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We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity
c. The diameter d is the maximum among all shortest distances between pairs of nodes in a graph
and an important quantity for all dynamic processes taking place on graphs. Here we study the
distribution P (d) numerically for various values of c, in the non-percolating and the percolating
regime. Using large-deviations techniques, we are able to reach small probabilities like 10−100 which
allow us to obtain the distribution over basically the full range of the support, for graphs up to
N = 1000 nodes. For values c < 1, our results are in good agreement with analytical results,
proving the reliability of our numerical approach. For c > 1 the distribution is more complex and no
complete analytical results are available. For this parameter range, P (d) exhibits an inflection point,
which we found to be related to a structural change of the graphs. For all values of c, we determined
the finite-size rate function Φ(d/N) and were able to extrapolate numerically to N → ∞, indicating
that the large deviation principle holds.

I. INTRODUCTION

For each connected component κ of a network or
a graph G = (V,E) [1–3], the diameter d(κ) is the
maximum, over all pairs of component’s vertices
i, j, of the shortest-path distance i ↔ j. The diam-
eter of a graph is the maximum over all components
κ of d(κ). The diameter is an important measure of
the network. It has a strong influence on, e.g., dy-
namical processes taking place on these networks,
since it characterizes a typical long length scale
for the transport of information. Examples for the
importance of the diameter are rumour spreading
[4], energy transport in electric grids [5] or oscilla-
tions in neural circuits [6]. Furthermore, for net-
works changing over time, the temporal evolution
of the diameter can give important insights into
the structure of the dynamics [7].
Not much is known about the behaviour of the

diameter of random network ensembles. At least
it is known that the average diameter for many
ensembles grows logarithmically with the number
of nodes [8]. Nevertheless, a full description, i.e.,
the probability distribution of network diameters
over the instances of an random graph ensemble,
has almost been obtained only in very limites cases,
to the knowledge of the authors.
Thus, here we deal with the most fundamen-

tal and least-structured graph ensemble, which are
Erdős-Rényi (ER) random graphs [9]. Let N = |V |
denote the number of vertices. Each realisation of
an ER random graph is generated by iterating over
the N(N − 1)/2 pairs i, j of nodes and adding the

edge {i, j} ∈ V (2) with probability p. Here we con-
centrate on the sparse case p = c/N , c being the
average connectivity.
In the non-percolating phase c < 1, close to

the percolation threshold c ր 1, the distribu-
tion of diameters is described in theorem 11(iii)
of Ref. [10]. The distribution is asymptotically
(N → ∞, c → 1) given by a Gumbel (extreme-
value) distribution

PG(d) = λe−λ(d−d0)e−e−λ(d−d0)

. (1)

Here, d0 is the maximum of the distribution, which
scales logarithmically with the number N of nodes.
λ is the Gumbel parameter describing the exponen-
tial behaviour PG ∼ e−λd for large values. It de-
scribes the variance, which is proportional to 1/λ2.
In this c → 1 limit, the Gumbel parameter λ as a
function of the connectivity c is given by

λ(c) = − log(c) . (2)

The fact that P (d) is connected to such an
extreme-value distribution is intuitively clear: be-
low the percolation threshold, each graph consists
of a large number of trees, hence the diameter is
obtained by maximising over these trees.
Note that Ref. [10] also contains results for gen-

eral values of c < 1. Although they are given in a
more complex and partially implicit form, they in-
dicate that the asymptotic distribution is also the
Gumbel distribution 1, with a parameter λ also
given by 2.
Due to finite-size corrections, the distribution of

diameters in finite-size graphs does not follow the
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Gumbel distribution. In earlier numerical studies
of another problem, sequence alignments [11–13],
the data was well fitted by “modifying” the Gum-
bel distribution by a Gaussian factor:

PmG(d) = λ′PG(d)e
−a(d−d0)

2

(3)

where λ′ is given through the normalisation
∫

PmG(δ) dδd = 1. This distribution will be used
in our analysis.
The probabilities P (d) for values of d which de-

viate from the typical size are often exponentially
small in N . Hence, one uses the concept of the
large-deviation rate function [14, 15] by writing

P (d) = e−NΦ(d/N)+o(N) (N → ∞) . (4)

