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A B S T R A C T

Single-cell RNA sequencing experiments produce data useful to identify different cell types, including
uncharacterized and rare ones. This enables us to study the specific functional roles of these cells in different
microenvironments and contexts. After identifying a (novel) cell type of interest, it is essential to build succinct
marker panels, composed of a few genes referring to cell surface proteins and clusters of differentiation
molecules, able to discriminate the desired cells from the other cell populations. In this work, we propose
a fully-automatic framework called MAGNETO, which can help construct optimal marker panels starting from
a single-cell gene expression matrix and a cell type identity for each cell. MAGNETO builds effective marker
panels solving a tailored bi-objective optimization problem, where the first objective regards the identification
of the genes able to isolate a specific cell type, while the second conflicting objective concerns the minimization
of the total number of genes included in the panel. Our results on three public datasets show that MAGNETO
can identify marker panels that identify the cell populations of interest better than state-of-the-art approaches.
Finally, by fine-tuning MAGNETO, our results demonstrate that it is possible to obtain marker panels with
different specificity levels.
1. Introduction

During the past decade, we have seen a continuous increase in the
production of high-throughput sequencing data in single cells from a
variety of biological models, samples, and experiments, including ex
vivo or in vivo [1–8]. This has provided high-resolution information
enabling the discovery of novel and rare cell populations, and revo-
lutionizing the biomedical research field as never before. In addition,
the combination of such information with tailored and powerful com-
putational approaches has helped obtain a better description of cellular
identity and the functional roles of cell populations, based on both the
context and environment where they are [9]. For instance, single-cell
data have been used to elucidate the molecular processes that drive
both cell development and progression in different pathologies [10,11].
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After the initial discovery, precise isolation of the cell popula-
tions is fundamental in characterizing each population’s specific func-
tional role in different contexts and microenvironments. Furthermore,
as the therapy of complex diseases (cancer, metabolic, immune, and
heart diseases) moves away from monotherapies towards combinato-
rial approaches targeting different cell populations, it is increasingly
necessary to accurately identify and characterize these cells.

Flow cytometry and imaging for either physical isolation or spatial
characterization of these cells are examples of techniques where panels
of marker genes can be used to isolate the cell type of interest from
the other cell populations, aiming at elucidating different questions of
biomedical relevance [12–14]. Succinct marker panels, composed of
genes referring to cell surface proteins and clusters of differentiation
(CD) molecules [15,16], should be built to enable the identification,
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isolation, and validation of the new populations in follow-up stud-
ies and experiments [15]. For example, Ranzoni et al. tested and
manually refined different marker panels to better delineate inter-
mediate steps and reconstruct the whole differentiation process in
hematopoiesis [12]. Similarly, other studies focused on the isolation
of the cell population of interest by means of flow cytometry assay,
which allowed them to isolate the cells of interest physically and, at
the same time, quantify the cell populations or the expression of the
markers [17]. Thus, flow cytometry, together with other independent
methods [15], can help us perform comprehensive functional studies
to validate and further characterize the transcriptomic observations in
both research and clinical applications [18]. Besides flow cytometry,
multiplex immunohistochemistry (IHC) imaging can be fruitfully used
to measure protein abundance at a cellular level in tissue cross-sections,
allowing for the identification of the cells in a spatial context [18]. In
addition, relying on specific and IHC-compatible antibodies, IHC can
be performed using small marker panels [19].

Existing technologies allow fast and affordable acquisition of mul-
tiple markers, both in the clinic and in laboratory settings. These
markers can identify cell populations from biological specimens and
isolate them for phenotypical and functional studies; however, signif-
icant challenges remain. Firstly, existing technologies are limited to
a relatively small number of markers. Secondly, current panels have
emerged heuristically, and there are often significant discrepancies
between laboratories. For example, even though the identification of
marker panels is a crucial step to enable the functional exploration and
characterization of novel cell populations, the standard approach to
finding a suitable marker panel consists of a manual screen of hundreds
or thousands of genes, sometimes even the full transcriptome, carried
out by domain experts. On the one hand, curated databases can be ex-
ploited to find information regarding marker genes. For instance, Zhang
et al. proposed the CellMarker database to provide the community with
a comprehensive annotated resource of possible markers for different
cell types in human and mouse tissues [20]. Unfortunately, CellMarker
is unsuitable for building panels for novel and rare cell types. Moreover,
it cannot be used to analyze other well-studied species (e.g., zebrafish,
Drosophila, and Caenorhabditis elegans). Finally, it does not allow
building panels able to distinguish the same cell population in different
cell states.

Single-cell RNA sequencing (scRNA-Seq) acquires the expression of
thousands of genes at a single-cell resolution; thus, methods exploiting
this complexity have tremendous potential to address these problems.
Therefore, annotated scRNA-Seq data could be used to find new marker
panels. Currently, the mainstream methods to build a candidate marker
panel from scRNA-Seq data rely on a list of ranked genes, obtained from
differential analysis of the gene expression in the desired cell type of
interest (see, e.g., [1–4,7,8,14]). This can be a good approach in the
first instance but the downside of such approaches is that they do not
account for gene combinations. It is worth mentioning that the com-
bination of genes refers to the co-expression of the so-called positive
and negative genes, where positive (negative) genes are expressed (not
expressed) by a specific cell type. In addition, this strategy requires an
extensive, time-consuming, and often subjective manual curation of the
ranked list of genes to evaluate (i) if the top-ranked genes are suitable
for the isolation of the cell population of interest, and (ii) their ability to
pair with each other to build more selective multi-gene marker panels
(see [15] and references therein). Finally, all these methods do not
directly test the ability of the genes to isolate the desired cell population
from the background (i.e., the other cell types). On the contrary, they
only assess with standard statistical tests if the expression of each gene
significantly differs from the given background.

