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Abstract

Random probability measures are a cornerstone of Bayesian nonparametrics. By
virtue of de Finetti’s representation theorem, their law acts as the prior distribution
for exchangeable observations. Mostly used Bayesian nonparametric procedures, in
this framework, rely on laws selecting almost surely discrete probability measures,
such as the celebrated Dirichlet process and its several extensions.

The first part of this thesis is dedicated to problems related to random proba-
bility measures arising in the exchangeable regime. We explore properties of func-
tionals of noteworthy discrete random probability measures in order to provide
prior elicitation. In particular we retrieve explicit expressions for base measures
inducing a broad class of distributions on the random mean of a Dirichlet process,
a normalized stable process and a Pitman–Yor process. We furthermore provide an
application to widely employed mixture models. These results have led us to fur-
ther theoretical investigations regarding the connection between Dirichlet random
means and continual Young diagrams.

The second part of the thesis is instead devoted to the partially exchangeable
regime, a generalization of exchangeability which encompasses a more complex de-
pendence structure among observations naturally divided in groups. We rely on
hierarchical discrete random probability measures to enforce such distributional
invariance in a model for clustering of nodes in multilayer networks. The in-
duced distribution on the space of sequences of consistent partitions, determined
by partially exchangeable partition probability functions, allows for theoretically
validated prediction regarding new nodes incoming into the network.
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Chapter 1

Preliminaries

1.1 Introduction

Random probability measures are the basic building block of popular and well-
established Bayesian nonparametric procedures. This is apparent in the standard
framework of exchangeable observations, which stands as the natural counterpart
of the independence and identity in distribution assumption in frequentist statis-
tics and entails invariance of the finite dimensional distributions with respect to
permutation of the indices. This fundamental form of probabilistic symmetry en-
compasses the idea that the order in which we observe data realizations is not
important for performing inference. By virtue of the celebrated representation
theorem in de Finetti (1937), a sequence (Xn)n≥1 of random elements valued in
some space X, is exchangeable if and only if there exists a random probability
measure P̃ on X, such that

X1, . . . , Xn | P̃
iid∼ P̃ (1.1)

for any n ≥ 1. Hence, the law of P̃ plays the role of prior distribution and reflects
pre-experimental information on the data generating distribution.

In this thesis we focus on discrete random probabilities

P̃ =
∑
i∈I

ωi δZi , (1.2)

on some space X, where I is countable, the sequences (ωi)i∈I and (Zi)i∈I are
independent, with

∑
i∈I ωi = 1, almost surely. Moreover the Zi’s are independent

and identically distributed from some probability measure P0 on X that takes on
the name of parameter measure or baseline measure. It is further easily seen that
E[ P̃ ] = P0. Such random probability measures have been extensively employed in
Bayesian statistical modeling, as accounted, e.g., in Müller et al. (2015), Phadia
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1. Preliminaries

(2016) and Ghosal and van der Vaart (2017), as well as thoroughly studied in
probabilistic contexts, because of their intrinsic connection with random partitions
theory and in general with combinatorial stochastic processes. See Kingman (1975,
1978, 1982) and Pitman (1995, 1996, 2006).

The well-known Dirichlet process, introduced in Ferguson (1973), is the most
celebrated example of such nonparametric priors. Moreover, it has spurred several
well-established extensions: from the two-parameter version in Pitman and Yor
(1997b), to normalized completely random measures in Regazzini et al. (2003), to
Gibbs-type priors in Gnedin and Pitman (2005) and De Blasi et al. (2015). A note-
worthy use of such discrete random probability measures is in mixture models for
density estimation. See Lo (1984) for the Dirichlet process and, e.g., Ishwaran and
James (2001), Lijoi et al. (2007) and Barrios et al. (2013) for its extensions. Other
important early generalizations are represented by tail-free processes and neutral-
to-the-right processes, in Fabius (1973), Ferguson (1974) and Doksum (1974).

Theoretical investigations on random probability measures have been fueled by
inferential problems in Bayesian statistics, leading to remarkable advances and the
proposal of new modeling tools. An inspiring and appealing area of research is
the one focusing on linear functionals of random probability measures. After the
seminal contribution by Cifarelli and Regazzini (1990), the developments in the
field have been impressive and several connections with seemingly unrelated areas
of mathematics have emerged. See Lijoi and Prünster (2009) for a review.

The first part of this thesis, namely Chapters 2 and 3, focuses on means of
random probability measures. Chapter 2 is mainly devoted to providing prior elic-
itation for commonly used nonparametric priors by enforcing a desired distribution
on their linear functionals. More specifically, following an inverse path with respect
to the existing literature on the topic, we establish explicit expressions for the base
measure of a discrete random probability measure inducing a broad class of distri-
butions on the mean, when such random measure is either a Dirichlet process, a
normalized stable process, or a Pitman–Yor process. We further show that these
results can be extended to popular nonparametric mixture models that are cus-
tomarily used for Bayesian density estimation. This investigation naturally leads
to theoretical questions about the structure of the space of such mean distribu-
tions, which find parallels in different fields of mathematics, from combinatorics
to statistical physics. In Chapter 3, we explore in particular the connection with
transition measures induced by hook walks on continual Young diagrams.

On the other hand, the great availability of data featuring complex dependence
structures has driven the investigation to explore the statistical implications of
probabilistic symmetries more general than exchangeability. Indeed, in the last two
decades a lively area of research has been contributing to the development of theory
and models encompassing more flexible forms of distributional invariance. Among
these, one of the most popular is partial exchangeability, that was introduced by
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1.1. Introduction

de Finetti (1938).
In the second part of the thesis, namely Chapter 4, we propose a model for a

connectivity-driven clustering of nodes in multilayer node-colored networks, based
on hierarchical priors on the space of partitions, inducing partial exchangeability
on a latent array of characteristics of the nodes. The proposal has a probabilis-
tically coherent structure. Indeed, we are able to evaluate partially exchangeable
partition probability functions, which entail distributions on the space of consis-
tent sequences of partitions of a growing network. This, differently from previous
proposals in the network analysis literature, allows for a theoretically validated
prediction. Moreover, the analytical tractability of these priors grants explicit
evaluation of predictive clustering and co-clustering probabilities, and in turn per-
mits elicitation of hyperparameters choice. We devise Markov chain Monte Carlo
algorithms to perform posterior inference and prediction both on the allocations
and on the connections of new nodes entering the network. Further work address-
ing the construction of models enforcing forms of distributional invariance other
than partial exchangeability, that better suit different types of multilayer networks,
is briefly outlined.

In the rest of this Chapter we provide a brief overview of concepts and tools
which are fundamental for the derivation of the main results in the thesis. We
start from exchangeability, as it represents a cornerstone of the Bayesian inferential
scheme and exemplifies the tight connection with the theory of random probability
measures. An effective strategy for defining discrete random probability measures
is through transformation of completely random measures. Such constructions,
combined with powerful analytical tools that we are going to present, have been
fundamental both for the study of random means in Chapters 2 and 3, and for the
formulation of the model for clustering in multilayer networks in Chapter 4. As far
as the latter is concerned, partial exchangeability plays a key role. It is worth not-
ing that for arrays fulfilling this distributional invariance a representation theorem
holds true and it is based on the joint law of vectors of random probability mea-
sures. A particular way of constructing partially exchangeable arrays of observables
is given by hierarchical random probability measures. Such hierarchies, together
with the almost sure discreteness of the involved random probability measures,
induce distributions on the space of partitions to be used as priors in structured
clustering problems, included the one we confront in Chapter 4. Hierarchical com-
positions of discrete random probability measures obtained via transformations
of completely random measures are, in these regards, powerful and analytically
tractable tools, since they inherit useful properties and induce, in turn, handy dis-
tributions on the space of sequences of consistent partitions. The probability mass
function determining such a distribution is called partially exchangeable partition
probability function and is a brilliant example of an elegant mathematical object
that has not been thoroughly investigated in the probabilistic literature yet.
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1. Preliminaries

1.2 Exchangeable sequences

Let X be a complete and separable metric space equipped with the Borel σ-algebra
X and denote by P the space of probability distributions defined on (X,X ) and
endowed with the topology of weak convergence. We denote with σ(P) the Borel
σ-algebra of subsets of P. We will indicate with [n] the set of the first n natural
numbers {1, . . . , n}, for any n ∈ N. For a sequence of X-valued random elements
X = (Xn)n≥1, defined on some probability space (Ω,F ,P) we have the following.

Definition 1.1. X is exchangeable if for any n ≥ 1

(X1, . . . , Xn)
d
= (Xπ(1), . . . , Xπ(n)) (1.3)

for any π ∈ Sn, the symmetric group of [n].

By virtue of the representation result in de Finetti (1937), we have the following.

Theorem 1.1 (de Finetti). X is exchangeable if and only if there exists a prob-
ability measure Q on the space of probability distributions (P, σ(P)) such that

P (X1 ∈ A1, . . . , Xn ∈ An) =

∫
P

n∏
i=1

P (Ai)Q(dP ) (1.4)

for any A1, . . . , An in X and n ≥ 1.

The probability measure Q directing the exchangeable sequence (Xn)n≥1 is also
termed de Finetti measure and takes on the interpretation of prior distribution in
the Bayesian framework. The representation theorem can be equivalently stated
by saying that, given an exchangeable sequence (Xn)n≥1, there exists a random
probability measure P̃ , defined on (X,X ) and taking values in (P, σ(P)), such
that, for any n ∈ N

X1, . . . , Xn | P̃
iid∼ P̃

P̃ ∼ Q
(1.5)

Discrete nonparametric priors Q, namely priors Q selecting discrete distribu-
tions with probability 1, represent a fundamental tool in Bayesian nonparametrics.
The most popular example is the Dirichlet process (DP), introduced in Ferguson
(1973). However, as shown in Lijoi and Prünster (2010) most classes of discrete
nonparametric priors, including the DP, can be seen as suitable transformations of
completely random measures, presented in Kingman (1967). In order to introduce
the other specific processes we will deal with, it is therefore worth briefly describing
this unifying concept.
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1.2. Exchangeable sequences

Let M be the set of boundedly finite measures on X equipped with the cor-
responding Borel σ-algebra on σ(M ). For details on the definition of this σ-
algebra, see Daley and Vere-Jones (2007). A completely random measure (CRM)
µ̃ on (X,X ) is a measurable function on (Ω,F ,P) taking values in M such
that for any k ≥ 2 and pairwise disjoint sets A1, . . . , Ak in X the random vari-
ables µ̃(A1), . . . , µ̃(Ak) are independent. CRMs have been introduced in Kingman
(1967). Detailed treatments can be found in Kingman (1993) and Daley and Vere-
Jones (2007). Any CRM µ̃ fulfills the following representation. For A ∈X

µ̃(A) =
∑
k≥1

Ukδxk
+ β(A) +

∫ ∞

0
s Ñ(ds, A) (1.6)

where (xk)k≥1 is a (countable) sequence in X, (Uk)k≥ is a sequence of independent
non-negative random variables, β is a fixed non-atomic boundedly finite measure
on (X,X ), and Ñ is a Poisson process on R+×X independent of (Uk)k≥ and whose
parameter measure ν satisfies∫

R+

∫
B

min{s, 1} ν(ds, dx) <∞ (1.7)

for any bounded B in X . In words, we can think of a CRM as a superposi-
tion of a random measure with fixed atoms, a deterministic non-atomic drift and
a part characterized by random jumps and random locations, whose intensities,
distribution and mutual dependence are governed by a Poisson process.

We will focus on CRMs µ̃ with no fixed atoms and no drift. For our purposes it
is important to remind that such CRMs are almost surely discrete. Their Laplace
functional admits the following Lévy–Khintchine representation.

E
[
e−

∫
X f(x) µ̃(dx)

]
= exp

{
−
∫
R+×X

[
1− e−sf(x)

]
ν(ds, dx)

}
(1.8)

where f : X → R is a measurable function such that
∫
|f |dµ̃ < ∞ almost surely.

The measure ν is known as the Lévy intensity of µ̃ and regulates the intensity of
the jumps of a CRM and their locations. By virtue of (1.8), it characterizes the
CRM µ̃.

Let us introduce some noteworthy CRMs which will be employed in the rest of
the thesis. Let α be a measure on (X,X ), σ ∈ (0, 1) and consider a CRM µ̃σ with
Lévy intensity defined by

ν(ds, dx) =
σ

Γ(1− σ)
s−1−σ ds α(dx) (1.9)

Then µ̃σ is a σ-stable CRM with parameter measure α on X. Moreover, for any
measurable function f : X→ R such that

∫
|f |σ dα <∞, the Laplace functional is

of the form

5



1. Preliminaries

E
[
e−

∫
f dµ̃σ

]
= e−

∫
fσ dα (1.10)

Hence, for any B ∈ X with α(B), the Laplace transform of µ̃σ(B) is that of a
positive stable random variable, namely

E
[
e−λµ̃σ(B)

]
= e−λσ α(B) (1.11)

If instead we consider the following Lévy intensity

ν(ds, dx) = e−ss−1 ds α(dx) (1.12)

we shall obtain a gamma CRM µ̃. It is characterized by its Laplace functional

E
[
e−

∫
f dµ̃
]

= e−
∫
log(1+f) dα (1.13)

for any measurable real-valued function f such that
∫

log(1 + |f |) dα <∞. There-
fore, for any B ∈X such that α(B) <∞

E
[
e−λµ̃(B)

]
= (1 + λ)−α(B) (1.14)

that implies a gamma distribution with scale parameter equal to 1 and shape
parameter equal to α(B) for the random variable µ̃(B).

Lastly, an allied CRM is given by the generalized gamma CRM, introduced in
Brix (1999). We will denote it with µ̃σ,τ . It is characterized by a Lévy intensity of
the form

ν(ds, dx) =
1

Γ(1− σ)
s−1−σ e−τsds α(dx) (1.15)

where σ ∈ (0, 1) and τ > 0. Note that if τ = 0 then it coincides with the σ-stable
CRM µ̃σ, whereas if σ → 0 one obtains the gamma CRM. The Laplace functional
is of the form

E
[
e−

∫
f dµ̃σ,τ

]
= e−

1
σ

∫
(τ+f)σ dα−τσα(X) (1.16)

for any measurable real-valued function f such that
∫

(τ + |f |)σ dα < ∞. If we
choose, fo example, σ = 1/2, then for B ∈ X such that α(B) <∞ we have

E
[
e−λµ̃σ,τ (B)

]
= e−α(B)

√
τ+λ−

√
τ (1.17)

that is µ̃σ,τ (B) has an inverse Gaussian distribution with parameters τ and α(B).
The first transformation of CRMs we are going to consider for obtaining a

random probability measure is normalization. If we impose the condition 0 <
µ̃(X) <∞ almost surely, which is implied by ν(R+ × X) =∞ and∫

R+×X

[
1− e−λs

]
ν(ds, dx) <∞ (1.18)

6



1.2. Exchangeable sequences

for any λ > 0, as proved in Regazzini et al. (2003), then it is possible to define

P̃ (A) :=
µ̃(A)

µ̃(X)
(1.19)

for any A ∈ X . Random probability measures as in (1.19) form the class of
normalized random measures with independent increments (NRMIs), introduced
in Regazzini et al. (2003), and they are characterized by ν. Moreover, in the case
of µ̃ being a homogeneous CRM, that is such that its Lévy intensity factorizes
as ν(ds, dx) = ρ(s) ds α(dx) for some measurable positive function ρ on R+ and
some measure α on X, we may represent µ̃ through ρ and α. Intensities in (1.9)
and (1.12) are in this class. Notice that (1.18) implies the finiteness of α. Setting
c := α(X), we have

ν(ds, dx) = ρ(s) ds cG(dx) (1.20)

where G(·) := α(·)
α(X) is now a probability measure on X. We may write then

P̃ ∼ NRMI(ρ, c, G) (1.21)

for some measurable positive ρ, some c > 0 and some probability measure G. Notice

that E
[
P̃ (A)

]
= G(A) for any A ∈ X , which means that, if X | P̃ ∼ P̃ then

P (X ∈ A) = G(A) for any A ∈X . For particular choices of ρ one gets noteworthy
nonparametric priors. Taking ρ(s) = e−ss−1 as in (1.12), we are normalizing a
gamma CRM: the correspondent P̃ in (1.19) is a DP, which we will denote as D̃α.
In this case we will indicate the total mass c, also called concentration parameter,
with θ > 0. Hence, we shall also write P̃ ∼ DP(θ, P0), where θ = α(X) and
P0 = E[P̃ ].

If instead we choose ρ as in (1.9), P̃ in (1.19) is called normalized stable process
(NSP), introduced in Kingman (1975). With the intensity in (1.15), we obtain the
normalized generalized gamma.

The popular Pitman–Yor process (PYP) is another noteworthy example of prior
that is related to CRMs, more precisely the σ-stable CRM, through a different type
of transformation. See Pitman and Yor (1997b). Denote by Pσ the law of a σ-
stable CRM, µ̃σ. Now one can define a random measure µ̃σ,θ with distribution Pσ,θ

absolutely continuous with respect to Pσ and such that

dPσ,θ

dPσ
(µ̃) =

[µ̃(X)]−θ

E[µ̃σ(X)−θ]
(1.22)

for some θ > −σ. Note that µ̃σ,θ is not a CRM, but we can still normalize it,
defining for any A ∈X

P̃σ,θ(A) =
µ̃σ,θ(A)

µ̃σ,θ(X)
(1.23)

7



1. Preliminaries

which is distributed as a PYP. We will write P̃σ,θ ∼ PYP(σ, θ, G). It is indeed

easy to see that E
[
P̃σ,θ(A)

]
= G(A), where G is the parameter measure of µ̃σ in

(1.20).
Interestingly, as shown in Pitman (2003), also the normalized generalized gamma

can be obtained via an argument similar to the above and still from the σ-stable
CRM. In fact via an exponential tilting one can define a random measure µ̃σ,τ via

dPσ,τ

dPσ
(µ̃) = eτ−τ1/σµ̃(X), (1.24)

which coincides in distribution with the generalized gamma CRM, characterized
by (1.15). Therefore, in contrast with the previous case, one still has a CRM
and, obviously, by normalization one obtains a normalized generalized gamma.
Therefore both the Pitman–Yor process and the normalized generalized gamma
are suitable transformations of the σ-stable CRM µ̃σ.

Being obtained via normalization or power tilting of CRMs, both NRMIs and
PYPs naturally inherit almost sure discreteness.

It is worth to mention that another popular way to introduce discrete random
probability measures, and hence nonparametric priors, is the stick-breaking con-
struction. It focuses on modeling the weights ωi of the series representation in (1.2)
and is based on the idea that, since these weights have to sum up to 1, they can
be seen as the lengths of pieces obtained by sequentially breaking a stick of length
1. In symbols

ωi = Vi

i−1∏
k=1

(1− Vk) i ≥ 2

ω1 = V1

(1.25)

for a sequence of random variables (Vk)k≥1 valued in [0, 1]. Hence, each ωi is the
Vi portion of the remaining part after the (i− 1)-th break. By choosing a law for
the sequence (Vk)k≥1, one obtains a distribution on discrete probability measures.
With

V1, . . . , Vk, . . .
iid∼ beta(1, θ) (1.26)

a Dirichlet process with concentration parameter θ is recovered. This construction
has been introduced in Sethuraman (1994) for the DP. The stick-breaking repre-
sentation of the PYP is given in Perman et al. (1992): for a PYP(σ,θ), we choose

Vi
ind∼ beta(1− σ, θ + iσ) (1.27)

This construction has become widely popular mostly for computational reasons.
Nonetheless, when it comes to studying theoretical properties of such discrete ran-
dom probability measures, they are not very convenient. This explains why we will
not refer to stick-breaking representations henceforth.

8



1.3. Partially exchangeable arrays

1.3 Partially exchangeable arrays

Introduced in de Finetti (1938), partial exchangeability is often a natural hypothe-
sis of dependence for random elements grouped in a finite number of blocks. Given
an array (Xji)

j=1,...,d
i=1,...,Nj

of X-valued random elements, where the d rows represent

the groups and, for any j ∈ [d], Nj is the number of individuals in each group,

while N :=
∑d

j=1Nj is the total number of individuals, we can state the following.

Definition 1.2. (Xji)
j=1,...,d
i=1,...,Nj

is partially exchangeable if

(X11, . . . , X1N1 , . . . , Xd1, . . . , XdNd
)

d
=

d
= (X1π1(1), . . . , X1π1(N1), . . . , Xdπd(1) . . . , Xdπd(Nd)) (1.28)

for πj ∈ SNj , the symmetric group of [Nj ], for any j ∈ [d].

In words, the joint distribution of the array’s entries has to be invariant with
respect to intra-group permutations, but not necessarily with respect to inter -
groups ones. An infinite array X = {(Xji)i≥1 | j ∈ [d]}, is partially exchangeable
if it fulfills (1.28) for any (N1, . . . , Nd) ∈ Nd. For such partially exchangeable
infinite arrays, it holds the following representation.

Theorem 1.2 (de Finetti). The infinite random array X is partially exchangeable
if and only if there exists a measure Q on the space of d-dimensional vectors of
probability measures Pd endowed with the product σ-algebra

⊗d
j=1 σ(P) such that

P (X11 ∈ A11, . . . , X1N1 ∈ A1N1 , . . . , Xd1 ∈ Ad1, . . . , XdNd
∈ AdNd

) =

=

∫
Pd

d∏
j=1

Nj∏
i=1

Pj(Aji)Q(dP1, . . . ,dPd) (1.29)

for any A11, . . . , AdNd
∈X and any (N1, . . . , Nd) ∈ Nd.