Note that the normalisation is part of the eo(N)

factor. One says that the large-deviation princi-

ple holds if, loosely speaking, the empirical rate
function

ΦN (d/N) ≡ −
1

N
logP (s) (5)

converges to Φ(d/N) for N → ∞. Due to the
logarithm the normalisation and the sub-leading
term of P (s) become an additive contribution to
Φ, which go to zero for N → ∞.
In the present work, we study numerically the

distribution P (d) of diameters of ER random
graphs in the sparse regime p = c/N . Using a
large-deviation technique which is based on study-
ing a biased ensemble characterised by a finite
temperature-like parameter, see Sec. II, we are able
to obtain the distributions over almost the full
ranges of the support, down to very small proba-
bilities like 10−100. For the non-percolating regime
c < 1, we compare our numerical results to the
available analytical results and find a good agree-
ment. In particular we find that the asymptotic
c ր 1 result of a suitably scaled Gumbel distribu-
tion, modified by a Gaussian finite-size correction,
is compatible for all values c < 1 with our results.
Also, we find the dependence (2) of the Gumbel
parameter λ as a function of c, for N → ∞. This
confirms the validity of our approach.
We are also able to obtain P (d) numerically for

c > 1 where no exact result is available to our
knowledge. Here we find that the distributions ex-
hibit an inflection point. This leads to a first-order
transition in our finite-temperature ensemble and
makes the numerical determination of the distri-
bution much harder.
Nevertheless, for all values of c, we determined

the rate functions for various numbers N of nodes

and obtained, where necessary, the limiting rate
function via extrapolation. In all cases we ob-
served a good convergence, indicating that the
large-deviation principle seems to hold.

II. SIMULATION AND REWEIGHTING

METHOD

We are interested in determining the distribu-
tion P (d) for the diameter of an ensemble of ran-
dom graphs. The distribution can be obtained in
principle for any graph ensemble, here we apply it
to ER random graphs. Simple sampling is straight-
forward: One generates a certain number K of
graph samples and obtains d(G) for each sample
G. This means each graph G will appear with its
natural ensemble probability Q(G). The probabil-
ity that the graph has diameter d is given by

P (d) =
∑

G

Q(G)δd(G),d (6)

Therefore, by calculating a histogram of the values
for d, an estimation for P (d) is obtained. Neverthe-
less, with this simple sampling, P (d) can only be
measured in a regime where P (d) is relatively large,
about P (d) > 1/K. Unfortunately, the distribu-
tion usually decreases very quickly, e.g., exponen-
tially in the system size N when moving away from
its typical (peak) value, like in Eq. (4) This means
that even for moderate system sizes N , the distri-
bution will be unaccessible through this method,
on almost its complete support.

A. Markov-chain Monte Carlo approach

To estimate P (d) for a much larger range of
diameters, a different importance sampling ap-
proach is used [11, 16]. For self-containedness,
the method is outlined subsequently. The basic
idea is to generate random graphs with a probabil-
ity that includes an additional Boltzmann factor
exp(−d(G)/T ), T being a “temperature” parame-
ter, in the following manner: A standard Markov-
chain MC simulation [17, 18] is performed, where
the current state at “time” t is given by an instance
of a graph G(t). Here the Metropolis-Hastings al-
gorithm [19] is applied as follows: at each step t
a candidate graph G∗ is created from the current
graph G(t). One then computes the diameter of
the candidate graph, d(G∗). To complete a step
of the Metropolis-Hastings algorithm, the candi-
date graph is accepted, (G(t + 1) = G∗) with the
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Metropolis probability

pMet = min
{

1, e−[d(G∗)−d(G(t))]/T
}

. (7)

Otherwise the current graph is kept (G(t + 1) =
G(t)).
Here, the genreation of G∗ is done using the fol-

lowing local update rule: A node i ∈ V of the
current graph is selected randomly, with uniform
weight 1/N , and all adjacent edges are deleted.
Next, the node i is reconnected again: for all other
nodes j ∈ V the corresponding edge {i, j} is added
with a probability c/N (and not added with prob-
ability 1−c/N), which corresponds to its contribu-
tion to the natural weight Q(G) of an ER graph.
By construction, the algorithm fulfils detailed

balance. Clearly the algorithm is also ergodic,
since within N steps, each possible graph may be
constructed. Thus, in the limit of infinitely long
Markov chains, the distribution of graphs will fol-
low the probability

qT (G) =
1

Z(T )
Q(G)e−d(G)/T , (8)

where Z(T ) is the a priori unknown normalisation
factor. Note that for T → ∞ all candidate graphs
will be accepted and the distribution of graphs will
follow the original ER weights.

