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Acetylcholine Modulates Cerebellar Granule Cell Spiking by
Regulating the Balance of Synaptic Excitation and Inhibition

X Taylor R. Fore, Benjamin N. Taylor, Nicolas Brunel, and X Court Hull
Department of Neurobiology, Duke University Medical School, Durham, North Carolina 27710

Sensorimotor integration in the cerebellum is essential for refining motor output, and the first stage of this processing occurs in the
granule cell layer. Recent evidence suggests that granule cell layer synaptic integration can be contextually modified, although the circuit
mechanisms that could mediate such modulation remain largely unknown. Here we investigate the role of ACh in regulating granule cell
layer synaptic integration in male rats and mice of both sexes. We find that Golgi cells, interneurons that provide the sole source of
inhibition to the granule cell layer, express both nicotinic and muscarinic cholinergic receptors. While acute ACh application can
modestly depolarize some Golgi cells, the net effect of longer, optogenetically induced ACh release is to strongly hyperpolarize Golgi cells.
Golgi cell hyperpolarization by ACh leads to a significant reduction in both tonic and evoked granule cell synaptic inhibition. ACh also
reduces glutamate release from mossy fibers by acting on presynaptic muscarinic receptors. Surprisingly, despite these consistent effects
on Golgi cells and mossy fibers, ACh can either increase or decrease the spike probability of granule cells as measured by noninvasive
cell-attached recordings. By constructing an integrate-and-fire model of granule cell layer population activity, we find that the direction
of spike rate modulation can be accounted for predominately by the initial balance of excitation and inhibition onto individual granule
cells. Together, these experiments demonstrate that ACh can modulate population-level granule cell responses by altering the ratios of
excitation and inhibition at the first stage of cerebellar processing.
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Introduction
To coordinate movements and learn sensorimotor associations,
the cerebellum must integrate signals across a variety of modali-
ties and timescales (Mauk and Buonomano, 2004; Ito, 2006,
2012; Giovannucci et al., 2017; Wagner et al., 2017). These signals
are conveyed to the cerebellum via mossy fiber projections that
form excitatory connections onto a much larger network of gran-
ule cells. The divergence from mossy fibers to granule cells has

long been hypothesized to enable expansion recoding that en-
hances pattern separation and increases the encoding capacity of
the network (Marr, 1969; Albus, 1971; Cayco-Gajic et al., 2017;
Gilmer and Person, 2017).

While classical models of granule cell layer function posit
rigid integration rules dictated by the anatomical pattern of
mossy fiber to granule cell connectivity, recent studies have
demonstrated that the granule cell layer can be contextually
modified during behavior. Specifically, granule cell responses
to certain sensory modalities can be suppressed during loco-
motion (Ozden et al., 2012). Moreover, associative learning
can be enhanced during locomotion via circuit modulation
thought to occur in the granule cell layer (Albergaria et al.,
2018). Such contextual modification of granule cell responses
may allow for both the enhancement of behaviorally relevant
stimuli that should be learned, as well as suppression of infor-
mation that should not be learned. However, the cellular
mechanisms that enable such context-dependent regulation
are largely unknown.
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Significance Statement

The cerebellum plays a key role in motor control and motor learning. While it is known that behavioral context can modify motor
learning, the circuit basis of such modulation has remained unclear. Here we find that a key neuromodulator, ACh, can alter the
balance of excitation and inhibition at the first stage of cerebellar processing. These results suggest that ACh could play a key role
in altering cerebellar learning by modifying how sensorimotor input is represented at the input layer of the cerebellum.
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Throughout the brain, neuromodulators play a key role in
contextual circuit regulation (Letzkus et al., 2011; Froemke et al.,
2013; Kuchibhotla et al., 2017). In the cerebellum, there are
prominent ACh projections that terminate in the granule cell
layer (Jaarsma et al., 1997). Moreover, immunohistochemical
studies have shown both nicotinic and muscarinic receptors in
the cerebellar cortex (Neustadt et al., 1988; Dominguez del Toro
et al., 1994; Nakayama et al., 1997; Dominguez de Toro et al.,
1997; Turner and Kellar, 2005). These anatomical observations
suggest that ACh could be a key regulator of cerebellar processing
and cerebellar-dependent behaviors. Indeed, behavioral studies
have demonstrated cholinergic enhancement of the optokinetic
reflex and vestibulo-ocular reflex (Tan and Collewijn, 1991, 1992;
Prestori et al., 2013). However, it remains unknown both how
endogenous levels of cerebellar ACh are modulated in vivo and
how ACh acts at the synaptic and circuit levels to modify cerebel-
lar cortical processing.

To test how ACh acts to modulate granule cell layer processing
and synaptic integration, we have investigated both cell-auto-
nomous and circuit-level effects of ACh by recording from gran-
ule cell layer neurons in an acute, in vitro brain slice preparation.
We find that ACh predominantly leads to a prolonged suppres-
sion of Golgi cell activity via muscarinic receptor activation, in
turn reducing both tonic and evoked synaptic inhibition onto
granule cells. In addition, activation of presynaptic muscarinic
receptors on mossy fibers leads to a reduction in granule cell
excitation. Together, the coincident reduction in excitation
and inhibition increases spike probability in some granule cells,
while reducing spike probability in others. A population-level
integrate-and-fire model of granule cell layer synaptic processing
reveals that the direction of modulation depends on the relative
balance of excitation and inhibition for individual granule cells.
Specifically, we find that the activity of granule cells with the most
inhibition is preferentially enhanced by ACh, whereas the activity
of granule cells with little inhibition is largely suppressed. Thus,
these data suggest that ACh can act to enhance the reliability of
granule cells that are significantly inhibited in response to specific
mossy fiber input. Such modulation would be well suited to en-
hance the responses of granule cells that receive stimulus-specific
inhibition (Precht and Llinás, 1969) without expanding the over-
all population response.

Materials and Methods
Acute slices and recordings. Acute sagittal slices (250 �m) were prepared
from the cerebellar vermis of Sprague Dawley rats (20- to 25-d-old males,
Charles River) and ChAT-IRES-Cre mice (B6;129S6-Chattm2(cre)Lowl/J,
The Jackson Laboratory, P40-P60, males and females). Slices were cut in
an ice-cold potassium cutting solution (Dugué et al., 2005) consisting of
the following (in mM): 130 K-gluconate, 15 KCl, 0.05 EGTA, 20 HEPES,
25 glucose (pH 7.4, 315 mmol/kg), and were transferred to an incubation
chamber containing aCSF comprised of the following (in mM): 125 NaCl,
26 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 2 CaCl2, 1 MgCl2, and 25 glucose
(pH 7.3, 315 mmol/kg). An NMDAR antagonist, R-CPP (2.5 �M, Tocris
Bioscience), was added to the potassium cutting solution to reduce glu-
tamate receptor excitotoxicity and enhance cell survival. Slices were in-
cubated at 32°C for 20 min, and then kept at room temperature for up to
7 h. All solutions were saturated with 95% O2 and 5% CO2. All proce-
dures were performed according to guidelines approved by the Duke
University Institutional Animal Care and Use Committee.

