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Abstract

The thesis is motivated by the study of brain effective connectivity using neuroimaging

data, in particular, functional magnetic resonance imaging (fMRI) data and electroen-

cephalography (EEG) data. We focus on a largely applied methodology to study effective

connectivity, the vector autoregressive (VAR) model, as it is closely related to the notion

of Granger causality. Statistical challenges in inference with VAR models include the

high dimension of the parameter space and the choice of the number of lags. We address

these challenges and propose a novel framework based on tensor decomposition to achieve

dimension reduction. We adopt a Bayesian approach, which allows to incorporate infor-

mation from experts and to give a formal quantification of uncertainty. We first develop

a (static) Bayesian tensor VAR model with a careful choice of the prior distributions.

However, the main objective of the thesis is to develop dynamic tensor VAR models, in

order to take into account dynamic changing patterns of the brain connectivity and non-

linearities. The thesis thus contributes to the established and still growing literature on

dynamics in brain activities.

We propose a Bayesian time-varying tensor VAR model that employs a tensor decom-

position for the VAR coefficient matrices at different lags. Dynamically varying connectiv-

ity patterns are captured by assuming a latent binary state process that selects the active

components of the tensor decomposition at each time via a novel Ising prior specification

in the time domain, and we use carefully designed sparsity-inducing priors that allow to

ascertain model complexity through the posterior distribution. The model is studied on
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synthetic data and in a real fMRI study involving a book reading experiment.

We further explore a more direct specification of a time-varying tensor VAR model

through dynamic shrinkage priors. While the above Ising prior specification essentially

assumes transition in terms of discrete latent states, an alternative approach is to en-

visage smoother temporal transitions by modeling the time-varying coefficients as an

autoregressive process. We pursue this approach with the additional objectives of dimen-

sion reduction and temporal dependent sparsity. Our contribution is to employ dynamic

shrinkage priors, recently proposed for dynamic variable selection in a regression setting,

for time-varying tensor VAR models. More specifically, we employ the dynamic spike and

slab prior and the dynamic shrinkage process to define hierarchical Bayesian time-varying

tensor VAR models for multiple homogeneous trials.

As an ongoing project, we aim to contribute to Bayesian statistical methodology for

dynamic regression with multivariate time series by proposing a new process prior that

has the generalized double Pareto (GDP) prior as the marginal distribution.
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Chapter 1

Introduction

1.1 Introduction and thesis outline

In this thesis, we are motivated by the study of brain effective connectivity using neu-

roimaging data and in particular functional magnetic resonance imaging (fMRI) and elec-

troencephalography (EEG) data. Brain effective connectivity measures directed influences

one brain region has on others, which is of special importance as it gives us insights on

the role of each brain region as well as how brain as a whole functions when a person is

in a resting state or when he executes some tasks (Stephan and Friston, 2010; Friston,

2011; Razi and Friston, 2016). Many approaches for brain effective connectivity exist

such as dynamic causal modeling (DCM) first introduced in Friston et al. (2003) and

structural equation modeling (SEM) (Hoyle, 1995; Ullman and Bentler, 2003). DCM is

general in the sense that it encompasses most effective connectivity models but it is also

computationally expensive (Daunizeau et al., 2011). Simplifying DCM is desired as it

helps to achieve a good balance between model generality and practical usability. Vector

Autoregressive (VAR) models can be regarded as one way of simplification and are widely

applied to study brain effective connectivity due to their connection with the notion of

Granger causality. However, there are relevant statistical challenges in inferences with
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VAR models. For instance, the parameter space is quadratic in the time series dimension,

invalidating conventional estimation methods like the ordinary least squares (OLS). The

huge parameter space also leads to unstable parameter estimation. Another challenge is

in model specification as to determine the order (number of lags) to be included in the

model. Including too few lags leads to the risk of neglecting important past observations

that have significant explanatory power over current observations; on the other hand, in-

cluding unnecessary lags to the model would cause overfitting and excessive computation

burden.

We address these challenges and propose a novel framework incorporating tensor and

tensor decomposition to achieve dimension reduction. In spite of this, the reduced pa-

rameter dimension is still considerably large, and further methods are needed to induce

shrinkage and sparsity. We adopt the Bayesian approach, which allows to incorporate

information from experts and give a formal quantification of uncertainty (or partial in-

formation), as learning is expressed through conditional distributions. This is reflected in

our thoughtful choice of a global-local shrinkage prior distribution that has an increasing

shrinkage component which enables the data driven selection of the optimal lags in the

VAR. The proposed Bayesian tensor VAR model is presented in the first chapter of the

thesis. Here, the model’s parameters are constant over time, and we refer to the model

as “static”.

In fact, the main objective of the thesis is to develop methodological tools for dynamic

brain effective connectivity, that can capture dynamic changing patterns of the brain

activity and of (directed) causal relationships.

There is well-established and still lively growing literature that accounts for dynamics

in brain activities (Hutchison et al., 2013; Taghia et al., 2017; Park et al., 2018a; Warnick

et al., 2018; Park et al., 2018b; Zarghami and Friston, 2020a). Such consideration poses

a further challenge when we add a temporal dimension to the analysis. In light of this, a

time-varying regression structure is required. The starting point in our study is the time-
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varying VAR model, which offers more flexibility than the static VAR model in accounting

for possible dynamic brain effective connectivity. In the proposed Bayesian dynamic

tensor VAR model (Chapter 3), the time-varying coefficients of the VAR are stacked into

a tensor so that tensor decomposition can be employed to exploit the underlying lower

dimensional structure. More specifically, we envisage that each component of the tensor

decomposition is stochastically ‘activated’ though a latent binary time series, which has a

Markovian temporal dependence defined through a novel, parsimonious Ising prior in the

time domain, which encourages no activation at each time point as well as joint activation

of two consecutive time points. The remaining components of the prior specification

leverages on what we have developed for the static VAR model (Chapter 2). After we test

our method’s performance through simulation studies, we apply the approach to an fMRI

dataset where signals for experiment subjects are measured while they read novels. The

real data application delivers some interesting findings that reveal changing information

flows between brain regions when it comes to plot twists.

In the above model, the temporal evolution essentially assumes transitions in terms

of discrete latent states; consequently, the model is designed to adapt to abrupt changes,

since it envisages that, at any time point, a state can either be active or inactive. If the

objective is to have smoother temporal transitions, a natural solution could be model

the time-varying coefficients more directly, as an autoregressive process. In Chapter

4 of the thesis, we follow this path while keeping the overall framework that applies

tensor decomposition to the VAR coefficient matrix, and with the additional objectives

of dimension reduction and temporal dependent sparsity. Indeed, we notice that there is

a very recent and growing literature on dynamic shrinkage prior laws (Kalli and Griffin,

2014; Kowal et al., 2019; Rockova and McAlinn, 2021; Irie, 2019). These priors are

proposed for dynamic variable selection in a regression setting. A novel contribution

in Chapter 4 of the thesis is to employ dynamic shrinkage priors in the framework of

time-varying tensor VAR models. More specifically, we employ the dynamic spike and
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slab prior and the dynamic shrinkage process to define hierarchical Bayesian time-varying

tensor VAR models for multiple homogeneous trials.

Inspired by the time-varying VAR model, we contemplate on a general goal to develop

Bayesian dynamic regression tools for multivariate time series analysis. The Bayesian

dynamic regression that we refer to has not only time-varying parameters but also time-

varying sparsity which assumes that the sparsity induced on time varying parameters is

temporal dependent; that is, if at some point the shrinkage imposed on a parameter is

strong then similar strength of shrinkage should be imposed on parameters at the follow-

ing time points; this is reasonable prior knowledge. Many time-varying priors have been

proposed in literature as discussed above. Usually these priors yield stationary marginal

distributions for the processes (Kalli and Griffin, 2014; Kowal et al., 2019; Rockova and

McAlinn, 2021; Irie, 2019), with the exception that the marginal distribution of the dy-

namic shrinkage processes proposed by Kowal et al. (2019) does not have an analytical

form. We consider an analytically tractable marginal distribution of a time-varying prior

to be highly desirable property as this gives us a clear idea of the shrinkage behavior

our proposed prior induces. An ongoing project is to contribute to the growing body

of literature on dynamic shrinkage priors by proposing a new process prior that has the

generalized double Pareto (GDP) prior as the marginal distribution. The reasons why we

focus on the GDP prior include: 1) the GDP prior has been well studies, for instance, it

has a spike around 0 as the Laplace distribution while it also behaves similarly to the stu-

dent’s t distribution in the tails; 2) the GDP prior was proposed in the tensor regression

context, and extending it to the dynamic case naturally gives rise to a new application to

the dynamic tensor regression setting.
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1.2 Brain effective connectivity

Understanding how human brains work has always been a research topic that attracts wide

attention. Nowadays two distinct perspectives exist in the neuroscience community. One

branch, termed functional segregation, builds upon the hypothesis that different functions

are processed in different regions of the brain locally and separately in the absence of

communication. Research developed under this framework focuses on activation in human

brain images and has yielded important results that facilitate our understanding of brain

functions. For example, hippocampus has been identified to be responsible for memory

formation; damages to hippocampus are linked with Alzheimer’s Disease (Hyman et al.,

1984; West et al., 1994; Jin et al., 2004). In addition to understanding disease mechanism

and disease diagnosis, another research topic that falls inside this realm is to estimate task-

related activation patterns. In such a experiment, the brain signals of a single subject or

multiple subjects are measured after certain experiment condition and they are used to

detect active brain regions subsequent to that condition. Classical methods in this area

include for instance, the generalized linear model (GLM), which states that

yn = Xnβn + εn.

The response yn is measure brain signals time series of length T , the design matrix

Xn ∈ RT×p contains experiment tasks, input stimuli and covariates and βn ∈ Rp are

the coefficients associated with each of the independent variables. n = 1, . . . , N is the

index of regions of interest (ROIs) and the GLM is estimated separatedly for each region

(Gössl et al., 2001; Trujillo-Barreto et al., 2004; Flandin and Penny, 2007; Trujillo-Barreto

et al., 2008). Despite of its tremendous success in explaining some human brain functions,

this perspective neglects another vital aspect, the connection that indicates simultaneous

fluctuation or casual information transmission, revealing the true underlying mechanisms

that drive brain function. Therefore, a growing number of publications in the field turn to
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functional integration to address more complex phenomena in interdisciplinary domains

such as neuro-economics. It is documented in Konovalov and Krajbich (2019) that the

brain has two learning systems, namely model-free and model-based systems and they are

associated with white matter pathways between the striatum and premotor cortex and

between the striatum and ventromedial prefrontal cortex (vmPFC) respectively, providing

further evidence that segregated regions of brain usually only specialize in certain func-

tions. However, the perception of sophisticated economic and psychological constructs

such as value involves both learning systems, which requires the interactions between the

two regions of the brain.

Brain integration can be further divided into functional connectivity and effective con-

nectivity, modeling human brain images from two angles. The former, functional con-

nectivity, assumes undirected graphs whereas the latter, effective connectivity, imposes

directed edges between nodes of the brain, referring to the information flow from one region

to another (Friston, 1994, 2011). The distinction in the assumption touches two funda-

mentally different guidelines. Functional connectivity describes the dependence structure

of observed brain images while effective connectivity finds mechanism to explain the ob-

served patterns. Consequently, it leads to approaches and implications rather unique and

specific to the exact connectivity of interest. In functional connectivity, emphases are put

on the covariance or precision matrix. For example, in Warnick et al. (2018), functional

connectivity reflected in the regression error term is modeled by a Gaussian graphical

model where graphs evolves according to a hidden Markov model and in the meantime

are governed by a super graph. Assume that yt is a vector of length N , denoting the brain

signals of a subject measured on N ROIs across time t = 1, . . . , T and it is the sum of some

global mean µ and K element-by-element products between design vector Xk
t ∈ RN and
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the regression coefficients βk ∈ RN corresponding to the effect of K experiment stimuli.

yt = µ+
K∑
k=1

Xk
t ◦ βk + εt

βn,k ∼ (1− γn,k)δ0 + γn,kN (0, σ2
β)

The prior on the coefficient vector βk has the spike and slab structure with a spike at 0

and Gaussian slab. The error term εt given some state st = s, s = {1, . . . , S} is normally

distributed with mean 0 and precision matrix Ωs ∈ RN×RN . The positive definite matrix

Ωs is further assumed to follow the G-Wishart distribution characterized by

p(Ω | G, b,D) = IG(b,D)−1|Ω|
b−2
2 exp

(
1

2
tr(ΩD)

)
,

where b > 2 is the degrees of freedom, D is a N × N positive definite matrix and IG is

the normalizing constant. The precision matrix Ωs embeds the conditional independence

relationships in a graph Gs = (N , Es) with N nodes N and state dependent edges Es.

The state transition of st is modeled via a simple hidden Markov model (HMM). Edges

gij = (gij1, . . . , gijs) with gijs ∈ {0, 1} indicate the presence or absence of edge (i, j) in

graph Gs, s = 1, . . . , S. The edge vector is jointly modeled as

p(gij | vij,Θ) = C(vij,Θ)−1 exp(vij1
′gij + g′ijΘgij),

where vij controls the overall sparsity level of gij and Θ ∈ S × S captures association

between graphs at each state s. The super graph reflected in Θ encourages the selection of

the same edges in related graphs. Another approach clusters the brain regions into groups

that exhibit similar characteristics using classical methods such as principal components

analysis (PCA) and independent components analysis (ICA) (Leonardi et al., 2013; van de

Ven et al., 2004; Birn et al., 2008).
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On the other hand, different tools are required for studying brain effective connectivity

as it measures directed influences one brain region has on others. Nongenerative methods

are not reliable when modeling the effective connectivity as they are very sensitive to

signal-to-noise ratio (Zhang et al., 2015a). Main strategies to deal with effective connec-

tivity originate from a generic state-space model incorporating differential equations that

characterizes the neuronal system. An important model of this kind is the dynamic causal

model (DCM) (Kiebel et al., 2007; Stephan et al., 2010; Friston et al., 2019). In general,

the DCM assumes that

ẋ(t) = f(x(t), u(t), θ) + w(t),

y(t) = g(x(t), u(t), θ) + v(t),

which is essentially a state-space model in continuous time. The x(t) are hidden neuronal

states that cannot be measured directly while the y(t), as a function of x(t), are observed

brain signals. u(t) corresponds to exogenous inputs and w(t), v(t) are random fluctuations.

θ is the set of model parameters that contains information on brain effective connectivity.

Without knowing the specific function form of f(x, u, θ) and g(x, u, θ), the model space

is huge, therefore researchers have been using a simplified version of DCM such that

ẋ = θxx+ uθxux+ θuu+ w (1.1)

θx =
δf

δx

∣∣∣∣
x=0

θxu =
δ2f

δxδu

∣∣∣∣
x=0,u=0

θu =
δf

δu

∣∣∣∣
u=0

.

Here, θx measures the directed effect of x on its own first derivatives ẋ while θu reflects

the strength of influence from external u on x. θxu is the coefficient of bilinear interaction

between x and u.

An alternative is the Vector Auto-regressive (VAR) model, which can be shown to

be basically equivalent to DCM through mathematical manipulation. Taking the Taylor
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approximation of (1.1) over a time interval ∆ gives the VAR model

xt = Axt−∆ + εt

A = exp(∆θx)

εt =

∫ ∆

0

exp(τθx)w(t− τ)dτ.

However, the interpretation of VAR coefficients is subtle in the sense that they are no

longer the magnitude of the influence that one node has on the other as in the case with

DCM. Nevertheless, most literature still considers VAR coefficients as an indicator of

effective connectivity. For instance, the VAR model can be further combined with prior

information about human brain structure connectivity to learn about the connection

between regions of interest. For instance, Chiang et al. (2017) start from the VAR model

in the following form. Given the group g that subject s belongs to, the measured brain

signals x
(s)
t ∈ RN , t = 1, . . . , T at N regions of interest is such that

x
(s)
t =

P∑
p=1

A(s)
g,px

(s)
t−p + ε

(s)
t , ε

(s)
t ∼ N (0,Σ) s = 1, . . . , S.

Stacking all observations x
(s)
t and error terms ε

(s)
t across time together into vectors X(s) =

(x
(s)′

P+1, . . . ,x
(s)′

T )′ and E (s) = (ε
(s)′

P+1, . . . , ε
(s)′

T )′, the original VAR model can be further

written as

X(s) = U (s)β(s)
g + E (s).

Denoting the Kronecker product by ⊗, they use

U (s) =



IN ⊗ (x
(s)′

P , . . . ,x
(s)′

1 )′

IN ⊗ (x
(s)′

P+1, . . . ,x
(s)′

2 )′

...

IN ⊗ (x
(s)′

T−1, . . . ,x
(s)′

T−P )′


,
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and β
(s)
g = vec{[A(s)

g,1, . . . , A
(s)
g,P ]′}. The coefficient β

(s)
g for subject s is group specific and

the prior on it is multivariate normal with mean Ω(g) and covariance matrix Σ(g). The

entry ω
(g)
k of Ω(g) has a spike and slab representation where the probability of belonging to

the slab incorporates prior information of structure connectivity via a probit regression.

Lastly, we address the distinction between function connectivity and effective connec-

tivity in relation to machine learning. According to Friston (2011), functional connectivity

sees higher prevalence of machine learning techniques due to its descriptive nature; schol-

ars are interested in making diagnosis of certain diseases based on abnormal patterns

observed in brain images, which is the domain where machine learning methods are more

powerful. On the contrary, effective connectivity is usually used to select the more suit-

able model that generates the data so it is more desirable to apply generative models that

shed light on the underlying mechanism.

Recent fast development of neuroscience can be partially attributed to the availability

of high quality brain image data. Depending on the experiment design, brain image data

are categorized into task-based and resting-state data. Both designs can be embedded in

the common technologies to acquire brain images. Electroencephalography (EEG) cap-

tures electrical impulses in the brain, addressing temporal dependence over a relatively

small set of locations since electrodes that can be attached to human scalp are always

limited. Functional magnetic resonance imaging (fMRI), another noninvasive technology

that measures blood oxygen level dependent signal (BOLD) as a proxy of brain activi-

ties. When the brain performs certain task, the active brain regions will require increased

oxygen consumption and a surge of oxygen-rich blood will be observed to flow to that

specific region. This change of the ratio between oxyhemogloblin and deoxyhemoglobin

is recorded as the BOLD signals. The observed data usually has higher spatial reso-

lution than temporal resolution as completing a scan usually takes 2-3 seconds, hence

it reflects more spatial dependence than temporal dependence. fMRI generates results

in three-dimensional voxels, which can be represented as a tensor to keep the spatial
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characterization.

1.3 Statistical challenges

Researchers usually use multivariate time series (EEG or fMRI signals in certain brain

regions) to study brain effective connectivity. The dimension of the time series is already

problematic when the research is confined to single-subject study; if one is interested in

multi-subject implications, the curse of dimensionality becomes even more prominent.

Furthermore, unlike brain activation studies where the parameter space is linear in time

series dimension, brain effective connectivity boils down to directed interaction between

brain regions, resulting in quadratically growing parameter space as the observation di-

mension grows. However, most of the parameters are in fact zero, this phenomenon is

called small-world brain networks, characterized by dense local clustering between neigh-

boring brain regions yet connected by few paths between pairs of brain regions from

different clusters (Bassett and Bullmore, 2006; Liao et al., 2011). The sparse natural of

the high dimensional parameter space brings the issue of low statistical and computational

efficiency. To overcome this problem, many machine learning tools are applied to achieve

sparse estimation of brain effective connectivity. The most popular one is to add regular-

ization to coefficients via many types of penalization (Haufe et al., 2013; Hu et al., 2019).

Besides statistical learning methods, the fast development of deep learning techniques

such as recurrent neural networks (RNN), convolutional neural networks (CNN), graph

neural networks (GNN) and generative adversarial networks (GAN) capacitate their wide

application in studying brain effective connectivity (Sikka et al., 2020; Phang et al., 2019;

Jun et al., 2020; Liu et al., 2020). Although these approaches can be conveniently scaled

up and they have satisfactory classification and prediction performance, interpretability

as well as proper quantification of uncertainty is missing.

Another statistical challenge lies in how to properly model dynamic causality across
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multivariate time series when assuming that interactions evolve over time. A line of

research is to extend methods that are applicable to static brain effective connectivity

analysis to the dynamic case. For instance, Park et al. (2018b) combine spectral dynamic

causal modelling (spDCM) and parametric empirical Bayes to identify dynamic effective

connectivity. As for structural equation models, the idea of dynamic effective connectivity

has not received enough attention except for fairly recent work by Figueroa-Jiménez et al.

(2021).

On the contrary, VAR models naturally extend to dynamic setting as long as we allow

the coefficient to vary over time. Inference on the time-varying coefficients can be obtained

in a Bayesian framework. This is the line of research developed in the thesis. We take

a Bayesian approach and we focus and develop scalable Bayesian dynamic VAR models

that can be usefully employed in the study of dynamic effective connectivity based on

neuroimaging data.

1.4 Structure of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we describe the static VAR

model from a Bayesian perspective and we propose a new model named the Bayesian

tensor VAR model with carefully designed priors that automatically determine model

complexity. Chapter 2 lays the foundation for Chapter 3 as it helps us to gain a more

in-depth understanding of the behavior of the proposed hierarchical prior distributions.

Chapter 3 is the main part of the thesis that introduces the time-varying extension of

the Bayesian tensor VAR model. We demonstrate the method’s advantages over existing

methods through simulation studies and real data application. Having in mind that the

dynamics is essentially introduced in terms of state transitions in Chapter 3, we proceed

with a different approach to modeling the VAR time-varying parameters. In Chapter

4, the parameters in TV-VAR models are governed by different stochastic processes so
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that the temporal evolution is smooth. Two specific process priors are employed and

compared, the dynamic spike and slab prior and the dynamic shrinkage process. As

a continuation of Chapter 4, we propose in Chapter 5 a novel time-varying shrinkage

prior called the generalized double Pareto (GDP) process prior that admits the GDP

distribution as marginal distribution. The last two chapters are ongoing work.

Submitted manuscripts

A paper based on Chapter 3 has been submitted and can be accessed on the arXiv at

https://arxiv.org/abs/2106.14083
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Chapter 2

Bayesian Vector Autoregressive

Models

Abstract

Vector autoregressive (VAR) models are widely applied in many disciplines

such as economics, neuroscience and biology. We describe the multivari-

ate equivalent of the Yule-Walker equation in the VAR model that connects

VAR coefficients with the autocovariance function. We also demonstrate VAR

model’s relationship with the Granger causality. For model estimation, some

classical Bayesian priors for VAR models are discussed; however, they usually

fail in high dimension VAR model. We propose a computationally efficient

method called the Bayesian tensor VAR model with carefully devised priors

and compare it with the frequentist counterpart through simulation studies,

validating our method and showcasing its merit. The work can be regarded as

one building block towards a better understanding of priors in time-varying

VAR models in Chapter 3.