B. Obtaining the distribution

The probability to measure d at any temperature
T is given by

PT (d) =
∑

G

qT (G)δd(G),d

(8)
=

1

Z(T )

∑

G

Q(G)e−d(G)/T δd(G),d

=
e−d/T

Z(T )

∑

G

Q(G)δd(G),d

(6)
=

e−d/T

Z(T )
P (d)

⇒ P (d) = ed/TZ(T )PT (d) . (9)

Hence, the target distribution P (d) can be esti-
mated, up to a normalisation constant Z(T ), from
sampling at finite temperatures T . For each tem-
perature, a specific range of the distribution P (d)
will be sampled: Using a positive temperature al-
lows to sample the region of a distribution left to its
peak (values of the diameter smaller than the typ-
ical value). Since T is only an artificial resampling

parameter, also negative temperatures are feasible,
which therefore allow us to access the right tail of
P (d). In both cases, temperatures of large abso-
lute value will cause a sampling of the distribution
close to its typical value, while temperatures of
small absolute value are used to access the tails of
the distribution. Hence one chooses a suitable set
of temperatures {T−Nn

, T−Nn+1, . . . , TNp−1, TNp
}

with Nn and Np being the number of negative and
positive temperatures, respectively. A good choice
of the temperatures is such that the resulting his-
tograms of neighbouring temperatures overlap suf-
ficiently. This allows to “glue” the histograms to-
gether, see next paragraph. By obtaining the dis-
tributions PT−Nn

(d), . . . , PTNp
(d), such that P (d)

is “covered” as much as possible, one can mea-
sure P (d) over a large range, possibly on its full
support. The range where the distribution can be
obtained may be limited, e.g., when the MC sim-
ulations at certain temperatures Tk do not equi-
librate. This happens usually for small absolute
values |Tk|, where the system might also have a
glassy behaviour. Another difficult case is when
P (d) is not concave: then a first order transition
will appear [16] as a function of T , which might
prevent one from obtaining P (d) in some regions
of the support for large systems.

The normalisation constants Z(T ) can easily be
computed, e.g., by including a histogram gener-
ated from simple sampling, which corresponds to
the temperature T = ±∞. Using suitably chosen
temperatures T+1, T−1, one measures histograms
which overlap with the simple sampling histogram
on its left and right border, respectively. Then
the corresponding relative normalisation constants
Zr(T±1) can be obtained by the requirement that,
after rescaling the histograms according to (9),
they must agree in the overlapping regions with
the simple sampling histogram within error bars.
This means, the histograms are “glued” together.
In the same manner, the range of covered d values
can be extended iteratively to the left and to the
right by choosing additional suitable temperatures
T±2, T±3, . . . and gluing the resulting histograms
one to the other. The histogram obtained finally
can be normalised (with constant Z), such that the
probabilities sum up to one. This also yields the
actual normalisation constants Z(T ) = Zr(T )/Z
from Eq. (9). Note that one could also not only
glue together neighbouring histograms, but use for
each bin value d all data which is available, as it
is done, e.g., within the multi-histogram approach
by Ferrenberg and Swendsen [20]. For the present
case, it was easy to obtain good data statistics such
that it was sufficient to use the histograms just
pairwise.
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A pedagogical explanation of the gluing process
and examples of this procedure can be found in
Ref. [21].

C. Equilibration

In order to obtain the correct result, the MC
simulations must be equilibrated. In our case,
there is an easy test that can indicate when equi-
libration has not been reached. One can run
two simulations starting with two different initial
graphs G(t = 0), respectively:

• a graph which is arranged in a line, i.e., it has
a linear structure with N nodes and N − 1
edges. The diameter of this graph is N − 1.

• a complete graph, which contains all N(N −
1)/2 possible edges. For this graph the di-
ameter is one.

For each of these two different initial conditions,
the evolution of d(tMCS) will approach the equilib-
rium range of values from two different extremes,
which allows for a simple equilibration test: if the
measured values of d disagree within the range of
fluctuation, equilibration is not achieved. We shall
assume that, conversely, if the measured values of
d agree, then equilibration has been obtained.
Note that one can also use generalised ensem-

ble methods like the Multicanonical method [22]
or the Wang-Landau approach [23], in particular
when a first order transition as function of T ap-
pears, to obtain the distribution P (d). While these
methods in principle do not require to perform in-
dependent simulations at different values for the
temperatures, it turns out that for larger system
sizes, one still has to perform multiple simulations
because one has to split the interval of interest
into smaller overlapping sub intervals, to make the
simulation feasible. Here, the Wang-Landau algo-
rithm was used only for the case of c = 3, where
the temperature-based approach did not work well,
see below. For other values of c, it turned out to be
much easier to guide the simulations to the regions
of interest, e.g., where data is missing using the so-
far-obtained data, and to monitor the equilibration
process, using the finite-temperature approach.

