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Abstract
Identifying interactions and understanding the underly-
ing generating mechanism is essential for interpreting the
response of black-box models. We offer a systematic anal-
ysis of interaction types and corresponding sources, merg-
ing results of the broad statistical literature with findings
developed within the computer experiment literature.
Piecewise-definiteness emerges a self-standing interac-
tion mechanism, alternative to the presence of interaction
terms. We find that the scale of the analysis is essential
for interpretation, and that no single method is capable
of providing the correct identification of the underlying
interaction generating mechanisms; conversely a com-
bined approach involving indicators at difference scales is
required. We propose a graphical tool called Mikado plot
that exploits the link between interaction indicators at the
finite scale and global scales to ease the regional visualiza-
tion of two-factor interactions. The findings are illustrated
via numerical experiments with three well-known com-
puter models of different dimensionality and structure.

K E Y W O R D S

design and analysis of computer experiments, functional ANOVA,
global sensitivity indices

1 INTRODUCTION

The study of interactions is an integral part of statistical investigations (Cox, 1984; Vander-
weele, 2015; Wu, 2015). However, the interpretation and the identification of the underlying
generating mechanisms are delicate tasks.
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Example 1. Consider an analyst working on a dataset generated by a black-box computer code
via Monte Carlo simulation whose response Y depends on two uncertain inputs (or factors),
X1,X2. The analyst wishes to gain information about the underling input–output mapping, sup-
posing the relationship Y = g(X1,X2). A classic approach to shed some light on g is to fit a linear
model. Supposing that

Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝜀, (1)

the analyst obtain a coefficient of model determination R2 = 0.749 with coefficient estimates ̂𝛽0,
̂
𝛽1, ̂𝛽2 all statistically significant (p-values are below 10−106). (We used the fitlm.m subroutine in
MatLab.) To improve the regression fit, “one may wish to consider fitting higher-order models such
as a second-order response surface to the output. Such a model allows one to explore […] two-factor
interaction (cross-product) effects.” (Santner et al., 2018, p. 252). The analyst then employs a cubic
response surface of the type

Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝛽1,1X2
1 + 𝛽2,2X2

2 + 𝛽1,2X1X2

+ 𝛽1,1,1X3
1 + 𝛽2,2,2X3

2 + 𝛽1,1,2X2
1 X2 + 𝛽1,2,2X1X2

2 + 𝜀, (2)

adding several product terms, commonly called interaction terms. With the model in (2), R2

increases from 0.762 to 0.896, and all interaction coefficients are statistically significant, indicat-
ing that interactions matter in the input–output response.

However, attributing these interactions to the presence of product terms is misleading. The
original input–output mapping (see Appendix C) neither contains any product term nor any
higher-order effects. Interactions are, instead, due to another mechanism.

The literature has unveiled spurious (Friedman & Popescu, 2008), removable (Berring-
ton de González & Cox, 2007), context-specific (Højsgaard, 2004) interactions. These inter-
actions are associated with different mathematical structures, which have, however, only
been sparsely explored. At the same time, the computer experiments literature has formu-
lated a variety of methods for interactions quantification (Liu & Owen, 2006), but is has
not yet benefited from the theoretical progress registered in the broader statistical litera-
ture. The purpose of this work is to bridge this gap by offering a systematic characteriza-
tion of interaction types, interaction generating mechanisms, and methods for determining
interactions. We link interaction types to corresponding mathematical structures present in
the input–output mapping. We focus on piecewise-definiteness as a self-standing interaction
generating mechanism, showing that it generalizes the notion of context-specific interac-
tions of (Højsgaard, 2004). In particular, it is a mechanism that differs from the presence of
interaction terms: If interactions are generated by piecewise-definiteness, they can never be
removed, while interactions due to the presence of product terms can be removed under certain
conditions.

We then explore the identification of interaction generating mechanisms as a way toward
interpreting the interactions hidden in a black-box model. Here, an important element is the scale
at which the analysis of interactions is carried out. We address methods that explore interactions
at the infinitesimal, finite, and global scales. While there is a path that links several interaction
indicators at the alternative scales, the analysis reveals that there is no single method that can
universally identify the true interaction generating mechanism. The analyst needs to resort simul-
taneously to methods that act on different scales to identify the correct interaction type and the
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corresponding generating mechanism (Section 8). In particular, methods that combine a finite
scale with a global scale provide several insights.

Indeed, reinterpreting the Sobol’ pick-and-freeze design as the random sampling of finite
change sensitivity indices allows one to obtain information about the region where interactions
are most active, and about whether interactions are synergistic (positive) or antagonistic (nega-
tive) at no additional cost. We propose to visualize this information in a new tool called Mikado
plot (Section 7).

The analysis becomes even more challenging when inputs are dependent. We investigate
a combination of methods based on generalized global sensitivity indices that has the poten-
tial to help the analyst in obtaining the correct insights; however, we highlight that this is a
first approach leaving further exploration as a line of further research. We conclude the work
with numerical experiments on three well-known simulators, illustrating for each of them the
alternative combinations of methods necessary to correctly interpret the nature of the involved
interactions.

The remainder of the work is organized as follows. Section 2 proposes a review on the treat-
ment of interactions in the statistical and computer experiment literature. Section 3 proposes
formal definitions of interaction types and mechanisms. Section Section 4 discusses quantifica-
tion indices for structural interactions on local and global scales. Section 5 addresses spurious
interactions. Section 6 highlights the importance of the scale at which an interaction analysis
is carried out and links interaction indicators on a finite scale to indicators on a global scale.
Section 7 introduces Mikado plots. Section 8 reviews critically the findings. Section 9 concludes
the work with numerical experiments.

2 LITERATURE REVIEW ON STATISTICAL
INTERACTION QUANTIFICATION

The analysis of interactions has a long tradition in Statistics. Interaction quantification emerges
in the study of contingency tables (e.g., Højsgaard, 2003; Lauritzen, 2012), in the analysis of
variance (ANOVA) of multifactor experiments (Gelman, 2005; Landsheer & van den Witten-
boer, 2015) and in the design and analysis of computer experiments (Box et al., 2005; Lewis &
Dean, 2001; Wang, 2007; Wu, 2015). A full coverage of the subject is outside the reach of this
section, limiting the attention to works more closely related to ours. We refer to the monograph
of Vanderweele (2015) or to the surveys of (Cox, 1984; Wu, 2015) for broader overviews. In par-
ticular, Vanderweele (2015) evidences that the correct interpretation of interactions is crucial for
a proper statistical inference.

In Cox’s interpretation (Cox, 1984), interactions are deviations from additivity. (We recall that,
instead, in the Lancaster–Streitberg interpretation (Chakraborty & Zhang, 2019; Lancaster, 1971;
Streitberg, 1990), interactions are studied in association with the presence/absence of statisti-
cal dependence among the random variables of interest.) Within this interpretation, one finds
spurious (Friedman & Popescu, 2008), removable (Berrington de González & Cox, 2007), and
context-specific interactions (Højsgaard, 2003; Højsgaard, 2004).

Spurious interactions are interactions generated by the statistical dependence of the covari-
ates and are not necessarily the reflection of the presence of product terms in the input–output
mapping (Friedman & Popescu, 2008; Oakley & O’Hagan, 2004). Context-specific interactions are
associated with the presence of product terms between a group of covariates (or inputs of the com-
puter simulation), where the inclusion/exclusion of these terms depends on the value assumed
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by covariates outside the group (Højsgaard, 2004). Finally, removable interactions are interac-
tions that can be eliminated by application of a monotonic transformation of the input–output
mapping (Berrington de González & Cox, 2007).

The literature on simulation has developed several methods for studying interactions. Here,
we recall that in computer experiments the response of the system is obtained running a computer
simulator instead of measuring field data (see Santner et al., 2018; Wu, 2015) for a detailed discus-
sion about the differences between computer and field experiments.). This opens the possibility
of using differentiation techniques and a first natural class of interaction measures is represented
by higher-order partial derivatives. Their estimation requires the input–output mapping to be
smooth and can be carried out via the application of automatic differentiation (Griewank &
Walther, 2008). A different setup however applies when the analyst is concerned with the response
of the simulator across two (or more) scenarios of interest, and the scale of input variations is finite
rather than infinitesimal (see Marangoni et al., 2017 for a recent example in climate modeling).
As Kleijnen (2015) underlines, the analyst can then borrow directly from design of experiments,
using factorial designs (full or with some lower resolution) or designs based on orthogonal arrays
(Morris et al., 2008). A scenario-based approach remains a local approach, providing an indica-
tion of interactions at a limited number of locations in the model input space. Conversely, global
approaches based on the functional ANOVA expansion (Efron & Stein, 1981) allow a more thor-
ough exploration of the model input space. These methods have been intensively investigated in
the computer experiment literature (Owen, 2003; Saltelli & Tarantola, 2002). Sensitivity measures
that convey the importance of interactions are the total order variance-based sensitivity indices
(Homma & Saltelli, 1996) and the superset importance measures (Liu & Owen, 2006). The statis-
tical properties of the corresponding estimators, including consistency and asymptotic normality,
are studied in the works of Janon et al. (2014) and Gamboa et al. (2016). Pairwise interactions are
studied in depth in Fruth et al. (2014), and in Roustant et al. (2014) where variance-based indices
are connected to second-order mixed derivatives. However, under dependence, difficulties in the
interpretation of interactions emerge (Oakley & O’Hagan, 2004). One has to distinguish between
spurious interactions (Friedman & Popescu, 2008) and contributions due to interactions actually
associated with the structure of input–output mapping implied by the computer code. An anal-
ysis of interaction in this case might benefit from the approaches to the generalized functional
ANOVA expansion developed in works such as (Chastaing et al., 2012, 2015; Hooker, 2004, 2007;
Li et al., 2010; Li & Rabitz, 2012; Rahman, 2014).