15
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2.1 VAR model

Let (yt)t≥1 be an N -dimensional time series. The vector autoregressive (VAR) model of

order P assumes that yt is a linear combination of the P lagged signals yt−1, . . . ,yt−P

plus an independent noise εt ∈ RN ,

yt =

[
A1, A2, . . . , AP

]
yt−1

...

yt−P

+ εt,

where A1, . . . , AP are N ×N matrices and εt
indep∼ N (0,Σ), where the symbol

indep∼ means

that they are independently distributed.

A VAR model is stable if the equation

A(u) ≡ |IN − A1u− A2u
2 − · · · − APuP | = 0

has all roots outside the unit circle. It is weakly stationary if E(yt) does not depend on t

and Cov(yt, ys) depends only on the lag s− t (assuming the involved expectations exist).

A VAR model can be represented as a dynamic linear model (DLM); more precisely,

for a VAR process, it is possible to find a DLM whose measurement process (Yt) has the

same probability law as the given VAR. Several DLM representations have been proposed

and the following is perhaps the most commonly used

yt = Fθt + vt

θt = Gθt−1 + wt,

where F is the emission matrix, defined as F = (1, 0, . . . , 0)⊗ IN , where IN is the identity

matrix of dimension N and ⊗ denotes the Kronecker product. The state transition matrix
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G is a NP ×NP matrix of the form

G =



A1 A2 . . . AP−1 AP

IN 0N . . . 0N 0N

0N IN . . . 0N 0N
...

...
. . .

...
...

0N 0N . . . IN 0N


.

Consistent with this expression of G, the latent state θt and the two error terms vt, wt

are

θt =



yt

yt−1

...

yt−P+1


vt ≡ 0 wt =



εt

0

...

0


.

Finally, adding the initial distribution θ0 ∼ N (m0, C0) completes the DLM specifica-

tion. The eigenvalues of G are the reciprocal roots of A(u) so that the VAR process

is stable if and only if all the eigenvalues of G have modulus less than one (Prado and

West, 2010). Given the autocorrelation function and partial autocorrelation function, it

is possible to compute the coefficient matrix

[
A1, A2, . . . , AP

]
of VAR models and vice

versa. The counterpart in the univariate AR case is given by the Yule-Walker equations,

whose solution can be obtained from the Durbin-Levinson recursion algorithm. Whit-

tle (1963) proposed a multivariate extension of the Durbin-Levinson recursion algorithm

applicable to VAR models. Let Rn = E(yt+ny
′
t) be the autocovariance function, then

R−n = E(yty
′
t+n) = R′n. The forward and backward prediction errors are

εN,t = yt + AN,1yt−1 + · · ·+ AN,Nyt−N

rN,t = BN,N + · · ·+BN,1yt−N+1 + yt−N .

(2.1)
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Denote Rε
N = E(εN,tε

′
N,t), R

r
N = E(rN,tr

′
N,t) and

RN =



R0 R1 . . . RN

R−1 R0 . . . RN−1

...
...

. . .
...

R−N R−N+1 . . . R0


,

(2.1) implies that

 IN AN,1 . . . AN,N

BN,N . . . BN,1 IN

RN =

 Rε
N 0N . . . 0N

BN,N . . . 0N 0N

 .
The solution of AN,1, . . . , AN,N first appeared in Whittle (1963) and was later developed

by Morf et al. (1978) to the normalized case so that autocovariances Rn can be uniquely

characterized by the partial autocorrelation function. This result is useful for simulating

the coefficient matrices of stationary VAR models (Ansley and Kohn, 1986).

VAR models are widely used both for forecasting and for detecting causal relationships

between variables, with the latter objective usually appealing to the notion of Granger

causality. Informally, Granger causality states that if including past values of yi,t improves

the prediction of yj,t, with respect to only including past values of yj,t, then yi,t is Granger

causal for yj,t (Granger, 1969). Consider two AR models

yj,t =
P∑
p=1

Ap,j,jyj,t−p + ε∗j,t,

yj,t =
P∑
p=1

Ap,j,jyj,t−p +
P∑
p=1

Ap,j,iyi,t−p + ε′j,t.

If the variance of the prediction error ε′j,t of yj,t conditionally on yj,t−p and yi,t−p, p =

1, . . . , P is smaller than the variance of ε∗j,t conditionally on yj,t−p alone, then yi,t Granger

causes yj,t. It is therefore straightforward to infer Granger causality from the VAR coeffi-
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cients. It holds that Ap,j,i = 0 for all p = 1, . . . , P if and only if yi,t is not Granger causal

for yj,t.

Partial directed coherence (PDC) is a measure of brain effective connectivity that

resembles the Granger causality in frequency domain. To obtain PDC from VAR models,

one first computes the Fourier transform of the coefficient matrices A1, A2, . . . , AP as

A(ω) = I −
P∑
p=1

Ap exp (−2iπωp)

with ω being the frequency at which the Fourier transform is performed. The PDC from

node i to node j at frequency ω is defined as

PDCji(ω) =
| Aji(ω) |√∑N
j=1 | Aji |2

,

where index ji denotes the jth row and ith column of a matrix. A little mathematical

manipulation reveals that PDC is actually a normalized quantity as
∑N

j=1 PDC
2
ji(ω) =

1, therefore it measures the proportion that the outflow from i to j makes up in all

the outflow from i rather than the absolute strength of such information transmission.

Instead of PDC at a frequency ω, people examine a frequency band; to summarize PDC

over a band, a simple approach is to take the average of all PDC evaluations at each

single frequency within the band of interest. For fMRI data, due to its smaller sampling

frequency compared to EEG data, the frequency bands in the literature are (1) slow-

5 (0.01–0.027 Hz), (2) slow-4 (0.027–0.073 Hz), (3) slow-3 (0.073–0.198 Hz), (4) slow-2

(0.198–0.5Hz) and (5) slow-1 (0.5–0.75 Hz) (Gohel and Biswal, 2015).

Due to this appealing connection to causality, VAR models are widely applied to study

brain effective connectivity, which itself refers to directed influences one brain region has

on other brain regions (Gorrostieta et al., 2013; Wang and Ho, 2016; Wang et al., 2016;

Samdin et al., 2016; Chiang et al., 2017; Ombao et al., 2018). A common challenge in
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VAR model estimation is the dimension N of the time series, as the parameter space

grows quadratically with N . To obtain more reliable estimates and to avoid overfitting,

one needs methodd that distinguish large coefficients from small ones. Regularization

approaches such as LASSO and its variants can be applied to attain sparse coefficient

estimation. From a Bayesian perspective, parsimony can be achieved by different types

of shrinkage prior distributions.

2.2 Bayesian VAR model

Many classes of prior distributions have been proposed in the Bayesian literature on

time series and VAR models. An early and most popular choice is the Minnesota prior,

introduced by Litterman et al. (1979) and subsequently developed by other researchers at

University of Minnesota. The Minnesota prior is a special case of the conjugate Iormal-

inverse-Wishart prior for A1, . . . , AP and Σ

Σ ∼ Inv-Wishart(Ψ, ν)

α | Σ ∼ N (a,Σ⊗ Ω),

where α is the vectorization of

[
A1, A2, . . . , AP

]′
and Ω is a NP ×NP dimension matrix

that conveys the prior information on the VAR coefficients. The Minnesota prior is defined

though the first and second moments

E(Ap,i,j | Σ) =


1 if i = j and p = 1

0 otherwise

Cov(Ap,i,j, Ap′,h,m | Σ) =


λ2Σi,h

p2Ψj/(ν−N−1)
if j = m and p = p′

0 otherwise

.
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Only the diagonal entries of A1 has prior mean deviated from 0, which is reasonable as

yi,t−1 should have the strongest power in predicting yi,t. The covariance matrix reflects

prior beliefs that only Ap,i,j and Ap,h,j are correlated since they are both measuring the

impact from yj,t−p to yt. p
2 in the denominator indicates such correlation gradually dies

off as the lag index p goes further into the past. Lastly, hyperparameter λ plays the role

of controlling globally the correlation between VAR coefficients. For more description on

the Minnesota prior and other Bayesian VAR priors such as the sum-of-coefficients prior

(Doan et al., 1984) and the dummy-initial-observation prior (Sims, 1993), readers can

refer to Canova (2011), Giannone et al. (2015), Koop (2013).

2.3 Bayesian tensor VAR (BTVAR) model

Although sparsity inducing priors help deliver stable coefficient estimates and better out-

of-sample predictions, the parameter space is still quadratic in N , making posterior in-

ferences problematic even for moderately large N . We propose a novel way to achieve

dimension reduction in Bayesian VAR models by exploiting the lower dimensional struc-

ture in the VAR coefficient matrix such that

[
A1, A2, . . . , AP

]
=

H∑
h=1

α′3,h ⊗ (α1,h ◦ α2,h) ,

where α1,h, α2,h ∈ RN and α3,h ∈ RP . This formula of dimension reduction results from

the decomposition of the tensor A that comes from stacking A1, . . . , AP along the lag P .

By construction, A has order or rank N ×N × P . Many tensor decomposition technique

can be used to reduce the dimension (Cichocki et al., 2016); parallel factor (PARAFAC)

decomposition or Canonical Polyadic (CP) decomposition is one of them. Under CP
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decomposition, A can be written as

A =
H∑
h=1

α1,h ◦ α2,h ◦ α3,h,

where ◦ denotes vector outer product. H is called the rank and it is smallest integer

such that A can be expressed in this way. Wang et al. (2021) proposed a VAR dimension

reduction method by considering the Tucker decomposition

A = U ×1 A
∗
1 ×2 A

∗
2 ×3 A

∗
3,

where U is another three way tensor whose ranks r1×r2×r3 are no larger than N×N×P .

A∗1 ∈ RN×r1 , A∗2 ∈ RN×r2 and A∗3 ∈ RP×r3 are factor matrices. The operation sign ×1

means mode-1 multiplication between U and A∗1 such that

(U ×1 A
∗
1)ijk =

r1∑
r=1

Urjk(A∗1)sr

for 1 ≤ s ≤ N, 1 ≤ j ≤ N, 1 ≤ k ≤ P . ×2 and ×3 are defined similarly. Combined

with l1 penalization, their estimator is completed and called the Sparse Higher-Order

Reduced-Rank (SHORR) estimator.

CP decomposition is a special case of the Tucker decomposition whose core tensor U

has equal ranks and all entries except for the main diagonal ones are zero. We choose the

CP decomposition over Tucker decomposition to reduce the dimension of VAR coefficients

partially because it is convenient to specify priors on vectors. The prior that we choose

is the Multiway Dirichlet generalized double Pareto (M-DGDP) prior originally proposed

by Guhaniyogi et al. (2017) in tensor regression. More specifically, the prior distributions
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that we assume for α1,h, α2,h and α3,h are

α1,h | φh, τ,W1,h ∼ N (0, φhτW1,h), W1,h,k | λ1,h,k ∼ Exp
(
λ2

1,h,k/2
)

1 ≤ k ≤ N,

α2,h | φh, τ,W2,h ∼ N (0, φhτW1,h), W2,h,k | λ2,h,k ∼ Exp
(
λ2

2,h,k/2
)

1 ≤ k ≤ N,

φ1, . . . , φH ∼ Dirichlet(α, . . . , α), τ ∼ Ga(aτ , bτ ).

where we further assume that the hyperparameters λ1,h,k, λ2,h,k
i.i.d.∼ Ga(aλ, bλ). There is

no natural ordering among entries of α1,h and α2,h so each one of them has the same

prior distribution; however, for α3,h, a convincing prior belief could be to place more prior

mass on entries of α3,h corresponding to Ap’s that are further into the past. Increasing

shrinkage priors do this job by forcing stronger shrinkage as the index grows. A possible

choice is the multiplicative Gamma processes introduced by Bhattacharya and Dunson

(2011); an improvement is made by Durante (2017) to understand better the role of

prior parameters. A more recent development by Legramanti et al. (2020) is based on an

interpretable sequence of spike-and-slab distributions which assign increasing mass to the

spike as the model complexity grows. We adapt the latter and assume that

α3,h | φh, τ,W3,h ∼ N (0, φhτW3,h)

W3,h,j | zh,j ∼ [1− 1(zh,j ≤ j)] InvGa(aw, bw) + 1(zh,j ≤ j) δW∞ ,

where each zh,j is a draw from a Multinomial random variable, such that pr(zh,j = l |

wh,l) = wh,l for l = 1, . . . , P with the weights wh,l obtained through a stick-breaking

construction (Sethuraman, 1994), i.e. wh,j = vh,j
∏j−1

l=1 (1 − vh,l), vh,j ∼ Beta(β1, β2),

1 ≤ j ≤ P . Hence, the probability of selecting the target spike is increasing with the

lags j, since P (zh,j ≤ j) =
∑j

l=1wh,l. Correspondingly, the probability of choosing the

Inverse Gamma slab component is P (zh,j > j) =
∏j

l=1(1 − vh,l), i.e. decreasing with j.

Higher sparsity levels for the modes α1,h, α2,h and α3,h are obtained by setting smaller



24 CHAPTER 2. BT-VAR

0

2000

4000

−200 −100 0 100 200
A1,1,1

de
ns

ity

(a)

0.0

0.1

0.2

0.3

0.4

50 100 150 200 250
A1,1,1

de
ns

ity

(b)

Figure 2.1: Prior distribution of A1,1,1. N = 4, P = 3, H = 4, aτ = 1/4, bτ = 0.3969, α =
1/4, aλ = 3, bλ = 6

√
3, β1 = 1, β2 = 1, aw = 2, bw = 2,W∞ = 0.01.

values of aτ and bλ relative to bτ and aλ, respectively. Billio et al. (2018) give the prior

distribution of each cell Ap,i,j conditionally on τ, φ1, . . . , φH and W1,h,W2,hW3,h in terms

of Meijer G-function.

Figure 2.1 shows the prior distribution of A1,1,1. Generally speaking, the prior is highly

concentrated around 0 so that 95% of the prior probability is between -0.3174 and 0.3311.

Even though the spike is prominent, the distribution has long tails as in Figure 2.1(b).

Such behaviors of the prior cell distribution facilitate the distinction between signal and

noise.

In Figure 2.2, we demonstrate the impact of hyperparameters on the shape of cell

distributions. aτ and bτ are parameters of the global parameter τ , which controls the

overall sparsity level of the model. Large aτ or small bτ results in large τ on average and

weak shrinkage. The symmetric Dirichlet distribution parameter α selects the rank in CP

decomposition. Small α means that most of φ1, . . . , φH will be close to zero, favoring a

lower rank decomposition. Consequently the cell prior distribution becomes more disperse

since the product of normal random variables has larger variance than sum of product

of normal random variables where the sum of variances of each random variables in the

second case is equal to the variance of Normal random variables in the first case. This

can be seen in Figure 2.2(d). Lastly, aλ and bλ are the hyperparameters in the generalized
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Figure 2.2: Prior distribution of A1,1,1 under different values of hyperparameter with
N = 4, P = 3, H = 4. (a) aτ = 1/4, bτ = 0.3969, α = 1/4, aλ = 3, bλ = 6

√
3, β1 = 1, β2 =

1, aw = 2, bw = 2,W∞ = 0.01, the rest, except for the ones specified, have the same
hyperparameter values as (a). (b) aτ = 4; (c) bτ = 4; (d) α = 0.01; (e) aλ = 10; (f)
bλ = 1;

double Pareto (GDP) prior whose effect is very well studied in Armagan et al. (2013).

The larger aλ is, the more shrinkage toward 0 is induced on A1,1,1 whereas bλ has opposite

implication.

For the increasing shrinkage prior on α3,h, Table 2.1 shows that as p increases, the prior

distribution of Ap,1,1 becomes more and more concentrated around 0. Cell distribution in

the last lag, in this case, A4,1,1 has basically identical distribution because W3,h,4 is always

equal to 0.01 according to the definition. Hyperparameter values control the speed in

which the prior shrinks towards 0. Large β1 encourages high probability of choosing

W∞ so the variance of Ap,1,1 decays to 0 fast with p; on the contrary, if β2 is large, the

shrinkage effect increases mildly since small values of vh,j are more likely, which further

implies that
∑j

l=1wh,l grows slower to 1 by the spike and slab construction. aw and bw

are the parameters of the slab inverse-Gamma distribution. When zh,j = 0 and W3,h,j is

selected from the slab, aw = 10 chooses smaller variance compared to aw = 2 whereas

bw = 10 favors more diffused prior distribution.
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0.0001 0.001 0.025 0.05 0.95 0.975 0.999 0.9999
β1 = 1 β2 = 1 aw = 2 bw = 2

p=1 -72.9296 -15.4319 -0.5855 -0.1932 0.1921 0.5778 14.7371 65.9521
p=2 -75.4747 -12.2188 -0.3902 -0.1250 0.1251 0.3991 12.0096 55.8086
p=3 -56.3800 -8.5090 -0.2034 -0.0621 0.0589 0.1982 6.8332 39.0918
p=4 -5.3854 -1.3450 -0.0573 -0.0203 0.0201 0.0573 1.2656 6.1114

β1 = 10 β2 = 1 aw = 2 bw = 2
p=1 -48.9256 -11.5239 -0.5056 -0.1645 0.1619 0.5171 11.8270 63.3133
p=2 -68.8159 -10.2572 -0.324 -0.1004 0.0991 0.3100 9.9001 42.3412
p=3 -40.3741 -5.0123 -0.1593 -0.0491 0.0517 0.1668 5.5007 20.6132
p=4 -6.8439 -1.3221 -0.0579 -0.0196 0.0198 0.0581 1.1933 6.0620

β1 = 1 β2 = 10 aw = 2 bw = 2
p=1 -65.1812 -13.8639 -0.6529 -0.2208 0.2197 0.6614 14.8049 95.9737
p=2 -101.7883 -15.6717 -0.5644 -0.1835 0.1795 0.5436 13.5066 55.2943
p=3 -64.4145 -12.4110 -0.4395 -0.1419 0.1434 0.4443 11.8930 53.2769
p=4 -6.8439 -1.3221 -0.0579 -0.0196 0.0198 0.0581 1.1933 6.0620

β1 = 1 β2 = 1 aw = 10 bw = 2
p=1 -32.9464 -5.9111 -0.2282 -0.0787 0.0777 0.2264 5.9159 22.6106
p=2 -21.0148 -5.3310 -0.1766 -0.0579 0.0589 0.1726 5.0983 20.0264
p=3 -18.5213 -2.9653 -0.1079 -0.0357 0.0396 0.1207 3.0893 13.5687
p=4 -6.459 -1.3611 -0.0572 -0.0193 0.0207 0.0610 1.4176 7.0145

β1 = 1 β2 = 1 aw = 2 bw = 10
p=1 -163.0758 -33.6428 -1.2712 -0.4229 0.4214 1.2695 32.2362 147.4733
p=2 -168.7666 -27.3401 -0.8265 -0.2552 0.2574 0.8397 26.8986 124.8471
p=3 -126.0694 -17.4861 -0.3640 -0.1036 0.0982 0.3582 14.1988 87.4123
p=4 -5.3854 -1.3450 -0.0573 -0.0203 0.0201 0.0573 1.2656 6.1114

Table 2.1: Quantiles of the simulated prior distribution of Ap,1,1 with N = 4, P = 4, H =
4, aτ = 1/4, bτ = 0.3969, α = 1/4, aλ = 3, bλ = 6

√
3,W∞ = 0.01.
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2 3 4 5

LASSO
0.4804

(0.2253)
0.5392

(0.2139)
0.6041

(0.2107)
0.6083

(0.2373)

SHORR
0.1128

(0.1154)
0.1311

(0.0797)
0.1759

(0.0812)
0.3150

(0.2279)

BTVAR
0.0354

(0.0253)
0.0531

(0.0438)
0.0580

(0.0444)
0.0724

(0.1053)

Table 2.2: Simulation 1: average of the squared Frobenius distance between LASSO,
SHORR and BTVAR estimates and the true VAR coefficient matrix. Standard deviations
are in parentheses.

2.4 Simulation studies

We compare our method with two VAR model estimators, the LASSO that was firstly

applied in VAR models by Hsu et al. (2008); Basu and Michailidis (2015) and the SHORR

proposed by Wang et al. (2021), through simulation studies.

In the first simulation study, we generate observations from a VAR model of moderate

size withN = 10, T = 1000, P = 5. The underlying tensor structure of the VAR coefficient

matrix has lower rank decomposition where H = 2, 3, 4, 5. The covariance matrix of the

error term εt is diagonal and the diagonal entries all equal 10. In each setting, 100 trials

are simulated and we conduct inference using the true value of P and H so there is no issue

of model selection at this point. Table 2.2 reports the results of the simulation study and

it can be seen that our BTVAR method outperforms the frequentist counterpart SHORR.

We investigate the performance of our method and the competing method when ap-

plied to high-dimensional VAR model in the second simulation. First simulated data are

generated from a VAR model of N = 20, T = 400, P = 8 and the true CP factorization

rank H = 3. When applying SHORR, we specify the lag P = 10 and the rank H = 5.

The rank H will be determined using the Bayesian information criterion (BIC) and re-

dundant lags will be recognized by the l1 penalization. Another 100 repetitions of data

are simulated from a even higher-dimensional VAR model with N = 40, T = 400, P = 5

while the rank stays the same. As in the first simulation, even though we know the true
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N=20 T=400
P=8 H=3

N=40 N=400
P=5 H=3

LASSO
2.5342

(0.5513)
3.1621

(0.4433)

SHORR
1.3465

(1.0503)
5.0925

(3.1179)

BTVAR
0.2098

(0.1031)
0.4386

(0.1894)

Table 2.3: Simulation 2: average of the squared Frobenius distance between LASSO,
SHORR and BTVAR estimates and the true VAR coefficient matrix. Standard deviations
are in parentheses.

value of H and P , we use relatively larger values to test our method’s ability to auto-

matically select the optimal model based on the data. Table 2.3 shows that our proposed

method has better performance in terms of average of the squared Frobenius distance.

One observation to comment is that SHORR has worse estimation of the true coefficient

matrix when applied to high-dimensional VAR model with N = 40 even compared to

the LASSO estimates. The reason for this abnormality is that the model selection index

BIC fails to choose the correct rank of the tensor decomposition. In this simulation, the

underlying tensor rank that generates the simulated coefficient matrix is H = 3 while

2 components scenarios always yield lower BIC in all 100 repetitions compared to the 3

components cases.



