arXiv:1503.00576v2 [cs.DC] 6 Aug 2016

Counting Triangles in Large Graphs on GPU

Adam Polak
Department of Theoretical Computer Science
Faculty of Mathematics and Computer Science
Jagiellonian University in Krakow
polak @tcs.uj.edu.pl

Abstract—The clustering coefficient and the transitivity ratio
are concepts often used in network analysis, which creates a
need for fast practical algorithms for counting triangles in large
graphs. Previous research in this area focused on sequential
algorithms, MapReduce parallelization, and fast approximations.

In this paper we propose a parallel triangle counting algorithm
for CUDA GPU. We describe the implementation details neces-
sary to achieve high performance and present the experimental
evaluation of our approach. The algorithm achieves 15 to 35
times speedup over our CPU implementation, and is capable of
finding 8.8 billion triangles in a 180 million edges graph in 12
seconds on the Nvidia GeForce GTX 980 GPU.

Index Terms—GPU; CUDA; parallel graph algorithms; trian-
gles; clustering coefficient

I. INTRODUCTION

The number of triangles, i.e. cycles of length three, in an
undirected graph lays the foundation of the clustering coeffi-
cient and the transitivity ratio — concepts which are not only of
theoretical interest but are often applied to networks analysis
[1l, [2]. This creates a need for fast practical algorithms
capable of counting triangles in large graphs.

Previous research in this area focused mainly on sequential
algorithms [3]], [4], parallel algorithms for MapReduce model
[5], and various approximation approaches [6], [7].

The emergence of frameworks for general-purpose com-
puting on graphics processor units (GPU), such as Nvidia
CUDA, started a new branch of research in parallel computing.
General-purpose GPU offers the computing power of a small
cluster for much lower price, but it comes at a cost of certain
limitations imposed by the architecture of graphic cards.
Single Instruction Multiple Data model, high latency global
memory, and small cache size are obstacles particularly hard
to overcome in case of memory-intensive and highly irregular
graph computations.

Nevertheless, a number of studies show that there are meth-
ods of dealing with these issues and certain graph problems
can be solved effectively on GPU — examples include min-
imum spanning tree [8]], connected components [9], breadth
first search [10], [11], and strongly connected components
[12]].

In this paper we propose a parallel triangle counting algo-
rithm together with its CUDA implementation, and discuss its
performance. Comparing to a single-threaded CPU solution,
we achieve 8 to 16 times speedup running on the Nvidia
Tesla C2050 GPU, and 15 to 35 speedup running on the

Nvidia GeForce GTX 980 GPU. We also examine a setup
with multiple GPUs. We are able to further speed up the
computation up to 2.8 times when running on four Tesla
C2050 cards instead of one.

Similar studies have been conducted already by Leist et
al. [[13], and more recently by Chatterjee [14] and Green et
al. [15]]. As we argue later, our approach, despite being very
simple, significantly outperforms the previous ones.

This paper is structured as follows. Section [[I] outlines the
algorithm we use. Section provides the implementation
details and discusses the optimizations we employ. Section
carefully describes the experiments performed to evaluate our
implementation, and presents the results of these experiments.
Section |V| compares our algorithm with other approaches to
the problem of counting triangles. Section contains our
conclusions.

II. ALGORITHM

A. Known Sequential Algorithms

Schank and Wagner [3] present an extensive list of known
sequential algorithms for counting and listing triangles. They
analyze their theoretical time complexity, and evaluate them
experimentally on both synthetic and real world graphs.
Two algorithms, the edge-iterator and forward, appear to
be the winners of this comparison. Their running times are
O(mdeg,,) and O(m+/m), respectively, where m denotes
the number of edges, and deg, .. denotes the maximum degree
of a vertex. They perform similarly for graphs with low devi-
ation from the average degree, but the latter is more robust to
skewed degree distributions. Latapy [4]] simplifies the forward
algorithm, reducing its memory needs and running time, and
makes its analysis more straightforward. This modified version
can be seen as a variant of the edge-iterator algorithm with an
additional preprocessing phase. This allows a tighter bound on
the worst-case complexity and greatly reduces the amount of
work to be done in the subsequent counting phase, especially
in the case of graphs with a high degree deviation.