However, while interactions have been studied in the computer experiments literature, inves-
tigations are generally limited to their quantification, when this is performed (on this aspect,
see the critique of Saltelli et al., 2019). The statistical interpretation of interactions is not yet an
established step in computer experiments. A plausible reason is the lack of a formal framework
connecting the two research streams. We propose to fill in this gap in the remainder of this article,
and start with a formal definition of interactions.

3 FORMALIZING INTERACTION TYPES
AND GENERATING MECHANISMS

In this section, we formalize the notions discussed qualitatively in the previous section, with the
goal of obtaining a unifying framework that characterizes interaction types and links them to
the underlying generating mechanism. Let  ⊂ Rn, with g ∶  → R, x = (x1,… , xn) → y = g(x),
a generic mapping. In this work, we shall focus on deterministic responses, that is, we restrict
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attention to the case in which there is no stochastic error or the analyst is interested in the
expected response of the code. The formal considerations for purely deterministic simulators can
be applied to stochastic simulators if one considers the expected value of the response or another
deterministic function of the output distribution. A stochastic simulator is usually written as
y = g(x) + 𝜖(x). Then, consider replacing the deterministic model output with E[Y |X = x]. We
have E[Y |X = x0] = g(x0) + 𝜖(x0). Letting g̃(x0) = g(x0) + 𝜖(x0), when x shifts from x0 to x1, it is
E[Y |X = x1] = g(x1) + 𝜖(x1) − g(x0) − 𝜖(x0) = Δg̃. Thus, the definition of interactions holding for
g(X) holds for E[Y |X] = g̃(X). —

Following the tradition of the computer experiment literature, we regard interactions as
deviations from additivity (see Koehler & Owen, 1996, p. 262), in the sense of Cox (1984).

Let x0 = (x0
1 , x

0
2 ,… , x0

n) and x1 = (x1
1 , x

1
2 ,… , x1

n) be two points in differing in at least two coor-
dinates, serving as arbitrarily called “low” and “high” values in a two-level design. For notation
simplicity, we consider a deterministic mapping. Also, let [n] = {1, 2,… ,n} and ik ∈ [n] denote a
generic index, let z = {i1, i2,… , ik}, z ⊂ [n], denote a subset of indices and−z = [n] ⧵ z its comple-
ment. Let xz = (x1

z ∶ x0
−z) denote the point in  obtained by considering the variates with indices

in z at level 1 and the remaining at level 0. Then Δzg = g(xz) − g(x0) and Δ−zg = g(x−z) − g(x0)
denote the changes in g due to the shift of variables with indices in z and without indices in z,
respectively.

Definition 1. Let g ∶  → R, and consider the points defined above. We say that g is additive on
 if for all changes x0 → x1 with x0

, x1 ∈ 

Δg = g(x1) − g(x0) =
n∑

i=1
Δig, (3)

where Δig = g(xi) − g(x0) = g(x1
i ∶ x0

−i) − g(x0).

That is, g is additive if the effect of the change x0 → x1 on g if the sum of the individual changes
provoked by each xi for all changes x0 → x1.

Let = 1 × 2 × · · · × n and let xi ∈ i. Then consider n univariate mappings ai ∶ i → R.
In mathematical analysis, one calls separately additive a mapping that can be written as

g(x) =
n∑

i=1
ai(xi), (4)

for all x ∈  . We have the following (see Appendix B for proofs).

Proposition 1. A mapping g ∶  → R,  ⊂ Rn satisfies (3) if and only if it satisfies (4).

Thus, an analyst is dealing with an interaction whenever the input–output mapping is not the
sum of univariate mappings as in (4).

Definition 2. We say that a mapping g presents structural interactions ifΔg ≠
∑n

i=1Δig holds for
some change x0 → x1.

Indeed, the inclusion of interaction terms of the form 𝛽i,j,…,k(xixj … xk) in a regression model
makes us shift from an additive to a nonadditive surface (see Example 1). However, structural
interactions may not be due solely to the presence of interaction terms. Piecewise-defined map-
pings appear frequently as test cases in computer experiments (see the studies of Kim et al., 2005;
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Liu & Owen, 2006; Römisch, 2013; Roustant et al., 2018). The next definition formalizes the notion
of piecewise-defined function.

Definition 3 (Borgonovo & Peccati, 2010; Herrera, 2007). Consider a finite partition of the
domain  , Π = {Π1 ,

Π
2 ,… ,

Π
L }. A mapping g is piecewise-defined if it can be written as:

g(x) = h𝓁(x) if x ∈ Π𝓁 , 𝓁 = 1, 2,… ,L, (5)

with h𝓁(x) ≠ hm(x) almost everywhere on Π𝓁 or Πm for all 𝓁 ≠ m, with 𝓁,m = 1, 2,… ,L.

Example 2. Given the following mapping on  = [−1, 1]2:

g(x1, x2) =

{
sin(x1) + sin(x2) if −1 ≤ x1 < 0
sin(x1) + sin(2x2) if 0 ≤ x1 ≤ 1

, (6)

and consider the change x0 =
(

−1
2
,−1

2

)

→ x1 =
(3

4
,

3
4

)

. One obtains

Δg = 1.2818, Δ1g = 0.6737, Δ2g = 0.4830, (7)

so that Δg ≠ Δ1g + Δ2g. Thus, g is not additive.

The mapping in Example 2 is locally the sum of univariate functions. However, even if g =
∑n

i=1ai(xi) at every point of the domain, the response is not additive. Thus, piecewise-definiteness
is, by itself, an interaction generating mechanism and structural interactions can be due both
to piecewise-definiteness and to the presence of interaction terms. The two mechanisms can act
simultaneously. This is exactly what happens in the case of Højsgaard (2004)’s context-specific
interactions.

Definition 4. Given a piecewise-defined function g ∶  → R, ⊂ Rn, we say that g contains a
context-specific interaction if at least one of the restrictions hm ∶ Πm → R of g onto Πm is not
additive.

Example 3. The mapping g ∶ [0, 1]4 → R,

g(x1, x2, x3, x4) =

{
x1 + x2 + x3 if x4 ≤ 0.5
x1 + x2 + x3 + x1x2 if x4 > 0.5

, (8)

displays a context-specific interaction: the interaction term x1x2 is present only for x4 > 0.5.

To understand whether these two interaction mechanisms (e.g., piecewise-definiteness and
presence of interaction terms) are of the same or of a different nature, let us consider the notion of
removable interactions. Berrington de González & Cox (2007, p. 374) call an interaction removable
if a transformation of the outcome scale can be found that induces additivity. To make this statement
formal, we introduce the following definition.

Definition 5. We say that g ∶  → R,  ⊂ Rn, presents removable interactions on  if there
exists a monotonic transformation 𝜂(⋅) ∶ g()→ R such that the transformed function z = 𝜂 ◦ g,
z ∶ 𝜂(g()) → R is additive.

We can link the above definition with a result obtained by Scheffé in his monograph on the
analysis of variance (Scheffé, 1959, p. 95, (4.1.12)) and generalized in Scheffé (1970). Scheffé
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presents a necessary and sufficient condition for the existence of a transformation that makes the
mapping additive: for the existence of univariate functions a1(x1),… , an(xn) and of a monotonic
transformation of the output 𝜂(⋅) with 𝜂′(g) > 0 such that 𝜂(g(x)) =

∑n
i=1ai(xi) one requires that

there exists a function 𝜔(g) such that

g′′i,j − 𝜔(g)g
′
i g
′
j = 0, (9)

for all pairs i < j, where 𝜔(⋅) is an integrable function. Equation (9) is part of the family of
quasi-linear elliptic differential equations

A(xi, xj, g′i , g
′
j )g

′′
i,j + B(xi, xj, g, g′i , g

′
j ) = 0.

The family admits, in general, no closed form solution and it is therefore not possible to
characterize in closed from the complete set of mappings whose interactions are removable.

If such a function exists then the univariate functions ai(xi) can be represented as
(Scheffé, 1970)

ai(xi) =
∫
𝜓i(xi)dxi + ci, (10)

where 𝜓i(xi) = c 𝜕g
𝜕xi

exp
(
− ∫ 𝜔(g)dg

)
depends only on xi, and c and ci are constants, for all i =

1, 2,… ,n. Because the condition in (9) is necessary, we can use it to exclude the existence of
transformations to additivity for piecewise-defined functions.

Theorem 1. Let n > 2, g ∶  → R,  ⊂ Rn be a piecewise-defined function. Then, there does not
exist a monotone transformation 𝜂(⋅) such that 𝜂 ◦ g is additive.

Hence, interactions due to piecewise-definiteness are never removable. Thus, presence of
interaction terms and piecewise-definiteness are distinct interaction generating mechanisms.

Example 4. The mappings s = ex1+x2 on = R2, and t = sin(x1 + x2) on = [0, 𝜋] × [0, 𝜋] are not
additive. However, they satisfy Scheffé’s conditions (9) with𝜔(s) = 1

s
and𝜔(t) = 1

1−t2 , respectively.
Thus, they present removable interactions, with obvious transformations.