Chapter 3

Bayesian Time-Varying Tensor

Vector Autoregressive Models for

Dynamic Effective Connectivity

Abstract

Recent developments in functional magnetic resonance imaging (fMRI) inves-

tigate how some brain regions directly influence the activity of other regions

of the brain dynamically throughout the course of an experiment, i.e. the

so-called dynamic effective connectivity. Time-varying vector autoregressive

(TV-VAR) models have been employed to draw inferences for this purpose,

but they are very computationally intensive, since the number of parameters

to be estimated increases quadratically with the number of time-series. In this

paper, we propose a computationally efficient Bayesian time-varying VAR ap-

proach for modeling high-dimensional time series. The proposed framework

employs a tensor decomposition for the VAR coefficient matrices at different

lags. Dynamically varying connectivity patterns are captured by assuming

that at any given time only a subset of components in the tensor decomposi-

29
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tion is active. Latent binary time-series select the active components at each

time via a convenient Ising prior specification. The proposed prior structure

encourages sparsity in the tensor structure and allows to ascertain model com-

plexity through the posterior distribution. More specifically, sparsity-inducing

priors are employed to allow for global-local shrinkage of the coefficients, to

determine automatically the rank of the tensor decomposition and to guide

the selection of the lags of the auto-regression. We show the performances of

our model formulation via simulation studies and data from a real fMRI study

involving a book reading experiment.

Keywords: Time-varying vector autoregressive models, Tensor factorization,

Brain effective connectivity
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3.1 Introduction

A primary goal of many functional magnetic resonance imaging (fMRI) experiments is

to investigate the integration among different areas of the brain in order to explain how

cognitive information is distributed and processed. Neuroscientists typically distinguish

between functional connectivity, which measures the undirected associations, or tempo-

ral correlation, between the fMRI time series observed at different locations, and effec-

tive connectivity, which estimates the directed influences that one brain region exerts

onto other regions (Friston, 2011; Zhang et al., 2015b; Durante and Guindani, 2020). In

this manuscript, we focus on modeling effective connectivity via a vector auto-regression

(VAR) model, a widely-employed framework for estimating temporal (Granger) casual

dependence in fMRI experiments (see, e.g. Gorrostieta et al., 2013; Chiang et al., 2017).

In addition, in our motivating dataset, it is envisaged that the connectivity patterns may

vary dynamically throughout the course of the fMRI experiment. Recent literature in

the neurosciences has recognized the need to describe changes in brain connectivity in

response to a series of stimuli in task-based experimental settings or because of inher-

ent spontaneous fluctuations in resting state fMRI (Hutchison et al., 2013; Taghia et al.,

2017; Park et al., 2018a; Warnick et al., 2018; Zarghami and Friston, 2020a). Samdin

et al. (2016) and Ombao et al. (2018) have recently employed a Markov-switching VAR

model formulation to characterize dynamic connectivity regimes among a few selected

EEG channels. More recently, Li et al. (2020) have developed a stochastic block-model

state-space multivariate auto-regression for investigating how abnormal neuronal activ-

ities start from a seizure onset zone and propagate to otherwise healthy regions using

intracranial EEG data.

VAR models are computationally intensive for analyzing high-dimensional time-series,

since the number of parameters to be estimated increases quadratically with the number

of time-series, easily surpassing the number of observed time points. Hence, several ap-
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proaches have been proposed to enforce sparsity of the VAR coefficient matrix, either by

using penalized-likelihood methods (Shojaie and Michailidis, 2010; Basu and Michailidis,

2015) or - in a Bayesian setting - by using several types of shrinkage priors (Primiceri,

2005; Koop, 2013; Giannone et al., 2015). Alternatively, dimension reduction techniques

have been employed to reveal and exploit a lower dimensional structure embedded in the

parameter space. For example, Velu et al. (1986) decompose the VAR coefficient matrix

as the product of lower-rank matrices. More recently, Billio et al. (2018) consider a tensor

decomposition to model the (static) parameters of a time-series regression. Wang et al.

(2021) have proposed an L1- penalized-likelihood approach where a tensor decomposition

is used to express the elements of the VAR coefficient matrices.

In this paper, motivated by an experimental study on dynamic effective connectivity

patterns arising when reading complex texts, we propose a computationally efficient time-

varying Bayesian VAR approach for modeling high-dimensional time series. Similarly

as in Wang et al. (2021), we assume a tensor decomposition for the VAR coefficient

matrices at different lags. A novel feature of the proposed approach is that we capture

dynamically varying connectivity patterns by assuming that – at any given time – the

VAR coefficient matrices are obtained as a mixture of just a subset of active components in

the tensor decomposition. This mixture representation relies on latent indicators of brain

activity, that we model through an innovative use of an Ising prior on the time-domain, to

select what components are active at each time. With respect to Hidden Markov Models

– typically employed in the fMRI literature to capture transitions across brain states

dynamically over time – the Ising prior models the time-varying activations as a function

of only two parameters. The resulting binary time series still maintains a Markovian

dependence, but the Ising prior naturally assigns a higher probability mass to non-active

(zeroed) components to encourage sparsity of representation and it favors similar selections

at two consecutive time points, reflecting the prior belief that the coefficients are changing

slowly over time. Furthermore, we show that the Ising prior can be represented as the
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joint distribution of a so-called (new) discrete autoregressive moving average (NDARMA)

model (Jacobs and Lewis, 1983), a result which is helpful for prior elicitation.

The remaining components of the model are designed to encourage sparsity in the

tensor structure and to ascertain model complexity directly from the data through the

posterior distribution. In particular, we employ a multi-way Dirichlet generalized double

Pareto prior (Guhaniyogi et al., 2017) to allow for global-local shrinkage of the VAR co-

efficients and to determine automatically the effective rank of the tensor decomposition.

A further feature of our approach is that we assume an increasing-shrinkage prior (Legra-

manti et al., 2020) to guide the selection of the lags of the auto-regression, without the

need for ranking different models based on model selection information criteria.

The rest of the paper is organized as follows. In Section 3.2, we formulate the time-

varying tensor model and elucidate how to obtain dimension reduction via a tensor de-

composition into a set of latent base matrices and binary indicators of connectivity pat-

terns over time. In Section 3.3, we describe the Ising prior specification on the temporal

transitions, as well as the sparsity-inducing priors on the active elements of the tensor

decomposition. In Section 3.3.4 we discuss posterior computation and inference. Results

of the simulation studies as well as the real data application are shown in Section 3.4 and

Section 3.5 respectively. Lastly, Section 3.6 provides some concluding remarks and future

work.

3.2 Time-Varying Tensor VAR (TVT-VAR) model

for Effective Connectivity

In this Section, we introduce the proposed time-varying tensor VAR (TVT-VAR) spec-

ification for studying dynamic brain effective connectivity. Let yt be an N -dimensional

vector for t = 1, . . . , T . Each time-series data (yi1, . . . , yiT ) represents the fMRI BOLD

signal recorded at voxel or region of interest (ROI) i, i = 1, . . . , N . The TVT-VAR model
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of order P assumes that yt is a linear combination of the P lagged signals yt−1, . . . ,yt−P

plus an independent noise εt ∈ RN ,

yt =

[
A1,t, A2,t, . . . , AP,t

]
yt−1

...

yt−P

+ εt, (3.1)

where εt ∼ N (0,Σ) and the linear coefficients Aj,t, j = 1, . . . , P are N × N matrices,

assumed to vary across t, t = 1, . . . , T . We assume that Σ is time-invariant and diagonal,

and we focus on the coefficient matrices

[
A1,t, A2,t, . . . , AP,t

]
. If needed, the assumption

on Σ can be appropriately relaxed. The number of coefficients to be estimated is (T −

P )×N2 × P +N ; hence, it is not possible to use the conventional ordinary least square

estimator. We propose to address the issue following multiple simultaneous strategies.

First, we model the dynamic coefficient matrix as a time-varying mixture of H latent

static base coefficient matrices. More specifically, let (γh,t)t≥P+1 be a binary-valued time

series, h = 1, . . . , H. Then, we assume

[
A1,t, A2,t, . . . , AP,t

]
=

H∑
h=1

γh,t

[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
(3.2)

that is, for any t, each VAR coefficient matrix Aj,t is a composition of the subset of those

base matrices A∗j,h for which γh,t = 1, h = 1, . . . , H, j = 1, . . . , P . The binary γh,t’s can

be interpreted as indicators of latent individual or experimental conditions. For example,

Gorrostieta et al. (2013) have previously proposed the use of a known binary indicator for

comparing connectivity across experimental conditions (e.g., active vs. rest in task-based

fMRI). Instead, we infer the latent γh,t from the data to explore latent varying patterns

in brain effective connectivity that are not necessarily tied to experiment conditions.

Similarly, A∗1,h, A
∗
2,h, . . . , A

∗
P,h can be interpreted as latent base matrices. Compared with

estimating N2 × P time-series of length (T − P ) in the initial model specification, our
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formulation (3.2) requires estimating N2×P base matrices

[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
and the

dynamics of the VAR coefficient matrices are now governed by the temporal dependence

between the γh,t’s, h = 1, . . . , H, t = P + 1, . . . , T . A natural choice is to set the

γh,t’s as independent across different mixing components h, but envision some Markovian

dependence over different time points t (see Section 3.3.1).

Despite the reduced dimensionality, espression (3.2) remains highly parameterized.

Hence, we further propose to stack each set of matrices

[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
into a three-

way tensor A∗h of size N ×N × P and then apply a PARAFAC decomposition to achieve

an increased reduction in the number of estimands. Along with the Tucker decomposi-

tion, the PARAFAC decomposition is often employed for tensor dimension reduction due

to its straightforward interpretation and implementation. Hoff (2015) has proposed the

use of a Tucker product for dimension reduction in a general multi-linear tensor regres-

sion framework for the analysis of longitudinal relational data. Tensors have been used

before also in the neuroimaging literature for detecting activations via tensor regression

approaches (Zhou et al., 2013; Guhaniyogi et al., 2017), but – to our knowledge – their

use for studying effective connectivity within VAR models has not been yet explored. In

general, a q1× q2×· · ·× qM tensor A is said to admit a rank-R PARAFAC decomposition

if R is the smallest integer such that A can be written as

A =
R∑
r=1

α1,r ◦ α2,r ◦ · · · ◦ αM,r, (3.3)

where ◦ indicates the vector outer product and αm,r ∈ Rqm ,m = 1, . . . ,M are the tensor

margins of each mode. In Figure 3.1, we show a simple graphical illustration of the

PARAFAC decomposition of a three-way tensor. The tensor representation is important

to reduce dimension but the inferential interest is on recovering the temporal patterns

of the VAR coefficients. At this regard, it is important to note that, while inference

on (3.3) may suffer from identifiability issues, the Aj,t remain identifiable. Indeed, the
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𝑞1
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=
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𝓐

Figure 3.1: An illustrative example of a Rank-R PARAFAC decomposition of a three-way
q1 × q2 × q3 tensor A.

decomposition of A is invariant under any permutation of the component indices r so

that A =
∑R

r=1 α1,Π(r) ◦ α2,Π(r) ◦ · · · ◦ αM,Π(r) for any permutation Π(·) of the index set

{1, 2, . . . , R}. Moreover, A is not altered by rescaling, i.e. A =
∑R

r=1 α
∗
1,r ◦α∗2,r ◦ · · · ◦α∗M,r

where α∗m,r = νm,rαm,r for any set of multiplying factors νm,r such that
∏M

m=1 νm,r = 1.

However, the temporal pattern of the VAR coefficients, i.e. the product of the margins,

remains identifiable.

In our model, we assume that the base tensors A∗h admit a rank-1 PARAFAC decom-

position to allow for a more parsimonious parameterization, i.e.

A∗h = α1,h ◦ α2,h ◦ α3,h h = 1, . . . , H,

where α1,h, α2,h ∈ RN . The tensor margin α3,h ∈ RP denotes the lag mode, i.e. the tensor

margin related to the order of the VAR models. Since the influence of past variables is

expected to diminish with increasing lags, the entries of α3,h should also be expected to

decreasing with increasing lags. In Section 3.3.2, we describe prior specifications that

enforce sparsity in α1,h and α2,h and increasing shrinkage in α3,h.

We can further express the original matrix

[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
by rearranging the
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modes of the tensor decomposition as follows,

[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
= α′3,h ⊗ (α1,h ◦ α2,h) h = 1, . . . , H;

where⊗ denotes the Kronecker product. The construction is useful to highlight a sequence

of constraints on the coefficient matrix: the element-by-element ratio between A∗1,h and

A∗2,h is proportional to the ratio between the first two entries of α3,h, and similarly for

subsequent lags. In summary, after matricization, the set of TVT-VAR coefficients can

be expressed as a mixture of only an active subsets of components as

[
A1,t, A2,t, . . . , AP,t

]
=

H∑
h=1

γh,t α
′
3,h ⊗ (α1,h ◦ α2,h) ,

where latent binary time-series γh,t’s select the active components at each time, h =

1, . . . , H. Alternatively, we can stack the TVT-VAR coefficients in (3.2) and obtain the

tensor At, which can be written as

At =
H∑
h=1

γh,tA∗h =
H∑
h=1

γh,t (α1,h ◦ α2,h ◦ α3,h) .

The expressions above highlight that the proposed tensor decomposition reduces the num-

ber of parameters to H(T −P )+H(2N+P ), i.e. linear in the observation size N , instead

of N2 without the tensor reparameterization.

Finally, we should note that also Sun and Li (2019) have recently proposed to stack a

series of dynamic tensors to form a higher order tensor. In their approach, the data are

observed tensors to be clustered over time along the modes generated via the PARAFAC

decomposition. Instead, in our approach the data are multivariate time series and the

tensor structure is used to construct a lower dimensional parameter space for the unknown

VAR coefficients to be estimated. In addition, Sun and Li (2019) achieve smoothness in the

parameters through a fusion structure that penalizes discrepancies between neighboring
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entries in the same tensor margin. Instead, we follow a Bayesian approach and further

encourage a contiguous structure by means of the Ising prior distribution detailed in the

following section.

3.3 Prior specifications

3.3.1 Ising prior on temporal transitions

The sequence of latent indicators γh,t determines the time-varying activations of the latent

base matrices in the VAR model (3.1)–(3.2). Hidden Markov Models based on homoge-

neous temporal transitions have been used in recent neuroimaging literature to describe

temporal variations of functional connectivity patterns (Baker et al., 2014; Vidaurre et al.,

2017; Warnick et al., 2018). Here, we propose an Ising prior specification on the time do-

main that retains the Markovian dependence but does allow to model the time-varying

activations as a function of only two parameters for each of the bases, one parameter

capturing general sparsity and the other capturing the strength of dependence between

adjacent time points. More specifically, we assume that, independently for each h, the

binary state process (γh,t)t>P is characterized by joint probability mass functions

P (γh,P+1, . . . , γh,T | θh, κh)

∝ exp

(
θhγh,P+1 +

T−1∑
t=P+2

θ∗hγh,t + θhγh,T +
T−1∑
t=P+1

κhγh,tγh,t+1

)
.

(3.4)

Equation (3.4) defines an Ising model, i.e. an undirected graphical model or Markov

random field involving the binary random vector γh = (γh,P+1, . . . , γh,T ) ∈ {0, 1}T−P ,

h = 1, . . . , H (see, e.g., Wainwright and Jordan, 2008). The parameters θh and θ∗h can be

interpreted as sparsity parameters, since they correspond to the probability of activation

for component h at each time t, irrespective of the status at t − 1 and t + 1. Positive

values of θh and θ∗h increase the probability that γh,t = 1; instead, negative values of



3.3. PRIOR SPECIFICATIONS 39

θh and θ∗h increase the probability that γh,t = 0, t = P + 1, . . . , T . The parameter κh

captures the effect of the interaction between γh,t and γh,t+1. In particular, when κh > 0,

the probability that γh,t and γh,t+1 are both non-zero is larger.

The Ising prior (3.4) can be seen as a specific instance of a multivariate Bernoulli

distribution, as defined by Dai et al. (2013). In particular, in the following we show how

the proposed prior is equivalent to a binary discrete autoregressive NDARMA(1) model

(Jacobs and Lewis, 1983; MacDonald and Zucchini, 1997; Jentsch and Reichmann, 2019).

For notational simplicity, we focus on a single time series γh,t, and we omit the subscript

h for the remainder of the Section. We start by recalling that a NDARMA(1) process is

a binary time series that satisfies

γt = at γt−1 + (1− at) εt, t = 1, . . . , T (3.5)

where at
i.i.d.∼ Bern(p1), and εt

i.i.d.∼ Bern(p2), with at and εt independent. The initial

condition assumes γ1 ∼ Bern(p2). The NDARMA(1) model has a Markovian dependence

structure, with transition probabilities

P (γt | γt−1) = p1 1(γt = γt−1) + (1− p1) pγt2 (1− p2)γt−1 ,

for γt, γt−1 ∈ {0, 1}. Moreover, marginally γt ∼ Bern(p2). Intuitively, the autocorrelation

function at lag 1 of the NDARMA time series is always positive, meaning that γt and γt+1

tend to assume the same value, consistent with the contiguous behavior that we would

like the Ising prior (3.4) to encourage by setting κ > 0. Then, in a NDARMA(1) model,
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the joint probability mass function of γ1, . . . , γT can be obtained as

pγ1,...,γT = P (γ1, . . . , γT ) = P (γ1)
T∏
t=2

P (γt|γt−1)

= pγ12 (1− p2)γ1
T∏
t=2

{p1 1(γt = γt−1) + (1− p1) pγt2 (1− p2)γt−1} .

For instance, the probability of a zero-sequence, p0...0 = P (γ1 = 0, . . . , γT = 0), equals

(1− p2)
∏T

t=2 (p1 + (1− p1) (1− p2)). Let n =
∑T

t=1 γt indicate the total number of active

indicators γt’s along the entire time-series, and let {j1, . . . , jn} ⊂ {1, . . . , T} denote the

subset of times jr where γjr = 1, r = 1, . . . , n. Then, in a NDARMA(1) model, the vector

(γ1, . . . , γT ) follows a multivariate Bernoulli distribution, as defined in Dai et al. (2013).

More specifically, the joint distribution can be rewritten as

P (γ1, . . . , γT ) = p
∏T
t=1(1−γt)

0...0 p
γ1

∏T
t=2(1−γt)

10...0 p
(1−γ1) γ2

∏T
t=3(1−γt)

01...0 · · · p
∏T
t=1 γt

1...1 .

Let Bj1j2···jr(γ) = γj1 γj2 · · · γjr define a general interaction function among a subset

{j1, . . . , jr} of the γt’s. Dai et al. (2013) show that the multivariate Bernoulli distri-

bution is a member of the exponential family, i.e. the joint probability of (γ1, . . . , γT ) can

be reweritten as

P (γ1, . . . , γT ) ∝ exp

(
T∑
n

( ∑
1≤j1<j2<···<jn≤T

f j1j2...jnT Bj1j2···jr(γ)

))
, (3.6)

where f j1j2...jnT is the natural parameter defined by the equation

exp
(
f j1j2...jnT

)
=

∏
{even # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn

/ ∏
{odd # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn ,

with p∗T,j1...,jn denoting the probability that the γt’s at times j1, . . . , jn are γj1 , . . . , γjn and

all others are zero. It is easy to see that the Ising prior (3.4) is a special case of the equation
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Figure 3.2: An illustration of the mapping between the parameters values of (p1, p2) of the
NDARMA(1) model (3.5) and the parameters (θ, κ) of the Ising prior (3.3.1). The domain
of (θ, κ) constrains the admissible range of (p1, p2). The three panels illustrate the domain
of (p1, p2) corresponding to increasing domains of (θ, κ): (1) −2 < θ < 2, 0 < κ < 2; (2)
−4 < θ < 4, 0 < κ < 4; (3) −4 < θ < 6, 0 < κ < 6.

(3.6) by setting θ = fP+1
T = fTT , θ∗ = fP+2

T = · · · = fT−1
T , κ = fP+1,P+2

T = · · · = fT−1,T−2
T .

Since NDARMA(1) models encode a Markov dependence of order 1, the coefficient f j1...jnT

associated with γj1 · · · γjn is zero for n ≥ 3.

The following proposition maps the parameters (θ, κ) in the Ising prior (3.4) to the

parameters (p1, p2) in the NDARMA(1) model 3.5:

Proposition 1. The probability law of the NDARMA(1) model in (3.5) can be expressed as

in (3.4). In particular, the parameters (θ, κ) are obtained as a function of the parameters

p1, p2 in (3.5) as

eθ =
p2(1− p1)

p1 + (1− p2)(1− p1)
, eκ =

p1 + p2(1− p2)(1− p1)2

p2(1− p2)(1− p1)2
,

exp(θ∗) =
p2(1− p2)(1− p1)2

(p1 + (1− p2)(1− p1))2
=
eθ(eθ + 1)

eθ+κ + 1
.

Inversely,

p1 =
eθ(eκ − 1)

(eθ+κ + 1)(eθ + 1)
, p2 =

eθ(eθ+κ + 1)

e2θ+κ + 2eθ + 1
.
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The previous result is helpful in setting the prior distributions for the parameters in

(3.4), as it highlights hidden constraints among the parameters and how the domain of

(θ, κ) constrains the admissible range of (p1, p2). Indeed, we notice that the transformation

is bijective, since θ∗ can be expressed as a function of the pair (θ, κ). The parameters

κ and p1 have the same sign, since they both indicate the strength of the dependence

between two neighboring γt−1 and γt. It also follows that, due to the positiveness of κ, θ∗

is always smaller than θ. As an illustration of the complex dependencies induced by the

mapping between (θ, θ∗, κ) in (3.4) and (p1, p2) in (3.5), Figure 3.2 compares the range of

(p1, p2) for different intervals of values of (θ, κ). For example, if 0 < κ < 2 and −2 < θ < 2

(panel 1), the corresponding set of NDARMA(1) models is limited to a subset of those

with p1 < 0.5. As the domain of (θ, κ) expands, the set of induced NDARMA(1) models

also expands. Shrinking γh,t towards zero is desirable for regularization purposes, which

corresponds to allowing negative values of the parameters θh. At the same time, too much

shrinkage may hamper our ability to identify latent base patterns that are recurrent, as

the shrinkage may result in too low estimates of p1 and p2. Indeed, it is well known that

the prior specification of the parameters of a Ising model needs to be conducted with

care, in order to avoid the phenomenon of phase-transition (Li and Zhang, 2010; Li et al.,

2015). In statistical physics, a phase-transition refers to a sudden change from a disordered

(non-magnetic) to an ordered (magnetic) state at low temperatures. In Bayesian variable

selection, the phase-transition has been associated to values of the parameter space that

lead to selecting either all or none of the tested variables. These considerations motivate

our suggestion of a proper uniform distribution on the parameters (θ, κ) over a closed

interval in R2 for posterior inference. More specifically, we assume that θh lies between

[θh,min, θh,max] with lower limit θh,min < 0 and upper limit θh,max > 0. We have found

that choosing θh,min = −4 and θh,max = 4 ensures a proper exploration of the parameter

space and appears to avoid phase transitions. Similarly, for κh, we encourage a contiguous

structure where γh,t and γh,t+1 are simultaneously selected by assuming that κh is positive
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with a uniform prior on κh ∈ [0, κh,max] with κh,max > 0. Also in this case an upper

limit κh,max = 4 appears to ensure both reasonably good inference on the time-varying

coefficients and computational efficiency.

