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Dynamical regimes of diffusion models

Giulio Biroli1, Tony Bonnaire 1 , Valentin de Bortoli2 & Marc Mézard3

We study generative diffusion models in the regime where both the data
dimension and the sample size are large, and the score function is trained
optimally. Using statistical physics methods, we identify three distinct dyna-
mical regimes during the generative diffusion process. The generative
dynamics, starting from pure noise, first encounters a speciation transition,
where the broad structure of the data emerges, akin to symmetry breaking in
phase transitions. This is followed by a collapse phase, where the dynamics is
attracted to a specific training point through a mechanism similar to con-
densation in a glass phase. The speciation time can be obtained froma spectral
analysis of the data’s correlation matrix, while the collapse time relates to an
excess entropymeasure, and reveals the existence of a curse of dimensionality
for diffusion models. These theoretical findings are supported by analytical
solutions for Gaussian mixtures and confirmed by numerical experiments on
real datasets.

Machine learning has recently witnessed thrilling advancements,
especially in the realm of generative models. At the forefront of this
progress are diffusionmodels (DMs), which have emerged as powerful
tools for modeling complex data distributions and generating new
realistic samples. They have become the state of the art in generating
images, videos, audio or 3D scenes1–8. Although the practical success of
generative DMs is widely recognized, their full theoretical under-
standing remains an open challenge. Rigorous results assessing their
convergence on finite-dimensional data have been obtained in
refs. 9–14. However, realistic data live in high-dimensional spaces,
where interpolation between data points should face the curse of
dimensionality15. A thorough understanding of how generativemodels
escape this curse is still lacking. This requires approaches able to take
into account that the number and the dimension of the data are
simultaneously very large. In this work, we face this challenge using
statistical physics methods which have been developed to study
probability distributions, disordered systems and stochastic processes
in high dimensions16–18.

DMswork in two stages. In the forwarddiffusion, one starts froma
data point (e.g., an image) and gradually adds noise to it, until the
image has become pure noise. In the backward process, one gradually
denoises the image using a diffusion in an effective force field (the
score) which is learnt by leveraging techniques from score
matching19,20 and deep neural networks. In this study, we focus onDMs

which are efficient enough to learn the exact empirical score, i.e., the
one obtained by noising the empirical distribution of data. In practical
implementations, this should happen when one performs a long
training of a strongly over-parameterized deep network to learn the
score, in the situation when the number of data is not too large.

Within this framework, we develop a theoretical approach able to
characterize the dynamics of DMs in the simultaneous limit of large
dimensions and large dataset. We show that the backward generative
diffusion process consists of three subsequent dynamical regimes.
The first one is basically pure Brownianmotion. In the second one, the
backward trajectory finds one of the main classes of the data (for
instance if the data consist of images of horses and cars, a given tra-
jectorywill specialize towards oneof these two categories). In the third
regime, the diffusion “collapses” onto one of the examples of the
dataset: a given trajectory commits to the attraction basin of one of the
data points, and the backward evolution brings it back to that exact
data point. Since DMs are defined as the time reversal of a forward
noising process, the generative process has to collapse on the training
dataset under the exact empirical score assumption21,22. We show, by
performing a thorough analysis of the curseof dimensionality forDMs,
that this memorization can be avoided at finite times only if the size of
the dataset is exponentially large in the dimension. An alternative,
which is the one used in practice, is to rely on regularization and
approximate learning of the score, departing from its exact form.
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Understanding this crucial aspect of generative diffusion is a key open
challenge23–25 for which analyzing what happens when the exact
empirical score is used represents a first step.

Separating these three dynamical regimes, we identify two char-
acteristic cross-over times. The speciation time tS is the transition from
pure noise to the commitment of a trajectory towards one category.
The collapse time tC is the timewhere the backward trajectory falls into
the attractor of one given data point. We provide mathematical tools
to predict these times in terms of structure of data. We will first study
simple models such as high-dimensional Gaussian mixtures, where we
obtain a full analytical solution and hence a very detailed under-
standing. Within this setting, we show that in the simultaneous limit of
large number and dimension of the data, the speciation and collapse
cross-overs become sharp thresholds. Interestingly, both of them are
related to phase transitions studied in physics. We then extend our
results to more general settings and discuss the key role played by the
dimensionality of data and the number of samples. Finally, we perform
numerical experiments and confront the theory to real data such as
CIFAR-10, ImageNet, and LSUN, showing that ourmainfindings hold in
realistic cases. We conclude by highlighting the consequences and the
guidelines offered by our results, and discussing the next research
steps, in particular how to go beyond the exact empirical score
framework.