We choose forward as a starting point for our parallel
algorithm. Both the preprocessing and counting phases are
not only easily parallelizable but they also rarely access the

memory in random fashion, which makes the algorithm a good
fit for GPU.

©2016 1IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: |10.1109/IPDPSW.2016.108

http://dx.doi.org/10.1109/IPDPSW.2016.108

B. Sequential Forward Algorithm

Now we briefly describe the sequential forward algorithm.
First, the algorithm sets an arbitrary linear order < on vertices
which is consistent with their degrees, i.e. deg(u) < deg(v)
implies v < wv. Then, for every vertex wu, it filters its
adjacency list removing vertices v such that v < u. Since <
is antisymmetric, v remains unremoved in the adjacency list
of v. This turns each undirected edge into a directed one, by
choosing the orientation from the vertex with the lower degree
to the vertex with the higher degree. In the final step of the
preprocessing, the algorithm sorts adjacency lists according to
some arbitrary, previously fixed, linear order, e.g. the natural
order on vertices’ numbers.

After this preprocessing is done, the algorithm iterates over
all edges and, for each edge, calculates intersection of adja-
cency lists of both its ends. The total size of these intersections
is the number of triangles in the graph. Since adjacency lists
are sorted, each such intersection can be computed by a two
pointers merge algorithm (as in merge-sort) in time linear in
the sum of lengths of both lists. Note that only edges that go
forward according to < are left. Thus, every triangle is counted
exactly once, and it can be shown [3]], [4] that no adjacency
list is longer than \/m, which makes the whole algorithm run
in O(m+/m) time.

C. Parallel Forward Algorithm

The preprocessing phase is easily parallelized with a few
prefix sum and sort routines. We describe it in detail in the
next section.

The counting phase is parallelized by assigning a single
thread to each edge. Each thread calculates adjacency lists
intersection in sequential manner. This gives us an O(y/m)
time algorithm running on O(m) processors, thus having the
optimal work.

From a theoretical point of view, our algorithm does not
have a polylogarithmic time complexity, and thus does not
put the problem into the class NC. However, in practice,
the speedup is always bounded by the number of available
processors (or cores in the case of GPU). Our algorithm has
the optimal work and O(m) speedup, thus it is optimal for
graphs with the number of edges greater than the number
of processors the algorithm is executed on. This is generally
the case since modern graphic cards usually have only a few
hundred up to few thousand cores.

III. IMPLEMENTATION

The implementation described in this section and all the
tools used to run the experiments described in the next section
are available on GitHub[!|

A. Input Format

Before going to implementation details it is important to
note what the input format of our algorithm is. It is often
tempting to use a data representation that is particularly

'https://github.com/adampolak/triangles

suitable for a specific algorithm. However, in practice it is
rarely the case that the data is available in the selected format,
and converting it may take a significant amount of time.

In most works on graph computation on GPU the input for-
mat is either an adjacency list [10]-[12] or an edge array (8],
[9]. We decided to use the latter. An edge array is an array of
structures, each structure composed of two values — identifiers
of the two vertices a given edge connects. We assume there
are no self-loops nor multiple edges, and each (undirected)
edge appears exactly twice, once in each direction. We do not
assume any particular order of the edges.

The rationale for of our choice is similar to the one
presented in [9]. An adjacency list can be converted to an
edge array with a fast and simple single-pass algorithm.
The conversion in the opposite direction requires sorting,
which makes it much more computationally expensive. Thus,
using the edge array representation makes the algorithm more
versatile in the sense that it can be used in various contexts
without any significant overhead for a format conversion.

The above intuitions can be further supported by the fol-
lowing numbers. On the LiveJournal graph, which we use in
the experiments (for more details, see Section [[V), our CPU
solution optimized for an adjacency list input runs about 12
seconds, while the solution optimized for an edge array input
is only 2 seconds slower. On the other hand, converting this
graph from the edge array representation to the adjacency list
representation takes about 7 seconds.

B. Preprocessing Phase

The preprocessing phase consists of eight steps. They make
a heavy use of the Thrust library [16].

1) Copy the edge array to the GPU memory.

2) Calculate number of vertices using thrust::reduce rou-
tine with thrust::maximum operator, which computes the
largest vertex identifier across both ends of all edges.