3.3.2 Sparsity-inducing priors

In addition to the dimension reduction achieved through the PARAFAC decomposition,

we seek further shrinkage of the tensor margins’ parameters. For that purpose, we consider

priors that shrink the parameters toward zero, enabling a sparse representation of the VAR

coefficents and more interpretable estimation of the connectivity patterns. In particular,

for the elements of the tensor margins α1,h and α2,h we consider a multi-way Dirichlet

generalized double Pareto prior (Guhaniyogi et al., 2017), whereas for the lag margin

α3,h, we consider an increasing shrinkage prior, so that higher-order lags are penalized.

More specifically, we assume that α1,h and α2,h, which determine the rows and columns

of the original VAR coefficient matrix, are normally distributed with zero mean and

variance-covariance matrix τφhW1,h, with W1,h diagonal. The parameter τ is a global

scale parameters that follows a Gamma distribution, whereas the φ1, . . . , φH are local

scale parameters that follow a symmetric Dirichlet distribution. The diagonal elements

of the covariance have a generalized double Pareto prior:

α1,h | φh, τ,W1,h ∼ N (0, φhτW1,h), W1,h,k | λ1,h,k ∼ Exp
(
λ2

1,h,k/2
)

1 ≤ k ≤ N,

α2,h | φh, τ,W2,h ∼ N (0, φhτW1,h), W2,h,k | λ2,h,k ∼ Exp
(
λ2

2,h,k/2
)

1 ≤ k ≤ N,

φ1, . . . , φH ∼ Dirichlet(α, . . . , α), τ ∼ Ga(aτ , bτ ).

where we further assume that the hyperparameters λ1,h,k, λ2,h,k
i.i.d.∼ Ga(aλ, bλ).

By setting aτ = Hα, one can obtain tractable full conditionals distributions for τ and

(φ1, . . . , φH), since the full conditional for τ is a generalized inverse Gaussian distribution

and the full conditionals for (φ1, . . . , φH) are normalized generalized inverse Gaussian
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random variables (Guhaniyogi et al., 2017).

For the lag mode parameter, α3,h, we maintain a normal prior with a global-local

structure on the covariance, i.e. α3,h | φh, τ,W3,h ∼ N (0, φhτW3,h). However, we provide

for a cumulative shrinkage effect on the diagonal entries of w3,h to encourage the estimation

of a small number of lags. More specifically, we employ a cumulative shrinkage prior

(Legramanti et al., 2020), i.e. a prior which induces increasing shrinkage via a sequence

of spike and slab distributions assigning growing mass to a target spike value as the

model complexity grows. Let W∞ indicate the target spike, e.g. W∞ = 0 or W∞ = 0.05

to avoid degeneracy of the normal distribution to a point mass and improve computational

efficiency (George and McCulloch, 1993). Then, for any j, 1 ≤ j ≤ P , we assume

W3,h,j | zh,j ∼ [1− 1(zh,j ≤ j)] InvGa(aw, bw) + 1(zh,j ≤ j) δW∞ ,

where each zh,j is a draw from a Multinomial random variable, such that pr(zh,j = l |

wh,l) = wh,l for l = 1, . . . , P with the weights wh,l obtained through a stick-breaking

construction (Sethuraman, 1994), i.e. wh,j = vh,j
∏j−1

l=1 (1 − vh,l), vh,j ∼ Beta(β1, β2),

1 ≤ j ≤ P . Hence, the probability of selecting the target spike is increasing with the lags

j, since P (zh,j ≤ j) =
∑j

l=1wh,l. Correspondingly, the probability of choosing the Inverse

Gamma slab component is P (zh,j > j) =
∏j

l=1(1 − vh,l), i.e. decreasing with j. Higher

sparsity levels for the modes α1,h, α2,h and α3,h are obtained by setting smaller values of

aτ and bλ relative to bτ and aλ, respectively. We discuss these choices in Section 3.3.4.

3.3.3 Rank of the PARAFAC decomposition

A crucial point in the representation (3.3) is the choice of the rank, H. One widely

adopted option is to regard this choice as a model selection problem and naturally resort

to information criteria such as AIC or BIC (Zhou et al., 2013; Wang et al., 2021, 2016;

Davis et al., 2016). As an alternative, we rely on results from recent Bayesian literature
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on overfitted mixture models (Malsiner-Walli et al., 2016; Rousseau and Mengersen, 2011)

and set the parameters of the sparsity-inducing hierarchical prior in Section 3.3.2 so to

automatically shrink unnecessary components to zero. Under quite general conditions,

the posterior distribution concentrates on a sparse representation of the true density

(Rousseau and Mengersen, 2011). More specifically, a small concentration parameter α

of the symmetric Dirichlet distribution (φ1, . . . , φH) will assign more probability mass to

the edges of the simplex, meaning that more components become redundant. As a result,

only a small number of components – within the H available – will be effectively different

from zero. In addition, the cumulative shrinkage prior for the VAR lag order P can

also be employed to encourage shrinkage, by choosing appropriate β1, β2, aw and bw. For

instance, a large value of β1 and a small β2 encourage a more parsimonious VAR model by

putting little probability on higher orders. Therefore, at the expense of a slightly higher

computational demand, it is possible to fix relatively high values for H (and P ), and then

let the regularization implied by the shrinkage priors determine the number of effective

components (lags), without the need for ranking different models in practice.

Figure 3.3 summarizes the proposed hierarchical model on the N -dimensional time

series yt in a directed graph representation.

3.3.4 Posterior Computation

In order to conduct inference on the dynamic coefficient matrices

[
A1,t, A2,t, . . . , AP,t

]
and the latent indicators γh,t we need to revert to the use of Markov Chain Monte Carlo

methods. The prior specification allows to use a blocked Gibbs sampler to draw samples

from the posterior distribution. When sampling from the posterior distribution for θh and

κh using a Metropolis-Hastings algorithm, the normalizing constant depends on the sam-

pled parameters, giving rise to a well-known issue of sampling from a doubly-intractable

distribution. Thus, we follow the auxiliary variable approach proposed by Møller et al.

(2006) to obtain the posterior samples from the Ising model. More specifically, the ap-
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Figure 3.3: A schematic directed graph representation of the hierarchical model. In
particular, the graph summarizes the Ising prior on the latent selection indicators γh,t and
the regularization priors on the tensor margins α1,h, α2,h, α3,h of the rank-1 PARAFAC
decomposition of the base components A∗h,j, h = 1, . . . , H, j = 1, . . . , P through

proach introduces an auxiliary variable such that – by adding its full conditional to the

Metropolis-Hasting ratio – the normalizing constant is canceled out. Posterior samples

of the latent auxiliary variable are then obtained using an exact sampling algorithm with

coupled Markov chains (Propp and Wilson, 1996). The use of the auxiliary variable ap-

proach is also key for allowing the update of the γh,t’s for all t = P + 1, . . . , T and each

h = 1, . . . , H. The details of the MCMC and the full conditional distributions are reported

in the appendix.

After obtaining posterior samples via MCMC, we can obtain inferences on the dynamic

coefficient matrices

[
A1,t, A2,t, . . . , AP,t

]
. We compute the posterior means at each time

point by averaging the values sampled across the MCMC iterations. We summarize

inference on the γh,t’s by computing the posterior mode, i.e. we set γ̃h,t = 1 whenever the

posterior probability of activation, P (γh,t = 1 | y1, . . . , yT ), is over 0.5.
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3.4 Simulation Studies

In the first simulation study, we aim to evaluate whether our approach recovers the true

dynamic coefficients under a time-varying VAR model. We generate 100 different data-

sets where the VAR coefficients are randomly generated from Gaussian distributions,

according to the low rank tensor structure (3.2) together with random binary variables

indicating the dynamic process. More specifically, we simulated 100 samples (y1, . . . , yT )

from an N = 10-dimensional VAR model of order P = 3 and underlying tensor decompo-

sition rank H = 3, with T = 100. In each sample, the noise terms of the 10 time series are

assigned zero-centered Gaussian distributions, each with a different standard deviation,

specifically equal to 1/5, 2/5, . . . , 10/5. In each data set, α1,h, α2,h and α3,h, h = 1, 2, 3

are sampled from a spike-and-slab prior where the slab component is a standard normal

distribution and the probability of a non-zero entry in α1,h, α2,h and α3,h is 0.5 (Mitchell

and Beauchamp, 1988). We further ensure that the resulting TV-VAR time series are sta-

tionary. To sample the dynamic indicators, we generate γh,t, h = 1, 2, 3, t = P+1, . . . , 100

from an NDARMA model whose parameters p1 and p2 follow a uniform distribution on

(0, 1).

Table 3.1: Simulation study 1. Bayesian point estimates (posterior means) of the identified
tensor components and the dynamic coefficients from the proposed BTVT-VAR model.
The latter are compared with the frequentist estimates of a time-varying VAR model
implemented in the tvReg R-package. The evaluation of the tensor components is based on
the square-root of the average Frobenius norm of the difference between the posterior mean
and the true matrices across the 100 data sets, divided by number of entries. Columns 2
and 3 show the average Euclidean distances for each truly non-zero and truly zero entry
in the matrices. Standard deviations are indicated in brackets. See Section 5 for details.

All entries True non-zero entries True zero entries

BTVT-VAR
PARAFAC Components A∗j,h

0.0361
(0.0335)

0.1190
(0.1557)

0.0130
(0.0165)

VAR Coefficients Matrices Aj,t
0.0657

(0.0413)
0.1526

(0.1199)
0.0270

(0.0202)

TvReg VAR Coefficients Matrices Aj,t
0.3967

(0.3853)
0.4550

(0.5265)
0.3815

(0.3650)

For model fitting, we assume mis-specified values of H = 4 and P = 4 in order
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Table 3.2: Simulation study 1. Performance evaluation of the posterior estimation of the
components’ indicators (γh,P+1, . . . , γh,T ), based on average accuracy, sensitivity, speci-
ficity and precision across the 100 generated data sets. Standard deviations are indicated
in brackets. See Section 5 for details.

Accuracy Sensitivity Specificity Precision

(γh,P+1, . . . , γh,T )
0.9018

(0.1333)
0.9634

(0.0881)
0.6459

(0.3741)
0.9049

(0.1272)

to assess our method’s ability to automatically determine the true rank and lag-order

of the VAR model. To encourage sparsity, we set the hyper-parameter values as aλ =

3, bλ = 6
√
aλ = 6

√
3, bτ = 4−2/3, β1 = 1, β2 = 5, aw = bw = 2,W∞ = 0.01, aσ = bσ = 1,

θh,min = −4, θh,max = 4, κh,max = 4. For the griddy-Gibbs step of the posterior sampling,

α is assumed to be uniformly distributed across 10 values evenly spaced in the interval

[H−3, H−0.1] (Guhaniyogi et al., 2017). Finally, a total of 5,000 MCMC iterations are run,

one third of the output is discarded and the remaining samples are thinned by a factor of

3 to reduce storage and possible auto-correlation of the chains.

We first summarize the results of the simulation study by investigating the ability of

our model to recover the dynamic coefficient matrices

[
A1,t, A2,t, . . . , AP,t

]
in (3.2). To

assess the performance of the proposed method, we employ the root mean square Frobe-

nius distance between the MCMC estimates of the posterior means E (Aj,t | y1, . . . , yT )

at each t, say {Ãj,t}j=1,...,P,t=P+1,...,T , and the true matrices as

err({Ãj,t}) =

√∑T
t=P+1

∑P
j=1‖Ãj,t − Aj,t‖F

(T − P )×N2P
. (3.7)

We also compare the obtained Bayesian point estimates with those provided by a fre-

quentist time-varying vector auto-regressive model, as implemented in the R package

TvReg (Casas and Fernandez-Casal, 2021, 2019). The results are shown in Table 3.1.

The Bayesian time-varying tensor VAR (BTVT-VAR) model appears to provide an im-

proved estimation of the true dynamic structure of the data with respect to the non-
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sparse frequentist VAR. Table 1 also shows the point estimates of the the base matrices

[A∗1,h, A
∗
2,h, . . . , A

∗
P,h]. The error of the MCMC-based estimates of the posterior means, say

{Ã∗j,h}j=1,...,P , is similarly defined as

err({Ã∗j,h}) =

√∑H
j=1‖Ã∗j,h − A∗j,h‖F

N2P
. (3.8)

In order to compute (3.8), since the estimation of the components of the mixture (3.2) may

be affected by label switching (Stephens, 2000), it is necessary first to match the posterior

means of each component to the true components. In addition, if the assumed value of H is

larger than the true value, one or more of the posterior mean estimates {Ã∗j,h}j=1,...,P could

likely be redundant and include elements all very close to zero. In order to identify these

essentially “empty” components, we consider the maximum norm maxj=1,...,P ‖Ã∗j,h‖∞ and

if such norm is lower than a pre-specified threshold, we set them to 0 and exclude them

from further analysis. More specifically, in the following, a component is assumed as

empty if its posterior mean-based maximum norm is smaller than 0.01. Then, in order to

match the remaining posterior mean estimates {Ã∗j,h}j=1,...,P with the true components,

we rank them based on the minimum Frobenius distances.

For the inference on the latent binary indicators (γh.P+1, . . . , γh.T ) , h = 1, . . . , H, we

threshold the estimated posterior probability of activation at each time point for each

data set to identify the activated γh,t’s from the MCMC samples, as described in Section

3.3.4. Table 3.2 shows the average accuracy, sensitivity, specificity and precision across

all 100 data sets. The results show that the model is able to reconstruct the components

and their dynamic activation reasonably well. Further inspection of the results across all

simulated data sets suggests – as it may be expected – that the ability to identify each

underlying base mixture component is associated to the sparsity of the true activation vec-

tors (γh,P+1, . . . , γh,T ), h = 1, . . . , H (analyses not shown). Barely activated components

are more difficult to identify as it is more challenging to disentangle their contribution,
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Table 3.3: Simulation study 2. Bayesian point estimates (posterior means) of the identi-
fied tensor components and dynamic coefficients from the proposed BTVT-VAR model.
The latter are compared with the frequentist estimates of a time-varying VAR. model
implemented in the tvReg R-package. The evaluation of the tensor components is based
on the square-root of the average Frobenius norm of the difference between the posterior
mean and the true matrices across three true components. Columns 2 and 3 show the
average Euclidean distances for each truly non-zero and truly zero entry in the matri-
ces. Standard deviations across the three true components are indicated in brackets. See
Section 5 for details.

All entries True non-zero entries True zero entries

BTVT-VAR
PARAFAC Components A∗j,h

0.0127
(0.0009)

0.0588
(0.0520)

0.0083
(0.0023)

VAR Coefficients Matrices Aj,t 0.1083 0.2538 0.0694

TvReg VAR Coefficients Matrices Aj,t 0.3798 0.3056 0.3885

Table 3.4: Simulation study 2. Performance evaluation of the posterior estimation of the
components’ indicators (γh,P+1, . . . , γh,T ). The evaluation is based on average accuracy,
sensitivity, specificity and precision over the 3 true components.

Accuracy Sensitivity Specificity Precision

(γh,P+1, . . . , γh,T )
0.9887

(0.0195)
0.9886

(0.0198)
0.9889

(0.0192)
0.9886

(0.0198)

especially if the magnitude of their coefficients (their “signal”) is low. Also, the relative

dynamics of the components, i.e. how they differentially activate in time, has an impact

on identifiability. Finally, we evaluate the performance of the proposed shrinkage priors

to determine the rank of the tensor decomposition as well as the lags in the TVT-VAR

model. Since we use P = 4 in model fitting although the true value is P = 3, we ob-

serve that the estimated N ∗ N matrix AP,t has on average a Frobenius norm of 0.0005

with 0.0015 standard deviations across all t’s, suggesting that the proposed increasing

shrinkage prior allows to identify the number of lags well.

In addition to simulating TVT-VAR coefficients from a spike-and-slab prior with some

artificial normal slab distribution, we also consider a scenario where the time series are

generated from TVT-VAR models whose coefficients are estimated from real fMRI data.

The fMRI data that we use are the first two runs of participant 2 when reading Chapter

9 of Harry Potter and the Sorcerer’s Stone. See Section 3.5 for more details of the data
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set. We first obtain the ordinary least square coefficient estimates of the VAR model with

N = 27, P = 3 by fitting the two runs separately. For each estimated coefficient matrix, we

stack it and apply a rank-2 PARAFAC decomposition. The resulting four different tensor

margins α1,h, α2,h, α3,h are then used to construct the time-varying coefficients. In total,

100 repetitions are done and repetition-specific tensor margins are samples from normal

distributions with mean α1,h, α2,h, α3,h obtained from real fMRI data as described above.

Repetition-specific tensor margins are further thresholded by 0.1 to induce a desirable

level of sparsity. Each repetition simulates a multivariate time course of length T = 400

from a TV-VAR model with coefficients changing at time points 80, 160, 240, 320. Inside

each time interval, the coefficients are assumed to be the sum of a time-invariant subset

of the four base matrices calculated from the tensor margins. Entries of the error term

εt have identical standard deviation determined by the signal-to-noise ratio (SNR). Many

definitions of SNR exist in the literature (Welvaert and Rosseel, 2013). For instance,

Zhang et al. (2014) define the SNR through the variance of the regression parameters and

the innovation variance of the error term, whereas Haslbeck et al. (2021) use the ratio

between the maximum parameter size of time-varying parameters and the noise variance.

We follow the definition of Haslbeck et al. (2021) and divide the maximum size of the

estimated VAR coefficients by the estimated error term standard deviation to obtain the

SNR value of 1.8518 and 2.7972 for the two runs, therefore we set the SNR equal to 2.5

to calculate the variance of the error term in simulation. To test the robustness of the

proposed Bayesian model, we include two extra situations where the SNR is equal to 0.5

and 10 respectively. This is still in progress and the results are not reported here for the

moment.

In the third simulation study, we move to higher dimensional models and generate a

time series from an N = 40 TV-VAR model of order 3 with dynamic coefficients shown

in the left panel of Figure 3.4. These coefficients are combinations of H = 3 components.

A total of T = 300 observations are simulated, among which the coefficients matrix of
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the first 200 observations admits a rank-2 tensor decomposition with changing mixing

components whereas the last 100 consist of only one component. The covariance matrix

Σ of the error term εt has diagonal elements Σ[i, i] = i/5 for i = 1, . . . , 25 and Σ[i, i] =

(51 − i)/5 for i = 26, . . . , 40. In the posterior inference, we choose H = 4 and P = 4.

Even though we include one more component and lag, we expect the extra component as

well as coefficients at lag larger than 3 to be almost zero due to the effect of the shrinkage

priors. The remaining experiment settings are the same as in the first simulation. We

select four estimated coefficients matrices at time point 50, 125, 175 and 250 as in the

right panel of Figure 3.4. Our method identifies three “non-empty” components and

they accurately capture the patterns of the true ones. Furthermore, the dynamics of

the coefficient matrices are all accurately identified by the model. Table 3.3 shows an

evaluation of the posterior inference on the coefficient matrices in our model versus a

frequentist time-varying regression. Once again, our model compares quite favorably. To

further verify our method’s ability to detect changing patterns along all the 296 time

points, we report the accuracy, sensitivity, specificity and precision in the estimation the

latent activation indicators γh,t’s in Table 3.4. In Figure 3.5 we report the estimated

trajectories of the γh,t as a function of time, for each component h = 1, . . . , H. The

shaded red areas indicate the true component activation, whereas the solid line indicates

the posterior modes. One of the trajectories, being constantly zero, identifies an empty

component: indeed, we employed H = 4 for model fitting instead of the true number

of components. The other three estimated trajectories follow the true activations quite

closely, reaching false positive rates of 0%, 0.67% and 0% as well as false negative rate

of 0%, 3.42% and 0%, respectively. Once again, the results illustrate the role of the

shrinkage prior specifications, since fixing higher values of H and P does not appear to

hamper the estimation of the VAR matrices. In particular, we do not need to rely on

model selection techniques in order to determine the appropriate values of H and P .

Therefore, in many cases it may be desirable to learn the actual dimensions of the model
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Figure 3.4: Comparison between the true TVT-VAR coefficients A1,t, A2,t, A3,t on the left
panel and the MCMC posterior means from the BTV-TVAR model on the right panel
in the second simulation study of Section 5. For each truly invariant time window, the
estimated matrices at time point 50, 150 and 250 are displayed.

from the data, by fixing relatively large values of H and P . As a final remark, we note

that we also considered a simulation scenario with N = 100 multivariate time series.

However, the frequentist TvReg approach did show numerical problems with such a large

number of times series, after taking 9.44 hours to complete. On the contrary, our method

was still able to obtain good inferences for this large dimensions, after taking 3.6 hours

to complete 5,000 iterations on a Intel Core i5-6300U CPU at 2.40GHz, with 8GB RAM.

As a comparison, each run of the N =40 -dimensional case took only approximately 56

minutes to complete for our method.

3.5 Real Data Application

We apply our TVT-VAR model to the following task-based functional magnetic resonance

(fMRI) data set. This data includes 8 participants (ages 18–40), who were asked to read
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Figure 3.5: Estimated trajectories of the latent indicators of activation γh,t for four com-
ponents h = 1, . . . , 4. The red areas indicate the true activations. The solid line indicates
the estimated values of γh,t based on posterior probabilities of activation greater than 0.5.

