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Abstract

Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or
mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of
atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools
developed in these research fields share a common trait: they can be computationally demanding on Central Processing
Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose
Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably
reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological
systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life
science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete
list of GPU-powered tools here reviewed is available at http://bit.ly/gputools.
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Introduction

Typical applications in Bioinformatics, Computational Biology
and Systems Biology exploit either physico-chemical or math-
ematical modeling, characterized by different scales of granu-
larity, abstraction levels and goals, which are chosen according
to the nature of the biological system under investigation—from
single molecular structures up to genome-wide networks—and
to the purpose of the modeling itself.

Molecular dynamics, for instance, simulates the physical
movements of atoms in biomolecules by calculating the forces
acting on each atom, considering bonded or non-bonded inter-
actions [1, 2]. Sequence alignment methods scale the abstraction

level from atoms to RNA or DNA molecules, and then up to whole
genomes, to the aim of combining or interpreting nucleotide se-
quences by means of string-based algorithms [3]. Systems
Biology considers instead the emergent properties of complex
biological systems—up to whole cells and organs [4, 5]—focusing
either on topological properties or flux distributions of large-scale
networks, or on the dynamical behavior of their molecular com-
ponents (e.g. genes, proteins, metabolites).

Although these disciplines are characterized by different
goals, deal with systems at different scales of complexity and
require completely different computational methodologies,
they share an ideal trait d’union: all of them are computationally
challenging [6–8]. Computers based on Central Processing Units
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(CPUs) are constantly improving, offering improved perform-
ances thanks to the parallelism granted by multi-threading and
the vector instructions provided by e.g. Streaming SIMD
Extensions (SSE) [9]. Still, computational analyses in life science
disciplines often lie on the boundary of feasibility because of
the huge computational costs they require on CPUs. Hence, an
intense research is focusing on the optimization of algorithms
and data structures in these fields; anyway, many computa-
tional methods can already benefit from non-conventional
computing architectures. In particular, parallel infrastructures
can be used to strongly reduce the prohibitive running times of
these methods, by distributing the workload over multiple inde-
pendent computing units. It is worth noting, however, that not all
problems can be parallelized, as they are inherently sequential.

In the context of high-performance computing (HPC), the
traditional solutions for distributed architectures are repre-
sented by computer clusters and grid computing [10, 11].
Although these infrastructures are characterized by some con-
siderable drawbacks, in general they are largely used by the sci-
entific community because they allow to execute the available
computational methods with minimal changes to the existing
CPU code. A third way to distributed computation is the emer-
gent field of cloud computing, whereby private companies offer
a pool of computation resources (e.g. computers, storage) at-
tainable on demand and ubiquitously over the Internet. Cloud
computing mitigates some problems of classic distributed
architectures; however, it is affected by the fact that data are
stored on servers owned by private companies, bringing about
issues of privacy, potential piracy, continuity of the service,
‘data lock-in’, along with typical problems of Big Data e.g. trans-
ferring terabyte-scale data to and from the cloud [12]. An alter-
native option for HPC consists in the use of reconfigurable
hardware platforms such as Field Programmable Gates Arrays
(FPGAs) [13], which require dedicated hardware and specific
programming skills for circuits design.

In the latter years, a completely different approach to HPC
gained ground: the use of general-purpose multi-core devices
like Many Integrated Cores (MIC) co-processors and Graphics
Processing Units (GPUs). In particular, GPUs are gaining popular-
ity, as they are pervasive, relatively cheap and extremely
efficient parallel multi-core co-processors, giving access to low-
cost, energy-efficient means to achieve tera-scale performances
on common workstations (and peta-scale performances on
GPU-equipped supercomputers [14, 15]). However, tera-scale
performances represent a theoretical peak that can be achieved
only by distributing the whole workload across all available
cores [16] and by leveraging the high-performance memories on
the GPU, two circumstances that are seldom simultaneously
verified. Even in sub-optimal conditions, though, GPUs can
achieve the same performances of other HPC infrastructures, al-
beit with a single machine and, remarkably, without the need
for job scheduling or the transfer of confidential information.
Being GPU’s one of the most efficient and largely exploited par-
allel technology, in this article we provide a review of recent
GPU-based tools for biological applications, discussing both
their strengths and limitations. Indeed, despite its relevant per-
formance, also general-purpose GPU (GPGPU) computing has
some drawbacks. The first is related to the fact that GPUs are
mainly designed to provide the ‘Same Instruction Multiple Data’
(SIMD) parallelism, that is, all cores in the GPU are supposed to
execute the same instructions on different input data (For the
sake of completeness, we report that, on the most recent archi-
tectures, concurrent kernels can be executed on a single GPU,
providing a hybrid SIMD-MIMD execution. Additional

information about concurrent kernels is provided in
Supplementary File 2). This is radically different from the
‘Multiple Instruction Multiple Data’ (MIMD) paradigm of com-
puter clusters and grid computing, whereby all computing units
are independent, asynchronous, can work on different data and
execute different code. As SIMD is not the usual execution strat-
egy for existing CPU implementations, the CPU code cannot be
directly ported to the GPU’s architecture. In general, the CPU
code needs to be rewritten for GPUs, which are completely dif-
ferent architectures and support a different set of functional-
ities, as well as different libraries. In addition, the complex
hierarchy of memories and the limited amount of high-
performance memories available on GPUs generally require a
redesign of the existing algorithms, to better fit and fully lever-
age this architecture. Thus, from the point of view of the soft-
ware developer, GPU programming still remains a challenging
task [17]. Table 1 presents an overview of various HPC infra-
structures, together with their architectural features, advan-
tages and limits.

In the context of GPGPU computing, Nvidia’s CUDA
(Compute Unified Device Architecture) is the most used library
for the development of GPU-based tools in the fields of
Bioinformatics, Computational Biology and Systems Biology,
representing the standard de facto for scientific computation.
CUDA can only exploit Nvidia GPUs, but alternative solutions
exist, such as Microsoft DirectCompute (which can be used only
with Microsoft’s Windows operating system) and the platform-
independent library OpenCL (which can also leverage AMD/ATI
GPUs). In this review we focus on available GPU-powered tools,
mainly based on CUDA, for computational analyses in life-sci-
ence fields. In particular, we present recent GPU-accelerated
methodologies developed for sequence alignment, molecular
dynamics, molecular docking, prediction and searching of mo-
lecular structures, simulation of the temporal dynamics of cel-
lular processes and analysis methods in Systems Biology.
Owing to space limits, a collection of additional applications of
GPUs developed to deal with other life-science problems—
spectral analysis, genome-wide analysis, Bayesian inference,
movement tracking, quantum chemistry—is provided in
Supplementary File 1. The complete list of the GPU-powered
tools presented in this review is also available at http://bit.ly/
gputools. Developers of GPU-based tools for the aforementioned
disciplines are invited to contact the authors to add their soft-
ware to the webpage.

This review is structured in a way that each section can be
read independently from the others, so that the reader can
freely skip topics not related to his/her own interests, without
compromising the comprehension of the overall contents. The
works presented in this review were chosen by taking into ac-
count their chronological appearance, preferring the most re-
cent implementations over earlier tools, some of which were
previously reviewed elsewhere [19–21]. Among the cited works,
we identified, when possible, the most performing tool for each
specific task, and report the computational speed-up claimed
by the authors. Except where stated otherwise, all tools are
assumed to be implemented using the C/Cþþ language.