Visually guided (SliceScope Pro 2000 with Dodt-gradient contrast and
water-immersion 60� objective, Scientifica) whole-cell recordings were
obtained using a Multiclamp 700B (Molecular Devices) with thick-
walled borosilicate glass patch pipettes (granule cells, whole cell: 5–7 M�,
granule cells, cell attached: 10 –14 M�, Golgi cells: 2– 4 M�; 1.5 mm OD,
0.84 mm ID, World Precision Instruments). Electrophysiological record-

ings were performed at 32°C-33°C, digitized at 20 kHz (Digidata 1440A,
Molecular Devices), and filtered at 10 kHz. Glass monopolar electrodes
(1 M�) filled with aCSF, in conjunction with a stimulus isolation unit
(ISO-Flex, A.M.P.I.), were used for extracellular stimulation of the mossy
fiber tract. Cell-attached recordings were performed to avoid changes in
granule cell excitability over time with whole-cell dialysis (Fleming and
Hull, 2019). For these experiments, only cells with an initial spike prob-
ability in control conditions between �20% and 60% were recorded to
allow for increases or decreases in spike rate during pharmacological
manipulations.

sIPCSs and evoked IPSCs were recorded at the EPSC reversal potential
(10 mV). Evoked EPSCs were recorded at a holding potential of �70 mV
and �60 mV for granule cells and Golgi cells, respectively. Voltage-
clamp recordings of IPSCs and EPSCs were collected using a cesium-
based internal solution containing the following (in mM): 140 Cs-
gluconate, 15 HEPES, 0.5 EGTA, 2 TEA-Cl, 2 MgATP, 0.3 NaGTP, 10
phosphocreatine-Tris2, and 2 QX-314 Cl. pH was adjusted to 7.2 with
CsOH, resulting in a final osmolality of 310 –315 mmol/kg. Current-
clamp and voltage-clamp recordings of Golgi cells were performed using
a potassium-based internal solution containing the following (in mM):
150 K-gluconate, 3 KCl, 10 HEPES, 0.5 EGTA, 3 MgATP, 0.5 NaGTP, 5
phosphocreatine-Tris2, and 5 phosphocreatine-Na2. pH was adjusted to
7.2 with KOH (osmolality 315 mmol/kg). Membrane potentials were not
corrected for the liquid junction potential. Series resistance was moni-
tored during voltage-clamp recordings with a 5 mV hyperpolarizing
pulse, and only recordings that remained stable over the period of data
collection were used. All drugs were purchased from Abcam or Tocris
Bioscience.

Virus injections and optogenetic experiments. Expression of the optoge-
netic actuator Chronos in ChAT � cerebellar projection neurons was
achieved using retro-orbital injection (2–10 �l) (Yardeni et al., 2011) of
AAV-PHP.eb-Syn-FLEX-rc[Chronos-tdTomato] into ChAT-IRES-Cre
mice (B6;129S6-Chattm2(cre)Lowl/J, The Jackson Laboratory) at P0-P2. Re-
cordings with optogenetic stimulation were subsequently performed be-
tween P40 and P60. Labeled axons in these experiments were observed
throughout the cerebellar vermis, including both thin fibers and mossy
fiber-like axons. Mossy fiber-like axons were most dense in lobules
VIII-X. Experiments were performed in any vermis lobule where labeling
was evident as visualized by Td-Tomato expression during experiments.
Optogenetic stimulation was performed using full-field illumination (50
Hz, 2–3 s, 10 –20 mW) with a 450 nm laser (Optoengine, MGL-III-450).

Experimental design and statistical analysis. IPSCs and EPSCs were
analyzed using Clampfit, Igor Pro, and Mini Analysis software (version
6.0.3, Synaptosoft) using a 3 kHz low-pass Butterworth filter. Detection
thresholds for single-trial responses were set to 5� (IPSCs) or 2.5�
(EPSCs) greater than the baseline RMS noise level. Synaptic potency was
measured as the amplitude on all trials where EPSCs or IPSCs were
successfully evoked according to these criteria, excluding failures. Mossy
fiber paired-pulse ratios (PPRs) were determined using an interstimulus
interval of 20 ms and measured from an average waveform across 30
consecutive trials. For voltage-clamp recordings of nicotinic and musca-
rinic currents, peak current amplitudes were measured from the sub-
tracted average current for each cell. For cell-attached recordings, spike
probabilities were calculated in 1 ms bins and normalized to the maxi-
mum spike probability in control on a per-cell basis. Because the maxi-
mum probability could occur at different times across cells, the peak
value of the average normalized spike probability is �1. Spike rates were

Table 1. Convergence ratios and synaptic connection probabilities

N
Convergence
ratios

Connection
probability

mf 315 — —
GrC 4096 — —
GoC 27 — —
mf ¡ GrC — 4:1 0.0127
mf ¡ GoC — 10:1 0.0317
GoC ¡ GrC — 4:1 0.1481
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calculated across all three stimuli in a 50 ms window and normalized to
control. Cells from these experiments were segregated into three groups:
increasing, decreasing, and cells without a significant change in baseline
firing rate using a one-way t test comparing baseline firing rate in control
versus muscarine within each cell. Data are reported as mean � SEM
(unless otherwise noted), and statistical analysis was performed using
custom R package (available at www.github.com/trfore/MAtools) and
Clampfit (Molecular Devices). Data were tested for homoscedasticity
using Brown–Forsythe test and for normality via quantile-quantile plots.
For heteroscedastic data, we applied a repeated-measures ANOVA with
Dunnett’s post hoc test; additionally, sphericity was not assumed and a
Greenhouse–Geisser correction was applied. Alternatively, a one-way
ANOVA with Tukey post hoc was used.

Modeling. The granular layer model was simulated with the Brian sim-
ulator (http://briansimulator.org). The structure of the network was
adapted from Solinas et al. (2010), which aims to recreate a functionally
relevant cube of the cerebellar granular layer with 100 �m edge length.
The model comprised 315 mossy fibers, 4096 granule cells, and 27 Golgi
cells. Probabilistic synapses were formed using the convergence ratios in
Table 1, with the probability of a particular presynaptic neuron making a
connection with a particular postsynaptic neuron defined as p 	 (Conv.
ratio)/(Total no. presynaptic neurons). There were no spatial constraints
on synapse formation.