Chapter 9 of Harry Potter and the Sorcerer’s Stone (Rowling, 2012). All subjects had

previously read the book or seen the movie. The words of the story were presented in

rapid succession, where each word was presented one by one at the center of the screen for

0.5 seconds in black font on a gray background. A Siemens Verio 3.0T scanner was used

to acquire the scans, utilizing a T2∗ sensitive echo planar imaging pulse sequence with

repetition time (TR) of 2s, time echo (TE) of 29 ms, flip angle (FA) of 79◦, 36 number

of slices and 3 × 3 × 3mm3 voxels. Data was pre-processed in the following manner.

For each subject, functional data underwent realignment, slice timing correction, and

co-registration with the subject’s anatomical scan, which was segmented into grey and

white matter and cerebro-spinal fluid. The subject’s scans were then normalized to the

MNI space and smoothed with a 6 × 6 × 6mm Gaussian kernel smoother. Data was

then detrended by running a high-pass filter with a cut-off frequency of 0.005Hz after

being masked by the segmented anatomical mask. The final time series for the task-based

data contained 4 runs for each subject. Runs 1, 2, 3, and 4 contained 324, 337, 264, and

365 time points, respectively. For more details, see Ondrus et al. (2021) and Xiong and

Cribben (2021).

Twenty-seven ROIs defined using the Automated Anatomical Atlas (AAL) brain atlas

(Tzourio-Mazoyer et al., 2002) were extracted from the data set, shown in Table 3.5. These

regions contain a variety of voxels that have been previously recognized as important to
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Figure 3.6: fMRI recording for a representative subject in the application to the fMRI
reading experiment described in Section 3.5. The dashed vertical lines on the left and the
right represent the time windows considered before and after Harry Potter’s first flying
experience on a broom. See Section 3.5 for details.

distinguish between the literary content of two novel text passages based on neural activity

while these passages are being read. In this work, we focus on exploring the dynamic

effective connectivity of the N = 27 ROIs as the subjects read using the proposed BTVT-

VAR model. More specifically, for model fitting, we choose P = 4. Most applications of

VAR models to fMRI data consider AR(1) processes as a good representation of short-

range temporal dependences over a small number of regions of interest (typically, less

than ten). We further choose H = 10 as the number of mixture components in (3.2).

This value was chosen as it allows to recover more than 50% of the estimated variability

in the sample, as assessed by the Frobenious norm of the coefficient matrices estimated in

a frequentist VAR LASSO. We are interested in the varying textual features about story

characters (e.g., emotion, motion and dialog) that the dynamic effective connectivity

encode.

As reading is a complex task, we focus on how our BTVT-VAR model responds to

significant plot changes. For example, around time point t = 368, Harry has his first
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Table 3.5: Information on the 27 ROIs extracted from the Harry Potter task-based fMRI
data set. Each ROI has a left and right hemisphere component apart from the Supra-
marginal gyrus.

ROI id Regions Label

1 Angular gyrus AG

2 Fusiform gyrus F

3 Inferior temporal gyrus IT

4 Inferior frontal gyrus, opercular part IFG 1

5 Inferior frontal gyrus, orbital part IFG 2

6 Inferior frontal gyrus, triangular part IFG 3

7 Middle temporal gyrus MT

8 Occipital lobe O

9 Precental gyrus PCG

10 Precuneus PC

11 Supplementary motor area SM

12 Superior temporal gyrus ST

13 Temporal pole TP

14 Supramarginal gyrus SG.R
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flying experience on a broom. Hence, we estimate the BTVT-VAR on time points before

and after this event. More specifically, we combine runs 1 and 2 of each individual, and

summarize the time-varying coefficient matrices by averaging the posterior means within

specific time windows before and after the reading of the flying experiences respectively

(the specific time may vary slightly for different individuals), i.e. Âj =
∑

t∈W Âj,t/|W |,

for each time window W , with |W | indicating the length of the window, Âj,t the MCMC

estimate of the posterior mean at time t and j = 1, . . . , P . Figure 3.6 shows the blood-

oxygen-level-dependent (BOLD) fMRI data in a representative subject, with the cor-

responding windows considered before and after the flying experience. The number of

parameters considered in the fitted BTVT-VAR is H(T − P ) + H(2N + P ) = 7, 150,

versus (T − P )N2P = 1, 915, 812 of a standard time-varying VAR model.

Figure 3.7 shows the estimated coefficients in the BTVT-VAR model before (top panel)

and after (middle panel) the flying experience as well as the difference (bottom panel)

between the mean coefficients before and after for subjects 1, 3, and 5. We only plot the

lag-1 mean coefficients, (Â1) as the other lag mean coefficient matrices have very little

activity. Overall, the signs of the coefficients by-and-large coincide across the subjects.

There are also clear common patterns across the subjects. For the before coefficient matri-

ces (Figure 3.7, top row), all subjects have large positive and negative coefficients between

the left and right occipital lobe (O.L and O.R) and all other ROIs. This is unsurprising

given the its primary role is to provide the sense of vision and extracts information about

the visual world, which is then passed on to other brain areas that mediate awareness.

Another function includes movement. Furthermore, all subjects have moderate positive

coefficients between the fusiform gyrus (F.L and F.R) and all other ROIs. The fusiform

gyrus plays important roles in object and face recognition, and recognition of facial ex-

pressions is located in the fusiform face area (FFA), which is activated in imaging studies

when parts of faces or pictures of facial expressions are presented (Kleinhans et al., 2008).

There is also evidence that this brain region plays a role in early visual processing of
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written words (Zevin, 2009). There is also some heterogeneity across the subjects. For

example, subjects 1 and 3 have large positive coefficients between the middle temporal

gyrus (MT.L but mostly for MT.R) and a large potion of the other ROIs. The middle tem-

poral gyrus is sensitive to visual motion (flying), and while traditional language processing

areas include the inferior frontal gyrus (Broca’s area), superior temporal and middle tem-

poral gyri, supramarginal gyrus and angular gyrus (Wernicke’s area), there is evidence

that structures in the medial temporal lobe have a role in language processing (TRACY

and BOSWELL, 2008). Subject 5 also shows signs of heterogeneity. For example, unlike

subjects 1 and 3, its connectivity patterns reveal large positive coefficients between the

right temporal pole (TP.R) and a large potion of the other ROIs. The temporal pole has

been associated with several high-level cognitive processes: visual processing for complex

objects and face recognition, naming and word-object labelling, semantic processing in

all modalities, and socio-emotional processing (Herlin et al., 2021).

The structures in the after coefficient matrices (Figure 3.7, middle row) are overall

quite similar to the before coefficient matrices (Figure 3.7, top row) indicating a smooth

transition over this period of the book. However, there are some differences which are

depicted in Figure 3.7 (bottom row). Subjects 1 and 5 have strong negative coefficients

between the right angular gyrus (AG.R) and most of the other ROIs. The angular gyrus

is known to participate to complex cognitive functions, such as calculation (Duffau, 2012).

The angular gyrus, especially in the right hemisphere, is essential for visuospatial aware-

ness. These regions may generate the fictive dream space necessary for the organized

hallucinatory experience of dreaming (Pace-Schott and Picchioni, 2017). The sequence

of events occurring in the book at this time require both calculation and imagination

for picturing how flying on a broom would materialize. Additionally, subjects 3 and 5

have moderate positive coefficients between the right precuneus gyrus (PCG.R) and most

of the other ROIs. The precuneus is involved in a variety of complex functions, which

include recollection and memory, integration of information relating to perception of the
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environment, cue reactivity, mental imagery strategies, episodic memory retrieval (Bor-

sook et al., 2015). Moreover, the strong relationship between the medial temporal lobe

and precuneus, and the referred circuitry connecting these areas is referred to as the de-

fault mode network (Greicius et al., 2003). There is also heterogeneity in the differences

across subjects. For example, subject 1 has large positive coefficients between the right

supramarginal gyrus (SG.R) and most of the other ROIs. Similar to the angular gyrus,

the right supramarginal gyrus is essential for visuospatial awareness and it may generate

the fictive dream space necessary for the organized hallucinatory experience of dreaming

(Pace-Schott and Picchioni, 2017).

Another plot twist occurs close to time point t = 1176 in run 4. Here, Harry, Ron

and Hermione (the main three characters in the book), arrive in a forbidden corridor,

turn around and come face-to-face with a monstrous three-headed dog. This event is

the most thrilling in Chapter 9 in Harry Potter and the Sorcerer’s Stone. Hence, we

estimate the BTVT-VAR on time points before and after this event. Figure 3.8 shows

the estimated coefficients in the BTVT-VAR model before (top panel) and after (middle

panel) coming face-to-face with the dog as well as the difference (bottom panel) between

the mean coefficients before and after for subjects 3, 7, and 8. We only plot the lag-1

mean coefficients (Â1) as the other lag mean coefficient matrices have very little activity.

Overall, in this example, there is a great deal of heterogeneity across the subjects. For the

before coefficient matrices (Figure 3.8, top row), subject 3 has large coefficients between

the occipital lobe (O.L and O.R) and all other ROIs, subject 7 has a moderately strong

network between the inferior frontal gyrus, orbital part (IFG.2), inferior frontal gyrus,

triangular part (IFG.3), inferior temporal gyrus (IT), precuneus (PC) and supplementary

motor area (SM), and subject 8 has large coefficients between the left and the right

precuneus gyrus (PCG.L and PCG.R) and most of the other ROIs.

As in the first example, the structures in the after coefficient matrices (Figure 3.8,

middle row) are overall quite similar to the before coefficient matrices (Figure 3.8, top
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Figure 3.7: The estimated coefficients in the BTVT-VAR model before (top panel) and
after (middle panel) Harry’s first flying experience (around time point t = 368) as well as
the difference (bottom panel) between the mean coefficients before and after for subjects
1 (first column), 3 (second column), and 5 (third column) in the Harry Potter fMRI data
set. We only plot the lag-1 mean coefficients (Â1). The 27 ROI names can be found in
Table 3.5.
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row) indicating a smooth transition over this period of the book. However, there are

some differences which are depicted in Figure 3.8 (bottom row). Subject 8 has the most

stark differences between the before and after. In particular, there are large negative and

positive coefficients between the left and right precuneus gyrus (PCG.R) and all other

ROIs, respctively. As mentioned above, the precuneus can be divided into regions involved

in sensorimotor processing, cognition, and visual processing. Subject 8 also has large

negative coefficients between the left and right temporal pole (TP.L and TP.R) and a large

potion of the other ROIs. The temporal pole has been associated with several high-level

cognitive processes: visual processing for complex objects and face recognition (Herlin

et al., 2021). The visualization of the meeting with the three-headed dog would require

a significant amount of visual processing for complex objects. Futhermore, subject 8 also

has large positive coefficients between the right supramarginal gyrus and several of the

other ROIs. The right supramarginal gyrus is essential for visuospatial awareness and it

may generate the fictive dream space necessary for the organized hallucinatory experience

of dreaming (Pace-Schott and Picchioni, 2017). The sequence of events occurring in the

book at this time are dreamlike with the description including the word “nightmare” and

the characters moving from a room to a corridor without their own movement.

The difference in the coefficients for subjects 3 and 7 are not as strong. Subject

3 has differences in the coefficients between the left occipital lobe (sense of vision and

extracts information about the visual world), the inferior frontal gyrus andopercular part

(language processing) and many of the other ROIs. Subject 7 has differences in the

coefficients between the left angular gyrus (complex cognitive functions) and some of the

other ROIs and between the left fusiform gyrus and almost all the ROIs. The fusifor

gyrus is involved in the processing the printed forms of words (Zevin, 2009).
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Figure 3.8: The estimated coefficients in the BTVT-VAR model before (top panel) and
after (middle panel) Harry, Ron and Hermione (the main three characters in the book),
arrive in a forbidden corridor, turn around and come face-to-face with a monstrous three-
headed dog (around time point t = 1176) as well as the difference (bottom panel) between
the mean coefficients before and after for subjects 3 (first column), 7 (second column),
and 8 (third column) in the Harry Potter fMRI data set. We only plot the lag-1 mean
coefficients (Â1). The 27 ROI names can be found in Table 3.5.
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3.6 Discussion and future work

We have proposed a scalable Bayesian time-varying tensor VAR model for the study

of effective connectivity in fMRI experiments, and we have shown that it results in good

performances and interpretable results in both a simulation and an application to a dataset

from a complex text reading experiment.We focus on applications to fMRI data, where an

AR(1) dependence is often assumed as sufficient (however, see Monti, 2011; Corbin et al.,

2018, for different takes). Our data analysis appears to confirm this general suggestion,

as higher lags of the coefficient matrices did not show patterns relevantly different from

zero in our fMRI experiment. However, our method is applicable to other types of time-

varying neuroimaging data, including EEG data, where higher orders of auto-regression

are more natural, and more generally to any type of data where a vector autoregressive

model is appropriate.

An important feature of the proposed time-varying tensor VAR model is that it implic-

itly relies on a state-space representation, with the state space containing 2H elements.

A state is obtained as the composition of a subset of the H components shared over

the entire time span. This representation could be leveraged to obtain scalable infer-

ence and describe shared patterns of brain connectivity in multi-subject analyses. More

specifically, in addition to allowing a more parsimonious representation of the coefficient

matrices than required by traditional non-tensor approaches, our formulation could be

employed to identify temporally persistent connectivity patterns in some brain areas, by

tracking the components that remain active over multiple time intervals and multiple

subjects. However, this type of inference would require allowing the identifiability of the

same tensor components across subjects. One way to achieve this result is through the

use of clustering-inducing Bayesian nonparametric priors, that will allow also borrowing

of information across all subjects in estimating the components. Due to the increased

computational burden this solution will require, we leave its exploration of these avenues
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to future work.

Appendix

Proof of Proposition 1

Here we prove the equivalence between the Ising prior and the NDARMA(1) model, which

relies on the exponential formulation of the multivariate Bernoulli distribution in Dai et al.

(2013).

Proof. We use mathematical induction to prove the theorem. First, the probability mass

function of the NDARMA(1) model with parameter (p1, p2) takes the general form of

multivariate Bernoulli distribution as

pr(γ1, . . . , γT ) ∝ exp

(
T∑
n

( ∑
1≤j1<j2<···<jn≤T

f j1j2...jnT Bj1j2···jr(γ)

))
.

When T = 2,

exp(f 1
2 ) =

p10

p00

=
p2(1− p1)

p1 + (1− p2)(1− p1)
, exp(f 2

2 ) =
p01

p00

=
p2(1− p1)

p1 + (1− p2)(1− p1)
,

exp(f 12
2 ) =

p00p11

p10p01

=
p1 + p2(1− p2)(1− p1)2

p2(1− p2)(1− p1)2
.

For any T ≥ 3, it holds that when jn < T − 1,

exp(f j1...jnT ) =
∏

{even # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn

/ ∏
{odd # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn

=
∏

{even # of 0’s in γj1 , . . . , γjn}

p∗T−1,j1...jn

/ ∏
{odd # of 0’s in γj1 , . . . , γjn}

p∗T−1,j1...jn

= exp(f j1...jnT−1 ).
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From this equation, we can induce, in the case where T = 3, that

exp(f 1
3 ) = exp(f 1

2 ) =
p2(1− p1)

p1 + (1− p2)(1− p1)
.

When jn = T − 1,

exp(f j1...jnT )

=
∏

{even # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn

/ ∏
{odd # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn

=
∏

{γjn=0, odd # of
0’s in γj1 , . . . , γjn−1}

p∗T−1,j1...jn
(p1 + (1− p1)(1− p2))

∏
{γjn=1, even # of

0’s in γj1 , . . . , γjn−1}

p∗T−1,j1...jn
(1− p1)(1− p2)

/
∏

{γjn=1, odd # of
0’s in γj1 , . . . , γjn−1}

p∗T−1,j1...jn
(1− p1)(1− p2)

∏
{γjn=0, even # of

0’s in γj1 , . . . , γjn−1}

p∗T−1,j1...jn
(p1 + (1− p1)(1− p2))

=
∏

{even # of 0’s in γj1 , . . . , γjn}

p∗T−1,j1...jn

/ ∏
{odd # of 0’s in γj1 , . . . , γjn}

p∗T−1,j1...jn

∏
{even # of 0’s in γj1 , . . . , γjn−1}

(1− p1)(1− p2)

/ ∏
{odd # of 0’s in γj1 , . . . , γjn−1}

(1− p1)(1− p2)

∏
{odd # of 0’s in γj1 , . . . , γjn−1}

p1 + (1− p1)(1− p2)

/ ∏
{even # of 0’s in γj1 , . . . , γjn−1}

p1 + (1− p1)(1− p2)

It is equal to ef
j1...jn
T−1 if n > 1 and ef

j1...jn
T−1 (1− p1)(1− p2)/ (p1 + (1− p1)(1− p2)) if n = 1.

For instance,

exp(f 12
3 ) = exp(f 12

2 ) =
p1 + p2(1− p2)(1− p1)2

p2(1− p2)(1− p1)2
,

exp(f 2
3 ) = exp(f 2

2 )
(1− p1)(1− p2)

p1 + (1− p1)(1− p2)
=

p2(1− p2)(1− p1)2

(p1 + (1− p2)(1− p1))2
.
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In the last case where jn = T , depending on the value of jn−1, we have

exp(f j1...jnT )

=
∏

{even # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn

/ ∏
{odd # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn

=
∏

{γjn=0, odd # of 0’s
in γj1 , . . . , γjn−1}

p∗T,j1...jn

∏
{γjn=1, even # of 0’s

in γj1 , . . . , γjn−1}

p∗T,j1...jn

/
∏

{γjn=1, odd # of 0’s
in γj1 , . . . , γjn−1}

p∗T,j1...jn

∏
{γjn=0, even # of 0’s

in γj1 , . . . , γjn−1}

p∗T,j1...jn

=
∏

{γjn=0, odd # of 0’s
in γj1 , . . . , γjn−1}

p∗T−1,j1...jn−1
(p1 + (1− p1)(1− p2))

∏
{γjn=1, even # of 0’s

in γj1 , . . . , γjn−1}

p∗T−1,j1...jn−1
(1− p1)p2

/
∏

{γjn=1, odd # of 0’s
in γj1 , . . . , γjn−1}

p∗T−1,j1...jn−1
(1− p1)p2

∏
{γjn=0, even # of 0’s

in γj1 , . . . , γjn−1}

p∗T−1,j1...jn−1
(p1 + (1− p1)(1− p2))

=
∏

{even # of 0’s in γj1 , . . . , γjn−1}

(1− p1)p2

/ ∏
{odd # of 0’s in γj1 , . . . , γjn−1}

(1− p1)p2

∏
{odd # of 0’s in γj1 , . . . , γjn−1}

p1 + (1− p1)(1− p2)

/ ∏
{even # of 0’s in γj1 , . . . , γjn−1}

p1 + (1− p1)(1− p2)

when jn−1 < T − 1. It takes value 1 when n > 1 and p2(1 − p1)/ (p1 + (1− p2)(1− p1))

when n = 1, which implies that

exp(f 13
3 ) = 1, exp(f 3

3 ) =
p2(1− p1)

p1 + (1− p2)(1− p1)

in the T = 3 example.
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Otherwise when jn−1 = T − 1,

exp(f j1...jnT )

=
∏

{even # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn

/ ∏
{odd # of 0’s in γj1 , . . . , γjn}

p∗T,j1...jn

=
∏

{γjn−1=1,

γjn=0, odd # of 0’s
in γj1 , . . . , γjn−2}

p∗T,j1...jn

∏
{γjn−1=0,

γjn=1, odd # of 0’s
in γj1 , . . . , γjn−2}

p∗T,j1...jn

∏
{γjn−1=0,

γjn=0, even # of 0’s
in γj1 , . . . , γjn−2}

p∗T,j1...jn

∏
{γjn−1=1,

γjn=1, even # of 0’s
in γj1 , . . . , γjn−2}

p∗T,j1...jn

/

∏
{γjn−1=1,

γjn=0, even # of 0’s
in γj1 , . . . , γjn−2}

p∗T,j1...jn

∏
{γjn−1=0,

γjn=1, even # of 0’s
in γj1 , . . . , γjn−2}

p∗T,j1...jn

∏
{γjn−1=0,

γjn=0, odd # of 0’s
in γj1 , . . . , γjn−2}

p∗T,j1...jn

∏
{γjn−1=1,

γjn=1, odd # of 0’s
in γj1 , . . . , γjn−2}

p∗T,j1...jn

=
∏

{γjn−1=1, odd # of 0’s

in γj1 , . . . , γjn−2}

p∗T−1,j1...jn−1(1− p1)(1− p2)
∏

{γjn−1=0, odd # of 0’s

in γj1 , . . . , γjn−2}

p∗T−1,j1...jn−1(1− p1)p2

∏
{γjn−1=0, even # of 0’s

in γj1 , . . . , γjn−2}

p∗T−1,j1...jn−1(p1 + (1− p1)(1− p2))
∏

{γjn−1=1, even # of 0’s

in γj1 , . . . , γjn−2}

p∗T−1,j1...jn−1(p1 + (1− p1)p2)

/

∏
{γjn−1=1, even # of 0’s

in γj1 , . . . , γjn−2}

p∗T−1,j1...jn−1(1− p1)(1− p2)
∏

{γjn−1=0, even # of 0’s

in γj1 , . . . , γjn−2}

p∗T−1,j1...jn−1(1− p1)p2

∏
{γjn−1=0, odd # of 0’s

in γj1 , . . . , γjn−2}

p∗T−1,j1...jn−1(p1 + (1− p1)(1− p2))
∏

{γjn−1=1, odd # of 0’s

in γj1 , . . . , γjn−2}

p∗T−1,j1...jn−1(p1 + (1− p1)p2)

=
∏

{odd # of 0’s in γj1 , . . . , γjn−2}

(1− p1)(1− p2)

/ ∏
{even # of 0’s in γj1 , . . . , γjn−2}

(1− p1)(1− p2)

∏
{odd # of 0’s in γj1 , . . . , γjn−2}

(1− p1)p2

/ ∏
{even # of 0’s in γj1 , . . . , γjn−2}

(1− p1)p2

∏
{even # of 0’s in γj1 , . . . , γjn−2}

p1 + (1− p1)(1− p2)

/ ∏
{odd # of 0’s in γj1 , . . . , γjn−2}

p1 + (1− p1)(1− p2)

∏
{even # of 0’s in γj1 , . . . , γjn−2}

p1 + (1− p1)p2

/ ∏
{odd # of 0’s in γj1 , . . . , γjn−2}

p1 + (1− p1)p2,

which equals (p1 + p2(1− p2)(1− p1)2) /p2(1 − p2)(1 − p1)2 if n = 2 and 1 if n > 2.
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Therefore we have for T = 3,

exp(f 123
3 ) = 1, exp(f 23

3 ) =
p1 + p2(1− p2)(1− p1)2

p2(1− p2)(1− p1)2
.