So far, some computational studies have been proposed to identify
the most promising marker panels efficiently [15–17,21–25]. These
tools can be used to explore the high gene coverage provided by scRNA-
2

Seq to both refine the panels of well-known cell types and delineate the
cell markers of novel cell types, detected and annotated via cluster anal-
ysis of the scRNA-Seq data, to isolate the cell populations better using
subsequent antibody-based flow cytometry or IHC imaging. However,
in such a context, providing an effective and efficient computational
approach that can help researchers identify the most promising marker
panels, from a list of ranked marker panels, remains a difficult task
for different reasons. This is inherently combinatorial, which makes
it an NP-hard problem [15], and the possible combinations of genes
that should be tested become extraordinarily high even considering
only the CD molecules (e.g., ∼1010 possible combinations considering
panels composed of only 4 genes) [15]. In addition, the availability
of experimental reagents (e.g., antibodies for flow cytometry or in
itu staining) is still limited, forcing the computational approaches to

propose a (generally long) list of possibly ranked candidate marker
panels, which must be then assessed and validated for both their
accuracy and the availability of the reagents by expert biologists.

Problem Building optimal marker panels starting
from a single-cell gene expression matrix
and a cell type identity for each cell

What is
Already
Known

Computational tools based on statistical
strategies and optimization algorithms can
be used to identify the most promising
marker panels

What this
Paper Adds

A fully-automatic framework that builds
effective marker panels solving a tailored
bi-objective optimization problem.
+ MAGNETO implements different
multi-objective optimization algorithms.
+ It exploits a novel weighted fitness
function based on a parameter 𝛼, able to
balance the contributions of the two
components of the fitness function (objective
1), to set the marker panel’s specificity.
+ It implements three binarization strategies
to deal with different (input) gene
expression matrices.
+ It can read and handle different input
files.
+ It reports the calculated marker panels
ranked by their capability to isolate the
desired cell population.
+ It can analyze multiple clusters in
parallel, allowing for building the marker
panels for all the clusters of small
scRNA-Seq datasets in parallel.
+ It is modular, meaning that it can be
easily extended to accommodate new
objectives.

In this study, we propose a novel fully-automatic framework called
marker panel generator with multi-Objective optimization (MAGNETO),
which is based on the computational strategy presented in [16]. MAG-
NETO can help the researchers to identify the most promising marker
panels, starting from a gene expression matrix with single-cell resolu-
tion data, and a cell type identity for each cell. MAGNETO encodes
the marker panel construction problem as a bi-objective optimization
problem, where the first objective regards the identification of the
genes able to isolate a specific cell type, while the second objective
concerns the minimization of the total number of genes included in the
panel. Such a bi-objective problem is then solved with a Multi-objective
Evolutionary Algorithm (MOEA) called Adaptive Geometry Estimation
based on MOEA (AGEMOEA) [26]. At the end of the optimization,
MAGNETO provides the user with a ranked list of the identified marker
panels. We compare the performance of our framework against the
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state-of-the-art approaches, including RANKCORR [23], SMaSH [27],
Hypergate [22], sc2marker [17], and COMET [15] on three public
datasets, namely: Peripheral Blood Mononuclear Cells (PBMC), Pancre-
atic Islet Cells (PIC), and Human Fetal Cells (HFC). Our results highlight
that MAGNETO can identify marker panels that better characterize the
cell populations of interest, compared to the other approaches, in all
tested datasets. Moreover, different settings of MAGNETO result in the
definition of marker panels with different specificity levels, allowing
the user to fine-tune the tool according to their need. The ability of
MAGNETO to build effective marker panels is fundamental as these
panels can drastically increase the capability of isolating ‘‘pure’’ cell
populations to obtain a thorough analysis and characterization of them.
Considering that it can be used by novice and expert researchers, it can
be easily applied in clinical contexts where rare and transient cell pop-
ulations need to be isolated. MAGNETO can thus be a starting point for
future investigations, and it could be included in studies regarding the
characterization of tumor microenvironments, therapeutic resistance,
and regenerative medicine. Thanks to its unique features, MAGNETO
outperforms the existing state-of-the-art approaches.

The paper is organized as follows, Section 2 briefly describes the
computational works related to MAGNETO. Section 3 first presents
the datasets employed in this work and introduces the computational
problem related to the identification of marker panels, then it describes
MAGNETO in detail. Section 5 reports the outcomes obtained with
MAGNETO and compared to the state-of-the-art approaches; finally,
Section 6 reports some conclusive remarks and directions for future
extensions of this work.

2. Related works

The first computational strategies used to identify possible marker
genes are the statistical methods included in the Seurat and Scanpy
toolkits [28–31]. Such strategies however merely compare the expres-
sion distribution of every gene between two different groups of cells
(e.g., the cell type of interest and the other cell types). In such a
case, the calculated p-values can be combined with the expression
fold-change to evaluate the possible marker genes. MAST [32] is a
statistical framework that explores a hurdle model specifically adapted
for scRNA-Seq data. It is a two-part generalized linear model designed
to simultaneously model the rate of the expression over the background
of various transcripts and the positive expression mean. MAST assumes
that the logarithmic expression follows a normal distribution and,
under this assumption, it identifies the genes that are differentially
expressed between two groups of cells. As for the other statistical tests,
the obtained 𝑝-value can be used to rank the candidate genes. Com-
biROC [21,33] identifies a list of possible markers and computes the
sensitivity and specificity values for each possible marker combination.
Then, the Receiver Operating Characteristic curves are calculated for
each marker and for the selected combinations of markers, previously
filtered by using sensitivity and specificity thresholds, to evaluate and
rank the calculated panels. Delaney et al. proposed COMET (COmbina-
torial Marker dEtection from single-cell Transcriptomics) [15], which
tries to build candidate marker panels that allow for distinguishing
the desired cell population from the background by using statistical
tests proposed for other contexts and purposes. In particular, COMET
directly works on a gene-by-cell expression matrix (raw counts or
normalized values) and requires a cell type identity for each cell, as
well as a list of genes over which to conduct the search to identify the
best candidate marker panels for the desired cell type. Hypergate [22]
exploits a non-parametric score based on true positives, false positives,
false negatives, and true negatives values, specifically combined to take
into account both purity (sensitivity) and yield (specificity), to pinpoint
the most promising marker panels. RANKCORR [23] is a method that
first performs multi-class marker selection by ranking the mRNA counts
and considering sparse binomial regression models. It is worth remind-
ing that ranking the genes is the most straightforward non-parametric
3

approach to analyzing and comparing count data. Then, it tries to
linearly separate and recognize a small number of marker genes from
the ranked values. RANKCORR can be used to build marker panels
for the desired cell type by setting the multi-class marker selection
as a two-class classification problem. SMaSH [27], instead, employs
Machine Learning (ML) approaches to discriminate and rank, in a fast
and efficient way, a list of marker genes starting from a cell-by-gene
expression matrix and the given cell identity (e.g., cell type or tissue-
specific). Based on the selected ML approach, the extracted markers
are then ranked according to the gene importance score assigned by
the Gini criterion [34] or the Shapley value [35]. Finally, Li et al.
proposed sc2marker [17], a feature selection approach that combines
the maximum margin index and a database of proteins with antibodies
to identify the most promising marker genes for flow cytometry or IHC
imaging.