Results
We focus on cases in which the data can be organized in distinct
classes. For simplicity, we consider below two classes, identified in the
spectrum of the covariance matrix of the data: this spectrum is
assumed to display a single large eigenvalue along the principal com-
ponent which we will denote Λ. This is a simplifying assumption; our
analysis can be extended to more than two classes and subclasses
within classes. The data consist of n data points a 2 Rd . We assume
that there exists an underlying distribution P0(a) from which data are
drawn, and we denote by Pe

0ðaÞ=
Pn

μ= 1δða� aμÞ=n, the empirical dis-
tribution of the data. The components of a are normalized to be finite
for large d, meaning we assume that themoments

R
daP0ðaÞap

i remain
of order one for d → ∞ and finite p. This implies in particular that the
expectation of ∣x∣2 grows linearly with d.

There exist many variants of DMs which are basically equivalent.
We focus here on the diffusion process which consists in d indepen-
dent Ornstein-Uhlenbeck Langevin equations,

dxðtÞ= � xðtÞdt +dBðtÞ, ð1Þ

where dB(t) is square root of two times the standard Wiener process
(a.k.a., Brownian motion) inRd . The exact empirical score is given by
F iðx, tÞ= ∂ logPe

t ðxÞ=∂xi where Pe
t ðxÞ is the noisy empirical distribution

at time t due to the process in (1)

Pe
t ðxÞ=

Z
daPe

0ðaÞ
1ffiffiffiffiffiffiffiffiffiffiffi

2πΔt

p d
exp � 1

2
ðx� ae�tÞ2

Δt

 !
: ð2Þ

This is the convolution of the empirical distribution of the data, Pe
0ðaÞ,

with a Gaussian law of variance Δt = (1−e−2t). At long times Pe
t ðxÞ is a

Gaussian distribution with zero mean and covariance equal to the
identity. In DMs the generation of new data is obtained by time-
reversing this process using the backward dynamics

�dyiðtÞ= yidt +2F ið y, tÞdt +dξ iðtÞ, ð3Þ

where the noise dξi(t) has the same distribution as in the forward
process.

Our main contribution is the characterization of three dynamical
regimes in the time-reversed process in the limit of large number of
data and large dimension. In regime I, at the beginning of the backward

process, the random dynamical trajectories generated by (3) have not
committed to a particular class of data. They have roughly the same
probability to end up in one of the two classes. Figure 1 illustrates this
behavior by showing that trajectories corresponding to different final
classes are within a single bundle (or tube). In regime II, instead, the
dynamical trajectories have committed to a particular class. In this
case, the trajectory will remain in the same class until the end of the
backward process. During regime II, the backward dynamics generate
the features needed to produce samples in a given class, but the fate of
the trajectory in terms of class is sealed. In analogy with evolutionary
dynamics, we call speciation the cross-over between regimes I and II,
which has also important connections with the concept of symmetry
breaking in physics26,27 and with stochastic localization in probability
theory28,29. As we shall show, the speciation cross-over takes place on a
time scale tS defined by

Λe�2tS = 1, Speciation: I ! II ð4Þ

whereΛ is the eigenvalue of the principal component of the covariance
matrix of the data.Note that in the high-dimensional limit, if Λdiverges
with d (typically one would expect Λ ∝ d), then tS diverges

Fig. 1 | Illustration of the three regimes of the backward dynamics through an
example corresponding to a Gaussian mixture in two dimensions. Trajectories
are colored white and blue according to their class at the end of the backward
dynamics. In regime I, blue and white trajectories are fluctuating within the same
bundle and x is similar to white noise. At the speciation time tS, the ensembles of
blue and white trajectories divide and head towards the distribution associated to
their respective class. Regime II is where the generative process constructs an
x which resembles to one element of the class (e.g., a seashore in the illustration)
without being linked to any data of the training set. At the collapse time tC, tra-
jectories start to be attracted by the data point on which they collapse at t =0.
Regime III corresponds to memorization, whereas in regime I and II, the diffusion
model truly generalizes. The images on the right and on the left are illustrations
obtained from our ImageNet numerical experiment (notice the collapse on the
panda and seashore from the training set at t =0).
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logarithmically with d, and the speciation cross-over becomes a phase
transition over time-scales of order tS. Here, and in what follows, we
measure time from the beginning of the forward process, i.e., large t
corresponds to the beginning of the backward process. We find that in
the regimes I and II the DM generalizes (if the number of data is large
enough), whichmeans that the empirical distribution at time t, Pe

t ðxÞ is
basically the sameas the true Pt(x),which is the convolution of P0 and a
Gaussian of variance Δt. Therefore the distributions obtained by
noising the desired P0 and the empirical Pe