Again the probability measure Q is called de Finetti measure. An equiv-
alent statement of Theorem 1.2 is the following. Given a partially exchange-
able infinite array X = {(Xji)i≥1 | j ∈ [d]}, there exists a vector of random
probability measures (P̃1, . . . , P̃d), each defined on (X,X ), and taking values in(
Pd,

⊗d
j=1 σ(P)

)
, such that, for any (N1, . . . , Nd) ∈ Nd

Xj1, . . . , XjNj | (P̃1, . . . , P̃d)
iid∼ P̃j ∀j ∈ [d]

(P̃1, . . . , P̃d) ∼ Q
(1.30)

9



1. Preliminaries

Notice that partial exchangeability is indeed a generalization of exchangeabil-
ity, since for P̃j = P̃ almost surely for any j ∈ [d] and some random probability
measure P̃ , then (1.30) boils down to (1.5). On the other hand if (P̃j)j=1,...,d are
independent, that is Q is a product law on Pd, then the rows of the array X are
independent. These particular cases represent the extremes in the range of bor-
rowing of information among observables coming from different sub-populations.
For an approach to measuring the distance from full exchangeability of a couple of
random probability measures, see Catalano et al. (2021).

Defining a partially exchangeable model for an array, then, amounts to choosing
a de Finetti measure Q for a vector of random probability measures. Several
constructions have been proposed in the literature, starting from the pioneering
contributions of MacEachern (1999, 2000). Among these we mention additive
structures as in Müller et al. (2004) and Lijoi et al. (2014), nested structures
as in Rodŕıguez et al. (2008), hierarchical structures as in Teh et al. (2006) and
Camerlenghi et al. (2019), or even a combination of the last two as in Beraha et al.
(2021) and Lijoi et al. (2022).

Since in Chapter 4 we confront a clustering task for nodes of multilayer net-
works, which we shall see as statistical units belonging to different sub-populations,
and we want to put positive prior mass on partitions including individuals from
different groups, we will investigate hierarchical compositions of discrete random
probability measures. In Section 1.2 we recalled the construction of NRMIs and
PYP. Here, as anticipated, we will give definitions for hierarchical compositions of
such nonparametric priors, called hierarchical normalized random measures with in-
dependent increments (H-NRMIs) and hierarchical Pitman–Yor process (H-PYP).
These prominent examples of partially exchangeable models are presented and
thoroughly studied in Camerlenghi et al. (2019). We can define a vector of random
probability measures being H-NRMIs or having H-PYP distribution as follows.

Definition 1.3. (P̃1, . . . , P̃d) is a vector of H-NRMIs on (X,X ) with parameters
(ρ, ρ0, c, c0, P0) if

P̃1, . . . , P̃d | P̃0
iid∼ NRMI

(
ρ, c, P̃0

)
P̃0 ∼ NRMI (ρ0, c0, P0)

(1.31)

where ν̃(ds, dx) = ρ(s) ds c P̃0(dx) and ν0(ds, dx) = ρ0(s) ds c0 P0(dx) are the
Lévy intensities of P̃j | P̃0 for any j ∈ [d] and P̃0, respectively, with ρ and ρ0
measurable positive functions, c, c0 > 0 and P0 a diffuse probability measure on
(X,X ).

Definition 1.4. The vector (P̃1, . . . , P̃d) has H-PYP distribution with parameters

10



1.3. Partially exchangeable arrays

(σ, σ0, θ, θ0, P0) if

P̃1, . . . , P̃d | P̃0
iid∼ PYP

(
σ, θ, P̃0

)
P̃0 ∼ PYP (σ0, θ0, P0)

(1.32)

with σ, σ0 ∈ (0, 1), θ > −σ, θ0 > −σ0 and P0 a diffuse probability measure on
(X,X ).

Example 1.1. If on both the levels of hierarchy in (1.31) we put a DP we obtain
the hierarchical Dirichlet process (H-DP), introduced in Teh et al. (2006). We
write

(P̃1, . . . , P̃d) ∼ H-DP(θ, θ0, P0) (1.33)

If instead we choose two levels of NSP, we get the hierarchical normalized stable
process (H-NSP), discussed in Camerlenghi et al. (2019). We denote it as

(P̃1, . . . , P̃d) ∼ H-NSP(σ, σ0, P0) (1.34)

Being (1.31) and (1.32) particular ways of setting the de Finetti measure Q
in (1.30), we have that an array X as in (1.30) whose j-th row (Xj1, . . . , XjNj )

is a conditionally iid drawn from P̃j as in (1.31) or (1.32) for any j ∈ [d], is
partially exchangeable according to its rows. Moreover, because of the almost sure
discreteness of each P̃j and P̃0, the probability of a tie in the array X is positive
both within- and across-rows, that is

P
(
Xij = Xi′j′

)
> 0 (1.35)

for any i ∈ [Nj ], i
′ ∈ [Nj′ ] and j, j′ ∈ [d]. This fact will be crucial to obtain clusters

sharing elements in different sub-populations, defined by the ties among the entries
of the partially exchangeable array. In Chapter 4 we will recall further properties
of H-NRMIs and H-PYP, above all the induced partially exchangeable partition
probability functions driving the distribution on the space of partitions.

11



1. Preliminaries

12



Chapter 2

Random probability measures with fixed
mean distributions

Abstract

Linear functionals, or means, of discrete random probability measures play a key role in
several areas of mathematics, including statistics, combinatorics, special functions, excur-
sions of stochastic processes and financial mathematics, among others. Our interest is
motivated by its relevance in Bayesian nonparametric inference, where the law of a ran-
dom probability measure acts as a prior distribution. The literature on the topic has
aimed at determining the distribution of such linear functionals when the prior is a Dirich-
let process, a Pitman–Yor process and a normalized random measure with independent
increments. This work addresses the inverse problem and focuses on the identification of
the baseline measure of a discrete random probability measure yielding a specific mean
distribution. This is extremely useful in Bayesian inference as it is often the case that a
statistician has pre-experimental information about a finite-dimensional projection of the
data generating distribution, such as the mean, that may be of better use in prior elici-
tation than an infinite-dimensional parameter. This research direction has been pursued,
with different motivations, in the combinatorial literature and the only available result
concerns the Dirichlet process with unit concentration parameter. Here we address the
problem in greater generality to cover the Dirichlet process with concentration parameter
not necessarily equal to 1, the normalized stable process and the Pitman–Yor process. Fi-
nally, we deal with an extension of our findings to a popular class of mixture models used
for density estimation and clustering.

2.1 Introduction

As discussed in Section 1.1, discrete random probability measures, on top of being
probabilistic objects of undoubted interest, are crucial in Bayesian nonparametrics.
In this framework, and referring to a discrete random probability measure P̃ as in
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2. Random probability measures with fixed mean distributions

(1.2), linear functionals of the type

Mh(P̃ ) :=

∫
X
h(x)P̃ (dx) =

∑
i∈I

ωi h(Zi), (2.1)

where h : X → R is some measurable function such that
∫
|h|dP̃ < +∞ almost

surely, inherit a pivotal position in nonparametric modeling, as finite dimensional
projections of P̃ . The investigation of distributional properties of linear functional
of random probability measures has been pioneered by Cifarelli and Regazzini
(1990). Since then, it has become a lively area of research in statistics that has
generated many important results, from different mathematical perspectives, as
reported in Diaconis and Kemperman (1996). On the other hand, it is worth
stressing that the subject has attracted considerable interest in several other, and
seemingly unrelated, fields of mathematics ranging from combinatorics to statistical
physics. For example, Kerov (1993) and Kerov (1998) frame the investigation of the
distribution of Mh(P̃ ) in terms of Markov and Hausdorff moment problems, while
introducing the connection with transition measures induced by continual Young
diagrams. These works have further spurred an extensive literature and means of
discrete random probability measures have been treated in Tsilevich (1999), Kerov
and Tsilevich (2004) and Vershik et al. (2004). Additionally, important connections
with the theory of multivariate hypergeometric functions have been pointed out
in Lijoi and Regazzini (2004) and these are used to determine new closed form
expressions for the distribution of Mh(P̃ ), when P̃ is a Dirichlet process, and a
representation of its characteristic function. Furthermore, general assumptions for
an explicit expression of the mean density and the mean cumulative distribution
function to be derived, as well as results on symmetry of the mean distribution
and on vectors of Dirichlet random means can be found in Regazzini et al. (2002).

Means of Pitman–Yor processes are relevant in connection with that study of
the excursions of Bessel processes, as thoroughly discussed in Perman et al. (1992)
and Pitman and Yor (1997a). Such results can be traced back to the seminal works
of Lévy (1939), where the Brownian case is covered, and of Lamperti (1958), where
the arcsine laws are treated. Finally, we recall that means as in (2.1) appear also
in the statistical physics literature, in relation to zero-range process models (see
Evans and Hanney (2005) for a review), as can be found in Pulkkinen (2007). An
extensive review on random means and on their uses in statistics, and beyond, can
be found in Lijoi and Prünster (2009), whereas Lijoi and Prünster (2011) provides
a historical perspective on the development of the subject in Bayesian statistics.

The existing literature, which we have referred to so far, addresses the problem
of determining the probability distribution of Mh(P̃ ), once one has completely
specified P̃ as in (1.2). See Cifarelli and Regazzini (1990) if P̃ is a Dirichlet process,
James et al. (2008) if P̃ is a Pitman-Yor process and Regazzini et al. (2003) if P̃
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2.1. Introduction

is a normalized random measure with independent increments.

The work presented in this Chapter pursues a different, and in a sense opposite,
task. Indeed, we aim at determining which P̃ , within a specific class of discrete
random probability measures, yields a specific distribution for the mean Mh(P̃ ).
This amounts to identifying the parameter measure E[ P̃ ] = P0, if there exists
any, inducing the pre-specified law of the mean of P̃ . The motivation for tackling
this problem, from a Bayesian nonparametric modeling standpoint, is pragmatic.
Indeed, as shown e.g. in Kessler et al. (2015), in many applications one might
have enough a priori information for eliciting the distribution of an interpretable
(and finite-dimensional) parameter of a nonparametric prior, such as its mean.
The same arguments apply also to the case where the data generating distribu-
tion is absolutely continuous with respect to the Lebesgue measure and the prior
is induced, e.g., by the popular Dirichlet process mixture model for density es-
timation. Indeed, since the prior coincides with the law of the random density,
f̃(y) =

∫
k(y;x) P̃ (dx) for some fixed transition kernel density k( · ; · ), the mean∫

R

h(y)f̃(y) dy = Mh̄(P̃ ),

where x 7→ h̄(x) =
∫
R
h(y) k(y;x) dy, is still a linear functional of the Dirichlet

process P̃ . If we assume that available pre-experimental information allows for the
elicitation of the law of Mh̄(P̃ ) and P̃ is identified up to its parameter measure P0,
the latter can be specified so to enforce such prior knowledge on the mean. Hence,
one notably achieves the desired distribution of Mh̄(P̃ ), while still relying on a
Dirichlet process mixture model that is very convenient for Bayesian computations
and inference. This extends also to the cases where P̃ is a Pitman–Yor process or
a normalized stable process.

Our interest in the problem has been further spurred by some intriguing work in
combinatorics. Indeed, Romik (2004) investigates transition measures induced by
hook walk on continual Young diagrams and refers to the connection with random
means introduced in Kerov (1993). The problem addressed in these papers is
basically the same we are considering here, though confined to the Dirichlet process.
Indeed, as described in Chapter 3, for a specific instance of the Dirichlet process
the baseline measure yielding a given distribution of the mean can be deduced
from results in Romik (2004). Here we address the problem without resorting to
this connection, which nonetheless has been inspiring in the interpretation of our
results.

Taking the described inverse path and defining random probability measures
with fixed mean distribution, leads to face additional difficulties. If on one side
we rely on integral identities, known as Markov-Krein correspondences or Cifarelli-
Regazzini identities, as well as on generalized Cauchy-Stieltjes transform inversion
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2. Random probability measures with fixed mean distributions

formulas, on the other, these classical tools cannot be directly applied in our case
and new proof strategies need to be worked out to tackle the problem. Moreover,
we need to assess existence and regularity for singular integrals, in order to identify
hypotheses that allow a broad class of mean densities to be included. This allows us
to determine closed form expressions for the parameter measure of a Dirichlet pro-
cess, of a normalized stable process and of a Pitman-Yor process inducing a broad
class of mean distributions. We further show that these results can be extended
to popular nonparametric mixture models that are customarily used for Bayesian
density estimation. Overall we believe that our findings represent an important
step forward in nonparametric prior elicitation. Interestingly, our study unravels
some relevant features of the underlying discrete random probability measures and
of the corresponding space of mean distributions. For example, we show a sur-
prising (at least to us) fact according to which not every absolutely continuous
law with compact support is the mean distribution of a certain discrete random
probability measure with given parameters.

For the sake of clarity of exposition, we will be assuming that P̃ or, equiva-
lently, P0 have compact support. This is not a restrictive assumption both from
a theoretical and an applied perspective. On the one hand, the extension to the
unbounded support case requires some strengthening of the hypotheses, without
affecting the type of results we get though not providing any further insights to
our contribution. On the other hand, nonparametric priors with unbounded sup-
port are most often approximated through random probability measures having
compact, or even finite, support. This is typically the case when computational al-
gorithms are used for the actual implementation of Bayesian nonparametric models
to applied problems. It is also an effective strategy for determining the distribution
of the mean, as in Guglielmi (1998) and Lijoi and Regazzini (2004), or for deter-
mining the posterior distribution of P̃ , as in Regazzini and Sazonov (2000) and
James et al. (2009). Hence, we are ultimately considering a general framework and
pursuing a research direction that has been unexplored so far in the literature on
random means and their applications. Our results also encompass means of ran-
dom probability measures that are either discrete or absolutely continuous with
respect to the Lebesgue measure, thus showing that the techniques we introduce
are effective in addressing a wide variety of problems.

The structure of the Chapter is the following. Relying on general aspects
concerning exchangeable sequences, completely random measures and normalized
random measures with independent increments reviewed in Section 1.2, we briefly
recall in Section 2.2 some fundamental results achieved in the study of distri-
butional properties of random means and illustrate tools that will be crucial for
achieving our goals. Section 2.3, thus, illustrates our main results. More specifi-
cally, we establish explicit expressions for the base measure P0 inducing a broad
class of distributions on the mean, when P̃ is either a Dirichlet process with concen-
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2.2. Random means

tration parameter θ < 1, or a normalized stable process or a Pitman–Yor process.
Moreover, we give examples of usage of our formulas for recovering noteworthy
examples of mean distributions and discuss cases for which we cannot apply our
main result, though we are still able to identify the baseline measure: this is very
helpful for gaining some insight about the admissible sets of random mean distri-
butions. Lastly, in Section 2.4 we deal with nonparametric mixtures widely used
for density estimation.

2.2 Random means

The main object of interest of the work presented in this Chapter are linear func-
tionals of random probability measures, that is

Mf (P̃ ) :=

∫
X
f(x)P̃ (dx),

where f : X→ R is some measurable function and P̃ a random probability measure.

Key steps for the determination of the distribution of means
∫
f dP̃ typically

consist in representing them via suitable integral transforms and then in applying
appropriate inversion formulae. We concisely describe the two most successful
approaches to date, which we will partially exploit also in our results.

A first very convenient tool is the generalized Cauchy–Stieltjes transform: for
a generic function g : R+ → R, it is defined as

Sλ[z; g] :=

∫
R+

g(x)

(z + x)λ
dx (2.2)

for any λ > 0 and for and z ∈ C such that |arg(z)| < π. Inversion formulae for
(2.2) are available and can be found, e.g., in Sumner (1949) and Schwarz (2005).
Under suitable conditions, for example |zβ Sλ[z; g]| is bounded at infinity for some
β > 0, from Schwarz (2005) one has

g(x) = − xλ

2πi

∫
W

(1 + w)λ−1 S ′
λ[xw; g] dw (2.3)

where W is a contour in the complex plane starting and ending at the point
w = −1 and enclosing the origin in a counterclockwise sense, while S ′

λ[xw; g] =
d
dz Sλ[z; g] |z=xw. If λ > 1, then one can integrate (2.3) by parts obtaining

g(x) =
λ− 1

2πi
xλ−1

∫
W

(1 + w)λ−2 Sλ[xw; g] dw (2.4)
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2. Random probability measures with fixed mean distributions

For the case λ = 1, (2.3) reduces to the inversion formula originally derived by
Widder, which can be found in Widder (2015). Dealing with a Dirichlet process-
distributed random probability measure D̃α, a closed form expression for the dis-
tribution of the mean of D̃α has been derived in Cifarelli and Regazzini (1990)
by resorting to the inversion formula in Sumner (1949). A similar strategy has
been pursued in James et al. (2008) for the evaluation of the (a priori) probability
distribution of the mean functional of a Pitman–Yor process P̃σ,θ.

A second fruitful approach makes use of an inversion formula of the character-
istic function due to Gurland (1948). If F is a cumulative distribution function on
R and ϕ the corresponding characteristic function, then

F (y)− F (y−) = 1− 2

π
lim

ε↓0, T↑∞

∫ T

ε

1

t
Im
[
e−iyt ϕ(t)

]
dt, (2.5)

where F (x−) is the left limit of F at y. Such an inversion formula is very useful
when one aims at determining the distribution of ratios of random variables and,
thus, suits perfectly to the case of NRMIs. To see, this let f be such that

∫
|f |dµ̃ <

∞, almost surely and denote the cumulative distribution function of
∫
f dP̃ by

y 7→ Q(y) = P
(∫

f dP̃ ≤ y
)

, where P̃ is a NRMI. Following Regazzini et al.

(2003), a crucial step consists in noting that

Q(y) := P

(∫
X
f(x)P̃ (dx) ≤ y

)
= P

(∫
X

[f(x)− y]µ̃(dx) ≤ 0

)
(2.6)

which reduces the problem of studying a mean of a NRMI to the problem of study-
ing a linear functional of a CRM. And, importantly, the characteristic functions
of linear functionals of CRMs, analogously to the Laplace functional transform
recalled in (1.8), have Lévy–Khintchine representation in terms of the underlying
Lévy intensity measure. Therefore, from (2.5) one obtains

1

2
{Q(y) + Q(y−)}

=
1

2
− 1

π
lim

ϵ↓0,T↑+∞

∫ T

ϵ

1

t
Im exp

{
−
∫
X×R+

[1− eitv (f(x)−y)]ν(dv,dx)

}
dt

where Im z stands for the imaginary part of z ∈ C. The details for obtaining
expressions for prior and posterior distributions of means of NRMI can be found
in Regazzini et al. (2003) and James et al. (2010).

2.3 Fixing the distribution of the mean

In this Section we will focus on our principal task: given a random probability
measure P̃ on [0, 1], to determine the parameter measure inducing a desired dis-
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2.3. Fixing the distribution of the mean

tribution on the random mean

M(P̃ ) :=

∫ 1

0
x P̃ (dx) (2.7)

provided that such a measure is unique. Specifically, we shall give an explicit
expression for the cumulative distribution function (cdf) of the base measure of P̃
enforcing a broad class of distributions on the random mean, when P̃ is Dirichlet,
normalized stable and Pitman–Yor distributed. In the following we will see how
considering (2.7) instead of a generic linear functional as in (2.1), is not restrictive.
Moreover, the given statements can be easily extended to cover the case where the
support of P̃ is any bounded interval of R.

The problem of determining the base measure α := θP0, where θ > 0 and P0

is a probability measure on [0, 1], of a Dirichlet process D̃α that leads to a specific
probability distribution for the mean functional M(D̃α) =

∫
xD̃α(dx) is considered

in Cifarelli and Regazzini (1993). Let F be the set of finite and non–null measures
on ([0, 1],B([0, 1])) and Fθ := {α ∈ F : α([0, 1]) = θ}. Moreover,

Mθ := {P ◦ (M(D̃α))−1 : α ∈ Fθ} (2.8)

is the set of all probability distributions of the random Dirichlet mean M(D̃α)
as α varies in Fθ. According to Theorem 2 in Lijoi and Regazzini (2004) any
measure α in Fθ is determined by the corresponding distribution Qα in Mθ. This
implies that, for random Dirichlet means, the total mass θ and Qα in Mθ uniquely
identify the base measure α ∈ Fθ. Furthermore, as a consequence of Theorem 10
in Lijoi and Regazzini (2004), Qα is absolutely continuous with respect to the
Lebesgue measure on [0, 1] and we shall denote by qα its density function. The
correspondence between qα and α is expressed by the Cifarelli–Regazzini (CR)
identity

Sθ[z; qα] = exp

{
− θ

∫ 1

0
log(z + x) P0(dx)

}
z ∈ C \ [−1, 0] (2.9)

where Sθ denotes the generalized Cauchy–Stieltjes transform of order θ as defined
in (2.2). As mentioned, the explicit determination of qα for a given P0 is achieved
in Lijoi and Regazzini (2004) for any θ > 0.