The review is mainly conceived for end users of computa-
tional tools in Bioinformatics, Computational Biology and
Systems Biology—independently of their educational back-
ground or research expertise—who can be well-acquainted with
available CPU-based software in these fields, but might profit-
ably find out how GPUs can give a boost to their analyses and
research outcomes. In particular, end users with a main biolo-
gical background can take advantage of this review to get a
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widespread overview of existing GPU-powered tools, and lever-
age them to reduce the running times of routine computational
analysis. On the other hand, end users with a main
Bioinformatics or Computer Science background, but having no
expertise in GPU programming, can take the opportunity to
learn the main pitfalls as well as some useful strategies to fully le-
verage the potentiality of GPUs. In general, readers not familiar
with GPUs and CUDA, but interested in better understanding the
implementation issues discussed hereby, can find in
Supplementary File 2 a detailed description of the main concepts
related to this HPC solution (e.g. thread, block, grid, memory hier-
archy, streaming multiprocessor, warp voting, coalesced patterns).
The aim of Supplementary File 2 is to make this review self-

contained with respect to all GPU-related issues that are either
mentioned or discussed in what follows. Finally, Supplementary
File 3 provides more technical details (e.g. peak processing power,
global memory size, power consumption) about the Nvidia GPUs
that have been used in the papers cited in this review.

This work ends with a discussion about future trends of
GPU-powered analysis of biological systems. We stress the fact
that, except when authors of reviewed papers performed them-
selves a direct comparison between various GPU-powered tools,
the architectural differences of the workstations used for their
tests prevented us from performing a fair comparison among all
different implementations. As a consequence, we shall not pro-
vide here a ranking of the different tools according to their

Table 1. High-performance computing architectures: advantages and drawbacks

HPC type Architecture Advantages Drawbacks Computing
paradigm

Computer
cluster

Set of interconnected
computers controlled
by a centralized
scheduler

Require minimal changes to the
existing source code of CPU pro-
grams, with the exception of
possible modifications neces-
sary for message passing

Expensive, characterized by rele-
vant energy consumption and
requires maintenance

MIMD

Grid
computing

Set of geographically dis-
tributed and logically
organized (heteroge-
neous) computing
resources

Require minimal changes to the
existing source code of CPU pro-
grams, with the exception of
possible modifications neces-
sary for message passing

Generally based on ‘volunteering’:
computer owners donate re-
sources (e.g. computing power,
storage) to a specific project; no
guarantee about the availability
of remote computers: some allo-
cated tasks could never be pro-
cessed and need to be
reassigned; remote computers
might not be completely
trustworthy

MIMD

Cloud
computing

Pool of computation re-
sources (e.g. computers,
storage) offered by pri-
vate companies, attain-
able on demand and
ubiquitously over the
Internet

Mitigate some problems like the
costs of the infrastructure and
its maintenance

Data are stored on servers owned
by private companies; issues of
privacy, potential piracy, espion-
age, international legal conflicts,
continuity of the service (e.g.
owing to some malfunctioning,
DDoS attacks, or Internet con-
nection problems)

MIMD

GPU Dedicated parallel co-pro-
cessor, formerly
devoted to real-time
rendering of computer
graphics, nowadays
present in every com-
mon computer

High number of programmable
computing units allow the exe-
cution of thousands simultan-
eous threads. Availability of
high-performance local
memories

Based on a modified SIMD comput-
ing paradigm: conditional
branches imply serialization of
threads’ execution. GPU’s pecu-
liar architecture generally re-
quires code rewriting and
algorithms redesign

SIMD (although
temporary
divergence
is allowed)

MIC Dedicated parallel co-pro-
cessor installable in
common desktop com-
puters, workstations
and servers

Similar to GPUs but based on the
conventional �86 instructions
set: existing CPU code, in prin-
ciple, might be ported without
any modification. All cores are
independent

Fewer cores with respect to latest
GPUs. To achieve GPU-like per-
formances, modification of
existing CPU code to exploit vec-
tor instructions are required

MIMD

FPGA Integrated circuits con-
taining an array of pro-
grammable logic blocks

Able to implement a digital circuit,
which directly performs pur-
pose-specific tasks (unlike gen-
eral-purpose software tools).
Such tasks are executed on a
dedicated hardware without any
computational overhead (e.g.
those related to the operating
system)

Generally programmed using a de-
scriptive language (e.g. VHDL,
Verilog [18]), which can be cum-
bersome. Debugging using digi-
tal circuits simulators might be
complicated and not realistic.
Experience with circuit design
optimization might be necessary
to execute tasks using the high-
est clock frequency

Dedicated
hardware
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computational performance. Indeed, such a ranking would re-
quire the re-implementation and testing of all algorithms by
using the same hardware as well as different problem in-
stances, which is far beyond the scope of this review.

Sequence alignment

The use of parallel co-processors has proven to be beneficial for
genomic sequence analysis (Table 2). In this context, the advan-
tages achievable with GPU-powered tools is of particular im-
portance when considering next-generation sequencing (NGS)
methodologies, which allow to parallelize the sequencing pro-
cess by producing a huge number of subsequences (named
‘short reads’) of the target genome, which must be realigned
against a reference sequence. Therefore, in the case of high-
throughput NGS methods, a typical run produces billions of
reads, making the alignment problem a challenging computa-
tional task, possibly requiring long running times on CPUs.

Regardless of the used sequencing methodology, existing
aligners can be roughly partitioned into two classes, according
to the data structure they exploit: hash tables and suffix/prefix
trees. The latter approach requires particular algorithms and
data structures like the Burrows-Wheeler Transform (BWT) [43]
and the FM-index [44]. In this context, multiple tools based on
CUDA have already been developed: BarraCUDA [22], CUSHAW
[23], GPU-BWT [24] and SOAP3 [25] (all based on BWT), and
SARUMAN [26] (based on hashing).

SOAP3 is based on a modified version of BWT tailored for
GPU execution—named GPU-2BWT—which was redesigned to
reduce the accesses to the global memory; the access time to
the memory was further optimized by using coalesced access
patterns. Moreover, SOAP3 performs a pre-processing of se-
quences to identify those patterns—named ‘hard patterns’—
that would cause a high level of branching in CUDA kernels:
hard patterns are processed separately, thus reducing the seri-
alization of threads execution. SOAP3 is also able to perform
heterogeneous computation, by simultaneously leveraging both

CPU and GPU. In 2013, a special version of SOAP3, named
SOAP3-dp [27], able to cope with gapped alignment and imple-
menting a memory-optimized dynamic programming method-
ology, was proposed and compared against CUSHAW and
BarraCUDA. According to this comparison on both real and syn-
thetic data, SOAP3-dp turned out to be the fastest implementa-
tion to date, outperforming the other methodologies, also from
the point of view of the sensitivity. SOAP3-dp represents the
foundation of G-SNPM [28], another GPU-based tool for mapping
single nucleotide polymorphisms (SNP) on a reference genome.
Moreover, SOAP3-dp is also exploited by G-CNV [29], a GPU-
powered tool that accelerates the preparatory operations neces-
sary for copy number variations detection (e.g. low-quality se-
quences filtering, low-quality nucleotides masking, removal of
duplicate reads and ambiguous mappings). Thanks to GPU ac-
celeration, G-CNV offers up to 18� acceleration with respect to
state-of-the-art methods.

At the beginning of 2015, Nvidia published the first official
release of its NVBIO [45] library, which gives access to a variety
of data structures and algorithms useful for sequence align-
ment (e.g. packed strings, FM-index, BWT, dynamic program-
ming alignment), providing procedures for transparent
decompression and processing of the most widespread input
formats (e.g. FASTA, FASTQ, BAM). Built on top of the NVBIO li-
brary, nvBowtie is a GPU-accelerated re-engineering of the
Bowtie2 algorithm [30] for the alignment of gapped short reads.
According to Nvidia, nvBowtie allows an 8� speed-up with re-
spect to the highly optimized CPU-bound version. In addition to
this, MaxSSmap [31] was proposed as a further GPU-powered
tool for mapping short reads with gapped alignment, designed
to attain a higher level of accuracy with respect to competitors.