0 are identical.
In regime III, the situation is completely different. There is no

generalization; instead, the DM displays memorization of the training
set. The probability distribution Pe

t ðxÞ no longer reflects Pt(x). It actu-
ally decomposes in separated lumps around the points of the training
set, and a given trajectory is committed to the attractor of the original
data point, that is reached at t = 0. Figure 1 illustrates this behavior.We
call collapse the cross-over between regimes II and III. Aswe shall show,
the collapse takes place on a time scale tC defined by

sðtC Þ= ssepðtC Þ, Collapse: II ! III ð5Þ

where sðtÞ= � 1
d

R
dx PtðxÞ logPtðxÞ is the Shannon entropy per vari-

able of the distribution at time t, and ssepðtÞ= logn
d + 1

2 +
1
2 logð2πΔtÞ is

its counterpart for a mixture of n Gaussian distributions with variance
Δt and centered on well-separated points. We shall argue below that
criterion (5) is actually valid beyond the exact empirical score
hypothesis, and therefore provides a way to characterize the collapse
(or its absence) in practical applications.

For t≫ 1, the distribution Pt(x) becomes ad-dimensionalGaussian,
with entropy d

2 + d
2 logð2πÞ. In consequence, the difference between the

two entropies, f(t) = ssep(t)−s(t), that we call excess entropy density,
equals logn

d . On theother hand, for t→0, the entropy s(t) goes to theone
of P0(a), while logð2πΔtÞ ! �1. Therefore the excess entropy density
goes to −∞. When running the backward process, starting from large
times where f ðtÞ= logn

d >0, this excess entropy density decreases and
crosses 0 at the collapse time tC. Thus, by monitoring the time-
dependence of f(t), one can pinpoint when the collapse takes place. In
numerical studies where P0 is not known, one can approximate f(t) as
f e(t) = ssep(t)−se(t), where se(t) is the entropy per variable of the
empirical distribution Pe

t ðxÞ. This is a good approximation for t ≥ tC,
where the two distributions Pe

t and Pt are identical and f e(t) = f(t).
Instead, aswe shall show, for t < tC the empirical excess entropydensity
vanishes while f(t) < 0. The parameter α = logn

d plays a key role in the
collapse, as it allows to tune the value of tC. A very small α, implies a
very small excess entropy density for t≫ 1. In this case, the collapse
takes place at the verybeginningof thebackwarddynamics.One needs
α ~O(1) in order to have tC ~O(1). To diminish tC (shrink regime III) and
reduce the collapse, one has to increase α. These findings characterize
a curse of dimensionality which is different but related to the one
arising in supervised learning: in order to avoid memorization, the
number of data has to increase exponentially with the dimension d. In
practice, this unwanted phenomenon is avoided by using an approx-
imate score function which is smoother than the exact one, together
with a large enoughdataset.Wewill comeback to this point later in the
discussion.

Our characterization of the backward dynamics is obtained using
statistical physics methods developed to study phase transitions, dis-
ordered systems, and out-of-equilibrium dynamics in physics. We
provide a brief introduction in SI Appendix. The connection is not only
methodological; in fact, our analysis unveils interesting relationships
between the transition described above and phenomena intensively
studied in physics in the last decades. In particular, the collapse tran-
sition is mutatis mutandis a glass transition in which the low energy
glass states correspond to the training data. The results we obtain in
Eqs. (4) and (5), which are at the level of rigor of theoretical physics,
provide guidelines and testable predictions for realistic applications.

Numerical experiments on several subsets of realistic datasets (MNIST,
CIFAR-10, ImageNet, and LSUN) confirm their validity.

Discussion
In this work, we analyze the backward dynamics of DMs assumed to be
efficient enough to learn the exact empirical score. We show that for
large number of data n, large dimension d, and in the absence of
regularization, the backwarddynamics display three different regimes.
We characterized the cross-overs between them, dubbed speciation
and collapse, which become true transitions in the large n, d limit.
Interestingly, both of them have physical counterparts in the theory of
phase transitions. Speciation is a symmetry-breaking transition of Pt(x)
at which the most prominent classes are generated26,27. Collapse cor-
responds to a glass transition at which Pt(x) fragments in an ensemble
of lumps centered around the training data. Our approach char-
acterizes the time at which speciation and collapse take place in terms
of structure of data. The speciation time is determined by the eigen-
value of the principal component of the covariancematrix of the data,
whereas the collapse time is governed by the entropy of the noised
data distribution.

Although we focus on a specific DM, our results hold for the large
variety of DMs which are based on inverting the noising process30.
These methods use different procedures to implement the denoising
process P∞(x) → Pt(x) → P0(x). However, the phenomena of speciation
and collapse can be understood and analyzed focusing on the prop-
erties of the distribution Pt(x) alone. In consequence, since all these
different DMs lead to the samebackward evolution of Pt(x), the criteria
from Eqs. (4) and (5) for speciation and collapse hold in general,
whether the generative process is deterministic and flow-based, or
stochastic and diffusion-based.