3) Sort edges, according to the first vertex, in case of a
tie according to the second vertex, using thrust::sort
routine, which performs radix sort. This way the edge
array becomes a concatenated adjacency list of subse-
quent vertices, each list sorted.

4) Calculate the node array: i-th element of this array
points to the first edge in the edge array whose first
vertex is ¢. This is done by running m — 1 threads and
letting k-th thread examine edges k£ and k + 1. If first
vertices of these edges differ, the thread writes k + 1 to
an adequate cell of the node array. It may happen that
the thread stores this value in more than one cell when
there is a vertex with an empty adjacency list.

5) Mark edges going “backwards”, i.e. from a vertex with
the higher degree to a vertex with the lower degree. In
case of a tie, compare identifiers of vertices. The degree
of a vertex can be calculated quickly by subtracting two
subsequent cells of the node array.

6) Remove “backward” edges using thrust::remove_if rou-
tine, which removes marked elements and compacts the

edge array preserving the order of elements that are not
removed.

7) Transform the edge array from an array of structures to
a structure of arrays. We call this step unzipping.

8) Recalculate the node array.

C. Counting Phase

Triangles are counted with the following kernel performing
the two pointers merge algorithm. The ¢-th thread deals with
edges whose index in the edge array modulo the number of
threads equals ¢. For each such edge the thread sequentially
computes the size of the intersection of the neighborhoods of
the both ends of this edge.

__global void CountTriangles (
int m,
const intx __ restrict__ edge,
const intx _ restrict__ node,

uint64_t* result) {
int start = blockDim.x * blockIdx.x + threadIdx.x;
int step = gridDim.x % blockDim.x;
uint64_t count = 0;

// for each assigned edge (u, V)

for (int i = start; i < m; i += step) {
int u = edge[i], v = edge[m + i];
int u_it = node[ul];
int u_end = nodelu + 1];
int v_it = nodel[Vv];

int v_end = node([v + 1];

// run two pointers merge algorithm

int a = edgel[u_it], b = edge([v_it];
while (u_it < u_end && v_it < v_end) {
int d = a - b;
if (d <= 0) a = edge[++u_it];
if (d >= 0) b = edge[++v_it];
if (d == 0) ++count;

}

result [start] =

}

count;

After the kernel is done, elements of result array are
summed, using thrust::reduce routine, to obtain the total
triangle count, and the algorithm terminates.

As usual, a careful choice of the number of threads and
blocks to run is crucial to achieve high performance. We
tuned these parameters experimentally, using a grid search
approach, with the number of threads per block going through
powers of two from 32 to 1024 and the number of blocks
per multiprocessor varying from 1 to 16 in steps of 1. We
concluded that it is optimal to run 64 threads per block and 8
blocks per each multiprocessor. These numbers are optimal, or
nearly optimal, for all the graphs we used in our experiments,
as well as for all the three devices we had for our tests,
i.e. NVS 5200M, Tesla C2050, and GTX 980. It is worth
noting that on GTX 980 a similar performance can be achieved
with other combinations giving 512 threads per multiprocessor,
e.g. 256 threads per block and 2 blocks per multiprocessor.
However, this is not the case for the two older devices.

D. Optimizations

1) Unzipping Edges.: CountTriangles kernel runs 13% to
32% faster when the edge array is given as a structure of
arrays. Conversion from an array of structures to a structure
of arrays is very fast, i.e. it takes less than 30 milliseconds
for all the graphs we used in our experiments, largest of them
having more than 200 million edges.

2) Sorting Edges as 64-bit Integers.: Sorting edges with
thrust::sort is approximately 5 times faster when the edge
array is passed to it as an array of 64-bit integers instead of an
array of pairs of 32-bit integers. When using this optimization
it is important to remember that, because of the endianness, it
produces a slightly different ordering — edges are ordered by
the second vertex then, in case of a tie, by the first.