Granule and Golgi cells were modeled as conductance-based leaky
integrate-and-fire neurons with subthreshold membrane dynamics gov-
erned by the following:

Cm

d�

dt
� gl
El � �� � 
ge � gn�
Ee � �� � 
gi � gt�
Ei � ��

for granule cells, and

Cm

d�

dt
� gl
El � �� � 
 ge � gn�
Ee � ��

for Golgi cells, where Cm is the membrane capacitance; v is the membrane
potential; El, Ee, and Ei are leak, excitatory, and inhibitory reversal poten-
tials; gl, ge, and gi are leak, excitatory, and (phasic) inhibitory conduc-
tances; gt is the (fixed) tonic inhibitory conductance in granule cells; and
gn is a stochastically fluctuating excitatory conductance described by an
Ornstein–Uhlenbeck process, as follows:

�n

dgn

dt
� �gn � �n��n	
t�,

where x(t) is a white noise with unit variance density. Table 2 lists the
fixed parameters for each cell type in control conditions. In control,
Golgi cells fired spontaneously on average between 1 and 6 Hz. This
spontaneous activity was achieved by setting the Golgi cell leak reversal El

near spike threshold and allowing the stochastic excitatory current to
occasionally drive the cell above threshold. Application of SR95531 was
simulated by eliminating both tonic and phasic inhibition onto granule
cells, without changing Golgi cell excitability. Tonic release of ACh was
simulated by suppressing Golgi cell activity (i.e., by setting the leak re-
versal back to the resting membrane potential) and reducing the magni-
tude of mossy fiber excitation onto both granule and Golgi cells by
54.79% and 54.22% of their control values, respectively, as per experi-
mental results. Tonic inhibition was reduced differentially across granule
cells by a fraction drawn from a gamma distribution with mean 0.6 and
SD 0.07.

Three conditions (control, SR95531, muscarine) were each simulated
for 100 trials, each trial running for 2 s. Trials were simulated for 1 s
without mossy fiber input to allow for decorrelation of GrC (granule cell)

and GoC (Golgi cell) populations. Mossy fiber stimulation was modeled
as three spikes delivered to a random selection of 32 mossy fibers at 1.01,
1.02, and 1.03 s. The same 32 mossy fibers were stimulated across all trials
of an individual simulation. Each mossy fiber was assigned a mean syn-
aptic weight from a gamma distribution with a mean and SD of 0.1 nS.
Following a presynaptic mossy fiber spike, excitatory postsynaptic con-
ductance ge in both granule and Golgi cells was instantaneously increased
by a synaptic weight drawn from a gamma distribution with mean and
SD equal to that mossy fiber’s assigned mean. A presynaptic Golgi cell
spike elicited a fixed instantaneous jump in the inhibitory conductance gi

on the postsynaptic granule cell with a 2 ms delay. Synaptic conductances
decayed as in the following equations:

�e

dge

dt
� �ge

and

�i

dgi

dt
� �gi,

where �e and �i are decay time constants specific to excitation and inhi-
bition in each cell type. Upon reaching threshold vth, the membrane
potential was immediately reset to its resting state vr, and held there for an
absolute refractory period of 2 and 10 ms for granule and Golgi cells,
respectively.

Excitatory and inhibitory conductance traces were recorded for each
granule cell during the simulation, as well as spike times. Spike probabil-
ities were calculated in 1 ms bins over the 100 trials and normalized to the
peak spike probability in control on a per-cell basis. Only granule cells
with active mossy fiber input and a nonzero spike probability in control
were considered for subsequent analysis. To match with experimental
criteria, we further selected for those cells whose peak spike probability to
the second stimulus did not exceed 0.6, and whose peak spike probability
to the third stimulus did not exceed that to the second. Cells categorized
as “increasing” spike probability in muscarine had a normalized spike
probability �1, whereas “decreasing” cells had a normalized spike prob-
ability �1. Average conductance was calculated by integrating each con-
ductance trace over a 60 ms period starting 10 ms before the first stimulus
and ending 30 ms after the final stimulus, then dividing by that interval.

Results
Cholinergic modulation of Golgi cells
Anatomical studies have reported nicotinic and muscarinic re-
ceptors in the cerebellar cortex (Jaarsma et al., 1997). Addition-
ally, functional studies have found 
7-nAChRs (Prestori et al.,
2013), 
4�2-nAChRs, and M3-mAChRs on granule cells; how-
ever, 
4�2-nAChRs are reportedly developmentally downregu-
lated (Didier et al., 1995), and the M3-mAChRs are expressed in
�15% of granule cells in lobules IX-X (Takayasu et al., 2003). To
test for functional cholinergic receptors in the adult cerebellar
granule cell layer, we performed whole-cell recordings from
Golgi and granule cells in the presence of excitatory and inhibi-
tory synaptic receptor antagonists (NBQX 5 �M, R-CPP 2.5 �M,
and SR95531 5 �M), and focally applied ACh (500 �M, 200 ms)
via a second pipette positioned in close proximity (�5–20 �m) to
the recorded somata.

Golgi cells are the primary inhibitory interneuron in the gran-
ule cell layer, providing the main source of synaptic inhibition to
granule cells. Because Golgi cells fire spontaneously between 1

Table 2. Fixed parameters for each cell type in control conditions

�r (mV) �th (mV) Cm (pF) Gl (nS) Gt (nS) El (mV) Ee (mV) Ei (mV) �n (nS) �n (ms) �e (ms) �i (ms)

GrC �75 �55 3.1 0.2 1 �75 0 �75 0.05 20 12 20
GoC �55 �50 60 3 0 �51 0 �75 0.1 20 12 0
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and 20 Hz (Forti et al., 2006), we first tested for ACh-mediated
regulation of their spontaneous firing (Fig. 1A). Brief application
of ACh caused a transient increase in the firing rates of 7 of 10
recorded Golgi cells (5.3 � 1.2-fold, n 	 7 of 10; Fig. 1B–D).
However, in all recorded Golgi cells, there was a longer-lasting
suppression of firing (0.13 � 0.06-fold, n 	 10). To test what
synaptic currents were responsible for these changes in sponta-
neous firing rate, we recorded in voltage-clamp configuration
from a subset of the same cells. Focal application of ACh revealed
a prolonged outward current that was blocked by the selective
Type II muscarinic receptor antagonist AF-DX 116 (1 �M, 16.1 �
2.6 pA, n 	 7; Fig. 1E,F), as well as a transient inward current that
was blocked by the nonselective nicotinic receptor antagonist
MMA (10 �M) (40.3 � 11.4 pA, n 	 7; Fig. 1E,F). In contrast,
granule cell recordings revealed no change in membrane poten-
tial in response to ACh application in current clamp and no nic-
otinic or muscarinic receptor-activated currents in voltage clamp
(n 	 24; Fig. 1G–J).

