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1. Introduction

The growing size and complexity of data structures and the simultaneous need of accurate predictions force analysts to 
employ black-box rather than transparent machine learning (ML) models in an increasing number of applications. While 
the success of such models extends the range of statistical ML applications, it also increases the need of methods that aid 
explainability (Dunson, 2018; Rudin, 2019; Murdoch et al., 2019).

Determining feature importance is essential for model simplification, dimensionality reduction, and for understanding 
whether predictions are at risk of unfair discrimination (Fisher et al., 2019). As underlined in Murdoch et al. (2019), there is 
a variety of techniques for calculating feature importance. Methods such as the Local Interpretable Model-agnostic Explana-
tions (LIME) (Ribeiro et al., 2016), the Layerwise Relevance Propagation (LRP) (Binder et al., 2016), and the SHapley Additive 
exPlanations (SHAP) (Lundberg and Lee, 2017) yield feature importance measures at the individual prediction level. Tech-
niques such as permutation or removal (Breiman, 2001), Shapley values (Lundberg and Lee, 2017; Lundberg et al., 2019), 
knock-offs (Barber and Candés, 2015; Candès et al., 2018) and Sure Independence Screening (Fan and Lv, 2008) provide an 
indication of importance at the dataset level.

Measures of statistical association are an alternative way for assessing feature importance: they provide dataset scores 
and are model agnostic (Murdoch et al., 2019). While they have been widely studied beginning with works such as Pearson 
(1905), Hotelling (1936) and Renyi (1959), the size and complexity of modern datasets have generated new interest in their 
construction, as the recent works of Chatterjee (2021), Pan et al. (2020) and Wiesel (2022) highlight. We note that several 
measures of statistical association rely on the assumption that the target is a real number (or vector). However, in certain 
ML applications, targets and/or features may be images or objects, for which a mathematical order relation may not be 
appropriate. To illustrate, consider an image recognition task in which the target consists of three different types of pictures 
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representing, say, cats, tigers and rabbits. Then the alphabetical ordering “cat”, “rabbit”, “tiger” is a possible ordering, but it 
is as valid as the ordering “cat”, “tiger”, “rabbit” that is based on the number of the characters in each name, and none of 
them qualifies as a natural ranking. The issue is underlined in recent works (Da Veiga, 2021; Marrel and Charibon, 2021) 
and the definition of probabilistic sensitivity measures for non-ordered outputs is a topical research subject.

To bridge this gap we propose a family of measures of statistical association whose definition is well-posed also for non-
ordered data. Our intuition is to rely on separation measurements between probability mass functions. Here, by separation 
measurement we mean any distance or divergence between probability mass functions that is positive, and that is null if and 
only if the probability mass functions coincide. Then, we show that the new class of sensitivity indices complies with Renyi’s 
postulate D of measures of statistical dependence (Renyi, 1959). This postulate, called zero-independence property in the 
following, requires that a measure of association is null if and only if the two random variables are statistically independent. 
We address the estimation of this new class of indicators for generic samples, and discuss their asymptotic convergence. 
We then use these probabilistic sensitivity measures in the context of explainability. A relevant aspect related to measures 
of statistical association is that they can be computed directly on the original dataset without the need of actually fitting 
a machine learning model. Thus, not only are they model agnostic in explaining the behavior of a black box, but they also 
provide pre-hoc explanations. Our intuition is then to compare explanations provided by measures of statistical association 
first calculated on the original data (the pre-hoc explanations) and then on the forecasts of the machine learning model 
fitted to the data (post-hoc explanations). This comparison provides an indication on whether the ML model predictions 
capture the statistical dependence originally present in the data. We call the resulting approach Xi-method. We proceed as 
follows: first, we discuss the methodological framework, with a focus on the choice of the separation measurement. Then, 
we address estimation, with a focus on a partition-based approach that allows us to obtain the explanations from a given 
dataset. We perform experiments to investigate the asymptotic convergence of the estimates and highlight limitations of the 
approach with particular reference to the curse of dimensionality. We then test the approach by performing experiments 
on datasets of alternative types, comprising tabular, image and textual data. For the first set of experiments, in which 
the ML model is a random forest, we compare the pre-hoc and post-hoc explanations provided by measures of statistical 
dependence with the post-hoc explanations delivered by variable importance measures based on Split and Count (Breiman 
et al., 1984) and permutation (Breiman, 2001). The rationale of this comparison is to test the agreement between results 
provided by measures of statistical association with one representative of variable importance measures that are post-
hoc and model-dependent (Split and Count) and one representative of measures that are post-hoc but model agnostic 
(permutation feature importance). Measures of statistical dependence produce additional and complementary insights with 
respect to alternatives currently in use, with the advantage of being model agnostic and computationally convenient.

The remainder of the work is organized as follows: Section 2 sets up the relevant framework and reviews the literature. 
Section 3 introduces the new dependence measures for classification. Section 4 presents the Xi-method. Section 5 illustrates 
results for alternative datasets. Section 6 offers conclusions.

2. Feature importance and measures of association

Let (�, B(�), P ) be a reference probability space (where � is called sample space, B(�) is a Borel σ -algebra, and 
P : B(�) → [0, 1] is the reference probability measure) and let X = (X1, X2, . . . , XnX) and L be random variables on this 
reference space with supports X and L, respectively. Let also X have the meaning of vector of features and let L represent 
targets (labels). For example, in image classification, we might be dealing with a set of images of a given resolution, say 
npixels. Frequently, pixels themselves are selected as features, yielding X = (X1, X2, . . . , Xnpixels). The set of labels is then the 
list of objects depicted in the corresponding images. The support of each pixel (Xi, i = 1, . . . , npixels) is its range of values 
(for instance Xi = (0, 1) in case of grayscale images), and the overall support X is the Cartesian product of the ranges of all 
pixels. The support of the target L is the list of all the possible labels associated to each image in the dataset, that is the 
set of objects represented in the data collection (e.g., cats, rabbits, tigers as we were mentioning in the introduction).

We are interested in associating realizations of X to realizations of L through the input-output mapping g : X × � → L
(Hastie et al., 2009; Zhao and Hastie, 2021)

� = g(X, θ), (1)

where � denotes a model forecast and θ ∈ � is a vector of parameters (or rules). In supervised learning, a dataset (x(n), L(n)), 
n = 1, 2, ..., N , of realizations of X and L is usually available (henceforth, N denotes the sample size). Splitting the sample 
into training and testing subsamples of sizes N T r and N T e respectively (on the meaning and rationale for training and testing 
in supervised learning see classical references such as Hastie et al. (2009)), the parameters of the input-output mapping are 
determined via the solution of an optimization problem of the form

θ∗ = argmin
θ

⎧⎨⎩ 1

N T r

N T r∑
n=1

C
(
L(n); g(x(n), θ)

)⎫⎬⎭ , (2)

where C : L × L → R is a suitably defined objective (loss) function. In the remainder, we shall use the shorter ĝ(X) for 
g(X, θ∗). Then, let Xπ(i) denote the design matrix in which we have randomly permuted the realizations of the ith feature 
2
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Xi . Let also C(X;θ∗) = 1
N T r

∑N T r

n=1 C(L(n); g(x(n), θ∗)) denote the value of the optimized loss function and C(Xπ(i); θ∗) =
1

N T r

∑N T r

n=1 C(L(n), g(x(n)
π(i), θ

∗))} the expected loss registered when feature i is permuted, both computed on the training 
dataset. Then, the permutation importance of feature Xi is given by

PIi = C(Xπ(i); θ∗)/C(X;θ∗). (3)

This indicator measures the deterioration in the ML model performance caused by removing the dependence between Y
and Xi .