When the reference genome is not available, the problem be-
comes to re-assembly de novo a target genome from the reads.
Two GPU-based software tools are available for reads assembly:
GPU-Euler [32] and MEGAHIT [33], both exploiting a de Bruijn ap-
proach, whereby the overlaps between input reads are identi-
fied and used to create a graph of contiguous sequences. Then,

Table 2. GPU-powered tools for sequence alignment, along with the speed-up achieved and the solutions used for code parallelization

Sequence alignment

Tool name Speed-up Parallel solution Reference

Sequence alignment based on BWT BarraCUDA – GPU [22]
Sequence alignment based on BWT CUSHAWGPU – GPU [23]
Sequence alignment based on BWT GPU-BWT – GPU [24]
Sequence alignment based on BWT SOAP3 – CPU-GPU [25]
Sequence alignment based on hash table SARUMAN – GPU [26]
Sequence alignment with gaps based on BWT SOAP3-dp – CPU-GPU [27]
Tool to map SNP exploiting SOAP3-dp G-SNPM – CPU-GPU [28]
Sequence alignment exploiting SOAP3-dp G-CNV 18� CPU-GPU [29]
Alignment of gapped short reads with Bowtie2 algorithm nvBowtie 8� GPU [30]
Alignment of gapped short reads with Bowtie2 algorithm MaxSSmap – GPU [31]
Reads assembly exploiting the de Bruijn approach GPU-Euler 5� GPU [32]
Reads assembly exploiting the de Bruijn approach MEGAHIT 2� GPU [33]
Sequence alignment (against database) tool – 2� GPU [34]
Sequence alignment (against database) tool CUDA-BLASTP 6� GPU [35]
Sequence alignment (against database) tool G-BLASTN 14.8� GPU [36]
Sequence alignment with Smith-Waterman method SW# – GPU [37]
Sequence alignment based on suffix tree MUMmerGPU 2.0 4� GPU [38]
Sequence similarity detection GPU CAST 10� GPU [39]
Sequence similarity detection based on profiled Hidden Markov Models CUDAMPF 11–37� GPU [40]
Multiple sequence alignment with Clustal CUDAClustal 2� GPU [41]
Multiple sequence alignment with Clustal GPU-REMuSiC – GPU [42]
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the Eulerian path over this graph represents the re-assembled
genome. The speed-up of GPU-Euler is about 5� with respect to
the sequential version, using a Nvidia QUADRO FX 5800.
According to the authors, GPU-Euler’s reduced speed-up is
owing to memory optimization: none of the high-performance
memories (e.g. shared memory, texture memory) were ex-
ploited in the current implementation, although they could re-
duce the latencies owing to the hash table look-up. MEGAHIT,
instead, halves the running time of the re-assembly with re-
spect to a sequential execution. Unfortunately, the perform-
ances of the two algorithms had never been compared.

As in the case of the problem of short reads alignment
against a reference genome, the alignment of primary se-
quences consists in a query sequence that is compared with a
library of sequences, to identify ‘similar’ ones. The most wide-
spread algorithm to tackle this problem is the BLAST heuristic
[46, 47]. The first attempts in accelerating BLAST on GPUs [34,
35] were outperformed by G-BLASTN [36], which offers a 14.8�
speed-up and guarantees identical results to traditional BLAST.
An alternative algorithm for sequence alignment is the Smith-
Waterman [48] dynamic programming method, which is usually
impracticable for long DNA sequences owing to its quadratic
time and space computational complexity. Thanks to advanced
space optimization and the adoption of GPU acceleration, SW#
[37] offers genome-wide alignments based on Smith-Waterman
with a speed-up of two orders of magnitude with respect to
equivalent CPU implementations, using a Nvidia GeForce GTX
570. Smith-Waterman is also the basis of CUDA-SWþþ3 [49],
used to provide protein sequence search, based on pairwise
alignment. This tool—which is the result of a long series of
optimizations, outperforming all previous solutions [50–52]—
represents a heterogeneous implementation able to carry out
concurrent CPU and GPU executions. Both architectures are in-
tensively exploited to maximize the speed-up: on the one hand,
CUDA-SWþþ3 leverages SSE vector extensions and multi-
threading on the CPU; on the other hand, it exploits PTX SIMD
instructions (i.e. vector assembly code) to further increase the
level of parallelism (see Supplementary File 2). According to the
authors, CUDA-SWþþ3 running on a GTX690 is up to 3.2�
faster than CUDA-SWþþ2; it is also 5� faster than SWIPE [53]
and 11� faster than BLASTþ [54], both running in multi-
threaded fashion on an Intel i7 2700K 3.5 GHz CPU.

MUMmer uses an alternative approach, based on a suffix
tree, requiring linear space and enabling substring matching in
linear time [55]. Thanks to GPU acceleration and a careful data
layout optimization, MUMmerGPU 2.0 [38] provides a 4� speed-
up with respect to classic MUMmer.

The problem of sequence similarity is also tackled by
GPU_CAST [39], a parallel version of the CAST software [56]
ported to CUDA. CAST performs optimized local sequence simi-
larities by detecting the ‘low-complexity regions’ (LCR), i.e. bio-
logically unrelated sequences owing to compositionally biased
sequence pairs. By masking LCR, CAST significantly improves
the reliability of homology detection. Thanks to GPU acceler-
ation, GPU_CAST allows a speed-up ranging from 5� up to 10�
with respect to the classic multi-threaded version, with a rele-
vant part of the execution time (30% on average) owing to mem-
ory transfers.

The problem of sequence similarity, for the detection of
common motifs, is tackled by the HMMER3 pipeline, which is
based on profiled Hidden Markov Models [57]. HMMER3 is a
strongly optimized tool, fully leveraging CPU’s multi-threading
and vector instructions. Hence, repeated parallelization at-
tempts did not lead to a significant speed-up, except in the case

of CUDAMPF [40], a careful implementation, which leverages
multiple recent CUDA features (at the time of writing) like vec-
tor instructions, real-time compilation for loop unrolling and
dynamic kernel switching according to task workloads. The re-
ported speed-up of CUDAMPF ranges between 11� and 37�with
respect to an optimized CPU version of HMMER3, while the GPU
implementation of HMMER presented by Ganesan et al. [58] does
not achieve any relevant speed-up.

The last problem we consider is the alignment of multiple
sequences (MSA) for the identification of similar residues. This
problem could be tackled by means of dynamic programming,
but this strategy is generally unfeasible because of its exponen-
tial space computational complexity [41]. An alternative ap-
proach to MSA is the progressive three-stage alignment
performed by Clustal [59]: (i) pair-wise alignment of all se-
quences; (ii) construction of the phylogenetic tree; (iii) use of the
phylogenetic tree to perform the multiple alignments. The
GPU-accelerated version CUDAClustal [41] globally improved
the performances by 2� using a GeForce GTX 295, although the
parallelization of the first stage—implemented by means of
strip-wise parallel calculation of the similarity matrices—allows
a 30� speed-up with respect to the sequential version. In a simi-
lar vein, GPU-REMuSiC [42] performs GPU-accelerated progres-
sive MSA. However, differently from CUDAClustal, this tool
allows to specify regular expressions to apply constraints dur-
ing the final alignment phase. According to [42], the speed-up of
GPU-REMuSiC is relevant, especially because it is natively able
to distribute the calculations across multiple GPUs.

Molecular dynamics

The physical movements of macromolecules, such as proteins,
can be simulated by means of molecular mechanics methods.
This computational analysis is highly significant, as large-scale
conformational rearrangements are involved in signal trans-
duction, enzyme catalysis and protein folding [60].