Therefore the NDARMA(1) model with parameter (p1, p2) has the multivariate Bernoulli

probability mass function where

exp(f 1
T ) = exp(fTT ) =

p2(1− p1)

p1 + (1− p2)(1− p1)
,

exp(f j1T ) =
p2(1− p2)(1− p1)2

(p1 + (1− p2)(1− p1))2
, j1 = 2, . . . , T − 1,

exp(f j1j2T ) =
p1 + p2(1− p2)(1− p1)2

p2(1− p2)(1− p1)2
, j2 = j1 + 1, j1 = 1, . . . , T − 1,

and the rest f j1j2...jnT , n = 2, . . . , T are all 0 such that exp(f j1j2...jnT ) = 1.

Lastly note that f 1
T and fTT are θ, f j1T for j1 = 2, . . . , T − 1 are θ∗ and f j1j2T , when j1

and j2 are two neighboring integers, are identical to κ. This concludes the proof.

Markov Chain Monte Carlo algorithm

We report the Gibbs sampler used to sample from the posterior distribution of the time-

varying tensor vector auto-regressive model under our prior specification. For notational

simplicity, we summarize y1, . . . ,yT with Y , and we use the capital letters Φ, Λ, V and

Z to denote the vectors containing the elements φh, λ1,h,λ2,h,vh,k,zh,k for varying values of

h = 1, . . . , H, and k = 1, . . . , P , respectively. We further employ the capital letter A for

the vector containing the values α1,h,α2,h,α3,h for varying h = 1, . . . , H and the capital

letter Γ for the vector of γh,t’s, h = 1, . . . , H,t = P + 1, . . . , T . Likewise, W is used to

denote the collection of w1,h,k, w2,h,k,k = 1, . . . , N , and w3,h,k, k = 1, . . . , P .
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1. Sample from the full conditional

pr(α,Φ, τ | A,W ) = pr(α | A,W )pr(Φ | α,A,W )pr(τ | α,Φ, A,W )

as follows:

(a) sample pr(α | A,W ) using a griddy-Gibbs: for each α in a set of even spaced

grid values in interval (H−3, H−0.1), draw M samples of φ and τ as in b) and

c). Sample α from the grid values with probability proportional to the average

score pr(A | φ, τ,W )pr(φ, τ | α) over M samples.

(b) sample ψ1, . . . , ψH independently from the generalized inverse Gaussian distri-

bution giG(α−N−P/2, 2bτ , 2Ch) where Ch =
3∑
j=1

α′j,hW
−1
j,h αj,h; then, normalize

to have φ1, . . . , φH

(c) sample τ from giG(aτ −H(N − P/2), 2bτ , 2
H∑
h=1

Ch/φh)

2. Sample from the full conditional

pr(Λ, V, Z,W | A,Φ, τ)

as follows:

(a) sample λ1,h, λ2,h from Ga(aλ + N, bλ + ‖α1,h‖1/
√
φhτ) and Ga(aλ + N, bλ +

‖α2,h‖1/
√
φhτ), respectively

(b) sampleW1,h,k, W2,h,k from giG(1/2, λ2
1,h, α

2
1,h,k/φhτ) and giG(1/2, λ2

2,h, α
2
2,h,k/φhτ)

respectively

(c) sample vh,k from Beta

(
1 +

P∑
p=1

1 (zh,p = k) , β +
P∑
p=1

1 (zh,p > k)

)
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(d) sample zh,k from

pr (zh,k = l | wh,1, . . . , wh,P , α3,h) ∝


wh,lN (α3,h,k; 0, τφhW∞) , l ≤ k

wh,lt2aw (α3,h,k; 0, bwτφh/aw) , l > k

where t2aw stands for the generalized Student’s t-distribution with 2w degrees

of freedom

(e) sample W3,h,k as follows

W3,h,k


= W∞, if zh,k ≤ k

∼ IG
(
aw + 1/2, bw + α2

3,h,k/(2τφh)
)
, if zh,k > k

3. Sample from

pr(A | W,Φ, τ, σ,y)

as follows:

(a) sample α1,h from N (µ1,h,Σ1,h) with

Σ1,h =

(
W−1

1,h/φhτ +
T∑

t=P+1

D2
1,h,tΣ

−1

)−1

and

µ1,h = Σ1,h

(
T∑

t=P+1

D1,h,tΣ
−1ỹ1,t,h

)

where

D1,h,t = γh,t(α3,h ⊗ α2,h)
′
[
y′t−1 . . .y

′
t−P

]′
and

ỹ1,t,h = yt −
H∑

j=1,j 6=h

D1,t,hα1,j
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(b) sample α2,h from N (µ2,h,Σ2,h) with

Σ2,h =

(
W−1

2,h/φhτ +
T∑

t=P+1

D′2,h,tΣ
−1D2,h,t

)−1

and

µ2,h = Σ2,h

(
T∑

t=P+1

D′2,h,tΣ
−1ỹ2,t,h

)

where

D2,h,t = γh,t(α
′
3,h ⊗ α2,h)

[
yt−1 . . .yt−P

]′
and

ỹ2,t,h = yt −
H∑

j=1,j 6=h

D2,h,tα2,j

(c) sample α3,h from N (µ3,h,Σ3,h) with

Σ3,h =

(
W−1

3,h/φhτ +
T∑

t=P+1

D′3,h,tΣ
−1D3,h,t

)−1

and

µ3,h = Σ3,h

(
T∑

t=P+1

D′3,h,tΣ
−1ỹ3,t,h

)

where

D3,h,t = γh,t

[
(α1,h ◦ α2,h)yt, . . . , (α1,h ◦ α2,h)yt−P

]
and

ỹ3,t,h = yt −
H∑

j=1,j 6=h

D3,j,tα3,j

4. Sample from

pr(Γ, θh, κh | A, σ, Y )

as follows:
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(a) sample γh,t, t = P + 1, . . . , T from

pr (γh,P+1, . . . , γh,T | ·) ∝ exp

(
T∑

t=P+1

(ψh,t + θh,t) γh,t +
T−1∑
t=P+1

κhγh,tγh,t+1

)

with

ψh,t = ȳ′h,tΣ
−1ỹh,t − 1/2ȳ′h,tΣ

−1ȳh,t

where

ȳh,t = α′3,h ⊗ (α1,h ◦ α2,h)

[
y′t−1 . . .y

′
t−P

]′
and

ỹh,t = yt −
H∑

j=1,j 6=h

γj,tȳh,j

(b) sample θh and κh using the auxiliary variable method by Møller et al. (2006)

and the Propp and Wilson (1996) perfect sampling algorithm.

5. sample σ2
n from a IG(aσ + (T − P )/2, bσ + ‖ỹt‖2/2) where

ỹt = yt −
H∑
h=1

γh,tα
′
3,h ⊗ (α1,h ◦ α2,h)

[
y′t−1 . . .y

′
t−P

]′

Some simulation results

We show in Figure 3.9 and Figure 3.10 results of 2 trials in the first simulation study

as examples. Our method successfully identifies all three components in trial 12 and

the estimated binary trajectories recover the true activation, while in trial 47, only one

component is correctly estimated. Having in mind that there are still non-negligible

components that our method fails to detect, we would like to offer some preliminary ex-

planation. One hypothesis is when the magnitude and the sparsity of the VAR coefficient

matrix or when the component barely activates during the process, it become difficult to

identify because of the weak signal. In Figure 3.11, we show the boxplot of some metrics
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(γh,P+1, . . . , γh,T ) and

[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
in two groups, one where the component is

identified and the other not. From the boxplot, it can be seen that the sparsity of the se-

quence (γh,P+1, . . . , γh,T ) and the magnitude of the coefficient

[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
, either

in max norm or in Frobenius norm, are related to the identifiability of that component

as expect. However, the two groups are not distinguishable if we look at the sparsity

of the coefficient matrix. Additionally We can investigate the hypothesis taking into ac-

count both the sparsity of (γh,P+1, . . . , γh,T ) and the magnitude of

[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
.

In Figure 3.12, we can compute the line to separate the identified and the non-identified

classification by the support vector machine (SVM). The green points (the non-identified

group) mostly allocate in the left bottom area of the plane whereas the red points (the

identified group) take the space where the signal is supposedly large. As a final remark,

it is important to bare in mind that the above analysis only gives a rough idea why some

components are missed in the estimation and the metrics that we use are not necessarily

the real factors that cause the issue.
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Figure 3.9: Results of trial 12 in the first simulation study: (1) the three true components;
(2) the four estimated components; (3) true regions of activation associated with each
component, where red indicates the component is active inside the time interval; (4)
estimated activation trajectories corresponding to each component.
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Figure 3.10: Results of trial 47 in the first simulation study: (1) the three true components;
(2) the four estimated components; (3) true regions of activation associated with each
component, where red indicates the component is active inside the time interval; (4)
estimated activation trajectories corresponding to each component.
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Figure 3.11: Boxplots of certain metrics of (γh,P+1, . . . , γh,T ) and
[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
grouped by whether the component is identified in posterior samples. Sparsity means the
proportion of non zero elements.
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Figure 3.12: A simple illustration showing how the sparsity of (γh,P+1, . . . , γh,T ) and the
norm of

[
A∗1,h, A

∗
2,h, . . . , A

∗
P,h

]
classify identifiability. The black line is obtained using the

support vector machine (SVM).



Chapter 4

Dynamic Shrinkage Priors in

Time-Varying Vector Autoregressive

Models

Abstract

The vector autoregressive (VAR) model is a popular choice for multivariate

time series analysis, however it does not apply to non-stationary time series.

A possible remedy is to extend the VAR model to time-varying VAR (TV-

VAR) models to allow for changing coefficients. We address two statistical

challenges when applying the TV-VAR model, the issue of high dimensional-

ity and the modeling of temporal dependence. We exploit lower dimensional

representation of the parameter space in TV-VAR models via tensor factor-

ization to achieve effective dimension reduction. In addition, the temporal

dependence of sparsity along time is modeled using two prior specification,

the dynamic spike and slab (DSS prior and the dynamic shrinkage processes

(DSP) priors. In many application, experiments are conducted multiple times

under the same experimental conditions and it is ideal that a model be able

77
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to pool information from multiple trials to make statistical inferences. Our

proposed model introduces a hierarchical structure in the parameter space to

account for data of this type. The method is validated through simulation

studies and applied to local field potentials (LFPs) data when rats perform a

hippocampus-dependent sequence-memory task.

4.1 Introduction

In many applications, observations are taken over time and the parameters governing the

data generating process are assumed to vary with time. For example, it is well documented

in economics that the role of financial indicators in predicting inflation changes in different

stages of an economic cycle (Stock and Watson, 2007; Cogley et al., 2010). Similarly, in

neuroscience, recent literature has discovered changes in brain connectivity in response to

a series of stimuli in task-based experimental settings or because of inherent spontaneous

fluctuations in resting state fMRI (Taghia et al., 2017; Warnick et al., 2018; Zarghami

and Friston, 2020b). The need to study these phenomena motivates the choice of models

with time-varying parameters that generalizes from their static counterparts to allow for

more flexibility in modeling the dynamic patterns embedded in observed time series data.

Simple examples include dynamic regression as an extension of ordinary regression (Petris

et al., 2009; Prado and West, 2010; Pankratz, 2012) and the time-varying VAR (TV-

VAR) model in terms of generalizing the VAR model (Primiceri, 2005; Nakajima et al.,

2011). Another motivation to consider time-varying parameter models lies on the fact

that any non-linear model can be approximated by a time-varying parameter linear model

(Granger, 2008). Therefore, relatively simpler time-varying parameter models avoid the

use of sophisticated non-linear models, greatly mitigating technical complexity inherent

to non-linear models.

In this chapter, we explore alternative approaches to model temporal dependence
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in the dynamic coefficient matrix of the time-varying vector autoregressive (TV-VAR)

model. The dynamics proposed in Chapter 3 are modeled via a Markovian switching

state characterization with the evolution being governed by a temporal Ising prior that

ultimately assumes Markovian dependence structure. By construction, each of the tensor

decomposition components can either be active or non-active at any time point. Conse-

quently, the coefficient matrix may transit abruptly from one state to another and the

size of the state space is exponential in the tensor decomposition rank. Instead it seems

interesting to consider that the system has smooth transitions from one state of mind to

another state, which calls for smooth temporal evolution of the time-varying parameters.

The general class of state space model offers advantages in terms of interpretation and

well-established inference procedures. Here we adopt this view and regard a TV-VAR as

a state space model where the parameters are latent states. However, without any further

dimension reduction of the TV-VAR model, the number of parameters is quadratic in

the dimension of the time series. The sheer number of parameters to be estimated leads

to low statistical and computational efficiency. For this reason, in recent years many di-

mension reduction techniques for TV-VAR models have been proposed in the literature.

For example, Chan et al. (2020) use a low-rank approximation of the covariance matrix

of the TV-VAR coefficients to effectively express them as a linear combination of lower-

dimensional factors. Our approach boils down to applying the tensor decomposition to

exploit the lower dimensional structure of the dynamic coefficient matrix (Wang et al.,

2021; Zhang et al., 2021). We start from a state space framework, but will specify the

state evolution on the tensor margins obtained as a result of the factorization.

Both frequentists and Bayesian methods have been proposed for TV-VAR models

(Cogley and Sargent, 2005; Primiceri, 2005; Koop and Korobilis, 2013; Prieto et al., 2016;

Samdin et al., 2016; Casas et al., 2017; Kapetanios et al., 2019). In particular, Bayesian

inference for TV-VAR models usually specifies the evolution of coefficients as a first order

Markov chain. When assuming Markovian transition, such model specification focuses
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on capturing the temporal dependence between two parameters consecutively in time

while neglecting possible relationships of shrinkage effects along time. In fact, one may

want to consider such dependences, i.e. to allow the shrinkage at a certain time point

to depend on the shrinkage level at the previous time point. Rephrasing in terms of

variable selection, this is to say that parameter values evolve smoothly over time and

their importance exhibits some type of dependence over time. Several investigators have

developed careful designs of dynamic priors on parameters in the context of Bayesian

variable selection for time series. For example, Kalli and Griffin (2014) propose a Normal-

Gamma autoregressive (NGAR) process prior to account for both time-varying regression

coefficients and time-varying sparsity. Similar effect of dynamic variable selection can be

achieved by the dynamic spike and slab (DSS) prior in Rockova and McAlinn (2021). A

minute-by-minute Twitter central processor unit (CPU) usage data set motivates Kowal

et al. (2019) to introduce the framework that models dependence between prior scale

parameters. Different from above dynamic shrinkage priors, Irie (2019) takes on the issue

by considering penalizing functions and extends the fused LASSO penalization to Bayesian

dynamic fused LASSO. The aforementioned approaches have their merits but they are

all initially designed for dynamic regression. A novel contribution in this chapter is to

investigate the use of time-varying shrinkage priors in TV-VAR models, more specifically

the TV-VAR model for multiple homogeneous trials under same experiment condition.

The Bayesian hierarchical specification allows borrowing information across trials.

The rest of the chapter is organized as follows. In Section 4.2 we describe the TV-

VAR model for multiple trials and its representation as a conditionally Gaussian state

space model. The suggested tensor decomposition of the stacked time-varying coefficients

is also formulated to define the time-varying tensor VAR (TVT-VAR) model. Section

4.3 elaborates the application of two specific dynamic shrinkage priors, the DSS and

the DSP prior, in the context of TVT-VAR models. Section 4.4 describes the Markov

chain Monte Carlo (MCMC) algorithm to draw posterior samples under the two prior
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specification. Results of two simulation studies are displayed in Section 4.5 to assess

the performance of the proposed method. Section 4.6 applies the TVT-VAR model with

dynamic shrinkage priors to rats’ local field potentials (LFPs) data when performing a

hippocampus-dependent sequence-memory task.

4.2 Time-varying Vector Autoregressive Models

Let yst be an N -dimensional vector of observations of the same subject at time points

t = 1, . . . , T in trials s = 1, . . . , S replicated under the same experiment condition. The

TV-VAR model of order P assumes that yst is a linear combination of the P lagged signals

yst−1, . . . ,y
s
t−P plus an independent noise εst ∈ RN ,

yst =

[
As1,t, A

s
2,t, . . . , A

s
P,t

]
yst−1

...

yst−P

+ εst , (4.1)

where εst ∼ N (0,Σs
t) and the linear coefficients Asp,t, p = 1, . . . , P are trial specific N ×N

matrices, assumed to vary across time t. Here, we assume that the covariance matrix

Σs
t of the error term εst does not depend on time t, i.e. Σs

t = Σs as we do not consider

stochastic volatility for simplicity.

The model is completed with the specification of the temporal evolution of the Asp,t

matrices. In the literature, this is usually achieved by formulating the TV-VAR as a

linear and Gaussian state-space model or dynamic linear model (DLM) (Prado and West,

2010). However, the autocorrelation structure of the time series (yst ) imposes to ‘force’

the DLM specification, usually by setting the covariance matrix of the observation error

to zero. Here instead we move from a representation of the TV-VAR model as a condi-

tionally Gaussian state space model (Lipster and Shiryayev, 1972; Liptser and Shiryaev,

2013) which extends DLMs, in particular by allowing the system matrix in the obser-
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vation equation to depend on past values of the observations (Lipster and Shiryayev,

1972). Treating As1,t, . . . A
s
P,t as latent state variables, the observation equation in the

conditionally Gaussian state space representation can be written as

yst = F s
t


vec(As1,t

>)

...

vec(AsP,t
>)

+ εst , εst ∼ N (0,Σs), (4.2)

where F s
t =

[
IN ⊗ yst−1

>, . . . , IN ⊗ yst−P
>

]
is a sparse N×N2P matrix. The vector of trial

specific state variables

[
vec(As1,t

>)>, . . . , vec(AsP,t
>)>
]>

has length N2P .

This model refers to a single trial s. Since the S trials are conducted on the same

single subject, it is reasonable to pool them together assuming exchangeability across

trials, and thus allow borrowing of strength across trials in learning the underlying

subject specific coefficients. We achieve the goal by modeling the probabilistic depen-

dence across trials through a hierarchical model that assumes that the trial-specific

coefficients are conditionally independent and Gaussian given the overall mean vector[
vec(A1,t

>)>, . . . , vec(AP,t
>)>
]>

and the diagonal covariance matrix Λ


vec(As1,t

>)

...

vec(AsP,t
>)


∣∣∣∣∣∣∣∣∣∣


vec(A1,t

>)

...

vec(AP,t
>)

 ,Λ indep∼ N



vec(A1,t

>)

...

vec(AP,t
>)

 ,Λ
 s = 1, . . . , S. (4.3)

Consequently, the temporal dependence of trial specific coefficients can be specified by

modeling the dynamics of the vector of the subject’s means. When the evolution of

latent variables

[
vec(A1,t

>)>, . . . , vec(AP,t
>)>
]>

is both linear and Gaussian, we obtain a

conditionally Gaussian state space representation of the TV-VAR model for multiple trials

after marginalizing out

[
vec(As1,t

>)>, . . . , vec(AsP,t
>)>
]>

and concatenating yst to form yt =
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((y1
t )
>, . . . , (ySt )>)>.

Although this modeling choice is straightforward to interpret and may be effectively

applied for small time series dimension N , the size of the latent space grows quadrat-

ically with N , creating statistical and computational challenges to inference especially

when N becomes large. To address this dimensionality issue, we propose to first stack[
As1,t, A

s
2,t, . . . , A

s
P,t

]
into a three-way tensor Ast of size N × N × P and then apply a

PARAFAC decomposition to achieve an increased reduction in the number of estimands.

Tensors decomposition has been widely applied to multidimensional array data (Zhou

et al., 2013; Guhaniyogi et al., 2017). In general, a q1 × q2 × · · · × qM tensor A is said to

admit a rank-R PARAFAC decomposition if R is the smallest integer such that A can be

written as

A =
R∑
r=1

α1,r ◦ α2,r ◦ · · · ◦ αM,r,

where ◦ indicates the vector outer product and αm,r ∈ Rqm ,m = 1, . . . ,M are the tensor

margins of each mode. In our case the transformed three-way tensor Ast is assumed to

consist of H lower rank components such that

Ast =
H∑
h=1

αs1,t,h ◦αs2,t,h ◦αs3,t,h

with αs1,t,h,α
s
2,t,h ∈ RN and αs3,t,h ∈ RP . Now the original mean coefficient matrix can be

recovered by rearranging the modes of the tensor decomposition as follow,

[
As1,t, A

s
2,t, . . . , A

s
P,t

]
=

H∑
h=1

αs3,t,h
> ⊗

(
αs1,t,h ◦αs2,t,h

)
. (4.4)

Note that for p = 1, . . . , P , each matrix Asp,t =
∑H

h=1 α
s
3,p,t,h · (αs1,t,h ◦αs2,t,h) where αs3,p,t,h

denotes the p-th entry of vector αs3,t,h, reflecting a sequence of constraints on the coefficient

matrix: the element-by-element ratio between As1,t and As2,t is proportional to the ratio

between the first two entries of α3,t,h, and similarly for subsequent lags. In the same
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spirit as before, we assume that the tensor At stacked from the subject specific coefficient

matrix

[
A1,t, A2,t, . . . , AP,t

]
has the same PARAFAC lower dimensional structure

At =
H∑
h=1

α1,t,h ◦α2,t,h ◦α3,t,h.

Thus, the model is now parametrized in the tensor margins αs1,t,h,α
s
2,t,h,α

s
3,t,h . Therefore,

it is natural to induce probabilistic dependence across trials through the joint probabil-

ity law of the tensor margins, rather than of the original coefficient matrices Asp,t. We

thus replace the modeling assumptions (4.3) by a new hierarchical model for the trial-

specific tensor margins, that are assumed to be conditionally independent and normally

distributed according to

αsf,t,h | αf,t,h,Λf,h
indep∼ N (αf,t,h, Λf,h), f = 1, 2, 3 (4.5)

where Λ1,h,Λ2,h are N × N diagonal matrices and Λ3,h is P × P diagonal matrix. The

advantage of (4.5) over (4.3) is to effectively downsize the parameters in the initial TV-

VAR model formulation from the original (T−P )N2P to H(T−P )(2N+P ) in each trial.

Equations (4.1) (4.4) and (4.5) together define what we name the Bayesian hierarchical

time-varying tensor VAR (BHTVT-VAR) model for multiple trials.

