of cancer, were collected by means of a questionnaire filled in by the participants.

We focused on three dichotomous covariates, which divide the women in eight groups as shown
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in Table 1.2: having had at least one child birth X1; level of education X2; and family history

of cancer X3. These covariates are defined as follows:

X1 =

0 no child birth,

1 at least one child birth;

X2 =

0 education < high school diploma,

1 education ≥ high school diploma;

X3 =

0 no family history of cancer,

1 family history of cancer.

Table 1.2 also shows the number of asymptomatic and symptomatic detections and the

median age at detection, both in the total sample and within the eight covariate groups.

Single imputation of missing values was performed on the three covariates by replacing them

with draws from independent Bernoulli variables with parameters equal to the proportion of

ones among the non-missing values for each variable.

Note that the three covariates were assessed at the time of entry into the motivating

study. However, given the rather advanced age at entry, we may consider the first two as

being definitively measured at that time. On the other hand, family history is still potentially

evolving, and we plan to study that specific issue elsewhere. As an approximation, in our

models we treat these covariates as being baseline covariates that summarize the life-long

effect of parity, education and family history on breast cancer development and evolution.

1.3 A first model: observed data likelihood

We assume that after the onset of the disease (which may or may not occur) there is a time

interval in which not even a screening examination is able to detect the presence of the disease
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Group (x1, x2, x3) Size Dx (%) #Asymp #Symp % Symp Dx Median age Median age
Dx Dx among all Dx Asymp Dx Symp Dx

1 (0,0,0) 3377 142 (4.2%) 27 115 81% 65.49 69.10
2 (0,0,1) 2107 115 (5.5%) 31 84 73% 66.24 66.80
3 (0,1,0) 3430 154 (4.5%) 24 130 84% 59.36 64.99
4 (0,1,1) 3354 153 (4.6%) 23 130 85% 63.70 64.54
5 (1,0,0) 27964 939 (3.4%) 183 756 81% 65.67 69.69
6 (1,0,1) 14338 599 (4.2%) 109 490 82% 65.83 68.54
7 (1,1,0) 12694 479 (3.8%) 98 381 80% 62.95 66.60
8 (1,1,1) 10787 453 (4.2%) 77 376 83% 62.78 64.45

Total 78051 3034 (3.9%) 572 2462 81% 64.93 67.74

Table 1.2: Observed outcomes in each covariate group and in the total sample. Ages
are measured in years. X1= at least one birth (0:No, 1:Yes); X2=Education level
(0:Low/Medium, 1:High); X3=Family history of cancer (0:No, 1:Yes).

(see Figure 1.2). All times are measured from birth of the woman. The two main quantities

of interest are the time (from birth) to the start of asymptomatic detectability of the disease

(which we denote by TA) and the time to the symptomatic detection of the disease (denoted

by TS). At time TA the disease becomes detectable through screening. Between time TA

and TS the tumor can only be detected through screening (the “sojourn time”, denoted by

∆), while starting from time TS the disease becomes evident because of symptoms. In other

words we have TS = TA + ∆. Further, we assume that symptomatic detection occurs exactly

when the first symptoms appear, i.e. we assume that we observe TS precisely for subjects

with a symptomatic detection.

While studying the latent evolution of the disease, we are also interested in studying the

probability of insurgence of the disease in a woman’s lifetime. For this reason, to allow for

the direct estimation of such probability we introduce a cure rate structure, i.e. that there

exists a proportion of women, which we call the “cured proportion”, denoted by (1− p) with

p ∈ (0, 1), who will never experience the event of interest of developing breast cancer no

matter how long they live. This is equivalent to assigning positive probability (1− p) to the

event {TA = +∞, TS = +∞}. The probability p is one of the parameters of the model. The
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standard terminology “cure” is not easy to interpret in this context, so we will instead refer

to the fraction p of women who will develop the disease as the “susceptible” proportion.

Birth Onset TA

Asymptomatic Detectability

TS∆

Symptomatic Detectability

Age (years)

Figure 1.2: A graphical representation of the natural history from onset until detectability
of the disease.

Importantly, we work under the stable disease population assumption, in which the rate

of births and the distribution of ages at tumor onset are constant across calendar time.[31]

We also assume stationarity of the joint distribution of (TA,∆) across birth cohorts.

Note that the goal is to draw conclusions about quantities that are mostly unobservable.

Indeed, both TA and TS are never observed on any woman, and clearly the observed data

would not be a good representation of the latent variables of interest.

First of all, the time to the start of the asymptomatic detectability TA is always interval

censored. That is, even when we observe an asymptomatic detection, we never observe TA

precisely but we can only conclude that it happened before the observed age at detection.

Second, there is a selection of women who enter the study (and the sample), since women

who have already had a breast cancer diagnosis before entering the screening program are

excluded from the sample.

Third, once a woman has entered the study, she is not followed until her death, but

follow-up lasts around 12 years. Therefore, we do not have any information about tumors

with onset, or that will be detected later on.

Another relevant consideration concerns the relationship of these latent quantities to the

observed data: the mean of the ages at symptomatic detection in the sample should be

smaller than the expected value of TS in the population, due to selection into the set of the

observed TS ages; indeed, subjects with larger sojourn time ∆ (e.g., TS) are less likely to
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have their TS value observed (since asymptomatic detection is more likely).

Hence the distribution of the observed ages at detection, asymptomatic or symptomatic,

would not represent a good estimate of the underlying disease history, and why the proportion

of observed diagnoses out of the total should not be confused with the probability of developing

breast cancer for a woman in her lifetime.

When defining a model, there are basically three decisions to make that characterize its

structure. The first one is the choice of the marginal distributions for TA and ∆ for the

diseased subjects. Any distribution having support on the non-negative real line may work,

but even distributions on the real line could be appropriate under some specific parameter

combinations that make the negative tail negligible.

The second assumption concerns the dependence structure between TA and ∆. While

modeling them as independent random variables may facilitate the form of the likelihood

function and the estimation of the model parameters, such assumption may be too simplistic

and not reflect the link between these two quantities that has been documented in the

literature [67], [34].

Lastly, one should decide on how to include covariates (and which ones) in the model,

both in the joint distribution of (TA,∆) and in the probability p.

The estimation procedure that we will follow will depend on the complexity of the model.

In principle, it is possible to compute the observed data likelihood, and obtain the maximum

likelihood estimates for the parameters. However, the calculation and maximization of the

observed data likelihood can be complicated or not feasible, especially when the number of

parameters grows. Indeed, such observed data likelihood involves many (bivariate) integrals

which may not be solvable in closed form, but may need to be approximated numerically -

thus introducing numerical difficulties in the estimation process.

Indeed, as we have seen above, each performed screening examination provides some

information about the value of TA, which is necessarily interval censored. On the other hand,
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TS is observed precisely in the case of symptomatic (outside-screening) detections, or we only

have partial information on it. Integrating the joint probability density of (TA, TS), denoted

by f(TA,TS)(ta, ts), on an appropriate subset of the domain as determined by the observed

events, provides the observed data likelihood contribution for a generic i-th subject, which

we denote by Li.

Importantly, we condition on the observed mammography/ecography exams. Depending

on the presence of a positive or negative exam, diagnosis and/or right censoring, one can

observe different types of data configurations: cases with a symptomatic detection, cases

with an asymptomatic detection and cases without an observed diagnosis. These three kinds

of configurations contribute to the observed data likelihood in different ways. Recall that we

are assuming perfect sensitivity and specificity of the examinations.

For a subject with an observed symptomatic detection, TS is fixed at the observed value

ts and one should integrate the joint density function over all possible values of TA. The

lower bound of the integral (l) is the last negative examination if there is one, or the lower

bound of the support otherwise. Thus, the contribution of such configuration to the observed

data likelihood is:

Li = p ·
∫ ∞
l

fTA,TS |susceptible(u, ts)du.

Note that, clearly, since TA < TS with probability one (i.e. ∆ > 0), the integrand function is

0 for u > ts.

For a subject with an observed asymptomatic detection, TS is greater than the last

observed exam (denoted by d since it coincides with the date of detection) and TA is

necessarily between l, the last negative exam if there is one, and the detection time d. This
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defines the integration region for this kind of trajectories:

Li = p ·
∫ d

l

∫ ∞
d

fTA,TS |susceptible(u, v)dvdu.

Lastly, a subject who has not developed the disease (yet) may experience breast cancer after

the last negative exam or the end of follow-up (with probability p), or never experience it

(with probability (1 − p)). In the first case, the likelihood contribution Li is obtained by

integrating the joint density of (TA, TS)|susceptible over all values of TA greater than the last

negative exam l and over values of TS greater than the age at the end of follow-up. In the

second case, the result of the analogous integration is 1 since the conditional distribution of

(TA, TS)|non-susceptible is concentrated on {TA = +∞, TS = +∞}. Since these two events

are disjoint, the total contribution to the likelihood is the sum of their probabilities:

Li = (1− p) + p ·
∫ ∞
l

∫ ∞
c

fTA,TS |susceptible(u, v)dvdu.

Lastly, all likelihood contributions should take into account the fact that only asymptomatic

women can enter the study, i.e.the distributions of the quantities of interest should all be

conditional on the event {TS > Age at entry}: each likelihood contribution Li should be

divided by the probability of the conditioning event

ci = P (TS > Age at entry|Age at entry) = (1−p) +p P (TS > Age at entry|diseased,Age at entry).

Note how this expression is also based on the assumptions that once TS is reached, a

symptomatic detection (and diagnosis) is immediately observed. While this is exactly not

the case, we believe that it is most consistent with the study entry requirement. Notably,

the condition does not require that TA > Age at entry.

The observed data likelihood is then given by the product of all the (independent)
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subjects’ contributions: L =
∏n

i=1
Li
ci
.

Even if not explicitly indicated in the notation above, L clearly is a function of all the

model parameters. For numerical maximization (and for estimation of the variance-covariance

matrix of the MLEs), it is more convenient to work with the log-likelihood, which takes the

form l = log(L) =
∑n

i=1 log(Li)−
∑n

i=1 log(ci).

The degree of difficulty of calculating the two-dimensional integrals which form the

observed data likelihood function varies greatly according to the specific distributional assumptions.

Only specific model formulations lead to analytical or partially analytical solutions. In the

following Section we describe one such simple model.

1.3.1 Model specification and results

We consider a simple model that assumes independence between TA and ∆ and does not

include any covariates. In particular, for the susceptible subjects, we assume TA ∼ N(µ, σ2)

and ∆ ∼ Exp(λ), with ∆ independent of TA, where µ ∈ R, σ > 0 and λ > 0. Easily, TS =

TA+∆ has density fTS(t) = λe
λ2σ2

2
+λ(µ−t)Φ(t, µ+λσ2, σ2), where Φ(·, µ+λσ2, σ2) is the cdf of

a N(µ + λσ2, σ2). Also, the conditional density of TS|TA is fTS |TA(v|u) = λe−λ(v−u)I(u,∞)(v).

Note that, marginally, TS follows an exponentially modified Gaussian (emg) distribution with

parameters (µ, σ, λ). The contributions to the observed data likelihood are as follows (for

the derivation please refer to Section 1.6). Using the notation introduced earlier, we have:

(i) for a subject with an observed symptomatic detection

Li = p·fTS(tS)·
(

1− Φ(l, µ+ λσ2, σ2)

Φ(ts, µ+ λσ2, σ2)

)
;

(ii) for a subject with an observed asymptomatic detection

Li = p·e
λ2σ2

2
+λ(µ−d) ·

(
Φ(d, µ+ λσ2, σ2)− Φ(l, µ+ λσ2, σ2)

)
;
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TA ∆ Cure rate

µ σ λ p
64.9 (64.5,65.3) 22.3 (17.6,27.0) 1.62 (1.51,1.73) 0.179 (0.172,0.186)

Table 1.3: MLEs and 95% confidence intervals for the model parameters. Time is measured
in years.

and (iii) for a subject without observed diagnosis

Li = (1− p) + p·
(fTS(c)− eλ(l−c)fTS(l)

λ
+ 1− Φ(c, µ, σ2)

)
.

The probability of the conditioning event {TS > Age at entry|Age at entry} is equal to

ci = (1− p) + p·
(

1− Φ(f, µ, σ2) +
fTS(f)

λ

)
.

Table 1.3 shows the estimates obtained from the maximization of the observed data

likelihood with respect to the four model parameters (µ, σ, λ, p). The likelihood maximization

is performed using the R function maxLik.[29] We reparameterized all models in such a way

that the resulting parameter space becomes Rk, where k is the number of model parameters,

i.e. with no constraints. In particular, we applied a logarithmic transformation to all

parameters with a positivity constraint. The parameter p is constrained to take values in

the interval [0, 1], and for that parameter we used a logistic reparametrization. Relying on

invariance of maximum likelihood estimators one then obtains the estimates for the original

parameters. Application of the Delta method (details not shown) allows one to compute

their standard errors.

Note that, due to the left truncation and the right censoring in the observed data, the

estimated latent proportion of women experiencing the disease in their lifetime is around 18%

(recall that our model does not impose any constraint on the upper bound of the subjects’
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lifespan). One may compare such rate to the estimated lifetime risk of breast cancer, that

has been estimated as being one out of eight, or 12.5%.[66] Although the observed proportion

of diagnoses in the sample was around 4%, the model reconstructs the frequency of many

more lifetime diagnoses than those observed during our limited follow-up.

The start of the asymptomatic detectability is on average close to the age of 65 years,

ranging between 20 and 110 with 95% estimated frequency. The numbers 20 and 110 are the

values taken by the two consistent estimators for the percentiles 2.5% and 95% of the normal

distribution of TA. Consistency clearly follows from the continuous mapping theorem applied

to the consistent MLEs. This is a wide interval; in Section 1.4.3 we will see that including

some covariates in the model has the effect of reducing the marginal variability of TA.

The model suggests that the sojourn time ∆ is very short, lasting on average 7-8 months,

with an exponential tail. This result is quite different from the estimates from previous

studies, which suggest a mean sojourn time between 2 and 7 years [68]. The reason for

such small estimate for the sojourn time is possibly the lack of detailed information on

the examination results and on the kind of detection from our data (see our comment on

this in Section 1.2). Indeed, we should also recall that TA and TS have been defined here

starting from the dates of the observed diagnoses, while they capture the start of detectability.

Thus a shorter sojourn time may be consistent with an over-estimation of TA, and/or an

under-estimation of TS.

We now move to more flexible and informative models.

1.4 More flexible models

1.4.1 Approximate Bayesian Computation

As we have pointed out, the calculation of the observed data likelihood for latent processes

with large amounts of missing data can be challenging even for relatively simple models. In
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general, every small change to the model definition requires the observed likelihood function

to be computed by hand and implemented. For example, the inclusion of a dependence

structure between TA and ∆ requires solving complicated integrals through numerical approximations

that determine loss of accuracy, as well as a significant increase in the difficulty by the

optimization algorithms in identifying the maximum likelihood estimates.

An estimation procedure that allowed one to quickly implement several different models

would greatly increase the flexibility in modeling. This is possible by implementing a

likelihood-free approach, where the observed likelihood function does not need to be calculated

explicitly, nor maximized. A likelihood-free approach that seems particularly promising for

disease history models is Approximate Bayesian Computation (ABC) [57].

The first step of ABC consists of setting prior distributions for the model parameters.

One then samples a parameter vector from their prior distribution, and generates a dataset

from the corresponding model. In the basic version of ABC, if the simulated data are “close

enough” to the real data, that parameter combination is retained and included in the sample

of parameter values that approximates the posterior distribution of the parameters given the

data. Indeed, implementing this procedure a very large number of times (here 200, 000) and

selecting only a very small proportion (called tolerance or retention rate) of samples, then

allows one to approximate the parameters’ posterior distribution.

It is also common to post-process the ABC output to improve the selected posterior sample

by applying a so-called “regression adjustment.” The idea is to regress each parameter (or

to perform a multivariate regression with all the parameters as response vector) on the set of

summary statistics and to apply a correction based on the difference between observed and

simulated summaries [6, 37].

Measuring the distance between two datasets (observed vs. model generated in ABC)

is not trivial: one should use informative summary statistics of the data, which reduce

the dimensionality of the data but still retain the information needed to perform accurate
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inference on the parameters. Indeed, only by using sufficient statistics and by conditioning on

the event that they are identical (not close) in the observed data and in the model generated

data, one would ensure that the sample of retained parameter values represents a sample

from their exact posterior distribution [37].

There is a vast literature about the choice of summary statistics in ABC, and a variety

of approaches have been proposed [14]. Most of the methods, however, do not propose any

constructive procedure, but only suggest techniques to select a subset of summary statistics

among a bigger set of proposals (subset selection methods) or to combine them to reduce the

dimensionality (projection methods).

In our models we include the three binary covariates described in Section 1.2, which

partition the subjects into eight groups. We consider a set of the same summary statistics

computed on each of the eight groups.

In particular, we build “Metric 1” to measure the dissimilarity between the observed and

a model-generated dataset, based on a total of 32 summary statistics (4 for each of the eight

groups of women): proportion of observed diagnoses, proportion of observed symptomatic

detections among the total number of observed detections, median age at asymptomatic

detection, and median age at symptomatic detection. The distance between the two datasets

is then defined as the L2-distance between the standardized summary statistics of the two

datasets. The standardization is performed by dividing each summary statistic by a robust

estimate of its standard deviation (the median absolute deviation).

“Metric 2” refines “Metric 1” by also considering the entire distribution of the observed

age at detection. This metric makes use of the classical statistical test for the comparison

of two proportions and of the Kolmogorov-Smirnov test to assess if two observed samples

can be considered to be generated by the same underlying distribution. We perform the first

16 tests to compare the proportions of observed detections and of symptomatic detections

in each of the eight covariate groups. Then, we perform 16 additional tests to compare the
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distributions of the age at asymptomatic and symptomatic detection, again for each group.

We believe that the test statistics themselves or the corresponding p-values could provide

a good measure of the distance between two objects (two proportions or two distributions,

depending on the test). There are many ways to combine the test outputs (test statistics or

p-values) into a distance function between the two datasets. In section 1.6 we briefly explore

the relative performance of “Metric 1” and a version of “Metric 2” on two simulated datasets,

and “Metric 1” seems to produce estimates of the parameter values which are closer to the

true values.

In Section 1.4.3 we present the results obtained by using “Metric 1” while fitting different

models to the motivating data. The retention (tolerance) rate is chosen through a leave-one-out

cross-validation procedure, which is implemented and available in the R package abc [23]. We

make use of local linear regression to correct the posterior samples by regression adjustment.

In the simulation process, we generate the screening examinations with the same schedule

of the real screening program, and assuming a constant adherence rate of 0.6 to the prescribed

examinations [58]. Hence, the screening parameters are fixed, and not object of inference. For

the subjects belonging to the susceptible proportion, the disease history is then overlapped

with the attended examinations to produce the observed age at detection (if it happens inside

the interval of follow-up), the detection mode (symptomatic or asymptomatic), and the age

at last negative examination. For the non-susceptible subjects, we identify the age at their

last negative examination, if there is one, before the end of the follow-up. We thus obtain a

dataset containing information that has similar structure to that of the observed data.

To make the simulated data as comparable to the observed ones as possible, we keep

approximately the same distribution for the covariates. The approximation comes from the

fact that one needs to generate a slightly larger sample of women because some of them

will experience a symptomatic detection of the disease before the age at entry in the study,

and therefore will be excluded from the effective sample. Through some simulations, we
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estimated this proportion to be roughly 4% of women, so for each simulated sample we

generated 78051/0.96 ≈ 81305 women. We assign the 78051 observed covariate vectors to

the first 78051 women in the simulated sample, and take a random sample of the covariate

vectors for the remaining 81305− 78051 = 3254 women.

Note that the ABC procedure described above, which is known as ABC-rejection algorithm,

is very computationally demanding since only a small fraction of the generated samples

are retained and contribute to the posterior distribution approximation. There exist many

refinements of the ABC algorithm, aimed at reducing the inefficiency due to sampling from

very uninformative prior distributions by exploiting the information of already accepted

parameter values [40].