Considering that the identification of candidate marker panels is a
combinatorial NP-hard problem, it can also be tackled by exploiting
linear programming approaches or global optimization techniques as
long as it is reformulated as an optimization problem. On the one
hand, Dumitrascu et al. first redefined the identification of candidate
marker panels as a liner program problem [24], then they proposed
an approach called scGeneFit to solve it. scGeneFit is an efficient
method for the marker selection of scRNA-Seq data having a hierar-
chical partition of the cell types. Specifically, scGeneFit selects the
marker genes that jointly optimize the cell type recovery using cell
type-aware compressive classification methods. These methods allow
for finding a projection of the marker to a low-dimensional subspace
where cells having the same annotation are closer to each other than
the cells differently annotated. To increase the selection of suitable
marker genes, scGeneFit constrains the projection so that each subspace
dimension is aligned to a coordinate axis in the original space. Thanks
to this specific constraint, each dimension in the low-dimensional space
directly captures a single marker, which corresponds to a single gene,
and not a weighted linear combination of different genes. On the other
hand, PanGA is the first framework that has been designed to solve
this problem, reformulated as a single-objective optimization problem,
by relying on the optimization capabilities of Genetic Algorithms [25],
which were previously applied to tackle different combinatorial prob-
lems in biomedical applications (see, e.g., [36–38]). Like COMET,
PanGA requires a cell-by-gene expression matrix (raw counts or nor-
malized values) and a cell type assignment for each cell, along with
the cell type of interest. Then, it evolves a population of candidate
marker panels evaluated according to the designed fitness function.
Finally, PanGA provides the user with a list of ranked marker panels,
according to their fitness value (the higher the better). In [16], the
optimization problem proposed in PanGA has been re-redefined as a bi-
objective problem with a modified fitness function to minimize the total
number of genes included in the panel. Both these works focused on
the comparison of different representations for the candidate solutions,
evaluating their impact on the optimization capabilities of the tested
objective optimization algorithms.

3. Material and methods

3.1. Datasets

3.1.1. Peripheral Blood Mononuclear Cells
This specific PBMC dataset consists of three thousand cells collected

from a Healthy Donor and is freely available from 10× Genomics (https:
//support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.
0/pbmc3k). The cell type annotation can be performed following
Scanpy’s tutorial ‘‘Preprocessing and clustering 3k PBMCs’’ (https://

scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html).

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
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3.1.2. Pancreatic Islet Cells
The PIC dataset is composed of four different experiments se-

quenced independently using four different platforms: CEL-Seq [39]
(1004 cells), CEL-Seq2 [40] (2285 cells), Fluidigm C1 [41] (638 cells),
nd Smart-Seq2 [42] (2394 cells). The count matrices can be down-
oaded from Seurat’s tutorial ‘‘Integration and Label Transfer’’ (https:

//satijalab.org/seurat/v3.0/integration.html). We analyzed all the 13
ajor cell types identified in [29].

.1.3. Human Fetal Cells
The HFC dataset contains 15 independent scRNA-Seq experiments

of human fetal liver and bone marrow [12] samples, sequenced us-
ing the SmartSeq2 protocol [43]. The filtered count gene expression
matrix, composed of 4504 cells and 29680 genes, was obtained using
the downstream analysis proposed in [12], which exploits the Scanpy
and scAEspy toolkits [31,44,45]. We grouped some cell subtypes to
analyze the major cell types, namely: B cells, Endothelial cells, Erythro-
cytes, Granulocytes, Hematopoietic Stem Cells/Multipotent Progenitors
(HSC/MPPs), Lympho–Myeloid Progenitors (LMPs), Megakaryocyte-
Erythroid-Mast Progenitors (MEMPs), Mast cells, Megakaryocytes,
Monocytes, Natural Killer (NK) cells, Unspecified, and Plasmacytoid
Dendritic Cells (pDCs).

3.2. Multi-objective optimization

Multi-objective Evolutionary Algorithms (MOEAs) are used to tackle
multi-objective problems, which are characterized by two or more
objective functions that must be simultaneously optimized [46]. In
particular, MOEAs aim to determine a set of non-dominated candidate
solutions, that is, solutions that cannot improve a single objective
without affecting the others. MOEAs make use of a population of candi-
date solutions evolved to approximate the so-called Pareto optimal set;
indeed, there is not a single solution able to simultaneously optimize all
the objectives. On the contrary, there exist a set of trade-off solutions,
which are known as Pareto optimal solutions.

There are several MOEAs, like the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [47], which follows the general scheme of
Genetic Algorithms and uses a crowding distance to explicitly preserve
the diversity in the population, or the S metric selection evolutionary
multiobjective optimization algorithms (SMSEMOA) [48] that exploits
a hypervolume measure to assess the quality of the candidate solutions.
MAGNETO employs the AGEMOEA, which can be seen as a modified
version of NSGA-II exploiting a survival score that combines both
the diversity and proximity of the non-dominated fronts instead of
the crowding distance [26]. The first front computed by AGEMOEA
is exploited to normalize the objective space, as well as to estimate
the Pareto front geometry, by using a fast procedure with reduced
computational complexity compared to the majority of the MOEA
approaches. In addition, AGEMOEA adapts diversity and proximity
metrics according to the estimated front geometry. In particular, the
closest solution to the middle of the first front is used to estimate the
parameters of the Minkowski 𝑝-norm, which is then used to compute
he survival score, a measure that combines the distance from the
eighbors and proximity to the ideal point (i.e., the origin of the axes).
n extension of AGEMOEA was presented in [49]. This method, called
GEMOEA-II, introduces a novel method to model the Pareto front’s
eometry and calculate the diversity of the candidate solutions.