Focal application of ACh onto Golgi cells suggests the possi-
bility of long-term suppression during periods of ongoing ACh
release when nicotinic receptors are desensitized. To test this, we
simulated tonic release of ACh by bath application of muscarine
(10 �M) in the presence of TTX (0.5 �M) to block spontaneous
pacemaking (Fig. 2A,B). In these experiments, muscarine pro-
duced a prolonged hyperpolarization that lasted the duration of
the agonist application, and was abolished in the presence of the
nonselective muscarinic receptor antagonist atropine (5 �M; Fig.
2B). Notably, the membrane potential returned to baseline in
atropine, suggesting the absence of tonic muscarinic receptor
activation in the slice. To further test whether muscarinic recep-
tors may be activated under baseline conditions, we tested the
effect of atropine on spontaneous Golgi cell spiking in the pres-
ence of excitatory and inhibitory synaptic transmission blockers
(5 �M NBQX, 2.5 �M R-CPP, and 5 �M SR95531). These exper-
iments revealed no significant effect of atropine on spontaneous
Golgi cell spike rates (p 	 0.133, control vs atropine; Fig. 2C),
further suggesting that muscarinic receptors are not tonically ac-
tivated in the slice.

To test whether such long-term Golgi cell modulation could
be achieved by endogenous release of ACh, we expressed the
optogenetic actuator Chronos in cerebellar-projecting cholin-
ergic neurons (see Materials and Methods; Fig. 2D,E) and stim-
ulated labeled axons in cerebellar vermis using 2–3 s pulse trains
(50 Hz) of blue light (Fig. 2F,G). This stimulation protocol pro-
duced a modest depolarizing current during the stimulation but
predominantly resulted in a long-lasting, atropine-sensitive out-
ward current that emerged after the stimulus and persisted for
10s of seconds (Fig. 2F,G). Overall, these findings suggest that
ongoing bouts of granule cell layer ACh release can activate M2
muscarinic receptors on Golgi cells that produces a long-lasting,
net suppression of these interneurons.

Cholinergic regulation of granule cell tonic inhibition
Golgi cells are the main source of granule cell synaptic inhibition
(Eccles et al., 1966; Farrant and Brickley, 2003; Kanichay and
Silver, 2008). Moreover, GABA released from Golgi cells activates
two types of granule cell GABAA receptors to regulate granule cell
excitability (Brickley et al., 1996; Crowley et al., 2009; Duguid et
al., 2012, 2015). Based on our measurements of muscarinic
receptor-mediated Golgi cell suppression, we next tested for
changes in tonic granule cell synaptic inhibition during simulated
bulk release of ACh using bath application of muscarine (Fig.
3A,B). Bath application of muscarine resulted in a significant
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Figure 1. ACh activates nicotinic and muscarinic (M2) receptors in Golgi cells but does not act
on granule cells. A, Schematic showing intracellular recording of Golgi cells during focal appli-
cation of ACh chloride. A glass pipette containing 500 �M ACh was placed in close proximity to
the soma. B, Representative current-clamp recording of spontaneous activity in the presence of
glutamatergic (5 �M NBQX, 2.5 �M R-CPP) and GABAergic (5 �M SR95531) antagonists. A 200
ms pulse of ACh evokes a transient increase in spontaneous spiking followed by a pause. C, D,
Normalized spike rate across stimulus presentations (normalized to the 5 s period before ACh
stimulus, 1 s bins, n 	 10). C, Time course of ACh-mediated change in spike rate (group aver-
age). D, Average spike rate by cell (gray), group average (black, mean � SEM; ANOVA,
F(1.052,9.471) 	 9.679, p 	 0.0111, n 	 10) at 4 s (0.99 � 0.09 norm), 6 s (4.0 � 1.1 norm, p 	
0.0517), 10 s (0.1 � 0.06 norm, p 	 0.0004), and 20 s (1.1 � 0.2 norm, p 	 0.9658). E,
Voltage-clamp recordings from the same cell in B. A 200 ms pulse of ACh evokes an outward
current that is blocked by a selective muscarinic M2 receptor antagonist (1 �M AF-DX116) and
an inward current that is blocked by a nonselective nicotinic antagonist (Mecamylamine hydro-
chloride (MMA), 10 �M � 1 �M AF-DX116). F, Peak amplitudes from voltage-clamp recordings
at �60 mV. Amplitudes were determined using the baseline-subtracted average current for
each cell (nicotinic: 40.3 � 11.4 pA, muscarinic: 16.1 � 2.6 pA, n 	 7). G, Schematic showing
intracellular recording of granule cells during focal application of ACh. A glass pipette containing
500 �M ACh was placed in close proximity to the soma. H, Representative current-clamp trace
from a granule cell in the presence of glutamatergic (5 �M NBQX, 2.5 �M R-CPP) and GABAergic
(5 �M SR95531) antagonists. A 500 ms pulse of ACh fails to evoke change in the membrane
potential. I, Average spike rate across all cells (n 	 24). J, Grouped voltage-clamp trace from all cells
(n 	 24). ***p � 0.001.
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decrease in both sIPSC frequency (83.7 �
2.9% decrease, control: 4.5 � 0.8 Hz,
muscarine: 0.8 � 0.3 Hz, n 	 11, p �
0.0001; Fig. 3C) and a tonic inhibitory
current mediated by nondesensitizing
GABAA receptors (54.3 � 3.3% decrease,
control: 8.85 � 1.08 pA, muscarine: 4.1 �
0.7 pA, p � 0.0001; Fig. 3D). These effects
were largely reversed by atropine (sIPSC
frequency: 4.9 � 0.9 Hz, holding current:
7.5 � 1.0 pA; Fig. 3B–E), suggesting that
M2 receptor-mediated suppression of
Golgi cell firing can significantly reduce
tonic granule cell synaptic inhibition. No-
tably, atropine did not fully recover base-
line levels of tonic inhibition in most cells,
an effect that is consistent with the inter-
nalization of 
6 subunit-containing
GABAA receptors in response to periods
of reduced GABAergic signaling (Khatri
et al., 2019).