These refined algorithms, such as ABC-MCMC [41] and ABC-SMC [56], could bring a

substantial computational gain but have the main drawback of not being easy parallelizable

on multiple cores. Having the possibility to work on a server with many processors, we

decided to implement the ABC-rejection procedure. For the implementation of all models

we used the software R [51] on a server with 176 cores.

1.4.2 Models

Recall the three binary covariates described in Section 1.2, X1 =“at least one birth”, X2 =“high

level of education” and X3 =“family history of cancer”, all coded as 0 = no and 1 = yes.

We posit models such that the “susceptible” proportion depends on the observed covariates

x = (x1, x2, x3) through the logit link:

p(x) =
ep0+p1x1+p2x2+p3x3

1 + ep0+p1x1+p2x2+p3x3
.

For the susceptible (developing the disease) subjects, recall that the evolution of the

disease is described by the time to its asymptomatic detectability TA and by its sojourn time
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∆. We let the mean of TA depend on the covariates linearly, while the variance of TA is

assumed constant across covariate groups.

The distribution of ∆ is defined conditionally on the observed value of TA, and it may

reflect the effect of the covariates but only indirectly (see below). Note that any form of

dependence between TA and ∆ is easily manageable through ABC, since the simulated value

of TA is already available when one generates the value of ∆ from the distribution of ∆|TA.

We have explored several different models. We do not report all details, such as the

prior distributions, for all of them here. Parameters associated with covariates had an

uninformative prior distribution centered at zero. The prior distribution for the mean of TA

in the baseline group, denoted with β0, was chosen to be N(65, 10): indeed, from the literature

and from the simple model in Section 1.3.1 (see MLEs in Table 1.3) , we expect a mean of 65

to be reasonable[13] but we still keep a variance large enough to let the data bring in relevant

information on β0. Similarly, p0 represents the proportion of women who develop the disease

in the baseline group and we assign to it a rather informative prior: p0 ∼ logit
(
Beta(3, 21)

)
around the lifetime risk as described above. Indeed, the prior distribution corresponds to a

woman in the baseline group has on average a probability of 3/(3 + 21) = 0.125 of belonging

to the diseased (susceptible) group.

Here below is the list of nine models. Note that the number of parameters to be estimated,

indicated below between square brackets, is always equal to 4, for the non-susceptible proportion

regression, plus 7 or 8 for the disease history.

1. Normal + Exponential [4+7=11 parameters]

TA | β0, ..., β3, σ ∼ N(β0 + β1x1 + β2x2 + β3x3, σ
2);

∆ | {TA = tA}, γ0, γ1 ∼ Exp(eγ0+γ1tA).
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2. Normal + Exponential (log-scale) [4+7=11 parameters]

TA | β0, ..., β3, σ ∼ logN
(
µ = m

( s2

m2
+ 1
)− 1

2 , σ2 = log
( s2

m2
+ 1
))

;

∆̃ = log(TS)− log(TA) | {TA = tA}, γ0, γ1 ∼ Exp(eγ0+γ1tA),

where m = E(TA) = β0 +β1x1 +β2x2 +β3x3 and s2 = V ar(TA). This parameterization

is used to let the variance of TA (in the original scale) be independent of covariates, i.e.

the same across groups.

3. Bivariate Normal [4+8=12 parameters]

(TA,∆)| β0, ..., β3, µ∆, σ1, σ2, ρ ∼ N2(µ,Σ),

where µ = (β0 + β1x1 + β2x2 + β3x3, µ∆) and Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .

4. Bivariate Normal (log-scale) [4+8=12 parameters]

Let ∆̃ = log(TS)− log(TA). We assume

(log(TA), ∆̃) | β0, ..., β3, µ∆, σ1, σ2, ρ ∼ N2(µ,Σ),

where µ = (m
(
s2

m2 + 1
)− 1

2 , µ∆) and Σ =

 log
(
s2

m2 + 1
)

ρ log
(
s2

m2 + 1
) 1

2σ2

ρ log
(
s2

m2 + 1
) 1

2σ2 σ2
2

 .
As in all the previous models, again here m = E(TA) = β0 +β1x1 +β2x2 +β3x3 depends

on the covariates, while s2 = V ar(TA) does not.
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5. Gamma + Weibull [4+8=12 parameters]

TA | β0, ..., β3, σ ∼ Gamma
((µ(x))2

σ2
,
µ(x)

σ2

)
;

∆ | {TA = tA}, γ0, γ1, k ∼ Weibull
(
λ(tA), k

)
,

where E(TA) = β0 + β1x1 + β2x2 + β3x3 and λ(tA) = eγ0+γ1tA and k has a prior

distribution that includes one (corresponding to the exponential case).

6. Gamma + piecewise Exponential [4+8=12 parameters]

TA | β0, ..., β3, σ ∼ Gamma
((µ(x))2

σ2
,
µ(x)

σ2

)
;

∆ | {TA = tA}, λ1, λ2, λ3 ∼ Exp(λ1 · 1(tA ≤ 55) + λ2 · 1(55 < tA ≤ 65) + λ3 · 1(tA > 65),

where E(TA) = µ(x) = β0 + β1x1 + β2x2 + β3x3.

7. Rescaled Beta + Exp [4+7=11 parameters]

TA | β0, ..., β3, σ ∼ 100 · Beta(α, β);

∆ | {TA = tA}, γ0, γ1 ∼ Exp(eγ0+γ1tA),

where E(TA) = 100 · α
α+β

= β0 + β1x1 + β2x2 + β3x3 and σ2 = 1002 · αβ
(α+β)2(α+β+1)

.

8. Rescaled Beta + Weibull [4+8=12 parameters]

TA | β0, ..., β3, σ ∼ 100 · Beta(α, β);

∆ | {TA = tA}, γ0, γ1, k ∼ Weibull
(
λ(tA), k

)
,

where E(TA) = 100 · α
α+β

= β0 + β1x1 + β2x2 + β3x3, σ2 = 1002 · αβ
(α+β)2(α+β+1)

,

and λ(tA) = eγ0+γ1tA . Here, too, k has a prior distributions that includes one.
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9. Rescaled Beta + piecewise Exponential [4+8=12 parameters]

TA | β0, ..., β3, σ ∼ 100 · Beta(α, β);

∆ | {TA = tA}, λ1, λ2, λ3 ∼ Exp(λ1 · 1(tA ≤ 55) + λ2 · 1(55 < tA ≤ 65) + λ3 · 1(tA > 65),

where E(TA) = 100 · α
α+β

= β0 + β1x1 + β2x2 + β3x3, σ2 = 1002 · αβ
(α+β)2(α+β+1)

.

Note that both the normal and the gamma distributions have decreasing densities for

older ages (with the gamma density decreasing more slowly, in addition to not imposing

symmetry and not allowing for negative values). As the incidence is expected to always

increase with age, these densities capture the phenomenon through their left tails. Note also

that very limited data are available for older ages, due to right censoring which also includes

death. The three models based on the rescaled beta density should provide a more realistic

shape for the right tail of TA.

In the next section we discuss the results of the ABC-based model selection procedure to

choose among these models.

1.4.3 Model selection and results

To select the best model among the ones described above, we simulate 200,000 samples from

each model [39, 57]. Using the metric described above, we compute the distance between each

simulated sample and the observed one. Then, from the pooled set of samples produced by

all the models, we select the samples that have the smallest distance from the observed data,

keeping track of which model generated each sample. The resulting sample of parameter

values and model index can be regarded as a sample from the approximate joint posterior

distribution of the parameter and the model index. The number of retained samples generated

by a specific model, divided by the total number of retained samples, thus represents an

approximation of the posterior probability of that model. For a more detailed description of
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this procedure, see Algorithm 1 in [39].

Since the initial number of samples (200,000) was the same for each model, we are

assuming a uniform prior distribution over the nine models. Figure 1.3 shows the prior

and approximate posterior probabilities of each model, and Table 1.4 contains the numerical

values of the approximate posterior probabilities. Model 6 and Model 9 clearly show the

highest (by far) posterior probabilities (0.295 and 0.267).

Figure 1.3: Prior and posterior probabilities of the nine models (global retention rate =
0.005).

Model 1 2 3 4 5 6 7 8 9
Posterior probability 0.104 0.094 0.022 0.011 0.058 0.295 0.074 0.075 0.267

Table 1.4: Posterior probabilities of the nine models (global retention rate = 0.005).

The ABC model choice procedure introduced above presents some quite severe potential

pitfalls. Indeed, as it has been highlighted in [39], in many cases it may even fail to converge

to a Dirac distribution on the true model as the size of the observed dataset grows to infinity.

In other words, the so-called “curse of insufficiency” [39] is likely to occur, thus leading to
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arbitrariness in the construction of the Bayes factor (and thus of the posterior probabilities

of the models).

Given these concerns about the algorithm illustrated above, some alternative techniques

to conduct model choice in the context of ABC have been proposed. We focus on an approach

based on random forests that has been introduced in [50]. For an introduction to random

forests, which are a machine learning tool consisting of the aggregation of simple classifiers

(called trees) that can be used both for classification and regression purposes, we refer to

Chapter 15 of [28]. In [50], model selection is reformulated as a classification problem, and

is split into two steps.

The first step trains a random forest that predicts, for each possible value of the summary

statistics, the model that best fits the data. In other words, the random forest is a classifier

that associates to each vector of summary statistics a predicted model among the nine

proposed. The training set is represented by the pooled set of simulations performed for

the nine models. Once the classifier is trained, the predicted model for the set of observed

summary statistics represents the selected model, i.e. the model that obtained the majority

of votes among the classification trees of the random forest. For more details on this step

we refer to Algorithm 2 in [50]. Table 1.5 shows that, given a trained random forest made

of 1000 trees, Model 9 obtained the majority of votes (392) and it is, therefore, the model

selected for having the best fit to the observed data.

Model 1 2 3 4 5 6 7 8 9
Votes 80 42 14 14 62 270 74 52 392

Table 1.5: Counts of votes for the nine models out of a total of 1000 trees composing the
random forest.

In the second step, the posterior probability of the selected model is computed through

a secondary random forest. The binary model prediction errors (Model 9 vs all the other

models) are computed for each observation using the out-of-bag classifiers (see [28] for the
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definition of out-of-bag classifier in a random forest). This secondary random forest, which

is again trained on the pooled set of simulations performed for the nine models, performs a

regression of the prediction error on the summary statistics. Lastly, the posterior probability

of the selected model is computed as the random forest regression estimate associated to the

vector of observed summary statistics. A detailed explanation of this second step can be

found in Algorithm 3 of [50]. In our case, this procedure resulted in a posterior probability

for Model 9 equal to 0.381.

The results from this alternative procedure for model selection disagree slightly with those

from the simpler algorithm described at the beginning of this section. However, the two

approaches agree on the best two models being Model 6 and Model 9. Given the motivation

provided in the literature to consider the approach based on random forests more reliable

(see [39]), we now describe the results of the ABC estimation procedure for Model 9, the

“Rescaled Beta + piecewise Exponential” model.

The metric used to quantify the distance between two samples was based, for each

covariate-defined stratum, on the proportion of diagnoses and of symptomatic detections, and

on the median age at asymptomatic and symptomatic detection (“Metric 1”, see also Section

1.4.1). We assumed the following independent prior distributions for the model parameters:

β0 ∼ N(0.65, 0.05), βi ∼ N(0, 0.25), for i = 1, 2, 3, σ ∼ Unif(0.02, 0.25), λi ∼ Unif
(
0.1, 4

)
, for

i = 1, 2, 3, p0 ∼ logit
(
Beta(3, 21)

)
, pi ∼ Unif(−2, 2), for i = 1, 2, 3.

A retention (or tolerance) rate of 0.02 was chosen via a leave-one-out cross-validation

procedure, by comparing the quality of several posterior estimates obtained using different

tolerance rates. The posterior distributions shown in Figure 1.4 are thus based on a sample

of 200, 000× 0.02 = 4, 000 selected parameter values.

We note that the posterior distributions of the model parameters are much more concentrated

than the prior distributions. The only exception is parameter λ1, whose posterior distribution

is still quite flat. This lack of posterior information is probably due to the small number of
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Figure 1.4: Prior (red dashed line) and local linear regression adjusted approximate posterior
(blue histogram and solid line) densities for each parameter of the “Rescaled Beta + piecewise
Exponential” model.

cases observed among women younger than 55 years old. Table 1.9 shows the posterior modes

and the 95% intervals corresponding to the regions of the approximate posterior distributions

that have the highest density (HPD intervals).

Some interesting observations on the effect of the covariates arise from the estimated

posterior distributions: (i) women with at least one child tend to have a lower probability of

ever experiencing breast cancer, and a later TA if they do (posterior distributions for p1 and
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Parameter β0 β1 β2 β3 σ λ1

Mode 0.698 0.028 -0.087 -0.027 0.135 1.203
HPDI (0.637, 0.744) (-0.017, 0.065) (-0.163, -0.009) (-0.087, 0.026) (0.058, 0.179) (0.374, 3.582)

Parameter λ2 λ3 p0 p1 p2 p3

Mode 1.854 3.015 -1.621 -0.228 0.015 0.147
HPDI (1.218, 3.419) (2.258 3.914) (-2.171, -1.276) (-1.118 0.318) (-0.989, 0.726) (-0.528, 0.872)

Table 1.6: Posterior modes and the 95% highest posterior density (HPD) intervals.

β1); (ii) having a family history of cancer has the opposite effects, according to the posterior

distributions for p3 and β3; (iii) women with a high level of education experience breast

cancer earlier than women with a lower education level, but this variable is probably not

very relevant in modifying the susceptible proportion p (posterior for p2 almost symmetric

around 0).

To gain a clearer idea on how covariates influence the mean of TA, which is defined as

µ(x) = β0 + β1x1 + β2x2 + β3x3, we may combine the posterior distributions of β0, β1, β2 and

β3 according to the covariate combination of each group. The resulting boxplots are shown

in the left panel of Figure 1.5. We can see that covariates do indeed play an important role

in determining E(TA), whose estimated posterior median ranges from a minimum of 58 to a

maximum of 72 years old.

Similarly, combining the posterior distributions of p0, p1, p2 and p3, we can compute the

posterior distribution of the susceptible proportion p(x) in the eight covariate groups. As we

can see in right panel of Figure 1.5, the probability for a woman of developing breast cancer

varies across groups. In particular, its median ranges from a minimum of about 11%− 12%

for women in groups 5 and 7 (having at least one birth and with no family history of cancer)

to a maximum of about 17% − 18% for women in groups 2 and 4 (without any birth and

with family history of cancer).

Once an approximation of the posterior distribution of the parameters is available, it is

also possible to compute approximate predictive distributions for TA in each covariate group,

as well as for ∆ given the observed value of TA. Given a specific covariate configuration, we
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Figure 1.5: Approximate posterior distribution of the mean age at
asymptomatic detectability µ(x) and of the susceptible proportion
p(x) across covariate groups.

Group X1 X2 X3

1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Table 1.7: X1= At
least one birth (0:No,
1:Yes); X2= Education
level (0:Low/Medium,
1:High); X3= Family
history of cancer (0:No,
1:Yes).

have a joint posterior sample for the mean and for the standard deviation of TA, {(µi, σi), i =

1, . . . , 4000}. For each couple (µi, σi), we then draw a value of tiA from the model, i.e. we

generate

tiA | µi, σi
ind∼ 100 · Beta

(
µi, σi

)
, for i = 1, . . . , 4000,

where Beta(µi, σi) denotes a Beta random variable having mean µi and variance σ2
i . The set of

generated values {tiA, i = 1, . . . , 4000} then represents a sample from the ABC approximation

of the predictive distribution of TA in that group [9].

We can repeat this procedure for each covariate group, obtaining the eight distributions

shown by the boxplots in the left-hand side of Figure 1.6.

Similarly, the posterior sample of size 4,000 for λ1, λ2 and λ3 can be used to generate a

sample from the approximate predictive distribution of ∆ given TA (see the right-hand side
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of Figure 1.6), by using:

δi1 | {TA ≤ 55}, λi1
ind∼ Exp(λi1), for i = 1, . . . , 4000;

δi2 | {55 < TA ≤ 65}, λi2
ind∼ Exp(λi2), for i = 1, . . . , 4000;

δi3 | {TA > 65}, λi3
ind∼ Exp(λi3), for i = 1, . . . , 4000.

Note that these results suggest that ∆ decreases when TA increases, which is in contrast

with the medical literature [67]. However, such decrease is quite small in size.

Clearly, the predictive distributions of TA and ∆ cannot be directly compared with the

observed data. In Section 1.6.6 we provide an example where, under simplified assumptions,

one can compute the distributions of the observed age at asymptomatic and symptomatic

detection analytically. One way to explore the goodness of fit of these models would be

to generate data from them and to compare such data to the observed data through some

summaries. However, this is exactly how ABC has produced the estimated model parameters,

so that the algorithm is indeed already based on a goodness-of-fit maximizing procedure (see

also Section 1.4.4). Clearly, additional examination of the data generated from the estimated

model could be entertained.

Relatedly, in the next section we analyze the effect of different screening policies (in terms

of observed detections) given the estimated latent disease process.

1.4.4 Comparing alternative screening strategies

After estimating the parameters of the models, one can finally use this information to compare

different screening strategies. In particular, knowing the distribution of TA and ∆ can help

identify an optimal screening strategy.

We now compare several screening strategies, which differ with respect to the gap between

consecutive examinations, the proportion of attended examinations out of the total number
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Figure 1.6: Predictive distributions for TA in each covariate group and for ∆ given the
observed value of TA.

of invitations (adherence), and the screening age range. In particular, we start from the

screening strategy offered in Lombardy (denoted by “Screening strategy 1”) and we measure

the effect of varying some of its features on the total number of observed detections during

the screening age interval, the percentage of asymptomatic detections, and the median age

at observed asymptomatic and symptomatic detection. The underlying assumption (as

supported by many medical studies, see e.g. [46]), is that the moment in which a tumor

is detected could make a difference on the outcome of the disease. Indeed, while here we

have not discussed post-detection treatment and outcomes, detecting the disease earlier rather

than when symptoms would have emerged, i.e. at a less advanced stage, should allow one to

treat it with more success.

The set of six screening strategies that we have considered is shown in Table 1.8. All

the screening strategies are applied to a sample of size 100,000 generated from the estimated

predictive distributions for the “Rescaled Beta + piecewise Exponential” model. In the

38



1.4. MORE FLEXIBLE MODELS

simulated samples we assume an administrative follow-up interval that coincides with the

screening interval (that is, 50-69 or 50-74 depending on the policy), except for a small

proportion of about 5% of the subjects, for whom censoring for other causes occurs earlier.

As expected, reducing the gap between consecutive screening examinations from two years

to one year results in an increase in the percentage of asymptomatic detections out of all

detections by 72% − 76% (from 14.0% to 24.7% or from 18.0% to 30.9%), depending on

adherence. Clearly, such an increase would come with a substantial increase in the cost of

the program.

Another possibility to increase the percentage of tumors diagnosed before becoming

symptomatic would be to increase the adherence to the screening program. From our results

we estimate that increasing it from the current level of about 60% to an adherence of 80%

would make the proportion of asymptomatic detections increase by 25%− 29%. Thus, even

without modifying the screening strategy, it seems crucial to find ways to raise the awareness

of women on the importance of breast cancer screening. As adherence likely depends on

subjects’ covariates and is not constant over time, campaigns to encourage women to attend

the screening examinations regularly should target categories of women who tend to adhere

less [12].

Intensifying the screening examinations (either by reducing the gap or by increasing the

adherence) does not seem to imply a relevant difference on the age at observed asymptomatic

and symptomatic detections, but only on the total number of observed diagnoses.