These observations imply that, we are reassured that interactions are due to the pres-
ence of interaction terms if g satisfies (9), and that they can be removed via a suitable
transformation.

4 QUANTIFYING STRUCTURAL INTERACTIONS:
ANALYSES AT DIFFERENT SCALES

A crucial role toward understanding the interaction generating mechanism is played by the choice
of the interaction quantification method. The literature proposes indicators that act on alter-
native scales. We analyze several indicators in this section, starting with indicators at a finite
scale and moving to indicators at a global scale. In the analysis, the functional ANOVA decom-
position plays an important role in identifying structural interactions. We discuss its relevance
first for an analysis of interactions at the finite scale, Section 4.1, and then at a global scale,
Section 4.2.
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4.1 Structural interactions at a finite scale

Definition 1 considers the variation of an input–output mapping across two points in the input
space, x0 → x1, which results in the change in model output Δg = g(x1) − g(x0). It has been
shown that this change can be decomposed in the following finite-change ANOVA expansion
(Borgonovo, 2010; Kuo et al., 2010; Rabitz & Alis, 1999):

Δg =
∑

z⊂[n]
𝜏

0→1
z , (11)

where the finite-change effects 𝜏0→1
z are defined recursively as

𝜏

0→1
z = Δzg −

∑

u⊂z,u≠z
𝜏

0→1
u , (12)

withΔzg = g(xz) − g(x0). The quantity 𝜏0→1
z represents the contribution toΔg of the residual inter-

action among the group of indices in z. Equation (11 ) is called cut-ANOVA (Rabitz & Alis, 1999)
or anchored-ANOVA decomposition (Kuo et al., 2010).

For each index group z the finite change ANOVA (11) can be split into

Δg =
∑

v∩z≠∅
𝜏

0→1
v +

∑

v⊂−z
𝜏

0→1
v = 𝜏0→1

z + 𝜏0→1
−z , (13)

where

𝜏

0→1
z =

∑

v∩z≠∅
𝜏

0→1
v and 𝜏

0→1
z =

∑

v⊂z
𝜏

0→1
v ,

are, respectively, the total and the subset finite change indices of z. For the case of individual
factors, z = {i}, we define 𝜏0→1

i = 𝜏0→1
{i} , the total effect of factor i, 𝜏0→1

i the individual effect of
factor i and

Υ0→1
i =

∑

z∋i,z≠{i}
𝜏

0→1
z , (14)

the interaction effect of factor i. Note that Υ0→1
i equals the difference between the total and the

finite change effect of {i}. These identities are the finite-change equivalents of corresponding ones
obtained for the decomposition of the variance of g (see Liu & Owen, 2006; see also Section 4.2
for further details).

The link between Definition 1 and the finite-change indices defined above is immedi-
ate. Let {i} be an individual index, and 2 be the collection of all groups of indices z
that contain two or more elements. If g is additive then 𝜏

0→1
z = 0 for all z ∈ 2, Υ0→1

i =
𝜏

0→1
i ; conversely, if structural interactions are present in g, then 𝜏

0→1
z ≠ 0 for some z and

Υ0→1
i ≠ 𝜏

0→1
i .

Example 5. Consider the change in g = x1
x1+x2

, as x varies from x0 = (1, 1) to x1 = (2, 5). One

registers Δg = − 3
14

, Δg = 𝜏0→1
1 + 𝜏0→1

2 + 𝜏0→1
1,2 , with 𝜏0→1

1 = 1
6
, 𝜏0→1

2 = − 1
3
, and 𝜏0→1

1,2 = − 1
21
, so that

Υ0→1
i =

(

− 1
21
,− 1

21

)

, 𝜏0→1
i =

(
5

42
,− 8

21

)

.
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We note that in design of experiments a second-order interaction effect is typically written
as Ai,j(x0

, x1) = 1
2
[g(xi,j) + g(x0) − g(xi) − g(xj)] (Wu, 2015, equation (3.1), p. 614). Thus, we have

𝜏

0→1
i,j = 2Ai,j(x0

, x1). Similar relationships can be obtained for higher-order effects. In terms of
interaction interpretation, the finite-change effects 𝜏0→1

z , z ∈ 2 andΥ0→1
i are indices that deliver

information about the presence of structural interactions.
Calculating all the terms of the expansion in (11) requires to evaluate g on a full factorial

design. In Appendix A, we connect this design to the determination of the discrete Laplace opera-
tor on all vertices of the hypercube with vertices x0 and x1. Because this hypercube has 2n vertices,
determining the complete orthogonalized decomposition of a finite change is a computationally
intensive task. For instance, for n = 20, 2n is larger than 106. However, the literature has intro-
duced a computational shortcut that allows us to determine the triplets 𝜏0→1

i , Υ0→1
i and 𝜏0→1

i at a
linear instead of an exponential cost in n. One has

𝜏

1→0
i = Δ−ig − Δg = 𝜏0→1

−i −
(

𝜏

0→1
−i + 𝜏0→1

i

)

= −𝜏0→1
i , (15)

which is the finite scale equivalent of the so-called pick-and-freeze design (Borgonovo, 2010;
Gamboa et al., 2016). Thus, the computational cost for computing 𝜏0→1

i , Υ0→1
i and 𝜏0→1

i is 2n + 2
evaluations of g instead of 2n. Moreover, we have another computational shortcut. If g is additive,
then only two function evaluations are necessary to compute the discrete Laplace operator (see
Proposition 3 in Appendix A).

4.2 Structural interactions on a global scale

In the analysis of computer experiments, variance-based approaches that rely on Hoeffd-
ing’s ANOVA decomposition of the model output variance are frequently used. These
approaches yield information on interactions at a global scale, providing complementary
and alternative insights to the finite-change indices that we have analyzed in the previous
section.

The functional ANOVA expansion plays a fundamental role in the study of interactions on
a global scale (Durrande et al., 2013; Liu & Owen, 2006; Saltelli et al., 2000). One regards the
simulator inputs and output as a pair of a n dimensional random vector and a random variable
(X,Y ) on reference probability space (Ω,(Ω),P). Let FX denote the joint cumulative distribution
functions of the inputs. Assuming that FX =

∏n
i=1dFi and that g ∈ 2( ,(),PX), the seminal

results of (Efron & Stein, 1981; Hoeffding, 1948) allow us to write:

V[Y ] =
∑

z⊂[n],z≠∅
Vz, (16)

where V[Y ] is the model output variance,

Vz =
∫

[
gz(xz)

]2dFz(xz) and gz(xz) =
∫

g(xz ∶ x−z)dF−z(x−z) −
∑

v⊂z,v≠z
gv(xv). (17)

In (16), the generic term Vz represents the residual contribution to V[Y ] of the interaction
among the simulator inputs whose indices are in z. When (z = {i}), the term Vi represents the
individual contribution of Xi to V[Y ]. Liu and Owen (2006) define the sensitivity indices
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𝜏

2
u =

∑

z⊂u
Vz and 𝜏

2
u =

∑

z∩u≠∅
Vz. (18)

The index 𝜏2
u represents the total contribution to the variance of g of the simulator inputs

with indices in u (see also Owen, 2014, p. 247). Hooker (2004) and Liu & Owen (2006) define the
superset importance index of a group of simulator inputs u as

Υu =
∑

z⊃u
Vz. (19)

The quantity Υu measures the contribution of all terms that include the indices in u in
the ANOVA decomposition of g. The link between the functional ANOVA decomposition and
Definition 1 is straightforward and formally similar to the one obtained for finite-change effects.
Specifically, we have that 𝜏2

i = Vi andΥz = 0 for all z ∈ 2. This is illustrated in the next example.

Example 6. Consider the following input–output mappings: Ya = (X1 − 1)X2 + X1 and Yb = X1 +
X2, with X1 and X2 independently and uniformly distributed on [−2, 2]. For the first mapping,
we find V[Ya] = 4.44, the ANOVA decomposition V1 = V2 = 1.333 and V1,2 = 1.78 that yields
the following total and interaction indices 𝜏2

1 = 𝜏
2
2 = 3.11 and Υ1,2 = V1,2 = 1.78. For the sec-

ond mapping, we have V[Yb] = 2.67, V1 = V2 = 1.33, and V1,2 = 0, so that 𝜏2
1 = 𝜏

2
2 = 1.33 and

Υ1,2 = V1,2 = 0.

Further quantities that help to elegantly characterize the presence of interactions are the
notions of dimension distribution and effective dimension introduced by Caflisch et al. (1997)
and Owen (2003). The ratios Sz = Vz∕V[Y ] are called Sobol’ indices (Durrande et al., 2013;
Sobol’, 1993) and can be regarded as the probability mass function of a random variable, say T,
with support 2[n], and such that P(T = z) = Sz. The dimension distributions of g in the superim-
position sense and truncation sense are then defined as the distribution of the cardinality of T and
of max{i ∶ i ∈ z}, respectively. We shall restrict attention to the mean dimension in the super-
imposition sense (mean dimension, henceforth). Owen (2013) proves that the mean dimension
(Dg) satisfies Dg =

∑
z |z|Sz = V[Y ]−1∑n

i=1𝜏
2
i , and that for any additive square-integrable function

Dg = 1. As a consequence, Dg > 1 implies that some nonnull interaction term Vz with |z| > 1 is
present in the decomposition of V[Y ].