Activation of Golgi cell M2 receptors
induces spike rate plasticity
In a subgroup of granule cells, sIPSC fre-
quency increased following bath applica-
tion of atropine (1.7 � 0.2 of control, n 	
5 of 11, p 	 0.015; Fig. 3C). These data
suggest an increase in spontaneous Golgi
cell firing rates as a result of muscarine
application. Previous work has demon-
strated that Golgi cell pacemaking can un-
dergo a form of long-term firing rate
potentiation (FRP) following extended
membrane hyperpolarization (Hull et al.,
2013). To test whether activation of M2
receptors could provide an endogenous
mechanism for inducing this plasticity, we
performed whole-cell current-clamp re-
cordings from Golgi cells in the presence
of synaptic receptor antagonists (5 �M

NBQX, 2.5 �M R-CPP, 5 �M SR95531)
while simulating bulk ACh release via
bath application of muscarine (10 �M;
Fig. 4A). Muscarine reliably suppressed
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TTX to block spontaneous firing. Bath application of muscarine
hyperpolarizes the membrane potential (musc: �65.2 �
3.57 mV, n 	 6). C, Whole-cell current-clamp recordings of
Golgi cell spiking in the presence of NBQX (5 �M), R-CPP (2.5
�M), and SR95531 (5 �M). Bath application of atropine (5 �M)
reveals no change in normalized spike rates ( p 	 0.133). D,
Expression of Chronos-TdTomato in ChAT � cerebellar projec-
tions, red fluorescence displayed in grayscale with an inverted
look-up table. E, Expanded view of the cerebellar cortex from
D. Open arrows indicate thin, beaded fibers. Closed arrow in-
dicates mossy fiber-like projection. F, Average voltage-clamp
recording from an example Golgi cell (Vm 	 �55 mV) in re-
sponse to optogenetic stimulation (450 nm, 50 Hz, 15 mW, 2 s)
in control (black) and following atropine application (5 �M,
gray) (control average 	 31.4 � 4.8 pA, atropine average 	
10.2 � 2.3 pA, n 	 8, p 	 0.002, paired t test). G, Summary of
Golgi cell optogenetic stimulation experiments.
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GoC spiking throughout the application period (baseline: 4.2 �
0.6 Hz; musc: 0.5 � 0.3 Hz; Fig. 4B). Following subsequent atro-
pine application, Golgi cell firing resumed at rates that were, on
average, higher than in control (5.5 � 0.7 Hz; Fig. 4B). In agree-
ment with previous work (Hull et al., 2013), this FRP was prefer-
ential to Golgi cells with low baseline firing rates (�5 Hz: 1.6 �
0.2 norm, n 	 13; �5 Hz: 1.0 � 0.1 norm, n 	 4; Fig. 4C–E).
These results suggest that ACh can act as an endogenous mecha-
nism for inducing Golgi cell FRP by activating M2 muscarinic
receptors. Moreover, the diversity of plasticity across Golgi cells
with different initial firing rates was in agreement with the diver-
sity of changes in sIPSC rates in granule cells following muscarine
application in atropine (Fig. 3E).

Cholinergic regulation of evoked granule cell inhibition
Golgi cells also provide evoked feedforward inhibition in re-
sponse to mossy fiber activation that serves to regulate excitabil-
ity during cerebellar input (Kanichay and Silver, 2008; Duguid et
al., 2015). To test how evoked granule cell inhibition is regulated
by ongoing cholinergic modulation, we electrically stimulated
the mossy fibers during bath application of muscarine. Mossy
fiber stimulation reliably evoked IPSCs (control: 51.8 � 8.4 pA,
12.8 � 5.8% failure rate, n 	 5; Fig. 5A,B). In the presence of
muscarine, evoked IPSC amplitudes decreased significantly
(98.2 � 0.8% decrease, 0.6 � 0.4 pA, p � 0.0001; Fig. 5B–D), and
the failure rate increased significantly (98.4 � 0.8% failure rate,
p 	 0.0004; Fig. 5E). Atropine reversed these effects on the
evoked IPSCs (53.0 � 9.9 pA; Fig. 5D) and failure rate (19.3 �
7.1% failure rate; Fig. 5E). Importantly, IPSCs were disynaptically
evoked, as ionotropic glutamate receptor antagonists (5 �M

NBQX, 2.5 �M R-CPP) abolished all evoked IPSCs (100 � 0%
failure rate; Fig. 5E). The muscarine-induced reduction in evoked
IPSC amplitude and increase in failure rates are consistent with
our finding of muscarinic receptor-mediated Golgi cell hyperpo-
larization. However, because these experiments rely on stimu-
lated mossy fiber input, it is also possible that a muscarinic
receptor-mediated reduction in presynaptic mossy fiber input to
Golgi cells could also contribute to the observed reduction in
evoked IPSCs.

Presynaptic muscarinic receptors reduce mossy fiber input to
the granule cell layer
To test whether long-term cholinergic release could also regulate
the efficacy of glutamatergic mossy fiber inputs, we next tested
how bath application of muscarine regulates EPSCs onto both
Golgi cells and granule cells. We first tested for the presence of
muscarinic receptors at mossy fiber to Golgi cell synapses (Fig.
6A,B). In response to mossy fiber stimulation, muscarine signif-
icantly decreased the amplitude of evoked EPSCs onto Golgi cells
(50.7 � 11.7%, control: 127.0 � 16.6 pA, muscarine: 61.4 � 22.1
pA, atropine: 120.2 � 18.7 pA, n 	 10, p 	 0.0028; Fig. 6B–D)
and increased the failure rate (control: 2.2 � 1.0%, muscarine:
29.6 � 8.5%, atropine: 2.2 � 0.6%, p � 0.0001; Fig. 6E). Consis-
tent with a presynaptic effect on release probability, muscarine
significantly increased the PPR of mossy fiber-evoked EPSCs
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sIPSC frequency across time in the presence of muscarine, atropine (5 �M), and the GABAA

antagonist (5 �M SR95531; mean � SEM, n 	 11). D, Grouped average holding current across
time. E, Left, Summary of the change in sIPSC frequency for individual cells. Quantified using a
2 min window (control: 2– 4 min, muscarine: 7–9 min, atropine: 12–14 min, values normalized
to control; ANOVA, F(1.041,10.41) 	 29.49, p 	 0.0002, n 	 11). Group average for each
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condition: muscarine (0.2 � 0.0 norm, p � 0.0001); atropine (1.2 � 0.2 norm, p 	 0.3773).
Right, Summary of the change in holding current (ANOVA, F(1.565,15.65) 	 65.96, p � 0.0001)
for individual cells in muscarine (group average: 0.5 � 0.0 norm, p � 0.0001) and atropine
(group average: 0.9 � 0.1 norm, p 	 0.0681). sIPSC and tonic inhibition was confirmed by
blocking currents with the GABAA antagonist (5 �M SR95531). ***p � 0.001.
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onto Golgi cells (control PPR 	 1.1 � 0.2, muscarine PPR 	
1.4 � 0.2, p 	 0.009, one-tailed t test; Fig. 6G).