Another observation concerns the effect of extending the end of the screening interval

from the age of 69 to the age of 74 years old (this change has been recently implemented in

the Lombardy screening program). The total number of tumors detected during the screening

period (which is longer) increases by 30%. However, the proportion of asymptomatic detections

slightly decreases by around 4%−6%. We can explain this result by recalling that tumors at

older ages are (slightly) faster in becoming symptomatic according to our model, so screening
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in the age range 69-74 is less “efficient” (produces slightly fewer asymptomatic detections)

than screening at younger ages.

We should also point out that, despite the small values of the (latent) quantity ∆

predicted by our model, the difference between the median age at observed asymptomatic

and symptomatic detections is around 3 years, similar to the gap observed in the motivating

data. Such observed difference seems to be due to the fact that women over 69 (or 74 with

the new screening policy) are not screened, and therefore detections that occur after that

age can only be symptomatic, making the median age at observed symptomatic detection

increase.

This also shows, once again, that the data filtered by the partial observation mechanism

do not give a clear picture of the underlying latent disease process in absence of a proper

inferential model. Indeed, for more details on the results see Table 1.8.

Screening % Dx % Median Age Median Age Median
Strategy Asymp Dx Asymp Dx Symp Dx Lead Time

(50-69, 2yrs, 60%) 5.45% 15.4% 59.99 62.65 0.370
(50-69, 2yrs, 80%) 5.61% 19.2% 59.92 62.39 0.362
(50-74, 2yrs, 60%) 7.25% 14.0% 62.33 65.38 0.342
(50-74, 2yrs, 80%) 7.37% 18.0% 62.18 65.25 0.326
(50-74, 1yrs, 60%) 7.36% 24.7% 62.27 65.50 0.321
(50-74, 1yrs, 80%) 7.42% 30.9% 62.62 65.62 0.328

Table 1.8: Observed summary statistics on a sample of size 100,000 generated from the
estimated “Rescaled Beta + piecewise Exponential” model under several different screening
strategies. The screening strategies are defined by the screening age range, the gap between
subsequent exams, and the overall adherence proportion.
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1.5 Discussion

We have proposed several parametric models to describe the natural history of breast cancer,

where the main events of interest are the start of asymptomatic detectability of the disease

and the symptomatic detection (TA and TS). The models differ in their parametric assumptions,

but they all share a cure rate structure that takes into account that a fraction of women

will never experience the disease in their lifetime. Estimating how long tumors stay in the

latent phase between time TA and time TS (i.e. estimating the sojourn time ∆) is of crucial

importance for planning an efficient screening policy.

We have obtained the distribution of these random quantities by estimating the model

parameters from data collected as part of a motivating study. While the results do seem to

provide useful information, they should be handled with some care given the described lack

of some information (and thus their reconstruction) in the available data.

Depending on the complexity of each model, we have employed a likelihood-based or

likelihood-free estimation procedure. Given the complex missing data structure, it has shown

to be very challenging and in most cases infeasible to obtain maximum likelihood estimates for

the model parameters. The calculation and the maximization of the observed data likelihood

rely on numerical algorithms, and even for relatively simple models they have been found to

be computationally unstable. The numerical approximation of the Hessian matrix used to

obtain standard errors for the parameters has also been found to be difficult.

Approximate Bayesian Computation (ABC) allowed us to perform both model selection

and parameter estimation without having to maximize nor calculate explicitly the observed

data likelihood function. However, we recall that inference based on ABC is subject to several

levels of approximation: (i) the metric chosen to assess the dissimilarity between generated

and observed data; (ii) the tolerance for acceptance of a generated parameter value; (iii) the

use of Monte Carlo to estimate the posterior distributions; and (iv) the use of post processing

adjustments [57].
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We experimented with two different metrics to evaluate the distance between simulated

and observed data and, based on some simulations, we chose one of them. One could try

to refine the way of calculating the distance between the two datasets by using different

statistical tests to measure the difference between the distributions of ages at observed

diagnosis. Another possibility to quantify the distance between the datasets may be to

consider the accuracy of a classification method implemented to distinguish between observed

and simulated data [27].

The results from the model in Section 1.3 and the model selected in Section 1.4 are not

directly comparable, since the MLEs obtained in Section 1.3 refer to a model that does not

include covariates. However, Table 1.3 shows that the MLEs reflect an average across groups

of the estimates found from the model with covariates, and a general agreement between the

two models can be appreciated. In Section 1.6 we compare the results from the two models

further.

Also, note that the time when asymptomatic detectability starts (TA) depends on the

accuracy of the technology used to perform the examination that, therefore, should be

the same for all the visits included in the estimation procedure. An improvement in the

examination technique could make TA move backwards and the length of the asymptomatic

detectability interval increase.

The theoretical distribution of the observed age at asymptomatic and symptomatic detection

can be computed analytically from a theoretical model, after superimposing the screening

examinations. In Section 1.6.6, we obtain the form of the distributions of the observed age at

detection (both symptomatic and asymptomatic) for such a model. The resulting expressions

are rather complicated, and in most cases simulations are probably a more suitable tool to

study the effect of the selection process on the observed detections under complex models

and screening strategies.

Summing up, in this work we have highlighted that latent (realistic) models for disease
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histories are challenging to develop and implement.

ABC is a very flexible and conceptually simple tool, that looks especially suitable in this

setting where it is relatively easy to generate data even from models that have an intractable

observed data likelihood.

We should point out that goodness-of-fit of the models here is evaluated conditionally

on the choice of the prior distributions for the parameters of each model. Therefore, it is

possible that a model is penalized by a poor choice of the prior or, on the contrary, that

a model performs well thanks to a good prior choice. In particular, a change in the prior

distributions may lead to a different result in ABC model choice. Note that model selection

between two non-nested parametric models could also be performed by using Vuong’s test

[65]. However, Vuong’s test is based on the ratio of the likelihood functions under the two

models, and as a consequence also requires that one be able to compute them.

Our models have assumed perfect screening sensitivity and specificity. However, note

that they can also be extended to estimate them from the data, and to take into account the

dependence between the subject-specific adherence pattern and the latent disease process.

These extensions could not be implemented on the motivating data, given that detailed

information about screening invitations and examinations results was not available to us.

We have conducted a small experiment in this direction. We have extended the selected

model by introducing an additional parameter for the sensitivity of the screeening examinations.

The ABC estimation procedure based on the usual “Metric 1” did not work well. Despite

using quite an informative prior for the new parameter (Beta with mean equal to 5/6),

stability issues in the estimation of the susceptible proportions emerged. This could be due

to the choice of metric distance (the summary statistics) or to the lack of information in the

data. While in general sensitivity may be identifiable, these results suggest that the choice of

the metric to be used in ABC may make the identifiability of some parameters more difficult.

In addition, we have inserted in the data generation process a hard coded value of sensitivity
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of 0.9, and that did not seem to change the posterior distributions of the other parameters

of the model.

Moreover, access to data with a longer follow-up could allow to study the effect of screening

and treatments on survival. In general, it will be of great interest to apply the models and

methods that we have developed to other, similar datasets to confirm the information on the

latent process that we have obtained here.

Changing the way in which event times are observed, for example by changing the

screening schedule, does not impact the latent process. A possible way to check whether these

models describe the latent process well could be to also use data collected under different

screening policies or observed screening frequencies. For example, we know that the Covid-19

pandemic is causing a consistent drop in screening adherence. Therefore, it will be important

to apply these models to data collected by screening programs during, and after this period.

In this work we did not mention overdiagnosis due to mammography screening, that is

the detection of a breast cancer that would not be detected during the woman’s lifetime in

the absence of screening. In other words, an overdiagnosed cancer would have never become

symptomatic, because of its very slow evolution, and would have never led to death. Many

authors discussed this issue and proposed several methods to quantify the risk of overdiagnosis

[7, 48, 4]. A possibility to extend our models to address such question might be to implement

a cure rate structure on ∆ for the in-screening detected cases or, equivalently, to assign a

positive probability to the event {TA < +∞, TS = +∞}. Identifiability and estimability for

such extended models, both in general and for even large sample sizes, are open questions

that will need to be addressed.
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1.6 Additional analyses and results

1.6.1 Observed data likelihood for the model in Section 1.3.1

In this Section, we present the derivation of the observed data likelihood function of the model

studied in Section 1.3.1. As already mentioned, we have three kinds of data configurations:

(i) for a subject with an observed symptomatic detection at age ts,

Li = p

∫ ts

l

fTA,TS(x, ts)dx = p

∫ ts

l

fTA(x)fTS |TA(tS|x)dx

= p

∫ ts

l

1√
2πσ2

e−
(x−µ)2

2σ2 λe−λ(tS−x)dx

= p λ e
λ2σ2

2
+λ(µ−tS)

(
Φ(tS, µ+ λσ2, σ2)− Φ(l, µ+ λσ2, σ2)

)
= p fTS(tS)

(
1− Φ(l, µ+ λσ2, σ2)

Φ(tS, µ+ λσ2, σ2)

)
= p

(
fTS(tS)− eλ(l−tS)fTS(l)

)
,

where l is the smallest possible value for the asymptomatic detectability, which can

be the age at the last negative examination, if there is one, or the lower bound of the

support of TA;

(ii) for a subject with an observed asymptomatic detection at age d,

Li = p

∫ d

l

∫ ∞
d

fTA,TS(x, y)dydx = p

∫ d

l

∫ ∞
d

fTA(x)fTS |TA(y|x)dydx

= p

∫ d

l

∫ ∞
d

1√
2πσ2

e−
(x−µ)2

2σ2 λe−λ(y−x)dydx = p

∫ d

l

1√
2πσ2

e−
(x−µ)2

2σ2 eλx
∫ ∞
d

λe−λydydx

= p

∫ d

l

1√
2πσ2

e−
(x−µ)2

2σ2 eλxe−λddx = p

∫ d

l

1√
2πσ2

e−λd+
λ(σ2λ+2µ)

2 e−
(x−(µ+σ2λ))2

2σ2 dx

= p e
λ2σ2

2
+λ(µ−d)

(
Φ(d, µ+ λσ2, σ2)− Φ(l, µ+ λσ2, σ2)

)
= p

fTS(d)− eλ(l−d)fTS(l)

λ
,

where l is the smallest possible value for the asymptomatic detectability, which can
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be the age at the last negative examination, if there is one, or the lower bound of the

support of TA;

(iii) for a subject without an observed diagnosis at the censoring time c,

Li = (1− p) + p
(∫ c

l

∫ ∞
c

fTA,TS(x, y)dydx+

∫ ∞
c

∫ ∞
x

fTA,TS(x, y)dydx
)
,

where

∫ c

l

∫ ∞
c

fTA,TS(x, y)dydx = e
λ2σ2

2
+λ(µ−c)

(
Φ(c, µ+ λσ2, σ2)− Φ(l, µ+ λσ2, σ2)

)
=
fTS(c)− eλ(l−c)fTS(l)

λ
,

and

∫ ∞
c

∫ ∞
x

fTA,TS(x, y)dydx =

∫ ∞
c

∫ ∞
x

1√
2πσ2

e−
(x−µ)2

2σ2 λe−λ(y−x)dydx

=

∫ ∞
c

1√
2πσ2

e−
(x−µ)2

2σ2

∫ ∞
x

λe−λ(y−x)dydx =

∫ ∞
c

1√
2πσ2

e−
(x−µ)2

2σ2 dx = 1− Φ(c, µ, σ2).

Note that, this contribution is equal to Li = (1 − p) + p
∫∞
l

∫∞
c
fTA,TS(x, y)dydx.

However, from the model assumptions, TA < TS with probability one, and the integral∫∞
c

∫ x
c
fTA,TS(x, y)dydx takes the value zero.

Lastly, we compute the probability of the conditioning event (entry requirement for the

motivating study):

ci = P (TS > Age at entry|Age at entry)

= (1− p) + p P (TS > Age at entry|Diseased,Age at entry).
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Denoting by f the age at entry in the program, we have that

P (TS > Age at entry|Diseased,Age at entry) = 1−
∫ f

−∞

∫ f

x

fTA,TS(x, y)dydx

= 1−
∫ f

−∞
fTA(x)

∫ f

x

λe−λ(y−x)dydx = 1−
∫ f

−∞

1√
2πσ2

e−
(x−µ)2

2σ2

(
1− eλ(x−f)

)
= 1− Φ(f, µ, σ2) + e

λ2σ2

2
+λ(µ−f)Φ(f, µ+ λσ2, σ2) = 1− Φ(f, µ, σ2) +

fTS(f)

λ
.

The observed data likelihood is the product of the subjects’ contributions, divided by the

probability of the conditioning event: L =
∏n

i=1
Li
ci

.

1.6.2 ABC vs MLE

We compare the ABC approximate posterior distributions to the MLEs obtained for the

model described in Section 3.1 of the article, the “Normal + Exponential” model without

covariates.

Figure 1.7 shows that the ABC approximate posterior distributions are concentrated on

regions of the parameters’ supports which are not far from the confidence intervals around

the maximum likelihood estimates. Only the approximate posterior distribution for λ seems

to overestimate its magnitude, while those for µ, σ and p show a substantial agreement with

the MLEs.

Figure 1.8 shows that using the post-processing regression adjustment does not modify the

ABC results significantly. Importantly, although confidence intervals and posterior density

intervals are clearly different in their very meaning, the results from ABC suggest less precise

inference compared to the MLEs. This seems to be a potential drawback in the use of the

more flexible ABC approach, unless one is willing to impose more concentrated (and thus

potentially misleading) prior distributions for the parameters.
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Figure 1.7: Prior (red dashed line) and unadjusted posterior (blue histogram and solid line)
densities for each parameter of the “Normal + Exponential” model without covariates. The
green vertical lines represent the MLEs, together with their 95% confidence intervals (green
areas).

Figure 1.8: Prior (red dashed line) and local-linear-regression adjusted posterior (blue
histogram and solid line) densities for each parameter of the “Normal + Exponential” model
without covariates. The green vertical lines represent the MLEs, together with their 95%
confidence intervals (green areas).

1.6.3 ABC estimation for the “Gamma + piecewise Exponential”

model

We present the results of the ABC estimation procedure applied to Model 6, the “Gamma

+ piecewise Exponential” model, in order to compare them to the results of the “Rescaled

Beta + piecewise Exponential” model. We present the local-linear-regression adjusted results

obtained by using Metric 1. We assumed the following independent prior distributions for

the model parameters: β0 ∼ N(65, 100), βi ∼ N(0, 25), for i = 1, 2, 3, σ ∼ Unif(0, 25),

λi ∼ Unif
(
0.1, 4

)
, for i = 1, 2, 3, p0 ∼ logit

(
Beta(3, 21)

)
, pi ∼ Unif(−2, 2), for i = 1, 2, 3. A

retention (or tolerance) rate of 0.01 is chosen via a leave-one-out cross-validation procedure,
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as performed by the R function cv4abc. This means that the posterior distributions are

estimated from a sample of 200, 000× 0.01 =, 2000 retained parameter values.

Figure 1.9: Prior (red dashed line) and local linear regression adjusted approximate posterior
(blue histogram and solid line) densities for each parameter of the “Gamma + piecewise
Exponential” model.

The posterior distributions of the model parameters are much more concentrated than the

prior distributions (see Figure 1.9). The main observations about the effect of each covariate

that arise from the estimated posteriors are very similar to those highlighted in Section 1.4.3

for the “Rescaled Beta + piecewise Exponential” model: (i) women with at least one child
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tend to have a lower probability to experience breast cancer and a later TA when they do

(posterior distributions of p1 and β1); (ii) having a family history of cancer has the opposite

effect, according to the posterior distributions of p3 and β3; (iii) women with a high level of

education experience breast cancer around 10 years earlier than women with a lower level,

but they have a lower probability of getting diseased, according to the posterior distributions

for β2 and p2.

To gain a clear idea of how covariates influence the mean of TA, which is given by E(TA) =

µ(x) = β0 +β1x1 +β2x2 +β3x3, we again combine the posterior distributions of β0, β1, β2 and

β3 according to the covariate values combination of each group. The resulting boxplots are

shown in the left panel of Figure 1.10. We can see how covariates play an important role in

determining E(TA), whose median ranges from a minimum of 59 years old to a maximum of

76 years. The similarity with the left panel of Figure 1.5 is evident, showing an agreement

of the two models on the estimate of µ(x). The right panel of Figure 1.10 is the analogous of

the right panel of Figure 1.5 and shows how the probability for a woman of developing breast

cancer varies across groups. Its posterior median ranges from a minimum of about 10% for

women in groups 5 and 7 (having at least one birth and with no family history of cancer) to

a maximum of about 20% for women in groups 2 and 4 (without any birth and with family

history of cancer).

Similarly to what we have done in the previous section, we estimate the predictive

distributions for TA in each covariate group, as well as for ∆ given the observed value of TA.

Note how the distributions shown in Figure 1.11 are again consistent with the results obtained

from the “Rescaled Beta + piecewise Exponential” model. Indeed, the set of boxplots on the

left-hand side of the figure (predictive distributions for TA) looks very similar to that shown

in the left panel of Figure 1.6.

Similarly, the posterior sample of size 2,000 for λ1, λ2 and λ3 can be used to generate a

sample from the approximate predictive distribution of ∆ given TA (see the right-hand side
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Figure 1.10: Approximate posterior distribution of the mean age at asymptomatic
detectability µ(x) and of the susceptible proportion p(x), across the eight covariate groups,
for the “Gamma + piecewise Exponential” model.
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of Figure 1.11). From these results the two models substantially agree in concluding that

tumors with a later TA seem to evolve faster, and therefore to have a shorter ∆, than tumors

with earlier TA.

Figure 1.11: Predictive distributions for TA in each covariate group and for ∆ given the
observed value of TA, for the “Gamma + piecewise Exponential” model.

1.6.4 Results under different data assumptions

In this Section we show the results obtained under an alternative set of assumptions on the

data used to define symptomatic and asymptomatic detections.

Compared to the first set of assumptions, that we presented in the main body of the

article, here we obtain a larger proportion of asymptomatic detections. Indeed, we checked if

there was at least one screening examination within one year (previously we set this interval

to be less than six months) prior to the diagnosis. If yes, then the last one before the diagnosis

was assumed to have given a positive result and to have led to an asymptomatic detection.

In this case the date of detection was defined as the date of that positive exam.
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If, instead, there were no screening exams within one year of the date of diagnosis, we

classified that detection as symptomatic, and we set the date of detection equal to the date

of the most recent non-screening exam, if there were any within the six months prior to

diagnosis. If no exams at all were recorded in the six months prior to diagnosis, then we set

the date of the symptomatic detection back by a number of days equal to the average shift

applied to the symptomatic detections which had that information (72 days).

Once the dates of detection were defined, we picked the last negative exam as the most

recent exam performed at least one year before the detection. In other words, we imposed

a larger minimum distance (one year instead of six months) between the last negative exam

and the detection, as compared to the first set of assumptions.

By following these rules, we obtained 728 asymptomatic and 2306 symptomatic detections.

The total number of diagnoses is of course unchanged (3034).

We performed ABC parameter estimation for the “Gamma + piecewise Exponential”

model, using Metric 1 and applying the local-linear-regression adjustment to the posterior

sample. Figure 1.12 shows the posterior distributions obtained retaining 0.3% (chosen via

cross-validation) of the proposed parameter values. If one compares these distributions with

those shown in Figure 1.4 of the article, he can notice that the differences are negligible for

almost all parameters. The only small changes regard the posterior distributions of λ2 and

λ3, which are now slightly shifted towards smaller values (and thus towards larger values of

∆).

The resulting predictive distributions for TA are nearly identical to those presented in

the article, while the predicted values for ∆ are slightly larger than before (see Figure 1.13).

The predicted mean sojourn times are now 12 months, 8 months and 5 months, for TA ≤ 55,

55 < TA ≤ 65 and TA > 65 respectively.
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Figure 1.12: Prior (red dashed line) and local linear regression adjusted posterior (blue
histogram and solid line) densities for each parameter of the “Gamma + piecewise
Exponential” model.