Example 7. Consider the piecewise constant simulators g1 = IE1∪···∪En and g2 = IE1 · · · IEn ,
where Ei denotes the event {xi ≥ 0.5}, i = 1, 2,… ,n, n ≥ 2. Provided with random inputs Xi ∼
U[0, 1] independent and identically distributed (i.i.d.), both simulators satisfy Sz = 1

2n−1
for all

multi-indices z. They have the same mean dimension in the superimposition sense equal to

Dg =
∑

z
|z|Sz =

∑n
j=1

(
n
j

)

j
∑n

j=1

(
n
j

) = n ⋅ 2n−1

2n − 1
. (20)

The mean dimension is greater than unity signaling the presence of interactions and increases
with n. For instance, Dg equals 1.33, 1.71, and 2.13 for n = 2, 3, and 4, respectively; the value is
well approximated by n

2
for large n.

One says that g has mean dimension s if
∑

|z|≤s Sz ≥ 0.99 (Caflisch et al., 1997; Owen, 2003).
This means that if s = 1 then g has mean dimension 1 if we register

∑n
i=1Si ≥ 0.99. Consider the
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function in Example 5, with X1,X2 ∼ Gamma(10, 1) i.i.d.. One registers S1 + S2 = 0.999 > 0.99;
however, g is not additive in this example. That is, a numerical value Dg close to unity does
not necessarily mean that the input–output mapping is additive. Thus, an indication of addi-
tivity on a global scale needs to be carefully interpreted. In fact, while additivity on a finite
scale implies additivity on a global scale, the above example shows that the converse is not
necessarily true.

With the goal of offering a further link with established results on interactions in the broad
statistical literature, we conclude this section formalizing the link between the global inter-
action indices with the discussion in Cox (1984) and Berrington de González and Cox (2007)
about constancy of variance and absence of interactions. The motivation comes from the study
of Coveney and Clayton (2019), who write in discussing their model for human atrial cardiac
cells that fixing some inputs leads unexpectedly to an increase of the output uncertainty and
hypothesize that this might be due to the presence of interactions. To analyse this fact, we
start proposing a link between the classical ANOVA expansion and the statistical notion of
heteroskedasticity.

Definition 6. A random variable Y is called homoskedastic with respect to a random variable Xi
if the conditional variance V[Y |Xi] is constant, or heteroskedastic otherwise.

Proposition 2. An input–output mapping g is heteroskedastic with respect to Xi if and only if there
are nonvanishing interaction terms involving Xi in the ANOVA decomposition of V[Y ].

A sufficient condition for for this result is the following.

Corollary 1. If there exits a subset S ⊆ i in the support of Xi with PX(S) ≠ 0 for which V[Y |Xi =
xi] > V[Y ] for almost all xi ∈ S, then Y is heteroskedastic with respect to Xi.

Example 8. Consider g ∶ R2 → R, (X1,X2) → eX1 | sin(X2)|. With X1 standard normal and X2 nor-
mal with mean and SD equal to 1, the simulator variance is V[Y ] = 2.72, while V[Y |X2 = 1] =
3.31.

Corollary 1 implies that an increase in variance after receiving perfect information on factor
Xi can occur only in the presence of interactions. The above result provides the formal framework
for the interpretation of Coveney and Clayton (2019).

5 UNDERSTANDING THE INTERACTION TYPE:
SPURIOUS INTERACTIONS

The interaction quantification measures we have discussed in the previous section detect struc-
tural interactions. That is, if one of those interaction indicators is different from zero then we
know that interactions are either due to the presence of interaction terms or to the presence of
discontinuities. However, when model inputs are dependent, interactions may emerge even if
they are not present in the input–output mapping. To illustrate, Oakley and O’Hagan (2004) con-
sider the function g = x1 with a joint density fX1,X2(x1, x2). Applying (17), one finds the functional
ANOVA terms (see Oakley and O’Hagan (2004), p. 753): g0 = E[g] = E[X1], g1(X1) = X1 − E[X1],
g2(X2) = E[X1|X2] − E[X1] and g1,2(X1,X2) = −g2(X2). If X1 and X2 are not independent, the inter-
action term g1,2(X1,X2) is neither null nor a structural part of g. Friedman and Popescu (2008)
deem this a spurious interaction. In general, input dependence generates issues with the construc-
tion of the functional ANOVA expansion itself. The problem has been addressed in a series of
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T A B L E 1 Correlative and structural terms of the variance decomposition for the example

𝝆 V [Y ] V1 V c
1 V2 V c

2 V1,2 V c
1,2

0.7 21.4 4 12.81 9 10.36 0 −14.77

0 13 4 0 9 0 0 0

−0.7 4.6 4 −3.99 9 −6.44 0 2.03

works by Hooker (2007), Li and Rabitz (2012), Chastaing et al. (2012), Rahman (2014), Chastaing
et al. (2015), that show that under dependence we can obtain a decomposition that satisfies

V[Y ] =
∑

∅≠z⊂Z

[

Vz + Cov

(

gz,
∑

∅≠v⊂Z,v≠z
gv

)]

. (21)

Note that, when the inputs are independent, this formula reduces to Equation (16). By
normalizing the covariance decomposition in (21), one obtains (Li & Rabitz, 2012)

V[Y ]−1
∑

∅≠z⊂Z

[

Vz + Cov

(

gz,
∑

∅≠v⊂Z,v≠z
gv

)]

=
∑

∅≠z⊂Z

[
Sz + Sc

z
]
= 1. (22)

In (22) the variance-based index Sz is the marginal contribution of the indices in z, while the
index Sc

z reflects the contribution due to correlations. Hence, while Sz reflects the structural con-
tribution of inputs in z, Sc

z is an indicator of the relevance of spurious interactions. For further
understanding the meaning of spurious interactions, we recall the work of Lu et al. (2018), who
provide several analytical expressions for Sobol’ indices when the input output mapping is linear
or generalized linear model. For simplicity, suppose that the input–output mapping can be repre-
sented as Y = X𝛽. If X is multivariate normal with mean 𝜇 ∈ Rn and variance–covariance matrix
Σ, Lu et al. (2018) show that for input i = 1, 2,… ,n, we have

V[E[Y |Xi]] =

(

𝛽i𝜎i +
∑

j≠i
𝛽j𝜌j,i𝜎j

)2

. (23)

Considering Equation (22), it is readily seen that, for a linear model with normally distributed
inputs, we have the structural and correlative indices given by

Vi = 𝛽2
i 𝜎

2
i and V c

i =

(
∑

j≠i
𝛽j𝜌ji𝜎j

)2

+ 2𝛽i𝜎i
∑

j≠i
𝛽j𝜌ji𝜎j, (24)

respectively. In Lu et al. (2018), one can find analytical expressions of the Sobol’ indices also for
log and logit link functions when the inputs follow a multivariate normal distribution.

Example 9. We revisit the example of Xu and Gertner (2007). They consider the linear model
Y = 2X1 + 3X2 where the inputs have a standard multivariate normal distribution with corre-
lation coefficient 𝜌. As in Xu and Gertner (2007), we set 𝜌 = 0.7 and 𝜌 = −0.7. They compute
the variance-based contributions for X1 and X2, obtaining for the case 𝜌 = 0.7: V[E(Y |X1)] =
16.81, and V[E(Y |X2)] = 19.36. We can obtain further insights on this result using (24). Direct
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application yields the structural and correlative indices shown in Table 1. Table 1 reports the
variance-based contributions also for the uncorrelated case 𝜌 = 0. Consider X1: We see that the
sum of the structural V1 = 4 and correlative contributions V c

1 = 12.81 equals V[E(Y |X1)] = 16.81.
The same holds for X2. Table 1 also shows that the structural interaction effect is null for all values
of 𝜌, as a consequence of the input–output additivity. This provides the right insights that inter-
actions for this model are spurious, that is, due to the presence of correlations. In this respect, the
correlative interaction effects change sign as 𝜌 changes sign, signaling that the correlative inter-
action contributions (and the individual as well in this case) are highly affected by the type of
correlation assumed by the analyst. In contrast, the values of the structural contributions remain
unaffected by correlations.

However, in general no closed form is available for the determination of the structural and
correlative contributions. Then, a numerical approach is needed. A successful approach is the
D-MORPH regression of Li and Rabitz (2010). The method combines ridge regression with the
projection of the functional ANOVA effects gz(xz) onto an appropriate basis formed by orthonor-
mal polynomials. Fitting the resulting response surface on a dataset of input–output realizations
of X and Y allows the determination of coefficients through which the structural and correlative
variance contributions can be estimated—see (Li & Rabitz, 2012, 2017) for additional details. An
interesting avenue of future research is the determination of a systematic approach that combines
D-MORPH regression and standard statistical methods such as linear regression for allowing
the analyst to distinguish spurious from structural interactions in applications in which g is
known through a simulator or through a statistical model fitted on observed data. The authors
have performed some preliminary experiments on a well-known dataset and the combination of
D-MORPH plus linear regression seems promising. However, further analysis is needed and due
to space limitations, we leave this important aspect as part of future research.

6 LOCAL INTERACTIONS: MIND THE STEP

In this section, we study interaction indicators at the infinitesimal scale, to understand further
their insights. We start considering the case of smooth input-output mappings, for which par-
tial derivatives exist everywhere in the domain. In fact, a widely used approach for measuring
interactions in computer experiment studies is by calculating mixed higher order derivatives (see,
among others, Roustant et al., 2014). Specifically, the expression E

[(

g′′i,j(X)
2
)]

= 0 is used to
denote the absence of interactions (Friedman & Popescu, 2008). In the next result, we provide
formal conditions for this intuition to hold.