When θ = 1, an explicit solution to the inverse problem, that is the determi-
nation of α = P0 inducing a suitably smooth qα, can be extrapolated from Romik
(2004). In this work, continual Young diagrams and the transition measure they
induce on a compact interval via hook walks are considered. See also Kerov (1993)
for definitions, early results, and links to the Markov moment problem. If the
Young diagram is convex, then it can be seen as a primitive function of a cumula-
tive distribution function, which then corresponds to a probability distribution on
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2. Random probability measures with fixed mean distributions

the compact interval. In this case, the correspondence between the diagram and
the induced transition measure is the same as the one between the base measure of
a Dirichlet process with concentration parameter θ = 1 and its mean distribution.
Since in Romik (2004) an explicit expression of the derivative of the diagram as a
function of the transition density is given, it is possible to leverage such result and
obtain

P0([0, x]) =
1

π
arccot

(
1

π q(x)
PV

∫ 1

0

q(t)

t− x
dt

)
(2.10)

for P0 being the base measure of a Dirichlet process with θ = 1, q being the density
of the mean distribution and where PV

∫
stands for the Cauchy principal value

integral (see Estrada and Kanwal (2012) for a full account on these analytical
tools). The identity (2.10) has been proven to hold true for q piecewice C1 with
bounded derivative. This means that however we choose a mean density q with
such regularity, we can explicitly identify the parameter measure P0 such that
if P̃ ∼ DP(1, P0) then M(P̃ ) ∼ q. Hook walks on continual Young diagrams,
transition measures and this surprising connection with the Dirichlet process are
treated in Chapter 3.

We provide results yielding the base measure that corresponds to a specific
choice of the distribution of the mean for a Dirichlet process (DP) with concen-
tration parameter θ < 1 and for a normalized stable process (NSP). The interest
for the latter case does not have only a theoretical motivation. In terms of appli-
cations, especially in the context of popular hierarchical mixture models, the NSP
exhibits an appealing properties for density estimation and for inference on the
clustering structure featured by the data. For instance, in Barrios et al. (2013) the
NSP is suggested as a default prior because of its consistently good performance
regardless of misspecifications of the prior parameters. Moreover, it also represents
the basic building block for defining various alternative and widely used nonpara-
metric priors for Bayesian inference. In view of this, indeed, we shall be able to
deduce a similar representation for α that corresponds to a specified distribution
of the mean of a Pitman–Yor process (PYP).

2.3.1 Base measure of a Dirichlet process

As previously reminded, the mean density of a DP given its base measure is deter-
mined in Lijoi and Regazzini (2004) for every θ > 0, while an explicit expression
of the base (probability) measure given a C1 mean density can be derived from
Romik (2004) in the case of concentration parameter θ = 1. We solve the latter
problem for every θ ∈ (0, 1).

For a density function f such that∫ 1

0

f(x)

|x− t|θ
dx <∞ ∀t ∈ [0, 1]
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2.3. Fixing the distribution of the mean

with θ ∈ (0, 1), we define

Iθ[ f ; t ] :=

∫ 1

t

f(x)

|x− t|θ
dx∫ t

0

f(x)

|x− t|θ
dx

t ∈ (0, 1] (2.11)

Notice that limt→0 Iθ[ f ; t ] =∞ and Iθ[ f ; 1 ] = 0. Moreover Iθ[f ; · ] is a mono-
tonically decreasing function, hence we can consider its right continuous version,
suitably modifying it in its at most countable jump discontinuity points. With a
slight abuse of notation, we shall denote this version with Iθ[ · ; t ] as well. Then
we state the following.

Theorem 2.1. Let θ ∈ (0, 1) and qα be the density of M(D̃α) with supp(qα) =
[0, 1]. If ∫ 1

0

qα(x)

|x− t|θ
dx <∞ ∀t ∈ [0, 1] (2.12)

then the cdf of the base measure P0 is given by

F0(t) =

=

{
1

θπ
arctan

(
sin(θπ)

cos(θπ) + Iθ[ qα; t ]

)
+

1

θ
1(t∗,∞)(t)

}
1(0,1)(t) + 1[1,∞)(t) (2.13)

where

t∗ = inf
{
t ∈ [0, 1]

∣∣∣Iθ[ qα; t ] ≤ − cos(θπ)
}

(2.14)

Remark 2.1. It is easy to verify that F0 in (2.13) is indeed a cdf. Clearly F0(0) = 0
and F0(1) = 1. Moreover F0 is increasing since Iθ[ qα; · ] is decreasing. Finally,
being Iθ[ qα; · ] right continuous and since

F0(t
−
∗ ) =

1

2θ
= F0(t

+
∗ )

when the set in (2.14) is non-empty, F0 is right continuous, too. Notice that t∗ =∞
for θ < 1

2 .

Remark 2.2. For every θ < 1, we have F0(0
+) = 0 and F0(1

−) = 1, that is
the parameter measure cannot have positive mass on 0 or 1. The reason is that
Dirichlet mean densities corresponding to such parameter measures are ruled out
by the integrability hypothesis (2.12). Consider, for instance, α( · ) = θ0δ{0}( · ) +

θ1δ{1}( · ). In this case M(D̃α)
d
= D̃α({1}), hence M(D̃α) ∼ beta(θ1, θ0), and its

density does not fulfill (2.12) for t ∈ {0, 1}, since θ+ 1− θi > 1 for i = 0, 1. Notice
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2. Random probability measures with fixed mean distributions

however that for any α with total mass θ < 1 and point masses in {0} and {1},
such point masses can be treated separately in the previous straightforward way.
Therefore, since θ < 1, the hypothesis (2.12) is not restrictive. Moreover we do not
impose on the mean density any local regularity properties, which are needed for
(2.10) to be true in case of θ = 1.

Proof of Theorem 2.1. We rewrite the left hand side of the CR identity

exp

{
− θ

∫ 1

0
log(z + x) P0(dx)

}
=

∫ 1

0

qα(x)

(z + x)θ
dx z ∈ C \ [−1, 0] (2.15)

leveraging on the fact that∫ x

0

1

t + z
dt = log(z + x)− log(z) for Im z ̸= 0 (2.16)

and obtaining

exp

{
− θ

∫ 1

0
log(z + x) P0(dx)

}
=

= exp

{
− θ log(z)− θ

∫ 1

0

∫ 1

t
P0(dx)

dt

t + z

}
=

=
1

(1 + z)θ
exp

{
θ

∫ 1

0

F0(t)

t + z
dt

}
(2.17)

where F0 is the cdf of P0. Hence (2.15) becomes

exp {θS1[F0; z]} = (1 + z)θ
∫ 1

0

qα(x)

(z + x)θ
dx

with S1 according to the definition in (2.2). Applying the principal value of the
complex logarithm to both sides

S1[F0; z] =
1

θ
log
{

(1 + z)θSθ[qα; z]
}

+
2k(z)πi

θ

where

k(z) := −θ Im S1[F0; z] \ π

for \ denoting the integer division. Then, by the Cauchy–Stieltjes transform in-
version formula in Widder (2015), we have for t ∈ [0, 1]

F0(t) = lim
ε↓0

{
− 1

θπ
Im

(
log

{
(1− t + iε)θSθ[qα;−t + iε]

})
+

2k(−t + iε)

θ

}
=
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2.3. Fixing the distribution of the mean

= lim
ε↓0

{
− 1

θπ
Arg

(
(1− t + iε)θSθ[qα;−t + iε]

)
+

2k(−t + iε)

θ

}
where Arg(w) denotes the principal argument of w ∈ C. If we write

ℑε[ qα; t ] := Im

(
(1− t + iε)θSθ[qα;−t + iε]

)
(2.18)

and

ℜε[ qα; t ] := Re

(
(1− t + iε)θSθ[qα;−t + iε]

)
(2.19)

then

Arg

(
(1− t + iε)θSθ[qα;−t + iε]

)
=

= arctan

(
ℑε[ qα; t ]

ℜε[ qα; t ]

)
+ π1{ℜε[ qα; t ] < 0}sign

(
ℑε[ qα; t ]

)
(2.20)

Since

lim
ε↓0

Im

(
(1− t + iε)θ

)
= 0 and lim

ε↓0
Re

(
(1− t + iε)θ

)
= (1− t)θ

we shall neglect a summand and obtain

lim
ε↓0
ℑε[ qα; t ] =

= −(1− t)θ lim
ε↓0

∫ 1

0

sin
(
θ arctan (ε/(x− t)) + θπ1(0,t)(x)

)
((x− t)2 + ε2)θ/2

qα(x) dx =

= −(1− t)θ sin(θπ)

∫ t

0

qα(x)

|x− t|θ
dx (2.21)

and

lim
ε↓0
ℜε[ qα; t ] =

= (1− t)θ lim
ε↓0

∫ 1

0

cos
(
θ arctan (ε/(x− t)) + θπ1(0,t)(x)

)
((x− t)2 + ε2)θ/2

qα(x) dx =

= (1− t)θ
{

cos(θπ)

∫ t

0

qα(x)

|x− t|θ
dx +

∫ 1

t

qα(x)

|x− t|θ
dx

}
(2.22)
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2. Random probability measures with fixed mean distributions

applying Lebesgue’s dominated convergence theorem, which holds because of (2.12).
To deal with the indicator and sign functions in (2.20), it suffices to check their
discontinuity points. We have

−(1− t)θ sin(θπ)

∫ t

0

qα(x)

|x− t|θ
dx ≤ 0

with equal holding for t ∈ {0, 1}, while

(1− t)θ
{

cos(θπ)

∫ t

0

qα(x)

|x− t|θ
dx +

∫ 1

t

qα(x)

|x− t|θ
dx

}
⋚ 0 ⇐⇒ Iθ[qα; t] ⋛ − cos(θπ)

for t ̸= 0, with equal holding at most in one point, by monotonicity. Finally
we just need to prove that k(−t + iε) → 0 for ε ↓ 0. Since ε > 0, by Cauchy–
Stieltjes transfrom properties, reported for instance in Karp and Prilepkina (2012),
Im S1[F0;−t + iε] ≤ 0, hence it suffices to notice that

− Im S1[F0;−t + iε] ≤
∫ 1

0

ε

(s− t)2 − ε2
ds =

= arctan

(
1− t

ε

)
− arctan

(
− t

ε

)
ε−→ π (2.23)

As an application of the previous result we consider a few interesting cases,
namely where one wants to determine the base measure of a DP such that the
corresponding mean functional M(D̃α) has a uniform and a triangular distribution
on [0, 1].

Example 2.3 (Uniform case). Let qα(x) = 1[0,1](x). Since

Iθ[1[0,1]; t ] =

(
1− t

t

)1−θ

(2.24)

the cdf of P0 is

F0(t) =
1

θπ
arctan

(
sin(θπ)

cos(θπ) +
(
1−t
t

)1−θ

)
+

1

θ
1(t∗,1)(t)1( 1

2
,1)(θ) (2.25)

for t ∈ (0, 1), where for θ ∈
(
1
2 , 1
)

t∗ :=
1

1 + (− cos(θπ))θ
(2.26)

In particular, for θ = 1
2

F0(t) =
2

π
arctan

√
t

1− t
t ∈ (0, 1) (2.27)
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2.3. Fixing the distribution of the mean

Example 2.4 (Triangular case). Let qα(x) = 4x1[0, 12)(x) + 4(1− x)1[ 12 ,1]
(x). We

have

Iθ[ qα; t ] =

{
(1− t)2−θ − 2

(
1
2 − t

)2−θ

t2−θ

}
1(0, 12 ](t)+

+

{
(1− t)2−θ

t2−θ − 2
(
t− 1

2

)2−θ

}
1( 1

2
,1](t) (2.28)

Since Iθ[ qα; t ] is decreasing and Iθ

[
qα; 1

2

]
= 1, we can write the cdf of P0, for

t ∈ (0, 1), as follows.

F0(t) =

{
1

θπ
arctan

(
t2−θ sin(θπ)

t2−θ cos(θπ) + (1− t)2−θ − 2
(
1
2 − t

)2−θ

)}
1(0, 12 ](t)+

+

{
1

θπ
arctan

( (
t2−θ − 2(t− 1

2)2−θ
)

sin(θπ)(
t2−θ − 2(t− 1

2)2−θ
)

cos(θπ) + (1− t)2−θ

)}
1( 1

2
,1)(t)+

+
1

θ
1(t∗,1)(t)1( 1

2
,1)(θ) (2.29)

where t∗ is such that

(1− t∗)
2−θ

t2−θ
∗ − 2

(
t∗ − 1

2

)2−θ
= − cos(θπ) (2.30)

Now, we deal with some particular cases, not covered by Theorem 2.1, but
where still it is possible, because of the constructive nature of the proof, to re-
trieve consistent results. For θ > 1, the integrability condition (2.12) rules out
every probability density. Notice however that such hypothesis is just needed to
perform a limit/integral switch in (2.21) and (2.22), hence whenever one selects
a particular mean density such that the generalized Cauchy–Stieltjes transforms
in (2.18) and (2.19) have explicit expressions, one can obtain analogous results
even in this case. Yet the set Mθ varies with θ and we have no guarantees that
any absolutely continuous distribution can be a DP(θ) mean distribution for any
θ; therefore with this procedure, one may obtain a function which is not a cdf.
The fact that this is actually happening, as we will present in an instance, is in
line with the θ = 1 case: in Romik (2004) a homeomorphism is built between di-
agrams and probability distributions on [0, 1], but convex diagrams form a proper
subset of all diagrams, hence some transition measures are bound to correspond
with non-convex diagrams, which do not represent base probability measures. Such
eventualities are treated in the following Proposition and Example.
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2. Random probability measures with fixed mean distributions

Proposition 2.2. Let θ ∈ (1, 2) and M(D̃α) ∼ qα with qα(x) = 1[0,1](x). Then
the cdf of the base measure P0 is

F0(t) =

=

{
1

θπ
arctan

(
sin(θπ)

cos(θπ) +
(

t
1−t

)θ−1

)
+

1

θ
1(t∗,1)(t)

}
1(0,1)(t) + 1(1,∞)(t) (2.31)

where

t∗ =
(− cos(θπ))θ

1 + (− cos(θπ))θ
1(1, 32)(θ) (2.32)

Remark 2.5. Notice that, unlike in θ ∈ (0, 1) case, F0 in (2.31) defines a distri-
bution with θ−1

θ masses in 0 and 1, while the rest of the mass is (symmetrically)
diffuse in (0, 1).

Proof of Proposition 2.2. Since

Sθ[1[0,1],−t + iε] =
1

θ − 1

{
1

(−t + iε)θ−1
− 1

(1− t + iε)θ−1

}
(2.33)

we have

Im
(
Sθ[1[0,1],−t + iε]

)
=

=

(
t2 + ε2

) 1−θ
2

θ − 1
sin
(

(θ − 1) arctan
(ε
t

)
− (θ − 1)π

)
+

+

(
(1− t)2 + ε2

) 1−θ
2

θ − 1
sin

(
(θ − 1) arctan

(
ε

1− t

))
(2.34)

and

Re
(
Sθ[1[0,1],−t + iε]

)
=

=

(
t2 + ε2

) 1−θ
2

θ − 1
cos
(

(θ − 1) arctan
(ε
t

)
+ (θ − 1)π

)
−

−
(
(1− t)2 + ε2

) 1−θ
2

θ − 1
cos

(
(θ − 1) arctan

(
ε

1− t

))
(2.35)

Therefore, using the notation established in (2.21) and (2.22), we obtain

lim
ε↓0
ℑε[1[0,1];−t + iε] =

(1− t)θ

θ − 1
tθ−1 sin(θπ) (2.36)
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2.3. Fixing the distribution of the mean

and

lim
ε↓0
ℜε[1[0,1];−t + iε] =

(1− t)θ

1− θ
tθ−1

{
cos(θπ) +

(
t

1− t

)θ−1
}

(2.37)

Hence, proceeding as in the proof of Theorem 2.1, we can conclude.

Example 2.6. Let θ ∈ (2, 3) and M(D̃α) ∼ qα with qα(x) = 1[0,1](x).Then it is
possible to reason as in Proposition 2.2 and one obtains again

1

θπ
arctan

 sin(θπ)

cos(θπ) +
(

t
1−t

)θ−1

 (2.38)

disregarding additive constants. However, for θ ∈ (2, 3) this is a decreasing func-
tion, hence it cannot be the cdf of a probability measure. This implies that the
uniform distribution cannot be the mean distribution of a DP with concentration
parameter θ ∈ (2, 3).

2.3.2 Base measure of a normalized stable process

The definition of the NSP as special case of NRMI has been recalled in Section
1.2. As for the random Dirichlet mean case, a preliminary step in our process
of determining the base measure P0 yielding a specific probability distribution
for M(P̃σ) consists in establishing whether a correspondence similar to the one
highlighted between Fθ and Mθ for the Dirichlet case holds true in this setting as
well. In this respect, one can prove the following.

Theorem 2.3. The probability distribution of the mean M(P̃σ) of a NSP P̃σ is
determined by σ and E[P̃σ] = P0.

Proof. The result follows after evaluating the moments of any order of M(P̃σ) and
noting that they do not depend on c in (1.21). To this end, set

Z(n, k) := {m = (m1, . . . ,mn) ∈ Zn
+ :

∑
i

imi = n,
∑
i

mi = k} (2.39)

where Z+ = {0, 1, 2, . . .} and rj =
∫ 1
0 xj P0(dx). One can, now, rely on Theorem 3.3

in Lijoi and Prünster (2009) and obtain

E
[
Mn(P̃σ)

]
=

=
1

Γ(n)

n∑
k=1

∑
m∈Z(n,k)

n!∏n
j=1(j!)

mj mj !

n∏
j=1

(rj (1− σ)j−1)
mj ×
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2. Random probability measures with fixed mean distributions

× σk ck
∫ ∞

0
ukσ−1 e−cuσ

du =

=
n∑

k=1

σk−1 Γ(k)

Γ(n)

∑
m∈Z(n,k)

n!∏n
j=1(j!)

mj mj !

n∏
j=1

(rj (1− σ)j−1)
mj (2.40)

which depends on the base measure α = c P0 only through the moments rj of
P0.

This result implies that, unlike in the DP case, any α in (1.9) such that α = c P0

leads to the same probability distribution for M(P̃σ), regardless of the value of the
total mass c. For this reason we shall henceforth set c = 1 and focus on the
determination of P0.

Before displaying the main result which links the distribution of the mean to
its base measure, it is important to point out that the key idea of the proof makes
use of an analogue of the CR identity, for the mean of a NSP. If qσ is the density
function of the random mean M(P̃σ), where P̃σ is obtained by normalizing a σ-
stable CRM with Lévy intensity as in (1.9) with α = P0, then, as shown in Tsilevich
(1999), one has

exp

{∫
log(z + x)σ qσ(x) dx

}
=

∫
(z + x)σ P0(dx). (2.41)

Here, we shall consider again qσ and P0 supported on [0, 1].

Theorem 2.4. Let the density qσ of M(P̃σ) be piecewise Hölder continuous and
such that ∫ 1

0
| log |x− t| | qσ(x) dx <∞ (2.42)

Lebesgue-almost everywhere. Then the base measure P0 has cdf given by

F0(y) =
1

π

∫ y

0
(y − t)−σ eσ

∫ 1
0 log |x−t| qσ(x) dx

{
π qσ(t) cos(σπQσ(t)) + sin(σπQσ(t)) PV

∫ 1

0

qσ(x)

t− x
dx

}
dt

(2.43)

for any y ∈ (0, 1), where Qσ is the cdf of qσ.

Proof. First note that (z + x)σ = zσ + σ
∫ x
0 (z + s)σ−1 ds for any x in [0, 1] and

Im(z) ̸= 0. This implies that∫ 1

0
(z + x)σ P0(dx) =
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2.3. Fixing the distribution of the mean

= zσ + σ

∫ 1

0
(z + s)σ−1

∫ 1

s
P0(dx) ds = zσ + σ

∫ 1

0

1− F0(s)

(z + s)1−σ
ds (2.44)

from which ∫ 1

0

F0(s)

(z + s)1−σ
ds =

(z + 1)σ

σ
− 1

σ

∫ 1

0
(z + x)σ P0(dx) (2.45)

By virtue of the identity in (2.41), one can rewrite the right hand side of the
equation above and obtains

S1−σ[z;F0] =
(z + 1)σ

σ
− 1

σ
exp

{
σ

∫ 1

0
log(z + x) qσ(x) dx

}
. (2.46)

At this point, one just needs to apply an inversion formula for the generalized
Cauchy–Stieltjes transform S1−σ and obtain F0. This is the strategy we will
undertake. We can apply the following alternative version of the inversion formula
in (2.3), displayed in Schwarz (2005):

F0(y) =

∫ y

0
(y − t)−σ∆′(t) dt. (2.47)

where

∆(t) :=
1

2πi
lim
ε↓0
{S1−σ[−t− iε;F0]−S1−σ[−t + iε;F0]} . (2.48)

Such alternative version holds whenever the involved integral does exist, and this
will be clear a posteriori. Since the generalized Cauchy–Stieltjes transform is a
holomorphic function on C \R−, we have

∆(t) =
1

π
lim
ε↓0

Im (S1−σ[−t− iε; F0 ]) =
−1

πσ
lim
ε↓0

Im (Lσ(−t− iε)) (2.49)

because limε↓0 Im(1− t− iε)σ = 0, where

Lσ(z) := exp

{
σ

∫ 1

0
log(x + z) qσ(x) dx

}
z ∈ C. (2.50)

Now, since

log(x− t− iε) =
1

2
log((x− t)2 + ε2) + i

{
arctan

(
−ε
x− t

)
− 1{(0,t)}(x)π

}
(2.51)

we have

Im (Lσ(−t− iε)) = − exp

{
σ

2

∫ 1

0
log((x− t)2 + ε2)qσ(x) dx

}
×
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2. Random probability measures with fixed mean distributions

× sin

(
σ

∫ 1

0
arctan

(
ε

x− t

)
qσ(x) dx + σπQσ(t)

)
(2.52)

Hence, by monotone and Lebesgue’s dominated convergence theorems (the latter
of which applies because of (2.42)) we obtain

∆(t) =
1

σπ
eσ

∫ 1
0 log |x−t|qσ(x) dx sin (σπQσ(t)) . (2.53)

Finally, as can be found in Estrada and Kanwal (2012), we have

d

dt

(∫ 1

0
log |x− t|qσ(x) dx

)
= PV

∫ 1

0

qσ(x)

t− x
dx (2.54)

whenever the Cauchy principal value integral in the right hand side exists. It
is easy to show that if qα is Hölder continuous in the singularity point t, then
the principal value in (2.54) exists and it is finite. See e.g. Estrada and Kanwal
(2012). For arguments which weaken this condition, involving even and odd part
of the density function, see Martin and Rizzo (1996). Hence, since qσ is piecewice
Hölder continuous, (2.54) holds for Lebesgue-almost every t ∈ [0, 1]. Therefore,
differentiating (2.53) and substituting in (2.47), we get the expression in (2.43).