When tensor margins α1,t,h,α2,t,h,α3,t,h are regarded as latent states and proper tem-

poral dependence is defined on them, one could in principle work out the induced dy-

namics on the original Asp,t coefficients. However, this is usually not manageable, even

in the case of simple linear Gaussian dependence in tensor margins. Remedy to this is

to leverage the fact that the joint distribution can be uniquely specified given the set

of complete conditional distributions under some compatibility conditions (Besag, 1974;

Arnold and Press, 1989). For any fixed f = 1, 2, 3 and h = 1, . . . , H, conditionally on

αsg,t,h, g = 1, 2, 3, g 6= f and αs1,t,k,α
s
2,t,k,α

s
3,t,k, k = 1, . . . , H, k 6= h, and the P observa-
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tions lags, the observation equation concerning αsf,t,h, obtained from (4.1) by subtracting∑H
k 6=hα

s
3,t,k
> ⊗

(
αs1,t,k ◦αs2,t,k

)
from its both sides, can be expressed as

ỹst,h = F s
f,t,hα

s
f,t,h + εst , (4.6)

where

ỹst,h = yst −
H∑
k 6=h

αs3,t,k
> ⊗

(
αs1,t,k ◦αs2,t,k

)


yst−1

...

yst−P

 .

F s
f,t,h is equal to F s

1,t,h = (αs3,t,h ⊗ αs2,t,h)> · (yst−1
>, . . . ,yst−P

>)> · IN for f = 1, F s
2,t,h =

(αs3,t,h⊗αs1,t,h)(yst−1, . . . ,y
s
t−P )> for f = 2, and F s

3,t,h = (αs1,t,h ·αs2,t,h)>(yst−1, . . . ,y
s
t−P ) for

f = 3. The conditional specification (4.6) fully characterizes the BHTVT-VAR model for

multiple trials. When combined with normality assumption in (4.5) and linear Gaussian

state evolution of α1,t,h,α2,t,h,α3,t,h, the BHTVT-VAR model can be seen as consisting of

multiple conditionally Gaussian state space models for each αf,t,h after marginalizing out

αsf,t,h and concatenating ỹst,h over s (see Section 4.4), providing a new angle to look into

the model. The full conditional distributions are also essential in conducting posterior

inferences.

In the next section, we describe the dynamic shrinkage priors on mean vectors α1,t,h,

α2,t,h,α3,t,h that induce the desired linear Gaussian dynamics (or linear Gaussian dynam-

ics conditioning on some hyperparameters).

4.3 Dynamic Shrinkage Priors

In order to model the temporal dependence of the tensor margins α1,t,h, α2,t,h, and α3,t,h,

we investigate the use of two recently proposed prior models for Bayesian variable selection

in time-varying regression. We seek priors that enable modeling the parameters’ dynamics

and also enforce sparsity of the tensor decomposition over time. More specifically, we
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focus on the dynamic spike and slab (DSS) prior recently proposed by Rockova and

McAlinn (2021) and the dynamic shrinkage process (DSP) prior of Kowal et al. (2019),

and discuss their application in the BHTVT-VAR framework presented in the previous

Sections. Before going into the details of the two prior choices, we mention that the

priors for the diagonal elements of the covariance matrices Σs, s = 1, . . . , S and Λf,h,

f = 1, 2, 3, h = 1, . . . , H, are an IG(aσ, bσ) and IG(aλ, bλ), respectively, where IG(·, ·)

denotes the inverse gamma distribution.

4.3.1 DSS process priors in BHTVT-VAR models

We first consider the DSS prior by Rockova and McAlinn (2021), which has been proposed

for the problem of variable selection in a dynamic linear model setting, where the set of

active predictors is allowed to evolve over time. We apply the prior to modeling of the

three tensor margins α1,t,h, α2,t,h and α3,t,h. Note that differently than in Rockova and

McAlinn (2021), where the time-varying regression parameters are univariate, here we are

interested in the activation of vectors in Rn. More specifically, for f = 1, 2, 3, h = 1, . . . , H,

and t = 1, . . . , T , we consider the conditional specification,

π(αf,t,h|γf,t,h,αf,t−1,h) = (1− γf,t,h) ◦ ψ0(αf,t,h|Kf,0,h) + γf,t,h ◦ ψ1(αf,t,h|µf,t,h, Kf,1,h),

where ◦ denotes the Hadamard (element-wise) product. This is a mixture of two com-

ponents: a multivariate spike density, ψ0(αf,t,h|Kf,0,h), to capture irrelevant coefficients

and a multivariate slab density ψ1(αf,t,h|µf,t,h, Kf,1,h) for the active coefficients, where

Kf,0,h and Kf,1,h indicate N × N (f = 1, 2) or P × P (f = 3) variance-covariance ma-

trices. The γf,t,h is a vector of latent binary indicators of activation, with probability

pr(γf,t,h = 1|αf,t−1,h) = θf,t,h, i.e. γf,t,h|αf,t−1,h ∼ Bern(θf,t,h).

For simplicity, in the following we assume Kf,0,h = κf,0,h× Irf and Kf,1,h = κf,1,h× Irf ,

where rf = N for f = 1, 2 and rf = P for f = P , i.e. the elements of the tensor margins
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αf,t,h, f = 1, 2, 3, are assumed as independent. Under this simplification, we denote

ψ0(αf,t,h | Kf,0,h) by ψ0(αf,t,h | κf,0,h).

Possible choices of the spike density ψ0(αf,t,h|κf,0,h) include Gaussian or Laplace den-

sities centered around 0 with small variances κf,0,h, corresponding to a Ridge or LASSO

regression, respectively. In the following, we use the Gaussian spike as it leads to simpler

posterior computations in our framework.

The slab component has an auto-regressive specification since the mean µf,t,h = φf,0,h+

φf,1,h ◦ (αf,t−1,h − φf,0,h), where the parameter vector φf,1,h has elements |φif,1,h| < 1,

i = 1, . . . , rf , f = 1, 2, 3. The common variance is assumed large, κf,1,h � κf,0,h, to

allow capturing large values of the active coefficients. Then, all the elements of the tensor

margin vectors, αf,t,h
′s, t = P + 1, . . . , T , are assumed to follow a stationary Gaussian

AR(1) process with normal stationary distribution,

ψST1 (αf,t,h|κf,1,h, φf,0,h, φf,1,h) = ψ1

(
αf,t,h | φf,0,h, κf,1,h · diag

{
1/
(
1− φ2

f,1,h

)})
,

whose mean is φf,0,h and covariance matrix is diagonal κf,1,h ·diag
{

1/
(
1− φ2

f,1,h

)}
. When

the choice of the spike and the slab distributions are normal, we easily obtain that the

conditionally Gaussian distribution for αf,t,h given the indicator γf,t,h and the previous

αf,t−1,h can be expressed as

αf,t,h | γf,t,h,αf,t−1,h = N (γf,t,h ◦ µf,t,h, κf,1,h · diag {γf,t,h}+ κf,0,h · diag {1− γf,t,h}) ,

In terms of the state evolution equation, this implies that

αf,t,h = GDSS
f,t,hαf,t−1,h + ωf,t,h, ωf,t,h ∼ N (0, WDSS

f,t,h ) (4.7)

where GDSS
f,t,h = diag{γf,t,h ◦ φf,1,h} and WDSS

f,t,h = diag{κf,1,hγf,t,h + κf,0,h(1 − γf,t,h)} if
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φf,0,h is set to 0. Last but not least, the evolving inclusion probabilities are given by

θf,t,h = θ(αf,t−1,h)

=
Θf,hψ

ST
1 (αf,t−1,h|κf,1,h,φf,0,h,φf,1,h)

Θf,hψST1 (αf,t−1,h|κf,1,h,φf,0,h,φf,1,h) + (1−Θf,h)ψ0(αf,t−1,h|κf,0,h)
, (4.8)

with larger value of hyperparameter Θf,h favors less shrinkage on αf,t,h. The parameter

θf,t,h is essential in modeling the dynamic shrinkage effect. If αf,t−1,h is more likely to be

from the stationary slab distribution – in particular, if Θf,hψ
ST
1 (αf,t−1,h|κf,1,h,φf,0,h,φf,1,h) >

(1−Θf,h)ψ0(αf,t−1,h|κf,0,h) –, then the probability of activation θf,t,h will be larger than

1/2 and the probability that γf,t,h = 1 will be high. Thus, αf,t,h will more likely to

be drawn from the stationary slab distribution, same as αf,t−1,h. To complete the state

equation, the initial condition for αf,0,h is given by the stationary distribution of the DSS

prior

αf,0,h ∼ πST (αf,0,h | Θf,h, κf,1,h,φf,0,h,φf,1,h, κf,0,h)

= Θf,hψ
ST
1 (αf,0,h|κf,1,h,φf,0,h,φf,1,h) + (1−Θf,h)ψ0(αf,0,h|κf,0,h).

Finally, the vector of hyperparameters φf,1,h contains the autoregressive parameters for

each element, with values between -1 and 1. The assigned prior assumes that each element

of the vector φf,1,h is assigned the prior

1 + φif,1,h
2

∼ Beta(aφ, bφ), i = 1, . . . , rf ,

with rf = N if f = 1, 2 or rf = P is f = 3.
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4.3.2 DSP priors in BHTVT-VAR models

A second example of time-varying variable selection prior is represented by the DSP prior

by Kowal et al. (2019). Here we assume that the tensor margins α1,t,h,α2,t,h and α3,t,h

evolve according to a random walk,

αf,t,h = αf,t−1,h + ωf,t,h, f = 1, 2, 3. (4.9)

The DSP prior assumes that the error term ωf,t,h is normally distributed with mean 0

and variance-covariance matrix diag {exp (gf,t,h)}, where rf = N if f = 1, 2 and rf = P if

f = 3. The vectors of parameters on the diagonal of the covariance matrix, gf,t,h, follow

a AR(1) process

gf,t,h = φf,0,h + φf,1,h ◦ (gf,t−1,h − φf,0,h) + ηf,t,h, (4.10)

where φf,1,h is a rf -dimensional vector of elements, with elements bounded in absolute

value by 1. Each entry of ηf,t,h is identically and independently distributed as the Z-

distribution Z(aη, bη, 0, 1) characterized by the density function

fZ(z) =
eaηz

B(aη, bη)(1 + ez)aη+bη
,

where B(aη, bη) indicated the beta function. The Z-distribution provides a general case

for many important shrinkage priors, e..g the horseshoe prior (Carvalho et al., 2010)

that corresponds to aη = bη = 1/2. When parameters φf,0,h = φf,1,h = 0, we retrieve

exactly the static horseshoe prior in this case. The parameter φf,1,h also controls the

behavior of the “horseshoe” shape shrinkage weight which concentrates probability masses

around 0 and 1 so true signal levels remain while noises are shrunk towards 0. The larger

0 < |φif,1,h| < 1, i = 1, . . . , rf , f = 1, 2, 3 is, the more entry-wise correlated gf,t−1,h and

gf,t,h become and the denser the shrinkage parameter is distributed to both ends of the
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[0, 1] interval. This is intuitive as larger entries |φif,1,h| corresponds to greater persistence

in shrinkage behavior so marginally states of aggressive shrinkage or little shrinkage are

predominant (Kowal et al., 2019). The prior on φif,1,h takes the same form

1 + φif,1,h
2

∼ Beta(aφ, bφ), i = 1, . . . , rf ,

with rf = N if f = 1, 2 or rf = P is f = 3 as in the DSS prior whereas φif,0,h is assumed

to follow

φif,0,h | σφ, ξφ,f,h ∼ N (log(σ2
φ/(T − P )), ξ−1

φ,f,h), ξφ,f,h ∼ PG(1, 0),

where PG(1,0) denotes Pólya-gamma random variables (Barndorff-Nielsen et al., 1982;

Polson et al., 2013).

4.4 Posterior Inferences

To conduct inference on subject level dynamic coefficient matrices

[
A1,t, A2,t, . . . , AP,t

]
we use MCMC methods. More specifically, the posterior samples are drawn from their

corresponding full conditional distributions in Gibbs sampler. One step common to both

sampling algorithm under DSS and DSP prior specifications that facilitates posterior

sampling is to integrate out trial level tensor margins αs1,t,h,α
S
2,t,h,α

s
3,t,h and arrange yst,h

as a vector so (4.5) and (4.6) become

ỹt,h = Ff,t,hαf,t,h + εf,t,h, εf,t,h ∼ N (0,Σf,t,h), (4.11)
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where

ỹt,h =


ỹ1
t,h

...

ỹSt,h

 , Ff,t,h =


F 1
f,t,h

...

F S
f,t,h

 , Σf,t,h =



Σ1
f,t,h 0N . . . 0N

0N Σ2
f,t,h . . . 0N

...
...

. . .
...

0N 0N . . . ΣS
f,t,h


.

and Σs
f,t,h = F s

f,t,hΛf,hF
s
f,t,h
> + Σs. Together with linear Gaussian state equation implied

by the two priors that we investigate, it completes a conditionally Gaussian state space

specification so techniques like the Kalman filter or the all without a loop (AWOL) algo-

rithm (Rue, 2001; McCausland et al., 2011; Kastner and Frühwirth-Schnatter, 2014) can

be employed to draw samples of the state variables. After updating αs1,t,h,α
S
2,t,h,α

s
3,t,h,

new trial specific tensor margins are sampled from a multivariate normal distribution.

Gibbs sampler for DSS priors in BHTVT-VAR models is straightforward while for the

DSP prior, it requires extra procedures to derive the linear Gaussian state equation given

certain hyperparameters. First, in order to draw posterior samples of gf,t,h from the

model, one can transform (4.9) into

log
(
(αf,t,h −αf,t−1,h)

2) = gf,t,h + log
(
e2
f,t,h

)
, ef,t,h ∼ N (0, Irf ),

where Irf denotes the identity matrix whose dimension is N when f = 1, 2 and P when

f = 3. The log squared errors log(e2
f,t,h) are approximated by ten-component Gaussian

mixture as in Omori et al. (2007). Let lf,t,h be a vector of length rf , f = 1, 2, 3 whose

entries lif,t,h = 1, . . . , 10, i = 1, . . . , rf are component indices of the Gaussian mixture,

qlif,t,h , mlif,t,h
and vlif,t,h denote the corresponding weight, Gaussian mean and variance

that are known. It is also possible to express the error term ηf,t,h in (4.10), distributed

according to Z-distribution, as a mean-variance scale mixture of Gaussian. The mixing

distribution is the Pólya-gamma random variable (Barndorff-Nielsen et al., 1982; Polson
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et al., 2013),

ηf,t,h | ξf,t,h ∼ N
(
(aη − bη)/2 · ξf,t,h−1, diag

{
ξf,t,h

−1
})
,

ξif,t,h ∼ PG(aη + bη, 0), i = 1, . . . , rf , f = 1, 2, 3.

Since the system is linear and the error terms can be written in terms of Gaussian mixtures,

we are able to achieve fast posterior inferences in the DLM framework and through the

use of the Kalman filter. Details of the Gibbs samplers are given in the appendix.

To validate the performance of the two prior specifications in simulation studies, we

focus on the following criteria. Posterior inclusion probabilities pr(γf,t,h = 1 | y1:T ), f =

1, 2, 3, t = P + 1, . . . , T and h = 1, . . . , H are specific to the DSS prior where binary

variables γf,t,h indicate whether the corresponding variables are from the spike or the

slab distribution. Note that γf,t,h = 1 only reflects activation in tensor margin level, the

coefficient level activation matrix Γt ∈ RN×NP can be determined by

Γt,ji =


0,

[∑H
h=1 γ1,t,h ◦ γ2,t,h ◦ γ3,t,h

]
ji

= 0

1, otherwise

,

where Γt,ji and
[∑H

h=1 γ1,t,h ◦ γ2,t,h ◦ γ3,t,h

]
ji

denote the jth row ith column of the matrix

Γt and matrix
∑H

h=1 γ1,t,h ◦ γ2,t,h ◦ γ3,t,h. For the DSP prior, Γt,ji is defined based on

posterior samples of the credible interval

Γt,ji =


1, 1

(
pr
(
|Ât,ji| > 0

)
> 0.95

)
0, otherwise

,

where Ât,ji is the posterior estimates of the jth row and ith column of the dynamic co-

efficient matrix. MCMC samples of Γt can be used to calculate the posterior inclusion
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probabilities pr(Γt,ji = 1 | y1:T ) of each cell in the TV-VAR coefficient matrix and fur-

thermore derivatives from a confusion table. We also compute the root mean squared

errors (RMSE) for both cases of the DSS and the DSP prior

RMSE(Ât) =

√√√√ 1

N2P

T∑
t=P+1

NP∑
i=1

N∑
j=1

(
Ât,ji − At,ji

)2

,

where Ât is the posterior estimates of the mean coefficient matrix, At is the true mean

coefficient matrix and At,ji denotes its jth row ith column entry. RMSE measures how

well the posterior mean follow the true values and the uncertainty of these estimates is

reflected by mean credible intervals widths (MCIW)

MCIW =
1

N2P

T∑
t=P+1

NP∑
i=1

N∑
j=1

(
Â

(97.5)
t,ji − Â

(2.5)
t,ji

)
,

with Â
(97.5)
t,ji and Â

(2.5)
t,ji being the upper and lower bound of the 95% credible interval of

the jth row ith column of the dynamic coefficient matrix estimate Ât.

4.5 Simulation Studies

We consider three simulation studies. In each simulation study, data in S = 5, 20, 80 trials

are generated from a small BHTVT-VAR model where N = 4, P = 3 and the PARAFAC

decomposition of the stacked dynamic coefficient tensor has rank H = 3. The tensor

margins α1,t,h,α2,t,h,α3,t,h are simulated from an AR(1) process with an autocorrelation

coefficient of 0.98 as in Rockova and McAlinn (2021). After simulating tensor margins

from the AR process, we set the entries of α1,t,h,α2,t,h,α3,t,h with absolute values below a

0.5 threshold to 0. This is to ensure time intervals of exact 0’s in the time-varying parame-

ters that are used to generate the time series. Trial specific coefficients αs1,t,h,α
s
2,t,h,α

s
3,t,h

are sampled from corresponding normal distributions with 0.1 standard deviation. Fi-
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nally, the true coefficient matrix is computed from the tensor margins for each trial and

T = 200 time series are generated from the TV-VAR model where the error term has a

time invariant diagonal covariance matrix with diagonal entries all equal to 0.1. In this

step, we check the range of simulated observations. If the range is larger than 10, new

tensor margins of each trial will be generated until the condition is fulfilled. Examples of

simulated time series are displayed in Figure 4.1.
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Figure 4.1: Simulated time series observations from the BHTVT-VAR model.

To conduct posterior inferences, we assume the TV-VAR model order P = 4. The ini-

tial value of tensor marginsα1,t,h,α2,t,h,α3,t,h and trials specific tensor marginsαs1,t,h,α
s
2,t,h,

αs3,t,h take the same value as the tensor margins derived from the static VAR estimates.

The PARAFAC decomposition rank is chosen to be H = 4, larger than the true rank. In

DSS prior, we set the variance of the spike normal distribution κf,0,h and the slab normal

distribution κf,1,h to be 0.01 and 0.1. The beta prior on the autoregressive coefficients

φif,1,h has parameter aφ = 20 and bφ = 1.5 (Kim et al., 1998). In the DSP prior, aη = 0.5

and bη = 0.5 are chosen as this yields the special case of horseshoe prior. As for the same

beta prior on φif,1,h, we follow the guideline in Kowal et al. (2019) to set aφ = 10 and

bφ = 2. Lastly, σφ in the prior of φif,0,h is set to 1. Parameters that are common regardless

of the dynamic shrinkage prior choices, the diagonal elements of the covariance matrices

Σs and Λf,h, have the same hyperparameter values aσ = 100, bσ = 1 and aλ = 50, bλ = 1.

In all simulation studies, 10000 MCMC iterations are run. We discard the first 3000

sample and thin the remain samples by 3. Figure 4.2 compares the estimated trajectories
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(posterior mean) with the true trajectories of certain cells in the TV-VAR coefficient ma-

trix. In general, both priors are able to capture changes and follow the trend of the true

dynamic coefficients. In Table 4.1, we report RMSE and MCIW when imposing the DSS

and DSP prior. False negative rate (FNR), false positive rate (FPR), false discovery rate

(FDR) and false omission rate (FOR) are also included in case of the DSS prior. When

more trials are i pooled together to make inference about the TV-VAR coefficients, the

DSS prior performs better in the sense that RMSE and FNR decrease. However better

performances in RMSE and FNR come at the expense of more uncertainty showing in

wider credible intervals and higher FDR.
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Figure 4.2: Estimated and true trajectories of selected dynamic coefficients A1,2, A2,3, A3,4

and A3,12. The estimates are posterior means of the DSP prior and the DSS prior. Top,
middle and bottom rows correspond to S = 5, S = 20 and S = 80 respectively.
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DSS MCIW RMSE FNR FPR FDR FOR

Θ = 0.1
0.2388

(0.0539)
0.2687

(0.0528)
0.8841

(0.0458)
0.0056

(0.0028)
0.2474

(0.0994)
0.1197

(0.0283)

Θ = 0.2
0.2803

(0.0637)
0.2518

(0.0481)
0.7961

(0.0645)
0.0117

(0.0047)
0.2771

(0.0783)
0.1096

(0.0260)

Θ = 0.3
0.3203

(0.0680)
0.2398

(0.0440)
0.7101

(0.0743)
0.0194

(0.0077)
0.3055

(0.0746)
0.0995

(0.0238)

Θ = 0.5
0.5759

(0.0759)
0.2319

(0.0407)
0.1289

(0.0553)
0.5372

(0.0923)
0.8015

(0.0315)
0.0403

(0.0177)

Θ = 0.7
0.7352

(0.0840)
0.2275

(0.0395)
0.0000

(0.0000)
1.000

(0.0001)
0.8677

(0.0287)
NaN
(NA)

Θ = 1
1.0621

(0.1294)
0.2261

(0.0354)
0.0000

(0.0000)
1.0000

(0.0000)
0.8677

(0.0287)
NaN
(NA)

DSP MCIW RMSE FNR FPR FDR FOR
H=3
ηa = 0.5, ηb = 0.5

0.7428
(0.0651)

0.2090
(0.0331)

0.6969
(0.0665)

0.0057
(0.0032)

0.1094
(0.0563)

0.0965
(0.0227)

H=4
ηa = 0.5, ηb = 0.5

0.9558
(1.6116)

0.2940
(0.8780)

0.7160
(0.0692)

0.0042
(0.0057)

0.0831
(0.0858)

0.0986
(0.0223)

H=4
ηa = 0.01, ηb = 0.99

0.4268
(0.6495)

0.2546
(0.3653)

0.5768
(0.0870)

0.0352
(0.0153)

0.3486
(0.0885)

0.0831
(0.0198)

Table 4.1: Performance evaluation of posterior estimates with BHTVT-VAR models under
DSS and DSP prior specification.