III. RESULTS

We have numerically determined the distribu-
tion of diameters for ER random graphs for differ-
ent connectivities below, above and at the perco-
lation threshold cc = 1.

A. Connectivity c < 1

We start with the non-percolating regime, where
we can compare with exact asymptotic results [10].
In Fig. 1, P (d) is shown at c = 0.6 for three differ-
ent graph sizes. Using the approach explained in
the last section, probabilities as small as 100−100

are easily accessible. In the log-log plot, clearly
a curvature in the data is visible for large values
of the diameter, which could be partially due to
strong finite-size corrections. We have fitted the
data to a modified Gumbel distribution Eq. (3)
and obtained good fit qualities. We studied the
strength a of the Gaussian correction, see inset of
Fig. 1. One observes a clear power-law behaviour.
Hence, the numerical data supports that asymp-
totically the full distribution becomes Gumbel or
Gumbel-like below the percolation threshold.
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FIG. 1: Distribution of diameters for Erdős-Rényi
random graphs with average connectivity c = 0.6 for
three different graphs sizes N = 100, 200, and 1000.
The lines show fits to the “modified” Gumbel distribu-
tion according to Eq. (3). The inset shows the depen-
dence of the parameter a of Eq. (3) on the system size
N . The line displays the power law ∼ 1.51N−1.06 .

We have studied the behaviour in the non-
percolating phase for various values of the connec-
tivity c and different system sizes, see Fig. 2 for
c = 0.9. Each time we observe qualitatively the
same convergence to a Gumbel distribution.

From the fits, for each value of the connectiv-
ity c and each system size N , a value of λ(c,N)
is obtained. To extrapolate the dependence of the
Gumbel parameter λ(c) to large graph sizes, the
following heuristic dependence, inspired by stan-
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FIG. 2: Distribution of diameters for Erdős-Rényi
random graphs with average connectivity c = 0.9 for
three different graphs sizes N = 100, 200, and 1000.
The lines show fits to the “modified” Gumbel distri-
bution according to Eq. (3). The inset displays the
dependence of the Gumbel parameter λ as a function
of graph size N . The inset shows the result of a fit to
the function Eq. (10).

dard finite-size scaling [24, 25] was applied:

λ(c,N) = λ(c) + aN−α . (10)

The inset of Fig. 2 shows the behaviour of λ(c =
0.9, N) together with the fit as function of graph
size N . The resulting values for λ as a function
of the connectivity c are shown in Fig. 3 together
with the asymptotic result Eq. (2), yielding a nice
agreement. This shows that indeed the numerical
approach allows to reliably study the distribution
of diameters for finite sizes and to extrapolate to
large graphs.
Nevertheless, the scaling of the Gaussian correc-

tion parameter is basically close to a ∼ 1/N , hence
when looking at the data for the rescaled diame-

ter d̂ = d/N , the size-dependence exactly drops
out. Hence, the rate function Eq. (5) as a function

of d̂ is studied next, as displayed in Fig. 4. The
data collapse is good, which means that even for
small system sizes the rate function is well con-
verged. This means that the distribution of diam-
eters can indeed be described well by a rate func-
tion, hence the large-deviation principle [14, 26]
holds. This makes it a bit more likely that this
model is accessible to the mathematical tool of the
large-deviation theory. Note that due to the curva-
ture of the rate function, the Gumbel distribution
is not visible when inspecting the result on the d/N

0 0.2 0.4 0.6 0.8 1
c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

λ(
c)

N → ∞
-log(c)

FIG. 3: Dependence of the Gumbel parameter λ as a
function of the connectivity c. The symbols show the
extrapolation of the numerical results using Eq. (10).
The error bars are of order of symbol size. The solid
line represents the mathematical result Eq. (2) of Ref.
[10].

scale, which makes the most-important finite-size
contribution drop out. Only when one looks at the
data at fixed values d, the convergence to a Gum-
bel is a meaningful statement. A similar result
has been observed previously for the distribution
of scores of sequence alignment [13].