Our work is done within the exact empirical score hypothesis.
However, the phenomena we analyze are relevant also when the score
is learned approximately, as shown by our numerical experiments.
Moving beyond this hypothesis opens upmultiple avenues for further
research. On the one hand, it would be interesting to analyze simple
models of data and score in the limit of large number of data,
dimension and parameters, as initiated in refs. 25,26. On the other
hand, it would be important to develop a quantitative study of the role
of regularization on the phenomena we presented in this work. As
discussed in ref. 26, using a goodmodel of the score is a key ingredient
to generate data in the right proportions, i.e., reproducing the correct
weights of the classes. In consequence, regularization methods could
be detrimental in regime I and for speciation: by preventing the score
to be close to the exact one they could lead to data with correct fea-
tures (e.g., realistic images) but wrong proportions with respect to the
training set. On the contrary, regularization is beneficial to avoid the
collapse. As our work demonstrates, DMs are cursed: one needs an
exponential number of data in d to avoid the collapse of training
points. Regularization allows to circumvent this problem in practice if
the number of data is large enough23 (see also SI Appendix). The
volume argument we develop in this work can be applied beyond the
exact empirical score hypothesis and could offer a way to analyze
quantitatively how the collapse depends on both n and d, and the
capacity of the model used to learn the score.

Finally, our results also provide suggestions to improve and
understand procedures used in practical applications. In particular,
taking into account the existence of the three regimes of the backward
dynamics we depict in practical implementations could lead to better
performances.

Methods
Analytical analysis of Gaussian mixtures
An instructive simple example to study the backward dynamics in the
larged andn limit is theGaussianmixturemodel. In this case, the initial
law P0(a) is the superposition of twoGaussian clusters of equal weight,
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whichwe take for simplicity withmeans ±m, and the same variance σ 2.
We shall assume that jmj2 =d~μ2, with σ and ~μ of order 1.

Speciation time. In order to show the existenceof regimes I and II, and
compute the speciation time, we focus on the following protocol
which consists of cloning trajectories. We consider a backward tra-
jectory starting at time tf≫ 1 from a point xf drawn from a random
Gaussian distribution where all components are independent with
mean zero and unit variance. This trajectory evolves backward in time,
through the backward process until time t < tf. At this time the trajec-
tory has reached the point y(t), at which cloning takes place. One
generates for τ < t two clones, starting from the same x1(t) = x2(t) = y(t),
and evolving as independent trajectories x1(τ) and x2(τ), i.e.,
with independent thermal noises. We compute the probability ϕ(t)
that the two trajectories ending in x1(0) and x2(0) are in the same
class. Defining P(x1, 0∣y, t) as the probability that the backward pro-
cess ends in x1, given that it was in y at time t, the joint probability of
finding the trajectory in y at time t and the two clones in x1 and x2 at
time 0 is obtained asQ(x1, x2, y, t) = P(x1, 0∣y, t)P(x2, 0∣y, t)P(y, t). Then
ϕ(t) is the integral of Q over x1, x2, y with the constraint (x1 ⋅m)
(x2 ⋅m) > 0. This simplifies into a one-dimensional integral (see SI
Appendix):

ϕðtÞ= 1
2

Z +1

�1
dy

Gðy,me�t , ΓtÞ2 +Gðy, �me�t , ΓtÞ2
Gðy,me�t , ΓtÞ+Gðy, �me�t , ΓtÞ

, ð6Þ

where G(y, u, v) is a Gaussian probability density function for the real
variable y, with mean u and variance v, and m= jmj= ~μ

ffiffiffi
d

p
,

Γt =Δt + σ2e−2t. The probability ϕ(t) that the two clones end up in the
same cluster is a decreasing function of t, going from ϕ(0) = 1 to
ϕ(∞) = 1/2. In the large d limit, the scaling variable controlling the
change of ϕ is ~μ

ffiffiffi
d

p
e�t which can be rewritten as ~μe�ðt�tSÞ by using

tS = ð1=2Þ logd. This explicitly shows that speciation takes place at the
time scale tS on a window of time of order one. As detailed in SI
Appendix, this expression for tS coincides with the one obtained from
the general criterion (5).We show in Fig. 2 the analytical result from (6)
and direct numerical results obtained for increasingly larger dimen-
sions. This comparison shows that our analysis is accurate already for
moderately large dimensions. In the limit of infinite d, the analytical
curve in Fig. 2 suddenly jumps from one to zero at t/tS = 1, corre-
sponding to a symmetry-breaking phase transition (or a threshold
phenomenon) on the time scale tS. In the numerics, followingfinite size
scaling theory31, we have defined the speciation time as the crossing
point of the curves for different d, which corresponds approximatively
toϕ(tS) = 0.775 and indeed is of the order tS = ð1=2Þ logd for d→∞. As it
happens in mean-field theories of phase transitions32, the large
dimensional limit allows to obtain a useful limiting process. In our
case, this leads to a full characterization of the asymptotic backward
dynamics. At its beginning, i.e., in regime I, the overlapwith the centers
of the Gaussian model, ±m⋅x(t), is of order