3) Avoiding Unnecessary Reads.: Compare our preliminary
version of a while loop in CountTriangles kernel:

while (u_it < u_end && v_it < v_end) {
int d = edgef[u_it] - edgel[v_it];
if (d <= 0) ++u_it;
if (d >= 0) ++v_it;
if (d == 0) ++count;

}

with our final version:

int a = edge[u_it], b = edge[v_it];
while (u_it < u_end && v_it < v_end) {
int d = a - b;

if (d <= 0) a = edge[++u_it];
if (d >= 0) b = edge[++v_it];
if (d == 0) ++count;

The preliminary version reads two values form the edge
array in every loop execution, while the final version reads
only one value when no triangle is found. This difference
seems unimportant because these unnecessarily read values are
often cached, and the preliminary version performs less work
in divergent branches. Nevertheless, the final version runs 36%
to 48% faster.

4) Read-Only Data Cache.: Starting with the Nvidia Kepler
architecture the L1 cache is disabled for global memory.
However, read-only data can be cached in the texture cache.
Since our algorithm relies heavily on the edge array caching,
it is crucial that the edge array is marked with the const
__restrict__ qualifiers, which allow compiler to use the
texture cache. This change results in 17% to 66% faster kernel
execution on the Kepler and Maxwell architectures.

5) Reducing Warp Size.: We can simulate reducing the
warp size by doubling the number of threads and making
half of the threads within a warp idle. Although our final
implementation does not benefit from this method, we find
it worth noting since it allowed 30% faster kernel execution
at earlier stages of the kernel’s development. We believe it
is due to the fact that, when a read misses the cache and a
thread has to wait for the global memory, all other threads in
the warp have to wait as well. Reducing the warp size makes
less threads affected by a single cache miss. This effect is
especially significant for our algorithm because cache misses
happen at different moments for different threads.

6) CPU Preprocessing for Very Large Graphs.: Sorting
in the step 3 of the preprocessing phase requires the largest
amount of the global memory of the GPU. If the input graph is
too large to fit into the memory in this step, we use a slightly
modified version of the preprocessing. First, we use the CPU
to calculate vertex degrees and remove backward edges. It runs
slower than on the GPU but halves the input size. Then, we
can move to GPU to sort and unzip edges and calculate the
node array. This optimization allows to process graphs twice
larger than without it.

7) Unsuccessful Optimization Attempts.: We tried the vir-
tual warp-centric method [[10]], collaborative reading to shared
memory, and assembler level prefetching. None of these op-
timizations increased the performance of our implementation,
probably due to a high overhead compared to possible gains.

E. Multi-GPU Setup

We propose a simple extension of our algorithm to a multi-
GPU setup. The preprocessing phase is run just on a single
GPU, then the edge array and node array are copied to the
remaining devices, and each device iterates over its allotted
subset of edges.

The speedup of this approach is limited by the Amdahl’s
law. The preprocessing time is roughly proportional to the
number of edges, while the counting phase time appears to
be proportional to the number of triangles. The fraction of the
execution time spent on the preprocessing varies depending
on the graph — for graphs that we use in our experiments this
fraction ranges from 0.08 to 0.76, which gives the maximum
speedup for 4 GPUs between 3.23 and 1.22. This is roughly
consistent with our experimental results. The biggest speedups
are obtained for Kronecker graphs, which have large triangles
to edges ratios.

A less trivial approach to the multi-GPU parallelization
would probably require splitting the graph into (not necessarily
disjoint) subgraphs, which then can be processed indepen-
dently [5], [17]. However, it is not clear if the obtained speedup
would compensate the overhead caused by the splitting phase.
We do not cover this issue in this paper, but we find it a viable
direction for future research.

IV. EXPERIMENTS

To evaluate the performance of our implementation we ran
it on a number of graphs and compared its running time with
a baseline single-threaded CPU implementation. The baseline
implementation is our own implementation of the forward
algorithm, and it is slightly faster than the one provided in [4]].

The graphs we used are: Internet topology graph, LiveJour-
nal online social network, and Orkut online social network
from Stanford Large Network Dataset Collection [[18]]; Citeseer
and DBLP co-paper networks and Kronecker R-MAT graphs
from 10th DIMACS Implementation Challenge [19]]; Barabasi-
Albert network [20]; Watts-Strogatz network [1]]. Table E]
summarizes basic properties of these graphs.

Experiments were run on the Nvidia Tesla C2050 GPU,
Nvidia GeForce GTX 980 GPU, and Intel Xeon X5650 CPU.