To test whether presynaptic regulation of mossy fiber input is
selective to Golgi cell synapses, we next measured evoked EPSCs
onto granule cells during bath application of muscarine (Fig.
7A,B). Again, we found a significant decrease in mossy fiber-

evoked EPSCs in muscarine, along with a significant increase in
failure rate (52.8 � 9.60% EPSC decrease, control: 68.6 � 10.7
pA, muscarine: 32.4 � 8.8 pA, n 	 10, control failure rate: 0.3 �
0.3%, muscarine: 26.3 � 7.5%; Fig. 7B–F). These effects were
reversed in atropine (64.0 � 11.4 pA, failure rate: 1.3 � 0.7%; Fig.
7B–F). As with Golgi cell synapses, muscarine significantly in-
creased the PPR of mossy fiber-evoked EPSCs onto granule cells
(control: 0.9 � 0.1 muscarine: 1.1 � 0.1, p 	 0.044, one-tailed t
test; Fig. 7G). These data reveal that ongoing ACh release can
reduce the efficacy of excitatory glutamatergic mossy fiber input
to granule cell layer neurons by activating presynaptic muscarinic
receptors.

Muscarinic receptor activation produces bidirectional
changes in granule cell spike probability
Our results show that ACh can act through muscarinic receptors
to reduce both incoming excitation and synaptic inhibition in the
granule cell layer. To test how these effects combine at the circuit
level to regulate granule cell activity, we performed noninvasive
cell-attached recordings (see Materials and Methods) from gran-
ule cells while stimulating mossy fiber input (Fig. 8A,B).
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Across eight recorded granule cells that spiked in response to
mossy fiber stimulation (see Materials and Methods), bath appli-
cation of muscarine produced heterogeneous effects on spike
rates and spike probabilities (Fig. 8C–I). To quantify these di-
verse effects, we used a one-way t test to identify whether each cell
had a significant increase or decrease in firing rate in the presence
of muscarine (significance defined as p � 0.05). Three granule
cells significantly increased their firing rates (control: 33.56 �
21.89 Hz; muscarine: 64.22 � 34.56 Hz; normalized change:
2.27 � 0.29; n 	 3; Fig. 8E,F, black), three cells significantly
decreased their firing rates (control: 26.22 � 2.44 Hz; muscarine:
3.11 � 3.11 Hz; normalized change: 0.15 � 0.15; n 	 3; Fig. 8E,F,

orange), and two cells had no significant change (control:
19.33 � 8.67 Hz; muscarine: 25.00 � 11.00 Hz; normalized
change: 1.30 � 0.01; n 	 2, Fig. 8E,F, gray). These changes in
firing rates were consistent with the observed changes in spike
probability (Fig. 8G,H), such that the increasing cells had an
increase in peak probability (10 ms bins: control: 0.63 � 0.09,
muscarine: 0.87 � 0.05, n 	 3; Fig. 8I, black) and the decreasing
cells had a decrease in peak probability (control: 0.67 � 0.02,
muscarine: 0.13 � 0.08, n 	 3; Fig. 8I, orange). However, consis-
tent with the observation that some granule cells receive en-
hanced inhibition following atropine application (Fig. 4), and
recovery of underlying synaptic currents can sometimes be in-
complete during pharmacology experiments (Figs. 6, 7), not all
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Figure 7. Activation of presynaptic muscarinic receptors reduces glutamatergic transmis-
sion at the mossy fiber-granule cell synapse. A, Schematic showing the intracellular recording
configuration and stimulus location. B, Representative voltage-clamp recordings of EPSCs (av-
eraged from 30 consecutive events recorded at �70 mV) evoked by electrical stimulation (100
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p 	 0.0007), and atropine (1.0 � 0.1 norm, p 	 0.9183; ANOVA, F(1.388,12.49) 	 10.02, p 	
0.0047). G, Summary of PPR measured in a separate group of granule cells (2 pulses at 50 Hz).
*p � 0.05. ***p � 0.001.
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cells recovered control levels of spiking in atropine following
muscarine application.

In contrast, blocking ionotropic GABAergic inhibition (5 �M

SR95531) significantly increased spike rates uniformly across all
recorded granule cells (control: 33.56 � 21.89 Hz; SR95531:
136.6 � 21.5 Hz; normalized change: 6.8 � 1.6; n 	 8; Fig. 8C–F),
with corresponding increases in spike probabilities (Fig. 8G,H,
insets). Consistent with the fast membrane time constant of gran-
ule cells (Fleming and Hull, 2019), however, neither muscarine
nor SR95531 altered the timing of the first spikes in response to
stimulation in the five cells that maintained firing in the presence
of muscarine (p � 0.05 for all conditions relative to control,
except third stimulus in SR95531; Fig. 8J). Thus, these data sug-
gest that muscarine can have heterogeneous effects on granule
cell activity: enhancing the reliability and rate of spiking in some
granule cells receiving mossy fiber input, and reducing spike
probability and rate in others.

Network model of granule cell spiking in response to
muscarinic neuromodulation
The difficulty of finding experimental conditions in which stim-
ulation of the mossy fibers could drive spiking in the recorded
granule cell precluded a large number of cell-attached recordings.
Thus, to determine whether the observed diverse effects of mus-
carine are consistent with the properties of the network, and how
these effects are distributed across the population, we generated a
network model to determine how muscarinic neuromodulation
affects population activity. This model has the added benefit of
enabling us to explore how muscarine can produce such effects
since it is not possible to record subthreshold excitation and in-
hibition across pharmacological conditions in the same granule
cells with cell-attached recordings. As muscarine reduces both
excitatory and inhibitory inputs to granule cells, we intuitively
expected that the net effect on granule cell firing would depend
on which reduction is strongest: granule cells in which excitatory
inputs are more strongly reduced than inhibitory inputs should
decrease their spiking activity, whereas the opposite should occur
when inhibitory inputs are more strongly reduced.