0 0.2 0.4 0.6 0.8 1
d/N

0.0
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N
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0.4
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c=0.6

c=1.0

FIG. 4: Large-deviation rate function Φ as a function
of the rescaled diameter d/N for c = 0.6 and different
system sizes. The inset shows the large-deviation rate
function for the percolation threshold c = 1.
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B. Connectivity c = 1

The results for the non-percolating phase gave
us confidence that the numerical method allows us
to turn our attention to cases, where no exact re-
sults for the full distribution are available. In Fig.
5, the distribution of diameters is shown right at
the percolation transition c = 1. Here, the ran-
dom graph consists of a large extensive tree plus
small components and no Gumbel distribution is
expected, since λ = 0.
Nevertheless, it is still possible to fit the finite-

size data to the modified Gumbel distribution, see
Fig. 5, since any finite-size graph for c = 1 can-
not be distinguished from the case c close to 1.
For example, fitting the case N = 1000 to Eq. (3)
resulted in

λ = 0.151(1), d0 = 22.9(1), a = 1.304(6)× 10−3 .

The fit matches the data well, also for other sys-
tems sizes. Nevertheless, when studying the de-
pendence of λ on the system size, a convergence
towards zero seems most likely, see inset of Fig.
5. In the double-logarithmic plot the data appears
to be compatible with a straight line, meaning a
power-law decrease, and maybe even a faster de-
crease. We verified this by fitting λ(N) according
to Eq. (10), where we obtained a negative value for
λ for N → ∞ with an error bar of almost the same
size, showing that indeed the distribution P (d) dif-
fers from the Gumbel distribution for c = 1.
This can also be seen from studying the large-

deviation rate function Φ(d/N), see inset of Fig. 4
where also an upward-bending function is seen, as
for the case c = 0.6.

C. Connectivity c > 1

In the percolating phase c > 1, the numerical
result show that in the artificial finite-temperature
ensemble there appears to be a 1st order phase
transition as a function of the temperature, simi-
larily to the distribution of the size of the largest
component [16]. To visualise this, we here only
show an example of a MC time series for the di-
ameter, see Fig. 6. Clearly the diameter oscillates
between two distinct regimes, showing the coexis-
tence of two “phases’ with small and large diam-
eter, respectively. This corresponds at this tem-
perature to a distribution of diameters PT (d) with
two peaks.
The data in Fig. 6 of the size S of the largest

component and the size Sb of the largest bicon-
nected component suggest that the system oscil-
lates between two states. When the diameter

0 100 200
d

10
-30

10
-20

10
-10

10
0

P
(d

)

N=200
N=500
N=1000
N=5000
fits

10
2

10
3

10
4

N

10
-1

λ

c=1.0

FIG. 5: Distribution of diameters for Erdős-Rényi
random graphs with average connectivity c = 1.0 for
different graph sizes. The lines show fits according to
Eq. (3). The inset shows the dependence of the fitting
parameter λ as a function of graph size using a double-
logarithmic axis. The lines shows the power-law ∼

N−α with α = −0.3 obtained from fitting the λ(N)
data for N ≥ 200.

is small, around 30 here, the largest biconnected
component is large, it contains about 200 nodes.
On the other hand, when the diameter is large,
about 130, the largest biconnected component has
a size of only about 30. Nevertheless, the size of
the largest components changes only a little bit.
This we interpret in the following way.

There is always one large line-like object present
and a tightly (bi-) connected cluster, see Fig. 7. As
we have verified explicitly in our numerical data,
the tightly connected cluster typically has a small
diameter while the line-like object has a large di-
ameter. In one state, the line-like object is con-
nected to the tightly connected cluster only at few
nodes or not at all. Hence, the diameter path is ba-
sically along the line-like object and the diameter
is large. In the other state, the line-like object is
connected to the tightly-connected cluster at sev-
eral, distant points, such that the diameter path
makes a shortcut. Thus, the diameter is small and
the biconnected component relatively large. Our
measurements showed that although the diame-
ters of the two states differ strongly, the number of
edges differ only slightly (not shown here). This al-
lows for a quick transition between the two states.
Note that in the mathematical literature [27] for
a logarithmically growing connectivity for diluted
ER random graphs, the diameter is concentrated
around a finite number (larger than one) of values.