ffiffiffi
d

p
. Defining

qðtÞ=m � xðtÞ=
ffiffiffi
d

p
, one can obtain a closed stochastic Langevin

equation on q in a potential V(q, t) (see SI Appendix),

�dq= � ∂V ðq, tÞ
∂q

dt +dηðtÞ, ð7Þ

where η(t) is square root of two times a Brownian motion, and

V ðq, tÞ= 1
2
q2 � 2~μ2 log cosh qe�t

ffiffiffi
d

p� �
: ð8Þ

At large d, this potential is quadratic at times t≫tS = ð1=2Þ logd, and it
develops a double well structure, with a very large barrier, when
t≪tS = ð1=2Þ logd. The trajectories of q(t) are subjected to a force that

drives them toward plus and minus infinity. The barrier between
positive and negative values of q becomes so large that trajectories
commit to a definite sign of q: this is how the symmetry breaking takes
place dynamically at the time scale tS, in agreement with the previous
cloning results. Regime II corresponds to the scaling limit q→∞, where
m⋅x(t) becomes of order d. In this regime, the rescaled overlapm⋅x(t)/
d concentrates, and its sign depends on the set of trajectories one is
focusingon.Moreover, the stochastic dynamicsof the xi correspond to
the backward dynamics for a single Gaussian centered in ±m. This
shows that the dynamics generalizes, see SI Appendix (and also33 for
similar results).

Collapse time. In order to study the collapse, we consider the prob-
ability distribution Pe

t ðxÞ given in (2) around a point x which has been
obtained in the forward process starting at t =0 from x = a1. Our aim is
to establish whether the score obtained from Pe

t ðxÞ imposes a force
that pushes trajectories toward a1 in the backward process, corre-
sponding to memorization, or instead allows for generalization. We
shall consider that both n and d go to infinity, keeping α = logn

d fixed (it
will be clear from the analysis that this is the correct ratio for the
asymptotic analysis).

The vector x we consider is equal to a1e
�t + z

ffiffiffiffiffi
Δt

p
where z has iid

Gaussian components with zero mean and unit variance. The prob-
ability can be written as Pe

t ðxÞ= Z 1 +Z2...n

� �
=
ffiffiffiffiffiffiffiffiffiffiffi
2πΔt

p d
where

Z 1 = e
�1

2ðx�a1e
�t Þ2=ð2Δt Þ = e�

z2
2 and

Z2...n =
Xn
μ= 2

e�
1
2½ðx�aμe

�t Þ2=ð2Δt Þ, ð9Þ

In the large d limit (to exponential accuracy), Z1≃ e−d/2. The computa-
tion of Z2…n is instead tricky. Even though it is a sum of n uncorrelated
random contributions, standard concentration methods, e.g., central
limit theorem,donot apply aseach termof the sumcorresponds to the
exponential of a random variable scaling as logn34. Statistical physics

Fig. 2 | Speciation in Gaussianmixtures. Evolution of the probabilityϕ(t) that the
two clones end up in the same cluster as a function of t/tS for several values of d at
fixed ~μ= 1 and σ = 1. The solid line corresponds to the evaluation of (6) while the
dots are obtained by sampling 10,000 clone trajectories. The vertical (resp. hor-
izontal) dashed line corresponds to t/tS = 1 (resp. ϕ(t) = 0.775). Error bars corre-
spond to thrice standard error.
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tools developed to study spin-glasses provide themethod to solve this
problem, see SI Appendix. In fact, given x, Z2…n is the partition
function of a system with n−1 independent “random energy levels”

Eμ = 1
2 ½ða1 � aμÞe�t + z

ffiffiffiffiffi
Δt

p
�2=ð2ΔtÞ at thermal equilibrium at a tem-

perature 1 (the randomness comes from aμ). This is some elaboration
of the “Random Energy Model” which was introduced originally in
ref. 35 as a simple model of glass transition. A similar problem36 was
studied recently in the related context of dense associative memories,
using large-deviations and replica methods (this connection was also
noticed in ref. 37). Using a similar approach we can show (see SI
Appendix) that in the large d and n limit the distribution of
ð1=dÞ logZ2...n concentrates on a value ψ+(t) which is an increasing
function of the time t and of α = limd,n!1ð1=dÞ logn. The analytical
computation shows the existence of a collapse time tCwhich separates
two time regimes:

• Regime III: at small times, t < tC, ψ+(t) < −(1/2) and the probability
Pe
t ðxÞ is dominated by the term Z 1 = e

�ðx�a1e
�t Þ2=ð2Δt Þ. When used in

thebackwarddiffusion, this gives a score that attractsx towards a1
at short times. With probability one, the backward trajectory,
starting at time t from x= a1e

�t + z
ffiffiffiffiffi
Δt

p
, collapses at the end of the

backward process on data point a1. In this regime, the associated
Random Energy Model is in a glass phase, which precisely corre-
sponds to memorization.