Theorem 2. Let  ⊂ Rn and let g ∶  → R. If g is additive and has second-order mixed derivatives
everywhere in then g′′i,j(x) = 0 for all x ∈  .Conversely, if g′′i,j(x) = 0 for all x ∈  then g is additive.

This is in accordance with the results of Roustant et al. (2014), who investigate the connection
between partial derivatives and Sobol’ indices assuming that g is twice differentiable everywhere
and that all of its first-order and second-order partial derivatives are in 2( ,(),PX). To pro-
ceed in this way, however, the assumption that g is smooth plays a crucial role, as the next
(counter-)example shows.

Example 10 (Example 7 continued). Consider the two functions in Example 7, for the case
n ≥ 2. For these functions, we have E

[(

g′′i,j(X)
2
)]

= 0 for all i, j. However, Equation (20) shows
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that the mean dimension Dg increases with n, signaling a growing relevance of interactions as
dimensionality increases.

Example 10 shows that if interactions are due to piecewise-definiteness then, even if g is almost
everywhere differentiable (but not everywhere), the condition E

[(

g′′i,j(X)
2
)]

= 0 fails, that is, we

register E

[(

g′′i,j(X)
2
)]

= 0 but we cannot conclude that the mapping is additive. This implies that
a high-order differential sensitivity approach is not reliable in the presence of piecewise interac-
tions. Let us then analyze whether, acting on a different scale, one obtains different insights. In
this respect, an intermediate step between a local and a global sensitivity exercise is the calcula-
tion of interactions at different scales. Let us study whether this approach can help in revealing
the presence of interactions in mappings of the type of Example 10. In particular, as interaction
indicators, let us consider the finite-scale interaction indices 𝜏x(k)→x(k+1)

{u} .

Example 11 (Example 7 continued). Consider the two functions in Example 7, with n = 5.
Evaluating the functions at x0 = [0.4, 0.4, 0.4, 0.4, 0.4] and x1 = [0.6, 0.6, 0.6, 0.6, 0.6], for the
OR-type function g1 = IE1∪···∪En , we find 𝜏x0→x1

{i,j} = −1, for i, j = 1, 2,… , 5, i ≠ j, signalling the pres-
ence of interactions already at the second order. For the AND-type function g2 = IE1 · · · IEn , we
find a unique nonnull interaction effect 𝜏x0→x1

{1,2,3,4,5} = 1. Then, by Definition 2, the two mappings
present structural interactions.

The above example shows that shifting from an infinitesimal to a finite scale allows the ana-
lyst to correctly infer that the two input–output mappings of Example 7 are not additive, in
spite of the fact that E

[(

g′′i,j(X)
2
)]

= 0. A limitation of the above analysis resides in the fact
that the result depends on the selected points: Had the analyst evaluated the models at x0 =
[0.3, 0.3, 0.3, 0.3, 0.3] and x1 = [0.4, 0.4, 0.4, 0.4, 0.4], she would have spotted no interaction
effects.

To overcome this limitation, a further step is to move from a finite, but local, to a global scale.
The link is given by sampling N realizations of X from the input distribution through a Monte
Carlo or Quasi-Monte Carlo random number generator. Then, let xk and xk+1 denote two real-
izations of X and 𝜏

xk→xk+1
u denote a corresponding finite change interaction index. Potentially,

this procedure makes available to the analyst N − 1 replicates of 𝜏xk→xk+1
u . These effects yield rich

insights about the magnitude of interactions, their sign and at which location the highest interac-
tions occur. Not only, but this randomization also makes it possible to estimate global sensitivity
indices. Starting from the cut-ANOVA in (11) and averaging, we can write

gz(xz) = E

[

𝜏

X0→x
z

]

=
∫

(

g(xz ∶ x0
−z) −

∑

u⊂z,u≠z
𝜏

x0→x
u − g(x0)

)

dFX(x0), (25)

that is, every functional ANOVA term can be obtained by averaging over the random cut-point
X0 (Rabitz & Alis, 1999). Considering the variance of both sides of (25), we find for all x ∈ 

Vz = V
[
gz(Xz)

]
= Vz

[

E

[

𝜏

X0→x
z

]]

. (26)

Equation (26) shows that every interaction term in the variance-decomposition
contains as much information on interactions as the mean of finite-change interaction indices.
Moreover, we can directly link finite change interaction indices and superset importance
measures.
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Theorem 3. Let g ∈ 2( ,(),FX) and let X,Z ∼ U[0, 1]n be independent and identically dis-
tributed. Then, for u ⊂ [n], we have:

Υu =
1

2|u| E
[
𝜏

X→Z
u

]2
, 𝜏

2
u = E

[
g(X)𝜏Z→X

u

]
, 𝜏

2
u =

1
2

E
[
𝜏

X→Z
u

]2
, (27)

where |u| denotes the cardinality of u. Moreover, we have
n∑

i=1
Vi =

n∑

i=1
E
[
g(X)𝜏Z→X

i
]

and
∑

u
|u|Vu =

1
2

n∑

i=1
E
[
𝜏

X→Z
i

]2
. (28)

The next results presents the corresponding Monte Carlo estimates.

Corollary 2. The global interaction indicators (27) and (28) can be estimated from

̂Υu =
1

2|u|N

N∑

k=1

[

𝜏

x(k)→z(k)
u

]2
,
̂
𝜏

2
u =

1
N

N∑

k=1
g(x(k))𝜏z(k)→x(k)

u ,

̂

𝜏

2
u =

1
2N

N∑

k=1

[

𝜏

x(k)→z(k)
u

]2
. (29)

We also have
n∑

i=1

̂Vi =
1
N

N∑

k=1

n∑

i=1
g(x(k))𝜏z(k)→x(k)

i and
∑

u
|u|̂Vu =

1
2N

N∑

k=1

n∑

i=1

[

𝜏

x(k)→z(k)
i

]2
. (30)

With u = {i, j} we have

̂Υi,j =
1

4N

N∑

k=1

[

𝜏

x(k)→z(k)
i,j

]2
= 1

N

N∑

k=1

[

A(k)
i,j

]2
= 1

N

N∑

k=1
[EI(k)]2, (31)

where EI is the screening interaction effect introduced in (Campolongo et al., 2011).

The above results show that finite change effects give rise to alternative estimators of global
sensitivity indices. Precisely, if we consider the indices 𝜏x0→x1

u of the orthogonal decomposition
of Δg, we recover Υu of Liu and Owen (2006). If we consider 𝜏x0→x1

u , we obtain estimators for 𝜏2
u

and 𝜏2
u. Moreover, when u = {i}, the estimator ̂

𝜏

2
i in (29) is the Jansen estimator of the total effect

of the ith factor (Campolongo et al., 2011). When u = {i, j}, then we find back the Monte Carlo
estimator ̂Υi,j in (29) studied in Fruth et al. (2014). The consistency of these estimators follows
from the strong law of large numbers (see, among others, Janon et al., 2014). Also, it is easy to see
that estimators of (27)–(28) in Theorem 3 coincide with pick-and-freeze estimators of Gamboa
et al. (2016). This connection has the implication that if analysts implement a pick-and-freeze
design and record the sign of the effects before squaring and averaging, they have available the
signs of interactions at multiple locations of the simulator input space. This fact can be used to
obtain a new visualization tool that we discuss in the next section.

7 THE MIKADO PLOT

The link between finite change and global measures implied by Theorem 3 and Corollary 2 can be
exploited to enrich information regarding interactions. Specifically, consider the pick-and-freeze
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estimator in (31). This estimator is associated with replicates of the second-order interaction
index,

𝜏

x(k)→z(k)
i,j = g

(

z(k)i , z(k)j ; x
(k)
∼i,j

)

− g
(

z(k)i ; x
(k)
∼i

)

− g
(

z(k)j ; x
(k)
∼j

)

+ g
(
x(k)

)
. (32)

Considering 2N locations x(1), x(2),… , x(N) and z(1), z(2),… , z(N) the evaluation of E[𝜏X→Z
i,j ],

requires N × (1 + n + n
2
(n − 1)) model runs. We can visualize the information in the following

format: A Mikado plot is a collection of segments whose extremes are the two-dimensional
projections on the Xi − Xj plane of the pair of points x(k) and z(k) used in (32) to compute
the second-order indices. Thus, the position of a segment indicates the two points on the
Xi − Xj plane across which the finite change interaction is registered. The color of the segment
is used to represent the sign of the interaction. Such sign is delivered by the second-order
Newton ratio

𝜈

(k)
i,j =

𝜏

x(k)→z(k)
i,j

(

z(k)i − x(k)i

)(

z(k)j − x(k)j

) , (33)

which is found by a simple renormalization of Equation (32). The goal is to visualize simultane-
ously the regions of the Xi − Xj plane that contribute the most to interactions, as well as to display
the sign of interactions: By the link with the pick-and-freeze design (Theorem 3), these are also the
regions that contribute the most to global interactions. The pseudocode, presented in Algorithm 1,
computes the quantities of Corollary 2 and produces a Mikado plot. In the algorithm, the sum

Algorithm 1. Pseudocode for Mikado plots, N sample size, g(⋅) simulation model, L number of
lines.