Molecular dynamics [2] describes the movements of mol-
ecules in space by numerically solving Newton’s laws of motion,
i.e. by calculating the force, position and velocity of each atom
over a series of time steps. Molecular dynamics is computation-
ally challenging: the length of the time step of a simulation is
generally limited to <5 fs, while the overall time of the phenom-
enon is, typically, in the order of ns or s. Molecular dynamics
methods have been improved over the years, starting from the
first 10 ps-long simulation of a molecule consisting of 500 atoms
[61], passing through experiments where the movement of
small enzymes was simulated on a s time scale [62], up to pro-
teins composed of millions of atoms [63]. Being computationally
intensive, many implementations of molecular dynamics algo-
rithms started to exploit CPU-based large-scale supercomputers
[64, 65]. The main limitations of these solutions regard the high
costs of supercomputers, the necessity of implementing a
scheduler to handle the parallel execution of the code and the
maintenance issues (see Table 1).

Nowadays, there exist different molecular dynamics simula-
tors, implemented by means of CUDA, that completely rely on
GPUs (Table 3). Molecular dynamics can be parallelized at the
level of atoms, or considering either the interactions among
atoms or some spatial partitioning of the molecules [73]. For in-
stance, a new algorithm for non-bonded short-range inter-
actions within the atoms system was introduced by Liu et al.
[66]. Tested on protein systems with up to 131 072 atoms, it
achieved a 11� speed-up exploiting a Nvidia GeForce 8800 GTX
compared with an optimized code exploiting the SSE instruction

874 | Nobile et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/18/5/870/2562773 by U

niversità Bocconi user on 07 Septem
ber 2023

Deleted Text: x
Deleted Text: due 
Deleted Text: ,
Deleted Text: due
Deleted Text: in order 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: x
Deleted Text: due
Deleted Text:  - 
Deleted Text:  - 
Deleted Text: ,
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw058/-/DC1
Deleted Text: x
Deleted Text: x
Deleted Text: x
Deleted Text: x
Deleted Text: ,
Deleted Text: due
Deleted Text: x
Deleted Text: x
Deleted Text: due
Deleted Text: x
Deleted Text: x
Deleted Text: x
Deleted Text:  - 
Deleted Text:  - 
Deleted Text: x
Deleted Text: in order 
Deleted Text: Dynamics
Deleted Text: -
Deleted Text: since 
Deleted Text: ,
Deleted Text: less than 
Deleted Text: ,
Deleted Text: ,
Deleted Text: x
Deleted Text: to 


set on a Pentium IV 3.0 GHz. A CUDA implementation of gener-
alized explicit solvent all-atom classic molecular dynamics
within the AMBER package was introduced in [67]. The feasibil-
ity of different GPUs for molecular dynamics simulations was
evaluated considering the maximum number of atoms that
video cards could handle, according to the available memory.
Then, performance tests were conducted on protein systems
with up to 408 576 atoms; the achieved speed-up was 2–5� com-
paring the execution on different GPUs (i.e. GTX 580, M2090,
K10, GTX 680, K20X, GTX TITAN), with respect to the parallel
CPU-based implementation using up to 384 Intel Sandy Bridge
E5-2670 2.6 GHz.

Mashimo et al. [68] presented a CUDA-based implementation
of non-Ewald scheme for long-range electrostatic interactions,
whose performances were assessed by simulating protein sys-
tems with a number of atoms ranging from 38 453 to 1 004 847.
This implementation consists in a MPI/GPU-combined parallel
program, whose execution on a rack equipped with 4 Nvidia
M2090 achieved a 100� speed-up with respect to the sequential
counterpart executed on a CPU Intel E5 2.6 GHz. Finally,
OpenMM [69] is an open-source software for molecular dy-
namics simulation for different HPC architectures (it supports
GPUs with both CUDA and OpenCL frameworks). OpenMM was
tested on a benchmark model with 23 558 atoms, allowing the
simulation of tens of ns/day with a Nvidia GTX 580 and a Nvidia
C2070 (no quantitative results about the speed-up with respect
to CPU-based applications were given).

We highlight that, when implementing molecular dynamics
methods on GPUs, some general issues should be taken into ac-
count. First, GPUs are not suitable for the parallelization of every
kind of task. Some attempts tried to implement the entire mo-
lecular dynamics code with CUDA, resulting in a lack of per-
formance, caused by frequent access to high-latency memories
or by functions requiring more demanding double precision ac-
curacy (to this aim, some work focused on the definition of ‘pre-
cision’ methods to avoid the necessity of double-precision
arithmetic on the GPU [74]). Other approaches exploited GPUs to
generate random numbers required by specific problems of
Dissipative Particle Dynamics (an extension of molecular dy-
namics), achieving a 2–7� speed-up with respect to CPUs [75].
Second, the optimal number of threads per block should be
carefully evaluated considering the application [76], as well as
the number of threads per atom that should be launched ac-
cording to the kernel, to the aim of increasing the speed-up
(see, for instance, the GPU implementation of PuReMD [70]).
Third, the load between CPU and GPU should be balanced so
that both devices would spend the same amount of time on
their assigned task. However, this is challenging and not every
molecular dynamics implementation that exploits both CPU

and GPU is able to fulfill this requirement. Fourth, different lan-
guages (e.g. CUDA, C, Cþþ, Fortran) are typically used when de-
veloping code, resulting in a hardware-specific source code,
usually hard to maintain. In these cases, minor changes in the
operating system, compiler version or hardware could lead to
dramatic source code and compilation changes, possibly im-
pairing the usability of the application.

Having this in mind, different kinds of molecular dynamics
methods rely on hybrid implementations that exploit both CPUs
and GPUs. For instance, a hybrid CPU-GPU implementation with
CUDA of MOIL (i.e. energy-conserving molecular dynamics) was
proposed in [71]. This implementation was tested by using a
quad-core AMD Phenom II X4 965 3.4 GHz coupled with a Nvidia
GTX 480, for the simulation of molecular systems with up to
23 536 atoms, and it achieved a 10� speed-up with respect to a
strictly CPU-bound multi-threaded counterpart. As a final ex-
ample, a long time step molecular dynamics with hybrid CPU-
GPU implementation was described by Sweet et al. [72]. In this
work, GPUs accelerate the computation of electrostatics and
generalized Born implicit solvent model, while the CPU handles
both the remaining part of the computation and the communi-
cations. The performance of this method was tested on molecu-
lar systems with up to 1251 atoms, achieving a 5.8� speed-up
with respect to implementations entirely based on the GPU.

We refer the interested reader to the review presented by
Loukatou et al. [77] for a further list of GPU-based software for
molecular dynamics.

Molecular docking

The aim of molecular docking is to identify the best ‘lock-and-
key’ matching between two molecules, e.g. protein–protein,
protein–ligand or protein–DNA complex [78]. This method rep-
resents indeed a fundamental approach for drug design [79].
Computational approaches for molecular docking usually as-
sume that the molecules are rigid, semi-flexible or flexible; in
any case, the major challenge concerns the sampling of the con-
formational space, a task that is time-consuming. In its general
formulation, no additional data other than the atomic coordin-
ates of the molecules are used; however, further biochemical in-
formation can be considered (e.g. the binding sites of the
molecules).