Also here, we consider the cases where one wants to determine the base measure
of a NSP such that the corresponding mean functional M(P̃σ) has a uniform and
a triangular distribution on [0, 1].

Example 2.7 (Uniform case). Let qσ(x) = 1[0,1](x). Since

PV

∫ 1

0

dx

t− x
= lim

ε↓0

(∫ t−ε

0
+

∫ 1

t+ε

)
dx

t− x
=

= lim
ε↓0
{log t− log ε− log(1− t) + log ε} = log

t

1− t
(2.55)

by Theorem 2.4 the cdf of P0 is

F0(y) = 1[1,∞)(y) +
1

eσπ

∫ y

0

(
1− t

y − t

)σ ( t

1− t

)σt

×

×
{
π cos(σπt)− sin(σπt) log

t

1− t

}
d t 1[0,1)(y) (2.56)

Example 2.8 (Triangular case). Let qσ(x) = 4x1[0, 12)(x) + 4(1 − x)1[ 12 ,1]
(x). If

t ∈
[
0, 12
)

then
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PV

∫ 1

0

qσ(x)

t− x
dx = 4 lim

ε↓0

{∫ t−ε

0
+

∫ 1
2

t+ε

}
x

t− x
dx + 4

∫ 1

1
2

1− x

t− x
dx =

= 4 lim
ε↓0

{
−t + ε− t log ε + t log t− 1

2
log

(
1

2
− t

)
+ tε + t log ε

}
+

+ 2− 4(1− t) log(1− t) + 4(1− t) log

(
1

2
− t

)
=

= 2t log t− 2(1− t) log(1− t) + 2(1− 2t) log

∣∣∣∣12 − t

∣∣∣∣ (2.57)

A similar expression holds true when t ∈
[
1
2 , 1
]
. Moreover, for any t ∈ (0, 1) one

has∫ 1

0
log |t− x| qσ(x) dx =

= 2t2 log t + 2(1− t)2 log(1− t)− 4

(
t− 1

2

)2

log

∣∣∣∣t− 1

2

∣∣∣∣ (2.58)

Hence by Theorem 2.4

F0(y) =
1

π

∫ y

0
(y − t)−σ (1− t)2σ(1−t)2 t2σt

2∣∣1
2 − t

∣∣4σ(t− 1
2
)2

×

×

{
π qσ(t) cos(σπQσ(t))− sin(σπQσ(t)) log

t2t
∣∣t− 1

2

∣∣2(1−2t)

(1− t)2(1−t)

}
dt (2.59)

for y ∈ (0, 1), where

Qσ(t) = 1[1,∞)(t) + 2t2 1[0, 12)(t) +
{
−2t2 + 4t− 1

}
1[ 12 ,1)

(t) (2.60)

2.3.3 Base measure of a Pitman–Yor process

The general result in Theorem 2.4, besides being relevant for studying the mean
functional of a NSP, forms also the basis for the derivation of an analogous re-
sult for the PYP mean functional. Indeed, Theorem 2.1 in James et al. (2008),
establishes an important representation of PYP means in terms of DP and NSP
means. Specifically, let P̃σ be a NSP with base measure P0, denote by qσ the
density of its mean M(P̃σ) and consider a DP whose base measure is defined by
α(B) = θ

∫
B qσ(x) dx for any Borel set B. Then one has∫

x P̃σ,θ(dx)
d
=

∫
x D̃α(dx) (2.61)
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2. Random probability measures with fixed mean distributions

where E[P̃σ,θ] = P0. In words, this representation states that a PYP(σ, θ) mean
has the same distribution as a DP(θQ) mean, where the probability measure Q is
given by a NSP mean.
In the following Proposition a real version of the original CR identity is stated.
Such result is crucial in order to obtain sufficient conditions on the density of a
PYP mean which allow to recover an expression of the cdf of the base measure,
combining results on DP and NSP means via the distributional identity (2.61).

Proposition 2.5. Let qα be the density of the mean M(D̃α) where D̃α ∼ DP(1, P0).
If qα is piecewise Hölder continuous, then

cos
(
πP0 ([ 0, t )) +

π

2
P0 ({t})

)
e−

∫ 1
0 log |x−t|P0(dx) = PV

∫ 1

0

qα(x)

x− t
dx (2.62)

for Lebesgue-almost every t ∈ [0, 1].

Proof. Let us consider the CR identity for concentration parameter equal to 1,
which holds in this case

exp

{
−
∫ 1

0
log(z + x) P0(dx)

}
=

∫ 1

0

qα(x)

z + x
dx z ∈ C \ [−1, 0] (2.63)

Substituting z = −t + iε, with t ∈ [0, 1] and ε > 0, and taking the real part we
have on the left hand side

cos

(
−
∫ 1

0

{
arctan

(
ε

x− t

)
+ π1[0,t)(x) +

π

2
1{t}(x)

}
P0(dx)

)
×

× exp

{
−
∫ 1

0
log
√

(x− t)2 + ε2 P0(dx)

}
(2.64)

and on the right hand side ∫ 1

0

x− t

(x− t)2 + ε2
qα(x) dx. (2.65)

Since qα is piecewice Hölder continuous, we have

lim
ε↓0

∫ 1

0

x− t

(x− t)2 + ε2
qα(x) dx = PV

∫ 1

0

qα(x)

x− t
dx (2.66)

and the limit is finite for Lebesgue-almost every t ∈ [0, 1]. Hence, taking the limit
for ε ↓ 0 also in the left hand side, by virtue of monotone convergence theorem, we
obtain (2.62). Notice that, a fortiori,∫ 1

0
| log |x− t| | P0(dx) <∞ (2.67)

for Lebesgue-almost every t ∈ [0, 1].
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2.3. Fixing the distribution of the mean

Now we can state the general result for PYP means.

Theorem 2.6. Let the density qσ,1 of the mean M(P̃σ,1) of a PYP with parameters
(σ, 1) be piecewise C1 with piecewise Hölder continuous derivative. Then the base
measure P0 of P̃σ,1 has cdf given by

F0(y) =
1

π

∫ y

0
(y − t)−σ eσ

∫ 1
0 log |x−t| qσ(x) dx ×

×
{
π qσ(t) cos(σπQσ(t)) + sin(σπQσ(t)) PV

∫ 1

0

qσ(x)

t− x
dx

}
dt (2.68)

with qσ having cdf given by

Qσ(t) =
1

π
arccot

(
1

π qσ,1(t)
PV

∫ 1

0

qσ,1(x)

x− t
dx

)
(2.69)

Proof. The result follows immediately by resorting to the distributional identity
in (2.61), which allows to apply iteratively the representation in (2.10) and Theo-
rem 2.4 leading to the desired result. We only need to check that the conditions
on qσ,1 are sufficient to apply the DP and the NSP results. Firstly, since qσ,1 is
piecewice C1 with bounded derivative, by (2.10), Qσ as defined in (2.69) is the cdf
of the base measure of a DP whose mean has density qσ,1.
Now, since qσ,1 is piecewise Hölder continuous, we can apply Proposition 2.5 and
obtain

cos (πQσ (t)) exp

{
−
∫ 1

0
log |x− t| qσ(x) dx

}
= PV

∫ 1

0

qσ,1(x)

x− t
dx (2.70)

for Lebesgue-almost every t ∈ [0, 1]. Therefore we immediately recover the integra-
bility condition (2.42) on qσ. Hence in order to apply Theorem 2.4, we only need
the Hölder continuity of qσ, which is used in the proof to establish the derivative in
(2.54). But, as recalled in Martin and Rizzo (1996), the derivative of the singular
integral

PV

∫ 1

0

f(x)

x− t
dx (2.71)

exists and it is equal to the hypersingular integral

H

∫ 1

0

f(x)

(x− t)2
dx (2.72)

named Hadamard finite part integral, whenever the density f is Hölder continuous
with Hölder continuous derivative. Therefore, since this is the case for qσ,1, both
sides of (2.70) are differentiable, (2.54) holds and we can apply Theorem 2.4.
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2. Random probability measures with fixed mean distributions

The following Corollary of Proposition 2.5 highlights the connection between a
PYP mean density and the mean density of the NSP obtained by normalizing the
σ-stable CRM underling the PYP, according to the construction showed in (1.22).

Corollary 2.7. Let qσ,1 be the density of the mean M(P̃σ,1), for P̃σ,1 ∼ PYP(σ, 1).
If qσ,1 is piecewise Hölder continuous, then

cos (πQσ(t))

1− t
exp

{
PV

∫ 1

0

Qσ(x)

x− t
dx

}
= PV

∫ 1

0

qσ,1(x)

x− t
dx (2.73)

for Lebesgue-almost every t ∈ (0, 1), where Qσ is the mean distribution function of
the NSP P̃σ in (1.22).

Proof. It suffices to apply Proposition 2.5 in view of representation (2.61), as in
the proof of Theorem 2.6, and consider that∫ 1

0
log |x− t|qσ(x) dx =

=

∫ 1

0

Qσ(t)−Qσ(x)

x− t
dx + Qσ(t) log t + (1−Qσ(t)) log(1− t) (2.74)

and

PV

∫ 1

0

Qσ(x)

x− t
dx = Qσ(t) PV

∫ 1

0

1

x− t
dx +

∫ 1

0

Qσ(x)−Qσ(t)

x− y
dx =

= Qσ(t) log

(
1− t

t

)
−
∫ 1

0

Qσ(t)−Qσ(x)

x− y
dx (2.75)

Notice that, by Proposition 2.5, the Hölder continuity of qσ,1 entails that qσ inte-
grates logarithmic singularities, which in turns implies the existence (and finiteness)
of the principal value in (2.75).

We shall close this Section giving an instance of application of Theorem 2.6, by
treating the uniform case. Namely, suppose we wish to determine the parameter
measure that makes the distribution of M(P̃σ,1) uniform on [0, 1]. One, then, sets
qσ,1(x) = 1(0,1)(x) and from (2.69) and

Qσ(x) = 1[1,∞)(x) +
1

π
arccot

(
1

π
log

1− x

x

)
1(0,1)(x) (2.76)

We shall denote as qσ the density function corresponding to Qσ. Finally, set

ξ(t) =
1

t(1− t)

∫ 1

0
(1− x− t) qσ(x) dx+
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2.3. Fixing the distribution of the mean

+
2

t(1− t)

∫ 1

0

(log |t− x|)
(
log 1−x

x

)
π2 + log2 1−x

x

qσ(x) dx (2.77)

for any t ∈ (0, 1). By virtue of Theorem 2.6 one can state the following

Proposition 2.8. The distribution of the mean M(P̃σ,1), where P̃σ,1 ∼ PYP(σ, 1)
is uniform on (0, 1) if and only if its base measure P0 has cumulative distribution
function as follows

F0(y) =
1

π
eσ

∫ 1
0 log |y−x| qσ(x) dx {π qσ(t) cos(σπQσ(t)) + ξ(y) sin(σπQσ(t))} (2.78)

for any y ∈ (0, 1), where Qσ and ξ are as in (2.76) and (2.77), respectively.

Proof. The density function corresponding to (2.76) is

qσ(x) =
1

x(1− x)

1{
π2 + log2 1−x

x

} 1(0,1)(x) (2.79)

As for the evaluation of the principal value integral appearing in (2.68), note that(∫ t−ε

0
+

∫ 1

t+ε

)
1

x(t− x)

1{
π2 + log2 1−x

x

} dx =

=
1

t

(∫ t−ε

0
+

∫ 1

t+ε

)
1

x

1{
π2 + log2 1−x

x

} dx+

+
1

t

(∫ t−ε

0
+

∫ 1

t+ε

)
1

t− x

1{
π2 + log2 1−x

x

} dx =: I1,ε + I2,ε (2.80)

To shorten notation below, set ζ1,ε := (log ε)/{π2 + log2[(1 − t + ε)/(t − ε)]} and
ζ2,ε := (log ε)/{π2 + log2[(1 − t − ε)/(t + ε)]}. A simple change of variable, now,
leads to

I2,ε =
1

t

∫ t

ε

1

y

1{
π2 + log2 1−t+y

t−y

} dy − 1

t

∫ 1−t

ε

1

y

1{
π2 + log2 1−t−y

t+y

} dy

=
1

t

−ζ1,ε + 2

∫ t

ε

(log y)
(

log 1−t+y
t−y

)
(t− y)(1− t + y)

{
π2 + log2 1−t+y

t−y

}2 dy

+ ζ2,ε + 2

∫ 1−t

ε

(log y)
(

log 1−t−y
t+y

)
(t + y)(1− t− y)

{
π2 + log2 1−t−y

t+y

}2 dy

 (2.81)
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2. Random probability measures with fixed mean distributions

Note also that(∫ t−ε

0
+

∫ 1

t+ε

)
1

(1− x)(t− x)

1{
π2 + log2 1−x

x

} dx =

= − 1

1− t

(∫ t−ε

0
+

∫ 1

t+ε

)
1

1− x

1{
π2 + log2 1−x

x

} dx+

+
1

1− t

(∫ t−ε

0
+

∫ 1

t+ε

)
1

t− x

1{
π2 + log2 1−x

x

} dx =: J1,ε + J2,ε (2.82)

Moreover, J2,ε = tI2,ε/(1− t), for i = 1, 2.

2.4 Application to mixture models

Despite the results in Theorems 2.1, 2.4 and 2.6 have been stated for a simple mean
of the form M(P̃ ) =

∫
x P̃ (dx), they can be easily extended to include the case

where one is willing to study a linear functional of the type∫
f dP̃ (2.83)

for any measurable function f : R → R such that
∫
|f |dP̃ < ∞, almost surely.

This follows from the fact that∫
f dP̃

d
=

∫
x P̃f (dx) (2.84)

where P̃f = P̃ ◦ f−1. If P̃ is obtained, as in (1.19), by normalizing a CRM µ̃
with Lévy intensity ν(ds, dx), this is equivalent to saying that P̃f is obtained by
normalizing a CRM µ̃f whose Lévy intensity νf is such that∫

B

∫
A
νf (ds, dx) =

∫
f−1(B)

∫
A
ν(ds, dx) (2.85)

for any A ∈ B(R+) and B ∈ B(R). Hence, in (2.43) one just needs to interpret
F0 as the cumulative distribution function of P0 ◦ f−1. On the other hand, (2.61)
can be rewritten as ∫

f(x) P̃σ,θ(dx)
d
=

∫
x D̃qσ(dx) (2.86)

where now qσ is the density function of
∫
f dP̃σ and E[P̃σ,θ] = E[P̃σ] = P0. And

an obvious extension of Theorem 2.6 follows.
In view of this, the results immediately carry over to consider some special cases
of great relevance in statistical practice. An example is represented by mixture
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2.4. Application to mixture models

models, in which one is interested in assigning a prescribed distribution to the mean
of the mixture model itself, such as in, e.g., Kessler et al. (2015). In particular,
letting Y be a Polish space equipped with the Borel σ-algebra Y , one defines
a random mixture density (absolutely continuous with respect to some σ-finite
measure ν on Y) as

f̃(y) =

∫
X
k(y;x) P̃ (dx) (2.87)

where {k( · ;x) : x ∈ X} is a collection of density functions on Y indexed by a
parameter taking values in X. When P̃ is a DP one obtains the popular Dirichlet
process mixture introduced by Lo (1984). Mixtures based on NSPs or PYPs repre-
sent valid alternatives with appealing features especially in terms of clustering and
robustness. See, e.g., Ishwaran and James (2001), Lijoi et al. (2007) and Barrios
et al. (2013).

Moreover, if one is interested in a mean of the mixture (2.87), then the problem
of studying a linear functional of the mixture can be easily reduced to studying a
(different) linear functional of the underlying P̃ by noting that∫

Y
g(y) f̃(y)ν(dy) =

∫
X
h(x) P̃ (dx) (2.88)

where h(x) =
∫
Y g(y)k(y, x)ν(dy). This strategy was applied in Nieto-Barajas

et al. (2004) and James et al. (2010) for deriving the distribution of means DP and
NRMI mixtures. From (2.88), it follows immediately that Theorems 2.1, 2.4 and 2.6
hold also in the case of mixture models by suitably adapting the specification of f
yielding an important tool for prior specification in mixture models. Furthermore,
notice that the mixture procedure allows the extension of our results on discrete
random probability measures to absolutely continuous ones.

Theorem 2.9. Suppose g : Y → R+ is a measurable function such that the
probability distribution of the mean (2.88), where f̃ is defined as in (2.87) with
P̃ = D̃α and α = P0, has density q pointwise C1 with bounded derivative and
supp(q) = [0, 1]. Then

P0 ◦ h−1([0, x]) =
1

π
arccot

(
1

π qα(x)
PV

∫ 1

0

qα(t)

t− x
dt

)
(2.89)

for any x ∈ (0, 1), where h(x) =
∫
Y g(y) k(y, x) ν(dx).

If instead α = θP0 for some θ ∈ (0, 1) and the density q also satisfies condition
(2.12), then

P0 ◦ h−1([0, x]) =
1

θπ
arctan

(
sin(θπ)

cos(θπ) + Iθ[ q; x ]

)
+

1

θ
1(x∗,∞)(x) (2.90)
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2. Random probability measures with fixed mean distributions

for any x ∈ (0, 1), where Iθ is defined in (2.11) and

x∗ = inf
{
x ∈ [0, 1]

∣∣∣Iθ[ qα; x ] ≤ − cos(θπ)
}

On the other hand, if P̃ = P̃σ in (2.87) with P0 = E
[
P̃σ

]
and the density q also

satisfies condition (2.42) Lebesgue-almost everywhere, then

P0 ◦ h−1([0, x]) =
1

π

∫ x

0
(x− t)−σ eσ

∫ 1
0 log |s−t| q(s) ds ×

×
{
π q(t) cos(σπQ(t)) + sin(σπQ(t)) PV

∫ 1

0

q(s)

t− s
ds

}
dt (2.91)

for any x ∈ (0, 1), where Q is the distribution function of the mean (2.88).

The expressions in (2.89), (2.90) and (2.91) can be used to determine the param-
eter measure yielding a specified probability distribution for a mean of a mixture
model governed either by a DP or by a NSP. Here we describe an example involving
the σ-stable case.

Example 2.9. Suppose f̃ is defined as in (2.87) with P̃ = P̃σ. Moreover, set
k(y, x) = x e−xy1(0,∞)(y) and f(y) = y. In this setting we, then, aim at determin-
ing the parameter measure P0 that induces a specified distribution for the mean
of a σ-stable mixture of exponential densities. Hence g(x) = x−1 and if we set
qσ(x) = 1[0,1](x) it can be easily seen that

P0 ◦ g−1((0, x]) = 1[1,∞)(x) +
eσ

π

∫ x

0
(x− t)−σ (1− t)σ(1−t) tσt ×

×
{
π cos(σπt)− sin(σπt) log

1− t

t

}
dt 1(0,1)(x) (2.92)

From this one finds out that supp(P0) = [1,∞) and

P0((0, x]) = 1[1,∞)(x)

{
1− eσ xσ

π

∫ 1/x

0
(1− xt)−σ (1− t)σ(1−t) tσt ×

×
[
π cos(σπt)− sin(σπt) log

1− t

t

]
dt

}
(2.93)

In a similar fashion one can proceed if f(y) = 1[T,∞)(y) for some T > 0, with
the same exponential kernel as above. In this case g(x) = exp{−xT} and the
distribution of the mean of the mixture is the distribution of an average survival
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2.5. Conclusions

probability
∫

exp{−xT} P̃σ(dx) at T . If one again wishes to specify P0 in such a
way that the mean of the mixture has uniform distribution, then

P0((0, x]) = 1[0,∞)(x)

{
1− eσ

π

∫ e−xT

0

(
e−xT − t

)−σ
(1− t)σ(1−t) tσt

×
[
π cos(σπt)− sin(σπt) log

1− t

t

]
dt

}
(2.94)

2.5 Conclusions

The determination of the parameter measure of a random probability measure
yielding to a fixed random mean distribution is a challenging problem linked to
many fields in probability, statistics and mathematics in general. In Bayesian
nonparmetric modeling, solving this problem yields important prior elicitation,
allowing the direct enforcement of prior information on an interpretable finite di-
mensional feature of the random probability measure. In this Chapter we pro-
vided explicit expressions for the distribution functions of the parameter measure
in Dirichlet process with concentration parameter less than 1, normalized stable
random measure and Pitman–Yor process cases, for a fairly broad class of fixed
mean distributions. In doing so, we devised procedures and techniques which can
be applied even to cases not covered by our general results, giving insights on the
structure of sets of random means of discrete nonparametric priors. As an extra
motivation, results apply also to mixture models with, e.g., fixed population mean
or average survival probability, opening the way to a wide range of applications.
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Chapter 3

Dirichlet random means and continual
Young diagrams

Abstract

In this work we present the connection between hook walks on continual Young diagrams
and the Dirichlet process. In particular, this link is in the fact that the base measure of
a Dirichlet process with concentration parameter equal to 1 and its mean distribution are
each other uniquely determined by the same integral identity, that is the Cifarelli–Regazzini
identity. Such equation also defines a bijection between a continual Young diagram and
the so-called transition measure induced by it via a hook walk. We present the involved
combinatorial objects, which are studied in many fields of mathematics, from probability
to representation theory, we make explicit the connection with the Dirichlet process and
give some implications of it. Finally, we discuss strategies for extending such a connection
to general concentration parameters, and give a characterization in terms of operatorial
inequlities, of the space of differentiable random Dirichlet means.