Figure 1.13: Predictive distributions for TA in each covariate group and for ∆ given the
observed value of TA. 54
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1.6.5 Sensitivity analysis for the ABC metric

We compare the results when using Metric 1 and Metric 2 on a “target” sample dataset

simulated from the “Gamma + piecewise Exponential” model under some plausible parameter

values. Metric 2 was built by considering the L2-norm of the vector of the 32 test statistics,

as described in the main body of the article, i.e. selecting those parameter combinations that

lead to the minimum L2-distance between the test statistics and the point (0, . . . , 0).

For each metric, we report the results obtained with and without the local-linear-regression

adjustment. In each of the four procedures, the retention rate was chosen via a leave-one-out

cross-validation procedure. Table 1.9 shows the posterior modes together with the 95%

highest posterior density intervals (HPDI). The regression adjustment improves the performance

of Metric 1 drastically, while it does not have a clear effect for Metric 2, which shows in both

cases a poor fit to the (known) parameter values used to generate the data.

The regression-adjusted version of Metric 1 is strongly preferable over the other three

options, showing a great ability to recover all the parameter values with precision. Figure

1.14 shows a graphical comparison between the resulting posterior distributions and the true

parameter values. The plots show that the posterior distributions are located around the

true value of each parameter, and that in most cases have a much smaller variance than the

corresponding prior distribution.

This example confirmed our preference of using Metric 1 with regression adjustment in

the analysis of the motivating data.

1.6.6 Distribution of the observed age at detection within a screening

program: an analytical example

In this section, we show an analytical example of how the exact distributions of the observed

age at asymptomatic and symptomatic detections can be computed.
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Figure 1.14: True values (red vertical lines), prior (black dashed lines), and local linear
regression adjusted posterior (blue histograms and blue solid lines) densities obtained using
Metric 1 and the “Gamma + piecewise Exponential” model.
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True Metric 1 Metric 2
Unadjusted Adjusted Unadjusted Adjusted

β0 67 65.25 (49.06,79.55) 66.15 (57.53,74.75) 64.72 (52.15,75.53) 69.78 (67.89,71.58)
β1 -7 -0.27 (-9.76,8.16) -6.59 (-11.74,-0.21) -1.67 (-9.30 ,7.57) -13.73 (-16.08,-11.13)
β2 2 0.28 (-8.83,8.34) 1.24 (-3.22,5.92) 0.61 (-9.32,8.48) 5.87 (2.12,8.93)
β3 4 0.46 (-8.94,8.89) 4.26 (-2.86,10.22) 0.98 (-8.39,8.65) 5.49 (-0.48,10.75)
σ 13 19.65 (5.82,24.83) 13.95 (-1.87,21.69) 21.83 (10.46,24.98) 16.35 (8.94,19.96)
λ1 0.5 0.33 (0.10,3.75) 0.81 (-0.20,4.19) 0.66 (0.14,3.79) 0.69 (0.00,2.87)
λ2 0.3 0.16 (0.10,2.15) 0.29 (-0.01,1.17) 0.60 (0.11 ,2.25) -0.34 (-0.37,-0.29)
λ3 0.2 0.14 (0.10,1.60) 0.17 (-0.01,0.79) 0.47 ( 0.13 ,1.14) 0.06 (0.04,0.10)
p0 -1.9 -1.96 (-3.13,-1.04) -2.23 (-3.20,-1.29) -1.8 (-2.61,-0.98) -1.87 (-2.23,-1.43)
p1 -0.3 -0.29 (-1.96,1.16) -0.29 (-0.99,0.10) -0.31 (-1.75 ,0.97) -0.25 (-0.84,0.68)
p2 -0.03 -0.13 (-1.93,1.49) 0.04 (-0.84,0.70) 0.11 (-1.49 ,1.40) 0.16 (-2.09,2.38)
p3 0.2 0.12 (-1.67,1.77) 0.27 (-0.97,1.24) 0.21 (-1.19 ,1.71) 1.19 (0.86,1.66)

Table 1.9: Posterior modes and 95% highest posterior density intervals (HPDI).

Let B indicate the calendar time of birth. We assume a homogeneous Poisson process for

the births, so that conditionally on the number of events the times are distributed uniformly

over a time interval, which we take as being [Bmin, 0), i.e. B ∼ U(Bmin, 0).

Recall the usual definitions of the potential values (TA, TS) associated with each individual

in the population, where TA is the age at which asymptomatic detectability starts and TS

is the age at which symptomatic detectability starts (and symptomatic detection occurs if

disease is not detected asymptomatically prior to TS). In addition, TD indicates the age at

death in the absence of breast cancer. We assume stationarity with respect to birth time,

and in particular:

TA = +∞ w.p. (1− pA) and TA ∼ N(µA, σ
2
A) w.p. pA (call the latter density f ∗A);

TS = TA + ∆, such that ∆ ∼ Exp(λ) and ∆ ⊥⊥ TA;

TD ∼ N(µD, σ
2
D) and TD ⊥⊥ (TA, TS).

We describe the effect of the selection process that leads to the observation of either T̃A

or of TS, where T̃A is the age at asymptomatic detection as determined from a screening
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examination, as defined below.

Bias in the observed data arise from three sources: (i) Selection into the study (in

particular, B + TS > 0); (ii) Varying screening frequency and/or compliance as a function of

age; and (iii) Right censoring due to ending the study. Here we focus on the first kind.

The sampling design is as follows: at calendar time zero subjects enter the study. The

criteria for entry are being alive and not having shown symptoms of the disease yet. In other

words, {{B+TD > 0}∩{B+TS > 0}}. So subjects enter at the same time but with different

ages, as described by the random variable −B.

Once in the study, subjects are monitored by screening examination every gap years,

exactly. We let the screening examinations continue until death. Below we assume perfect

compliance to the screening visits. Each screening examination clearly occurs only if the

subject is alive at that time, i.e. if B+TD is greater than the calendar time of that screening

examination. At each examination the subject can be found to be negative (indicating that

TA has not occurred yet) or positive (indicating that TA is prior to the examinations schedule.

In the latter case the new variable T̃A is set equal to the time of the examination.

Notably, one reaches the examination time only if TS has not occurred yet. Indeed, if TS

occurs prior to the examination time, then one would not observe T̃A but rather TS itself.

For each observed T̃A we expect the value to always be larger than the corresponding

TA for that subject, due to the non-continuous monitoring performed by the screening. We

also expect an indirect effect of the selection into the study, since conditioning on TS > 0

carries with it a rather high (but not equal to one) probability that TA > 0 as well. The

screening process produces the observation of some T̃A instead of the TS that would have been

observed had screening not been performed. Overall, the overall effect of these phenomena

is not clear-cut.

Our goal is to derive, under the assumptions above, the exact distribution of the two

observed variables T̃A and TS.
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Distribution of the observed values of the variable TS.

We derive the distribution of the random variable TS|TS is observed. Let B = b. For any

t > −b, The event {TS ∈ [t, t+ dt), TS obs} is equivalent to the event

At =

{
TS ∈ [t, t+ dt), b+ TD > 0, b+TS > 0, b+ TD > b+ TS,

b+ TA ∈
(⌊

b+ t

gap

⌋
gap, b+ t

)}
, (1.1)

which describes the fact that for TS to be observed and to be equal to t, the subject should

have entered the study, be alive at calendar time b + TS, and be such that the start of

asymptomatic detectability of the disease should fall between the last screening examination

before calendar time b+ t and time b+ t. Indeed, screening examinations occur at calendar

times (j ·gap) for j = 0, 1, 2, . . ., and
⌊

u
gap

⌋
gap = j ·gap for u ∈ [j ·gap, (j + 1)·gap). For ease

of notation we call l(u) =
⌊

u
gap

⌋
gap.

The event {b + TD > b + TS} ⊆ {b + TD > 0}, so that only the former event needs to be

included. Note that the event {b+TS > 0} is such that the event in (1.1) is empty for t < −b,

so that we only need consider its probability for t > −b.

Given B = b (with B independent of all other random variables) we have

P (At|B = b) = P (TD > t)P (TS ∈ [t, t+ dt), b+ TA ∈ (l(b+ t), b+ t))·1
(
t > −b

)
(1.2)

= STD(t)P (TS ∈ [t, t+ dt), TA ∈ (l(b+ t)− b, t))·1
(
t > −b

)
The term P (TD > t) = STD(t) corresponds to the first event in (1.1), and the fact that we

consider all of these expressions as dt tends to zero, so that fTS ,TSobs(t) can be obtained from

(dt)fTS ,TSobs(t) ≈ P (At).
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Now, let us focus on the last term of (1.2). This can be written as a one-dimensional integral

P (TS ∈ [t, t+ dt), TA ∈ (l(b+ t)− b, t)) ≈ (dt)

∫ t

l(b+t)−b
fTA,TS(u, t)du

= (dt)

∫ t

l(b+t)−b
fTS |TA(t|u) pAf

∗
TA

(u)du = (dt)

∫ t

l(b+t)−b
fTS |TA(t|u) pAf

∗
TA

(u)du

= (dt)

∫ t

l(b+t)−b
f∆|TA(t− u|u) pAf

∗
TA

(u)du
⊥⊥
= (dt)

∫ t

l(b+t)−b
f∆(t− u) pAf

∗
TA

(u)du

= (dt) pA

∫ t

l(b+t)−b
e−λ(t−u) 1√

2πσA
e
− 1

2σ2
A

(u−µA)2

du

(1.3)

Expanding the square in the exponent and collecting the terms allows one to recognize

the kernel of the N(µ∗, σ2
A) density, with µ∗ = µA + λσ2

A. Call the associated cumulative

distribution function Φ∗. After some algebra we obtain

P (At|B = b) ≈ (dt)STD(t) pA

[
λe
−λt− 1

2σ2
A

(µ2A−(µ∗)2)
]

[Φ∗(t)− Φ∗(l(b+ t)− b)]·1
(
t > −b

)
.

(1.4)

We now integrate with respect to the (uniform) birth time B:

P (TS ∈ [t, t+ dt), TSobs) =

∫ 0

Bmin

P (TS ∈ [t, t+ dt), TSobs|B = b)fB(b)db

=

∫ 0

Bmin

P (At|B = b)fB(b)db

= (dt)

∫ 0

Bmin

STD(t) pA

[
λe
−λt− 1

2σ2
A

(µ2A−(µ∗)2)
]

[Φ∗(t)− Φ∗(l(b+ t)− b)] 1

−Bmin
·1
(
b > −t

)
db

= (dt)
pA [1− ΦTD(t)]

−Bmin

[
λe
−λt− 1

2σ2
A

(µ2A−(µ∗)2)
] ∫ 0

max(Bmin,−t)
[Φ∗(t)− Φ∗(l(b+ t)− b)] db,

so that taking limits as dt→ 0 yields the final form

fTS(t;TSobs) =
pA [1− ΦTD(t)]

−Bmin

[
λe
−λt− 1

2σ2
A

(µ2A−(µ∗)2)
] ∫ 0

max(Bmin,−t)
[Φ∗(t)− Φ∗(l(b+ t)− b)] db

(1.5)
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Figure 1.15: Sample of observed values TS in a simulated sample from 10 million initial subjects.

Parameter values were pA = 0.15, µA = 65, σ2
A = 100, λ = 1/3, µD = 80, σ2

D = 25, gap = 3, and

Bmin = −50. The red curve represents the density function in (1.5)

which requires numerical integration of the normal cumulative distribution function Φ∗.

Finally, note from (1.1) that the distribution in (1.5) is actually the distribution of TS and TS

observed. The desired distribution of TS conditionally on TS being observed is obtained by

taking the ratio of (1.5) and the normalizing constant, which can also be obtained numerically.

Figure 1.15 shows a sample output of the simulations perfomed in R. In particular, the

density function in (1.5) is superimposed on the histogram of the observed values of TS from

a simulate sample from the model.
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Distribution of the observed variable T̃A.

We define the new random variable T̃A which indicates the time from birth until an observed

asymptomatic diagnosis, i.e. a detection that has occurred at one of the planned screening

examinations. Receiving such a diagnosis occurs when TA is prior to the screening examination,

while TS is after it. In addition, the subject should be in the study, and not have died prior

to the screening examination. If these events do not happen, then T̃A is not observed (N/A).

The distribution of the observed T̃A can be obtained in closed form, and computed without

numerical integration except for the (readily available) cumulative distribution function of a

normal random variable, and for the normalizing constant.

Note that T̃A can only be such that B + T̃A is equal to one of the calendar times at which

screening examinations are offered, i.e. calendar times j ·gap for j = 0, 1, 2, . . .. Hence

P (T̃A ∈ [t, t+ dt), T̃Aobs) =
+∞∑
j=0

P (T̃A ∈ [t, t+ dt), B + T̃A = j ·gap, T̃Aobs). (1.6)

Let us first focus on j ≥ 1. For a fixed j the following events are identical:

{B + T̃A = j ·gap} =

{⌊
B + TA
gap

⌋
= j−1

}
∩ {B + TS > j ·gap} .

Since B + t = j ·gap, j < b t
gap
c must hold, so that the sum in (1.6) only needs to run until

b t
gap
c.

{
B + T̃A ∈ [t, t+ dt), T̃Aobs

}
={

B + TS > 0, B + TD > 0,

⌊
B + TA
gap

⌋
= j−1, B + TS > j ·gap,B + TD > j ·gap,B + t = j ·gap

}
(1.7)
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where the first two events on the right hand side can be dropped as they are captured in

their intersection with later events. Now, let B = b. Recall that B is independent of all other

variables. Then, we can compute the conditional probability

P (
B + TS
gap

> j,
B + TD
gap

> j,

⌊
B + TA
gap

⌋
= j−1

∣∣∣∣B = b

)
= P

(
b+ TA + ∆

gap
> j,

⌊
b+ TA
gap

⌋
= j−1, b+ TD > j ·gap, b = j ·gap− t

)
= P

(
b+ TA
gap

> j − ∆

gap
, j−1 ≤ b+ TA

gap
< j, b+ TD > j ·gap, b = j ·gap− t

)
= P

(
max

(
j − 1, j − ∆

gap

)
≤ b+ TA

gap
< j, b+ TD > j ·gap, b = j ·gap− t

)
= P

(
max

(
j − 1, j − ∆

gap

)
≤ b+ TA

gap
< j

)
P (TD > −b+ j ·gap)·1

(
b = j · gap− t

)
.

(1.8)

Let Y = (b + TA)/gap and T = ∆/gap. From our assumptions it follows that Y ⊥⊥ T , and

that

Y ∼ N

(
µA + b

gap
,
σ2
A

gap2

)
w.p.pA, and+∞w.p.(1− pA);T ∼ Exp(λ·gap).

The expression in (1.8) is therefore equal to

STD(−b+ j ·gap)P (max(j − 1, j − T ) ≤ Y < j)·1
(
b = j · gap− t

)
= STD(−b+ j ·gap)·1

(
b = j · gap− t

)
pA

∫ j

j−1

[∫ +∞

j−y
fT |Y (t|y)dt

]
fY (y)dy

= STD(t)·1
(
b = j · gap− t

)
pA

∫ j

j−1

ST (j − y)fY (y)dy

= STD(t)·1
(
b = j · gap− t

)
pA

∫ j

j−1

e−λgap(j−y) gap√
2πσA

e
− gap

2

2σ2
A

(
y−µA+b

gap

)2
dy

= STD(t)·1
(
b = j · gap− t

)
pA e−λ·j·gap exp

[
−gap

2

2σ2
A

((
µA + b

gap

)2

− µ̃2
b

)][
Φ̃b(j)− Φ̃b(j − 1)

]
,

(1.9)

where Φ̃b is the cdf of the N
(
µ̃b,

σ2
A

gap2

)
distribution, with µ̃b =

σ2
A

gap
λ+ µA+b

gap
.
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Hence we finally obtain

P (T̃A ∈ [t, t+ dt), B + T̃A = j ·gap, T̃Aobs)

= P

(
B + TS
gap

> j,
B + TD
gap

> j,

⌊
B + TA
gap

⌋
= j−1

∣∣∣∣B = b

)
·fB(b)

=
STD(t)

(−Bmin)
pA e−λ·j·gap exp

[
−gap

2

2σ2
A

((
µA + j ·gap− t

gap

)2

− µ̃2
(j·gap−t)

)]
·
(

Φ̃(j·gap−t)(j)− Φ̃(j·gap−t)(j−1)
)
·1
(
j ·gap < t < j ·gap− Bmin

)
.

(1.10)

Let us now turn to the case in which the disease is detected during the first screening

examination after entry into the study, i.e. the case of B + T̃A = 0. This corresponds to the

first element (j = 0) of the series in (1.6). Recall that for a subject to find herself in this

situation she must have B + TA < 0 and B + TS > 0 (and be alive at calendar time zero).

The probability of such event is therefore equal to

P (T̃A ∈ [t, t+ dt), B + T̃A = 0, T̃Aobs)

= P (T̃A ∈ [t, t+ dt), B + T̃A = 0, T̃Aobs|B = b)·fB(b)

≈ P (b+ T̃A = 0, b+ TA ≤ 0, b+ TS > 0, b+ TD > 0)·1
(
b = −t

)1(b ∈ (Bmin, 0)
)

|Bmin|

=
STD(t)

|Bmin|
P (TA ∈ (−∞,−b],∆ > −b− TA)·1

(
t ∈ (0, |Bmin|)

)
∆⊥⊥TA= pA

STD(t)

|Bmin|
·1
(
t ∈ (0, |Bmin|)

) ∫ t

−∞

[∫ +∞

t−u
f∆(δ)dδ

]
fTA(u)du

= pA
STD(t)

|Bmin|
·1
(
t ∈ (0, |Bmin|)

) ∫ t

−∞
S∆(t− u)fTA(u)du,

(1.11)
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Therefore, with a bit of rearranging,

P (T̃A ∈ [t, t+ dt), B + T̃A = 0, T̃Aobs)

= pA
STD(t)

|Bmin|
·1
(
t ∈ (0, |Bmin|)

) ∫ t

−∞
e−λ(t−u) 1√

2πσA
exp

[
− 1

2σ2
A

(u− µA)2

]
du

= pA
STD(t)

|Bmin|
·1
(
t ∈ (0, |Bmin|)

)
e−λt Φ∗(t) exp

[
− 1

2σ2
A

(
µ2
A − (µ∗)2

)]
= pA

STD(t)

|Bmin|
·1
(
t ∈ (0, |Bmin|)

)
e−λt Φ∗(t) exp

(
λ2σ2

A

2
+ λµA

)
,

(1.12)

where Φ∗ is the cdf of the N(µ∗, σ2
A) random variable, with µ∗ = µA + λσ2

A. We now put all

the terms together to obtain

P (T̃A ∈ [t, t+ dt), T̃Aobs) ≈ (dt) pA
STD(t)

|Bmin|

{
e−λt Φ∗(t) exp

(
λ2σ2

A

2
+ λµA

)
·1
(
t ∈ (0, |Bmin|)

)
+

b t
gap
c∑

j=1

[
e−λ·j·gap exp

[
−gap

2

2σ2
A

((
µA + j ·gap− t

gap

)2

− µ̃2
(j·gap−t)

)]
· (1.13)

·
[
Φ̃(j·gap−t)(j)− Φ̃(j·gap−t)(j−1)

]
·1
(
t ∈ (j ·gap, j ·gap− Bmin)

)]}
.

Figure 1.16 shows the sample output of simulations performed in R. In particular, the

density function in (1.13) is superimposed on the histogram of the observed values of T̃A from

one simulated sample from the model.

Note that, conditionally on B = b, the distribution of T̃A is discrete. In particular, if T̃A

is observed, then it takes the countable number of values −b+ j ·gap for j = 0, 1, 2, . . . , plus

the additional value N/A (which we may also set as +∞. Conditionally on B = b, these
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Figure 1.16: Sample of observed values T̃A in a simulated sample from 10 million initial subjects.