7

0.0

50.0

100.0

150.0

200.0

d(
t)

MC data

0 2000 4000 6000 8000
t
MCS

0

100

200

300

400

S b(t
) 

   
   

S(
t)

c=2.0, N=500, T=-2.2

FIG. 6: Top: Time series for the diameter d as a
function of the number tMCS of MC sweeps, for c = 2,
graph size N = 500 at artificial temperature T = −2.2.
Bottom: for the same run, the size S of the largest
component and the size Sb of the largest biconnected
component as a function of tMCS.

d smalld large

FIG. 7: The bimodal characteristics of the graphs at
phase coexistence (c > 1): There is a large linear struc-
ture plus a tightly connected structure (plus a lot of
small components which are not so important). At crit-
icality, the system oscillates between states where the
strongly connected structure is attached several times
to the linear structure, allowing for shortcuts, or only
weakly connected (sometimes even not at all).

This might be related to the observed oscillations
of the diameter.
The existence of an inflection points translates

into the existence of a first-order transition in the
finite temperature ensemble with some criticial
temperature Tc. This leads to a bimodal structure
of PTc

(d) exhibiting a very small probability in the
region between the two peaks. Hence, concerning
the numerical effort, obtaining the full distribu-
tion P (d) becomes difficult, in particular for large
graphs, because the intermediate region for values
of d between the two peaks of PT (d) is rarely or
even not at all sampled.
Therefore, for the case c = 2.0, only system sizes

up to N = 500 could be equilibrated deep into the
large-diameter regime (corresponding to negative
temperatures with small absolute value). The first-
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d
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10
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10
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P
(d

)

N=100
N=200
N=500

c=2.0

"dip"

FIG. 8: Distribution of diameters for Erdős-Rényi
random graphs with average connectivity c = 2.0 for
graph size N = 100, 200 and 500.

order nature of the transition, i.e., the two-peak
structure of the distributions of the diameter at
finite-temperature close to the transition tempera-
ture, becomes visible by a “dip” in the distribution
of diameters for N = 500.

The dip is more pronounced when going to larger
connectivities. This can be seen in Fig. 9, where
the large-deviation rate function is displayed for
c = 3.0 for different system sizes. Here, the Wang-
Landau approach was used, which allowed us to
sample the region of the dip much better.

In Fig. 9 the corresponding rate function is
shown. Here, in particular for small values of d/N ,
stronger finite size effects are visible. Thus, we
have considered the functions ΦN (d/N) at various

fixed rations d̃ = d/N and performed an extrapo-
lation via fitting

ΦN (d̃) = Φ(d̃) + bN−β , (11)

where b and β are fitting parameters which are de-
termined for each considered value of d̃ separately,
i.e., point-wise. An example of the extrapolation
is shown in Fig. 9, together with the extrapolated
values Φ(d/N). For large values of d/N , above
0.5, the small finite size effects are small, while for
small values of d/N the extrapolated function dif-
fers slightly from the results for finite values of N .
The change from a concave to a convex function
near d/N = 0.3 is well visible. A similar qualita-
tive behaviour has been found previously for the
rate function Φ for the distribution of the size of
the largest component for ER random graphs.
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FIG. 9: Large-deviation rate function Φ as a function
of the rescaled diameter d/N for c = 3.0 and different
system sizes N = 100, 200, 500, 1000 (symbols). The
line shows the rate function obtained from extrapola-
tion N → ∞. Inset: extrapolation of rate function as
function of system size, for d/N = 0.1.

IV. SUMMARY

We have studied the distribution of the diameter
for dilute ER random graphs with connectivities
c. Using large-deviations simulations techniques,
we were able to obtain the distributions over large
ranges of the support. In the non-percolating re-
gion of small connectivities c < 1, the distributions

are concave and can be well fitted to the Gumbel
distributions with a Gaussian correction. The ex-
trapolated parameter of the Gumbel distribution
agrees well with mathematical results. In the per-
colating regime c > 1 the distribution of the diam-
eters is not available. Within the numerical result,
we observed a change from concave to convex be-
haviour, thus a more complex distribution. Never-
theless, for all values of c we studied, we were able
to obtain and extrapolate the rate function. This
means that the distribution of diameters follows
the large deviation principle.

Since the diameter is of importance for many
physical processes taking place on networks, it
would be interesting to obtain the distribution over
a large range of the support for other graph ensem-
bles, like scale free graphs. The results obtained in
the present work show that this should in principle
be possible.
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