10°
10°
10*
7 103
E. 107 ¢
o)
£ 10?}
o CPU
1
100} A—A Tesla C2050
ol B W 4 TeslaC2050|
— GTX 980
107" : :
10* 10° 10° 10’
#nodes
Fig. 1. Experimental results for synthetic Kronecker R-MAT graphs.

We compiled the binaries using the NVCC 7.0 and G++ 4.8
compilers with the —03 optimization level.

We measured wall clock time. We started each measurement
just before the edge array is copied from CPU to GPU, and
finished it right after the final result was copied from GPU to
CPU and the GPU memory was freed. Before the measurement
we called cudaFree(NULL) to preinitialize CUDA context,
because otherwise the first call to cudaMalloc takes additional
100 milliseconds.

Each experiment was run five times. In the paper we report
the mean values. The standard deviation never exceeded 0.05
of the mean.

The results are presented in Table[l] All execution times are
given in milliseconds. The first and the third speedup columns
show the GPU over CPU speedup, while the second speedup
column shows the 4 GPU over 1 GPU speedup. Measurements
marked with { denote graphs too large to fit into the GPU
memory, which required part of the preprocessing phase to be
run on the CPU (as described in Section [[II-DG). It accounts
for lower performance in case of these graphs. The results for
Kronecker graphs are also presented visually in Figure

In order to asses the efficiency of our implementation of the
CountTriangles kernel we used profiler to measure the cache
hit rate and memory bandwidth during kernel execution on the
GTX 980 card. These measurements are presented in Table
We consider the cache hit in the 75% to 80% range being
a good result. The GTX 980 card offers 224 GB/s of peak
memory bandwidth. Our implementation achieves about half
of this value, which is also satisfactory. In conclusion, the
profiling analysis shows that there is a room for improvement,
but it is not large.

V. COMPARISON TO RELATED WORK

In the past there were various attempts to count triangles
faster than with sequential algorithms. MapReduce approach
to the problem [5] has significant overhead, and even for

TABLE I
EXPERIMENTAL RESULTS.

Graph Nodes Edges Triangles CPU Tesla C2050 4 x Tesla C2050 GTX 980
Time [ms] Time [ms] Speedup Time [ms] Speedup Time [ms] Speedup
Real world graphs
Internet topology 1.7TM 22M 29M 3459 277 12.49 306 0.91 186 18.60
LifeJournal M 69M 178M 13829 951 14.54 947 1.00 540 25.61
Orkut 3.1M 234M 628M 82558 19690 8.52 17580 1.28 2815 29.33
Citeseer 0.4M 32M 872M 4990 578 8.63 456 1.27 329 15.17
DBLP 0.5M 30M 442M 4712 446 10.57 410 1.09 239 19.72
Synthetic graphs
Kronecker 16 216 5M 119M 2810 179 15.70 97 1.85 82 34.27
Kronecker 17 217 10M 288M 6957 476 14.62 219 2.17 219 31.77
Kronecker 18 218 91M 688M 17808 1274 13.98 499 2.55 558 31.91
Kronecker 19 219 44M 1626M 45947 3434 13.38 1304 2.63 1443 31.84
Kronecker 20 220 g9M 3804M 116811 9308 12.55 3296 2.82 3942 29.63
Kronecker 21 221 189M 8816M 297426 33150 18.97 113624 2.43 12009 24.77
Barabdsi-Albert 02M 20M 3M 5508 327 16.84 263 1.24 155 35.54
Watts-Strogatz 1M 50M 219M 9627 589 16.34 576 1.02 324 29.71
TABLE II

PROFILING RESULTS ON GTX 980.

Graph Cache hit rate Bandwidth [GB/s]

Real world graphs

Internet topology 80.78% 95.90
LifeJournal 79.73% 100.28
Orkut 82.711% 98.55
Citeseer 76.68% 117.92
DBLP 78.14% 112.96
Synthetic graphs
Kronecker 16 80.95% 143.99
Kronecker 17 79.75% 134.33
Kronecker 18 78.35% 128.33
Kronecker 19 77.59% 122.60
Kronecker 20 76.78% 113.37
Kronecker 21 75.81% 93.65
Barabasi-Albert 64.45% 137.56
Watts-Strogatz 74.55% 116.82

moderately sized graphs the execution time is in the order of
minutes. It is beneficial to use it for extremely large graphs,
with the number of edges in the order of one billion. Another
approach is to use an heuristic approximation algorithm [6],
[7]]. Such algorithms provide good speedups and usually need
little memory, but it comes at the cost of getting only an
approximate triangle count, which can differ from the actual
count usually by a few percent.