Parameter values were pA = 0.15, µA = 65, σ2
A = 100, λ = 1/3, µD = 80, σ2

D = 25, gap = 3 and

Bmin = −50. The red curve represents the density function in (1.13).
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values are taken with the following probabilities:

T̃A =



−b P (b+ TA < 0, b+ TS > 0, b+ TD > 0)

−b+ j ·gap P (b b+TA
gap
c = j−1, b+TS

gap
> j, b+TS

gap
> j)forj = 1, 2, . . .

N/A k.

Hence the probabilities of the non-N/A values are obtained as described above from the

distributions of (Ta, δ) and TD.

The conditional probability k = P (T̃A = N/A|B = b) can be obtained as one minus the

series of the probabilities of the other values taken by the random variable. The marginal

probability P (T̃A = N/A) is then

P (T̃A = N/A) =

∫ 0

Bmin

P (T̃A = N/A)fB(b)db =

∫ 0

Bmin

P (T̃A = N/A|B = b)fB(b)db,

that, as we have mentioned, can be obtained numerically.

Marginal probability of being in study

Lastly, we obtain the marginal probability that a randomly selected member of the population

is included into the sample. Indeed,

P (B + TA + ∆ > 0, B + TD > 0) =

∫ 0

Bmin

P (B + TA + ∆ > 0, B + TD > 0|B = b)fB(b)db

=

∫ 0

Bmin

P (b+ TA + ∆ > 0, b+ TD > 0)fB(b)db

=

∫ 0

Bmin

P (b+ TA + ∆ > 0)P (b+ TD > 0)fB(b)db,
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where

P (b+ TA + ∆ > 0) = 1− P (∆ < −b− TA) = 1− pA
∫ −b
−∞

∫ −b−t
0

f∆(δ)dδfTA(t)dtA

= 1− pA
∫ −b
−∞

[
1− e−λ(−b−t)] fTA(t)dt

= 1− pA ΦTA(−b) + pA e
λb

∫ −b
−∞

eλtfTA(t)dt

= 1− pA ΦTA(−b) + pA e
λb

∫ −b
−∞

eλt
1√

2πσA
e
− 1

2σ2
A

(t−µA)2

dt

= 1− pA ΦTA(−b) + pA e
λb exp

(
σ2
Aλ

2

2
+ µAλ

)∫ −b
−∞

1√
2πσA

e
− 1

2σ2
A

(t−(µA+σ2
Aλ))2

dt

= 1− pA ΦTA(−b) + pA e
λb exp

(
σ2
Aλ

2

2
+ µAλ

)
ΦZ

(
−b− (µA + σ2

Aλ)

σA

)
= 1− pA ΦZ

(
−b− µA
σA

)
+ pA exp

(
λb+ σ2

Aλ
2

2
+ µAλ

)
ΦZ

(
−b− (µA + σ2

Aλ)

σA

)
,

and therefore

P (B + TA + ∆ > 0, B + TD > 0) =

∫ 0

Bmin

P (b+ TA + ∆ > 0)P (b+ TD > 0) fB(b) db

=

∫ 0

Bmin

P (b+ TA + ∆ > 0)P (TD > −b) fB(b) db

=

∫ 0

Bmin

P (b+ TA + ∆ > 0) (1− ΦTD(−b)) fB(b)db

=
−1

Bmin

∫ 0

Bmin

P (b+ TA + ∆ > 0)

[
1− ΦZ

(
−b− µD
σD

)]
db,

which can be easily calculated numerically in R.
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Chapter 2

An exploration of ABC and

dissimilarities2

2.1 Introduction

As we have already pointed out in Chapter 1, the choice of the summary statistics and of the

distance function are fundamental issues when performing inference through Approximate

Bayesian Computation (ABC). Ideally, the summary statistics should be sufficient statistics

for the considered model. However, in practice it is often the case that sufficient statistics are

unavailable or unknown, and as a consequence other (hopefully) informative data summaries

should be used.

Recall that, given a parameter θ ∈ Θ and a parametric model f(y|θ), a statistic S(y)

is sufficient for θ if and only if the conditional distribution of the data given the statistic,

f(y|S(y)), does not depend on θ. Equivalently, sufficiency can also be defined in a Bayesian

sense, by requiring that the posterior distribution of the parameter obtained by conditioning

on the statistic is the same as the one obtained by conditioning on the full data: π(θ|S(y) =

2Joint work with Marco Bonetti and Raffaella Piccarreta
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π(θ|y).

Following this definition, an empirical way to check if a statistic is “close” to sufficiency

could be the following. Consider a (small) set of values of θ, e.g. a sample from its prior

distribution, {θ1, . . . ,θK}. For each k = 1, . . . , K, generate many samples from the model

f(y|θk). Note that there is no need to know the explicit form of the likelihood function of

the model, but it is enough to be able to generate data from it (as it happens when applying

ABC). From all samples we want to see whether the conditional distribution of the sample

given S(y) = s (for different values s) does not depend on θ. In the univariate case (i.e.

when s ∈ R), for values s equal to, say, the deciles of the marginal distribution of S, one

can extract the samples with similar values s, and estimate a few moments of the observed

data for different values of θ. In this way, we could in principle measure how much, for each

s, the estimated moments vary across the values of θ. Limited variation across a range of

values of θ would suggest that S is “close” to sufficiency, and that it may be used reliably in

ABC. However, such an algorithm would clearly suffer from the curse of dimensionality, and

it would not be feasible in practice in most cases.

To appreciate the effect of using a “not very sufficient” statistic in ABC, consider the

following simple example. The example will illustrate how the goodness of the approximation

of ABC varies with respect to summary statistics with increasing information content.

Consider the iid sample Y1, . . . , Yn ∼ fY (y; θ), and let S = S(Y ) be a possibly multidimensional

statistic, function of that sample Y = (Y1, . . . , Yn)T . For simplicity consider θ ∈ R. Let

IZ(θ) = −E
(
∂2

∂θ2
log (gZ(Z; θ))

)
be Fisher’s information of a statistic Z ∼ gZ(z; θ). It is well

known that

IS(θ) ≤ IY (θ) = n IY1(θ)

and that S is sufficient for θ iff IS(θ) = IY (θ) = n IY1(θ) (see, e.g. [45]). We wish to relate the

goodness of the approximation of the posterior distribution obtained with ABC when using

a statistic T to the fraction of the total information contained in the statistic. Consider
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the sequence of summary statistics defined as the partial samples Sj = (Y1, . . . , Yj)
T for

j = 1, . . . , n, so that

IY1(θ) = IS1(θ) < IS2(θ) < . . . < ISn(θ) = n IY (θ)

i.e. such that they contain an increasing fraction of the total amount of information.

If the sample mean is sufficient for θ, one may replace the statistics Sj by the statistics

Tj = 1
j

∑j
h=1 Yh, for j = 1, . . . , n since clearly ITj(θ) = ISj(θ). The statistics T1, T2, . . . , Tn

therefore contain fractions of the total information IY (θ) equal to ( 1
n
, 2
n
, . . . , n

n
= 1). We use

these statistics Tj in the retention criterion for ABC.

Specifically, suppose that one wants to infer the mean µ of a normal random variable

with known variance equal to 1, where the observed data y1, . . . , yn, with n = 100, are

independently generated from a N(2, 1). We clearly do not need to resort to ABC for such

a problem, but it will be a nice setup to experiment with. We simulate K = 10000 samples

to perform an ABC estimation for µ, i.e. for k ∈ {1, . . . , K}, we generate Xk1, . . . , Xkn
iid∼

N(µ, 1), conditionally on the value µk sampled from the prior distribution µ ∼ N(0, 4). Let

Tj, for j = 1, . . . , n, be the set of summary statistics as defined above (the partial means),

to be computed on each of the K generated samples. Based on each of the n summary

statistics Tj above and using the L2-distance, we obtain n different ABC approximate

posterior distributions for µ: π̂ABC(µ|Tj), for j = 1, . . . , n.

We then quantify and plot (see Figure 2.1) the distance between π̂ABC(µ|Tn) and π̂ABC(µ|Tj)

using three different metrics:

(i)
∣∣∣ Ê(µ|Tn)−Ê(µ|Tj)

Ê(µ|Tn)

∣∣∣;
(ii)

∣∣∣ ŝd(µ|Tn)−ŝd(µ|Tj)
ŝd(µ|Tn)

∣∣∣;
(iii) dK−S

(
π̂ABC(µ|Tn), π̂ABC(µ|Tj)

)
=
∥∥∥F̂n(µ|Tn)− F̂j(µ|Tj)

∥∥∥
∞

.
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Figure 2.1: Distances between approximated posterior distributions obtained from ABC with
a sequence of summary statistics having increasing fraction of information.

As expected, Figure 2.1 shows a clearly decreasing trend in the distances between the

posterior distributions as the amount of information captured by the summary statistics

increases. This experiment shows that even in this simple setting, using an inappropriate

statistic in ABC may produce samples quite far from the true posterior distribution of the

parameter.

For completeness, one should not forget that the non-sufficiency of the summary statistics

is just one of the several levels of approximation occurring when performing ABC [57]. Indeed,

unless the summary statistics are discrete (enough), in practice ABC retains parameter
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values that have produced a non-perfect but “close” match between the summaries of the

observed and generated data (and, notably, most of the generated datasets are discarded in

the process). Also, a Monte Carlo error arises from using a sample from π(θ|s) to estimate

it. Lastly, as for any statistical analysis, every model is always an approximation to the real

data-generating process.

However, the choice of the summary statistic on which to base retention of the generated

parameter values probably remains the most delicate aspect of ABC.

In the literature on ABC, several techniques to select summary statistics or to reduce

the dimensionality of the available summaries have been proposed ([14], [57] and [27]). For

example, the authors of [27] introduced the idea of employing classification accuracy to

measure the distance between two datasets. Indeed, the more two datasets are “similar” to

each other, and the harder it will be for one to classify their observations as belonging to one

or the other. Therefore, a distance function can be defined to be inversely proportional to

the misclassification error in a test set of a classifier trained to distinguish between observed

and generated data. As a selection criterion in ABC, the retained parameter values in that

case would be those that yield almost chance-level discriminability (misclassification error

equal to 0.5).

We now suggest a novel direction to define a dissimilarity measure between two datasets,

based in turn on the collection of the pairwise dissimilarities between observations in the two

datasets.

In Section 2.2 we present some available techniques that can be used to such goal. The

statistics described in that section do not refer to a specific kind of data, and they can be

applied to a variety of settings. Indeed, the choice of the pairwise dissimilarity function is

left unspecified.

Section 2.3 is devoted to the description of a new estimation technique, alternative to

ABC, but still likelihood-free and built from the same dissimilarity-based metric. The
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proposed estimator is based on calibration ideas, and it is defined as the solution of a

minimization problem.

In Section 2.4 we illustrate these ideas through the application of the new dissimilarity-based

estimation procedure to a simple model: the bivariate normal case. We close with some

discussion in Section 2.6.

2.2 Dissimilarity-based criteria

Consider an iid sample y = (y1, . . . ,yn)T , where each yi is possibly multivariate and contains

information relative to the i-th individual.

As recalled above, given the (sufficient) statistic S = S(y), in ABC one retains the values

θ that generate a sample with value of S close to S(yobs), with yobs being the observed data.

Below we focus, for a fixed value of θ, on the whole distribution fS(s;θ) of S(Y ). In the

Bayesian setup, the distribution would be fS|θ(s|θ), but that is not relevant here.

More generally, we define, for the observed yobs and for a value y of the random vector

Y ∼ fY (y;θ), a quantity

T (S(y);S(yobs)),

that can be used to measure how far the two samples y and yobs are. Note that this includes

the case of S being the identity transformation, i.e. the case T (y;yobs). Our “Metric 2”,

which was introduced in Chapter 1, is an example of such a case (for other examples see e.g.

[10] and [47]). Typically, in ABC one uses as a choice for T the form

T (S(y);S(yobs)) = d (S(y), S(yobs))

where d(s1, s2) is a dissimilarity measure between its two arguments. For example, one may
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set d to be the L2-norm in Euclidean space

d(s1, s2) = ||s1 − s2||.

“Metric 1”, used for the analysis presented in Chapter 1, belongs to this family of discrepancy

measures. Note also that the metrics based on summary statistics represent a subset in the

larger set of all the possible criteria to measure discrepancy between datasets.

ABC then retains the values of θ that have generated a sample y such that T (y,yobs) ≈ 0,

i.e. such that S(y) ≈ S(yobs). The selected parameter values, that represent a sample from

the approximated posterior distribution, can then be adjusted to account for the discrepancy

between simulated and observed statistics.

Indeed, it is common to post-process the ABC output to improve the selected posterior

sample by applying a so-called “regression adjustment.” The idea is to regress each parameter

(or to perform a multivariate regression with all the parameters as response vector) on the

set of summary statistics and to apply a correction based on the difference between observed

and simulated summaries.[6, 37].

Here, our aim is to introduce a new wide set of possibilities for the definition of T (y; yobs).

Depending on the kind of data, one can define a one-dimensional dissimilarity measure

between two observations yi and yj , dij = D(yi,yj). For example, the dissimilarity might be

computed as the L2-distance, or by other distances defined on vector spaces (with the triangle

inequality not being strictly necessary). The distribution of the dissimilarity between two

randomly selected observations in a population is called the interpoint distance distribution

(IDD) (see, e.g., [16] and [17]).

We propose to use the set of all pairwise dissimilarities {dij}i,j=1,...,n to define a function

T that can be used to measure the distance between two datasets, for it to be used in ABC.

One can distinguish among three kinds of dissimilarities:
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i) within-group dissimilarities within the observed data, i.e. all the pairwise dissimilarities

between observed subjects’ data;

ii) within-group dissimilarities within the generated data i.e. all the pairwise dissimilarities

between generated subjects’ data;

iii) between-group dissimilarities, i.e. all the pairwise dissimilarities between an observed

and a generated subject’s data.

The first approach that we explore is to define T (y; yobs) from the Wilcoxon-Mosler

statistic (WM), see [44]. The idea is to contrast the within-group dissimilarities to the

between-group dissimilarities through a rank-based test statistic. Specifically, the set including

all the dissimilarities (both the within- and the between-group) is sorted in ascending order

and ranked, and the test statistic WM is defined as

WM =
∑

i∈{obs}

∑
j∈{gen}

rank (dij) , (2.1)

i. e. it is the sum of the ranks of the between-group dissimilarities.

Similarly to Wilcoxon’s test, when observed and model-generated data are similar, the

ranks of the between-group dissimilarities should be placed at random, compatibly with the

dependence structure imposed by the use of the dissimilarities. In particular, under such null

scenario, which corresponds to the use of the true parameter (and model) to generate the

data, the pairwise dissimilarities are identically distributed - although not independent. One

can show that under permutation of the m + n group labels the statistic WM has expected

value

E(WM) =
mn

2

[(m+ n

2

)
+ 1
]
. (2.2)

The second moment is also known and an approach to testing with WM has been developed

using permutation distribution inference, by repeatedly calculating WM on samples constructed
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by permuting the group labels ([44]).

For our purposes, we do not need to perform testing of hypotheses, but only to quantify the

distance between two datasets. In particular, we define the distance as the squared difference

between the observed value of WM and its expected value under the null hypothesis that the

observed and simulated data were generated by the same parameter value (Eq. (2.2)), i.e.

T (y; yobs) =
[
WM− E(WM)

]2

.

Another approach to quantify the similarity between the observed and simulated data is

based on the comparison of the estimated cumulative distribution function of the within-group

dissimilarities with the cumulative distribution function of the between-group dissimilarities.

The cumulative distribution function FD (·) of the dissimilarity D can be estimated from an

iid sample of observations by (see [15])

F̂D (d) =
2

n (n− 1)

∑
i 6=l

1 (dil ≤ d) , (2.3)

for any possible value d.

From (2.3), we can compute the estimated cumulative distribution function for the within-

group dissimilarities of the observed data, which we denote by F̂w(·).

Similarly, one may estimate the cumulative distribution function of the dissimilarity

between a subject belonging to the observed data and another subject belonging to the

model-generated data. We denote it by F̂b(·). The distance between these two estimated

distribution functions can be calculated using one of many available distances, such as the

Kolmogorv-Smirnov (KS) one. Thus we may use

T (y; yobs) = KS
(
F̂w, F̂b

)
=
∥∥∥F̂w − F̂b∥∥∥

∞
. (2.4)
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If the model-generated data are similar to the observed data, the distribution of the between-

group dissimilarities will be similar to the distribution of the within-group dissimilarities in

the observed data, and therefore the KS distance will be small.

In the next section we elaborate further on the use of these metrics in ABC. In turns out

that this yields a natural alternative estimator for θ.

2.3 A new ABC-inspired estimator

Recall the definitions from the previous section. For any given θ and yobs, there exists a

whole distribution of the random variable T (Y ,yobs), and we now seek to exploit it. The

idea is that if T is a good measure of how far the random vector Y is from the fixed yobs

sample, then its distribution over a range of values of θ can be used to estimate the true

value of θ.

Specifically, we may estimate the quantile of order τ , with τ ∈ (0, 1), of the conditional

distribution of T given the parameter value θ, that is characterized as

qτ (T | θ) = argminaE[ρτ (T − a) | θ],

where ρτ (·) is the so-called check function and it is given by

ρτ (z) =

τz, if z > 0 ,

−(1− τ)z, otherwise .

(2.5)

This is known as quantile regression (for an introduction, see [32]). In particular, we perform

quantile regression marginally for each parameter component θ (note that one may also

apply the multivariate version of quantile regression). As proposed in [69], we fit a local
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linear quantile regression curve, where the estimated quantile and its first derivative are

obtained through the following minimization problem:

(q̂τ (θ), q̂′τ (θ)) = argmina,b

n∑
i=1

ρτ

(
Ti − a− b(θi − θ)

)
K
(θ − θi

h

)
, (2.6)

where K(·) denotes a symmetric probability density function (the kernel) and h is the

bandwidth, the parameter that determines the amount of smoothing applied to the curve.

Locally, estimating a is equivalent to estimating qτ (θ) and estimating b is equivalent to

estimating q′τ (θ). Note that this estimator is just one of the many possibilities for nonparametric

quantile regression. Methods for the optimal choices of the functionK(·) and of the bandwidth

h have been proposed (see [69]), but they are not the focus of this work.

Given the estimated conditional quantile of order τ of the statistic T given θ, we define

a new estimator θ̂ of θ as the solution of the following minimization problem:

θ̂τ (yobs) = argmin
θ∈Θ

q̂τ (θ;yobs). (2.7)

This construction is motivated by the ABC method that retains values of θ that have

produced samples close to yobs. Indeed, ideally one would only retain parameter values that

produce y’s which have the smallest distance from yobs. The calibration approach that we

are suggesting exploits this idea by looking for the parameter value that produces samples

closest to yobs. Such estimate is obtained from examination of the distribution of T (y;yobs)

when y is generated from a range of values of θ. In particular, we reuse all samples generated

by ABC, but the prior distribution of θ is only used to produce values of θ, without any

Bayesian interpretation.

One may choose τ to be relatively close to zero (say, τ = 0.1 or 0.05) or perhaps τ = 0.5

(i.e. the conditional median), and estimate q̂τ (θ;yobs) through quantile regression from the

ABC-produced samples (thus taking advantage of the computational effort already spent to

79



CHAPTER 2. AN EXPLORATION OF ABC AND DISSIMILARITIES

perform ABC), or from samples generated over a grid of values of θ.

Note that as an estimator, θ̂τ = θ̂τ (Yobs) with Yobs ∼ fY (y; θ∗), with θ∗ the true value of θ.

Also, θ̂τ clearly depends on the choice of τ .

As a second possibility, one may estimate θ by the following minimization problem:

θ̂E(yobs) = argmin
θ∈Θ

Ê (T (Y ,yobs)) , (2.8)

where the conditional expectation Ê (T (Y ,yobs)) is estimated by a regression model. Note

that here, too, as an estimator this is θ̂E = θ̂E(Yobs), with Yobs ∼ fY (y; θ∗), with θ∗ the true

value of θ. This second definition does not require that one specify a value τ .