• Regimes I and II: at large times, t > tC, ψ+(t) > −(1/2) and the prob-
ability Pe

t ðxÞ is dominated by the term Z2…n. This is the regime
which is not collapsed and corresponds to generalization (regime
II) or Brownian motion (regime I): in a typical point x!ðtÞ, drawn
from the population distribution Ptð x!Þ, the empirical distribution
Pe
t ð x
!, tÞ is equal to Ptð x!, tÞ at leading order in d. In this regime the

associated Random Energy Model is in the liquid (or high-
temperature) phase.

The collapse time reads

tC =
1
2
log 1 +

σ2

n2=d � 1

� �
: ð10Þ

This equationmakesmanifest the curseofdimensionality: tC is of order
one only when the number of data is exponential in the dimension.
One needs logn

d ≫1 to push tC to zero and avoid the collapse. One can
check that this equation for tC coincides with the one obtained from
the general criterion (4). In Fig. 3 we plot the empirical excess entropy
density f e(t) from which one deduces tC as the largest time at which
f e(t) = 0. The numerical results compare well with the analytical pre-
diction and confirm that the time scale for collapse is well captured by
our approach, even at moderately large values of n. When n, d → ∞ at
fixed α = ð1=dÞ logn, our analysis shows that regime III takes place on
time scale of order one, and hence after the speciation transition, as
illustrated in Fig. 1.

Generalization to realistic datasets
In the case of Gaussianmixtures, we could thoroughly characterize the
backwarddynamics for large n andd, using the knowledge of the initial
distribution P0. We now present a more general approach to the spe-
ciation and collapse transitions, for cases in which P0 is not known or
too complex to be analyzed exactly, but instead, a dataset drawn
from P0 is available. In particular, we present arguments to establish
criteria from Eqs. (4) and (5) which can be directly applied to realistic
datasets.

The speciation transition can be analyzed using the covariance
matrix, C0, of the initial data. Our assumption that data can be orga-
nized in two distinct and very different classes translates, in terms of
C0, in the existence of a strong principal componentwith eigenvalue Λ.
The speciation transition can be generically understood in termsof the

forward process: it corresponds to the time scale at which the noise
added to the data blurs the principal component, and hence the con-
nection to a given class. On this time scale, the trajectories coming
from different classes in the forward process coalesce within the
same bundle, as illustrated in Fig. 1. By time-reversal symmetry, it is
therefore also on this time that the trajectories in the backward pro-
cess separate and commit to the different classes. By evaluating the
covariance matrix of the noised data xi(t), one finds

CðtÞ=C0e
�2t +ΔtI: ð11Þ

The speciation time can be found by comparing the two contributions
on the RHS in the direction of the principal component of C0: Λe−2t vs
Δt. The first one is associated to the fluctuations between different
classes, whereas the second corresponds to the broadening of Pt(x)
due to the noise. When the latter becomes of the same order as the
former, the noise blurs the identification of trajectories in different
classes. In consequence, one finds the criterion Λe−2t ~Δt, which shows
that the variable controlling the speciation transition is indeed Λe−2t, as
we have shown for the Gaussian mixture model. Since for large d one
expects a large Λ, the asymptotic window over which the speciation
transition takes place is when Λe−2t is of order one. This leads to the
general result stated in (4). We have decided to associate the specia-
tion transition with the time at which the variable Λe−2t takes the value
one, but this is a convention and the choice of another number of
order one would work too when Λ is large. The argument above is
obtained by studying the time at which the structure of the data,
present at t = 0, is blurred by the noise. One can also tackle the pro-
blem starting by the other end, i.e., large times, and studying Pt(x)
perturbatively in e−t, which is a small parameter at the beginning of the
backward process. By performing an expansion of (2) in e−t, one finds
that at leading order the distribution Pt(x) is a multivariate Gaussian
with covariance 1

Δt
½I� e�2t

Δt
C0�. The expansion described above, and

detailed in the SI, is similar to the Landau expansion of phase
transitions38, in which symmetry breaking can be understood in terms

Fig. 3 | Collapse in Gaussian mixtures. Evolution of the excess entropy density
f e(t)/α as a function of time t for several values of d, at fixed n = 20,000. The solid
lines are the theoretical predictionswhile thedots show the results of the numerical
evaluation approximating the entropy from the dataset. The vertical dashed lines
represent the collapse time tC predicted analytically for Gaussianmixtures given in
(10). Error bars correspond to thrice the standard error.
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of the instability of the quadratic part of log PtðxÞ. The speciation
transition is like a symmetry-breaking phase transition in Pt(x)26,27, and
this instability happens for Λe−2t =Δt≃ 1. The general result (4) can thus
be obtained from two different complementary perspectives. We
expect it to hold in a broad set of cases.