Measures of statistical dependence instead quantify importance from a different perspective, evaluating the degree of 
association between the target and one or more features. The problem of measuring statistical association roots back to 
works such as Pearson (1895, 1905) and Hotelling (1936) and in the statistical literature we find several measures of 
association and tests for independence. Recently, renewed interest has been generated by the type and size of modern 
datasets (see Chatterjee (2021) for a review). In particular, among measures of statistical dependence recently studied, we 
find the Hilbert–Schmidt Independence Criterion (Gretton et al., 2005; Da Veiga, 2015), distance correlation (Székely et al., 
2007; Székely and Rizzo, 2009; Chaudhuri and Hu, 2019) as well as a new correlation coefficient (Chatterjee, 2021).

To provide the background needed for the remainder of our investigation, we recall the following definition.

Definition 1 (Separation Measurement (Glick, 1975)). Let P be the set of all probability measures on (�, B(�)). A separation 
measurement between P , Q ∈ P is given by a function ζ : P × P → R such that a) ζ(P , Q) ≥ 0, and b) ζ(P , Q) = 0 if 
and only if P =Q.

Let now Y and X ⊆ X (i.e. X is a subset of one or more covariates of interest contained in the original design matrix X) 
be random variables on (�, B(�), P ), and denote by PY and PX their marginal laws, and by PY |X the conditional law of Y
given X . Without loss of generality, we will assume X to be a univariate random variable (if not specified otherwise).

Definition 2 (Probabilistic Sensitivity Measure). We define

ξX = EX [ζ(PY ,PY |X )] (4)

as the probabilistic sensitivity measure of X with respect to Y based on the separation measurement ζ(·, ·).

In Equation (4), the expectation is taken with respect to the law of X , that is,

ξX =
∫
X

ζ(PY ,PY |X=x)dF X (x), (5)

where F X (x) is the cumulative distribution function of X and the integral is interpreted in a Riemann-Stieltjes sense. To 
illustrate, if X is continuous with density f X (x) then Equation (5) becomes

ξX =
∫
X

ζ(PY ,PY |X=x) f X (x)dx. (6)

If X is discrete with realizations x1, x2, . . . , xn , then Equation (5) becomes

ξX = 1

n

n∑
i=1

ζ(PY ,PY |X=xi )p(X = xi). (7)

Also notice that if Y and X are independent, then PY = PY |X , implying ζ(PY , PY |X ) = 0 and consequently ξX = 0. This 
means that the index ξX complies with the zero-independence property (Renyi, 1959).

The choice of the separation measurement in (4) determines the properties of the dependence measure ξX . For instance, 
if ζ(·, ·) is invariant for monotonic transformation of Y then ξX is also monotonic transformation invariant (Borgonovo et 
al., 2014). If Y is absolutely continuous then selecting the Kullback-Leibler divergence as separation measurement has a 
corresponding probabilistic sensitivity measure equal to the mutual information between X and Y (Soofi, 1994). Recently, 
Taverniers et al. (2021) propose this importance measure in the context of neural network interpretability. They develop a 
deep neural network to emulate the behavior of a complex system in a forecasting task, and then the mutual information 
is used to quantify feature importance with respect to the neural network predictions. Alternatively, if one selects the 
separation measurement as the Cramér-von Mises distance as in Gamboa et al. (2018), one obtains

ξCvM
X = EX

⎡⎣∫ (
FY (y) − FY |X (y)

)2
dFY (y)

⎤⎦ . (8)
R
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Table 1
Three possible separation measurements based on the 1-norm, 2-norm and Kuiper 
distance between probability mass functions.

1-norm 2-norm Kuiper distance

ζ 1(p,q) =∑nL
l=1 |pl − ql| ζ 2(p,q) =∑nL

l=1(pl − ql)
2 ζ KU(p,q) = range(p − q)

Notice that ξCvM
X is the limiting value of Chatterjee’s new correlation coefficient (Chatterjee, 2021). Both the mutual infor-

mation and ξCvM
X are then transformation invariant and possess the zero-independence property.

The estimation of probabilistic sensitivity measures has been extensively studied, with computational breakthroughs 
obtained in works such as Chan et al. (2000); Saltelli (2002); Strong et al. (2012), and Gamboa et al. (2016), among others. 
Relevant to our work is a given-data estimation approach that enables direct estimation from a dataset. The key-intuition 
dates back to Pearson (1905), and is extensively studied in works such as Strong et al. (2012), Strong and Oakley (2013) for 
the calculation of variance-based sensitivity measures, and Plischke et al. (2013) for distribution-based sensitivity measures. 
Recently, Gamboa et al. (2020) show that the newly introduced Chatterjee’s rank-based correlation coefficient (Chatterjee, 
2021) can be used as a given-data estimator for ξCvM

X . The connection leads to an elegant and advantageous approach for 
the calculation of a global sensitivity measure in the form of Equation (4) from a given dataset. However, the advantage is 
lost in a classification setting, because the targets are not necessarily elements of an ordered space and cannot be ranked 
univocally. This then opens the question of defining probabilistic sensitivity measures for classification tasks. We address 
this issue next.

3. Probabilistic sensitivity measures for supervised classification

Let L = {	1, 	2, . . . , 	nL } denote the support of L, i.e. the set of labels in the target variable of interest. Without loss 
of generality, we assume that for all 	 ∈ L, P ({L = 	}) > 0. L represents in general a list of objects and consequently the 
realizations of L may not be orderable. Let pL be the probability mass function (pmf) of L and pL|X the conditional pmf given 
a feature (or a feature group) X . Without loss of generality, in the remainder we will consider X to be a single feature, if not 
explicited otherwise. We recall that pL = {P ({L = 	1}), . . . , P ({L = 	nL })} = {p1, p2, . . . , pnL } is a probability mass function if 
pl ≥ 0 for all l = 1, . . . , nL and 

∑nL
l=1 pl = 1. Let Pmf denote the set of all probability mass functions on (L, P(L)) and let 

ζ(·, ·) denote a separation measurement between probability mass functions, ζ :Pmf ×Pmf →R. By Definition 1, ζ is such 
that given p, q ∈P it holds ζ(p, q) ≥ 0 and equality holds if and only if p = q. Then, we propose the following definition.

Definition 3. We call

ξ L
X = EX

[
ζ(pL,pL|X )

]
(9)

the probabilistic sensitivity measure of X with respect to L based on ζ(·, ·).