Note that, if the objective function to be minimized in (2.7) or (2.8) is such that it

is regular enough, i.e. such that it admits one minimum, it can possibly be obtained by

setting the (partial) derivatives of the objective function with respect to θ equal to zero. If,

for simplicity, we focus on θ ∈ R1, then the estimator θ̂τ can be obtained by solving the

estimating equation

∂

∂θ
q̂τ (θ;yobs) = 0. (2.9)

Asymptotic properties, such as consistency and asymptotic normality, of the proposed estimators

clearly need to be investigated. We do not further explore this direction, but we believe that

useful theoretical results can be found in the framework of the theory of estimating equations

(see [43]).

2.4 The bivariate normal model

We now present an example of application of a dissimilarity-based metric in the framework of

ABC, and we illustrate how the new estimator introduced in Section 2.3, can be computed.
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Let us consider the problem of estimating the mean µ = (µ1, µ2)T of a bivariate normal

distribution with known covariance matrix Σ. Let yobs = (y1i, y2i)i=1,...,n be a sample of n

observations from the distribution, which we denote by N2(µ,Σ).

We wish to explore whether an estimation procedure may be effective at recovering the

true parameter values µ.

We focus on the Wilcoxon-Mosler criterion introduced above, i.e. we consider T to be

equal to the squared difference between the Wilcoxon-Mosler statistic WM between y and

yobs (defined by equation (2.1)) and its expected value when the two samples (generated and

observed) are generated by the same distribution:

T =

[
WM − n2

2

((
2n

2

)
− 1

)]2

. (2.10)

First, we set µ = (1, 2)T and Σ = diag(2, 3) and generate a sample of size n = 100. We

set prior distributions for the unknown parameter µ = (µ1, µ2) and generate K = 10, 000

datasets from the model, each one corresponding to a value of µ sampled from the prior

distribution (and keeping Σ = diag(2, 3) fixed). We assume that, a priori, µi ∼ N(0, 4), i =

1, 2, and we produce K simulated datasets of size n = 100. We define the pairwise distance

between observations as the L2-distance. For each k = 1, . . . , K, the Wilcoxon-Mosler

statistic is then computed.

Working in the framework of the traditional ABC, one should retain only those parameter

values that generated the samples with the smallest distance from the observed sample. The

choice of the fraction of values to keep, that represents a sample from an approximated version

of the posterior distributions of the parameters, is typically perfomed through a data-driven

procedure, such as leave-one-out cross-validation [28].

Briefly, cross-validation works by randomly dividing the data into k folds. Each time all

data except one fold are used to estimate the model and then a prediction error is computed

on the remaining portion of the data (one fold). In leave-one-out cross-validation, each fold
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is made of only one observation. In the setting of ABC, observations are represented by

generated samples. Each learning set is created by taking all the K samples except one,

the test set being the sample left out. The posterior of the model parameters is obtained

via the ABC procedure using each time K − 1 generated samples and a prediction error is

computed on the sample left out. Taking an average of the prediction errors across samples,

and repeating the same procedure for several values of the retention rate, one can select the

optimal fraction of values to keep to approximate the posterior distributions of the model

parameters.

Recall that, our interest is in exploring how well the Wilcoxon-Mosler distance performs

in discriminating among the parameter values proposed by the prior distribution. Figure

2.2 shows the relationship between the values of the parameters and the distance from the

observed data, marginally for the two components of µ. We first use a sample of size n = 100.

Figure 2.2: Samples from the prior distribution of the two mean components, and
Wilcoxon-Mosler distance (in log-scale) of each generated dataset from the observed data.
The blue curve is the estimated conditional quantile of order τ = 0.1.

The blue curves in the plots of Figure 2.2 represent the estimates of the conditional

quantiles of order τ = 0.1. The two plots of Figure 2.2 suggest that the metric based on

the Wilcoxon-Mosler statistic is quite informative about the unknown parameter µ. The
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minimum distances are indeed reached for parameter values that are very close to the true

ones (µ1 = 1, µ2 = 2). Note that one may be tempted to use such plots to assess the value of

the statistic used in ABC to retain parameter values. However, one should be careful in such

interpretation, since ABC only focuses on the smaller (in theory zero) values of the object

function.

As shown by the blue vertical line, the suggested estimator for each parameter component

is the value for which the minimum of the quantile regression curves is reached, as described

in Section 2.3.

The plots in Figure 2.2 also show the values of the true parameter values (green vertical

lines and text) and of the maximum likelihood estimates (red vertical lines and text). Note

that some of the lines are not visible too clearly because of the overlapping with the others.

Figure 2.3a shows the measure T, together with its level curves, as a function of µ1 and

µ2 simultaneously, and Figure 2.3b the level curves of the joint posterior distribution for

the paratemers obtained through ABC when retaining the best 2% of the values. Lastly,

Figure 2.3c shows the prior (red curves) and ABC-posterior distributions (blue histograms

and curves), marginally for the two parameter components. Moreover, given that for this

model we can easily compute conjugate posterior distributions, they are also plotted (green

curves). Note that, as expected, the exact posterior distributions have a smaller spread than

the ABC ones. However, even the approximate posterior distributions are quite effective at

recovering the true parameter values.

We now repeat the experiment, but increasing the sample size from n = 100 to n = 1000.

As shown in Figure 2.4, the point estimates obtained from minimizing the quantile regression

curves (that also in this case is the first decile) are again quite close to the true parameter

values and to the MLEs.

A comparison of Figures 2.2 and 2.4 suggest that - not surprisingly - T seems to contain

more information on θ when n is larger.
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(a) Bivariate sample from the prior distribution of µ
colored according to the Wilcoxon-Mosler distance,
whose level curves are also plotted.

(b) Joint posterior distribution obtained from ABC
with retention rate of 0.02. The white dot shows the
true data generating parameter and the red one the
MLE.

(c) Marginal prior (red curves), conjugate posterior distributions (green cruves) and posterior (blue
histograms and curves) distributions obtained from ABC with retention rate of 0.02. The green vertical
dotted lines show the true data generating parameter, µ1 = 1 and µ2 = 2.

Figure 2.3: Posterior distributions for the bivariate normal model with known covariance
matrix.
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Figure 2.4: Case n = 1000. Prior samples for the two mean components and Wilcoxon-Mosler
distance (in log-scale) of each generated dataset from the observed data. The blue curve is
the estimated conditional quantile of order τ = 0.1.

We may estimate the second derivative of the quantile regression curve at its minimum. To

obtain such value, we can fit a quadratic curve to approximate the quantile curve, so that the

coefficient of the quadratic term may be interpret as the local curvature of the function. This

coefficient slightly varies from µ1 to µ2, and it also depends on the smoothing parameter

h used in the local linear quantile regression, but its order of magnitude seem to depend

mostly on n. In particular, for n = 100 the order of magnitude of the second derivative is

1013, while for n = 1000 it increases to 1021. Recall that the plots are in log-scale, but the

curves are estimated (and the derivatives are calculated) on the original scale. This suggests

that, as expected, the amount of information provided by the observed data increases with

the sample size, and that the T-based criterion may capture that fact.

We now turn to the case in which variances are not assumed to be known (the covariance

is set to zero). We keep the same prior distributions for the mean parameters µ1 and µ2, and

set σ2
1 ∼ Unif(0, 10) and σ2

2 ∼ Unif(0, 10) a priori, independently of each other.

The same procedure described above, based on pairwise dissimilarities and on the Wilcoxon-

Mosler distance, performs still promisingly to estimate the mean µ but, as expected, it fails
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(a) Prior samples for the two mean components and Wilcoxon-Mosler distance of each generated dataset from the
observed data

(b) Prior samples for the two variance components and Wilcoxon-Mosler distance of each generated dataset from the
observed data.

Figure 2.5: Results for the bivariate normal model with unknown variances.
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completely in recovering the variances σ2
1 and σ2

2. The point estimates produced by the

minimization of the quantile regression curves are, indeed, quite far both from the true values

σ2
1 = 2 and σ2

2 = 3, and from the maximum likelihood estimates σ̂2
1 = 1.50 and σ̂2

2 = 1.66. See

Figure 2.5 for a graphical representation, analogous to Figure 2.2 of the previous example.

From the bottom panels of the figure, it is evident that the estimated quantile curve is almost

flat, suggesting that the Wilcoxon-Mosler statistic does not provide relevant information on

σ2
1 and σ2

2. Figure 2.6 is the analogous of Figure 2.3a.

This should not come as a surprise, since the Wilcoxon-Mosler distance is sensitive to

location changes but not to scale changes, since the ranks of the L2-distance are scale

invariant. More generally, as pointed out is [44] (p. 149), the use of Euclidean distances

is such that the Wilcoxon test statistic is not invariant against affine linear transformations,

but it is invariant against affine orthogonal transformations.

This shows that the choice of the dissimilarity is indeed very important to capture

information on the parameter. In the next section we explore this point further, with an

example implemented on discretized data and with different dissimilarities.

2.5 An example with discrete data and different

dissimilarities

Still within the context of a bivariate normal model, we now discretize the observed and model

generated data, and experiment with a few different dissimilarity measures. We discretize

the data increasingly, to assess whether the WM-based criterion is likely to lose its premise

with very poor data and/or dissimilarities.

We keep the same model definition, true parameter values and prior distributions as

defined at the beginning of Section 2.4. We discretize the data according to a grid of values

from −20 to 20 and using three different spacing steps, 0.5, 2 and 5, to gradually increase
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Figure 2.6: Bivariate sample from the prior distributions of (µ1, µ2) and (σ1, σ2) colored
according to the Wilcoxon-Mosler distance of each corresponding generated dataset from the
observed data. The red dots indicate the true parameter value.

the loss of information from the original data.

For each set of discretized data, we explore three dissimilarity measures. Given a couple

of observations yj = (y1j, y2j), and yk = (y1k, y2k), discretized according to one of the grids,

they are defined as follows:

1. Squared Euclidean distance: dE(yj ,yk) =
∑
h=1,2

(yhj − yhk)2;

2. Manhattan distance: dM(yj ,yk) =
∑
h=1,2

|yhj − yhk|;

3. “Rough” 0/1/2 distance: dR(yj ,yk) = 2−
∑
h=1,2

1(yhj = yhk).

These distances are clearly ordered from more- to less- informative.

The distance between observed and model generated datasets is computed, as in the

previous section, through the Wilcoxon-Mosler statistic.
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Figures 2.7, 2.8 and 2.9 show the results for the three sets of discretized data, for the

Euclidean, Manhattan and 0/1/2 dissimilarity-based metric, respectively. In each of the

Figures, plots (a) and (b) corresponds to the finest grid of discretization (with spacing equal

to 0.5), plots (c) and (d) to the intermediate one (with spacing equal to 2), and plots (e)

and (f) to the roughest grid (with spacing equal to 5). We can clearly see that the plots

deteriorate, for any of the three considered dissimilary-based metrics, when the data are

discretized with the roughest grid. For those cases the estimation procedure would clearly be

hopeless. However, one would be able to spot that fact from those very graphical displays.

On the other hand, when the space between the points of the grid is set to 0.5, and even 2,

the plots seem to still be informative.

From this simple experiment, it seems that the degree of discreteness of the data may

play a more relevant role than the choice of the dissimilarity measure in determining the

likely performance of the estimation procedure.

Note that in such cases, the use of ABC with the same metric would be unlikely to

produce any meaningful result.

2.6 Discussion

While this work is only a proof-of-concept, it does seem to suggest that the new estimation

procedure that we have proposed might hold promise to work well, and its properties and

generalization to more complex models deserve to be investigated.

Summarizing, to implement this approach in realistic models one needs: (i) the ability to

generate data from the model; (ii) a metric to measure the dissimilarity between observed

and generated data; (iii) an estimate of the conditional quantile of the distribution of the

dissimilarity given the possibly high-dimensional θ; and (iv) the ability to minimize that

function.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Results from the Euclidean distance. Plots (a) and (b) corresponds to the finest
grid of discretization (with spacing equal to 0.5), plots (c) and (d) to the intermediate one
(with spacing equal to 2), and plots (e) and (f) to the roughest grid (with spacing equal to
5).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Results from the Manhattan distance. Plots (a) and (b) corresponds to the finest
grid of discretization (with spacing equal to 0.5), plots (c) and (d) to the intermediate one
(with spacing equal to 2), and plots (e) and (f) to the roughest grid (with spacing equal to
5).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Results from the rough 0/1/2 distance. Plots (a) and (b) corresponds to the
finest grid of discretization (with spacing equal to 0.5), plots (c) and (d) to the intermediate
one (with spacing equal to 2), and plots (e) and (f) to the roughest grid (with spacing equal
to 5).
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An interesting setting for such methods may be models for longitudinal data with intractable

likelihood function. For example, [60] considers discretely observed continuous-time multi-state

models, such that for each subject a sequence of states is observed at discrete points and

there is not additional information about the transition times. The study focuses on Markov

and semi-Markov models, where the likelihood function is not available in closed form, and

proposes summary statistics for conducting ABC-based inference. Similarly to what we

have done Figure 2.3c, a dissimilarity-based metric may be an alternative approach when

implementing ABC for this kind of models.

Indeed, very importantly, pairwise dissimilarities among observations, and a dissimilarity-

based measure of the distance between two datasets can be defined for any kind of data,

depending on their nature. One interesting direction that will be explored in the future is

the extension of the methods proposed in this chapter to the setting of longitudinal data, i.e.

data such that for each subject a sequence of states is observed over discrete time. Several

dissimilarity measures among sequences can be defined, for both continuous and discrete state

spaces. Among them, one can test the performance of measures that exploit the continuous

nature of the data, such as correlation, but also measures that work with values discretized

in bins. This could be a first attempt to move towards categorical longitudinal data and

test the ability of these methods to recover the true parameter values in that setting. To

quantify the distance between sequences of discrete states, a very common choice is Optimal

Matching (OM). It is based on the effort needed to transform a sequence into another. The

OM alignment technique was first introduced in molecular biology to study proteins and

DNA sequences [53], and was then extended to sociology [2]. Therefore, one may try to

construct a metric for ABC for sequence data based on the OM.

.
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Chapter 3

Optimal estimation of the sparsity

index in Poisson size-biased sampling3

3.1 Introduction

Size bias arises naturally from many common sampling designs. For example, when the

sampling unit is the individual and the population consists of clusters of individuals, larger

groups have a higher probability of being sampled than smaller groups. Therefore, if one is

interested in studying parameters related to the group size, such as the average group size,

or the density of individuals per unit area, it is essential to adjust for such bias.

Two examples that motivated this work arise from very different applied problems. The

first one is related to the study of the family history of cancer: larger households have

higher probability to manifest at least one case of cancer and to be, therefore, included into

the Cancer Registry. The second motivating example is a study [5] (in progress) on the

plague of 1630 in northern Italy, where the authors modeled the process of isolating infected

subjects into the plague ward (lazzaretto). The internment was decided on a household basis.

3Joint work with Marco Bonetti and Marcello Pagano (Harvard School of Public Health)
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Whenever a member of a household resulted infected, all the members of the same household

had to be admitted to the plague ward. In that context, therefore, the household size plays

a central role in shaping the individual risk of getting infected and being confined in the

ward, and the fraction of the total population that is confined in the ward depends on the

distribution of the households’ sizes. As it will be clearer from the next paragraphs, the

model studied in this chapter is closely related to the problem of the admission to the plague

ward.

Another common example of size bias is the so-called “visibility bias”, that occurs in aerial

censuses of wildlife populations (see [22], [49] and [52]). In [22], the authors propose a model

for estimating the mean group size and the population density of animals in a given study

area, partitioned in quadrats. They assume that each animal has the same probability of

being observed and that, whenever an individual is observed, its entire group is observed. The

implication of these assumptions is that, by ignoring the biased-sampling design, one would

overestimate the average group size. Indeed, this sampling design produces a sample not from

the original distribution of group size, but rather from a weighted version of that distribution,

where the weights grow with the group size. Denoting by β the probability of sighting an

animal, the sampling weight assigned to a group of size x would be w(x) = 1− (1− β)x (see

[49]). When the probability β is small, the weights can be approximated by w(x) ≈ βx, that

corresponds to the common length-biased sampling setting, up to a normalizing constant.

Many other examples of size bias can be found in other applications, such as galaxy

surveys [55], line transect sampling [24], forest inventory and estimation of tree basal area [26],

histological analysis of cell size/type distributions [36], and more. Some of these problems

involve discrete distributions, while others involve continuous measurements, but they all

have in common the use of weighted distributions to correct for the sampling bias.

Most of the available literature on size bias and weighted distributions focuses on maximum

likelihood estimation for the model parameters. An exception is [54], where the authors
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consider three families of continuous distributions (i.e. gamma, Weibull and log-normal),

and derive the uniformly minimum variance unbiased estimators (umvue) for the mean

group size.

In this article we focus on a discrete problem. We assume that groups have size Y = 1+H,

where H ∼ Poisson(λ), so that, for λ > 0,

P (Y = y) =
e−λλ(y−1)

(y − 1)!
, fory = 1, 2, . . .

In particular, E(Y ) = 1 + λ.

We sample X1, X2, . . . , Xn i.i.d. group sizes (n ≥ 1) from the population through random

extraction of individuals from the population.

Hence, the probability that a group of size x is chosen is proportional to x (length-biased

sampling):

P (X = x) ∝ xP (Y = x) ,

so that

P (X = x) =
1

k
xP (Y = x) =

1

λ+ 1

x e−λλx−1

(x− 1)!
, x = 1, 2, . . . , (3.1)

since

k−1 =
∞∑
x=1

[xP (Y = x)] =
∞∑
x=1

x e−λλx−1

(x− 1)!
=
∞∑
y=0

(y + 1) e−λλy

y!

=
∞∑
y=0

y e−λλy

y!
+
∞∑
y=0

e−λλy

y!
= λ+ 1.

This shows that the (size-biased) distribution of X in (3.1) belongs to the one-dimensional

exponential family, with minimal sufficient and complete statistic S =
∑n

i=1Xi (see, e.g.,
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[45]). Note that

P (X = x) =
x2

λ(λ+ 1)

e−λλx

x!
=

x2

λ(λ+ 1)
P (H = x), x = 0, 1, 2, . . .

so that X follows a weighted Poisson distribution with weights w(x, λ) = x2 [λ(λ+ 1)]−1.

In other words, the length-biased version of a 1-translated Poisson is a weighted Poisson

distribution with quadratic weights. Properties of weighted Poisson distributions, and their

connection to over dispersion and under dispersion have been extensively studied (see e.g.

[20], [19] and [33]). In those articles, statistical inference is performed through maximization

of the likelihood function.

Here, we develop optimal exact inference based on the uniformly minimum variance

unbiased estimator (umvue), and compare it to inference based on likelihood maximization,

with a focus on small sample sizes.

In Section 3.2 we discuss the maximum likelihood estimator (mle) for the parameter

λ. In Section 3.3 we turn to inference on the “sparsity” parameter µ, defined as µ = 1
1+λ

,

both through the mle and the umvue, for which we develop an exact calculation algorithm,

as well as an approximate algorithm based on the characteristic function. In Section 4 we

describe the results of a simulation exercise designed to compare the two estimators.

3.2 Estimating λ by maximum likelihood

We show that the sample mean T1 = 1
n

∑n
i=1Xi is biased for E(Y ) = 1 + λ. Of course, this

is to be expected since larger groups are more likely to be sampled. Indeed,
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E(T1) = E(X) =
1

λ+ 1

∞∑
x=1

[
x2 e−λλx−1

(x− 1)!

]
=

1

λ+ 1

∞∑
y=0

[
(y + 1)2 e−λλy

y!

]

=
1

λ+ 1

∞∑
y=0

[
(y2 + 1 + 2y) e−λλy

y!