We now turn to the collapse transition. Generalization can be
understood as the regime in which, at leading order in d, Pe

t ðxÞ
coincides with its population counterpart Pt(x) on typical noised data
x(t) (i.e., drawn from Pt(x)). This implies that at time t the training set
has been forgotten. At large d, and for a given data a, the random
vectors ae�t + z

ffiffiffiffiffi
Δt

p
, drawn from Pe

t ðxÞ, lie with probability one on the
ball of radius

ffiffiffiffiffiffiffiffi
dΔt

p
around ae−t. Note that they are actually located

close to the circumference, as this is the region with the largest
volume in large d. At small time t, one can therefore envision the set
Me typically covered by the empirical distribution Pe

t as the union of
the non-overlapping balls centered around the data vectors aμe−t. In
this regime, the set M typically covered by the population distribu-
tion Pt(x) is clearly different. It is independent of the training set and
not as singular for t = 0. In consequence, in this regime Pe

t ðxÞ is col-
lapsed on the data and the DM is in the memorization phase (regime
III). By increasing t, the balls progressively grow and at a certain time,
tC, they cover the set M. Beyond this point, one expects that the
empirical and population distribution coincides on M (at leading
order in d). This picture suggests a volume argument to identify the
collapse: onefinds the time atwhich the volumeofMe coincideswith
the one ofM. The key point is that in large d, the volume VP covered
by typical configurations associated to a given distribution P scales as
VP = eS where S= � R dxPðxÞ log PðxÞ is the Shannon entropy, which
scales like d. The set Me corresponds to n d-dimensional Gaussian
distributions with mean zero and covariance matrix given by the
identity times Δt. For t ≤ tC, the volume of Me is the one of n non-
overlapping Gaussians, which therefore reads: VMe =neSG where
SG = ðd=2Þð1 + logð2πΔtÞÞ is the entropy of one of the Gaussian dis-
tributions. On the other hand, the volume of M is given by eds(t). By
requiring the equality of the two volumes, VMe =VM, one finds the
general result for tC given in (5). Note that all the identities used in the
volume argument are correct up to corrections exponentially small
in d. For this reason, (5) is expressed in terms of intensive quantities,
and hence valid up to vanishing corrections for d → ∞. This criterion
can also be obtained from the Random Energy Model method, gen-
eralizing our derivation for the Gaussian Mixture model. Note that
the arguments above can also be applied to cases in which the score
is learned by approximatemodels. In this case, the distribution, Pt(x),
and its associated entropy density s(t) have to be replaced by their
model-dependent counterparts.

The arguments above offer another way, besides the exact com-
putation by the Random Energy Model method, to illustrate the rela-
tionship between the collapse and the glass transition studied in
physics39. In fact, the ways in which Pe

t ðxÞ covers the space of x before
and after the collapse is the exact counterpart of how the Boltzmann
law covers the configuration space before and after the ideal glass
transition39. In the glass phase, the Boltzmann law is formed by lumps
centered around amorphous optimal configurations (ideal glasses).
Whereas in the liquid phase, the Boltzmann law is spread over all
configurations. In the case studied here, the elements of the training
set are the counterparts of the ideal glass configurations.

Having shown the generality of our criteria for speciation and
collapse, we now test them on realistic data.

Numerical experiments
In the following, we focus on various image datasets and we learn the
score function using a state-of-the-art neural network with a finite
number of samples n. We assume that, by using a heavily over-
parameterized model, the resulting estimate F̂ of the score is close to
the exact one.

Settings and datasets. We train a DM as first described in ref. 40, and
corresponding to (1), with a time horizon T = 5.05 and a linear schedule
for the variance. The denoiser is a U-Net41 with an architecture similar
toother traditional implementationsofDMs27,40,42. Our training sets are
constructedby focusingondata divided into two classes andextracted
from the image datasets: MNIST43, CIFAR-1044, downsampled
ImageNet45, and LSUN46. For example, in the case of ImageNet, the two
classes we use are panda and seashore (as illustrated in Fig. 1). The
large variety of datasets allows us to explore different kinds of images
and several values of n and d, see Table 1. We refer to SI Appendix for
details on the processing of these datasets, the denoiser, and how the
numerical experiments presented below are carried out.