3.1 Introduction

As mentioned in Chapter 2, one of the interesting features of the area of research
exploring properties of linear functionals of random probability measures is the
pervasive character of the connections it provides with several and seemingly unre-
lated fields of mathematics. Our investigation for retrieving the parameter measure
of certain classes of discrete random probability measures, still following the line
of research opened by Cifarelli and Regazzini (1990), has been for sure inspired by
one of these connection. Namely, in Kerov (1993), one can find the description of
a Markov process named hook walk, defined on a continual Young diagram. The
distribution of arrival point of such time-infinite random walk is called transition
measure and it is linked in a one-to-one correspondence with the diagram itself.
In Kerov (1993) the topic is framed in terms of Hausdorff and Markov moment
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3. Dirichlet random means and continual Young diagrams

problems. It is noted in Romik (2004) that the integral identity which entails the
previously mentioned bijection is indeed, once extended by analytical continuation,
a special case of the Cifarelli-Regazzini identity (CR identity), presented in Chapter
2, and linking the base measure of a Dirichlet process to its random mean density.
In this Chapter we explore the connection that this parallel creates between hook
walks on continual Young diagrams and the Dirichlet process. In the next Section
we shall give an account of continual Young diagrams and their approximation via
rectangular diagram, as well as present the hook walk algorithm and an alterna-
tive and equivalent way to sample a trajectory of this process and hence to sample
(approximately) from the transition measure. In Section 3.3 we describe in details
the connection with the Dirichlet process with concentration parameter equal to
1, explicitly constructing the cumulative distribution function of the base measure
from the profile of the diagram. We further show the equivalence of the integral
identities. Finally, open research direction spurred by this inspiring connection are
presented in the last Section: the generalization to any concentration parameter,
and ultimately the characterization of the space of random Dirichlet means.

3.2 Hook walks on continual Young diagrams

Continual Young diagrams are a limiting case of Young tableux, combinatorial
objects used to visualize the representations of the symmetric group.
In details, given an interval [a, b] ⊂ R, a continual Young diagram on [a, b] is a
1-Lipschitz function ω defined on R such that

z := a + ω(a) = b− ω(b)

and

∀x /∈ [a, b] ω(x) = |x− z|

z is called the center of the diagram ω. That is, a diagram is a Lipschitz function
on (a, b) which hinges to the function |x − z| at the extremes of the interval. An
example in Figure 3.1.

The domain of ω is

Dω := {(x, y) | a ≤ x ≤ b, ω(x) ≤ y ≤ min(ω(a) + x− a, ω(b) + b− x)}

that is the area delimited by the graph of the diagram, denoted G(ω), and the two
lines of slope 1 and −1 passing, respectively, through (a, ω(a)) and (b, ω(b)). The
intersection of such lines is(b − ω(a), ω(a) + ω(b)) and is called corner point. For
a point (x, y) ∈ Dω the hook of (x, y) is the set

H(x, y) :=
{

(x′, y′) ∈ Dω | (x′ ≤ x ∧ y − y′ = x− x′) ∨ (x′ > x ∧ y − y′ = x′ − x)
}
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3.2. Hook walks on continual Young diagrams

Figure 3.1: A continual Young diagram

1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| |
a bz

omega

corner point

In words, the hook of a point (x, y) in the domain is obtained by the union of
the segments of the lines of slope 1 and −1 passing through the point, included
between the point itself and the intersections with the diagram. An example in
Figure 3.2.

Figure 3.2: The hook of a point in the domain of a diagram
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A hook walk on ω is a random sequence {(Xn, Yn)}n≥1 on Dω, starting from
the corner point, that at each step from a given point changes to a point uniformly,
by arc length, chosen on the hook of the previous one. An example in Figure 3.3.
That is, if (Xn, Yn) = (x, y), then (Xn+1, Yn+1) ∈ H(x, y), Ξ(T ) = (Xn+1, Yn+1)
and T ∼ U [0, 1], where Ξ : [0, 1] −→ H(x, y) is a parametric (one-to-one) rep-
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3. Dirichlet random means and continual Young diagrams

Figure 3.3: First steps of a hook walk
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resentation of H(x, y). Notice that, in practice, to get the n + 1 step it suf-
fices to extract uniformly a value X∗ from [L,R], where L and R are the projec-
tions on the x-axis of the intersection points between H(x, y) and ω, then to take
(Xn+1, Yn+1) = (X∗, Y ∗) ∈ H(x, y), that is the only point in H(x, y) having X∗ as
first component.

It is clear that the hook walk converges almost surely to a point in G(ω), even
if in a time that is almost surely infinite. Indeed, at every step n,

P ((Xn+1, Yn+1) ∈ G(ω) | (Xn, Yn) = (x, y)) = 0.

If X∞ := limnXn is the first component of the limiting point of the random walk,
the distribution of X∞ is called transition measure and we denote it with µ. The
diagram ω and the transition measure µ are linked, and this connection is the
object of the work in Romik (2004). Here, an expression of the density g of the
transition measure µ is given for a class of smooth diagrams. Denoting with D[a, b]
the set of diagrams on [a,b], define:

S[a, b] :=
{
ω ∈ D[a, b] piecewice C2, ω′′ bounded, c1 < ω′ < c2 with c1, c2 ∈ (−1, 1)

}
If ω ∈ S[a, b] then

g(x) =
1

π
cos

(
π
ω′(x)

2

)
(x− a)−

1+ω′(x)
2 (b− x)−

1−ω′(x)
2 × (3.1)

× exp

{
1

2

∫ b

a

ω′(u)− ω′(x)

u− x
du

}
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Figure 3.4: A rectangular diagram
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This result is obtained by means of density arguments, that is a simpler class of
diagrams is defined and proved to be dense in the general class. If ω is piecewise-
linear with slope 1 or −1 in [a, b], we call it rectangular diagram; an example in
Figure 3.4. We denote with D0[a, b] the set of rectangular diagrams. It is easy
to see that ω ∈ D0[a, b] is uniquely determined by the interlacing sequence of its
minimum and maximum points:

x1 < y1 < x2 < · · · < yn−1 < xn.

The reason why this class results to be simpler to handle is that the transition
measure relative to a rectangular diagram is a discrete measure with atoms in the
minimum points:

µ(·) =

n∑
k=1

δxk
(·)µk

and, plus, a characterization for the masses µk is available thanks to the work in
Kerov (1993).

In this article, it is made use of a procedure of random splitting, directed by
a rectangular diagram, of the interval [a, b]. This procedure is proved to have, in
law, the same limiting point of a hook walk on the diagram. The random splitting
works as follows. It is defined a shrinkage process as a Markov chain with state
space given by the set of intervals [xi, xj ] with 1 ≤ i ≤ j ≤ n and with µ as limiting
distribution. From state [xi, xj ], one chooses uniformly γ ∈ [xi, xj ], then:{

if γ ∈ [xk, yk] for some k =⇒ [xi, xk]

if γ ∈ [yk−1, xk] for some k =⇒ [xk, xj ]
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3. Dirichlet random means and continual Young diagrams

For the limiting distribution µ (that is clearly discrete) of such chain it is proved
that:

n∑
k=1

µk

x− xk
=

∏n−1
i=1 (x− yi)∏n
i=1(x− xi)

(3.2)

x /∈ [a, b], where {µk}n1 are the masses in the atoms {xk}n1 .
We notice here that the hook walk gives rise to another random splitting proce-

dure of the interval [a, b], perhaps more obvious and simpler to implement in case
of simulations. We already noticed that the uniform sample from the hook of a
point can be substituted by a uniform sample in [L,R] and the selection on the
hook of the only point having that x-coordinate. Hence, one just needs to find the
intersection between the new branch of the hook and G(ω) and this can be easily
done in practice using well-known numerical methods. The projection on the x-axis
of such intersection will determine the new extreme of the interval, from which the
one can start over. This is the procedure adopted to obtain a simulator of a hook
walk on a generic diagram, which produces in turn a sampler from the transition
measure. In Figure 3.5 a recovery of the density of the transition measure for a
diagram having a quadratic profile.

Coming back to transition measures, if we define the charge of the diagram ω
as

σ(x) :=
ω(x)− |x|

2
,

the equation (3.2) can be rewritten as∫
R

µ(dt)

x− t
=

1

x
exp

{∫
R

dσ(t)

t− x

}
∀x /∈ [a, b] (3.3)

where the integral in the right hand side is intended in the Stieltjes sense. Since,
as anticipated, D0[a, b] is dense in D[a, b] with respect to the uniform norm, (3.3)
can be proved to be true for every diagram. Now, this identity is closely related
to Cifarelli-Regazzini identity, as it will be explained, and it used to prove the
existence of a homeomorphism between D[a, b] with the topology induced by the
uniform norm, and M[a, b], the set of probability measures on [a, b] endowed with
the weak topology. Hence, a diagram and its transition measure are not only
connected, but in a one-to-one correspondence. This is the argument to prove
both the expression of the density of the transition measure (3.1) and an inversion
formula which allows to write the derivative of the diagram. If the transition
measure is absolutely continuous, with density g piecewise C1, having bounded
derivative and it is bounded away from 0, then

ω′(x) = −1 +
2

π
arccot

(
1

π
log

(
b− x

x− a

)
+

1

πg(x)

∫ b

a

g(u)− g(x)

u− x
du

)
(3.4)
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Figure 3.5: In blue the analytic expression. The histogram is obtained by simula-
tion
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Both the formulas are proved by approximation arguments. In particular, in
order to prove (3.1) a smooth diagram (that is in S[a, b]) is approximated by
a piecewise-linear, that is in turn approximated by an interpolating rectangular
diagram, whose discrete transition measure density and its limit are retrieved by
the use of (3.2). The inverse formula is obtained working on a step function density,
whose corresponding measure is a mixture of discrete uniform measures, which have
a related rectangular diagram; exploiting the homeomorphism, then, it suffices to
calculate the uniform limit of such diagram.

3.3 Link with the Dirichlet process

The connection between continual Young diagrams and the Dirichlet process comes
when one considers a convex diagram ω. In this case, a proper translation of the
derivative of the charge of ω, is a càdlàg, non-decreasing function with values in
[0, 1], that is a cumulative distribution function of some probability measure on
[a, b].

Let us focus on the case a = 0, b = 1. If ω is a convex function, then it admits right
and left derivatives everywhere and the non-differentiability points correspond to
jump discontinuities of such derivatives. We denote with ω′

+ the right derivative
of ω, which is a non-decreasing right continuous and bounded function. Now we
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have

σ′
+(x) =


ω′
+(x) + 1

2
x < 0

ω′
+(x)− 1

2
x ≥ 0

which means

σ′
+(x) =

{
ω′
+(x)− 1

2

}
1[0,∞)(x)

Hence it is clear that if we define

F0(x) := σ′
+(x) + 1[0,∞)(x) (3.5)

F0 is the cumulative distribution function of a probability measure, that we denote

P0((−∞, x]) := F0(x).

Notice that, since a diagram is constrained at the hinges in 0 and 1, if two diagrams
differ by a constant c then c = 0. Indeed let ωc = ω + c with ω, ωc diagrams; then,
since ωc(0) = 1− ωc(1) and ω(0) = 1− ω(1), we have

ω(0) + c = 1− ω(1)− c =⇒ c = 0.

This implies that any F0 obtained as in (3.5) comes from a unique diagram. Let
us consider x /∈ [0, 1], then

1

x
exp

{∫
R

dσ(t)

t− x

}
=

1

x
exp

{∫
R

σ′
+(t)dt

t− x

}
=

=
1

x
exp

{∫ 0

−∞

F0(t)

t− x
dt−

∫ ∞

0

1− F0(t)

t− x
dt

}
=

=
1

x
exp

{∫ 0

−∞

∫ t

−∞
P0(ds)

dt

t− x
−
∫ ∞

0

∫ ∞

t
P0(ds)

dt

t− x

}
=

=
1

x
exp

{∫ 0

−∞

∫ 0

s

dt

t− x
P0(ds)−

∫ ∞

0

∫ s

0

dt

t− x
P0(ds)

}
=

=
1

x
exp

{
−
∫
R

∫ s

0

dt

t− x
P0(ds)

}
=

= exp

{
−
∫
R

log |x− s|P0(ds)

}
Hence identity (3.3) can be rewritten as

exp

{
−
∫
R

log |x− s|P0(ds)

}
=

∫
R

µ(ds)

x− s
(3.6)
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for any x /∈ [0, 1]. Finally, (3.6) can be extended by analytic continuation, obtaining

exp

{∫
R

log(z + s)P0(ds)

}
=

∫
R

µ(ds)

z + s
(3.7)

for any z ∈ C \ [−1, 0]. It is apparent that we recovered CR identity for concentra-
tion parameter θ = 1, displayed in (2.63).

Hence a convex diagram ω on [0, 1] defines a probability measure P0 on the
interval that is related to the transition measure µ in the same way in which the
parameter (probability) measure of a Dirichlet process Dα on [0, 1] with α( · ) =
P0( · ) is related to the distribution of the random mean M(Dα). Therefore, coming
back to the simulation of a hook walk on a continual Young diagram, we have
the immediate possibility of sampling from the random mean of a Dirichlet with
concentration parameter 1. In particular, what we actually see in Figure 3.5 is a
recovery of the density of a Dirichlet mean with base measure a uniform distribution
on [1, 2].

This framework, then, is both more general and more particular. An integral
identity is proved also for non-convex diagrams, where the connection between a
diagram and a probability measure is not available anymore. On the other hand,
the result is limited to probability base measures (θ = 1) on a closed interval.
However, in this environment, it seems to be more natural to solve the inverse
problem: leveraging on the homeomorphism and on the density of sets of simpler
diagrams (and atomic transition measures), the asymmetry in difficulty one experi-
ences working analytically on inversion of Cauchy–Stieltjes transforms is flattened.
Considering that hypotheses on the transition density imply the existence of the
its Cauchy singular integral, we can rewrite (3.4) as

P0((0, x]) =
1

π
arccot

(
1

πq(x)

)
PV

∫ 1

0

q(s)

s− x
ds (3.8)

where q is the transition density, which the formula we reported in (2.10).
The possibility of going more smoothly back and forth between the two mea-

sures, if seen in this external and seemingly far mathematical environment, has
been the inspiration for trying to find a connection between our results in Chapter
2 and the framework accounted in this Chapter. Open research directions in this
matter are presented in the next Section.

3.4 Further work

The homeomorphism between the set of all diagrams on [0, 1] and all probability
distributions on the same interval is fascinating. However, our argument to con-
nect the Dirichlet process to such homeomorphism creates another link between
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3. Dirichlet random means and continual Young diagrams

diagrams and probability measures. Indeed we take a translation of the derivative
of a convex diagram and we notice that it is a cumulative distribution function. In
the Dirichlet world, this is the base measure, while the transition measure becomes
the random mean distribution. We already noticed that the derivative identifies
a diagram, since two diagrams cannot differ by a constant. Moreover it seems
that our procedure can be performed the other way around to obtain a convex
diagram from any cumulative distribution function. Since convex diagrams are a
proper subset of all diagrams and the diagrams are in (homeomorphic) bijection
with probability measures, this leads to a contradiction.

Once the previous point is solved, one would like to use the structure that the
homeomorphism brings, for instance to evaluate how distances between base mea-
sures reflect on distances between mean distributions. This could even become a
way of measuring consistency a posteriori. A possible obstacle in this matter is
again the way we use diagrams to define base measures: the homeomorphism is
built for the space of diagrams endowed with the topology of the uniform conver-
gence, while we consider derivatives of diagrams, and as known, uniform conver-
gence does not pass in general to derivatives. A possible solution is to rebuild the
homeomorphism using the Lipschitz seminorm, which in the case of diagrams, is
actually a norm.

Another natural question is the following. Is it possible to extend the diagrams-
Dirichlet connection to general concentration parameters, and further on to more
general processes? For what concerns the first question, it is easy to device a
generalization of diagrams which correspond to general finite measures: it suffices
to consider θ-Lipschitz functions. However, the hook walk, or equivalently the
random splitting procedure, seems to induce on the interval the same transition
measure induced by a 1-Lipschitz suitable deformation of the original θ-diagram.
This is clear with rectangular diagrams, where a θ-rectangular diagram induces
the same transition measure than the 1-rectangular diagram defined by the same
interlacing sequence.

In general, the set of random means of discrete nonparametric priors is still
fairly mysterious. We know from the homoemorphism, as we recalled in Chapter
2, that not every absolutely continuous distribution can be the mean distribution
of a Dirichlet mean with concentration parameter θ equal to 1. This eventuality
seems to be confirmed also for θ < 1 by our results in Chapter 2 and in particular
in Example 2.6. However, a proper characterization of the set is still missing.
Resorting on the expression in (3.8), we can state that a differentiable density q
can be a mean density of a Dirichlet(1) if and only if

q′(x) PV

∫ 1

0

q(y)

y − x
dy ≥ q(x) PV

∫ 1

0

q′(y)

y − x
dy (3.9)

50



3.4. Further work

or equivalently

q′(x) PV

∫ 1

0

q(y)

y − x
dy ≥ q(x) H

∫ 1

0

q(y)

(y − x)2
dy (3.10)

Where the singular integral on the right hand side is the Hadamard finite part
integral, introduced in 2.

Therefore the elements of the space of random Dirichlet means are the solutions
an operatorial inequality where differential operators, singular integral operators
and their compositions are involved.
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Chapter 4

Partially exchangeable multilayer stochas-
tic block models

Abstract

There is an increasing availability of complex network data encoding connectivity infor-
mation among a set of nodes, often belonging to different layers. A challenging task is
represented by inferring grouping structures among nodes based on common connectivity
patterns, while considering the layer division. Although it could be reasonable in some
cases to expect such connectivity blocks to coincide with layers, this assumption is in
general too strong and fails to learn sub-blocks within each layer as well as across-layer
clusters. To incorporate these mixed architectures while accounting for layer information
in a principled manner, we propose a new generation of partially exchangeable multilayer
stochastic block models relying on a hierarchical random partition prior for the node alloca-
tions driven by the urn scheme of a hierarchical normalized completely random measure or
a hierarchical Pitman–Yor process. The partial exchangeability assumption among nodes
according to layer partitions allows to infer both within- and across-layer blocks, while
preserving probabilistic coherence, principled uncertainty quantification and formal inclu-
sion of prior information from layer membership. The mathematical tractability of such
priors further allows to analytically derive and compare predictive within- and across-layer
co-clustering probabilities, thereby providing conditions on hyperparameters to enforce in-
terpretable features on the grouping structures. Moreover, the predictive structure of the
model naturally entails a way to infer both connections and allocation of new nodes incom-
ing into the network. The applied potentials of this new class of Bayesian nonparametric
models are illustrated in criminal network studies.

4.1 Introduction

Network theory is widely employed to describe and analyze complex systems in
social, biological, physical and engineering sciences. Consequently, methodological
investigations regarding the analysis of network data are becoming more and more

53



4. Partially exchangeable multilayer stochastic block models

spread in statistical literature. As the systems that need to be modeled become
more structured, as the urge for models able to encode different information at
several levels increases. Multilayer networks are a prominent example of such
elaborated systems: on top of the usual network structure, given by nodes linked by
(directed, undirected or weighted) edges, they include layerizations of the network
itself, according to characteristics (also multivariate ones) of the nodes, of the edges
or both, accounting for, e.g., intra- and inter -layer connections, several directions
of layerization, copies of the same node existing in different layers, and so on. For
insightful reviews on multilayer networks, see Boccaletti et al. (2014) and Kivelä
et al. (2014). Modelling such networks naturally represents a challenging statistical
task: in order to take into account the entirety of such structures but still being
able to perform reliable inference on features of the network as well as validated
prediction about an unobserved part of it, we want to stick to a model-based and
fully probabilistic approach.

One of the most significant tasks in the analysis of networks is the detection
of grouping structures based on the connection activity of the nodes. Early ap-
proaches have often relied on community detection algorithms, as in Girvan and
Newman (2002), Newman and Girvan (2004) and Newman (2006). These methods
are focused on recognizing groups with dense connectivity inside and sparse com-
munication outside, and hence tend to oversimplify the grouping structure. On
the other hand, also spectral clustering techniques, which show better flexibility
properties, have been employed. See e.g. Von Luxburg (2004). However, such al-
gorithms lack of an integrated statistical procedure allowing for joint modeling of
different aspects of the clustering, like the number of groups, as well as uncertainty
quantification for inference and prediction. More on the side of a model-based ap-
proach lie stochastic block models (SBMs). See Holland et al. (1983) and Nowicki
and Snijders (2001). In this class of models, the partition of the nodes is a latent
feature of the network: for each couple of nodes, the probability of creating an edge
is given conditionally on the allocations of the couple. In a Bayesian framework,
in order to perform inference on such allocations, a prior is placed on the space
of partitions and a posterior distribution is retrieved by updating the prior with
the observed connections. This entails the inference of block structures which tend
to cluster together nodes sharing among them the same patterns of communica-
tion with the members of the other blocks, hence allowing for the recognition of
more complex and connectivity-driven grouping structures. The favorable ratio
between simplicity of the structure and flexibility of the inferred clustering, to-
gether with the availability of easy and efficient inference techniques, have brought
to further developments and generalizations of such models, encompassing also
the use of more and more flexible priors on the random partition, from the clas-
sical Dirichlet-multinomial to nonparametric solutions as the Dirichlet process or
mixture-of-finite-mixtures, as in See Schmidt and Morup (2013), Kemp et al. (2006)
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and Geng et al. (2019). For a general framework under the unifying concept of
Gibbs-type priors, a careful comparison and an insightful application to criminal
networks, see Legramanti et al. (2022).