Formally, ξ L
X in Equation (9) is a particular case of ξX in Equation (4). However, Equation (9) explicitly considers the 

marginal and conditional probability mass functions of the labels. The rationale is that probability mass functions are defined 
without ambiguity also when labels are non-ordered data. In fact, the corresponding cumulative distribution function would 
require an additional convention, that is, we need to order the labels and then stick to such lexicographic order. If an 
alternative order is used, we get an alternative cumulative distribution function. Relying on the probability mass functions 
avoids the additional step of introducing an order relation. In Table 1, we report three potential choices for the separation 
measurement between two probability mass functions p = {p1, . . . , pnL } and q = {q1, . . . , qnL } defined on the same sample 
space. Specifically, ζ 1(p, q) is a separation measurement based on the 1-norm (absolute value of the differences), ζ 2(p, q)

is a separation based on the 2-norm (square value of the differences) and ζ KU(p, q) is based on an extension to the discrete 
case of the Kuiper distance (Kuiper, 1960) (which is, in turn, an extension of the Kolmogorov-Smirnov distance). In ζ KU(p, q)

we have range(p − q) = maxnL
l=1(pl − ql) − minnL

l=1(pl − ql).

Example 4. To illustrate the separation measurements in Table 1, let L be a categorical variable with support L = {A, B, C}
and consider the probability mass functions given by p = [ 1

3 , 13 , 13 ] and q = [ 1
4 , 12 , 14 ]. Then, we have:

ζ 1(p,q) =
∣∣∣∣1

3
− 1

4

∣∣∣∣+ ∣∣∣∣1

3
− 1

2

∣∣∣∣+ ∣∣∣∣1

3
− 1

4

∣∣∣∣= 1

3
,

ζ 2(p,q) =
(

1

3
− 1

4

)2

+
(

1

3
− 1

2

)2

+
(

1

3
− 1

4

)2

= 1

24
,

ζ KU(p,q) = range

(
1 − 1

,
1 − 1

,
1 − 1

)
= 1 −

(
−1

)
= 1

.

3 4 3 2 3 4 12 6 4
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Analysts can select separation measurements between probability mass functions that go beyond the ones listed in 
Table 1, such as the Kullback-Leibler divergence, or the Hellinger distance, or any other particular choice that best suites 
her/his needs for the application at hand.

The next results state that as long as the separation measurement follows the requirements in Definition 1, members of 
the ξ L

X family in Equation (9) possess the zero-independence property. Indeed, notice that for all the measurements ζ(·, ·)
complying with Definition 1, ζ(pL, pL|X ) = 0 when pL = pL|X , that includes the case when L is independent of X.

Proposition 5. Given the above setup, if ζ(·, ·) is a separation measurement between probability mass functions then ξ L
X ≥ 0, and 

ξ L
X = 0 if and only if L is independent of X.

Let us now turn to the estimation of the probabilistic sensitivity measures of Xi ∈ X with respect to L, for i ∈ {1, . . . , nX }. 
Let Xi denote the support of Xi . Let also Ki = {X 1

i , X 2
i , . . . , X K

i } denote a partition of Xi , i.e., a finite or countable collection 
of K subsets of Xi such that Xi = ⋃K

k=1 X k
i and Xm

i ∩ X l
i = ∅, for all m 	= l. A given-data estimator of ξ L

i := ξ L
Xi

in (9) is 
given by:

ξi(Ki) =
K∑

k=1

p
(

Xi ∈ X k
i

)
ζ
(
pL,pL|Xi∈X k

i

)
, (10)

where pL|Xi∈X k
i

= {
pL

r (X k
i ) = p(L = 	r |Xi ∈X k

i ); r = 1,2, . . . ,nL
}

denotes the conditional distribution of L, for X k
i ∈Ki . Now, 

consider a fixed partition Ki = {X 1
i , X 2

i , . . . , X K
i } with cardinality K and a dataset of features and target realizations. Let N

be the sample size, and, for r = 1, . . . , nL , let Nr the number of the observations labeled with 	r . For X k
i ∈ Ki , let N(X k

i )

denote the number of input observations in X k
i , and N L

r (X k
i ) the corresponding number of target observations with label 

	r . Then, using the plug-in principle, we obtain an estimate of ξi(Ki) in (10) from

ξ̂i(K , N) =
K∑

k=1

p̂
(
X k

i

)
ζ
(̂
pL, p̂L|Xi∈X k

i

)
, (11)

where p̂(X k
i ), p̂L and p̂L|Xi∈X k

i
are plug-in estimates of, respectively, p(Xi ∈ X k

i ), pL and pL|Xi∈X k
i

. Observing that, for i =
1, 2, . . . , nX and r = 1, 2, . . . , nL , p̂(Xi ∈ X k

i ) = N(X k
i )/N , p̂(L = 	r) = Nr/N and p̂L = {̂p(L = 	1), . . . , ̂p(L = 	nL )}, as well as 

p̂L
r (X k

i ) = p̂(X k
i ) N L

r (X k
i )/N(X k

i ) = N L
r (X k

i )/N and ̂pL|Xi∈X k
i

= {̂pL
1(X k

i ), . . . , ̂pL
nL

(X k
i )}, we can rewrite (11) as

ξ̂i(K , N) =
K∑

k=1

N(X k
i )

N
ζ
(̂
pL, p̂L|Xi∈X k

i

)
. (12)

Proposition 6. Let ζ(·, ·) be a separation measure between probability mass functions, and let ζ(·, ·) be bounded almost everywhere 
as Xi varies in Xi . Let ̂ξi(K , N) be defined by (12). Then, if Xi is discrete,

lim
N→∞ ξ̂i(K , N) = ξ L

i .

If Xi is continuous,

lim
K→∞ lim

N→∞ ξ̂i(K , N) = ξ L
i . (13)

Proposition 6 reassures us of the consistency of the estimator of ξ L
i . From an implementation viewpoint, we need to 

distinguish the case in which Xi is discrete or categorical from the case in which it is continuous. If Xi is discrete then the 
partition Ki is fixed and immediately given by the support of Xi . If Xi is continuous then the two limits with respect to the 
sample size and the partition cardinality are nested. Theoretically, first one lets the sample size N tend to infinity and then 
one refines the partitions sending K to infinity — as evidenced already in Pearson (1905). In practice, care must be taken in 
selecting the partition size at any finite sample N . Proposition 6 also implies that for bounded metrics ζ(·, ·), the variance 
of ζ (̂pL, ̂pL|Xi∈X k

i
) is finite for every k = 1, 2, . . . , K . As an immediate consequence, the following holds for the separation 

measurements in Table 1 the following holds.

Corollary 7. The estimators of ζ 1(pL, pL|Xi∈X k
i
), ζ 2(pL, pL|Xi∈X k

i
), and ζ KU(pL, pL|Xi∈X k

i
) are asymptotically consistent.