One of the first attempts in accelerating molecular docking
on GPUs was introduced by Ritchie and Venkatraman [80], who
presented an implementation of the Hex spherical polar Fourier
protein docking algorithm to identify the initial rigid body stage
of the protein–protein interaction. The Fast Fourier transform
(FFT) represents the main GPU-accelerated part of the imple-
mentation, and relies on the cuFFT library [81] (see also

Table 3. GPU-powered tools for molecular dynamics, along with the speed-up achieved and the solutions used for code parallelization

Molecular dynamics

Tool name Speed-up Parallel solution Reference

Non-bonded short-range interactions – 11� GPU [66]
Explicit solvent using the particle mesh Ewald scheme for the long-range

electrostatic interactions
– 2–5� GPU [67]

Non-Ewald scheme for long-range electrostatic interactions – 100� multi-GPU [68]
Standard covalent and non-covalent interactions with implicit solvent OpenMM – GPU [69]
Non-bonded and bonded interactions, charge equilibration procedure PuReMD 16� GPU [70]
Energy conservation for explicit solvent models MOIL-opt 10� CPU-GPU [71]
Electrostatics and generalized Born implicit solvent model LTMD 5.8� CPU-GPU [72]

Graphics processing units in bioinformatics | 875

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/18/5/870/2562773 by U

niversità Bocconi user on 07 Septem
ber 2023

Deleted Text: ,
Deleted Text:  - 
Deleted Text: x
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: x
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: x
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: x
Deleted Text: ,
Deleted Text: x
Deleted Text: Docking
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: either 
Deleted Text: very 
Deleted Text:  
Deleted Text: ,
Deleted Text: -


Supplementary File 2). FFT is calculated by means of a divide et
impera algorithm, which is perfectly suitable to distribute calcu-
lations over GPU’s multiple threads. Because of that, results
showed a 45� speed-up on a Nvidia GeForce GTX 285 with re-
spect to the CPU, reducing to the order of seconds the time
required for protein docking calculations.

A different GPU-powered strategy for conformation gener-
ation and scoring functions was presented by Korb et al. [82].
Considering protein–protein and protein–ligand systems (with
rigid protein and flexible ligand), the authors achieved a 50�
and a 16� speed-up, respectively, by using a Nvidia GeForce
8800 GTX with respect to a highly optimized CPU implementa-
tion. The main bottleneck of this work concerns the perform-
ance of the parallel ant colony optimization algorithm to
identify the best conformation that, compared with the CPU-
based counterpart, requires a higher number of scoring function
evaluations to reach a comparable average success rate.

Simosen et al. [83] presented a GPU implementation of
MolDock, a method for performing high-accuracy flexible mo-
lecular docking, focused on protein–ligand complexes to search
drug candidates. This method exploits a variant of differential
evolution to efficiently explore the search space of the candi-
date binding modes (i.e. the possible interactions between lig-
ands and a protein). This implementation achieved a speed-up
of 27.4� by using a Nvidia GeForce 8800 GT, with respect to the
CPU counterpart. Authors also implemented a multi-threaded
version of MolDock, which achieved a 3.3� speed-up on a 4
cores Intel Core 2 with respect to the single-threaded CPU im-
plementation. According to this result, the speed-up of the GPU
implementation is roughly reduced to about 8� if compared
with the multi-threaded version of MolDock.

More recent applications for molecular docking are ppsAlign
[84], the protein–DNA method proposed by Wu et al. [85] and
MEGADOCK [86]. ppsAlign is a method for large-scale protein
structure alignment, which exploits the parallelism provided by
GPU for the sequence alignment steps required for structure
comparison. This method was tested on a Nvidia Tesla C2050,
achieving up to 39� speed-up with respect to other state-of-
the-art CPU-based methods. The protein–DNA method is a
semi-flexible molecular docking approach implemented on the
GPU, which integrates Monte Carlo simulation with simulated
annealing [87] to accelerate and improve docking quality. The
single GPU version achieved a 28� speed-up by using a Nvidia
M2070 with respect to the single CPU counterpart; other tests on
a cluster of GPUs highlighted that the computational power of
128 GPUs is comparable with that of 3600 CPU cores.

MEGADOCK is an approach for rigid protein–protein inter-
actions implementing the Katchalski-Katzir algorithm with the
traditional Fast Fourier transform rigid-docking scheme, accel-
erated on supercomputers equipped with GPUs (in particular,

MEGADOCK was implemented for single GPU, multi-GPUs and
CPU). The computational experiments were performed on the
TSUBAME 2.5 supercomputer—having each node equipped with
3 Nvidia Tesla K20X—considering 30 976 protein pairs of a
cross-docking study between 176 receptors and 176 ligands. The
claimed speed-up reduces the computation time from several
days to 3 h.

Finally, the docking approach using Ray Casting [88] allows a
virtual screening by docking small molecules into protein sur-
face pockets; it can be used to identify known inhibitors from
large sets of decoy compounds and new compounds that are ac-
tive in biochemical assays. Compared with the CPU-based coun-
terpart, the execution on a mid-range price GPU allowed a 27�
speed-up.

Table 4 lists the GPU-enabled molecular docking tools
described in this section.

Prediction and searching of molecular
structures

The computation of secondary structures of RNA or single-
stranded DNA molecules is based on the identification of stable,
minimum free-energy configurations. Rizk and Lavenier [89]
introduced a GPU-accelerated tool based on dynamic program-
ming for the inference of the secondary structure of unfolded
RNA [90], adapted from the UNAFold package [91], achieving a
17� speed-up with respect to sequential execution. Similarly,
Lei et al. [92] proposed a tool based on the Zucker algorithm,
which exploits a heterogeneous computing model able to dis-
tribute the calculations over multiple threads on both CPU and
GPU. The source for these implementations was highly opti-
mized: the performances of CPU code were improved by lever-
aging both SSE and multi-threading (using the OpenMP library),
while the GPU code was optimized by strongly improving the
use of the memory hierarchy. Tested on a machine equipped
with a quad core CPU Intel Xeon E5620 2.4 GHz, and a GPU
Nvidia Geforce GTX 580, the authors experienced a 15.93�
speed-up on relatively small sequences (120 bases). However, in
the case of longer sequences (e.g. 221 bases), the speed-up drops
down to 6.75�.

For the inference of the tertiary structure of proteins, mo-
lecular dynamics could be (in principle) exploited as a basic
methodology; however, this strategy is usually unfeasible be-
cause of the huge computational costs. MemHPG is a memetic
hybrid methodology [93], which combines Particle Swarm
Optimization [94] and the crossover mechanism typical of evo-
lutionary algorithms to calculate the three-dimensional struc-
ture of a target protein, according to (possibly) incomplete data
measured with NMR experiments. Thanks to GPU paralleliza-
tion, used to distribute the calculations of inter-atomic

Table 4. GPU-powered tools for molecular docking, along with the speed-up achieved and the solutions used for code parallelization

Molecular docking

Tool name Speed-up Parallel solution Reference

Hex spherical polar Fourier protein docking algorithm for rigid molecules – 45� CPU-GPU [80]
Conformation generation and scoring function for rigid and flexible molecules – 50� CPU-GPU [82]
High accuracy flexible molecular docking with differential evolution MolDock 27.4� GPU [83]
Large-scale protein structure alignment ppsAlign 39� CPU-GPU [84]
Protein-DNA docking with Monte Carlo simulation and simulated annealing – 28� GPU [85]
Katchalski-Katzir algorithm with traditional Fast Fourier transform rigid-

docking scheme
MEGADOCK – GPU [86]

Docking approach using Ray Casting – 27� CPU-GPU [88]
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distances for all candidate solutions, the computational cost of
the methodology was strongly reduced [95].

Another issue in structural Computational Biology is related
to the identification of proteins in databases, according to their
three-dimensional conformation. The similarity between two
molecules is generally assessed by means of structural align-
ment, which is characterized by a high computational complex-
ity. GPU-CASSERT [96] mitigates the problem with GPUs,
performing a two-phase alignment of protein structures with
an average 180� speed-up with respect to its CPU-bound and
single-core implementation.

Another methodology for protein searching, working at the
level of secondary structures, was proposed by Stivala et al. [97].
In this work, the authors performed multiple parallel instances
of simulated annealing on the GPU, strongly reducing the com-
putational effort and obtaining a fast methodology that is com-
parable in accuracy with the state-of-the-art methods.

Table 5 lists the tools presented in this section, along with
the speed-up obtained.