Our CUDA implementation of the parallel triangle counting
algorithm, presented in this paper, achieves 8 to 16 times
speedup over our optimized single-threaded CPU solution,
when run on the Nvidia Tesla C2050 GPU, and 15 to 35
speedup running on the Nvidia GeForce GTX 980 GPU. By

using four graphic cards instead of one we can further speedup
computation up to 2.8 times, especially when the number of
triangles in the input graph is much larger than the number of
edges.

Taking into account the speedups achieved by using GPU
to solve other graph problems — e.g. 50 times for minimum
spanning tree [8[], 10 times for connected components [9]], 4
to 30 times for breadth first search [11]], and 5 to 40 times
for strongly connected components [12] — our results seem
satisfactory.

The first work we can try to directly compare to is [[13].
Unfortunately, such comparison is not easy for a number
of reasons. First, the source code for their approach is not
available, so we can compare only to the numbers provided in
the paper. Second, the paper solves a slightly different prob-
lem, which is computing the clustering coefficient. It requires
computing the number of triangles but also the number of
two-edge paths in the input graph. Fortunately, the latter part
is not harder than the former, so we can assume this gives
our algorithm at most two times advantage. Third, in the cited
paper, experiments were run on the Nvidia GeForce GTX 480
graphic card, which is very similar to the Nvidia Tesla C2050.
Nevertheless, they are different devices. Lastly, the execution
times measured during these experiments are presented only
on plots, so we can obtain only approximate numerical values.
Having said that, our algorithm is 45 times faster than the
previous one on the Barabdsi-Albert network, and 7 times
faster on the Watts-Strogatz network (the numbers change to
20 and 3, respectively, when comparing runtimes in the four
cards setups). We believe this difference is largely due to our
choice of the forward algorithm.

Another GPU algorithm, proposed in [14], is evaluated on
the Nvidia Tesla C1060 which is a slower device than those we
used. However, the author reports running times in the order

of 20 seconds for graphs with 2000 nodes, which means our
approach is orders of magnitude faster.

The most recent work on the topic [15] proposes much
more elaborate algorithm, in which also the adjacency list
intersection step is parallelized. The algorithm was evaluated
on a number of real world graphs, two of which (Citeseer and
DBLP) also appear in our experiments. The evaluation was
performed on the Nvidia Tesla K40, which is not less powerful
than the Nvidia Tesla C2050, which we used. Despite this, our
algorithm achieves roughly two times lower execution times
for these two graphs.

Yet another approach to count triangles faster is to use
a multi-core CPU. According to [13]], a parallel counting
algorithm running on a 6-core CPU with 12 virtual hyper-
threading cores can achieve 7 times speedup over a single-
threaded solution. Assuming this result scales well with in-
creasing number of CPUs, it should be possible to achieve
performance similar to what we present, on a multiprocessor
machine. However, both price and energy consumption of such
a setup are likely to be higher than in our case.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a parallel triangle counting
algorithm for CUDA. We proved it can be implemented effi-
ciently, and described details necessary to do so. The algorithm
achieves 15 to 35 times speedup over our baseline single-
threaded solution, and is capable of finding 8.8 billion triangles
in a 180 million edges graph in 12 seconds on the Nvidia
GeForce GTX 980 GPU. Despite being very simple, our
algorithm significantly outperforms, to our best knowledge,
all triangle counting algorithms for GPU up to date.

We plan on extending our research in two directions, which
we now briefly discuss.

First, it would be interesting to check if methods from [5]],
[17] can be applied, without a too big overhead, to split the
graph into subgraphs which can be processed independently.
This could give a better multi-GPU solution, and what is more
important, this would allow to count triangles in graphs which
do not fit into the GPU memory — which is one of the biggest
limitations of our current algorithm.

Second, it might be beneficial to use a different counting
algorithm for a small subset of vertices with largest degrees. A
natural candidate for such algorithm is matrix multiplication
[21].