Consistency of the estimators has an immediate advantage also with regard to uncertainty quantification. In particular, a 
natural way of quantifying uncertainty in a context as the one we are dealing with is to make use of the bootstrap method. 
5
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Fig. 1. Bootstrap results varying N and K for ̂ξKU
1 (K , N), ̂ξ1

1 (K , N) and ̂ξ2
1 (K , N). The shaded areas represent 95%-bootstrap confidence intervals. In both 

Figs. 1a and 1b, the y-axis represents the boostrap mean values of ̂ξ L
1 (K , N) based on the 1-norm (red), 2-norm (blue) and Kuiper norm (blue). In Fig. 1a 

the x-axis reports the values of the sample size N , in Fig. 1b the x-axis reports the values of the partition cardinality K on a logarithmic scale. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We consider the bootstrap bias-reducing estimator in the version of Efron and Gong (1983), ̂̂ξi(K , N). More precisely, con-
sider a sample of size N and a partition Ki of K elements. Then, we havê̂ξi(K , N) = 2ξ̄i(K , N) − ξ̂i(K , N), (14)

where ξ̄i(K , N) is the estimate of ξi(K , N) produced by taking the mean over the bootstrap replicates with fixed partition 
Ki and ξ̂i(K , N) is the corresponding point estimate. By the theory of the bootstrap method, the asymptotic consistency of 
ξ̂i(K , N) implies the asymptotic consistency of ̂̂ξi(K , N). In our case, the consistency of ̂ξi(K , N) is ensured by Proposition 6.

The selection of the partition cardinality K is a crucial step in implementing given-data estimators. The partition cardi-
nality is, indeed, the sole hyperparameter of the design. It is well-known that this choice is associated with a bias-variance 
trade-off. On the one hand, the higher the value of K , the fewer the available realizations in each partition. We then have 
higher bias and lower variance for p̂L and p̂L|Xi∈X k

i
for k = 1, . . . , K . On the other hand, the smaller K is, the lower the 

bias but the higher the variance of the estimators. The choice of K in relationship to the sample size has been studied in 
depth in Strong and Oakley (2013) — see also Borgonovo et al. (2016). The analysis in Strong and Oakley (2013) evidences 
a plateau effect: for large enough samples, the choice of K in a certain range does not impact the value of ̂ξi . To illustrate, 
consider Figure 1 in Strong and Oakley (2013, p. 759), that shows results of experiments at alternative values of K : fixing a 
sample of size N = 10′000, choosing K in a range between K = 10 and K = 1′000 yields similar values of ̂ξi(K , N). For larger 
(smaller) values of K (at the same sample of size N = 10′000), Strong and Oakley (2013) showcase an upward (downward) 
bias. The plateau effect can then be used to obtain guidance on the choice of K : Strong and Oakley (2013) recommend a 
value of K in the range that causes the plateau as a natural choice. To illustrate this aspect in our case, we report results of 
numerical experiments involving an analytical test case.

Example 8. Consider the following fictitious binary classification problem, with a target random variable L with a binary 
support, i.e. L = {0, 1}. We simulate L using the following data generating process:

L =
{

0 if 0 ≤ Y < 1,

1 if 1 ≤ Y ≤ 2,

where Y = X1 + X2, and X1, X2 are two independent and uniformly distributed random variables in [0,1], i.e. X1, X2 ∼
Unif(0, 1), here playing the role of covariates. Computing explicitly the true probability mass function for L on its support 
L = {0, 1}, we obtain p(L = 1) = 1 − p(L = 0) = 1

2 . Applying the definition in Equation (9), the analytical values of the 
probabilistic sensitivity measures based on the 1-norm, 2-norm and the Kuiper distance are respectively obtained computing 
the integrals ξ1

i = ∫ 1
0 |1 − 2xi |dxi = 1

2 , ξ2
i = ∫ 1

0 (2x2
i − 2xi + 1

2 )dxi = 1
6 , and ξKU

i = ∫ 1
0 |1 − 2xi |dxi = 1

2 , for i = 1, 2.
In Fig. 1a, we report results at increasing sample sizes. Using a Sobol’ Quasi-Random sequence generator we produce 

a sequence of datasets with realizations of (X1, X2) and L, for the sample size ranging from N = 100 to N = 100′000. 
The shadows represent bootstrap confidence intervals. The estimates converge towards the analytical values as N increases, 
and the width of the bootstrap confidence intervals shrinks, thus confirming the asymptotic consistency of the estimates. 
Fig. 1b presents results for a fixed sample size (N = 10′000) but selecting alternative partitions of increasing cardinality. In 
particular, we vary K from K = 1 to K = 10′000. Fig. 1b shows that we register a plateau in the values of the estimates 
6
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ξ̂i(K , N) for K ∈ [20, 900]. For values of K smaller than 20, we have a downward bias. Conversely, for values of K exceeding 
900, we register an upward bias.

The results in Fig. 1b are in agreement with the findings in Strong and Oakley (2013). Moreover, as discussed also in 
Borgonovo et al. (2016), the downward bias is empirically explained by the fact that as K gets smaller the conditional 
and unconditional distributions tend to coincide. In fact, in the limiting case K = 1 the conditional and unconditional 
distributions are the same and the value of any measures of statistical association is null. Conversely, choosing K = N , we 
obtain exactly one point per partition. Then, the numerical calculation is between the marginal distribution of Y and a 
Dirac-δ mass centered at the sole realization in the partition. Such distance is maximal or infinite for several metrics and 
therefore we register an upward bias.

Finally, any given-data estimator in Equation (11) is exposed to the curse of dimensionality when Xi ∈ X is multidi-
mensional, that is, we are determining the joint importance of two or more features. In general, then, Xi = (X1, X2 . . . , Xs), 
s ≤ nX requires us to condition on s features. We are then dealing with s-dimensional partition sets (to fix ideas, in one 
dimension we are dealing with intervals, in two dimension with rectangles, in s dimension with hyper-rectangles). These 
partition sets contain a number of realizations (data) that decreases exponentially with s. To illustrate, start with s = 1 and 
consider that we have available N realizations and a partition with cardinality K . Then, we can count on J = N/K realiza-
tions per partition set (assuming equipopulated partition sets). For instance if N = 10, 000 and K = 25, we have 400 data 
points per partition set. If we consider bi-dimensional partitions to find the joint importance of, say, features Xi and X j
(i 	= j), then we could count on J = N/(Ki K j), where Ki and K j are, respectively, the cardinalities of the partitions of the 
supports of Xi and X j . At N = 10, 000 selecting Ki = K j = 25, we would have 16 data points per partition set. Compared 
to the previously available 400 points per partition set, this number of realizations is drastically lower and may prohibit 
an accurate estimation of the requested statistical quantities. However, this sparsity effect becomes noticeable when we 
increase the number of features (s) in the group, and is not related to the overall number of features nX .