In this work we focus on the inference of grouping structures reflecting con-
nectivity patterns among nodes of a special kind of multilayer networks called
node-colored networks. They are multilayer graphs with one direction of layeriza-
tion, based on a characteristic of the nodes (e.g. affiliation to a certain university
in a researcher network), and such that each node has no copies in different layers.
We propose a stochastic block model for the supra-graph, which clusters together
nodes with similar connectivity behavior, also belonging to different layers, while
unloading the information of the division in layers on the latent level of the random
partition. This is achieved by choosing hierarchical nonparametric priors on the
space of partitions which structurally enforce homophily among nodes in the same
layer and heterogeneity between nodes in different layers. Thinking of each node as
a statistical unit and of their division in layers as the division in sub-populations
of individuals, we induce partial exchangeability on a latent characteristic of the
nodes, this being the most natural assumption for data coming from different sub-
populations and encompassing exactly the similarity-within/dissimilarity-across
scheme just described. Hence we suppose a hierarchical random partition prior
on the nodes’ allocations which implies such condition. In particular, we employ
random partition distributions driven by hierarchical discrete random probability
measures, such as the hierarchical Dirichlet process (H-DP), introduced in Teh
et al. (2006) and, its generalizations given by the hierarchical normalized random
measures with independent increments (H-NRMI) and the hierarchical Pitman–
Yor process (H-PYP), whose constructions and properties are thoroughly studied
in Camerlenghi et al. (2019). The result is a fully-probabilistic model including
the layer information, allowing a flexible inter - and intra-layer clustering, ensur-
ing principled uncertainty quantification and a theoretically-validated inference.
Analytical expressions of characteristic posterior co-clustering probabilities can be
derived.

We devise a Gibbs sampler algorithm to perform inference on the posterior dis-
tribution of the node allocation, by leveraging both the collapsed structure typical
of SBMs and the augmented urn scheme of a random partition induced by H-NRMI
and H-PYP.

Moreover, the structure of the model allows the construction of a prediction
algorithm both for the allocation and for the connections of a new node incoming
into the network, on whichever of the existing layers. The posterior sample of the
old nodes’ latent allocations, inferred from their connections and layer member-
ships, can be indeed used in a Monte Carlo procedure, together with the new layer
membership, to estimate a probability distribution on the joint space of possible
allocations and connections of the new node. Therefore, we provide a tool that,
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once the inference on the network is performed, employs its output to produce prin-
cipled prediction, naturally provided of uncertainty quantification, on a new node’s
allocation and connections, without the need of re-run the posterior sampler on
the augmented network. To overcome the exponentially-growing cardinality of the
product space, we device a sampler for the joint predictive distribution too. The
predictive construction of the model, based on exchangeable partition probability
functions (EPPFs), provides the theoretical guarantees for the coherence between
the updated model and the full model. Namely, our prior is placed on the space of
partitions of a growing number of objects and automatically entails Kolmogorov
consistency of such sequence of random partitions. It is natural and probabilis-
tically coherent then to rely on the posterior samples of old nodes’ allocations to
predict features of nodes joining the network.

The Chapter is structured as follows. In Section 4.2 we illustrate the aim
of such new generation of models, while giving some preliminaries on multilayer
networks and the partially exchangeable regime. Section 4.3 is devoted to the
illustration of the model and the hierarchical structure of the prior, its specification
via conditions on the hyperparameters to enforce desired clustering patterns in
the model. Moreover we present explicit analytic expressions for posterior and
predictive co-clustering probabilities. Section 4.4 presents the posterior inference
techniques adopted, the posterior sampler and the prediction scheme for new nodes.
Results of applications to simulation scenarios and real data are reported in Section
4.5.

4.2 Motivation and preliminaries

We pursue the construction of probabilistic models for clustering nodes in networks
taking a multilayer structure in account, in order to be able to tackle in a principled
way inferential problems arising in several applications. In particular, we focus on
multilayer networks such that layers realize a division of the nodes according to
some characteristics, expressed for instance by a categorical variable. We do so
inspired by different applicative scenarios.

Example 4.1. Bill co-sponsorship networks are a motivating example. In such
networks the nodes correspond to representatives in a parliament, each one afferent
to a political party. An edge exists between two nodes whenever the candidates
both voted a bill, or a certain number of bills. Note that, clearly, edges between
nodes in different parties are possible. If one wants to infer grouping structures
characterized by similar behaviors in co-sponsoring bills, then, on one hand it would
be too restrictive to let these blocks of similar co-sponsoring choices to coincide with
the parties, on the other hand it would be rather simplistic to completely disregard
the information enclosed in the party memberships and treat data as if we were in
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the planar case. Moreover, in this specific application, direct comparisons between
the party division and a connectivity-driven inferred clustering should be a trait
of particular interest.

Example 4.2. Another important application field is the investigation of crimi-
nal networks. Here, nodes are registered criminals and connections may represent
different forms of communication that can be assessed by law enforcement, such as
phone calls, messages or co-participation in meetings. Moreover it is quite common,
above all in organized crime, that criminals can be divided according to affiliation
to subgroups. Nonetheless, such divisions might not reflect the operational con-
nectivity patterns of the whole organization, disregarding collaborations, internal
feuds or consequences of disruptive events (like murders or arrests). Also in this
case then, it arises the need for models enforcing the subgroup division information,
but still inferring grouping structures according to connectivity patterns. Moreover
the ability of dealing with new nodes entering the network appears as a strongly
desirable feature for models to be applied in this context, as it is natural to add
new registered criminals while the investigation is still on-going. For this reason,
we propose models whose construction is prediction-based, in order to naturally
perform a theoretically-validated inference on the clustering of new nodes and also
an as well principled prediction on their connections.

From both Example 4.1 and 4.2, it is clear that a SBM for the connections fits
our inferential interests, since it enforces grouping based on connectivity patterns
on the latent clustering it entails. Indeed, these models assume that, given a latent
allocation and a matrix of group-wise connection probabilities, the existence of
edges between nodes is the result of independent Bernoulli trials, whose success
probabilities are, as said, group-specific. These probabilities are, in turn, given the
allocations, independent and beta-distributed, while a prior is placed on the latent
allocations. Intuitively, the posterior distribution of the latent clustering is driven
towards an allocation reflecting similar connection behaviours, given by the shared
connection probabilities: a group is such whenever its members connect to other
groups’ members in the same way.

On the other hand, concerning the introduction of the layer division infor-
mation, the parallel between such grouping of the nodes and the division in sub-
populations typical of a partially exchangeable sampling scheme, recalled in Section
1.3, is natural. From such parallel comes the idea of an allocation mechanism a
priori driven by a scheme enforcing such distributional invariance. Nonetheless,
as it will be clear in next Sections, to suppose partial exchangeability for labels
attached to nodes is completely appropriate just in the special case of multilayer
networks we consider in this work, that is the node-colored ones. Finally, since
we want the inferred clusters to be across-layers with non-zero probability, we will
employ hierarchical discrete random measures, that is the de Finetti measure of the
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random probability measures’ vector inducing partial exchangeability in (1.30) will
be defined in a hierarchical way and it will have support on discrete distributions.

In the rest of this Section we will present the background for the construc-
tion of the novel generation of models for clustering in networks we propose. In
particular, we will frame Example 4.1 and 4.2 in the general environment of mul-
tilayer networks, contextualize the idea of enforcing partial exchangeability and
recall the construction of random partitions driven by hierarchical discrete random
measures, such as H-NRMIs and the H-PYP, which we introduced in Section 1.3.
Analytical tractability of such hierarchical processes, expressed in terms of partially
exchangeable partition probability functions (pEPPFs), will be key in retrieving
explicit expressions for posterior and predictive clustering and co-clustering prob-
ability, employed in Sections 4.3 and 4.4 for prior elicitation, posterior inference
and prediction.

4.2.1 Multilayer networks

In order to model complex connectivity architectures, notions of multilayer net-
work has been introduced in the literature of several fields. The objective is to
incorporate additional information in the usual graph representation of a network.
For example one may want to divide the nodes according to the levels of one or
more factors, or to include different kind of connections, or both. An easy and
comprehensive way to do so is to consider the nodes as laying in different layers,
even allowing the same node to exist in different layers. Following Kivelä et al.
(2014), we give a fairly general definition of a multilayer network, which encom-
passes a broad variety of special cases. For the sake of easing the notation, nodes
and elementary layers will be directly identified with natural numbers. We recall
that the notation [n] := {1, . . . , n} indicates the set of the first n natural numbers,
for any n ∈ N. Hence V := [N ] is a set of nodes, for N ∈ N. Then we call
δ ∈ N the number of aspects of the network, that is the number of directions of
layerization. Namely, for any l ∈ [δ], we define a set of elementary layers Ll = [dl]
for dl ∈ N. A layer is an element of the product space L1 × · · · × Lδ, i.e. a
vector of coordinates identifying a location in the multilayer network. Then we
define a set VM ⊂ V × L1 × · · · × Lδ of existing nodes. In symbols, the node i
exists in layer (j1, . . . , jδ) whenever (i, j1, . . . , jδ) ∈ VM , for jl ∈ Ll and l ∈ [δ].
Each existing node (i, j1, . . . , jδ) is a copy of node i ∈ V . Finally we consider a set
EM ⊂ VM × VM of edges, i.e. of couples ((i, j1, . . . , jδ), (i

′, j′1, . . . , j
′
δ)) such that

there is an arc between the existing nodes (i, j1, . . . , jδ) and (i′, j′1, . . . , j
′
δ). Now

we can state the following.

Definition 4.1. A δ-multilayer network is a quadruplet M := (VM , EM , V, L)
where L = L1 × · · · × Lδ is the product space of layers, V is the set of nodes, VM

is the set of coordinates of existing nodes and EM is the set of edges.
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Figure 4.1: A multilayer network. (a) nodes V = {1, 2, 3, 4}, 2 aspects, elementary
layers L = {L1 = {A,B}, L2 = {X,Y }}; (b) the supra-graph of the existing nodes
Kivelä et al. (2014).

Notice that we are allowing the existence of edges between nodes in the same
layer, as well as across-layers, and even between copies of the same node existing
in different layers. A multilayer network M can be flattened in the graph with
labelled nodes given by the couple (VM , EM ), which is called the supra-graph of
M . See Figure 4.1.

We recall that given a graph with N nodes, its adjacency matrix is a N × N
matrix such that entry (r, s) is 1 whenever there is an edge between node r and node
s, and 0 otherwise. As a consequence, a δ-multilayer network can be represented
by a supra-adjacency matrix Y , that is the adjacency matrix of the supra-graph.
Once chosen an order in the product space of the layers L, e.g. the lexicographic
order, based on the natural order of each entry, then it is easy to describe the
matrix Y as a block matrix whose diagonal blocks are the adjacency matrices of
each layer, and the off-diagonal blocks are the matrices of across-layers connections.

As mentioned, a common configuration which can be represented in a multi-
layer network framework is the one of networks with connections classified through
the levels of a multivariate categorical variable. Now, considering a δ-multilayer
network, as in Definition 4.1, given by a block-diagonal supra-adjacency matrix,
namely excluding connections across-layers, one obtains such a network as a special
case. If for simplicity we consider the case in which each node exists in each layer,
the network can be seen as a superposition of different sets of edges on the same
collection of nodes, hence the layerization is simply given by considering a copy of
the nodes for each set of edges. When δ = 1, these are called edge-colored networks.
Examples are given by transport networks allowing different means of transporta-
tion, or by social networks where connections are divided per social media. See
Figure 4.2.

Now, it is clear how an edge-colored network is not fitting the hypothesis of
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Figure 4.2: Edge-colored network: (a) air-transportation network; (b) bank wiring
network Kivelä et al. (2014).

partial exchangeability for any array of random variables attached to its nodes,
according to the layer division. In fact, in this case, each node is linked to its
copies in other layers, usually by the fact that they represent the same statistical
unit. But partial exchangeability is not tight enough as a distributional constraint
to enforce such connection and one ends up treating several copies of the same
statistical unit as different units.

Another broadly used network architecture is the one where nodes are attached
with a multivariate categorical variable, reflecting some set of individual features
for each node. To work out this case as a specialization of the δ-multilayer network,
it suffices to impose the following disjointness condition.

∀ i ∈ V ∃! (j1, . . . , jδ) ∈ L s.t. (i, j1, . . . , jδ) ∈ VM (4.1)

Namely, since in this case the existence of a node in a particular layer represents its
individual features, a node cannot have copies in different layers. Here, the division
in layers can be identified with a partition of V , where nodes in the same subset
share the same realization of the multivariate categorical variable. If δ = 1, that is
such categorical variable in univariate, these are called node-colored networks. See
Figure 4.3. Examples 4.1 and 4.2 fall in this special case: layers are, respectively,
political parties and criminal sub-groups of affiliation. Notice that, since layers
represent a division of the network which is solely based on nodes’ characteristics,
and each node represents a different individual across layers, indeed this special
case entails a reasonable scenario for assuming a partially exchangeable labelling
regime.
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Figure 4.3: A multilayer network. (a) nodes V = {1, 2, 3, 4}, 2 aspects, elementary
layers L = {L1 = {A,B}, L2 = {X,Y }}; (b) the supra-graph of the existing nodes
Kivelä et al. (2014).

4.2.2 Random partitions induced by H-NRMI and H-PYP

As mentioned before, we are willing to employ, for the network’s connections, a
SBM, which is defined conditionally on latent allocations, whose posterior distri-
bution will be the object of our inference. Hence, we need to place a prior on the
latent partition of the nodes and, since we consider a node-colored network, we
want such prior to incorporate the layer information. Incidentally, as explained
previously in this Section, the division in layers of the nodes, in this particular
case, has a natural parallel with the division in blocks of statistical units proper of
partial exchangeability, which we recalled in Section 1.3.

Hence the idea is to attach to each node of a node-colored network with d layers
and Nj nodes in layer j ∈ [d], an entry of a partially exchangeable random array
X as in Definition 1.2 and to deduce from a realization of X, the realization of a
random partition for the nodes. Namely, we are modeling a latent characteristic
of the nodes via X, inducing a form of distributional homophily between nodes
in the same layer via partial exchangeability, and deducing a partition from this
characteristic. A natural way to deduce a random partition from X is to choose
the directing measure Q of Theorem 1.2 to be putting all its mass on vectors
of discrete probability measures and interpret then the ties among entries of a
realization of X as a co-clustering relationship. In symbols, we define the random
array Z = (Zji)

j=1,...,d
i=1,...,Nj

of allocations as

Zji = h ⇐⇒ Xji = X∗
h (4.2)

for h ∈ [H], where X∗ = (X∗
1 , . . . , X

∗
H) is the vector of the unique values of X in

order of occurrence and H is the number of clusters, which can be random. Indeed,
we are inducing a distribution on the space of random partitions of [N ].

Now, for the motivation brought in Example 4.1 and 4.2, we want the support
of our prior to include across-layers partitions. Since the labeling of the nodes of
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4. Partially exchangeable multilayer stochastic block models

each layer j is driven by a distinct random probability measure P̃j , as can be seen
in (1.30), we need to consider a hierarchical structure in assigning the directing
measure Q in order to allow ties both across-column and across-rows in the array
X. In particular, we employ H-NRMIs and the H-PYP, which, as stated in (1.35),
fulfill this property.

As mentioned, we recalled the basics of the construction and definition of H-
NRMIs and H-PYP in Section 1.3. In this Chapter, however, we will need a deeper
recollection of their properties, also because we are going to explore and asses new
features of such hierarchical priors, in order to specify properties of our model. First
of all, we take advantage of the fact that we employ such nonparametric priors just
for clustering: as stated earlier, in fact, for our purposes, the realization of the array
X lay in latent level of the model which drives the prior on the allocations array Z.
This implies that we can actually work directly on the distribution induced on the
space of partitions. From Camerlenghi et al. (2019) we know that the distribution
of a random partition driven by a H-NRMI or a H-PYP is characterized by its
partially exchageable partition probability function (pEPPF) Π, which is derived as
a hierarchical interaction of exchangeable partition probability functions (EPPFs).
See Pitman (1996) for a full account on these objects. Indeed, for any array of
positive integers (n1, . . . ,nd) with nj = (nj1, . . . , njH) such that

∑H
h=1 njh = Nj

for some H > 0, representing an allocation of N objects, divided in d groups each
of Nj objects, in H clusters, we have that

Π
(N)
H (n1, . . . ,nd) =

∑
ℓ

∑
q

Φ
(|ℓ|)
H,0 (ℓ·1, . . . , ℓ·H)

d∏
j=1

H∏
h=1

1

ℓjh!

(
njh

qjh1, . . . , qjhℓjh

)
Φ
(Nj)
ℓj·, j

(qj1, . . . , qjH) (4.3)

determines the probability of such allocation according to the law induced by a
H-NRMI, where ℓ = (ℓjh)h=1...H

j=1,...,d is a matrix with ℓjh ∈ [njh], ℓj· =
∑H

h=1 ℓjh,

ℓ·h =
∑d

j=1 ℓjh, |ℓ| =
∑d

j=1 ℓj·, while qjh = (qjh1, . . . , qjhℓjh) is a vector of integers

such that
∑ℓjh

t=1 qjht = njh. The functions Φ
(Nj)
ℓj·, j

and Φ
(|ℓ|)
H,0 are the EPPFs driven

by NRMIs with parameters c, ρ and c0, ρ0 respectively. Indeed they give proba-
bilities of partitions of Nj elements in ℓj· clusters and |ℓ| elements in H clusters,
respectively. Their expressions can be found in James et al. (2009). Similarly, for
a partition driven by a H-PYP with parameters (σ, σ0, θ, θ0) we have

Π
(N)
H (n1, . . . ,nd) =

∑
ℓ

∏H−1
k=1 (θ0 + kσ0)

(θ0 + 1)|ℓ|−1

H∏
h=1

(1− σ0)ℓ·h−1
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d∏
j=1

∏ℓj·−1
t=1 (θ + tσ)

(θ + 1)Nj−1

H∏
h=1

C (njh, ℓjh, σ)

σℓjh
(4.4)

where (a)n = Γ(a + n)/Γ(a) denotes the ascending factorial and C (n, k, σ) the
generalized factorial coefficients.

To sum up, given an array X such that

Xj1, . . . , XjNj | (P̃1, . . . , P̃d)
iid∼ P̃j ∀j ∈ [d]

(P̃1, . . . , P̃d) ∼ H-NRMI(ρ, ρ0, c, c0, P0)
(4.5)

and being Z the random allocation array obtained as in (4.2), we write

Z ∼ pEPPF(ρ, ρ0, c, c0)

Similarly if

Xj1, . . . , XjNj | (P̃1, . . . , P̃d)
iid∼ P̃j ∀j ∈ [d]

(P̃1, . . . , P̃d) ∼ H-PYP(σ, σ0, θ, θ0, P0)
(4.6)

then we write
Z ∼ pEPPF(σ, σ0, θ, θ0)

Example 4.3. If we choose in particular a H-DP distribution with parameters
θ, θ0 > 0for the random probability measures vector in (4.5), we denote the induced
distribution on the partition as

Z ∼ pEPPF(θ, θ0)

Similarly, if choose H-NSP in (4.5), we write

Z ∼ pEPPF(σ, σ0)

A convenient and intuitive framework to treat the partitions induced by these
kind of hierarchical models is for sure given by the restaurant franchise metaphor,
introduced in Teh et al. (2006) for the H-DP. Such useful metaphor holds also for H-
NRMI and H-PYP. Paralleling directly with the node-colored network environment,
we can think of each node in its layer as a customer in a restaurant: customers
are seated at tables restaurant-wise, and each table is served with a dish taken
from a common across-restaurant menu. We consider as clustered together all the
customers eating the same dish. Nonetheless, the division in tables generates a
nested and inter -restaurant further partition. In this metaphor each P̃j in (1.31)
or (1.32) is directing the sitting of the customers at the tables in each restaurant,
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4. Partially exchangeable multilayer stochastic block models

while P̃0 directs the serving of the dishes to the tables from the same menu. The
almost sure discreteness of P̃0 results in the fact that the same dish can be eaten at
different tables both within- and across-restaurants. In the metaphor, the matrix
ℓ and the arrays q and n employed in (4.3) and (4.4) find intuitive interpretations:
ℓjh is the number of tables in restaurant j eating dish h, qjht is the number of
customers in restaurant j, eating dish h at table t. As a consequence ℓj· is the
number of tables in restaurant j, ℓ·h is the number of tables eating dish h and
njh is the number of customers in restaurant j eating dish h. The metaphor is

useful to exemplify the role of the EPPFs Φ
(Nj)
ℓj·, j

and Φ
(|ℓ|)
H,0 in the sampling of the

two nested partitions: the first ones give, for any j ∈ [d], the distribution of the
division in tables for any restaurant, and the second drives the dish labeling of the
tables across-restaurants.