Simulation of spatio-temporal dynamics

The simulation of mathematical models describing complex
biological systems allows to determine the quantitative

variation of the molecular species in time and in space.
Simulations can be performed by means of deterministic, sto-
chastic or hybrid algorithms [98], which should be chosen ac-
cording to the scale of the modeled system, the nature of its
components and the possible role played by biological noise. In
this section, we review GPU-powered tools for the simulation of
spatio-temporal dynamics and related applications in Systems
Biology (see also Table 6).

Deterministic simulation

When the concentrations of molecular species are high and the
effect of noise can be neglected, Ordinary Differential Equations
(ODEs) represent the typical modeling approach for biological
systems. Given a model parameterization (i.e. the initial state of
the system and the set of kinetic parameters), the dynamics of
the system can be obtained by solving the ODEs using some nu-
merical integrator [118].

Ackermann et al. [99] developed a GPU-accelerated simulator
to execute massively parallel simulations of biological molecu-
lar networks. This methodology automatically converts a
model, described using the SBML language [119], into a specific
CUDA implementation of the Euler numerical integrator. The
CPU code used to test this simulator was completely identical to

Table 5. GPU-powered tools to predict molecular structures, along with the speed-up achieved and the solutions used for code parallelization

Prediction and searching of molecular structures

Tool name Speed-up Parallel solution Reference

RNA secondary structure with dynamic programming – 17� GPU [89]
RNA secondary structure with Zucker algorithm – 6.75–15.93� CPU-GPU [92]
Molecular distance geometry problem with a memetic algorithm memHPG – CPU-GPU [93]
Protein alignment GPU-CASSERT 180� GPU [96]
Protein alignment based on Simulated Annealing – – GPU [97]

Table 6. GPU-powered tools for dynamic simulation, along with the speed-up achieved and the solutions used for code parallelization

Simulation of the spatio-temporal dynamics and applications in Systems Biology

Tool name Speed-up Parallel solution Reference

Coarse-grain deterministic simulation with Euler method – 63� GPU [99]
Coarse-grain deterministic simulation with LSODA cupSODA 86� GPU [100]
Coarse-grain deterministic and stochastic simulation with LSODA and SSA cuda-sim 47� GPU [101]
Coarse-grain stochastic simulation with SSA (with CUDA implementation of

Mersenne-Twister RNG)
– 50� GPU [102]

Coarse- and fine-grain stochastic simulation with SSA – 130� GPU [103]
Coarse-grain stochastic simulation with SSA – – GPU [104]
Fine-grain stochastic simulation of large scale models with SSA GPU-ODM – GPU [105]
Fine-grain stochastic simulation with s-leaping – 60� GPU [106]
Coarse-grain stochastic simulation with s-leaping cuTauLeaping 1000� GPU [107]
RD simulation with SSA – – GPU [108]
Spatial s-leaping simulation for crowded compartments STAUCC 24� GPU [109]
Particle-based methods for crowded compartments – 200� GPU [110]
Particle-based methods for crowded compartments – 135� GPU [111]
ABM for cellular level dynamics FLAME – GPU [112]
ABM for cellular level dynamics – 100� GPU [113]
Coarse-grain deterministic simulation of blood coagulation cascade coagSODA 181� GPU [114]
Simulation of large-scale models with LSODA cupSODA*L – GPU [115]
Parameter estimation with multi-swarm PSO – 24� GPU [116]
Reverse engineering with Cartesian Genetic Programming cuRE – GPU [95]
Parameter estimation and model selection with approximate

Bayesian computation
ABC-SysBio – GPU [117]
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the CUDA code, without any GPU-specific statements; specific-
ally, no multi-threading or SIMD instructions were exploited.
The evaluation of this implementation on a Nvidia GeForce
9800 GX2 showed a speed-up between 28� and 63�, compared
with the execution on a CPU Xeon 2.66 GHz. In a similar vein, a
CUDA implementation of the LSODA algorithm, named cuda-
sim, was presented by Zhou et al. [101]. LSODA is a numeric inte-
gration algorithm that allows higher-quality simulations with
respect to Euler’s method, and accelerates the computation also
in the case of stiff systems [120]. The cuda-sim simulator per-
forms the so-called ‘just in time’ (JIT) compilation (that is, the
creation, compilation and linking at ‘runtime’ of new source
code) by converting a SBML model into CUDA code. With respect
to the CPU implementation of LSODA contained in the numpy
library of Python, cuda-sim achieved a 47� speed-up.

Nobile et al. [100] presented another parallel simulator rely-
ing on the LSODA algorithm, named cupSODA, to speed up the
simultaneous execution of a large number of deterministic
simulations. Given a reaction-based mechanistic model and
assuming the mass-action kinetics, cupSODA automatically de-
termines the corresponding system of ODEs and the related
Jacobian matrix. Differently from cuda-sim, cupSODA saves
execution time by avoiding JIT compilation and by relying on a
GPU-side parser. cupSODA achieved an acceleration up to 86�
with respect to COPASI [121], used as reference CPU-based
LSODA simulator. This relevant acceleration was obtained,
thanks to a meticulous optimization of the data structures and
an intensive usage of the whole memory hierarchy on GPUs
(e.g. the ODEs and the Jacobian matrix are stored in the constant
memory, while the state of the system is stored in the shared
memory). As an extension of cupSODA, coagSODA [114] was
then designed to accelerate parallel simulations of a model of
the blood coagulation cascade [122], which requires the integra-
tion of ODEs based on Hill kinetics, while cupSODA*L [115] was
specifically designed to simulate large-scale models (character-
ized by thousands reactions), which have huge memory re-
quirements owing to LSODA’s working data structures.

Stochastic simulation

When the effect of biological noise cannot be neglected, ran-
domness can be described either by means of Stochastic
Differential Equations [123] or using explicit mechanistic mod-
els, whereby the biochemical reactions that describe the phys-
ical interactions between the species occurring in the system
are specified [124]. In this case, the simulation is performed by
means of Monte Carlo procedures, like the stochastic simulation
algorithm (SSA) [124].

A problematic issue in the execution of stochastic simula-
tions is the availability of GPU-side high-quality random num-
ber generators (RNGs). Although the last versions of CUDA offer
the CURAND library (see Supplementary File 2), early GPU im-
plementations required the development of custom kernels for
RNGs. This problem was faced for the CUDA version of SSA de-
veloped by Li and Petzold [102], who implemented the
Mersenne Twister RNG [125], achieving a 50� speed-up with re-
spect to a common single-threaded CPU implementation of
SSA. Sumiyoshi et al. [103] extended this methodology by per-
forming both coarse-grain and fine-grain parallelization: the
former allows multiple simultaneous stochastic simulations of
a model, while the latter is achieved by distributing over mul-
tiple threads the calculations related to the model reactions.
The execution of SSA was optimized by storing both the system
state and the values of propensity functions into the shared

memory, and by exploiting asynchronous data transfer from
the GPU to the CPU to reduce the transfer time. This version of
SSA achieved a 130� speed-up with respect to the sequential
simulation on the host computer.

Klingbeil et al. [104] investigated two different parallelization
strategies for coarse-grain simulation with SSA: ‘fat’ and ‘thin’
threads, respectively. The former approach aims at maximizing
the usage of shared memory and registers to reduce the data ac-
cess time; the latter approach exploits lightweight kernels to
maximize the number of parallel threads. By testing the two
approaches on various models of increasing complexity, the au-
thors showed that ‘fat’ threads are more convenient only in the
case of small-scale models owing to the scarcity of the shared
memory. Komarov and D’Souza [105] designed GPU-ODM, a
fine-grain simulator of large-scale models based on SSA, which
makes a clever use of CUDA warp voting functionalities (see
Supplementary File 2) and special data structures to efficiently
distribute the calculations over multiple threads. Thanks to
these optimizations, GPU-ODM outperformed the most
advanced (even multi-threaded) CPU-based implementations of
SSA.