4. Application: the Xi-method

In this section, we introduce a framework for obtaining pre-hoc and post-hoc explanations for ML models through 
measures of statistical dependence. The idea is to understand how close the values of explanations computed from the 
data are to those computed from the forecasts. Performing this analysis at the overall dataset level as well as at the level 
of each individual class leads to several indications about the features that are statistically important in the problem at 
hand. Starting with the data collection T L = {

(x(n), L(n)); n = 1,2, . . . , N
}

, dataset explanations are defined as the collection 
of probabilistic sensitivity measures estimates:

ξ̂ L
X =

{̂
ξ L

i , i = 1,2, . . . ,nX

}
, (15)

estimated from T L by applying (11) (the superscript L denotes that the estimates are obtained using the data, i.e., ξ̂ L
i is 

an estimate of ξ L
i = EX [ζ(pL, pL|Xi )]). Consider now the dataset T� = {(x(n), �(n)); n = 1, 2, . . . , N}, with �(n) = ĝ(x(n)), 

obtained from T L by replacing the true labels with the corresponding ML model predictions. Prediction explanations are 
defined as the collection of probabilistic sensitivity measures

ξ̂�
X = {̂

ξ�
i , i = 1,2, . . . ,nX

}
, (16)

with ̂ξ�
i defined in Equation (9) and estimated by applying Equation (11) to T� .

Because they look at allthe target classes simultaneously, ξ̂ L
X and ξ̂�

X yield an understanding of the most important co-
variates for the overall dataset or prediction task. However, we can make the analysis more granular by analyzing what 
are the statistically most important features to predict a given label. To do this, we resort to the so-called one-hot encod-
ing technique for the response variable (Hastie et al., 2009). In particular, for nL different labels 	1, . . . , 	nL , we codify the 
data by L1 = 1{L=	1}, . . . , LnL = 1{L=	nL } . Then, we call the 	r -dataset explanations the quantities ̂ξ Lr

X =
{̂
ξ

Lr
i , i = 1,2, . . . ,nX

}
, 

where ξ̂
Lr
X is the estimator of ξ

Lr
i = E 

[
ζ(pLr ,pLr |Xi )

]
, r = 1, . . . , nL . Similarly, to answer the question of what are the 

statistically important features for the ML model when predicting label 	r , we define the 	r -prediction explanations as ξ̂
�r
X ={̂

ξ
�r
i , i = 1,2, . . . ,nX

}
with ξ�r

i =E 
[
ζ(p�r ,p�r |Xi )

]
estimated by ̂ξ�r

X , and �r defined in a similar fashion as Lr .

The next step is to compare ξ̂�
X and ξ̂ L

X (or their counterparts ξ̂ Lr
i , ̂ξ�r

i ). This comparison can be done by a simple 
graphical visualization of the values of ̂ξ�

X and ̂ξ L
X or of the ranking they induce. For this task, one can use any discrepancy 

measure between vectors of real numbers. A possible choice is the Minkowski distance:

D p
(̂
ξ�

X , ξ̂ L
X

)
=
∥∥∥̂ξ�

X − ξ̂ L
X

∥∥∥
p

= p

√√√√ 1

nL

nL∑∣∣̂ξ�
X − ξ̂ L

X

∣∣p
. (17)
i=1

7
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For p = 1, D p (̂ξ�
X , ̂ξ L

X ) is the Mean Absolute Deviation (MAD), while for p = 2 the Mean Squared Error (MSE). Information 
delivered by D p

(̂
ξ�

X , ξ̂ L
X

)
can be used in alternative ways. For instance, the analyst may consider two set of explanations 

ξ̂�
X and ̂ξ L

X far apart if D p
(̂
ξ�

X , ξ̂ L
X

)
> δ, for some threshold δ > 0. If that is the case, and the model is fitting well, then the 

model is making good predictions but it is not picking up the same statistical relationships present in the data. Conversely, if 
D p

(̂
ξ�

X , ξ̂ L
X

)
< δ, the model is predicting accurately and its forecasts recreate well the statistical dependence of the original 

dataset. In this respect, it is interesting to conduct the comparison for the training as well as the test datasets, to see 
if differences emerge between the two subsamples. Regarding the value of the threshold δ, the choice depends on the 
application of interest and on the separation measure ζ(·, ·); we therefore refrain from providing a general rule. Also, often 
the interest is on the ordinal ranking induced by ξ̂�

X and ξ̂ L
X . In this case, a quantitative comparison is carried out using 

well-known statistical techniques such as the Spearman rank correlation coefficient (ρSpear , henceforth) (Spearman, 1904). 
This very same procedure can be employed in a very similar fashion at the individual class level, i.e., when the sensitivity 
measures are calculated for each target class.

5. Test cases: tabular, visual and text data

In this section, we illustrate the method and apply it to well-known datasets in different formats: in Subsection 5.1 we 
analyze a tabular dataset, in Subsection 5.2 an image dataset and in Subsection 5.3 a text dataset. In all the experiments, 
we train a ML model on a subset of the available data (the training set), and then we compute the explanations ξ�

X , ξ L
X on 

the test set, using the estimators defined in Equation (10) and fixing the number of partitions at K = 10. To fit the models, 
we employ the well-known scikit-learn package in Python, using the default loss functions. We report the ML model 
test accuracy as the percentage of correctly classified instances.

5.1. Tabular data: the Wine dataset

In our first application, we use the well-known Wine dataset publicly available at https://archive .ics .uci .edu /ml. This 
dataset has been widely used in association with the task of predicting a wine quality based on its chemical properties 
(Dua and Graff, 2017). The dataset collects quantitative data on eleven features (ranging from alcohol content to the pH 
of the wine), and the output is the corresponding wine quality measured on a scale from 1 to 10. The sample size is 
N = 4898, split into 60% for training and 40% for testing. The only preprocessing has been to replace the 39 missing entries 
in the design matrix X with either the mean or the median of the corresponding variable (we also performed our analysis 
omitting these entries, with unchanged results). The classes in the final dataset are unevenly populated, with 1457, 2198 
and 880 entries, respectively, for Qualities 5, 6 and 7, with 163 and 175 entries for Qualities 4 and 8, with only 20 entries 
for Quality 3, and zero entries for Quality 1 and 2. We trained alternative ML models and registered a very similar accuracy 
for all. In the remainder, we shall focus on results obtained using a Random Forest (RF), which registers a test accuracy of 
66% (1-off accuracy ∼ 90%). Using the test set and the trained model, for all the variables i = 1, . . . , nX , we estimate the 
feature importance measures provided by Permutation Importance (PIi ) and Split and Count (SCi), as well as the probabilistic 
sensitivity measures ̂ξ L

i , ̂ξ�
i based on the 1-norm separation (for the sake of space we shall focus only on this norm in the 

remainder). Results are displayed in Fig. 2 Panels (a) and (b) in Fig. 2 compare the values of the probabilistic sensitivity 
measures on the real data versus the ones the model forecasts (both computed on the test set). A visual inspection suggests 
that the ranking induced by ξ̂ L

X and ξ̂�
X are similar: alcohol stands out as the most important variable, the group volatile 

acidity, density and chlorides follows, and is followed in turn by a group comprising citric acid, total sulfur dioxide, free 
sulfur dioxide and sulphates, while the group pH, fixed acidity and residual sugar contains the three least relevant features.