Leveraging the nested clustering, by making explicit the table labelling, we
obtain the following sequential way of sampling an array X from a H-NRMI or a
H-PYP, which is also well demonstrating the hierarchical structure of these non-
parametric priors.

1. For each restaurant j ∈ [d], sample the table labels

Tj1, . . . , TjNj | q̃j
iid∼ q̃j

q̃j ∼ NRMI(ρ, c, G) or

q̃j ∼ PYP(σ, θ, G)

(4.7)

for some diffuse G.

2. For each restaurant j ∈ [d], allocate the nodes in tables considering the
partition induced by ties in T , defining the sub-allocation array W :

Wji = t⇐⇒ Tji = T ∗
jt (4.8)

for t ∈ [ℓj·], where T ∗
j = (T ∗

j1, . . . , T
∗
jℓj·

) is the vector of the unique values of
Tj in order of occurrence.

3. Sample the dish labels

(Djt)
j=1,...,d
t=1,...,ℓj·

| P̃0
iid∼ P̃0 (4.9)

for each table, with P̃0 as in (1.31) or (1.32).

4. Define Xji := Djt whenever Wji = t.
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4.3. Hierarchical random partitions for multilayer networks

Notice that, since we are just considering ties for clustering, the probability measure
G in (4.7), as well as P0 in (1.31) and (1.32), can be arbitrary, as long as they
are diffuse. The sub-allocation array W and in general the nested partition it
represents, namely the table labeling, is crucial for recovering the full conditionals
we will need in order to perform posterior inference and prediction.

4.3 Hierarchical random partitions for multilayer net-
works

Let us consider a 1-multilayer network M , as in Definition 4.1, represented by an
undirected supra-graph (VM , EM ) with no self-loops allowed (that is its supra-
adjacency matrix is symmetric with null diagonal) and satisfying the disjointness
condition (4.1) with d layers, where layer j includes Nj nodes for any j ∈ [d] and

N =
∑d

j=1Nj . For tackling in a principled manner the inferential task of clustering
the nodes of such kind of networks, we propose a class of partially exchangeable
stochastic block models (PEx-SBMs), a novel generation of probabilistic models
taking into account both the connection patterns in the network and the layer
division of the nodes. In particular we combine stochastic block models (SBMs)
with hierarchical random partition priors, whose use we reviewed and motivated
in Section 4.2. In this Section we determine the model and we study some of
its theoretical characteristics, giving explicit expressions for predictive clustering
and co-clustering probabilities proper of random partitions induced by H-NRMIs
and H-PYPs, enlightening unexplored features of such important nonparametric
priors. These results, applied to specific cases, bring prior elicitation tools for the
determination of hyperparameters enforcing a desired behaviour in the predictive
mechanism.

4.3.1 Model structure

Let Y be the N × N symmetric supra-adjacency matrix of M . If Z is the array
of node allocations, [H] the set of labels of occupied clusters in a realization of Z
and Ξ = (ξhk) is the H×H matrix of connection probabilities, each entry for each
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4. Partially exchangeable multilayer stochastic block models

couple of clusters, then we can characterize the models as

p (Y | Z,Ξ) =
H∏

h=1

h∏
k=1

ξmhk
hk (1− ξhk)mhk

p (Ξ | Z) =
H∏

h=1

h∏
k=1

ξa−1
hk (1− ξhk)b−1

B(a, b)

Z ∼ pEPPF(ρ, ρ0, c, c0) or

Z ∼ pEPPF(σ, σ0, θ, θ0)

(4.10)

for some parameters a, b > 0, where mhk is the number of edges between a node
in cluster h and one in cluster k while mhk is the number of non-edges and B (· , ·)
denotes the beta function. Notice that, since Y is symmetric (that is, the supra-
graph (VM , EM ) is undirected), we are modeling just its lower-triangular part. The
extension to directed supra-graphs is straightforward. As noticed in Schmidt and
Morup (2013) and Legramanti et al. (2022), through conjugacy, the probabilities
Ξ in (4.10) can be integrated out to obtain the likelihood

p (Y | Z) =
H∏

h=1

h∏
k=1

B(a + mhk, b + mhk)

B(a, b)
(4.11)

In words, the first two lines of (4.10) define a SBM likelihood, as in Holland et al.
(1983) and Nowicki and Snijders (2001), with conditionally independent Bernoulli
trials for the connections and conditionally independent beta random variables for
the group-specific connection probabilities. However, in our case, the model is
placed on a supra-adjacency matrix, since our network is layered. This implies
that, at the likelihood level, we are modeling connections within- and across-layers
without any distinction. The layer information is indeed completely unloaded on
the prior we put on the random partition, that is the distribution induced by a
H-NRMI or a H-PYP. As described in Section 4.2, the division in layers is in fact
mirrored by the division in sub-population of a partially exchangeable latent ran-
dom array attached to the set of nodes, representing an unobserved characteristic
of each individual, whose realization is driving our prior distribution on the random
partition. In this way, we put prior support also on across-layers clusters and allow
a proper update through the observation of connections both within- and across-
layers. A somewhat similar goal is achieved by the extended stochastic block model
(ESBM) in Legramanti et al. (2022), where the SBM is completed with Gibbs-type
priors on the random partition. A supervised version of the model is presented,
meaning that categorical covariates, conditionally independent on the connections
given the allocations, are enforced in the prior through a cohesion function, with a
product partition model technique. Such covariates can be used to convey the layer
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4.3. Hierarchical random partitions for multilayer networks

division information. In our case, the layer labeling is built-in the prior structure,
resulting in a fully-probabilistic model. Moreover, the use of random partition
models based on EPPFs gives for free theoretical guarantees on their Kolmogorov
consistency: as can be found in Pitman (1996) for example, an EPPF, as well as
a pEPPF, defines a distribution on a consistent sequence of nested random parti-
tions of [N ], for N → ∞. This implies that the a priori structure of the model
is theoretically built to perform predictive tasks with a sequential mechanism: in
practice, such tasks can be accomplished thanks to the joint urn scheme character-
izing H-NRMI and H-PYP. On the other hand, the product partition model that
the supervised ESBM is based on, breaks the sequential structure of the urn scheme
and makes the model lose such consistency for N growing. These lacks become
even more sensible whenever one wants to perform m-step-ahead prediction, that
is prediction for m new nodes joining the network.

4.3.2 Clustering and co-clustering probabilities

In this Section we give some properties of the predictive probabilities induced by
H-NRMI and H-PYP which have not been explicitly underlined in the literature, or
have not been studied at all. We specialize the H-NRMI results for the noteworthy
cases of H-DP and H-NSP.

In order to do so, here and in the rest of the Chapter, with an abuse of no-
tation, we will denote with Z and W the vectors of allocations (Z1, . . . , ZN ) and
(W1, . . . ,WN ) obtained from the original arrays defined in (4.2) and (4.8) by sim-
ple juxtaposition of their rows. The apex −r will in general denote the fact that
the quantity has been calculated without considering the r-th node of the network,
hence disregarding its connections and allocation. In particular X−r is obtained
from X by marginalizing out entry (jr, ir), where jr := r div d and ir := r mod d,
with div and mod denoting the integer division and its remainder, respectively.
Instead Z−r is the (N − 1)-dimensional vector of allocations of all but the r-th
nodes, with labels in order of occurrence in X−r. Notice that this has a different
distribution than the vector obtained marginalizing out the r-th component from
Z, but this difference is just up to labels: indeed the correspondent distribution on
the random partition is consistent, as explained in Section 4.3.1. The same holds
for W−r. Recalling the summary statistics ℓ and q defined in Section 4.2.2 and
keeping in mind their interpretation in the restaurant franchise metaphor, we can
state the following.

Proposition 4.1. Let Z be a random allocation vector such that

Z ∼ pEPPF(ρ, ρ0, c, c0) (4.12)

for positive measurable functions ρ, ρ0 and positive constants c, c0. If j := r div d,
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then for any k ∈ [H−r + 1]

P
(
Zr = k

∣∣Z−r,W−r
)

=

∑ℓ−r
jk

t=1 Φ
(Nj)

ℓ−r
j· , j

(
q−r
j1 , . . . , q

−r
jk + et, . . . , q

−r
jH−r

)
Φ
(Nj−1)

ℓ−r
j· , j

(
q−r
j1 , . . . , q

−r
jH−r

) +

+

Φ
(Nj)

ℓ−r
j· +1,j

(
q−r
j1 , . . . , (q

−r
jk , 1), . . . , q−r

jH−r
k

)
Φ
(Nj−1)

ℓ−r
j· , j

(
q−r
j1 , . . . , q

−r
jH−r

) ×

×
Φ
(|ℓ−r|+1)

H−r
k ,0

(
ℓ−r
·1 , . . . , ℓ−r

·k + 1, . . . , ℓ−r

·H−r
k

)
Φ
(|ℓ−r|)
H−r,0

(
ℓ−r
·1 , . . . , ℓ−r

·H−r

) (4.13)

where et is the t-th vector of the ℓ−r
jk -dimensional canonical basis and H−r

k :=

k ∧H−r

Remark 4.4. Here an interpretation of the previous result, speaking into the
metaphor: the first summand is the probability of customer r sitting at an old
table where dish k is eaten, while the second is the probability of sitting at a new
table (first factor) and being served with dish k (second factor). Notice that, if dish
k is not eaten yet in restaurant j, then ℓ−r

jk = 0 and the sum in the first summand
disappears: k can be eaten by r just sitting at a new table. Notice also that, since
labels in Z−r are in order of occurrence in X−r, k = H−r + 1 represents the case
of a dish new to the all franchise.

Proof of Proposition 4.1. Firstly, for some fixed and coherent vector (z−r,w−r) of
allocations and sub-allocations of all but the r-th node, we have

P
(
Zr = k,Wr = t

∣∣Z−r = z−r,W−r = w−r
)

=

=
P (Zr = k, Wr = t, Z−r = z−r,W−r = w−r)

P (Z−r = z−r,W−r = w−r)
(4.14)

Now, denoting with ℓ−r and q−r the summaries defined in Section 4.2.2 relative
to the allocations (z−r,w−r), the probability at the denominator in (4.14) can
be retrieved from the pEPPF in (4.3). It suffices to notice that, having fixed
a particular configuration for allocations and sub-allocation, instead of just an
array of cluster frequencies, we do not need to sum over all the configurations
nor multiply by the product of multinomial factors, which account for all the
equiprobable configurations represented by the same summaries. Hence

68



4.3. Hierarchical random partitions for multilayer networks

P
(
Z−r = z−r,W−r = w−r

)
=

= Φ
(|ℓ−r|)
H−r,0

(ℓ−r
·1 , . . . , ℓ−r

·H−r)×

× Φ
(Nj−1)

ℓ−r
j· , j

(q−r
j1 , . . . , q

−r
jH−r)

d∏
j′=1

j′ ̸=j

Φ
(Nj′ )

ℓ−r
j′· , j

′(q
−r
j′1, . . . , q

−r
j′H−r) (4.15)

Let us now express the numerator in (4.14) as a function of ℓ−r, q−r, k and t. For
any t = w−r

s for some s ∈ [r − 1] (that is any old table) such that z−r
s = k (that is

eating dish k), we need to increase the frequency q−r
jkt, while the frequencies in ℓ−r

remain unchanged. Hence we have

P
(
Zr = k,Wr = t, Z−r = z−r,W−r = w−r

)
=

= Φ
(|ℓ−r|)
H−r,0

(ℓ−r
·1 , . . . , ℓ−r

·H−r)

d∏
j′=1

j′ ̸=j

Φ
(Nj′−1)

ℓ−r
j′· , j

′ (q−r
j′1, . . . , q

−r
j′H−r)

Φ
(Nj)

ℓ−r
j· , j

(
q−r
j1 , . . . , q

−r
jk + et, . . . , q

−r
jH−r

)
(4.16)

for et being a ℓ−r
jk -dimensional vector of 0s, with a 1 in the t-th entry. Instead, for

any k ∈ [H−r + 1] and t = max{w−r
s | z−r

s = k} ∧ 1, we have

P
(
Zr = k, Wr = t, Z−r = z−r,W−r = w−r

)
=

= Φ
(|ℓ−r|+1)

H−r
k ,0

(
ℓ−r
·1 , . . . , ℓ−r

·k + 1, . . . , ℓ−r

·H−r
k

) d∏
j′=1

j′ ̸=j

Φ
(Nj′−1)

ℓ−r
j′· , j

′ (q−r
j′1, . . . , q

−r
j′H−r)

Φ
(Nj)

ℓ−r
j· +1,j

(
q−r
j1 , . . . , (q

−r
jk , 1), . . . , q−r

jH−r
k

)
(4.17)

In (4.17) we are considering, in the metaphor, the event of r sitting at a new table,
eating either an old dish (k ∈ [H−r]) or a new one (k = H−r + 1), hence we are
adding a new entry to q−r

jk and increasing ℓ−r, for the creating of the new table.

Notice that if k = H−r + 1 then (q−r
jk , 1) = 1.

Now, taking the ratio in (4.14) and summing over t ∈ [ℓ−r
jk + 1], we obtain

(4.13).

Similarly we get the following for the H-PYP case.

Proposition 4.2. Let Z be a random allocation vector such that

Z ∼ pEPPF(σ, σ0, θ, θ0) (4.18)
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for parameters σ, σ0 ∈ (0, 1) and θ > σ, θ0 > σ0. If j := r div d, then for any
k ∈ [H−r + 1]

P
(
Zr = k

∣∣Z−r,W−r
)

= 1{ℓ−r
·k ̸=0}

{
ℓ−r
·k − σ0

θ0 + |ℓ−r|
θ + ℓ−r

j· σ

θ + Nj − 1
+

n−r
jk − ℓ−r

jk σ

θ + Nj − 1

}
+

+ 1{ℓ−r
·k =0}

θ0 + H−rσ0
θ0 + |ℓ−r|

θ + ℓ−r
j· σ

θ + Nj − 1
(4.19)

Remark 4.5. The expression of the probability in (4.19) makes explicit the divi-
sion in the two possible scenarios. Speaking into the metaphor, if k is a new dish
for the franchise we have ℓ−r

·k = 0, hence the probability of customer r of eating it
is the probability of eating a new dish at a new table. While if ℓ−r

·k ̸= 0, k is an old
dish for the franchise, therefore we have the probability of serving dish k to a new
table plus the probability of sitting at an old table already eating k, which is 0 if
the dish is new for the restaurant (n−r

jk = 0).

An immediate result we deduce from the proofs of Propositions 4.1 and 4.2 is
the following.

Corollary 4.3. Let Z be a random allocation vector as in (4.12) or (4.18) and
the sub-allocation vector defined as in (4.8). Then (ℓ, q) is a predictive sufficient
statistics for (Z,W ), that is

P
(
Zr = k, Wr = t

∣∣Z−r,W−r
)

= P
(
Zr = k, Wr = t

∣∣ℓ−r, q−r
)

(4.20)

Example 4.6. By leveraging the expressions of the EPPF induced by a DP and a
NSP, we can specialize the result in Proposition 4.1 to the H-DP and H-NSP cases.
If

Z ∼ pEPPF(θ, θ0) (4.21)

for θ, θ0 > 0, then

P
(
Zr = k

∣∣Z−r,W−r
)

= 1{ℓ−r
·k =0}

θ0
θ0 + |ℓ−r|

θ

θ + Nj − 1
+

+ 1{ℓ−r
·k ̸=0}

{
ℓ−r
·k

θ0 + |ℓ−r|
θ

θ + Nj − 1
+

n−r
jk

θ + Nj − 1

} (4.22)

If
Z ∼ pEPPF(σ, σ0) (4.23)

for σ, σ0 ∈ (0, 1), then

P
(
Zr = k

∣∣Z−r,W−r
)

= 1{ℓ−r
·k =0}

H−rσ0
|ℓ−r|

ℓ−r
j· σ

Nj − 1
+

+ 1{ℓ−r
·k ̸=0}

{
ℓ−r
·k − σ0
|ℓ−r|

ℓ−r
j· σ

Nj − 1
+

n−r
jk − ℓ−r

jk σ

Nj − 1

} (4.24)
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Notice that, as expected due to the relations linking these nonparametric priors,
putting σ = σ0 = 0 and θ = θ0 = 0 in (4.19) gives (4.22) and (4.24) respectively.

Now we will give expressions for predictive co-clustering probabilities for the
general case of H-NRMI and then specialized to H-DP.

Theorem 4.4. Let Z be a random allocation vector such that

Z ∼ pEPPF(ρ, ρ0, c, c0) (4.25)

then, if j = r div d = s div d

P
(
{Zr = Zs}

∣∣ℓ−rs, q−rs
)

=

=
H−rs+1∑

k=1


∑ℓ−rs

jk

t=1 Φ
(Nj)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , q−rs

jk + 2et, . . . , q
−rs
jH−rs

)
Φ
(Nj−2)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , q−rs

jH−rs

) +

+

∑
A∈C

ℓ−rs
jk

, 2
Φ
(Nj)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , q−rs

jk + eA, . . . , q
−rs
jH−rs

)
Φ
(Nj−2)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , q−rs

jH−rs

) +

+

Φ
(|ℓ−rs|+1)

H−rs
k ,0

(
ℓ−rs
·1 , . . . , ℓ−rs

·k + 1, . . . , ℓ−rs

·H−rs
k

)
Φ
(|ℓ−rs|)
H−rs,0

(
ℓ−rs
·1 , . . . , ℓ−rs

·H−rs

) ×

×


Φ
(Nj)

ℓ−rs
j· +1, j

(
q−rs
j1 , . . . , (q−rs

jk , 2), . . . , q−rs

jH−rs
k

)
Φ
(Nj−2)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , q−rs

jH−rs

) +

+

∑ℓ−rs
jk

t=1 Φ
(Nj)

ℓ−rs
j· +1,j

(
q−rs
j1 , . . . , (q−rs

jk + et, 1), . . . , q−rs

jH−rs
k

)
Φ
(Nj−2)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , q−rs

jH−rs

)
+

+

Φ
(|ℓ−rs|+2)

H−rs
k ,0

(
ℓ−rs
·1 , . . . , ℓ−rs

·k + 2, . . . , ℓ−rs

·H−rs
k

)
Φ
(|ℓ−rs|)
H−rs,0

(
ℓ−rs
·1 , . . . , ℓ−rs

·H−rs

) ×

×
Φ
(Nj)

ℓ−rs
j· +2, j

(
q−rs
j1 , . . . , (q−rs

jk , 1, 1), . . . , q−rs

jH−rs
k

)
Φ
(Nj−2)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , q−rs

jH−rs

)
 (4.26)
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while if r div d = jr and s div d = js, with jr ̸= js

P
(
{Zr = Zs}

∣∣ℓ−rs, q−rs
)

=

=
H−rs+1∑

k=1


∑ℓ−rs

jrk

t=1 Φ
(Njr )
ℓjr ·, jr

(
q−rs
jr1

, . . . , q−rs
jrk

+ et, . . . , q
−rs
jrH−rs

)
Φ
(Njr−1)
ℓjr ·, jr

(
q−rs
jr1

, . . . , q−rs
jrH−rs

)
∑ℓ−rs

jsk

t=1 Φ
(Njs )

ℓ−rs
js· , js

(
q−rs
js1

, . . . , q−rs
jsk

+ et, . . . , q
−rs
jsH−rs

)
Φ
(Njs−1)

ℓ−rs
js· , js

(
q−rs
js1

, . . . , q−rs
jsH−rs

) +

+

Φ
(|ℓ−rs|+1)

H−rs
k ,0

(
ℓ−rs
·1 , . . . , ℓ−rs

·k + 1, . . . , ℓ−rs

·H−rs
k

)
Φ
(|ℓ−rs|)
H−rs,0

(
ℓ−rs
·1 , . . . , ℓ−rs

·H−rs

) ×

×


Φ
(Njs )

ℓ−rs
js· +1, js

(
q−rs
js1

, . . . , (q−rs
jsk

, 1), . . . , q−rs

jsH
−rs
k

)
Φ
(Njs−1)

ℓ−rs
js· , js

(
q−rs
js1

, . . . , q−rs
jsH−rs

) ×

×

∑ℓ−rs
jrk

t=1 Φ
(Njr )

ℓ−rs
jr · , jr

(
q−rs
jr1

, . . . , q−rs
jrk

+ et, . . . , q
−rs
jrH−rs

)
Φ
(Njr−1)

ℓ−rs
jr · , jr

(
q−rs
jr1

, . . . , q−rs
jrH−rs

) +

+

Φ
(Njr )

ℓ−rs
jr · +1, jr

(
q−rs
jr1

, . . . , (q−rs
jrk

, 1), . . . , q−rs

jrH
−rs
k

)
Φ
(Njr−1)

ℓ−rs
jr · , jr

(
q−rs
jr1

, . . . , q−rs
jrH−rs

) ×

×

∑ℓ−rs
jsk

t=1 Φ
(Njs )

ℓ−rs
js· , js

(
q−rs
js1

, . . . , q−rs
jsk

+ et, . . . , q
−rs
jsH−rs

)
Φ
(Njs−1)

ℓ−rs
js· , js

(
q−rs
js1

, . . . , q−rs
jsH−rs

)
+

+

Φ
(|ℓ−rs|+2)

H−rs
k ,0

(
ℓ−rs
·1 , . . . , ℓ−rs

·k + 2, . . . , ℓ−rs

·H−rs
k

)
Φ
(|ℓ−rs|)
H−rs,0

(
ℓ−rs
·1 , . . . , ℓ−rs

·H−rs

)
Φ
(Njr )

ℓ−rs
jr · +1,jr

(
q−rs
jr1

, . . . , (q−rs
jrk

, 1), . . . , q−rs

jrH
−rs
k

)
Φ
(Njr−1)

ℓ−rs
jr · , jr

(
q−rs
jr1

, . . . , q−rs
jrH−rs

) ×
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×
Φ
(Njs )

ℓ−rs
js· +1,js

(
q−rs
js1

, . . . , (q−rs
jsk

, 1), . . . , q−rs

jsH
−rs
k

)
Φ
(Njs−1)

ℓ−rs
js· , js

(
q−rs
js1

, . . . , q−rs
jsH−rs

)
 (4.27)

with Ch,2 the set of 2-combinations of [h] and for A ∈ Ch,2, eA is a h-dimensional
vector with ei = 1 if i ∈ A and 0 otherwise, and H−rs

k = H−rs ∧ k.