1. Create two independent input samples xA and xB of size N × d
2. Simulate outputs yA = g(xA), yB = g(xB)
3. for each i in 1…n:
4. Create mixture sample xi by inserting the ith column from xB into xA

5. Simulate output yi = g(xi)
6. Set Δy = yi − yA

7. Estimate 𝜏̂2
i =

1
n

⟨
yB
,Δy

⟩
and ̂𝜏

2
i = 1

2n
⟨Δy,Δy⟩

8. for each j in 1…n with j < i:
9. Create mixture sample xij by inserting the jth column from xB into xi

10. Simulate output yij = g(xij)
11. Set Δ2y = yij − yi − yj + yA = yij − yj − Δy

12. Estimate 𝜏̂2
i,j =

1
n

⟨
yB
, yij − yA⟩ and ̂𝜏

2
i,j = 1

4n

⟨
Δ2y,Δ2y

⟩
for (i,j)

13. Select the indices I belonging to the L absolutely largest values in Δ2y
14. Plot lines between (xA

I,j, x
A
I,i) and (xB

I,j, x
B
I,i)

choosing a color based upon the sign of Δ2y∕((yB
i − yA

i )(y
B
j − yA

j ))
15. Advance to the next subplot

16. Return ̂𝜏
2
i , 𝜏̂2

i ,̂𝜏
2
i,j, 𝜏̂2

i,j



1290 BORGONOVO et al.

over the product of output terms is written with inner product notation. In line 11, by construction
both yi and yj are available and they need to be stored. At line 14, the plots are arranged in such
way that the smaller index j is located on the x-axis. A Matlab implementation can be found at
https://github.com/emanueleborgonovo/MikadoPlots.

Example 12. Figure 1 reports the Mikado plot for the well-known Ishigami function g(X) =
sin(X1)(1.0 + 0.1X4

3 ) + 7.0 sin (X2)2 where the three inputs are uniformly distributed on [−𝜋, 𝜋].
The two graphs differ in the sample size used: in the left graph the input space was inspected
at N = 10,000 locations, in the right graph at N = 100,000 location. The Ishigami example has
been frequently studied in the computer experiment literature and the analytical value of the
Sobol’ interaction index S1,3 is 0.2437 (while S1,2 and S2,3 are null). Using the proposed estima-
tors, we obtain estimates of 0.2401 at N = 10,000 and of 0.2442 at N = 100,000. The design also
allows one to obtain regional information about the behavior of interactions. The Mikado plots
display the segments associated with the 20 locations where the highest absolute value of 𝜏x→z

i,j
is registered. The sign is determined via the corresponding second-order Newton ratios and we
use blue/dash-dotted for positive and red/dashed for negative interactions. The Mikado plots
show that interactions are both positive and negative with a division: no negative interactions are
encountered for X3 smaller than −2, at either sample sizes. Symmetrically, for X3 > 2 no positive
interaction is registered. As a simple product-term interaction yields an X-shaped Mikado plot,
we expect a more complex interaction term in this example.

T A B L E 2 Interaction types versus interaction measurement

Scale Pw.-def. Spurious Sign Discrete Cost Assumption
Infinites No No Yes No 4nN 

1

Finite Yes No Yes Yes 2n Existence

Global Yes Yes No Yes N22n


2
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F I G U R E 1 Mikado plot for the Ishigami example. Lines refer to the locations in the X1 − X3 plane
associated with the 30 highest (in magnitude) second-order finite-change interaction effects, |𝜏x→z

i,j |. blue-colored,
dash-dotted lines (red-colored, dashed lines) denote a positive (negative) interaction. Sample sizes are N = 10,000
and N = 100,000 in the left and right graph, respectively

https://github.com/emanueleborgonovo/MikadoPlots
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8 DISCUSSION: CAN A SINGLE INDICATOR FIND
THE INTERACTION MECHANISM?

The analysis conducted thus far shows that there is no single method or scale that is capable of
delivering a complete picture about the presence of interactions in numerical simulators. Let us
consider the triplet “interaction type, investigation scale and quantification method” (Table 2).
Methods based on differentiation identify structural interactions and delivering consistent infor-
mation about sign with dependent or independent inputs. At the same time, their use requires
a smooth (twice-differentiable) input–output mappings and they may fail to detect interactions
when the mapping is piecewise constant as Example 11 shows. Methods that act on a finite-scale
unveil structural interactions due to piecewise-definiteness and to interaction terms as well, are
immune to spurious interactions, and reveal the sign of interactions at each location. However,
they may be computationally expensive. Global methods allow analysts to appreciate the overall
relevance of interactions, to detect structural as well as spurious spurious. However, they do not
provide information about the sign of interactions and they may be computationally expensive.

Regarding computational burden, at the infinitesimal scale, the analyst could resort to auto-
matic differentiation (Griewank & Walther, 2008), obtaining quantitative information on partial
derivatives while evaluating the computer code without requiring additional model runs. Alterna-
tively, a brute force calculation of second order derivatives based on second order Newton’s ratios
demands 4n model runs. (This number is a lower limit, as one should repeat the calculation for a
sequence of decreasing values of the increments used in Newton’s ratio, till a limit is approached.)
If the estimation of the second-order derivatives is randomized at N locations in  , the estima-
tion cost becomes CNewton = 4 ⋅ n ⋅ N. At the finite scale, the computational cost associated with
the determination of interactions up to order k is Ck =

∑k
s=0

(
n
s

)

. If k = n (e.g., in a full factorial
design) the analyst incurs a cost of 2n model runs. However, if analysts wish to achieve a less gran-
ular information, they can use computational shortcuts. For instance, it is possible to compute the
indices 𝜏x0→x1

i , Υx0→x1

i and 𝜏i
x0

at a cost of 2n + 2 model runs using the shortcut in Equation (15).
Moreover, several efficient schemes allow one to compute interaction effects up to a desired order,
avoiding the cost of a full factorial design (see Schoen et al., 2017 and Zhou & Xu, 2017 for recent
proposals). At the global scale, the modified pick-and-freeze method of Saltelli (2002) allows one
to obtain estimates for the first-order, total-order and second-order superset indices at a cost of
N(n + 2)model runs. Alternatively, analysts proceed at a cost of N model runs by fitting an emu-
lator over the input–output sample generated for uncertainty quantification (Lin et al., 2010).
Depending on the emulation approach used in the analysis, analytical formulas for the estima-
tors of variance-based sensitivity indices of all orders may be available. Then, if the fit is accurate,
one has a computationally convenient way of calculating global sensitivity measures.

Given these considerations, we would suggest a four step procedure: (1) specify the interac-
tion or interaction type of interest; (2) select the quantification scale; (3) select a design that allows
to estimate such measure, and (4) select the appropriate method. To illustrate, suppose that the
analyst is interested in the precise interaction between two specific inputs as they move across
two scenarios x0 → x1. Then, the analyst needs a factorial experiment with four simulator evalua-
tions. If instead, the analyst is interested at the pairwise interaction between Xi and Xj precisely at
location x0, then a second-order mixed derivative is needed. Or, the analyst may just be facing the
question of whether there are interactions at all (in any form). Then, a design that allows the esti-
mation of first-order variance-based indices could be the most convenient to apply; if their sum
is lower than unity, we know that interactions are present. However, if the analyst is interested
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T A B L E 3 Case studies

Case study Inputs Interaction analysis
Wing-weight 10 Absence of global interactions does not imply the

absence of interactions on a finite scale

STOCFOR3 23,541 Interactions analysis for a high dimensional
simulator

Gopherus agassizii dynamics 8 Quantification of interactions for a
nondifferentiable simulator

in knowing whether interactions are synergistic or antagonistic, she needs a design that allows to
retain information on the sign of interactions (see Corollary 2 and the associated discussion with
Mikado plots).

We note that the interaction generating mechanisms that we have defined and analyzed
appear in computer simulations as well as in real-life experiments. There are, however, practical
differences that emerge in the two types of investigations (Wu, 2015). Real-life experiments usu-
ally involve a limited number of factors. Computer-based experiments, on the other hand, may
involve input–output mappings with a higher dimensionality. The parameter space exploration
in real-life experiments might be limited by constraints and is usually performed trough orthogo-
nal (if not factorial) designs. Simulation experiments allow analysts greater flexibility in choosing
the input space exploration method (in the context of uncertainty quantification Latin hypercube
designs are frequently used Owen, 2020) and the identification scale.

9 CASE STUDIES

This section presents three case studies aimed at illustrating previous findings in alternative con-
texts that may emerge in applications. Table 3 summarizes the different interaction quantification
settings in each case study. The analysis is carried out on a desktop with Intel(R) core i7-7700HQ
CPU at 2.80GHz and 64GB RAM. All calculations are performed in Matlab R2017b.