Table 2 reports results of the quantitative comparisons between ξ̂ L
X , ̂ξ�

X with MAD and MSE in the second and third 
columns, respectively, and ρSpear in the last column. The small values of MAD and MSE and the simultaneously high value 
of ρSpear confirm the visual impression of Fig. 2 concerning the overall agreement. Thus, the ML model forecasts actually 
reproduce well the original statistical dependence in the data and the covariates that are statistically important for the 
true data generating process are also important for the ML model predictions. Panels (c) and (d) in Fig. 2 compare these 
results with indications provided by the Split and Count measure (SC) and the Permutation Importance measure (PI). The 
values of ρSpear between the ranking induced by the alternative importance measure amount at around 0.7, indicating a 
lower ranking agreement than in the previous case (Table 3). Indeed, while all importance measures agree on alcohol as 
the most important feature, the values of SC indicate a rather homogeneous influence of the remaining features (the values 
of SC are similar), while ξ̂�

X and ξ̂ L
X display greater variability in their values, with alcohol, density and volatile acidity 

being statistically more important than pH, fixed acidity and residual sugar. One also notes that the ranking of the three 
most important variables is consistent for ̂ξ L

X , ̂ξ�
X and SC, while PI assigns density a much lower importance. All importance 

measures suggest alcohol as the most important variable, so that this feature is not only the feature on which the target 
depends most strongly, but also the one that drives the ML model performance the most.

Let us now examine results at the individual class level. We apply one-hot encoding to the model forecasts for the 
test set, with N T e = 2573. Estimates of ξ�r

i for i = 1, . . . , nX and r = 1, . . . , nL based on ζ 1(·, ·) are reported in Fig. 3. 
Each group of bars displays estimates of ξ�r for a given class, from Quality 4 to Quality 8, as the model never predicts 
i

8
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Fig. 2. Panel 2a: dataset explanations ̂ξ L
i based on the 1-norm separation. Panel 2b: prediction explanations ̂ξ�

i based on the 1-norm separation. Panel 2c: 
Split and Count measure ŜCi , Panel 2d: Permutation Importance measure P̂Ii , for i = 1, . . . , nX — tabular data.

Table 2
Quantitative similarity between dataset 
explanations ξ̂ L

X and prediction expla-
nations ξ̂�

X based on the 1-norm sep-
aration — tabular data.

MAD MSE ρSpear

1-norm 0.034 0.048 0.955
2-norm 0.010 0.017 0.986
Kuiper 0.040 0.055 0.936

Table 3
Spearman correlation coefficient comparing the ranking of dataset explanations ̂ξ L

X , prediction 
explanations ξ̂�

X (both based on the 1-norm separation), Split and Count (SC) measure, and 
Permutation Importance (PI) — tabular data.

Spearman Correlation ρSpear(SC, ξ̂ L
X ) ρSpear(SC, ξ̂�

X ) ρSpear(PI, ξ̂ L
X ) ρSpear(PI, ξ̂�

X )

1-norm 0.809 0.709 0.791 0.709
2-norm 0.745 0.736 0.718 0.736
Kuiper 0.745 0.709 0.727 0.709

Quality 3 or Quality 9 and thus the bars would be all null. Similarly, we register extremely low values of ξ�r
i for Quality 

4 and Quality 8. This is a consequence of the few predictions of the corresponding labels, with Quality 4 and 8 predicted, 
respectively, only 12 and 82 times on over 2’500 entries. As a result, the one-hot encoding vectors is, effectively, a vector of 
zeros independently of the values of the features. This effect is then captured by the values of the probabilistic sensitivity 
measures that are close to zero. The remaining bars indicate that alcohol is, statistically, the most important feature for the 
model when making a prediction on classes Quality 5, Quality 6 and Quality 7, followed by sulphates; fixed acidity raises in 
importance when the target is Quality 5 or Quality 6, while total sulfur dioxide becomes the third most important variable 
for predicting Quality 7.

In the previous discussion, we have referred to point estimates. However, we also performed corresponding uncertainty 
quantification to understand whether such observations are robust to variability in the estimates. We report a first set of 
9
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Fig. 3. 	r -prediction explanations ξ̂
�r
X based on the 1-norm separation, r = 4, . . . 8 — tabular data.

Fig. 4. Panel 2a: bootstrap distributions of dataset explanations ξ̂ L
X . Panel 2b: bootstrap distributions of prediction explanations ξ̂�

X (both based on the 
1-norm separation) — tabular data.

results obtained by 2’500 bootstrap replicates of the test data and predictions, and for each sample we recompute ξ̂ L
X as 

well as ̂ξ�
X . Fig. 4 reports the corresponding bootstrap distributions as boxplots. The bootstrap confidence intervals in Fig. 2a 

and 2b are narrow enough around the point estimates to let us state that the results obtained with point estimates are 
actually reliable, with a few (and negligible) outliers in the boxplot. Thus, in this case, uncertainty quantification does not 
alter the previous considerations.

5.2. Image data: Fashion MNIST

In this section, we report results of experiments conducted on the well-known Fashion MNIST dataset (Xiao et al., 2017), 
a database by Zalando research containing images of clothing articles, with N=70’000, of which 60’000 images are used 
for training and 10’000 for testing. The images are made of 28 × 28 grayscale pixels; each instance is associated with a 
10
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Fig. 5. From left to right: dataset explanations ̂ξ L
X (computed respectively using the whole dataset and the test set) and prediction explanations ̂ξ�

X , both 
based on the 1-norm separation separation — image data.

Table 4
Quantitative similarity between the 
dataset explanations ̂ξ L

X and the predic-
tion explanations ξ̂�

X based on the 1-
norm separation — image data.

MAD MSE ρSpear

1-norm 0.024 0.030 0.997
2-norm 0.004 0.005 0.994
Kuiper 0.009 0.011 0.993

label from ten classes: T-shirt/Top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot. The ML model in 
this application is a pre-trained convolutional neural network with the LeNet architecture (LeCun et al., 1998). LeNet is a 
7-layer neural network consisting of the input layer, 2 convolutional layers each followed by a pooling layer and another 
convolutional layer followed by the output layer. The overall accuracy is 94%.

In this experiment, we focus on the explanations provided by the Xi-method using the 1-norm separation measure. Fig. 5
reports results of the investigation at the all-classes level. The first heatmap displays values of ̂ξ L

X , with lighter pixels being 
more important: to estimate the explanations, we use the entire dataset of 70’000 images. The second heatmap refers to 
dataset explanations ξ̂ L

X on the test set, and the third one displays prediction explanations ξ̂�
X computed on the test set. A 

visual inspection shows a great similarity between the regions that are statistically important for the LeNet model and for 
the true data generating process. Interestingly, the exact center of the image does not contain the most important pixels, 
which are the ones surrounding the object (images are centred).

Table 4 reports results for the quantitative comparison between ξ̂ L
X and ξ̂�

X : MAD and MSE are close to 0, and ρSpear

is almost 1, indicating a high agreement between ξ̂ L
X and ξ̂�

X . Thus, the statistical dependence in the true data generating 
process is maintained in the forecasts.