]
=

1

λ+ 1

[
E(Y 2) + 1 + 2E(Y )

]
= 1 + λ

(
λ+ 2

λ+ 1

)
= 1 + λ+

λ

λ+ 1
.

The estimator T1 is also the umvue for 1 + λ + λ
λ+1

, since it is unbiased for it and it is

function of the minimal sufficient and complete statistic S. Moreover, by well-known results

on the exponential family, 1+λ+ λ
λ+1

is the only function of λ (up to linear transformations)

for which the umvue achieves the Cramer-Rao lower bound (crlb), see e.g. [45].

From (3.2), E(T1) is strictly greater than (1+λ), so that T1 is a biased estimator for E(Y ).

Also, the absolute bias increases with λ, while the relative bias decreases with λ (see Table

3.1). Note that in particular for small values of λ the relative bias is clearly non-negligible.

λ 1 2 3 4 5 6 7
1 + λ 2 3 4 5 6 7 8
E(X) 2.50 3.67 4.75 5.80 6.83 7.86 8.88

Absolute Bias 0.50 0.67 0.75 0.80 0.83 0.86 0.88
Relative Bias 25% 22% 19% 16% 14% 12% 11%

Table 3.1: Absolute and relative bias of T1 in estimating E(Y ) = 1 + λ.

Given an iid sample x = (x1, . . . , xn)T , the likelihood function for λ takes the following

form

L(λ) =
e−λn

(λ+ 1)n
λ(
∑n
i=1 xi−n)

n∏
i=1

xi
(xi − 1)!

,

and the corresponding log-likelihood is

`(λ) = −λn− n log(λ+ 1) + log(λ)

(
n∑
i=1

xi − n

)
+

n∑
i=1

log

(
xi

(xi − 1)!

)
.
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The maximum likelihood estimator for λ can be obtained as the only positive solution to the

normal equation d`(λ)
dλ

= 0, that is

λ̂ =
X − 3 +

√
(X − 3)2 + 4(X − 1)

2
, (3.2)

with X = 1
n

∑n
i=1Xi. Differentiating the log-likelihood function twice shows that λ̂ is the

only maximum on (0,+∞), except when X = 1 (i.e. Xi = 1, for every i = 1, . . . , n). In

this case the mle is not defined, since the likelihood function is monotonically decreasing on

(0,+∞).

3.3 Estimation of the sparsity parameter µ

We now turn to the estimation of the transformed parameter µ = (λ + 1)−1, which we call

the group size distribution’s sparsity parameter. Indeed, unbiased estimator for µ can be

obtained, and used to construct an optimal unbiased estimator.

3.3.1 Maximum likelihood estimation of µ

By invariance, the mle for µ is µ̂ = 1

1+λ̂
, where λ̂ is the maximum likelihood estimator

obtained in Section 3.2. The analytical calculation of E(µ̂) is not trivial. However, as

shown numerically in Section 3.5, µ̂ is a biased estimator of µ. Recall that, asymptotically,

Var(λ̂) ≈ 1
nI(λ)

, where

I(λ) = −E
( ∂2

∂λ2
`(λ)

)
=
λ2 + 2λ+ 2

λ(λ+ 1)2
=

1

λ
+

1

λ(λ+ 1)2
.

[nI(λ)]−1 is the Cramer-Rao lower bound (CRLB(λ)) for the variance of any unbiased

estimator of λ (see, e.g. [35]). The asymptotic variance of the estimator µ̂ can be approximated
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through the delta method as

V̂ar(µ̂) = V̂ar(λ̂) ·

[
d

dt

( 1

1 + t

)]2

|
t=λ̂

=
1

(1 + λ̂)4
· 1

nI(λ̂)
=

λ̂

n (1 + λ̂)2 (λ̂2 + 2λ̂+ 2)
,

and, given the asymptotic normality of maximum likelihood estimators [35],

µ̂− µ√
V̂ar(µ̂)

d−→ Z ∼ N(0, 1), as n→∞. (3.3)

Testing procedures and confidence intervals can then be constructed easily. In particular,

we consider two possible ways to build confidence intervals for the mle. The first one is

based on the asymptotic normal distribution of µ̂ (see equation (3.3)) and it is therefore

symmetric around µ̂. The second possibility consists in constructing a confidence interval,

denoted by (L,U), for the mle for λ, based on its asymptotic distribution and then applying

the transformation µ = 1
1+λ

to obtain the interval for µ, i.e. ( 1
1+U

, 1
1+L

). Simulations show

that the first kind of interval has a smaller average width compared to the second one, for

any given coverage level, and thus in the following we shall present the results obtained by

the first construction.

We now turn to the unbiased estimation of the sparsity parameter µ. We first show that

the estimator T2 = 1
n

∑n
i=1

1
Xi

is unbiased for µ, by showing that E(X−1) = µ. Indeed,

E

(
1

X

)
=

1

λ+ 1

∞∑
x=1

[
1

x
· x e

−λλx−1

(x− 1)!

]
=

1

λ+ 1

∞∑
y=0

(
e−λλy

y!

)
=

1

λ+ 1
= µ.

We note that for n ≥ 2, Var(T2) is strictly greater than the Cramer-Rao lower bound (CRLB).

Indeed, since T2 is not a function of the minimal sufficient and complete statistic S =
∑n

i=1 Xi,

it cannot be the umvue for µ, and it therefore has variance strictly greater than the variance

of the umvue (see, e.g. [45]). As a consequence, var(T2) > var(umvue) ≥ CRLB(µ), where
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the last inequality holds by definition of umvue. The CRLB(µ) for µ coincides with the

asymptotic variance of the mle µ̂, and it is equal to

CRLB(µ) =
λ

n
· (λ+ 1)2

(λ2 + 2λ+ 2)
· 1

(λ+ 1)4
=
λ

n
· 1

(λ2 + 2λ+ 2)(λ+ 1)2
.

Simple calculations yield

Var(T2) =
1

n

[
E
( 1

X2
1

)
− E

( 1

X1

)2]
=

1− (1 + λ) e−λ

nλ(λ+ 1)2
,

and one can verify numerically that

Var(T2)

CRLB(µ)
=

(
1− (λ+ 1)e−λ

)
(λ2 + 2λ+ 2)

λ2
> 1.

The Rao-Blackwell and the Lehmann-Scheffé theorems can be used to construct the

umvue for µ. The optimal estimator is the conditional expected value of any unbiased

estimator of µ, when the conditioning is with respect to S (see, e.g., [45]).

We pick as the initial unbiased estimator the estimator X−1
1 , and construct the umvue

T3 = E(X−1
1 |S = s). We note that even the variance of the umvue T3 is not equal to

the CRLB. Indeed, using the Lehmann-Scheffé theorem, manipulation of the log-likelihood

function shows that only linear transformations of
∑n

i=1Xi estimate their expected value

efficiently (see, e.g., [45]).

In the following Section we focus on the calculation of T3, and on constructing confidence

intervals for µ based on it.
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3.4 Computation of the umvue of µ (T3)

3.4.1 A first exact algorithm to compute T3

To compute T3 we need the conditional probability distribution of X1 given S. For the generic

value x ∈ {1, 2, . . .} and s ∈ {1, 2, . . .},

P (X1 = x|S = s) =
P (X1 = x)P (S = s|X1 = x)

P (S = s)

=
P (X1 = x)P (

∑n
i=2 Xi = s− x|X1 = x)

P (S = s)

=
P (X1 = x)P (

∑n
i=2 Xi = s− x)

P (S = s)
, (3.4)

where the last equality follows from the fact that X1, X2, . . . , Xn are independent, which

implies in particular that X1 and (X2, . . . , Xn) are independent. Note that the conditional

probability above is non-zero only as long as x and s are such that x ≥ 1, s ≥ n, and

s− x ≥ n− 1.

One can then proceed by computing, for the observed value of S = s, the numerator of (3.4)

for all values x ∈ {1, 2, . . . , s− n+ 1}.

Note that P (X1 = x) is known, so that the only term that needs evaluation is P (
∑n

i=2Xi =

s− x). For any given s, the number of possible values of x is finite. Indeed,

P

(
n∑
i=2

Xi = s− x

)
=

∑
{(x2,...xn) :x2+x3+...+xn=s−x}

[P (X = x2)P (X = x3) . . . P (X = xn)] ,

and this can be calculated by nested loops:

x2 ∈ {1, . . . , (s− x)− (n− 2)}

x3 ∈ {1, . . . , (s− x− x2)− (n− 3)}
...
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xn−1 ∈ {1, . . . , (s− x− x2 − . . .− xn−2)− 1}

and with xn = s − (x + x2 + · · · + xn−1). The normalizing constant at the denominator of

(3.4) can be obtained easily and exactly (up to numerical precision). Note that this algorithm

works for n ≥ 3; for the case n = 2 direct enumeration ca be used to produce all conditional

probabilities.

The conditional expected value can then be computed from the conditional distribution, thus

yielding the estimate of the umvue.

3.4.2 An improved exact algorithm to compute T3

The computational cost of this algorithm is too heavy to recommend for practical use,

especially for use in simulations to study the performance of the umvue.

However, one can take advantage of the i.i.d. nature of the Xi’s (in particular, of their

exchangeability) and construct a much faster algorithm. Specifically, let X1 = x and S = s.

Since all other Xi variables are at least equal to one, and since x + x2 + . . . + xn = s holds

(with s ≥ n), then it must be x ∈ {1, 2, . . . , s− (n− 1)}.

For each value X1 = x one can then generate all possible ordered configurations of values of

X2, . . . , Xn (including all configurations that contain tied values) such that x+x2 + . . .+xn =

s, but with x2 ≤ x3 ≤ . . . ≤ xn. Noting that the new constraint x2 + . . . + xn = s− x must

be satisfied, this can be achieved with the following alternative nested loops construction:

x2 ∈
{

1, . . . ,
⌊
s−x
n−1

⌋}
x3 ∈

{
x2, . . . ,

⌊
s−x−x2
n−2

⌋}
...
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xn−1 ∈
{
xn−2, . . . ,

⌊
s−x−x2−...−xn−2

n−(n−2)

⌋}
and with xn = s− (x+x2 + · · ·+xn−1). It can be checked that such xn will also satisfy xn ≥

xn−1. Indeed, since xn +xn−1 = s−x−
∑n−2

i=2 xi and, by construction, xn−1 ≤
⌊
s−x−

∑n−2
i=2 xi

2

⌋
,

it must hold that xn ≥
⌊
s−x−

∑n−2
i=2 xi

2

⌋
. The probability of each combination of ordered values

should be multiplied by a factor to reflect the fact that the sequence was ordered. Indeed,

letting x[1] = (x2, . . . , xn)T and Ax−s = {x[1] :
∑n

i=2 xi = s− x},

P

(
n∑
i=2

Xi = s− x

)
=

∑
{x[1]∈As−x}

P (X2 = x2, . . . , Xn = xn)

=
∑

{x[1]∈As−x:x2≤x3≤...≤xn}

∑
{y[1]:σ(y[1])=x[1]}

P (X2 = y2, . . . , Xn = yn)

=
∑

{x[1]∈As−x:x2≤x3≤...≤xn}

P (X2 = y2, . . . , Xn = yn)
∑

{y[1]:σ(y[1])=x[1]}

1

=
∑

{x[1]∈As−x:x2≤x3≤...≤xn}

[k(x2, . . . , xn)P (X2 = y2, . . . , Xn = yn)]

where k(x2, . . . , xn) = #{y[1] : σ(y[1]) = x[1]}, with σ(y[1]) the ordered sequence obtained

from the elements of the vector y[1] = (y2, . . . , yn)T .

Given the discrete nature of X, the constant k(x2, . . . , xn) depends on the number of repeated

values in each ordered sequence (x2, . . . , xn)T , i.e. on its absolute frequency distribution. If

the sequence contains k different values, repeated v1, . . . , vk times respectively (with
∑k

i=1 vi =

n− 1), then the number of configurations y[1] such that σ(y[1]) = x[1] is

k(x2, . . . , xn) =
(n− 1)!

v1!v2! . . . vk!
.

As earlier, multiplication by P (X1 = x1) and normalization then yields Eq. (3.4), from which

the Rao-Blackwellized estimator can be computed. We provide the R [51] code written to
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compute the umvue by this latter algorithm using version 4.0.1 of the software.

3.4.3 An efficient approximate algorithm to compute T3 using the

characteristic function

The algorithm proposed in Section 3.4.2 provides the exact calculation of the umvue, but its

computational cost makes it still not practical to use for large values of n and s =
∑n

i=1 xi.

A way to reduce the computational cost of obtaining the umvue for µ can be by computing

the distribution of S =
∑n

i=1Xi, which appears in equation (3.4), in closed form. Since

we are dealing with a sum of independent random variables, working with characteristic

functions seems the most convenient way to proceed. After some calculations, we have that

the characteristic function of S is given by

φS(t) =
(+∞∑
x=1

eitx
1

1 + λ

xλx−1e−λ

(x− 1)!

)n
=
(

(−i) ∂
∂t

eit

1 + λ

+∞∑
x=0

eitx
λxe−λ

x!

)n
=
(

(−i) ∂
∂t

eit

1 + λ
· eλ(eit−1)

)n
=
( eit

1 + λ
· eλ(eit−1) +

eit

1 + λ
· eλ(eit−1)(λeit)

)n
=
( eit

1 + λ
· eλ(eit−1) · (1 + λeit)

)n
. (3.5)

Unfortunately, by the inversion theorem, we obtain only an integral form of the probability

mass function of S, that is not solvable in closed form.

However, an approximation of the distribution of S can be computed as the inverse

discrete Fourier transform of the characteristic function in equation (3.5) thanks to the inverse

fast Fourier transform (ifft) algorithm [11]. We rely on the implementation of this algorithm

in the R package pracma [18]. As shown in Figure 3.1, the algorithm leads to approximations

of the distribution of S that are very similar to the empirical distributions obtained from a

sample of size 30, 000. However, the computational gain in perfoming ifft instead of generating

such large samples is remarkable.
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Figure 3.1: Probability mass function of S for λ = 2 and several values of n. The black points
represent the distribution approximated by ifft and the red ones the empirical distribution
computed from a sample of size k = 30, 000.

We need to compute the conditional distribution of X1|S, that is, by definition of sufficient

statistic, independent of λ. This means that any value of λ could be used, in principle, to

approximate the numerator and the denominator by the ifft algorithm, as long as the same

value is used in both approximations. Nevertheless, for the sake of numerical stability, it is

convenient to perform the calculations using a plausible value of λ for each combination of n

and s. Some empirical observations suggested that a good adaptive choice for λ is the mle,

whenever it belongs to the interval [0.5, 20], or the values 3 or 20 whenever the mle exceeds

the extremes of the interval. With this choice of λ we were able to compute the umvue for

any relevant combination of s and n. Section 3.7 contains two tables showing the estimates

corresponding to several different combinations of n and s =
∑n

i=1 xi. Table 3.4 contains
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the estimates produced by the exact algorithm, used for small values of n, while Table 3.5

contains the estimates produced by the approximated ifft algorithm proposed in this section,

for some larger values of n.

3.4.4 Constructing confidence intervals for µ from T3

We now propose a way to construct an exact confidence interval for the umvue, by inverting

the level-α bilateral test for H0 : µ = µ0 vs H1 : µ 6= µ0. Numerically, if a confidence interval

is defined with the limits quoted to two digits of accuracy, this is achieved by performing

the test for a grid of values in (0, 1), i.e. µ0 ∈ {0.10, 0.11, . . . , 0.95}, and retaining only those

values for which the test did not reject the null hypothesis. In other words, the lower bound of

the interval is the smallest value µ0 for which the test did not reject H0 and the upper bound

is the largest value of µ0 for which the test did not reject H0. Of course, if done sequentially

from left or right, there is no need to evaluate this at all points, only up to the limits of the

confidence interval. Note that, due to the randomization on the tails and to the variability in

the simulation process, it can happen that, for some values of µ0 belonging to the confidence

interval, the test did reject H0. However, this happens very rarely, so that the definition of

the interval given above seems still consistent to us. The test is randomized on both tails,

so that the probability of the type I error is precisely equal to α. The distribution of the

test statistic, that is the umvue E
(

1
X1
|S
)
, under H0 can approximated by a sample of size

10, 000 from its exact distribution or, to speed up the computation time, by the approximated

distribution obtained by the ifft algorithm.

The procedure described above guarantees exact confidence intervals having coverage

1− α, up to the approximation error due to the discretization of the parameter space into a

grid of values. As we will see in the simulation study presented in Section 3.5, the proposed

grid ({0.10, 0.11, . . . , 0.95}) is not fine enough to reach the required coverage precisely, and

this approximation error becomes more relevant for intervals with a smaller width. For this
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reason, we ran additional simulations using a finer grid having binwidth equal to 0.002, that

produces intervals whose actual coverage is very close to the nominal confidence levels, for

most values of n and µ. We present the results of these simulations in the next section.

3.5 Simulation study: MLE vs UMVUE for µ

Table 3.2 compares the estimated mean and standard deviation for the unbiased estimator

T2, the umvue and mle for µ, computed from 1,000 simulations, with n varying from n = 3

to n = 35. The values of the umvue are obtained by the exact algorithm for n ≤ 10 and by

the ifft algorithm for n > 10. As expected, both T2 and the umvue are on average very close

to the true value µ = 0.25, no matter how small the value of n, while the mle has a bias

that decreases when n increases. The distribution of the umvue has the smallest standard

deviation.

For a graphical comparison of the umvue and the mle see Figure 3.2. The upper plot of

Figure 3.2 shows the biases of the two estimators as a function of the sample size n. As we

know from theory, as n grows the bias of the mle tends to zero

The lower plot of Figure 3.2 shows the overall effect of variance and bias for the two

estimators, by comparing their mean squared errors (mse). The y-axis on the right side of

the two plots measures the relative reduction in variance and mse of the umvue compared

to the mle (green diamond-shaped points). It is clear that for small n the umvue should be

preferred to the mle.

We now compare the coverage and the average length of the exact confidence interval for

the umvue with those of the asymptotic confidence interval based on the mle. Table 3.3

shows the results obtained for several different values of µ and n, when using the finest of

the two grids described in Section 3.4.4 (grid of equispaced points between 0 and 1 having

binwidth equal to 0.002).
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n Mean umvue sd umvue Mean T2 sd T2 Mean mle sd mle
3 0.2497 0.0641 0.2497 0.0744 0.2644 0.0691
4 0.2499 0.0546 0.2499 0.0647 0.2608 0.0578
5 0.2503 0.0484 0.2504 0.0578 0.2589 0.0507
6 0.2500 0.0441 0.2502 0.0530 0.2572 0.0459
7 0.2501 0.0406 0.2501 0.0488 0.2562 0.0420
8 0.2497 0.0377 0.2496 0.0455 0.2550 0.0389
9 0.2502 0.0358 0.2502 0.0432 0.2549 0.0368
10 0.2499 0.0337 0.2499 0.0408 0.2542 0.0345
11 0.2500 0.0322 0.2499 0.0390 0.2538 0.0329
12 0.2500 0.0306 0.2499 0.0371 0.2535 0.0312
13 0.2500 0.0295 0.2501 0.0360 0.2532 0.0300
14 0.2500 0.0283 0.2499 0.0345 0.2530 0.0288
15 0.2499 0.0274 0.2499 0.0335 0.2527 0.0278
16 0.2500 0.0265 0.2499 0.0323 0.2526 0.0269
17 0.2500 0.0257 0.2499 0.0312 0.2525 0.0260
18 0.2499 0.0249 0.2499 0.0304 0.2523 0.0253
19 0.2500 0.0243 0.2500 0.0296 0.2522 0.0246
20 0.2501 0.0237 0.2502 0.0290 0.2522 0.0240
21 0.2500 0.0231 0.2501 0.0283 0.2520 0.0234
22 0.2501 0.0226 0.2500 0.0276 0.2520 0.0228
23 0.2501 0.0221 0.2501 0.0270 0.2519 0.0224
24 0.2498 0.0215 0.2497 0.0263 0.2515 0.0217
25 0.2500 0.0212 0.2501 0.0260 0.2517 0.0214
26 0.2500 0.0206 0.2500 0.0253 0.2516 0.0208
27 0.2500 0.0203 0.2500 0.0249 0.2515 0.0205
28 0.2500 0.0199 0.2500 0.0244 0.2515 0.0201
29 0.2500 0.0196 0.2500 0.0241 0.2515 0.0198
30 0.2499 0.0193 0.2499 0.0235 0.2513 0.0194

Table 3.2: Mean and standard deviation for the three estimators for µ computed from 1,000
simulations performed using µ = 0.25 (λ = 3) and several different values of n.