. MAGNETO: The proposed pipeline

Fig. 1 shows the workflow of MAGNETO, which requires a gene
xpression matrix 𝐄 and a cell type assignment (i.e., label) for each cell
resent in 𝐄. Differently from PanGA and the work proposed in [16],

MAGNETO can read and manage h5ad files, which are modified hdf5
files specifying how AnnData/Scanpy objects have to be stored [31];
4

it can also directly handle AnnData/Scanpy objects. In these specific
cases, the cell type assignment can be a column of the provided
AnnData/Scanpy object. Finally, the gene expression and the cell type
assignment can be provided as two distinct Pandas dataframes [50,51],
TSV files, or CSV files.

We assume here that 𝐄 has 𝐶 cells and 𝐺 genes, whose elements
𝐸𝑐,𝑔 ∈ N, with 𝑔 = 1,… , 𝐺 and 𝑐 = 1,… , 𝐶, are greater than zero
when the gene 𝑔 is expressed in cell 𝑐; otherwise, 𝐸𝑐,𝑔 = 0. We also
assume that the cells are partitioned in 𝐿 distinct clusters (i.e., cell
types) and labeled using 𝐿 different labels (i.e., 𝑙1,… , 𝑙𝐿). A cell type of
interest  ∈ {𝑙1,… , 𝑙𝐿} (i.e.,  must be one of the 𝐿 distinct cell types)
can be optionally given as input to MAGNETO. In the case that  is
not provided, MAGNETO automatically identifies the optimal marker
panels for all the 𝐿 distinct cell types. Finally, a CSV file containing
the identified marker panels, ranked according to their fitness value, is
saved.

4.0.1. Individuals encoding and marker panel construction
MAGNETO is an improved version of the evolutionary approach

proposed in [16], which exploits AGEMOEA to identify the most
promising marker panels. In particular, MAGNETO solves a modified
version of the multi-objective optimization problem proposed in [16].
In fact, we introduce here a user-defined parameter 𝛼 to balance the
contributions of the two components of the fitness function defined in
Section 4.0.2. Moreover, MAGNETO can use three different binarization
strategies to binarize the gene expression matrix and then solve the
multi-objective optimization problem with the modified and improved
fitness function with respect to that used in [16]. Finally, MAGNETO
exploits the Python multiprocessing package to analyze all the clusters
of small scRNA-Seq datasets in parallel (this feature is currently avail-
able only on Linux-based systems). In the multi-objective formulation
of the problem, each individual 𝐼 of the MOEA represents a candidate
solution (i.e., a marker panel) and is encoded as a vector 𝐱 = (𝑥1,… , 𝑥𝜌),
where 𝜌 is a user-defined parameter used to limit the number of genes
composing the solution. The parameter 𝜌 is introduced as most of the
existing marker panels include only a few genes [12,52] (e.g., up to
10 genes). This constraint is imposed by the current flow cytometry
equipment that does not allow for the validation and use of large
panels [52]. However, MAGNETO is able to build large panels, which
could potentially provide high-resolution analyses of the desired cell
type [52].

A candidate solution 𝐱 can be decoded into a set  of positive genes
and a set  of negative genes, which are then used to evaluate the
esigned fitness functions. In this context, the terminology positive and
egative genes is used to indicate whether a certain gene is expressed
y a certain cell or not. To be more precise, positive genes are expressed
y most of the cells of type , while the cells of the other populations
ight only lowly express this gene. A negative gene instead is expressed

y only a few cells of type  but the cells of other cell types highly
express this gene. To decode 𝐱 into the sets  and  , each component
𝑥𝑗 of 𝐱, with 𝑗 = 1,… , 𝜌, is evaluated. A component 𝑥𝑗 can assume
values in {−𝐺,… ,−1, 0, 1,… , 𝐺} and is assigned to  ( ) if 𝑥𝑗 > 0
(𝑥𝑗 < 0); the elements of 𝐱 whose value is 0 are not taken into account
i.e., they are included in neither  nor  ). Considering that |𝐱| = 𝜌,
t results that ||+ | | ≤ 𝜌. Consequently, an intrinsic upper bound to
he number of selected genes is imposed on all the individuals, and the
esulting marker panels can be composed of no more than 𝜌 genes.

.0.2. Fitness function definition and evaluation
The first step towards the fitness calculation is binarizing 𝐄 to

btain a binary matrix 𝐁. The binarization step can be performed using
ifferent strategies, and MAGNETO comprises the following three.

• A global threshold value 𝜃 equal for all the genes:

𝐵𝑐,𝑔 =

{

1 if 𝐸𝑐,𝑔 > 𝜃,
(1)
0 otherwise.

https://satijalab.org/seurat/v3.0/integration.html
https://satijalab.org/seurat/v3.0/integration.html
https://satijalab.org/seurat/v3.0/integration.html
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Fig. 1. Workflow of MAGNETO. Given a gene expression matrix (raw counts or normalized values) and a cell type assignment for each cell, MAGNETO identifies the most
promising marker panels for either the cell type of interest (if provided) or for all the cell types present in the dataset. The marker panels are ranked according to their fitness
value (the higher the better) and a CSV file, containing the ranked marker panels, is saved.
• A specific threshold for each gene. In this case, the first quartile
𝑄1𝑔 is calculated for each gene 𝑔 and then used to binarize the
expression values of the gene 𝑔, as follows:

𝐵𝑐,𝑔 =

{

1 if 𝐸𝑐,𝑔 > 𝑄1𝑔 ,
0 otherwise.

(2)

• An interactive 𝑘-means procedure for each gene. In particular,
the 𝑘-means algorithm is applied 𝑇 times to identify 2𝑡 classes,
with 𝑡 = 1,… , 𝑇 . At the end of the procedure, the two identified
classes are used to binarize the values. In particular, the elements
belonging to the class associated with the greater centroid are set
to 1, while the other elements are set to 0.

We compared the effect of the binarization strategies on the percentage
of cells expressing the best marker panels identified by MAGNETO for
all the cell populations of the three datasets. Our results showed that
the first quartile 𝑄1 strategy is the most robust, allowing for obtaining
better results among all the tested cell populations (see Supplementary
Figs. 1, 2, and 3); as a consequence, we opted to use this strategy
in all the tests shown hereafter. For each cell type of interest , the
corresponding optimal marker panels can be built by identifying the
best sets  and  that allow for selecting as many cells in 𝐂 as possible,
while reducing the number of cells in 𝐒, where 𝐂 ⊂ 𝐁 is the submatrix of
𝐁 comprising the cells of type , while the submatrix 𝐒 = 𝐁∖𝐂 includes
all the other cells.