Consider now the analysis at the individual class level. Fig. 6 reports the heatmaps generated by ξ̂�r
X for each of the 

image classes r = 1, . . . , nL using the test data (the heatmaps of ξ̂ Lr
X are similar and we do not display them for sake of 

space). The explanations at the individual-class level for the LeNet model show interesting insights: for example, the most 
important pixels for predicting the class T-shirt/Top highlight the lack of sleeve in such items; the most important ones for 
predicting trousers are the pixels that signal the empty space between the legs; for classes Dress or Shirt the focus is on 
the overall clothing piece (light blue pixels), with specific parts that are more important than others (yellow pixels). Also 
for this case study we performed an uncertainty quantification via the bootstrap. Results show stability in the estimates 
(details are not reported for the sake of space).

5.3. Text data: Asian Religious Texts

The last application concerns the textual database available at https://archive .ics .uci .edu /ml /datasets /A +study +of ++Asian +
Religious +and +Biblical +Texts. In this case, the task is to predict the book of origin of an excerpt among eight sacred texts 
(Sah and Fokoué, 2019): Book Of Ecclesiasticus, Book Of Ecclesiastes, Book Of Proverb, Book Of Wisdom (Christians sacred 
books), Buddhism, Tao Te Ching (sacred text for Taoism), Upanishad and Yoga Sutra (sacred books for Hinduism), related to 
different religions in Asia (Hinduism, Buddhism, Taoism, Christianity). Features are the individual words in the Document 
Term Matrix (DTM) used to train the model, describing the frequency of terms that occur in the collection of documents. 
The DTM is provided by the data source. The classifier is a simple Naive Bayes, trained on 70% of the observations. The 
ML model test accuracy is 65%. As in the previous experiments, we estimate the probabilistic sensitivity measures based 
on the 1-norm using the test dataset. Fig. 7 reports the ten most important words according to dataset explanations ξ̂ L
X
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Fig. 6. 	r -prediction explanations ξ̂
�r
X based on the 1-norm separation, r = 1, . . . ,nL — image data.

Fig. 7. Panel 7a: dataset explanations ̂ξ L
X based on the 1-norm separation, Panel 7b: prediction explanations ̂ξ�

X based on the 1-norm separation (ten most 
important features displayed) — text data.

Table 5
Quantitative similarity between the 
dataset explanations ̂ξ L

X and the predic-
tion explanations ξ̂�

X based on the 1-
norm separation — text data.

MAD MSE ρSpear

1-norm 0.030 0.049 0.923
2-norm 0.006 0.010 0.908
Kuiper 0.009 0.017 0.886

and prediction explanations ξ̂�
X . It shows that while there is some difference in the actual values of the explanations, the 

rankings provided by both ̂ξ L
X and ̂ξ�

X are similar.
The quantitative comparison in Table 5 shows a value of ρSpear at about 90%; thus, we register a high overall ranking 

agreement, although the induced ranking is not perfectly coincident; at the same time values of the MAD and MSE between 
ξ̂ L

X , ̂ξ�
X are close to 0. This last result shows that the values of the probabilistic sensitivity measures calculated on the data 

and on the forecasts are close on average; thus, small differences may result in different ranking, in spite of the features 
having a similar influence.

At the individual class level, results are presented in Table 6. The columns in Table 6 list the ten most important words 
12
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Table 6
Ten most important words provided by the 	r -prediction explanations ξ�r

i based on the 1-norm separation, r = 1, . . . , nL — text data.

Book Of Ecclestasticus Book Of Ecclesiastes Book Of Proverbs Book Of Wisdom Buddhism Tao Te Ching Upanishad Yoga Sutra

shall mortal shall therefore hath tao brahman spiritual
s maketh hath consciousness thy young called great
lord souls like form right never whole wise
heart flesh life psychic qualities together last aged
god treasure without though therefore person devas forgotten
great silver loveth life bring appeared knows declareth
thee spirit soul perception made looked enters approved
thou born glory vision come perhaps definite wherewith
truth know poor another make knows teaching number
knowledge tongue keepeth know nature root things rites

for each target class according to ̂ξ�r
X , r = 1, . . . , nL . We note that the words that matter for the classification into a Hinduism 

sacred text (Upanishad, YogaSutra) mostly pertain to spiritualism and knowledge (spiritual, wise, knows, teaching) as well 
as with some specific terms of Hindu philosophy (Brahman, devas). On the other hand, terms more related to nature appear 
in Buddhism. The most impactful word to predict the Tao Te Ching sacred text is, unsurprisingly, Tao. Finally, the predictions 
regarding the Christian sacred texts are more influenced by terms dealing with the contraposition of mortal (flesh, mortal, 
born) and eternal (souls, spirit, form) life as well as hints to god and lord. We performed an uncertainty quantification via 
bootstrap. Estimates remain stable; we do not report the results for the sake of space. For this test case, we also computed 
Breiman’s Permutation Variable Importance (PI), however obtaining a null value for all the features. We believe that this 
result can be explained by two main reasons: first, the high dimensionality of the DTM, which contains roughly 8′300
columns. Permuting one feature out of so many does not result in a significant loss. Second, the DTM is highly sparse, with 
feature entries consisting mostly of 0’s. Then, the permutation leads to a basically identical vector of realizations, and does 
not yield any particular change in the loss functions.

6. Final remarks

This work has introduced probabilistic sensitivity measures that are well-posed on non-ordered data and has applied 
them to ML classification tasks. The proposed measures of association are based on the separation between probability 
mass functions and can be directly estimated from a given dataset, without the need of fitting a ML model. They possess the 
zero-independence property. Also, we have proven that, provided that the indices are based on a bounded and continuous 
separation measurement between probability mass functions, the corresponding estimators are asymptotically consistent.

We have then proposed a framework to explain relationships of statistical dependence in a classification context. A key 
part of the method is the comparison of measures of statistical association calculated first on the original data and then 
on the ML model forecasts. The first set of estimates uncovers the target-features dependence of the data generating pro-
cess, the second the target-feature dependence that emerges when the ML model forecasts replace the original targets. The 
framework, here called Xi-method, offers several advantages: the importance measures are not computationally expensive, 
the explanations can be obtained for any kind of data (images, texts, tabular) and they come with theoretical guarantees. 
Also, when images are concerned, the sensitivity measures avoid data manipulations such as obscuring or removing pixels. 
This is a major advantage because it is well-known that results may change according to the color used to mask portions 
of the image. Moreover, even if this work has focused on classification, the Xi-method is applicable in a regression frame-
work as well. In this case, measures of statistical association such as the one in Equation (8) (i.e., the Chatterjee correlation 
coefficient) and several others are available to be selected as statistical indicators (the measures introduced in this work 
are aimed for classification problems). A further advantage of the approach is that it allows a straightforward and compu-
tationally cheap uncertainty quantification, in line with the recommendation of, among others, Dunson (2018). As for any 
method based on measures of statistical association, a first limitation is that if two features Xi and X j are highly correlated, 
measures of pairwise dependence between target and features will assign similar importance to Xi and X j , even if Y is 
a function of Xi only. In principle, this issue can be overcome by conditioning on one or more of the correlated features 
and estimating conditional measures of pairwise dependence. The estimation procedure may also suffer from the curse of 
dimensionality or of lack of data in the case of small sample sizes. Investigations aimed at studying these probabilistic 
sensitivity measures in a conditional setting as well as the extension of the method to multivariate forecasting problems are 
future research avenues.