4.6 Real Data Application

We apply the BHTVT-VAR model for multiple trials to LFP data recorded in the hip-

pocampal region CA1 under two experiment conditions in a odor sequence memory task

to study the role of the hippocampus in coding for the memory of sequential relationships

among nonspatial events (Allen et al., 2016; Hu et al., 2020). We focus on estimating the

TV-VAR coefficients under an “InSeq” condition and conducting inferences on how brain

effective connectivity patterns evolve over time. In the experiment, rats were presented

with repeated sequences of five odors in a single odor port. They were trained to identify

whether each odor was presented “in sequence” (by holding their nose poke until the

signal delivered after 1.2s) or “out of sequence” (by withdrawing their nose poke before

the signal) to receive a water reward (Allen et al., 2016). The LFP data that we will be

using were recorded from N = 21 CA1 electrodes in 245 trials/epochs, spanning roughly
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4 seconds with 4000 time points. We select trials where only A, B, C, D odors were

presented, and they were presented in sequence, and the rat correctly identified that each

odor was in sequence. The filtering step gives us S = 95 trials for further analysis. In

addition, we reduce the temporal resolution of time series by average over every 10 time

points to T = 400. The PARAFAC decomposition rank is chosen to be H = 4 so that

at least 50% of the Frobenius norm is explained by the approximation. Partial directed

coherence (PDC) is a measure of brain effective connectivity that resembles the Granger

causality in frequency domain. Given the condition level TV-VAR dynamic coefficient

matrix

[
A1,t, A2,t, . . . , AP,t

]
, the time-varying PDC from node i to node j of a certain

frequency ω at time t is defined as (Omidvarnia et al., 2013; Leistritz et al., 2013)

PDCt,ji(ω) =
|At,ji(ω)|2∑N
j=1 |At,ji(ω)|2

,

where At,ji(ω) is the jth row ith column of matrix At(ω) computed from the time-varying

coefficients

At(ω) = I −
P∑
p=1

Ap,t exp (−2iπωp) .

At each time point t, PDC is actually a normalized quantity since
∑N

j=1 PDCji(ω) = 1,

therefore it measures the proportion that the outflow from i to j makes up in all the

information outflow from i, but not the absolute strength of such information transmission.

We add one final remark that we are working on discovering scientific findings in the

direction highlighted by Shahbaba et al. (2019) from the perspective of brain effective con-

nectivity and preliminary results on principal component analysis (PCA) of the estimated

tensor margins seem promising.
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Appendix

We report Gibbs samplers used to draw from the posterior distribution of the BHTVT-

VAR model under our prior specifications.

Gibbs sampler for DSS priors

1. update αf,t,h from the conditionally Gaussian state space model with state equation

(4.7) and observation equation (4.11) using the FFBS algorithm.

2. update αsf,t,h from the multivariate normal distribution

N
(
Σs
f,t,h

∗ (Λf,h
−1αf,t,h + F s

f,t,h
>(Σs)−1yst,h

)
, Σs

f,t,h
∗) ,

where Σs
f,t,h

∗ =
(
F s
f,t,h
>(Σs)−1F s

f,t,h + Λf,h
−1
)−1

.

3. update γf,t,h by first computing θf,t,h according to (4.8), then computing

pf,t,h =
γf,t,h ◦ ψ1(αsf,t,h | µf,t,h, κf,1,h)

γf,t,h ◦ ψ1(αsf,t,h | µf,t,h, κf,1,h) + (1− γf,t,h) ◦ ψ0(αsf,t,h | κf,0,h)

as parameters of the Bernoulli distribution to sample γf,t,h.

4. update φf,1,h with a Metropolis Hastings step.

5. update diagonal entries of Λf,h from

IG

(
aλ + S(T − P )/2, bλ +

T∑
t=P+1

S∑
s=1

‖αsf,t,h −αf,t,h‖2
2

)
.
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6. update diagonal entries of Σs from

IG

aσ + (T − P )/2, bσ +

∥∥∥∥∥∥∥∥∥∥
yst −

H∑
h=1

αs3,t,h
> ⊗

(
αs1,t,h ◦αs2,t,h

)


yst−1

...

yst−P


∥∥∥∥∥∥∥∥∥∥

2

2

 .

Gibbs sampler for DSP priors

1. update αf,t,h from the conditionally Gaussian state space model with observation

equation (4.11) and state equation

αf,t,h = GDSPαf,t,h + ωf,t,h, ωf,t,h ∼ N (0,WDSP
f,t,h )

with GDSP an identity matrix of appropriate dimension and WDSP
f,t,h = diag{egf,t,h}

using the FFBS algorithm.

2. update αsf,t,h from the multivariate normal distribution

N
(
Σs
f,t,h

∗ (Λf,h
−1αf,t,h + F s

f,t,h
>(Σs)−1yst,h

)
, Σs

f,t,h
∗) ,

where Σs
f,t,h

∗ =
(
F s
f,t,h
>(Σs)−1F s

f,t,h + Λf,h
−1
)−1

.

3. update gf,t,h from the DLM with observation equation conditional on component

index lf,t,h

log
(
(αf,t,h −αf,t−1,h)

2) = gf,t,h + ef,t,h
∗

ef,t,h
∗ ∼ N




ml1f,t,h

...

m
l
rf
f,t,h

 ,


vl1f,t,h 0 . . . 0

0 vl2f,t,h . . . 0

...
...

. . .
...

0 0 . . . v
l
rf
f,t,h




,
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and state equation

gf,t,h = φf,0,h + φf,1,h ◦ (gf,t−1,h − φf,0,h) + ηf,t,h,

where ηf,t,h ∼ N
(
(aη − bη)/2 · ξf,t,h−1, diag

{
ξf,t,h

−1
})

using the AWOL algorithm.

4. update lf,t,h from the multinomial distribution with probabilities of l = 1, . . . , 10

determined by

pr(lf,t,h = l)
N
(
log
(
(αf,t,h −αf,t−1,h)

2)− gf,t,h | ml, vl
)∑10

l=1N
(
log
(
(αf,t,h −αf,t−1,h)

2)− gf,t,h | ml, vl
) ,

here we abuse the notation N to mean the Gaussian density value.

5. update ξf,t,h from PG (aη + bη, gf,t,h − φf,0,h − φf,1,h ◦ (gf,t−1,h − φf,0,h)).

6. update φf,1,h with a slice sampler (Neal, 2003) or a Metropolis Hastings step.

7. update φf,0,h from N (Qf,hcf,h, Qf,h), where

Qf,h = diag

{
ξf,P,h + ξφ,f,h + (1− φf,1,h)2 ◦

T∑
t=P+1

ξf,t,h

}−1

and

cf,h = log

(
σ2
φ

T − P

)
ξφ,f,h+ξf,P,h◦gf,1,h+(1− φf,1,h)◦

T∑
t=P+1

ξf,t,h◦(gf,t,h − φf,1,h ◦ gf,t−1,h) .

8. update ξφ,f,h from PG
(
1, φf,0,h − log

(
σ2
φ/ (T − P )

))
.

9. update diagonal entries of Λf,h from

IG

(
aλ + S(T − P )/2, bλ +

T∑
t=P+1

S∑
s=1

‖αsf,t,h −αf,t,h‖2
2

)
.
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10. update diagonal entries of Σs from

IG

aσ + (T − P )/2, bσ +

∥∥∥∥∥∥∥∥∥∥
yst −

H∑
h=1

αs3,t,h
> ⊗

(
αs1,t,h ◦αs2,t,h

)


yst−1

...

yst−P


∥∥∥∥∥∥∥∥∥∥

2

2

 .
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Chapter 5

Dynamic Generalized Double Pareto

Process Priors

In this chapter, we develop and investigate an alternative to the dynamic variable selection

priors discussed in Chapter 4, which is based on the use of a Generalized Double Pareto

(GDP) process. We motivate the proposed process prior in a simple dynamic regression

framework,

yt = βtxt + εt, ε ∼ N (0, σ2
t ), (5.1)

yt and xt, t = 1, . . . , T are the observed response variable and covariate. Extensions to the

tensor TVT-VAR models can be made following the same ideas presented in the Chapter

4. Here, βt denotes the dynamic regression coefficient and we assume that if follows a

GDP distribution, characterized by the following hierarchical representation,

βt | τt ∼ N (0, τt),

τt | λt ∼ Exp(λ2
t/2),

λt ∼ Ga(α, η),

103
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i.e., as a scale mixture of Normals, similarly to the DSS and DSP priors of Chapter 4. We

illustrate the GDP process prior using this specification. The idea is to keep the GDP

prior as the marginal distribution of βt for any t, but in the meanwhile to allow for a

clear dependence structure, especially for τt which is the crucial parameter that shrinks

βt towards 0. For instance, if the shrinkage is strong at time t, it may follow naturally

to also expect a strong shrinkage at time t + 1. We start by noting that rhe probability

density function of τt, after integrating out λt, is

pr(τt | α, η) =
2α/2−1ηα

Γ(α)τ
(α+3)/2
t

(
τ

1/2
t Γ

(
α + 2

2

)
1F1

(
α + 2

2
,
1

2
,
η2

2τt

)
−

√
2ηΓ

(
α + 3

2

)
1F1

(
α + 3

2
,
3

2
,
η2

2τt

))
, (5.2)

where 1F1(·) is the confluent hypergeometric function. With this density function, it is

difficult to construct a dependence structure on τt while maintaining a stationary time-

series. To circumvent this challenge, we propose modeling the dependence structure on

τt conditioning on a fixed λt, so that pr(τt | λ) simplifies to Exp(λ2/2). Exponential

AR(1) processes are suitable choices to introduce temporal dependence on τt given λ, by

assuming

τt = ρτt−1 + ωt, (5.3)

for some 0 < ρ < 1. Under the assumption of stationarity, this can be seen as a par-

ticular case of the general problem of self-decomposability. A random variable X is self-

decomposable if for any 0 < ρ < 1, there is an independent random variable X(ρ) such

that

X = ρX +X(ρ).

In general, the characteristic function of X(ρ) is equal to the ratio between the charac-

teristic function of X and ρX since X and X(ρ) are independent. Finding such an error

term X(ρ) is challenging for many distributions. However, Gaver and Lewis (1980) show
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that the error term ωt in (5.3) is exactly 0 with probability ρ; otherwise, with probability

1− ρ, the term follows the exponential distribution with mean 2/λ2.

A possible modeling choice is the Normal-Gamma autoregressive (NGAR) by Kalli

and Griffin (2014), which has then been used by Rockova and McAlinn (2021) to define

the Laplace AR process. The resulting dependence structure is a first order autoregressive

process in the sense that E(τt | τt−1) is linear in τt−1 with autoregressive coefficient ρ. The

AR dependence is accomplished by introducing an auxiliary random variables ψt, defined

as

ψt | τt−1 ∼ Ga(1 + τt−1, λ
2/(2(1− ρ)))

τt−1 | ψt ∼ Pois(ρλ2ψt−1/2(1− ρ)).

such that the marginal distribution of τt is Exp(λ2/2) (Pitt et al., 2002; Pitt and Walker,

2005).

In this chapter, we investigate a third option which is motivated by the fact that

the time varying τt should reflect stochastic volatility, and compare this approach with

those above. A common approach to deal with volatility in time-series is to transform the

original problem into a linear problem by considering

log(β2
t ) = θt + log(e2) (5.4)

where θt = log(τt) and e ∼ N (0, 1). Hence, instead of assuming τt as an AR(1) pro-

cess, one can introduce temporal dependence by requiring θt to be a stationary AR(1)

while preserving the marginal distribution in (5.2). Thus, it is necessary to identify the

distribution of ωt such that

θt = ρ θt−1 + ωt,

admits invariant marginal distribution for τt as above, with 0 < ρ < 1 since the shrinkage
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should be positively correlated. Conditional on λ, log(τt) is a shifted Gumbel distribution.

We conclude this Section by noticing that if one further desires to model the depen-

dence between βt−1 and βt, it can be assumed that jointly βt−1 and βt follow a bivariate

normal distribution such thatβt−1

βt

 ∼ N

0

0

 ,

 τt−1 φ
√
τt−1τt

φ
√
τt−1τt τt


 ,

which implies that βt | βt−1 ∼ N (φ
√
τt/τt−1βt−1, (1 − ρ2)τt). The previous result can be

written in linear form as

βt = φ
√
τt/τt−1βt−1 + νt νt ∼ N (0, (1− φ2)τt).

The process of βt combined with the first order AR(1) process of τt is a special case of the

NGAR proposed by Kalli and Griffin (2014). However, by proceeding this way, it is not

possible to obtain an expression similar to (5.4). Later, we argue that the different ways

we have discussed to construct the dependence on τt indeed correspond to incorporating

different prior information in the modeling of the evolution of the sparsity of the regression

coefficients.

5.1 A Gumbel AR(1) process

In this Section, we describe in detail the Gumbel AR(1) process of θt. In the following,

when we write τt ∼ exp(λ2/2) and θt = ρθt−1 + ωt, we implicitly assume that we are

conditioning on λ. We start by noting that when τt ∼ exp(λ2/2), then− log(λ2/2)−log(τt)

follows the standard Gumbel distribution. In this representation, the error term ωt is
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related to the stable distribution S which is defined through its characteristic function

ψS(s) =


exp(isµ− |cs|α(1− iβsgn(s) tan πα

2
)) if α 6= 1

exp(isµ− |cs|α(1 + iβsgn(s) 2
π

log |cs|)) if α = 1

(5.5)

We denote the stable distribution by S(α, β, c, µ). The parameter 0 < α ≤ 2 is usually

called the characteristic exponent which defines the tail behavior while the parameter

−1 ≤ β ≤ 1 governs skewness. The parameters c > 0 and µ ∈ R are the scale and

location parameters of the distribution, respectively. The density of the stable distribution

generally does not have analytical forms unless in some special cases. For instance, when

α = 2, it simplifies to the normal distribution and the Cauchy when α = 1, β = 0. Another

special case is for β = 1 and 0 < α < 1. In this case, the support of the distribution

is the positive real line and we obtain the so-called positive stable distributions, whose

Laplace transform is E(e−uS) = e−u
αcα/ cos(απ/2). An analytical expression of the density

exists only under α = 1/2 and the resulting distribution is the Lévy distribution, a special

case of inverse Gamma distribution. The following Proposition 2 shows that to construct

Gumbel distributed AR(1) processes, the error term is indeed related to a positive stable

random variable.

Proposition 2. If a positive α-stable random variable St is defined through its Laplace

transform E(e−uSt) = e−u
α
, u > 0, the AR(1) process with 0 < α < 1

Xt = αXt−1 + α log(St)

has stationary distribution Xt ∼ Gumbel(0, 1).

Proof. The proof follows from results in Shanbhag and Sreehari (1977); Hougaard (1986),

who found that if Z and S are independent random variables such that Z ∼ Exp(1) and

S has the Laplace transform E(e−uS) = e−u
α
, then the ratio Z S−1 ∼Weibull(1, α) coin-
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ciding with the distribution of Z1/α. Consequently we have E(Sq) = E(Z−q/α)/E(Z−q) =

Γ(1 − q/α)/Γ(1 − q) and the characteristic function ψlog(S)(s) = E(eis log(S)) = E(Sis) =

Γ(1−is/α)/Γ(1−is). It is known that the characteristic function of the standard Gumbel

distribution is Γ(1−is), therefore αXt−1 +α log(St) also has such a characteristic function

due to the independence between Xt−1 and St.

The above positive stable random variable corresponds to 0 < α < 1, β = 1, c =

cos(απ/2)1/α and µ = 0 with characteristic function ψS(s) = e− exp(−i·sgn(s)απ/2)|s|α . It is

easy to see that ωt = −ρ log(St)−(1−ρ) log(λ2/2) in order for θt to fulfill the autoregressive

property.

Conditional on λ, the correlation between θt and θt−1 is ρ due to the straightforward

AR(1) construction. However, one naturally wonders what correlation between τt and

τt−1 is induced since our interest is on τt as it directly reflects the shrinkage effect. The

relationship between τt and τt−1 implied by AR(1) on θt is

τt = eωtτ ρt−1,

reflecting a non-linear dependence with dependence strength controlled by ρ. One reason

to favor the modeling of θt instead of τt is that if τt is assumed to be an exponential AR(1)

process, τt will be equal to ρτt−1 with positive probability by construction. Indeed, as

outlined in the Introduction to this Chapter, it follows from the results by Gaver and Lewis

(1980) that if τt | λ ∼ Exp(λ2/2), the error term of exponential AR(1) for τt is exactly 0

with probability ρ and otherwise with probability 1 − ρ it is an exponential distribution

with mean 2/λ2. Figure 5.1 shows trajectories of τt modeled as an exponential AR(1)

(red lines), as a first order AR(1) (green lines) and as the induced transformation from

a Gumbel AR(1) process on θt (the proposed model, blue lines). It can be clearly seen

that, when τt follows an exponential AR(1) process, the probability the the error term is

equal to zero increases, leading to long segments of exponential (deterministic) decaying
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Figure 5.1: Trajectories of τt under (a) small correlation, (b) medium correlation and
(c) large correlation derived from exponential AR(1) processes (red lines), first order
exponential AR(1) processes (green lines) and Gumbel AR(1) processes (blue lines). λ
is randomly generated from Ga(2, 1) and it is equal to 0.9632 in (a), 0.5246 in (b) and
0.3860 in (c).

(red) trajectories in Figure 5.1(c). Arguably, this behavior is not desirable for modeling

the sparsity of dynamic regression coefficients.

5.2 Dependence between shrinkage profiles

Suppose that xt = 1 and σ2
t = 1 in (5.1), with the prior βt | τt ∼ N (0, τt), the posterior

distribution of βt is still a normal distribution with mean (1− 1/(1 + τt))βt and variance

1− 1/(1 + τt). The quantity κt = 1/(1 + τt) is the shrinkage profile. It is important as it

controls the level of shrinkage of the observation βt towards zero Carvalho et al. (2010).

When κt is around zero, the posterior mean will be be close to βt, inducing minimal

shrinkage. On the contrary, κt ≈ 1 suggests a strong shrinkage. Since the GDP process

prior preserves the marginal distribution of τt, the merits of the GDP prior discussed in

Armagan et al. (2013) are all retained. We focus on the dependence between κt−1 and

κt. In Figure 5.2, we display the histogram of κt−1 and κt drawn from the GDP process

prior. Although the correlation ρ appears in the AR process of θt, its effect persists to

κt thought τt so that we still have strong correlation between κt−1 and κt. Notice that

samples are not equally distributed on two sides of the diagonal line κt = κt−1. Masses

are more concentrated on part of the plane above the line, meaning that κt is more likely

to be larger than κt−1. We argue that this is an advantageous feature. When βt stands for
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signal, corresponding to κt−1 ≈ 0, βt+1 can behave oppositely and become noise. On the

other hand, βt being noise (κt ≈ 1) implies that βt+1 is more like to be noise as well. The

GDP process prior enables shrinkage to move through time while discourages persistent

signals.

5.3 Posterior Inferences

We apply a Metropolis-Hastings within Gibbs algorithm to draw posterior samples. The

algorithm below is designed for the situation where βt−1 and βt are correlated. First to

sample the dynamic coefficients βt given the observation and the state equations

yt = xtβt + εt εt ∼ N (0, σ2
t ),

βt = φ
√
τt/τt−1βt−1 + νt νt ∼ N (0, (1− φ2)τt).

with the initial condition that β0 ∼ N (0, τ0), one can use either the Forward Filtering

Backward Sampling (FFBS) algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter,

1994; Shephard, 1994) or the all without a loop (AWOL) method (Rue, 2001; McCausland

et al., 2011; Kastner and Frühwirth-Schnatter, 2014). The next block in the sampler is

to draw θt from

βt = φ

√
eθt

eθt−1
βt−1 + νt νt ∼ N (0, (1− φ2)eθt),

θt = ρθt−1 + ωt ωt = −ρ log(St)− (1− ρ) log(λ2/2).

Adding the initial condition θ0 ∼ −Gumbel(0, 1) − log(λ2/2) completes the state space

representation. This is a non-Gaussian non-linear state space model where only the

observation equation νt is Gaussian. Since FFBS or AWOL algorithms are not directly

applicable to sampling θ0:T from the posterior pr(θ0:T | β2
1:T , φ, ρ, λ), we iteratively apply
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Figure 5.2: 2-dimension histogram of the shrinkage profile κt−1 and κt under (a) (d) (g)
small correlation, (b) (e) (h) medium correlation and (c) (f) (i) large correlation. (a) (b)
(c) refer to exponential AR(1) processes, (d) (e) (f) refer to first order exponential AR(1)
processes and (g) (h) (i) are transformed from Gumbel AR(1) processes. α = 2 and η = 1.
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the Metropolis-Hastings algorithm as in Geweke and Tanizaki (2001) to draw samples from

pr(θt | θ0:t−1, θt+1:T , β0:T , φ, ρ, λ). To make the algorithm work, evaluating pr(θt | θt−1) is

needed, however it is difficult as analytical expression of the density of a positive stable

random variable is not available. The decomposition in Ibragimov and Chernin (1959);

Kanter (1975); Simon (2011) allows us to construct a location mixture representation of

log(St) with explicit mixture density

log(St) = ρ−1 log(bρ(Ut)) + (ρ− 1)/ρ log(Lt),

where bρ(u) = (sin(ρu)/ sinu)ρ(sin((1 − ρ)u)/ sinu)1−ρ, Ut is uniform on interval (0, π)

and Lt is standard exponential distribution independent of Ut. The convolution plus

the location-scale natural of the Gumbel distribution gives us the following hierarchical

representation

log(St) ∼ Gumbel(ρ−1 log(bρ(Ut)), (1− ρ)/ρ)

Ut ∼ Unif(0, π).

Given Ut, the first layer of the hierarchical structure is Gumbel distribution, whose density

function is known. Through the augmented random variable Ut, pr(θt | θt−1) becomes easy

to evaluate.

The observation error variance σ2
t can be modeled either time dependent or time

invariant, but it does not add conceptual difficulty to the posterior inference. In the

case of homoscedasticity, one can assume the conjugate inverse Gaussian prior on σ2.

Otherwise, conventional stochastic volatility framework can be applied to account for the

temporal evolution of σ2
t . Lastly, the hyperparameter λ, autoregressive coefficients φ, ρ

and the auxiliary variable Ut are updated via Metropolis-Hastings algorithm as well.
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