To test this hypothesis, we simulated a granular layer network
of 4096 granule cells and 27 Golgi cells, receiving inputs from 315
mossy fibers, with realistic connectivity parameters (see Materials
and Methods). In this network simulation, we implemented all
the effects of muscarine characterized above to match experi-
mental results. Upon stimulation of a random subset of 32 mossy
fibers, granule cell spiking was qualitatively similar to the slice
preparation. Of the 319 granule cells that spiked in response to
mossy fiber stimulation, 85 exhibited an increase in spiking ac-
tivity in the simulated presence of muscarine (Fig. 9A,C), while
65 showed decreased spiking (Fig. 9B,C). The remaining granule
cells did not change spike probability and were excluded from
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further analysis. Thus, this network recapitulates the heterogene-
ity observed in our cell-attached recordings.

We next investigated the conditions that biased cells toward
an increase or decrease in firing in muscarine. We found that
there was a significant difference in the distributions of excit-
atory and inhibitory conductances for granule cells that
increased or decreased spike probability in muscarine (excit-
atory conductance; Kolmogorov–Smirnov D 	 0.28, p � 0.01;

Fig. 9D; inhibitory conductance; Kolm-
ogorov–Smirnov D 	 0.43, p � 0.01, KS
test; Fig. 9E). Overall, cells exhibiting an
increase in spike probability were domi-
nated by inhibition in control conditions
(net conductance: �0.51 � 0.08 nS; Fig.
9F,H,I), whereas cells with decreasing
spike probability received relatively less
Golgi cell input (net conductance: 0.20 �
0.07 nS; Fig. 9F,H,I; net conductance for
increasing vs decreasing: Kolmogorov–
Smirnov D 	 0.53, p � 0.0001; Fig. 9I).
Moreover, there was a preferentially
greater reduction in tonic inhibition of
cells with increased spiking activity (in-
creasing: 65.5 � 1% reduction; decreas-
ing: 55.7 � 1% reduction, Kolmogorov–
Smirnov D 	 0.62, p � 0.0001; Fig.
9F,H,J).

We tested that our results did not de-
pend on a specific realization of the net-
work connectivity by simulating 30
independent realizations of the connec-
tivity matrix, and patterns of input mossy
fiber stimulation. While the relative num-
bers of cells exhibiting increases and de-
creases in spike probability were variable
across different instantiations of the
model, the underlying input profiles dis-
tinguishing the two cell categories were
comparable (increasing cells had a net in-
hibitory conductance in control: �0.40 �
0.03 nS; decreasing cells had a net excit-
atory conductance in control: 0.26 � 0.03
nS; data not shown). Similarly, we saw
consistently larger decreases in the inhib-
itory tonic current for cells that increased
their spike probability in muscarine (in-
creasing: 64.7 � 0.2% reduction; decreas-
ing: 57.6 � 0.2% reduction; data not
shown). Together, these results indicate
that muscarinic neuromodulation prefer-
entially enhances the spike rates of gran-
ule cells with larger synaptic inhibition in
control conditions.

Discussion
Here we have shown that ACh activates
muscarinic receptors to modulate two of
the three main nodes within the granule
cell layer of the cerebellar cortex. Specifi-
cally, both Golgi cells and mossy fibers ex-
press muscarinic receptors that serve to
hyperpolarize Golgi cells and decrease
mossy fiber release probability, respec-
tively. By simulating ongoing release of

ACh using bath application of muscarine, we revealed a suppres-
sion of Golgi cell spiking that is mediated by M2-type muscarinic
receptors. Consistent with this finding, optogenetic stimulation
of ChAT� cerebellar projections produced a long-lasting, net
hyperpolarizing current in Golgi cells that greatly outlasted the
duration of stimulation. At the circuit level, suppression of Golgi
spiking led to a large decrease in synaptic inhibition onto granule
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cells. In parallel, muscarine also reduced excitatory transmission
from mossy fibers by acting on presynaptic muscarinic receptors.

Together, by acting on both Golgi cells and mossy fibers, we
find that ACh can alter the coordination of excitation and inhi-
bition onto granule cells. Surprisingly, however, these changes in
excitation and inhibition produce diverse changes in granule cell
spiking at the population level. Specifically, spike probability in
some granule cells can be enhanced, whereas others are largely
suppressed. By generating a network model of the granule cell
layer, we provide evidence that the direction of spike rate modu-
lation is established by the initial balance of excitation and
inhibition onto each cell, as well as the degree to which neuro-
modulation reduces tonic inhibition. Overall, cells with higher
levels of inhibition increased their spike rates in response to neu-
romodulation, whereas cells with less inhibition decreased their
spike rates. Because cells that decreased their firing rate were
excitation-dominated, they also tended to have the highest firing
rates before cholinergic neuromodulation. These changes are in
stark contrast to the responses observed after removing all inhi-
bition, which dramatically increases spiking of the entire popu-
lation. Thus, these data suggest that, by simultaneously reducing
excitation and inhibition, cholinergic neuromodulation can
provide a mechanism for enhancing the responses of subsets
of granule cells without expanding the overall population
response.

Under what conditions might ACh act to modulate the gran-
ule cell layer in vivo? Previous work suggests that ChAT�

cerebellar-projecting neurons originate from diverse sources
(Jaarsma et al., 1997). Consistent with our findings, these projec-
tions can take the form of mossy fiber-like inputs or thinner
beaded fibers (Jaarsma et al., 1997). Previous studies have shown
that ChAT� mossy fiber terminals and beaded fibers are ex-
pressed throughout the cerebellar cortex, with lobules IX/X hav-
ing the densest mossy fiber innervation and lobule IX having the
densest beaded fiber innervation (Ojima et al., 1989; Barmack et
al., 1992a; Jaarsma et al., 1996). We also observed the densest
innervation of ChAT� mossy fiber-like terminals in these lob-
ules, although ChAT� terminals were present in all lobules, and
we observed optogenetically driven currents in Golgi cells
throughout the vermis. Anatomical studies have suggested that
the ChAT� MFs located in lobules IX/X and the flocculus origi-
nate from medial vestibular nucleus and nucleus prepositus hy-
poglossi (Barmack et al., 1992b), whereas ChAT� beaded fibers
may originate from the pedunculopontine tegmental nuclei
(PPTg) (Woolf and Butcher, 1989; Newman and Ginsberg, 1992;
Ruggiero et al., 1997). Notably, for any of these sources, it re-
mains possible that other neurotransmitters are coreleased with
ACh, as has been shown in other brain regions (Granger et al.,
2017). However, based on our goal of measuring the longer time-
scale effects of ACh, we did not investigate the possibility of other
fast transmitters that may also play a role during the initial phases
of transient ACh release.