The s-leaping algorithm allows a faster generation of the dy-
namics of stochastic models with respect to SSA, by properly
calculating longer simulation steps [126, 127]. Komarov et al.
[106] proposed a GPU-powered fine-grain s-leaping implementa-
tion, which was shown to be efficient in the case of extremely
large (synthetic) biochemical networks (i.e. characterized by
>105 reactions). Nobile et al. [107] then proposed cuTauLeaping,
a GPU-powered coarse-grain implementation of the optimized
version of s-leaping proposed by Cao et al. [127]. Thanks to the
optimization of data structures in low-latency memories, to the
use of warp voting and to the splitting of the algorithm into
multiple phases corresponding to lightweight CUDA kernels,
cuTauLeaping was up to three orders of magnitude faster on a
GeForce GTX 590 GPU than the CPU-based implementation of
s-leaping contained in COPASI, executed on a CPU Intel Core i7-
2600 3.4 GHz.

Spatial simulation

When the spatial localization or the diffusion of chemical spe-
cies has a relevant role on the emergent dynamics, biological
systems should be modeled by means of Partial Differential
Equations (PDEs), thus defining Reaction-Diffusion (RD) models
[128]. Several GPU-powered tools for the numerical integration
of PDEs have been proposed [129–131].

In the case of stochastic RD models, the simulation is gener-
ally performed by partitioning the reaction volume into a set of
small sub-volumes, in which the molecular species are
assumed to be well-stirred. This allows to exploit extended ver-
sions of stochastic simulation algorithms like SSA or s-leaping,
explicitly modified to consider the diffusion of species from one
sub-volume toward its neighbors. Vigelius et al. [108] presented
a GPU-powered simulator of RD models based on SSA. Pasquale
et al. [109] proposed STAUCC (Spatial Tau-leaping in Crowded
Compartments), a GPU-powered simulator of RD models based
on the Ss-DPP algorithm [132], a s-leaping variant that keeps
into account the size of the macromolecules. According to pub-
lished results [109], STAUCC achieves up to 24� speed-up with
respect to the sequential execution.

Smoldyn proposes an alternative approach to stochastic RD
models, where molecules are modeled as individual particles
[133]. Although species move stochastically, reactions are fired
deterministically; in the case of second-order reactions, two
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particles react when they are close enough to collide. Two GPU-
accelerated versions of Smoldyn were proposed by Gladkov
et al. [110] and by Dematté [111]. Although the former offers a
greater acceleration (i.e. 200�), the latter shows another peculi-
arity of GPUs: the graphics interoperability, that is, the possibil-
ity of plotting the positions of particles in real time, by
accessing the system state that resides on GPU’s global
memory.

By changing the modeling paradigm, agent-based models
(ABMs) explicitly represent the individual actors of a complex
system (e.g. cells), tracking their information throughout a
simulation. FLAME [112] is a general-purpose simulator of
ABMs, which exploits GPU acceleration to strongly reduce the
running time. It is worth noting that an alternative paralleliza-
tion of ABMs by means of grid computing would not scale well:
the running time could not be reduced below a fixed thresh-
old—even by increasing the number of processors—because of
memory bandwidth restrictions, which do not occur in the case
of GPU acceleration [112]. A tailored GPU-powered simulator of
ABMs was also developed by D’Souza et al. [113], to accelerate
the investigation of tuberculosis.

A final issue worth to be mentioned is the multi-scale simu-
lation of biological systems, ranging from intracellular gene
regulation up to cell shaping, adhesion and movement. For in-
stance, Christley et al. [134] proposed a method for the investiga-
tion of epidermal growth model, which fully leveraged GPU’s
horsepower by breaking the simulation into smaller kernels and
by adopting GPU-tailored data structures.

Applications in Systems Biology

The computational methods used in Systems Biology to per-
form thorough analyses of biological systems—such as sensitiv-
ity analysis, parameter estimation, parameter sweep analysis
[135, 136]—generally rely on the execution of a large number of
simulations to explore the high-dimensional search space of
possible model parameterizations. The aforementioned GPU-
accelerated simulators can be exploited to reduce the huge
computational costs of these analyses.

For instance, cuTauLeaping [107] was applied to carry out a
bi-dimensional parameter sweep analysis to analyze the insur-
gence of oscillatory regimes in a glucose-dependent signal
transduction pathway in yeast. Thanks to the GPU acceleration,
216 stochastic simulations—corresponding to 216 different par-
ameterizations of the model—were executed in parallel in just
2 h. coagSODA [114] was exploited to execute one-dimensional
and bi-dimensional parameter sweep analyses of a large mech-
anistic model of the blood coagulation cascade, to determine
any alteration (prolongation or reduction) of the clotting time in
response to perturbed values of reaction constants and of the
initial concentration of some pivotal species. The comparison of
the running time required to execute a parameter sweep ana-
lysis with 105 different parameterizations showed a 181�
speed-up on Nvidia Tesla K20c GPU with respect to an Intel Core
i5 CPU.

Nobile et al. [116] proposed a parameter estimation method-
ology based on a multi-swarm version of Particle Swarm
Optimization (PSO) [94], which exploits a CUDA-powered ver-
sion of SSA. This method, tailored for the estimation of kinetic
constants in stochastic reaction-based models, achieved a 24�
speed-up with respect to an equivalent CPU implementation.
The tool cuRE [95] integrates this parameter estimation method-
ology with Cartesian Genetic Programming [137], to perform the
reverse engineering of biochemical interaction networks. Liepe

et al. [117] proposed ABC-SysBio, a Python-based and GPU-
powered framework based on approximate Bayesian computa-
tion, able to perform both parameter estimation and model se-
lection. ABC-SysBio also represents the foundation for
SYSBIONS [138], a tool for the calculation of a model’s evidence
and the generation of samples from the posterior parameter
distribution.

Discussion

In this article we reviewed the recent state-of-the-art of GPU-
powered tools available for applications in Bioinformatics,
Computational Biology and Systems Biology. We highlight here
that, although the speed-up values reported in literature con-
firm that GPUs represent a powerful means to strongly reduce
the running times, many of the measured acceleration could be
controversial, as there might be room for additional optimiza-
tion of the code executed on the CPU. Indeed, according to the
descriptions provided in the aforementioned papers, many per-
formance tests were performed using CPU code that leverage
neither multi-threading nor vectorial instructions (e.g. those
offered by SSE [9] or AVX instruction sets [139]). However, some
of the reported speed-up values are so relevant—e.g. the 180�
acceleration provided by GPU-CASSERT [96], or the 50� acceler-
ation provided by the molecular docking tool developed by Korb
et al. [82]—that even an optimized CPU code could hardly out-
perform the CUDA code.

In addition, it is worth noting that many of the most per-
forming tools required a tailored implementation to fully lever-
age the GPU architecture and its theoretical peak performance.
For instance, the fine-/coarse-grain implementation of SSA pre-
sented by Sumiyoshi et al. [103] relies on the skillful usage of
shared memory and asynchronous data transfers; the protein
alignment tool GPU-CASSERT [96] relies on a highly optimized
use of global memory and multiple streams of execution, over-
lapped with data transfers; the stochastic simulator
cuTauLeaping [107] relies on GPU-optimized data structures, on
the fragmentation of the execution into multiple ‘thin’ kernels,
and on the crafty usage of both constant and shared memories.
These works provide some examples of advanced strategies
used in GPGPU computing, which make CUDA implementations
far more complicated than classic CPU-bound implementations.
In general, the most efficient GPU-powered implementations
share the following characteristics: they leverage the high-
performance memories, and try to reduce the accesses to the
global memory by exploiting GPU-optimized data structures.
These features seem to represent the key to successful CUDA
implementations, along with optimized memory layouts [140]
and a smart partitioning of tasks over several threads with lim-
ited branch divergence. Stated otherwise, we warn that a naı̈ve
porting of an existing software to CUDA is generally doomed to
failure.