To evaluate the quality of an individual 𝐱, which encodes the sets
 and  , and thus the ability of the corresponding marker panels to
isolate as many cells of cell type  as possible, we apply the following
fitness function:

𝑓 ( , ,𝐂,𝐒, 𝛼) = (1 − 𝛼)𝑔( , ,𝐂) − 𝛼𝑔( , ,𝐒),

𝑔( , ,𝐀) = 1
|𝐀|

|𝐀|
∑

𝑖=1
(𝐴𝑖,𝑝1 ∧⋯ ∧ 𝐴𝑖,𝑝

||

)∧

¬(𝐴𝑖,𝑛1 ∨⋯ ∨ 𝐴𝑖,𝑛
| |

).

𝐴𝑖,𝑝1 ,… , 𝐴𝑖,𝑝
||

denote the expression or no expression of the positive
genes in  in the cell 𝐴𝑖 of the submatrix 𝐀, while 𝐴𝑖,𝑛1 ,… , 𝐴𝑖,𝑛

| |

indicate the expression or no expression of the negative genes in  in
cell 𝐴𝑖 of the submatrix 𝐀. Finally, the user-defined parameter 𝛼 ∈ (0, 1)
is used to balance the two contributions of the two components of the
fitness function, which must be simultaneously optimized. Low values
of 𝛼 allow for retrieving more cells of the cell type  at the cost of
5

including more cells of the other cell populations. On the contrary, high
values of 𝛼 help limit the number of cells of the other cell populations
and reduce the number of cells of the cell type .

It is worth noting that 𝑓 (⋅) can only assume values in [−1, 1], where
−1 is reached when only the cells in 𝐒 are collected, while the value 1
is obtained when  and  are able to exclusively isolate the cells in
𝐂, avoiding the cells in 𝐒.

Considering that marker panels composed of a few genes are more
suitable for the current flow cytometry equipment, the identification
of the marker panels can be formulated as a constrained bi-objective
problem. The first objective is the maximization of the function 𝑓 while
the second objective is the minimization of the number of genes com-
posing the marker panels. In addition, two constraints are introduced to
ensure (i) that at least one gene is considered within each individual,
and (ii) that each gene is either used as a positive or negative gene
(more formally, if 𝑔 ∈  then 𝑔 ∉  , while if 𝑔 ∈  then 𝑔 ∉ ).
Thus, this constrained bi-objective optimization problem is defined as:

max 𝑓1( , ,𝐂,𝐒) ∶= 𝑓 ( , ,𝐂,𝐒)
min 𝑓2( , ) ∶= || + | |

subject to: 𝑔1( , ) ∶= || + | | ≥ 1

𝑔2( , ) ∶=  ∩ = 0,

4.0.3. Genetic operators
Similar to [16,25], a binary tournament selection is used to se-

lect the parent individuals to generate the offspring population. To
recombine the information of the pairs of individuals, the exponential
crossover, which mainly acts as a single-point crossover but occasionally
it becomes a two-point crossover, is applied with a crossover rate 𝑝𝑐 .
An ad-hoc mutation strategy is used to increase the variability of the
offspring population by altering one or more values of each selected
offspring, enabling the introduction of a higher variability into the
population to prevent a premature convergence to local optima. In par-
ticular, the designed mutation strategy allows for randomly changing
each value with one of the other values in {−𝐺,… ,−1, 0, 1,… , 𝐺}. For
each selected offspring, the mutation is applied to all the components
of the offspring with the same mutation rate 𝑝𝑚.

5. Results and discussion

To assess the correctness and accuracy of MAGNETO, we execute
several tests starting from the datasets described in Section 3.1. Note
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that we only consider the CD molecules (∼400 genes) in all the tests
shown hereafter; thus, we filtered out the other genes before apply-
ing the tested approaches. Considering the results presented in [16,
17], we compared MAGNETO against RANKCORR, SMaSH, Hypergate,
sc2marker, and COMET, to thoroughly test its effectiveness in building
marker panels.

We first execute the tested methods to identify the optimal marker
panels with 2, 3, and 4 genes for the isolation of CD8 𝑇 cells in
he PBMC dataset, alpha cells in the PIC dataset, and B cells in
he HFC dataset. The results of this analysis are reported in Fig. 2,
here the barplots show the percentage of cells isolated with the
enes included in the marker panels built by RANKCORR, SMaSH,
ypergate, sc2marker, COMET, and MAGNETO. We observe that in
ll cases the percentage of cells of interest isolated with the panel
enerated by MAGNETO is higher than that obtained with the other
pproaches. Specifically, in the case of the PBMC dataset, (Fig. 2a)
he panels of MAGNETO isolate both CD4 and CD8 cells (up to 80%),
hile the other approaches remain at very low percentage values,
specially using marker panels composed of 4 genes. We argue that

this phenomenon can be caused by the fact that the PBMC dataset
comprises immune cells, which mainly include 𝑇 cells (∼70%), B
cells (∼15%), monocytes (∼5%), dendritic cells (DC) (∼1%), and NK
cells (∼10%) [53,54]. In particular, the 𝑇 cell co-receptor can be
urther divided into two main subtypes: CD4 and CD8 𝑇 cells [55];

the panel identified by MAGNETO can isolate a high percentage of
both subtypes of 𝑇 cells. Considering the marker panels with 4 genes,

e also observe that the approaches have different performances
oth in terms of the percentage of isolated cells and regarding the
enes included in the panels (RANKCORR: ADAM8+LY9+CD5+FCRL3+;