Such diversity of sources of ACh suggests multiple roles for
cholinergic signaling. Inputs from the medial vestibular nucleus
are likely to be important for modulation of vestibular guided
reflexes. In support of such a role for ACh, previous work has
shown that cerebellar injection of cholinergic agonists can en-
hance both optokinetic and vestibulo-ocular reflexes (Tan and
Collewijn, 1991, 1992; Prestori et al., 2013).

The presence of cholinergic inputs from the PPTg also sug-
gests a role for ACh in contextual modulation of the granule cell

layer, for instance by arousal or locomotion. Indeed, recent work
has demonstrated a locomotion-dependent enhancement of
learning in a cerebellar-dependent form of delay eyeblink con-
ditioning (Albergaria et al., 2018). Specifically, the acquisition
rate of delay eyeblink conditioning was correlated with the
animals’ running speed. In this study, the circuit mechanism
underlying this enhancement was linked to an increase in
granule cell layer excitability (Albergaria et al., 2018). In this
model, behaviorally relevant sensory information would more
easily drive granule cells past spike threshold during locomo-
tion, and thus transmit more effectively to downstream Pur-
kinje cells to promote synaptic plasticity and learning. While
speculative, our results suggest the possibility that ACh could
provide an endogenous mechanism to disinhibit populations
of granule cells and enable such locomotion-dependent effects
on learning. In particular, because the PPTg is active during
locomotion (Lee et al., 2014), it could provide the type of tonic
ACh release that would enhance granule cell responses and
promote associative learning. At present, however, it is un-
known whether ACh is released into the cerebellar cortex dur-
ing locomotion as it is in other brain regions.

Finally, our results suggest that the key determinant of how
ACh modulates granule cell spike probability is the initial balance
of excitation and inhibition onto each cell. Indeed, previous work
has demonstrated that inhibition is not homogeneous across
granule cells (Crowley et al., 2009). Such diversity may arise from
a combination of factors, including differences in the number of
Golgi cell inputs per glomerulus (Jakab and Hamori, 1988), the
number of granule cell dendrites per cell (Palay and Chan-Palay,
1974), a diversity of Golgi cell types (Neki et al., 1996; Geurts et
al., 2001; Simat et al., 2007), or differences in GABA receptor
expression at granule cell synapses (Wall, 2002). Likewise, the
amplitude of unitary excitatory mossy fiber conductances onto
granule cells has been shown to vary over a wide range, and
depend on the source of the mossy fiber input (Chabrol et al.,
2015). Moreover, because granule cells can integrate multiple
mossy fiber inputs from diverse sources (Huang et al., 2013), it is
possible for individual cells to exhibit considerable variability in
both the amount of excitation and inhibition they receive across
the population.

Notably, we find that ACh selectively increases the excitability
of the granule cells that are most strongly inhibited. Previous
work has suggested that granule cell inhibition can be stimulus-
specific (Precht and Llinás, 1969), and recent work has indicated
that such stimulus-specific inhibition may play a key role in cer-
ebellar learning (Kalmbach et al., 2011). If different Golgi cells
can indeed be recruited by some stimuli and not others, cholin-
ergic neuromodulation would provide an ideal mechanism to
enhance the responses of granule cells that would otherwise be
suppressed by stimulus-specific inhibition. Hence, such a mech-
anism could serve to enhance learning for specific mossy fiber
inputs, perhaps based on behavioral context or stimulus salience.
Thus, ACh neuromodulation would provide an appealing means
to regulate learning or modify the gain of cerebellar transforma-
tions. While future in vivo experiments will be necessary to eval-
uate this possibility, our results reveal both the cell-autonomous
and circuit-level actions by which ongoing ACh release can act
through muscarinic receptors to modulate granule cell excitabil-
ity. Such data thus provide the foundation for interpreting the in
vivo effects of cholinergic neuromodulation at the input stage of
cerebellar processing.
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Control of cerebellar granule cell output by sensory-evoked Golgi cell
inhibition. Proc Natl Acad Sci U S A 112:13099 –13104.

Eccles JC, Llinás R, Sasaki K (1966) The mossy fibre-granule cell relay of the
cerebellum and its inhibitory control by Golgi cells. Exp Brain Res 1:82–
101.

Farrant M, Brickley SG (2003) Properties of GABA(A) receptor-mediated
transmission at newly formed Golgi-granule cell synapses in the cerebel-
lum. Neuropharmacology 44:181–189.

Fleming E, Hull C (2019) Serotonin regulates dynamics of cerebellar gran-
ule cell activity by modulating tonic inhibition. J Neurophysiol 121:105–
114.

Forti L, Cesana E, Mapelli J, D’Angelo E (2006) Ionic mechanisms of auto-
rhythmic firing in rat cerebellar Golgi cells. J Physiol 574:711–729.

Froemke RC, Carcea I, Barker AJ, Yuan K, Seybold BA, Martins AR, Zaika N,
Bernstein H, Wachs M, Levis PA, Polley DB, Merzenich MM, Schreiner
CE (2013) Long-term modification of cortical synapses improves sen-
sory perception. Nat Neurosci 16:79 – 88.

Geurts FJ, Timmermans J, Shigemoto R, De Schutter E (2001) Morpholog-
ical and neurochemical differentiation of large granular layer interneu-
rons in the adult rat cerebellum. Neuroscience 104:499 –512.

Gilmer JI, Person AL (2017) Morphological constraints on cerebellar gran-
ule cell combinatorial diversity. J Neurosci 37:12153–12166.

Giovannucci A, Badura A, Deverett B, Najafi F, Pereira TD, Gao Z, Ozden
I, Kloth AD, Pnevmatikakis E, Paninski L, De Zeeuw CI, Medina JF,
Wang SS (2017) Cerebellar granule cells acquire a widespread pre-
dictive feedback signal during motor learning. Nat Neurosci 20:727–
734.

Granger AJ, Wallace ML, Sabatini BL (2017) Multi-transmitter neurons in
the mammalian central nervous system. Curr Opin Neurobiol 45:85–91.

Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hant-

man AW (2013) Convergence of pontine and proprioceptive streams
onto multimodal cerebellar granule cells. Elife 2:e00400.

Hull CA, Chu Y, Thanawala M, Regehr WG (2013) Hyperpolarization in-
duces a long-term increase in the spontaneous firing rate of cerebellar
Golgi cells. J Neurosci 33:5895–5902.

Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol
78:272–303.

Ito M (2012) The cerebellum, pp. 1–285. Upper Saddle River, NJ: FT.
Jaarsma D, Diño MR, Cozzari C, Mugnaini E (1996) Cerebellar choline

acetyltransferase positive mossy fibres and their granule and unipolar
brush cell targets: a model for central cholinergic nicotinic neurotrans-
mission. J Neurocytol 25:829 – 842.
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