As previously mentioned, CUDA is by far the most used li-
brary for GPGPU computing; anyway, alternative solutions exist.
OpenCL, for instance, is an open standard suitable for parallel
programming of heterogeneous systems [141]; it includes an ab-
stract model for architecture and memory hierarchy of OpenCL-
compliant computing devices, a C-like programming language
for the device-side code and C API (Application Programming
Interface) for the host-side. The execution and memory hier-
archy models of OpenCL are similar to CUDA, as OpenCL ex-
ploits a dedicated compiler to appropriately compile kernels
according to the available devices. Differently from CUDA, the
kernel compilation phase of OpenCL is performed at runtime.

Graphics processing units in bioinformatics | 879

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/18/5/870/2562773 by U

niversità Bocconi user on 07 Septem
ber 2023

Deleted Text: ,
Deleted Text: x
Deleted Text: -
Deleted Text: which 
Deleted Text: ,
Deleted Text:  - 
Deleted Text:  - 
Deleted Text:  - 
Deleted Text: , etc.
Deleted Text:  - 
Deleted Text: in order 
Deleted Text:  - 
Deleted Text:  - 
Deleted Text: ours
Deleted Text: x
Deleted Text: x
Deleted Text: paper 
Deleted Text: since 
Deleted Text: neither 
Deleted Text: ,
Deleted Text:  - 
Deleted Text: ,
Deleted Text: x
Deleted Text: x
Deleted Text:  - 
Deleted Text: -
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: since 


However, CUDA 7.0 introduced this possibility with the NVRTC
library [142]. The difficulty in writing code with OpenCL led to
the definition of tools as Swan [143], to facilitate the porting of
existing CUDA code to OpenCL and minimizing the effort of
code rewriting. The performances of CUDA code and OpenCL
code converted with Swan have been compared [143], showing
a 50% increment of the execution time of the OpenCL version:
the CUDA compiler appeared to be more efficient in reducing
registers usage, which affects the number of concurrently exe-
cuted threads. In addition, the kernel launch cost of OpenCL is
around nine times larger than CUDA, affecting the running time
especially in the case of kernels with ‘short’ execution time.

On the contrary, an interesting feature of Swan [143] is that
CUDA code ported to OpenCL was successfully executed both
on Nvidia and AMD devices without any changes to the source
code, making this tool an appealing alternative to full re-
implementation. Hence, although CUDA-optimized code is still
more efficient [140]—see e.g. the case of MaxSSmap [31], where
the source code compiled with the last versions of the CUDA li-
brary largely outperforms OpenCL—the OpenCL library repre-
sents a viable alternative to CUDA, as it is hardware
independent, and it can reduce the costs of porting and main-
taining multi-platform support of applications.

Although the speed-up achieved with optimized CUDA code
is already relevant, it is worth noting that the constant improve-
ment in the fabrication process of GPU-enabled video cards is
expected to further increase the efficiency gap with respect to
CPUs. The speed-up of GPU-powered software is generally
higher when running the code on more recent video cards,
thanks to the larger number of cores and the increment of the
available high-performance resources (e.g. registers, shared

memory, cache), which remove the main limitations to a full oc-
cupancy of GPUs in many existing implementations. Figure 1
summarizes some general trends of CPUs (red dots) and of the
GPUs (green squares) that were cited in this review and that are
listed in Supplementary File 3.

Figure 1a compares the theoretical GFLOPS performance
assuming double precision floating point calculations: even
though both architectures are constantly improving, GPUs’ per-
formances enhance at a faster rate (as shown by the regression
lines), with the most recent architectures being almost two orders
of magnitude more efficient than CPUs. Higher performances are
directly reflected in higher energy requirements: Figure 1b com-
pares the energy consumption of the two architectures. The
GFLOPS-per-Watt ratio (GPWR, Figure 1c), however, represents a
better measure of the efficiency of the devices than the mere
power consumption: GPUs generally allow better theoretical per-
formances with respect to CPUs, despite the higher energetic re-
quirements. The higher GPWR of GPUs is the rationale behind the
development of GPU-based supercomputers, which represents a
‘green’ alternative to conventional HPC infrastructures. Figure 1d
shows that, nowadays, GPUs largely outnumber CPUs, consider-
ing the number of cores, thanks to their exponential increase on
the most recent video cards. This characteristic is counterbal-
anced by the far lower working frequency of video cards (Figure
1e), although even CPUs frequency did not substantially improve
in the last years. These data explain why GPU-powered software,
which leverage the thousands of cores contained in a GPU, are ex-
pected to experience a relevant increment in the achievable
speed-up if they are executed on newer architectures.

A potential drawback of GPUs is the availability of memory.
As a matter of fact, many applications—in particular those

Figure 1. With the advances in the manufacturing processes, the architectural features of both CPUs (red dots) and GPUs (green squares) continuously improve. This

figure shows the trends for both architectures by comparing the following characteristics: (A) the performances in terms of GFLOPS when performing double precision

floating point operations; (B) the power consumption; (C) the GPWR; (D) the number of cores per unit; (E) the core working frequencies. The GPUs considered in this fig-

ure are reported in Supplementary File 3, while the CPUs are the Intel Core i7 processors released in the same years (namely, from the Westmere up to the Haswell

microarchitectures). A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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processing genome-wide data—require a huge amount of mem-
ory, more than the few gigabytes contained on high-end GPUs
at the time of writing. From the point of view of memory, CPUs
still largely outperform GPUs. However, CUDA allows kernels to
directly access CPU’s RAM by means of the so-called ‘pinned
memory’ [144]. This type of memory is page-locked and can be
directly read and written from the GPU, using Direct Memory
Access through the PCI-express bus, without any involvement
of the CPU. The drawback of this solution is represented by the
bandwidth of PCI-express accesses, which provides a reduced
rate with respect to device-to-device memory transfers [145].
cupSODA*L [115] is one example of computational tool following
this strategy, where the pinned memory was leveraged to per-
form coarse-grain simulation of large-scale biochemical models
achieving only a limited speed-up.

Taking all of these issues into consideration, it can be antici-
pated that the increasing availability of GPU-powered tools in
various research areas of life sciences—as well as the creation
of massive GPU-based infrastructures, providing scientists with
hexa-scale performances—will finally enable the execution of
fastest and thorough simulations and analyses of complex mo-
lecular structures, or pave the way to ambitious goals like
genome-wide analyses and dynamical simulations of detailed
mechanistic models of whole cells and organisms.

Key Points

• Computational methods and software tools developed
in Bioinformatics, Computational Biology and Systems
Biology can be computationally demanding when exe-
cuted on Central Processing Units (CPUs), therefore
limiting their applicability in many circumstances.

• General-purpose Graphics Processing Units (GPUs) are
nowadays gaining an increasing attention by the sci-
entific community, as they can considerably reduce
the running time required by standard CPU-based
software.

• The aim of this review is to provide an overview of re-
cent GPU-powered tools developed in Bioinformatics,
Computational Biology and Systems Biology, empha-
sizing their advantages (i.e. computational speed-up)
as well as drawbacks (e.g. the necessity of algorithm
redesign and tailored implementation to fully leverage
the GPU architecture and its peak performance).

• In particular, we present recent GPU-accelerated
methodologies developed for sequence alignment, mo-
lecular dynamics, molecular docking, prediction and
searching of molecular structures, simulation of the
spatio-temporal dynamics of cellular processes and
related applications in Systems Biology.

• The main concepts related to GPUs, a collection of
other applications in Bioinformatics and
Computational Biology (spectral analysis, genome-
wide analysis, Bayesian inference, movement tracking,
quantum chemistry) and additional technical details
about Nvidia GPUs are provided in the supplementary
files.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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