The empirical coverage of the umvue-based intervals is in most cases very close to

the nominal confidence level of 0.95. Since we performed 1000 simulations, we expect the

empirical coverage to fall in the interval (0.936, 0.964) in the 95% of the cases.

However, the effect of the discretization of the parameter space into the grid is still visible

for large values of n and small values of µ, for which the empirical confidence level falls below
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µ (λ) 0.3 (2.33) 0.4 (1.67) 0.5 (1) 0.6 (0.67) 0.7 (0.43)

n=4
umvue 0.940 (0.26) 0.954 (0.36) 0.968 (0.42) 0.966 (0.45) 0.987 (0.45)
mle 0.946 (0.27) 0.945 (0.37) 0.939 (0.43) 0.901 (0.47) 0.927 (0.47)

n=6
umvue 0.956 (0.22) 0.956 (0.29) 0.967 (0.35) 0.967 (0.38) 0.964 (0.39)
mle 0.949 (0.22) 0.947 (0.30) 0.943 (0.36) 0.913 (0.39) 0.925 (0.40)

n=8
umvue 0.951 (0.18) 0.967 (0.25) 0.959 (0.30) 0.963 (0.34) 0.947 (0.34)
mle 0.960 (0.19) 0.937 (0.25) 0.920 (0.31) 0.909 (0.34) 0.908 (0.35)

n=10
umvue 0.937 (0.16) 0.944 (0.23) 0.953 (0.27) 0.956 (0.30) 0.959 (0.31)
mle 0.951 (0.17) 0.955 (0.23) 0.935 (0.28) 0.931 (0.31) 0.924 (0.32)

n=15
umvue 0.952 (0.13) 0.946 (0.18) 0.953 (0.22) 0.950 (0.25) 0.949 (0.26)
mle 0.956 (0.14) 0.960 (0.18) 0.935 (0.23) 0.957 (0.25) 0.945 (0.26)

n=20
umvue 0.940 (0.11) 0.946 (0.15) 0.962 (0.19) 0.946 (0.22) 0.963 (0.22)
mle 0.945 (0.12) 0.943 (0.16) 0.956 (0.20) 0.943 (0.22) 0.945 (0.23)

n=25
umvue 0.924 (0.10) 0.945 (0.14) 0.964 (0.17) 0.950 (0.19) 0.947 (0.20)
mle 0.948 (0.11) 0.944 (0.14) 0.955 (0.18) 0.959 (0.20) 0.946 (0.20)

n=30
umvue 0.935 (0.09) 0.961 (0.13) 0.941 (0.16) 0.946 (0.17) 0.946 (0.18)
mle 0.937 (0.10) 0.949 (0.13) 0.938 (0.16) 0.946 (0.18) 0.939 (0.19)

n=35
umvue 0.925 (0.08) 0.946 (0.12) 0.941 (0.14) 0.955 (0.16) 0.941 (0.17)
mle 0.957 (0.09) 0.955 (0.12) 0.955 (0.15) 0.942 (0.17) 0.937 (0.18)

Table 3.3: Coverage and average width (within brackets) of confidence intervals computed
from 1, 000 simulations where the theoretical coverage 1− α was set to 0.95.

the nominal level. Indeed, the approximation error due to the choice of the grid has a bigger

impact when the average width of the intervals is small.

For both umvue- and mle-based intervals, the average width decreases with n and

increases with µ, as larger values of µ are associated with larger variability. In general,

mle-based intervals are slightly wider then umvue-based intervals. The empirical coverage

of the mle-based intervals is in most cases close to the nominal confidence level, except for

some combinations of µ and small values of n (e.g. µ = 0.6, 0.7, n = 4, 6, 8, 10). Therefore,

this motivates the use of umvue-based inference, in particular when the sample size n is

small and the average group size is believed to be small (µ large).
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3.6 Discussion

We have introduced algorithms to compute the umvue of the sparsity index, and a procedure

to build confidence intervals for µ based on that estimator. Through simulations, we showed

that the inference based on the proposed estimator is more precise than the classical likelihood-

based inference when the sample size n is small.

If, in addition to constructing the confidence interval, one is also interested in estimating

the variance Var(T3) = Var
(
E(X−1

1 |S)
)

of the umvue, then the following algorithm may be

used. By construction of T3, there exists a function h(·) such that T3 = h(S). We wish to

compute

Var (T3) = E[h(S)2]− E[h(S)]2 =
+∞∑
s=n

(
h(s)2P (S = s)

)
−

(
+∞∑
s=n

h(s)P (S = s)

)2

. (3.6)

The procedure described in the previous Section allows us to compute h(s) = E(X−1
1 |S = s)

for s ≥ n. Thus, we only need to derive the distribution of S, which however depends

on the unknown parameter λ. As an approximation, we may replace λ by a consistent

estimator λ̃ such as the mle computed on the available data, and produce a sample of size

M from the distribution of S. In particular, for i = 1, . . . ,M we generate (Xi1, . . . Xin)

and compute Si =
∑n

i=1Xij. Since S is discrete, we can then estimate P (S = s) with the

sample proportion #{i: Si=s}
M

. Since M is finite, the sums in equation (3.6) will be truncated

at s = max{Si : i = 1, . . . ,M}. The numerical calculation of T3 as described in Section 3.4,

together with (3.6), then yields an approximation for Var (T3).

The estimation procedure proposed in this article can be easily extended to the case

H ∼ NB(r, p), i.e. when H follows a negative binomial distribution and has the following

probability mass function:

P (H = h) =

(
h+ r − 1

r − 1

)
· (1− p)h pr, h = 0, 1, 2, . . . ,
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where the parameter r is fixed and p is the object of inference. Note that the case r = 1

corresponds to the geometric distribution. As before, we consider Y = 1 + H, and then we

define X as the size-biased version of Y , i.e.

P (X = x) =
x ·
(
x+r−2
r−1

)
· (1− p)x−1 pr+1

p+ r · (1− p)
, x = 1, 2, 3 . . .

Also in this case X belongs to the one-dimensional exponential family, and it is not hard

to show that S =
∑n

i=1 Xi is the complete minimal sufficient statistic. Therefore, whenever

we have an unbiased estimator for some function g(·) of the unknown parameter p, we can

Rao-Blackwellize it by taking its expected value conditioning on S to obtain the umvue for

g(p). For example, when r = 1 (geometric case), we have that

E
( 1

X

)
=

n∑
i=1

1

x
·
x ·
(
x+r−2
r−1

)
· (1− p)x−1 pr+1

p+ r · (1− p)
=

n∑
i=1

(1− p)x−1 p2 = p,

and E
(

1
X
|S
)

is then the (unique) umvue for p. Note that the computational algorithm is

essentially unchanged, except for the substitution of the generating distribution of X.

A natural extension of this work might be to a more general class of sampling weights.

Let α > 0 and, as before, consider Y = 1 + H, with H ∼ Poisson(λ). We can define the

distribution of X as

P (X = x) ∝ xα · P (Y = x) =
xα e−λ λx−1

µα (x− 1)!
, x = 1, 2, 3, . . . ,

where µα is the normalizing constant. The minimal sufficient statistic is, again, S =
∑n

i=1 Xi.

Note also that, for α integer, µα can be computed as a function of the moments of H ∼
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Poisson(λ):

µα =
+∞∑
x=1

xα e−λ λx−1

(x− 1)!
=

+∞∑
y=0

α∑
k=0

(
α

k

)
yk
e−λ λy

y!
=

α∑
k=0

(
α

k

)
E(Hk).

In the case of α = 1, that corresponds to the sampling scheme considered in this article, we

find, as expected, µ1 = E(H0) + E(H1) = 1 + λ. Also, from E
(

1
Xα

)
= 1

µα
, it follows that

E
(

1
Xα |S

)
is the umvue for 1

µα
, for any α > 0. The algorithms that we have introduced in

Section 3.4 can be therefore also applied to this more general case.

As a last comment, now let H ∼ Poisson(λ) and Y = k + H, for any k ∈ N. This

corresponds to a minimum number of k members of the groups. Then,

P (Y = y) =
y!

(y − k)! λk
· P (H = y), for y ≥ k. (3.7)

Note that this provides an immediate calculation of the factorial moment of order k of the

Poisson random variable H as

E
( H!

(H − k)!

)
=

+∞∑
y=0

y!

(y − k)!
P (H = y) = λk

+∞∑
y=0

P (Y = y) = λk.

The random variable Y (see equation 3.7), and any weighted version of it (i.e. any X such

that P (X = x) ∝ xαP (Y = x)), are again in the class of weighted Poisson distributions,

and therefore with complete minimal sufficient statistic given by S =
∑n

i=1 Xi. Whenever an

unbiased estimator for a parameter of interest is available, an algorithm similar to the ones

that we have introduced in Section 3.4 can be therefore used to find the umvue.
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3.7 Tables of Rao-Blackwellized estimates for the sparsity

index

n
s 2 3 4 5 6 7 8 9 10
2 1.000
3 0.750 1.000
4 0.571 0.833 1.000
5 0.455 0.697 0.875 1.000
6 0.375 0.589 0.767 0.900 1.000
7 0.318 0.506 0.675 0.811 0.917 1.000
8 0.276 0.440 0.597 0.731 0.841 0.929 1.000
9 0.243 0.389 0.533 0.662 0.772 0.862 0.938 1.000
10 0.217 0.347 0.479 0.602 0.710 0.802 0.879 0.944 1.000
11 0.196 0.313 0.433 0.549 0.654 0.746 0.825 0.892 0.950
12 0.179 0.285 0.395 0.504 0.605 0.695 0.774 0.843 0.903
13 0.165 0.261 0.363 0.464 0.560 0.649 0.727 0.797 0.858
14 0.152 0.241 0.335 0.429 0.521 0.607 0.684 0.754 0.815
15 0.142 0.224 0.310 0.399 0.486 0.569 0.645 0.713 0.775
16 0.132 0.208 0.289 0.372 0.455 0.534 0.608 0.676 0.738
17 0.124 0.195 0.271 0.349 0.427 0.503 0.575 0.650 0.703
18 0.117 0.183 0.254 0.328 0.402 0.474 0.544 0.610 0.670
19 0.110 0.173 0.240 0.309 0.379 0.448 0.516 0.582 0.640
20 0.105 0.164 0.227 0.292 0.359 0.425 0.490 0.556 0.611
21 0.100 0.155 0.215 0.277 0.340 0.404 0.466 0.529 0.585
22 0.095 0.148 0.204 0.263 0.323 0.384 0.444 0.503 0.559
23 0.091 0.141 0.195 0.250 0.308 0.366 0.424 0.480 0.538
24 0.087 0.135 0.186 0.239 0.294 0.349 0.405 0.461 0.515
25 0.083 0.129 0.178 0.228 0.281 0.334 0.388 0.441 0.492
26 0.080 0.124 0.170 0.219 0.269 0.320 0.372 0.425 0.475
27 0.077 0.119 0.163 0.210 0.258 0.307 0.357 0.408 0.456
28 0.074 0.114 0.157 0.202 0.248 0.295 0.343 0.392 0.438
29 0.071 0.110 0.151 0.194 0.238 0.284 0.330 0.377 0.423
30 0.069 0.106 0.146 0.187 0.230 0.273 0.318 0.365 0.407
31 0.067 0.103 0.141 0.180 0.222 0.264 0.307 0.350 0.393
32 0.064 0.099 0.136 0.174 0.214 0.255 0.296 0.338 0.381
33 0.062 0.096 0.132 0.169 0.207 0.246 0.286 0.327 0.370
34 0.060 0.093 0.128 0.163 0.200 0.238 0.277 0.317 0.356
35 0.059 0.090 0.124 0.158 0.194 0.231 0.268 0.306 0.346
36 0.057 0.088 0.120 0.153 0.188 0.224 0.260 0.298 0.334
37 0.056 0.085 0.116 0.149 0.182 0.217 0.252 0.288 0.324
38 0.054 0.083 0.113 0.145 0.177 0.211 0.245 0.280 0.316
39 0.053 0.081 0.110 0.141 0.172 0.205 0.238 0.272 0.306
40 0.051 0.079 0.107 0.137 0.168 0.199 0.231 0.265 0.299
41 0.050 0.077 0.104 0.133 0.163 0.194 0.225 0.258 0.290
42 0.049 0.075 0.102 0.130 0.159 0.189 0.219 0.251 0.283

Table 3.4: Rao-Blackwellized estimates of µ given the sample size n and s =
∑n

i=1 xi
computed by the exact algorithm.

115



CHAPTER 3. OPTIMAL ESTIMATION OF THE SPARSITY INDEX IN POISSON
SIZE-BIASED SAMPLING

(a)

(b)

Figure 3.2: Biases (a) and MSEs (b) of the two estimators for µ as functions of the sample
size n, when λ = 3 (µ = 0.25).
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n
s 11 12 13 14 15 16 17 18 19 20
11 1.000
12 0.955 1.000
13 0.911 0.958 1.000
14 0.870 0.918 0.962 1.000
15 0.831 0.880 0.925 0.964 1.000
16 0.794 0.844 0.889 0.930 0.967 1.000
17 0.759 0.809 0.855 0.897 0.934 0.969 1.000
18 0.725 0.776 0.823 0.865 0.903 0.938 0.971 1.000
19 0.694 0.745 0.792 0.834 0.873 0.909 0.942 0.972 1.000
20 0.665 0.715 0.762 0.805 0.845 0.881 0.914 0.945 0.974 1.000
21 0.638 0.687 0.734 0.777 0.817 0.854 0.888 0.919 0.948 0.975
22 0.617 0.661 0.707 0.750 0.790 0.827 0.862 0.894 0.923 0.951
23 0.594 0.636 0.681 0.724 0.765 0.802 0.837 0.869 0.899 0.927
24 0.567 0.614 0.660 0.700 0.740 0.777 0.812 0.845 0.875 0.904
25 0.546 0.592 0.640 0.676 0.716 0.754 0.789 0.822 0.853 0.881
26 0.522 0.569 0.613 0.654 0.694 0.731 0.767 0.800 0.830 0.859
27 0.502 0.547 0.594 0.633 0.672 0.710 0.745 0.778 0.809 0.838
28 0.484 0.529 0.576 0.613 0.658 0.689 0.724 0.757 0.788 0.818
29 0.467 0.512 0.554 0.594 0.633 0.669 0.704 0.737 0.768 0.798
30 0.451 0.493 0.535 0.577 0.613 0.651 0.684 0.717 0.749 0.778
31 0.437 0.478 0.518 0.562 0.595 0.629 0.665 0.698 0.730 0.759
32 0.422 0.462 0.502 0.541 0.578 0.619 0.646 0.680 0.711 0.741
33 0.409 0.449 0.486 0.529 0.561 0.601 0.637 0.663 0.694 0.723
34 0.396 0.436 0.471 0.510 0.546 0.583 0.615 0.648 0.677 0.706
35 0.385 0.421 0.461 0.494 0.532 0.568 0.600 0.631 0.659 0.690
36 0.371 0.408 0.446 0.481 0.519 0.553 0.581 0.615 0.647 0.673
37 0.362 0.398 0.432 0.470 0.501 0.538 0.568 0.600 0.631 0.653
38 0.351 0.386 0.421 0.458 0.488 0.523 0.552 0.584 0.615 0.643
39 0.341 0.375 0.410 0.445 0.478 0.509 0.543 0.574 0.600 0.625
40 0.331 0.367 0.398 0.432 0.465 0.495 0.528 0.558 0.591 0.614
41 0.322 0.355 0.388 0.422 0.454 0.484 0.516 0.543 0.574 0.606
42 0.315 0.347 0.378 0.412 0.440 0.473 0.501 0.532 0.564 0.590
43 0.307 0.337 0.370 0.400 0.432 0.461 0.489 0.520 0.546 0.575
44 0.298 0.328 0.361 0.391 0.420 0.449 0.481 0.507 0.535 0.562
45 0.292 0.321 0.351 0.381 0.410 0.439 0.468 0.495 0.523 0.552
46 0.284 0.314 0.343 0.371 0.402 0.429 0.458 0.485 0.515 0.540
47 0.278 0.307 0.334 0.364 0.391 0.421 0.447 0.475 0.501 0.531
48 0.271 0.299 0.326 0.355 0.384 0.412 0.438 0.464 0.489 0.518
49 0.265 0.292 0.319 0.346 0.374 0.401 0.429 0.455 0.483 0.507
50 0.260 0.285 0.312 0.339 0.367 0.393 0.419 0.445 0.471 0.496
51 0.254 0.280 0.305 0.332 0.358 0.384 0.410 0.438 0.464 0.487
52 0.248 0.273 0.300 0.324 0.352 0.377 0.403 0.429 0.453 0.477
53 0.243 0.268 0.293 0.318 0.344 0.370 0.396 0.419 0.444 0.470
54 0.237 0.263 0.287 0.312 0.336 0.363 0.386 0.411 0.435 0.461
55 0.233 0.257 0.282 0.306 0.329 0.354 0.379 0.402 0.426 0.451

Table 3.5: Rao-Blackwellized estimates of µ given the sample size n and s =
∑n

i=1 xi
computed by the approximated algorithm based on the inverse fast Fourier transform.
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Conclusions

To avoid repeating ourselves, we refer to each chapter for the conclusions, and add only a

couple of additional relevant points here.

In Chapter 1 we have developed and implemented several parametric models to describe

the latent process of the insurgence and evolution of breast cancer, from asymptomatic

to symptomatic. The estimation of this kind of models presents many challenges, mainly

because the quantities of interest are almost never observable precisely, yet the real scientific

question clearly refers to such latent process. Our focus was on breast cancer, however these

models, that belong to the class of multi-state models, can be useful tools to study the

latent evolution of many other diseases. While likelihood-based inference is not feasible for

complex models, generating data from them typically remains manageable, if one is able

to filter them by the partial observation mechanism accurately to obtain data reasonably

similar to the observed data. For this reason, ABC looks as a very attractive tool in this

setting. Yet, how to perform reliable likelihood-free inference on such models is an open

and very interesting question, and we have addressed it in Chapter 1. In that work we have

proposed a possible way to summarize this kind of data and to measure the distance between

datasets so that ABC could be implemented. However, there is still work to be done to

explore alternative metrics for ABC in this setting and to evaluate their performance.

Chapter 2 is meant as a first step in this direction. We introduced the idea of working

with pairwise dissimilarity measures to construct metric functions for ABC. Based on the

119



CONCLUSIONS

same idea, we introduced a new estimator, that is computed without using the likelihood of

the model. Some examples, all related to the estimation of the mean in a bivariate normal

model, were considered to test the perfomance of the proposed estimation procedures. The

results appear promising and suggest to further explore the use of dissimilarity-based metrics

to efficiently summarize data and perform likelihood-free inference. In particular, future

research work will involve the study of different metrics in the setting of longitudinal data,

where for each subject one observes a sequence of states over discrete time.

An interesting opportunity to validate our results on the breast cancer natural history will

be to estimate the models on new data collected by the Norwegian Breast Cancer Screening

Program [61]. Those data are more complete in terms of information about examinations

and diagnoses, and they should allow for more detailed analyses of the latent disease process.

We successfully completed the formal application procedure to receive these data as part of

a joint project with the Norwegian colleagues.
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