9.1 Global interactions versus infinitesimal and finite scale
interactions

The Wing-weight model has been introduced in Forrester et al. (2008) to simulate the weight
on a light aircraft wing. It is an example of a simulator characterized by a low dimensionality
(n = 10) and fast running time (0.02 s). We assume throughout the section that the analyst does
not know the analytical expression of the model but has access to a black-box computer code in
which the calculations are implemented. Jiménez Rugama and Gilquin (2018) offer estimates of
global sensitivity measures from an input–output sample of size N = 65,536. Their accurate esti-
mates (Jiménez Rugama & Gilquin, 2018, Table 12, p. 736) lead to

∑10
i=1
̂Si = 0.9814. The sum of

first-order variance-based indices is close to unity. Fitting an additive linear regression surface to
the input–output sample leads to a highly significant fit with a coefficient of model determination
R2 = 0.982 (We used an N = 65,536 sample from the simulator and the fitlm.m subroutine).
Thus, on a global scale, interactions do not play a major role. However, concluding that the
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F I G U R E 2 Mikado plot for the interaction analysis of the Wing-weight simulator on a finite scale. Top of
each panel: smallest and highest magnitude of the corresponding interaction. blue means a positive interaction,
red negative

input–output mapping is additive might be misleading and to ascertain this aspect, we conduct
an interaction analysis on a finite scale.

We consider pairwise interactions; overall, we have 45 potentially relevant second-order inter-
actions. To study finite-scale interactions, we randomly sample 8192 points in the input space,
and consider second-order finite changes between each next pair of realizations; thus, we com-
pute 8191 second-order interaction indices 𝜏xk→xk+1

i,j , k = 1, 2,… , 8191 for each pair. Comparing
the magnitudes of the interaction contribution to the total change in each scenario, 13 pairs turn
out to be numerically significant. The corresponding Mikado plots are displayed in Figure 2. At
the top of each panel in Figure 2 we can read the smallest and highest magnitude of the interac-
tions. The six strongest interactions are the ones between X8 and X3 (second row, third panel), X3
and X7 (second row, second panel), X8 and X1 (first row, third panel), X8 and X7 (second row, fourth
panel), X3 and X9 and X8 and X9. Of these, the interactions between X7 and X3 and between X8 and
X7 are negative. Inputs X2, X4, X5, X6, and X10 do not appear to be involved in significant interac-
tions with the remaining inputs. Regarding the interaction generating mechanism, because the
input–output mapping is smooth, we can rule out piecewise-definiteness; thus, interactions are
due to the presence of product terms (as one can also verify from the analytical expression). From
a broader perspective, this result shows that the scale at which an interaction analysis is carried
out matters in their interpretation: for this simulator fitting an additive linear model leads to good
prediction accuracy, but hides the presence of interactions.

9.2 Interpreting the response of a high-dimensional simulator

The Wing-weight simulator does not raise any dimensionality concern. We then consider a
simulator of larger size, STOCFOR3, the largest linear program in the well-known Netlib repos-
itory (the input data of STOCFOR3 are freely available). Linear optimization appears in several
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Finite Change Interaction Indices for the Top 10 simulator inputs of STOCFOR3
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F I G U R E 3 Interaction effects for the first 10 most important coefficients of the STOCFOR3 simulator

problems, comprising statistical analyses and regression, with the well-known Dantzig’s
selector of Candes and Tao (2007) as an outstanding example. We study the sensitivity
of the optimal value of this linear program to changes in its 23,541 coefficients for vari-
ations of ±99% of their values. In other words, we consider graph (a) in Figure A1,
in which x0 and x1 are the extremes of the 23,541-dimensional hyperbox. We observe
that the output of this simulator is, at any value of the coefficients, a linearly additive
map.

Given the simulator size, the shortcut in Equation (15) turns out essential to understand
whether the response of the code is, indeed, additive—to illustrate, there are about 2.7 ⋅ 108 s
order interactions. In fact, with 47,084 simulator evaluations we can obtain all first (𝜏x0→x1

i ),
total (𝜏x0→x1

i ) and interaction effects (Υx0→x1

i ). Each simulator evaluation entails a new opti-
mization. The analysis takes about 14 h on the above-mentioned computer. Figure 3 reports
the finite change effects for the first 10 simulator inputs ranked using the magnitude of
𝜏

x0→x1

i . Figure 3 shows that, indeed, interaction effects are present in the simulator response.
Not only, but we can understand the underlying cause. Note that the profit of a linear pro-
gram is a piecewise linear additive map with respect to the coefficients of the objective
functions. Second-order derivatives are null at any point x ∈  . Thus, interactions are due
to piecewise-definiteness and not to the presence of interaction terms (see the discussion in
Section 8).

9.3 When the output is discrete

In this section, we discuss the analysis of the Gopherus agassizii desert tortoise by Hogdson and
Townley (2004). The simulator utilizes a Leslie matrix with eight size classes and both the inputs
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F I G U R E 4 Interaction analysis for the Gopherus agassizii simulator of Hogdson and Townley (2004). (a)
Finite change interaction indices; (b) Mikado plot for the pair X6, X7

and output of this model are discrete random variables. The spectral radius of the Leslie matrix
is close to but lower than unity, so that the example population eventually dies out. The output
value of the model is the number of time steps until at least two individuals remain alive. The
model input is the vector of the initial class values, x0 = (89,163, 62, 27, 16, 13, 29, 5).

Given the discrete nature of the problem, an interaction analysis can be carried out at a finite or
at a global scale, but a differentiation approach is ruled out. On a global scale, we use discrete uni-
form distributions between x0 and x1, with x1 = x0 + 20, and independent inputs. At a sample size
of N = 50,000, we register variance-based indices equal to ̂S1 = 0.0014, ̂S2 = 0.0032, ̂S3 = 0.0045,
̂S4 = 0.0277, ̂S5 = 0.0773, ̂S6 = 0.3103, ̂S7 = 0.3134, ̂S8 = 0.2350. The sum of first-order indices
accounts for about 97% of the simulator output variance, showing that interactions do not play a
major role on a global scale. An analysis of interactions on a finite scale for the change x0 → x1

produces the results in Figure 4a. Figure 4a shows that the simulator responds additively to the
change in X8, but interaction effects are relevant and tend to be opposite to individual effects for
all other model inputs. Figure 4b displays the Mikado plot for the interaction between X6 and
X7, the most relevant one. The magnitude of this interaction varies from 3 to 4 and the interac-
tion is mostly negative. This negative interaction evidences a bottleneck in the adolescence of the
species, where only a limited amount of individuals reaches the more mature ages where survival
and reproduction rates are higher. Only classes 6, 7, and 8 produce offsprings, with an increas-
ing reproduction rate; the promotion rate from class 6 to class 7 is about 25% of individuals, from
class 7 to class 8 is below 2%, while the survival rate in class 6 is 68%, and 86% in classes 7 and 8.

From a broader viewpoint, this case study evidences that combining methods on a global and
finite scale is essential for the analyst to obtain insights on the nature of interactions, since a global
approach alone indicates the simulator as almost additive.
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APPENDIX A. CONNECTION TO THE DISCRETE LAPLACE OPERATOR

The discrete Laplace operator has found many applications in Statistics, including Bayesian func-
tion estimation on graphs (Kirichenko & van Zanten, 2017; Wardetzky et al., 2007). Consider the
hypercube having x0 and x1 on opposite vertices, that is, the set of points connected to x0 by
variation in one or more coordinate. This is the set of nodes in graph ( , ):

 = {x0
, xi
, x{i,j}

,… , x{1,2,…,n−1}
, x1}, (A1)

where the superscripts indicate which coordinates of the base case x0 are shifted to those of x1

with xz = (x0
−z ∶ x1

z). These points are reached from x0 by changing single coordinates, pairs,
triplets, and so on, including the change in all coordinates. The set of edges  is formed connect-
ing all points in  to x0 via one edge. The graph on the left in Figure A1 offers a visualization in
three dimensions.

Then, let g be a function of the vertices, that is, g ∶  → R. Given a reference vertex v ∈  ,
one writes the discrete Laplace operator as

(g)(v) =
∑

u∼v
(g(v) − g(u)) , (A2)

where u ∼ v denote the edges of the graph, (u, v) ∈  . Then, for the graph ( , ) specified above
one finds

−(g)(x0) =
n∑

i=1
Δig +

∑

j>i
Δi,jg + · · · +

n∑

i=1
Δ−ig + Δg. (A3)

Proposition 3. Given g and ( , ) defined above, if g is additive then

(g)(x0) = −Δg ⋅ n ⋅ (2n − 1), (A4)

and
∑

x∼x0
,x∈

g(x) =
(
2n − 1

) [
n ⋅ Δg + g(x0)

]
. (A5)

Proof of Proposition 3. As Δzg = g(xz) − g(x0) =
∑k

j=1

(

g(x1
ij
) − g(x0

ij
)
)

, (A4) holds. Then, noting
that (A2) can be written as

−(g)(x0) =
∑

x∼x0

(
g(x) − g(x0)

)
=

(
∑

x∼x0

g(x)

)

−
(
2n − 1

)
g(x0),

we obtain (A5). ▪

Equations (A4) and (A5) show that, if g is additive, the discrete Laplace operator on ( , )
can be computed by just two evaluations of g, at x0 and x1, respectively. Additionally, if g(x0) = 0,
a simple rewriting of (A5) shows that

1
n

∑

x∼x0
,x∈

g(x) =
(
2n − 1

)
Δg, (A6)

that is the mean effect of g can be computed using only these two evaluations.
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F I G U R E A1 Three-dimensional visualization. Left: full factorial design ( , ). Right: one at a time
design ( ′,  ′)

Consider now a subgraph of ( , ), in which the set of nodes contains n + 2 vertices deter-
mined by x0, x1 and all the evaluation points xi

, for all i ∈ [n]. We denote this graph by  ′ (main
text, Figure A1b). Then, each one of these vertices is connected to x0 by one edge, so that the set
of edges has cardinality n + 1.