ACKNOWLEDGMENT

This research was supported by the Polish Ministry of
Science and Higher Education program “Diamentowy Grant”.

REFERENCES

[1] D. Watts and S. Strogatz, “Collective dynamics of ’small-world’ net-
works,” Nature, no. 393, 1998.

[2] S. Eubank, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, and N. Wang,
“Structural and algorithmic aspects of massive social networks,” in
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’04. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2004.

[3]

[4]
[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

T. Schank and D. Wagner, “Finding, counting and listing all triangles
in large graphs, an experimental study,” in Proceedings of the 4th
International Conference on Experimental and Efficient Algorithms, ser.
WEA’0S. Berlin, Heidelberg: Springer-Verlag, 2005.

M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theor. Comput. Sci., vol. 407, no. 1-3, Nov. 2008.
S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last
reducer,” in Proceedings of the 20th International Conference on World
Wide Web, ser. WWW °11. New York, NY, USA: ACM, 2011.

C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:
Counting triangles in massive graphs with a coin,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’09. New York, NY, USA: ACM, 2009.
M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming algo-
rithm for triangle counting using the birthday paradox,” in Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD "13. New York, NY, USA:
ACM, 2013.

V. Vineet, P. Harish, S. Patidar, and P. J. Narayanan, “Fast minimum
spanning tree for large graphs on the gpu,” in Proceedings of the
Conference on High Performance Graphics 2009, ser. HPG *09. New
York, NY, USA: ACM, 2009.

J. Soman, K. Kishore, and P. Narayanan, “A fast gpu algorithm for
graph connectivity,” in Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on, April
2010, pp. 1-8.

S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda
graph algorithms at maximum warp,” in Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP "11. New York, NY, USA: ACM, 2011.

D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph traver-
sal,” in Proceedings of the 17th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, ser. PPoPP *12, 2012.

J. Barnat, P. Bauch, L. Brim, and M. Ceska, “Computing strongly
connected components in parallel on cuda,” in Proceedings of the 2011
IEEE International Parallel & Distributed Processing Symposium, ser.
IPDPS ’11. Washington, DC, USA: IEEE Computer Society, 2011.
A. Leist, K. Hawick, and D. Playne, “Gpgpu and multi-core architectures
for computing clustering coefficients of irregular graphs,” in Proceedings
of the International Conference on Scientific Computing, ser. CSC *11,
2011.

A. Chatterjee, “Parallel algorithms for counting problems on graphs
using graphics processing units,” Ph.D. dissertation, University of Ok-
lahoma, 2014.

O. Green, P. Yalamanchili, and L.-M. Munguia, “Fast triangle counting
on the gpu,” in Proceedings of the Fourth Workshop on Irregular
Applications: Architectures and Algorithms, ser. IA3 14, 2014.

J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010,
version 1.7.0. [Online]. Available: http://thrust.github.io/

S. Chu and J. Cheng, “Triangle listing in massive networks and its
applications,” in Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’11.
New York, NY, USA: ACM, 2011, pp. 672-680. [Online]. Available:
http://doi.acm.org/10.1145/2020408.2020513

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “Graph
partitioning and graph clustering. 10th dimacs implementation challenge
workshop,” 2012, http://www.cc.gatech.edu/dimacs10/.

A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, no. 286, 1999.

N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, vol. 17, pp. 354-364, 1997.

http://thrust.github.io/
http://doi.acm.org/10.1145/2020408.2020513

	I Introduction
	II Algorithm
	II-A Known Sequential Algorithms
	II-B Sequential Forward Algorithm
	II-C Parallel Forward Algorithm

	III Implementation
	III-A Input Format
	III-B Preprocessing Phase
	III-C Counting Phase
	III-D Optimizations
	III-D1 Unzipping Edges.
	III-D2 Sorting Edges as 64-bit Integers.
	III-D3 Avoiding Unnecessary Reads.
	III-D4 Read-Only Data Cache.
	III-D5 Reducing Warp Size.
	III-D6 CPU Preprocessing for Very Large Graphs.
	III-D7 Unsuccessful Optimization Attempts.

	III-E Multi-GPU Setup

	IV Experiments
	V Comparison to Related Work
	VI Conclusions and Future Work
	References