SMaSH: CD3D+CD8A+CD99+CD8B+; Hypergate: CD8A+CD74−CD79A−

CCR7−; sc2marker: CD8ALAG3+CD8B+CD3D+; COMET: CD99+CD8A+

D3D+CD8B+ MAGNETO: CD3D+CCR7−CD40LG−TNFRSF4−). Marker
enes listed by RANKCORR are not specific to any particular cell type.
or example, RANKCORR identified CD5 and FCRL3 as two of the top
arker genes for 𝑇 cells. However, CD5 is a well-known marker for

ctivated B cells [56,57] and FCRL3 is expressed on B cells, NK cells,
nd 𝑇 cell subsets [58]. The broad expression patterns of these markers
ndicate unspecificity, which can make their usage less informative
nd potentially ambiguous in certain contexts. Although Hypergate
dentifies CD8 as a top marker gene for 𝑇 cells, the absence of CD3D,

widely recognized 𝑇 cell marker, raises concerns about its ability
o identify 𝑇 cells specifically. CD3D is crucial for 𝑇 cell receptor
ignaling and is considered a reliable marker for 𝑇 cells. The absence
f comprehensive 𝑇 cell-specific markers may result in incomplete
r inaccurate identification of 𝑇 cell subsets. The sc2marker panel
ncludes CD8ALAG3, CD8B, and CD3D. While CD8ALAG3, CD8B, and
D3D are associated with 𝑇 cells, their expression patterns may not
e exclusive to 𝑇 cells alone. CD8B, for instance, is expressed on both
cells and NK cells. This lack of specificity can introduce uncertainty

nd compromise the accuracy of 𝑇 cell identification. The inclusion of
D99 in COMET’s and SMaSH’s marker panel may introduce the risk
f non-T cell contaminants influencing the analysis. CD99 is not 𝑇 cell-
pecific and can be expressed on various cell types, including NK cells,
onocytes, and DCs [59]. MAGNETO’s marker combination includes
D3D and CCR7− which provide a specific profile for identifying 𝑇
ells. As stated above, CD3D is a well-established marker associated
ith T cell receptor signaling, while CCR7− indicates the absence of
CR7, a marker commonly expressed on naive and central memory T
ells [60]. CCR7 is also known to help DCs navigate from peripheral
issues to the lymph nodes, where they then control 𝑇 cell activa-
ion [61]. This combination suggests a targeted focus on 𝑇 cells and
otentially a specific 𝑇 cell phenotype or subset. MAGNETO excludes
D40LG and TNFRSF4, which are markers associated with non-T cell
opulations. By excluding these markers, MAGNETO helps minimize
otential interference from non-T cell contaminants, allowing for a
6

ore precise and accurate analysis of 𝑇 cell-specific gene expression. C
cells have several subsets which lead to an extensive list of genes
lassed as 𝑇 cell ‘‘markers’’, but it is critical to note that these genes
ave different immune functions and may not necessarily be useful in
dentifying the predominant CD4 and CD8 𝑇 cells.

Regarding the PIC dataset (Fig. 2b), all panels isolate other cells
esides alpha cells (e.g., epsilon, mast cells) with reduced percentage
alues. Anyhow, also in this case, the specificity of the panels built with
AGNETO is higher than those identified by the other approaches, as

enoted by the very high percentage of alpha cells retrieved, even with
nly two genes. The majority of PIC cells are made up of beta (65–80%)
nd alpha (15–20%) cells [62]. Even though alpha cells only comprise
15–20% within PIC, the marker genes identified by MAGNETO yield
higher percentage in terms of specificity when compared to COMET

onsistently and irrespective of the number of genes. This might suggest
hat MAGNETO has the capability to identify cell populations not
resent in abundance.

In the case of the HFC dataset (Fig. 2c), MAGNETO allows for
solating around 80% of B cells with all panels. Considering the marker
anels with 3 genes, we observe that some of the tested approaches
ave similar performance (i.e., the percentage of each cell type iso-
ated with the panels is similar) even though the genes included in
he panels are different (RANKCORR: KLRD1+TLR9+CD27+; SMaSH:
D79B+CD24+VPREB1+; Hypergate: CD24+CD79B+CSF3R−; sc2marker:
D24+CD79B+CD79A+; COMET: CD74+CD79B+CD24+ MAGNETO:
D79B+CD24+ACE−). KLRD1 is not a specific marker for B cells but

s associated with NK cells [63]. Its presence in RANKCORR suggests
hat it may detect NK cells instead of B cells. CD27 is a marker
xpressed on various immune cells, including B cells, T cells, and NK
ells [64]. While it is found on some B cells, its presence in RANKCORR
uggests that it may not exclusively target B cells, resulting in potential
ontamination from other cell types. Hypergate being CD79B+ indicates
hat it relies on CD79B expression, which is a reliable marker for B
ells. While CD79A is a component of the B cell receptor complex,
t is not exclusively expressed in B cells. CD79A can also be found
n other immune cell types, such as plasma cells. The expression
evel of CD79A can vary among different B cell subsets and can be
nfluenced by factors such as activation state and maturation stage. This
ariability makes it less reliable as a marker for consistent and reliable
dentification of B cells. Despite including commonly used marker
enes such as CD79B, CD24, and VPREB1, the specific combination
sed in SMaSH does not demonstrate optimal performance or the best
esults. CD79B is a B cell-specific protein whose expression in COMET
nd MAGNETO reaffirms their ability to isolate B cells accurately.
dditionally, CD24, a frequently observed marker on B cells, further
upports their identification and isolation [65]. The marker genes
dentified by MAGNETO and COMET are thus standardized B cell
arkers. While COMET and MAGNETO exhibit similar performance,
AGNETO slightly surpasses COMET in isolating B cells using three

enes. MAGNETO demonstrates a slightly reduced expression for vari-
us cell types such as LMPs, erythrocytes, and granulocytes, indicating
ts better ability to specifically target B cells compared to COMET. This
uggests that MAGNETO could confidently identify B cells even with
reduced number of genes, consequently implying the reliability and

uperiority of the combination of genes within its panel. However, it
s worth noting that several other cell types were also identified with
AGNETO’s panel, albeit in significantly lower percentages.