Proposition 4. Given ( ′,  ′), and g ∶  ′ → R, if g is additive then

(g) (x0) + 2Δg = 0. (A7)

Proof of Proposition 4. Rewriting (A7), one finds

− (g) (x0) =
∑

{x1}∪
{

xi
,i=1,…,n.

}

(
g(u) − g(x0)

)
= g(x1) − g(x0) +

n∑

i=1
Δig,

because all the n + 1 edges incident to x0 must be included. Then, g(x1) − g(x0) = Δg by definition,
and

∑n
i=1Δig is also equal to Δg by Definition 3. ▪

On the other hand, let us consider ( ′,  ′) and a generic mapping g which is not necessarily
additive. Then, the application of the discrete Laplace operator leads to (g) (x0) + 2Δg ≠ 0, and,
specifically,

(g) (x0) + 2Δg = Δg −
n∑

i=1
Δig. (A8)

APPENDIX B. PROOFS

Proof of Proposition 1. We start with the if. If g can be represented in the form of (4), we can
write:

Δg = g(x1) − g(x0) =
d∑

i=1
ai(x1

i ) −
d∑

i=1
ai(x0

i ) =
d∑

i=1
[ai(x1

i ) − ai(x0
i )].
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Then, we have

Δig = g(x1
i ; x

0
∼i) − g(x0) = ai(x1

i ) +
d∑

s=1,s≠i
as(x0

s ) − ai(x0
i ) −

d∑

s=1,s≠i
as(x0

s ) = ai(x1
i ) − ai(x0

i ).

Therefore, combining this last equality with the previous equality, we have Δg =
∑d

i=1Δig. Let us
now consider the converse implication. We assume that g(x) − g(x0) =

∑d
i=1[g(xi; x0

∼i) − g(x0)], for
all x, x0 in  . Then, fix any x0 ∈  and define ai(xi) = g(xi; x0

∼i) − (1 −
1
d

g(x0)). Then
∑d

i=1ai(xi) =
g(x0) +

∑d
i=1Δig = g(x0) + Δg = g(x), as we wished to prove. ▪

Proof of Theorem 1. We prove this result showing that the Scheffé’s condition (9) is not sat-
isfied. Because this condition is necessary, it does not exist a transformation to additivity. We
distinguish two cases. If the mapping g is not differentiable, clearly it cannot satisfy Scheffé’s
condition. Consider now the case of g differentiable. By contradiction, assume that there exists
a transformation 𝜂(g) that makes g additive. From the result of Scheffé (1970), it follows that it
exists a function 𝜔(g) satisfying condition (9) and that the univariate functions ai(xi) can then
be represented as in (10). Consider the function Ψ(xi, xj) =

𝜓i(xi)
𝜓j(xj)

= 𝜕g
𝜕xi

/
𝜕g
𝜕xj

. This function Ψ(xi, xj)
is a function of xi and xj only, for all i < j. By assumption, g is piecewise-defined and conse-
quently it holds that 𝜕g(x)

𝜕xi
= 𝜕h𝓁 (x)

𝜕xi
with x ∈ Π𝓁 , 𝓁 = 1, 2,… ,L (see Definition 3). Thus we have

that Ψ(x) = 𝜕h𝓁 (x)
𝜕xi

/
𝜕h𝓁 (x)
𝜕xj

for x ∈ Π𝓁 , 𝓁 = 1, 2,… ,L. However, Ψ(x) is not a function of xi and xj

only, since the values of these derivatives depend on which set of the partition Π𝓁 they are calcu-
lated. Indeed, since the partition sets Π𝓁 , 𝓁 = 1, 2,… ,L, are defined in terms of x, the values of
the partial derivatives depend on the remaining variables x−ij as well. This is a contradiction, as
the constancy of Ψ(xi, xj) with respect to the other variables for all i < j is a necessary condition
for the existence of a transformation to additivity (see Scheffé, 1970, p. 392). ▪

Proof of Theorem 2. If g is separately additive (see Equation (4)), then g′′i,j(x) = 0 for all x ∈  .
Conversely, suppose that the second derivatives are null everywhere. Then, consider the change
the function between two points in  . We can expand such change using a Taylor series:

g(x1) = g(x0) +
n∑

i=1
g′i (x

0)(x1
i − x0

i ) +
n∑

i,j=1

1
2

g′′i,j(x
0)(x1

i − x0
i )(x

1
j − x0

j ) +… (B1)

Then, note that the assumption g′′i,j(x) = 0 for all x ∈  implies that the function g′′i,j(x) is a
constant on  and infinitely many times differentiable, with null derivatives of all orders. This
implies that all mixed derivatives from order 2 onwards are null. Therefore, we have g(x) =
g(x0) +

∑n
i=1g′i (x

0)(xi − x0
i ). Then, one can write g(x1) − g(x0) =

∑n
i=1g′i (x

0)(xi − x0
i ). Now, observe

that g(xi ∶ x0
−i) − g(x0) = g′i(x

0)(xi − x0
i ) +

∑n
i=1

1
2

g′′i (x
0)(xi − x0

i )
2 +… . Again, by the nullity of the

second and higher-order derivatives, we obtain g(xi ∶ x0
−i) − g(x0) = g′i (x

0)(xi − x0
i ), and therefore

g(x1) − g(x0) =
n∑

i=1
g′i (x

0)(xi − x0
i ) =

n∑

i=1
g(xi ∶ x0

−i) − g(x0),

▪
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Proof of Proposition 2. By definition,

V[Y |Xi] = E
[
(Y − E [Y |Xi])2|Xi

]
. (B2)

Now, E[Y |Xi = xi] is g0 + gi(xi) so that Y − E[Y |Xi = xi] =
∑

j≠i gj(xj) +
∑

|𝛼|≥2 g
𝛼
(x
𝛼
). Hence,

V[Y |Xi] = E

⎡
⎢
⎢
⎣

(
∑

j≠i
gj(xj) +

∑

|𝛼|≥2
g
𝛼
(x
𝛼
)

)2
|
|
|
Xi

⎤
⎥
⎥
⎦

. (B3)

Then, due to the orthogonality of the functions in (B3), we can write

V[Y |Xi] =
∑

j≠i
E

[

g2
j (xj)

]

+
∑

|𝛼|≥2
E

[

g
𝛼
(x
𝛼
)2||
|
Xi

]

. (B4)

Now, the first sum,
∑

j≠i E[g2
j (xj)], does not depend on Xi. Thus, if only these terms were present

in the decomposition, we would not have heteroskedasticity. Under heteroskedasticity, at least
one of the terms E[g

𝛼
(x
𝛼
)2|Xi] with i ∈ 𝛼 has to be different from zero, because V[Y |Xi] is not

constant. Thus, we have interaction terms in the function and these terms involve Xi. Conversely,
if there is at least one multi-index 𝛼 with |𝛼| ≥ 2 and i ∈ 𝛼, we have that V[Y |Xi] varies with Xi
and, therefore, there is heteroskedasticity. ▪

Proof of Corollary 1. From the variance decomposition formula, E[V[Y |Xi]] ≤ V[Y ] follows.
Then, if there is a point xi ∈ S where V[Y |Xi = xi] > V[Y ], the conditional variance cannot be
a constant. ▪

Proof of Theorem 3. By theorem 1 in Liu and Owen (2006), the superset importance can be written
as

Υu =
1

2|u| ∫

(
∑

v⊂u
(−1)|u−v|g(xv, z−v)

)2

dxudz.

Rewriting the expression of 𝜏x→z
u , we find that 𝜏x→z

u =
∑

v⊂u (−1)|u−v|g(xv, z−v). Using this equality,
it follows thatΥu = 1

2|u| ∫ (𝜏x→z
u )2dxudz, proving the first statement in (27). The second statement

can be proved rewriting the estimator of the Sobol index

𝜏

2
u = E[g(X)(g(Xu ∶ Z−u) − g(Z))] =

∑

v⊂u
E
[
g(X)𝜏Z→X

v
]
.

Similarly, for the third item, we have: 𝜏2
u = 1

2
E[(g(Zu ∶ X−u) − g(X))]2 = 1

2
E
[∑

v⊂u 𝜏
X→Z
v

]2
.

In order to prove (28), by theorem 2.2 in Owen (2013) it holds that
∑

u |u|Vu =
∑n

i=1𝜏
2
i . By (27), we find

∑
u |u|Vu = 1

2

∑n
i=1E

[
𝜏

X→Z
i

]2
. For the other equality in (28), we con-

sider the equation
∑n

i=1Vi =
∑n

i=1𝜏
2
i at p. 32 in Owen (2013) and plug in the estimator

for 𝜏2
i in (27). ▪
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APPENDIX C. FERRARI–TRECATE AND MUSELLI’S FUNCTION IN
EXAMPLE 1

The piecewise linear function used in Ferrari-Trecate and Muselli (2002) is:

g(x1, x2) =
⎧
⎪
⎨
⎪
⎩

3 + 4x1 + 2x2, if 0.5x1 + 0.29x2 ≥ 0 and x2 ≥ 0
−5 − 6x1 + 6x2 if 0.5x1 + 0.29x2 < 0 and 0.5x1 − 0.29x2 < 0,
−2 + 4x1 − 2x2 if 0.5x1 − 0.29x2 ≥ 0 and x2 < 0

where the input space is [−1, 1] × [−1, 1].
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