7. Proofs

Proof of Proposition 6. 1) Discrete input case. Consider Xi a discrete variable with support Xi = {
x1

i , x2
i , . . . , xK

i

}
. In this 

case, the natural partition choice is Ki = {
X 1

i ,X 2
i , . . . ,X K

i

}
, with X k

i = {Xi : Xi = xk
i }, for k = 1, 2, . . . , K . Note that ξ L

i =
ξi(Xi) = ξi(Ki) becomes
13
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ξ L
i = ξi(Ki) =

K∑
k=1

p(Xi = xk
i )ζ(pL,pL|Xi=xk

i
). (18)

Then, a given-data estimator for ξi(Ki) in Equation (18) can be written as

ξ̂i(K , N) =
K∑

k=1

p̂
(

Xi = xk
i

)
ζ
(̂
pL, p̂L|Xi=xk

i

)
. (19)

Then, consider a dataset (X, L). Let Nk
i denote the number of realizations of Xi such that Xi ∈ X k

i — i.e. Xi = xk
i , for 

k = 1, 2, . . . , K . Then, p̂(Xi = xk
i ) = N−1Nk is a consistent estimator of p(Xi = xk

i ), by the law of large numbers. Similarly, 
letting N L

r be the number of labels in category 	r , r = 1, 2, . . . , nL , p̂(L = 	r) = N−1N L
r is a consistent estimator of p(L = 	r). 

Analogously, let p̂(L = 	r |Xi = xk
i ) = N−1N L

r (X k
i ), where N L

r (X k
i ) counts the realizations of L equal to 	r , when Xi ∈ X k

i . 
Then, this estimator is also consistent by the law of large numbers. Therefore p̂L → pL and p̂L|Xi=xk

i
→ pL|Xi=xk

i
as N → ∞. 

Now ζ (̂pL, ̂pL|Xi=xk
i
) is continuous, and, therefore, we have

ζ
(̂
pL, p̂L|Xi=xk

i

) →
N→∞ ζ(pL,pL|Xi=xk

i
),

so that

K∑
k=1

p̂
(

Xi = xk
i

)
ζ
(̂
pL, p̂L|Xi=xk

i

) →
N→∞

K∑
k=1

p
(

Xi = xk
i

)
ζ(pL,pL|Xi=xk

i
), (20)

which implies ̂ξi(K , N) → ξ L
i as N → ∞.

2) Absolutely continuous input case. If Xi is absolutely continuous, let f Xi (xi) be the density of Xi . Consider now 
ξ L

i = ξi(Xi) written as

ξi(Xi) =
∫
Xi

ζ
(
pL,pL|Xi=xi

)
f Xi (xi)dxi .

First, we note that the integral above is the limit, if it exists, of the following Riemann-Stieltjes sum:

ξi(Kδ
i ) = lim

δ→0

K (δ)∑
k=1

ζ
(
pL,pL|Xi∈X k

i (δ)

)
p
(

Xi ∈ X k
i (δ)

)
,

where the set X k
i is a member of a partition Kδ

i of Xi , and where K and δ denote the cardinality and norm of the partition, 
respectively. Consider now a dataset (X, L). Fixing a partition Ki(K ) = {X 1

i , . . . , X K
i }, the given data estimator ξ̂i(K , N) is 

written as

ξ̂i(K , N) =
K∑

k=1

ζ
(̂
pL, p̂L|Xi∈X k

i

)̂
p
(

Xi ∈ X k
i

)
.

Now, let N → ∞. If ζ(·, ·) is continuous, then

lim
N→∞ ξ̂i(K , N) = lim

N→∞

K∑
k=1

ζ
(̂
pL, p̂L|Xi∈X k

i

)̂
p
(

Xi ∈ X k
i

)
=

K∑
k=1

ζ
(
pL,pL|Xi∈X k

i

)
p
(

Xi ∈ X k
i

)= ξi(K )

by the same argument holding for the consistency of the discrete case. Then, we consider a sequence of refining partitions 
of Xi such that Ki(K + 1) is finer than Ki(K ) and such that limK→∞ Ki(K ) = Xi . Then, by Rohlin’s disintegration theorem, 
we have that p̂L|Xi∈X k

i
→ p̂L|Xi=xk

i
for almost every xk

i ∈ Xi . Then, by the continuity and boundedness of ζ(·, ·) and the 
definition of Riemann-Stieltjes integral, we have that

lim ξi(K ) = ξ L
i . �
K→∞

14
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Proof of Corollary 7. To prove the thesis, we first need to show that the three metrics are bounded. We start with the 
Kuiper metric. We have that

ζ KU(pL,pL|Xi∈X k
i

)= sup
r=1,2,...,nL

{
p(L = 	r) − p(L = 	r |Xi ∈ X k

i )
}

+ sup
r=1,2,...,nL

{
p(L = 	r |Xi ∈ X k

i ) − p(L = 	r)
}

.

Noting that the maximum value that |p(L = 	r) − p(L = 	r |Xi ∈X k
i )| can assume is 1, we have ζ KU(pL, pL|Xi∈X k

i
) ≤ 2.

Similarly, for the 1-norm, we have

ζ 1(pL,pL|Xi∈X k
i

)=
nL∑

r=1

|p(L = 	r) − p(L = 	r |Xi ∈ X k
i )|

≤
nL∑

r=1

p(L = 	r) +
nL∑

r=1

p(L = 	r |Xi ∈ X k
i ) = 2.

For the 2-norm, we have

ζ 2(pL,pL|Xi∈X k
i

)=
nL∑

r=1

[
p(L = 	r) − p(L = 	r |Xi ∈ X k

i )
]2

=
nL∑

r=1

p(L = 	r)
2 − 2

nL∑
r=1

p(L = 	r)p(L = 	r |Xi ∈ X k
i ) +

nL∑
r=1

p(L = 	r |Xi ∈ X k
i )2.

Hence, because p(L = 	r)
2 ≤ p(L = 	r) and p(L = 	r |Xi ∈ X k

i )2 ≤ p(L = 	r |Xi ∈ X k
i ), then 

∑nL
r=1 p(L = 	r)

2 ≤ ∑nL
r=1 p(L =

	r) ≤ 1, and similarly 
∑nL

r=1 p(L = 	r |Xi ∈X k
i )2 ≤ 1. This then leads to

ζ 2(pL,pL|Xi∈X k
i

)≤ 2 − 2
nL∑

r=1

p(L = 	r)p(L = 	r |Xi ∈ X k
i ).

Because 
∑nL

s=1 p(L = 	r)p(L = 	s|Xi = xi) is positive, we have ζ 2
(
pL, pL|Xi∈X k

i

) ≤ 2. Consistency of the estimators then fol-

lows from Proposition 6. �
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