A second test to investigate the performance of MAGNETO regards
he identification of marker panels by varying the value of the param-
ter 𝛼, which controls the contribution of the two components of the
itness value related to the first objective of the problem. In particular,
e consider the values 0.2, 0.4, 0.6, 0.8 to obtain less (with low 𝛼
alues) or more (with high 𝛼 values) specific marker panels. In this test,
e take into account the same cell types as in the previous analysis.
ig. 3 reports the barplots showing the percentage of cells isolated with
he panels identified by RANKCORR, SMaSH, Hypergate, sc2marker,

OMET, and MAGNETO using 𝛼 = 0.8. It is evident that MAGNETO
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Fig. 2. Barplots showing the percentage of cells isolated by considering the genes included in the best marker panels (with 2, 3, or 4 genes) identified by RANKCORR (brown
ars), SMaSH (violet bars), Hypergate (red bars), sc2marker (green bars), COMET (orange bars), and MAGNETO (blue bars) for a specific cell type of interest. The percentage of
ach cell type is calculated using function 𝑔 described in Section 4.0.2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
m
S

t

uilt more specific marker panels that allow for better isolating of the
esired cells, reducing the percentage of cells of other cell populations.
upplementary Fig. 4 reports the barplots showing the percentage of
ells isolated with the panels identified by MAGNETO with increasing
alues of 𝛼. As expected, with 𝛼 = 0.2, a very high percentage of
he cell type of interest, as well as the other types, are isolated with
he panels. On the contrary, when the value of 𝛼 is increased, the
anels obtained with MAGNETO allow for more specific isolation of
he cell type of interest, meaning that the percentage of all other cells
s strongly reduced.

The results obtained by MAGNETO setting 𝛼 = 0.8 permitted
or having very specific marker panels. We further analyze and com-
are this tuning of MAGNETO against the most promising approaches
i.e., SMaSH, Hypergate, and COMET) in an ad-hoc test. In particular,
e consider the isolation of HSC/MPP cells of the HFC dataset; the
7

C

arker panel that can be built considering the top 4 genes calculated by
MaSH includes SELL+, CD34+, CD52+, and PROM1+, while Hypergate

identified CD52+, CD74+, CD24−, and CD9− as the best genes for isolat-
ing HSC/MPP cells. Despite identifying CD52 as a marker gene, Hyper-
gate also detects CD74, which is not only a significant marker gene for
B cells but is also broadly expressed in various other immune cell pop-
ulations, including T cell subsets, monocytes, and macrophages [66].
This broad expression of CD74 in different immune cell types po-
tentially hinders Hypergate’s ability to isolate HSC/MPP populations
specifically. While SMaSH effectively identifies key marker genes for
HSC/MPP populations, its performance could be enhanced by incorpo-
rating negative markers to eliminate potential contaminating popula-
tions that do not strictly represent HSC/MPP cells. The panel built by
COMET includes the genes CSF3R+, CD74+, CD52+, and CD34+, while
hat built by MAGNETO is composed of the genes PROM1+, CD52+,

− −
SF1R , and HMMR . MAGNETO identified key marker genes that
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Fig. 3. Barplots showing the percentage of cells isolated by considering the genes
included in the best marker panels identified by MAGNETO using 𝛼 = 0.8 and the
ther state-of-art approaches for a specific cell type of interest. The percentage of each
ell type is calculated using function 𝑔 described in Section 4.0.2.

ere previously used in the refined panel by Ranzoni et al. [12] to iso-
ate HSCs/MPPs which include CD52+ and PROM1+. CSF1R and HMMR
re known marker genes for common myeloid progenitors/common
ymphoid progenitors (CMP/CLP) [67] and megakaryocyte progenitors
MKP) [68], respectively. Although CMP/CLP and MKPs are subtypes
f HSC/MPPs they are present further down the hematopoietic lineage
ree and represent committed progenitors. This possibly explains why
e see most of the cells correctly present in the HSC/MPPs cluster and
nly a small fraction of cells present in other clusters in the UMAP.
OMET identified CD34 and CD52 that are some of the most common
SC/MPP marker genes [69]. However, it also picked up CD74 that is
key marker gene of B cells [70] but also broadly expressed in several
ther immune cell populations as stated above [66]. Although CSF3R is
8

c

nown to play a role in hematopoietic stem cell mobilization, it is also
ound to regulate granulopoiesis and neutrophil function. Together,
hese genes do play a role in identifying HSC/MPPs but more pre-
isely committed progenitors and this possibly elucidates why we see a
ignificant number of cells also present in the B cell and granulocyte
lusters. Fig. 4 (top) shows the UMAP representation of the dataset
ith the manual annotation where the HSC/MPP cluster is denoted

n violet. The manual annotation can be visually compared with the
SC/MPP cells (denoted in green) expressing the best marker panels

dentified bySMaSH (middle left), Hypergate (middle right), COMET
bottom left), and MAGNETO (bottom right), respectively. We observe
hat the cluster of interest is better highlighted when considering the
enes of the panels identified by SMaSH and MAGNETO, especially for
hat concerns the cells of other types mistakenly isolated. In particular,

he marker panel identified by MAGNETO is expressed by ∼62% of
SC/MPP cells and by only ∼6% of other cells (see Supplementary
ig. 5). Considering the top 4 genes identified by SMaSH, the marker
anel that can be built is expressed by ∼63% of HSC/MPP cells and
10% of other cells. The contribution of positive and negative genes
f the marker panel built by MAGNETO is graphically explained in
ig. 5 (top), where the UMAP representations highlight the cells of
he HSC/MPP cluster isolated considering only the positive genes (left)
hat must be all co-expressed by the cells, the cells of any kind that
xpress at least one of the negative genes of the panel (middle), and
he cells isolated considering both positive and negative genes (right).
he pie-charts reported at the bottom of Fig. 5 denote the percentage of
SC/MPP cells isolated with positive genes (left), negative genes (mid-
le), and with the complete panel (right); thanks to the contribution
f all genes included in the panel, the resulting percentage of cells of
nterest isolated is 81.4%.

To evaluate the performance of MAGNETO in building larger panels,
e execute MAGNETO with the maximum number of genes 𝜌 to be
ossibly included in the marker panels equal to 10 and with 𝛼 =
.8, which allows for obtaining selective solutions for the cell type of
nterest. Fig. 6 reports the barplots identified on the three datasets; in
ll cases, the marker panels isolate a high percentage of the cell types of
nterest, while the percentage of the other cell types is below 10%. The
nly exception regards the panel for the isolation of B cells in the HFC
ataset, where the percentage of unspecified cells taken into account is
round 30%. We argue that the panel includes the unspecified cells of
his dataset, as they are probably some B cell progenitors.