Speciation time. To numerically extract the speciation time and
compare it to the theoretical result given by (4), we use the same
cloning procedure introduced for Gaussianmixtures.We generate two
independent trajectories at time t of the backward process and
numerically estimate the probability ϕ(t) that they end up in the same
class by averaging over many initial conditions and backward pro-
cesses. In order to recognize the class of x1(0) and x2(0), we use a
classifier with a ResNet-18 architecture47, which has a test accuracy
larger than 95%on the datasetswe focus on. The corresponding results
are shown in Fig. 4. The time axis hasbeen rescaled by the theoretically
predicted tS = ð1=2Þ logΛ from (4). The values of Λ and tS are listed in

Table 1 | Image datasets used for speciation experiments

Dataset name n d Λ tS
1. MNIST 10,000 1024 7.66 1.02

2. CIFAR 3000 3072 16.72 1.41

3. ImageNet16 2000 768 3.05 0.56

4. ImageNet32 2000 3072 12.11 1.25

5. LSUN 40,000 12,288 60.52 2.05

Fig. 4 | Speciation in realistic datasets. Evolution of ϕ(t), the probability that the
two clones end up in the same class, as a function of t/tS for several image datasets.
The values of tS are the theoretical prediction for the speciation timeobtainedusing
(4) and listed in Table 1. The dashed horizontal line indicate ϕ(t) = 0.775, the error
bars correspond to thrice the standard error and the solid lines linearly interpolate
the experimental points.
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Table 1. Figure 4 shows that indeed the speciation phenomenon is at
play in realistic DMs: ϕ(t) goes from 0.5 when t≫ tS to one when t≪ tS,
in a way which is qualitatively analogous to Fig. 2. When rescaled with
respect to tS, the time-dependence exhibits remarkable similarity
across vastly different image sets, suggesting evidence of the common
underlying phenomenon of speciation. Moreover, our prediction for
the speciation time, tS, captures well the behavior found in these
numerical experiments.

Collapse time. We focus on the datasets ImageNet16, ImageNet32,
and LSUN. In order to be able to study thoroughly the collapse phe-
nomenon, we have to keep the number of training data small (n = 200
for LSUN and n = 2000 for ImageNet). Otherwise, the model is not
expressive enough to represent the singular behavior of the exact
score at small times and collapsewould not be observed (see alsoFig. 6
of SI Appendix). To estimate the collapse time numerically, and com-
pare it to the theoretical result from (5), we employ two distinct stra-
tegies. First, we use again the cloning procedure where a backward
dynamics is cloned at a time t. The original and cloned dynamics are
then evolved independently with separate noise. For sufficiently low
values of n, all trajectories collapse onto a specific training point. We
then estimate the probability ϕCðtÞ that the two cloned trajectories
converge to the exact same data point in the training set at time zero.
The results of this first experiment are shown in the top-left panel of
Fig. 5. The cross-over time where ϕC(t) goes from zero (indicating the
two clones collapse onto different training points) to one (meaning the
clones collapse on the same training points) provides a first numerical
estimate of tC. An alternative estimation is found by tracking, during

the backward process, the index of the closest neighbor in the training
set, noted μ⋆(t)∈ {1, ⋯ , n}, in the sense of the L2-norm. Considering
x(t) a generated sample at time t, this index therefore reads

μ?ðtÞ= argmin
μ2f1, ���,ng

kaμe�t � xðtÞk22: ð12Þ

At thebeginningof thebackwardprocess (large t), this indexfluctuates
at each timestep. However, once the features determining the attrac-
tion to a given training point appear, the index remains fixed to that
data point. For an individual trajectory, we estimate the collapse time
t̂C as the last timestep during the backwardprocess atwhich this index
changes—meaning that for t<t̂C , the nearest neighbor of x(t) stays the
same. The top-right panel of Fig. 5 illustrates the distribution of t̂C
measured on the LSUN dataset. By averaging this distribution for each
dataset, we obtain the estimates t̂C for the collapse time. They are
marked as vertical dashed lines in all panels of Fig. 5, with colors
corresponding to the three different training sets. Notably, the top-left
panel shows that the two different methods to estimate the collapse
time agree well with t̂C crossing ϕC(t) at around 0.60 for all datasets.
We can now test the theoretical criterion for the collapse time given by
(5), or equivalently by the largest time at which the empirical excess
entropy density f e(t) is equal to zero, see the bottom panel of Fig. 5.
The shape of f e(t)/α is remarkably similar to the one obtained
analytically for the Gaussian Model (Fig. 3). It clearly shows evidence
of a transition. The theoretical estimate, f e(tC) = 0, also compares very
well with the numerical ones t̂C .

In conclusion, the numerical experiments presented in this sec-
tion demonstrate the presence of speciation and collapse in realistic
image datasets, and validate our theory, in particular the criteria from
Eqs. (4) and (5) to identify the times at which these phenomena
take place.

Data availability
All the datasets used to produce this research are publicly accessible
online: MNIST, CIFAR, downsampled ImageNet, and LSUN.

Code availability
The code used to obtain the figures and run the experiments is freely
accessible at this address.
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