As a final test, we evaluate MAGNETO’s running time by varying
he number of cells and the values of 𝜌 ∈ {2, 4, 6, 8, 10, 12} (i.e., the
aximum number of genes composing the marker panels). To do so,
e analyze a subset of the cross-tissue single-cell atlas of developing
uman immune cells [71]. In particular, we consider only the immune
ells (all hematopoietic-derived cells) for a total of 593203 cells. MAG-
ETO is applied to identify the marker panels for NK cells in three
ifferent organs of the immune cell subset: kidney (8444 cells), skin
54122 cells), and spleen (85341 cells). We use a workstation equipped
ith an Intel Xeon Gold 6208U CPU (clock 2.9 GHz) and 64 GB of
AM, running Ubuntu 22.04 LTS to run MAGNETO, which takes less

han 2 minutes to build the marker panels composed of a maximum
f 12 genes for NK cells (11763 cells out of 85341 cells) in the spleen
see Supplementary Fig. 6). MAGNETO can be applied to analyze to
uild the marker panels for a specific cell type from large scRNA-Seq
atasets (more than 100000 cells) in a few minutes. MAGNETO also
xploits the Python multiprocessing package to build the marker panels
or all the clusters of small scRNA-Seq datasets in parallel. For instance,
AGNETO can analyze the 13 clusters of the PIC dataset (∼6400 cells)

n less than 14 seconds. For the sake of comparison, the approaches
ested in [17] (i.e., sc2marker, CombiRock, RANKCORR, and COMET)
ook several minutes for the analysis of the PBMC dataset, and around
ne hour for the analysis of the MCA lung data set, which contains 6940

ells characterized in 31 distinct cell types.
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Fig. 4. Top left : UMAP representation of the different cell types present in the HFC dataset. Top right : UMAP representation highlighting only the HSC/MPP cells in the HFC
dataset. UMAP representations highlighting the cells co-expressing all the positive genes and not expressing any negative genes included in the marker panels identified by SMaSH
(i.e., SELL+CD34+CD52+ PROM1+, middle left), Hypergate (i.e., CD52+CD74+ CD24−CD9−, middle right), COMET (i.e., CSF3R+CD74+CD52+CD34+, bottom left), and MAGNETO
(i.e., PROM1+CD52+CSF1R−HMMR−, bottom right) for the HSC/MPP cluster.
6. Conclusions

The fast-increasing number of scRNA-seq experiments is opening a
number of computational challenges to be faced as never before. On
the one hand, these experiments are allowing us to reveal novel cell
types and subtypes in different organisms and tissues, which often play
crucial functional roles based on context and the microenvironment
where they are. Moving from the high-throughput discovery of these
cell populations to targeted functional studies requires the identifica-
tion of specific marker panels able to isolate them from all the other
cell populations specifically. In this work, we presented marker panel
generator with multi-Objective optimization, a tool for automatically
identifying optimal marker panels for isolating cell types of interest
9

starting from annotated scRNA-Seq data. MAGNETO exploits the AGE-
MOEA algorithm to solve the problem of optimizing marker panels,
defined as a bi-objective problem. The two conflicting objectives de-
fined in MAGNETO regards the identification of the most appropriate
genes to be included in the panel to maximize the number of cells of
interest that can be isolated, and the minimization of the number of
genes to be included in the panel.

We tested MAGNETO on three different public datasets (i.e., PBMC,
PIC, HFC) and compared its outcome against COMET, RANKCORR,
SMaSH, Hypergate, and sc2marker. Our results show that the panels
identified by MAGNETO allow for a more specific characterization of
the cell types of interest, thanks to the hyper-parameters that can be
set by the user (i.e., binarization strategy, the maximum number of
genes, specificity of the marker panel). The main assumption behind
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Fig. 5. Top: UMAP representations highlighting the cells co-expressing all the positive genes (left), the cells expressing at least a negative gene (middle), and the cells co-expressing
all the positive genes and not expressing any negative genes of the marker panel identified by MAGNETO (right) to isolate the HSC/MPP cluster (i.e., PROM1+CD52+CSF1R−HMMR−).
Bottom: Pie-charts showing the normalized percentage of HSC/MPP cells (violet) and of other cells (gray) co-expressing all the positive genes (left), expressing at least a negative
gene (middle), and co-expressing all the positive genes and not expressing any negative genes of the marker panel identified by MAGNETO (right) to isolate the HSC/MPP cluster.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the idea of building marker panels from scRNA-Seq is that genes
correlate well between their transcriptional and protein/cell surface
abundance. However, this assumption sometimes is not completely
correct due to several biological and technical factors, including mRNA
stability, protein stability and transport, and translation efficiency.
MAGNETO can be extended by including additional objectives to the
problem formulation, such as the cost of the lab experiment or the
availability and quality of the different antibodies. Another problem
to be taken into account during the identification of the marker panels
is the discrepancies between cellular mRNA levels and surface protein
detection rates with flow cytometry, which are mainly due to both the
antibody quality and specificity. This might be addressed by providing
MAGNETO with information about how the protein abundance of each
gene correlates with its transcriptional state.

In addition to the validation presented here, we are performing
lab experiments to investigate the broader applicability of MAGNETO.
To this end, we are planning to experimentally validate using flow
cytometry the marker panels identified by MAGNETO from scRNA-Seq
experiments, and are performing a series of such experiments in cancer.
Cancer is indeed a complex disease where biological heterogeneity
poses a clinical challenge [72]. We are designing experiments to isolate
cancer cells that are resistant to current clinical therapies, together with
other cell populations in the tumor microenvironment that drive or
activate resistance via signaling to cancer cells. We anticipate that this
work will provide mechanistic insight into therapeutic resistance.

Finally, we are working to extend MAGNETO to be successfully used
in CITE-seq experiments.
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Availability and requirements

MAGNETO’s open-source code is available on GitLab: https://gitlab.
com/andrea-tango/magneto under the BSD-3 license. MAGNETO can
also be easily installed using the Python package installer pip and the
conda package manager, which allow the user to use MAGNETO as a
Python package that can be integrated into Python scripts and Jupyter
Notebooks.

The repository also contains the Jupyter Notebooks used to obtain
and analyze the results shown in the paper. We provide a detailed
description of MAGNETO parameters and examples so that both novice
and expert researchers can use it for analyzing their data.
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Fig. 6. Barplots showing the percentage of cells expressing the genes included in the
est marker panels identified by MAGNETO using 𝜌 = 10 (i.e., marker panels composed

of up to 10 different genes) and 𝛼 = 0.8 for the isolation of a specific cell type of
interest. The percentage of each cell type is calculated using function 𝑔 described in
Section 4.0.2.
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