Remark 4.7. We can interpret in the restaurant metaphor the components of
(4.26) and (4.27) as follows. In the first case we have, in order, the probability of
customers r and s sitting at the same old table, plus the probability of sitting at
two different old tables but eating the same dish, plus the probability of creating
a new table and either both sit there, either one sits at the new and the other at
an old table eating the same dish, plus, finally, the probability of creating two new
tables served with the same dish. In the second case, being in different restaurants,
we have the probability of sitting at two old tables eating the same dish, plus the
probability of creating a new table in one of the two restaurants, while the other
customer sits in an old table eating the same dish, plus the probability of creating
new tables at both restaurants, both served with the same dish.

Proof of Proposition 4.4. As in proof of Proposition 4.1, we have

P
(
{Zr = Zs}, Wr = t, Ws = t′

∣∣ℓ−rs, q−rs
)

=

=
p({Zr = Zs}, Wr = t, Ws = t′, ℓ−rs, q−rs)

p(ℓ−rs, q−rs)
(4.28)

and

p({Zr = Zs}, Wr = t, Ws = t′, ℓ−rs, q−rs) =

=
H−rs+1∑

k=1

p(Zr = k, Zs = k, Wr = t, Ws = t′, ℓ−rs, q−rs) (4.29)

Now, if j = jr = js, the probability in the sum, for any k, t, t′ will comprehend the
common factor

d∏
j′=1

j′ ̸=j

Φ
(Nj′ )

ℓ−rs
j′· , j′

(q−rs
j′1 , . . . , q−rs

j′H−rs) (4.30)

given by the allocations in all the other layers. The form of the remaining factor
depends on t and t′: if they are old tables we have

Φ
(|ℓ−rs|)
H−rs,0

(ℓ−rs
·1 , . . . , ℓ−rs

·H−rs)Φ
(Nj)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , q−rs

jk + et + et′ , . . . , q
−rs
jH−rs

)
(4.31)
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if t is old and t′ is new we have

Φ
(|ℓ−rs|)
H−rs,0

(ℓ−rs
·1 , . . . , ℓ−rs

·k + 1, . . . , ℓ−rs
·H−rs)×

× Φ
(Nj)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , (q−rs

jk + et, 1), . . . , q−rs
jH−rs

)
(4.32)

if t = t′ is new

Φ
(|ℓ−rs|)
H−rs,0

(ℓ−rs
·1 , . . . , ℓ−rs

·k + 1, . . . , ℓ−rs
·H−rs)×

× Φ
(Nj)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , (q−rs

jk , 2), . . . , q−rs
jH−rs

)
(4.33)

while if they are both new and different

Φ
(|ℓ−rs|)
H−rs,0

(ℓ−rs
·1 , . . . , ℓ−rs

·k + 2, . . . , ℓ−rs
·H−rs)×

× Φ
(Nj)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , (q−rs

jk , 1, 1), . . . , q−rs
jH−rs

)
(4.34)

It is easy to see that the denominator in (4.28) is

Φ
(|ℓ−rs|)
H−rs,0

(ℓ−rs
·1 , . . . , ℓ−rs

·H−rs)×

× Φ
(Nj−2)

ℓ−rs
j· , j

(
q−rs
j1 , . . . , q−rs

jH−rs

) d∏
j′=1

j′ ̸=j

Φ
(Nj′ )

ℓ−rs
j′· , j′

(q−rs
j′1 , . . . , q−rs

j′H−rs) (4.35)

Taking the ratio and summing over all the possible choices of t and t′, we obtain
(4.26).

The proof of (4.27) follows the same line of reasoning. It suffices to notice that,
being jr ̸= js, it is not possible for r ad s to sit at the same table, neither new nor
old.

If we substitute the expression of the EPPF induced by a DP at the two levels
of hierarchy in (4.26) and (4.27), we obtain the following.

Corollary 4.5. Let Z be a random allocation vector such that

Z ∼ pEPPF(θ, θ0)

then, if both nodes r and s are in layer j

P
(
{Zr = Zs}

∣∣ℓ−rs, q−rs
)

=
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1

(θ + Nj − 2)(θ + Nj − 1)

{
θ0θ

θ0 + |ℓ−rs|
+

θ0θ
2

(θ0 + |ℓ−rs|)(θ0 + |ℓ−rs|+ 1)
+

+
H−rs∑
h=0
ℓ·h ̸=0

n−rs
jh (n−rs

jh + 1) +
|ℓ−rs|Njθ

θ0 + |ℓ−rs|
+

+

H−rs∑
h=0
ℓ·h ̸=0

ℓ−rs
·h (ℓ−rs

·h + 1)θ2

(θ0 + |ℓ−rs|)(θ0 + |ℓ−rs|+ 1)

 (4.36)

while if node r is in layer jr and node s is in layer js, with jr ̸= js

P
(
{Zr = Zs}

∣∣ℓ−rs, q−rs
)

=

1

(θ + Njr − 1)(θ + Njs − 1)

{
θ0θ

2

(θ0 + |ℓ−rs|)(θ0 + |ℓ−rs|+ 1)
+

+
H−rs∑
h=0
ℓ·k ̸=0

n−rs
jrh

n−rs
jsh

+
|ℓ−rs|{Njr + Njs − 2}θ

θ0 + |ℓ−rs|
+

+

H−rs∑
h=0
ℓ·h ̸=0

ℓ−rs
·h (ℓ−rs

·h + 1)θ2

(θ0 + |ℓ−rs|)(θ0 + |ℓ−rs|+ 1)

 (4.37)

4.3.3 Prior elicitation

When we employ nonparametric priors, understanding how to induce elicited prior
information is often a challenging task, even more if the prior is placed on the
space of distributions of random partitions, as in the case of our model. However,
leveraging results obtained in Section 4.3.2 about predictive probabilities of H-
NRMI priors, it is possible to give some insight on the kind of behaviour we enforce
on the predictive mechanism via the hyperparameters of our prior. In particular,
in the case of a H-DP prior, we give here conditions on the hyperparameters so
that the allocation of a node in a cluster already present in its layer has always
higher predictive probability than the allocation to a cluster new to the layer,
both considering or not the creation of a (totally) new cluster. Namely, we give
conditions on the parameters to enforce a specific predictive clustering behaviour,
given the sub-cluster frequencies. In general, as can be argued from (4.22), the
probability of allocating a node r in a cluster with representatives in its layer j or
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(a) θ = 5 (b) θ = 3

(c) θ = 2 (d) θ = 1

Figure 4.4: Posterior point estimate in a small network. The prior on the alloca-
tions is a H-DP with θ0 = 5 while θ varies as in the captions.

in a ‘foreign’ cluster depends on the proportion

pr =
1

|ℓ−r|
∑

k∈D−r
j

ℓ−r
·k (4.38)

where D−r
j is the set of unique cluster labels of nodes in layer j, which may

be seen, in the metaphor, as an indicator of the popularity of the dishes eaten
at restaurant j. Intuitively we have more ways of clustering within-layer, since
we can either sit at an old table or create a new table eating an old dish for the
restaurant, while to cluster strictly across-layers we have only the latter option.
But, still, if ‘foreign’ dishes are very popular, meaning that lots of tables are served
with them, and hence pr in (4.38) is small enough, then a clustering strictly across-
layers becomes more probable. Nonetheless, in the case of H-DP, it is possible to
determine conditions on the parameters so to eliminate the dependence on the
proportion pr, as in the following.

Proposition 4.6. Let Z be a random allocation vector such that

Z ∼ pEPPF(θ, θ0)
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then

θ ≤ (Nj − 1)

(
θ0
|ℓ−r|

+ 1

)
=⇒

=⇒ P
(
Zr ∈ D−r

j

∣∣ℓ−r, q−r
)
≥ P

(
Zr ∈ [H−r] \D−r

j

∣∣ℓ−r, q−r
)

(4.39)

Moreover, we have that

θ ≤ Nj − 1 =⇒ P
(
Zr ∈ D−r

j

∣∣ℓ−r, q−r
)
≥ P

(
Zr /∈ D−r

j

∣∣ℓ−r, q−r
)

(4.40)

Remark 4.8. With both conditions in Proposition 4.6 we are enforcing the clus-
tering to be more adherent to the layer division, by making intra-layer clusters
more probable than inter -layer ones. Notice that conditions in (4.40) imply the
ones in (4.39), since {Zr /∈ D−r

j } includes Zr being a new cluster label. Moreover
notice that for large enough networks, (or in large enough layers) the second con-
ditions are always attained. Notice, finally, that in general, taking θ << θ0 means
to favor a situation in with new tables are not so often created, but when they are,
it is more probable that they are served with dishes new to the all franchise.

Proof of Proposition 4.6. Summing over k ∈ D−r
j and k ∈ [H−r \D−r

j ] the predic-
tive probabilities in (4.48), we have that the inequality at the right hand side of
(4.39) is satisfied if and only if

|ℓ−r|pr
θ0 + |ℓ−r|

θ

θ + Nj − 1
+

Nj − 1

θ + Nj − 1
≥ |ℓ

−r|(1− pr)

θ0 + |ℓ−r|
θ

θ + Nj − 1
(4.41)

where pr is defined in (4.38). This is equivalent to

pr ≥
1

2

{
1− |ℓ

−r|+ θ0
|ℓ−r|

Nj − 1

θ

}
(4.42)

Hence whenever the right hand side of (4.42) is negative, regardless of the value
of the proportion pr of tables eating dishes eaten in restaurant j, the inequality is
always satisfied. This is implied by the left hand side of (4.39).

Summing to the right hand side of (4.41) the probability of r eating a new dish,
that is

θ0
θ0 + |ℓ−r|

θ

θ + Nj − 1
(4.43)

we obtain the inequality in the right hand side of (4.40). With the previous strategy
we retrieve the sufficient condition.
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An illustration of such property, showing the behaviour of the prior on small
networks with unbalanced layer division is given in Figure 4.4. Here, the shape of
the nodes represent the layer and the color the inferred partition. It is clear how,
decreasing the parameter θ under the threshold of the numerosity of each layer,
the inferred clustering becomes more and more adherent to the division in layers,
starting from larger layers.

4.4 Posterior inference and prediction

Our goal is to retrieve the posterior distribution of the allocation Z given the
connections Y , as well as deal with new nodes incoming into the network. We rely
on MCMC algorithms to sample from such distribution and perform prediction,
as well as on Monte Carlo approximations to evaluate functionals of the posterior.
In particular, we devise a Gibbs sampler for posterior inference, combining the
variable augmentation given by the labels in (4.7), the collapsed structure typical of
Bayesian SBMs, also leveraged in Legramanti et al. (2022), and the joint predictive
probabilities of the nested clustering directed by a H-NRMI or a H-PYP. As far as
prediction is concerned, we provide an algorithm that can be adapted to the case
of prediction of the allocation of a new node only, once one knows its connections,
but in general performs joint prediction on both allocation and connections of the
new node.

4.4.1 Gibbs sampler

The objective distribution is p (Z | Y ). As mentioned, we leverage the (further) la-
tent table labeling, to obtain closed-form expressions for the conditional probabili-
ties needed to built a Gibbs sampler. Hence we target the distribution p (Z, W | Y ).
We determine the blocked-conditionals we need as follows. Firstly

P
(
Zr = h,Wr = t

∣∣Y , Z−r,W−r
)

=

= P
(
Zr = h,Wr = t

∣∣ℓ−r, q−r
) p (Y | Zr = h, Z−r)

p (Y | Z−r, W−r)
(4.44)

for any h ∈ [H−r + 1] and t ∈ [ℓj· + 1], with j = r div d, where we simply employed
Bayes’ theorem, Corollary 4.3 and that, by construction Y | Z ⊥⊥W . Indeed the
SBM is defined conditionally on the clustering in Z and the sub-clustering W does
not add any information. Now, since

p
(
Y | Z−r, W−r

)
= p

(
Y −r | Z−r

)
p
(
yr | Z−r, W−r

)
(4.45)
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where yr denotes the vector of connections of the r-th node, the ratio in (4.44) is
such that

p (Y | Zr = h, Z−r)

p (Y | Z−r, W−r)
∝ p (Y | Zr = h, Z−r)

p (Y −r | Z−r)
(4.46)

Notice that, in general, p (yr | Z−r, W−r) ̸= p (yr | Z−r). Intuitively, the condi-
tional distribution of the connection probabilities we need to integrate out to get
p (yr | Z−r, W−r) depends on whether Zr is a new allocation or not, and the prob-
ability of these events depends in turn on the sub-allocations in W−r. Anyways,
the right hand side of (4.46) simplifies, as suggested in Schmidt and Morup (2013)
and leveraged in Legramanti et al. (2022), employing the expression in (4.11), and
allowing us to collapse the sampling of the cluster-specific probabilities Ξ. Hence
we get

P
(
Zr = h,Wr = t

∣∣Y , Z−r,W−r
)
∝

∝ P
(
Zr = h,Wr = t

∣∣ℓ−r, q−r
)H−r∏
k=1

B(a + m−r
hk + vrk, b + m−r

hk + vrk)

B(a + m−r
hk , b + m−r

hk )
(4.47)

where vrk and vrk denote the number of edges and non-edges between node r and
nodes in cluster k. The quantity we need to evaluate at each step of the sampler,
and for any couple (h, t), factorizes then in a ‘prior term’, given by the joint pre-
dictive probabilities of allocation, and a ‘likelihood term’, dependent on observed
edges. The latter can be simply computed by obtaining, from the adjacency ma-
trix Y , the matrices m−r = (m−r

hk ), m−r = (m−r
hk ) of the number of edges and

non-edges between clusters (given by Z−r), disregarding node r and the vectors
vr = (vrk), vr = (vrk) for any r ∈ [N ]. For what concern the ‘prior term’, one may
notice that the (H−r + 1) × (ℓ−r

j· + 1) matrix of probabilities we need to evaluate
for each node r is actually very sparse. Indeed, speaking in the metaphor, the
probability of eating dish h at table t is non-zero just if t is an old table already
served with h, or t is a new table. Hence every column of the matrix but the last
one has just one non-zero element. General expressions for such joint predictive
probabilities can be retrieved as in the proofs of Propositions 4.1 and 4.2. In the
following we give expressions for the H-DP, H-NSP and H-PYP cases, as well as a
scheme of the sampler in Algorithm 1.

Example 4.9. If Z ∼ pEPPF(θ, θ0), for θ, θ0 > 0 and j = r div d, we have

P
(
Zr = h,Wr = t

∣∣ℓ−r, q−r
)

=

= 1{ℓ−r
·h =0}

{
θ0

θ0 + |ℓ−r|
θ

θ + Nj − 1

}
+

+ 1{ℓ−r
·h ̸=0}

{
ℓ−r
·h

θ0 + |ℓ−r|
θ

θ + Nj − 1
+

q−r
jht

θ + Nj − 1

}
(4.48)
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for any h ∈ [H−r + 1] and t ∈ [ℓj· + 1].

Remark 4.10. In the H-DP case, the result in Corollary 4.3 can be pushed forward
saying that the vector of the column-wise sums (ℓ·1, . . . , ℓ·H) of the matrix ℓ and
the array q are predictive sufficient for the couple (Z,W ).

Example 4.11. If Z ∼ pEPPF(σ, σ0), for σ, σ0 ∈ (0, 1) and j = r div d, we have

P
(
Zr = h,Wr = t

∣∣ℓ−r, q−r
)

=

= 1{ℓ−r
·h =0}

H−rσ0
|ℓ−r|

ℓ−r
j· σ

Nj − 1
+

+ 1{ℓ−r
·h ̸=0}

{
ℓ−r
·h − σ0
|ℓ−r|

ℓ−r
j· σ

Nj − 1
+

q−r
jht − σ

Nj − 1

}
(4.49)

Example 4.12. If Z ∼ pEPPF(θ, θ0, σ, σ0), for θ > σ, θ0 > σ0 and σ, σ0 ∈ (0, 1)
and j = r div d, we have

P
(
Zr = h,Wr = t

∣∣ℓ−r, q−r
)

=

= 1{ℓ−r
·h =0}

θ0 + H−rσ0
θ0 + |ℓ−r|

θ + ℓ−r
j· σ

θ + Nj − 1
+

+ 1{ℓ−r
·h ̸=0}

{
ℓ−r
·h − σ0

θ0 + |ℓ−r|
θ + ℓ−r

j· σ

θ + Nj − 1
+

q−r
jht − σ

θ + Nj − 1

}
(4.50)

Remark 4.13. Notice that predictive probabilities in Examples 4.9, 4.11 and 4.12,
if j = r div d, depend on q just through the matrix qj of numbers of customers
eating each dish at each table in restaurant j, respectively. Nonetheless, even using
those priors, in Algorithm 1, removing a node, one has to update the whole array
q, since if one removes a singleton and relabels dishes and tables, all the indices
needs to be shifted.

4.4.2 Joint prediction

As mentioned in previous Sections, PEx-SBMs inherit a consistency property from
prior distributions based on pEPPFs which guarantee a validated prediction for
new nodes incoming into the network. In particular, it is natural to be interested
in the joint conditional law of the allocation ZN+1 and the connections yN+1 =

(y
(i)
N+1)

N+1
i=1 of a new node, given the connections observed between the N old nodes

in Y , as well as, given the consistency, obtain such law integrating out the posterior
allocations of the old nodes from the joint posterior distribution of all allocations
and new connections. In symbols,
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Algorithm 1 Gibbs sampler for PEx-SBM

Initialize coherently Z and W ▷ Ex: N different tables and N different dishes
for s ∈ [niter] do

for r ∈ [N ] do
j ← r div d
remove node r:

reorder labels to get (Z−r, W−r)s−1

get m−r, m−r and vr, vr

get ℓ−r and q−r

for (h, t) ∈ [H−r + 1]× [ℓ
(−r)
j· + 1] do

compute
p (Y | Zr = h, Z−r)

p (Y −r | Z−r)
compute P

(
Zr = h,Wr = t

∣∣ℓ−r, q−r
)

end for
sample jointly (Zr, Wr)
obtain m, ℓ, q

end for
reorder labels
record (Z,W )s

end for
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4. Partially exchangeable multilayer stochastic block models

P (yN+1 = c, ZN+1 = h, WN+1 = t |Y ) =

=

∫
P (yN+1 = c, ZN+1 = h, WN+1 = t |Y , Z, W ) LY (dZ, dW ) (4.51)

where c ∈ {0, 1}N+1 and LY is the conditional law of (Z, W ) given Y , for any
(h, t) ∈ [H + 1] × [ℓd· + 1]. Notice that the new node is assumed to be in the
d-th layer just for a matter of notation and the procedure can be straightforwardly
applied to new nodes lying in any of the d layers.

Let us suppose of having performed inference on the allocations of the old nodes
and let us consider the sequence {(z,w)s}ns=1 of outputs of the last n iterations
of the Gibbs sampler described in Algorithm 1. Then we can approximate the
integral in (4.51) as follows.

P (yN+1 = c, ZN+1 = h, WN+1 = t |Y ) ≃

≃ 1

n

n∑
s=1

P (yN+1 = c, ZN+1 = h, WN+1 = t |Y , (z,w)s ) (4.52)

As in (4.47), we have

P (yN+1 = c, ZN+1 = h, WN+1 = t |Y , (z,w)s ) =

= P (ZN+1 = h, WN+1 = t |(z,w)s ) ×

×
H(s)∏
k=1

B
(
a + m

(s)
hk +

∑
i∈Ik ci, b + m

(s)
hk +

∑
i∈Ik(1− ci)

)
B(a + m

(s)
hk , b + m

(s)
hk )

(4.53)

for
Ik := {i ∈ [N ] : zi = k} (4.54)

where H(s), m(s), m(s) denote the number of occupied clusters, the number of
edges and non-edges between clusters referring to the allocations given by the s-th
MCMC sample. Hence, by combining (4.52) and (4.53), we can fully determine
the probability distribution on the product space[

max
s=1,...,n

H(s) + 1

]
×
[

max
s=1,...,n

ℓ
(s)
d· + 1

]
× {0, 1}N+1 (4.55)

of joint allocations and connections of the new node. However, since the cardinality
of this space grows exponentially with the number of nodes, it is clear that this
route is infeasible for large networks. Therefore, we devise a second Gibbs sampler
to draw from such joint predictive distribution. To achieve this goal, we need the
blocked conditional distribution
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4.4. Posterior inference and prediction

P (ZN+1 = h, WN+1 = t |Y ,yN+1 = c) =

=
P (yN+1 = c, ZN+1 = h, WN+1 = t |Y )

P (yN+1 = c |Y )
∝ (4.52) (4.56)

and the full conditionals for the connections vector, given by

P
(
y
(i)
N+1 = 1

∣∣∣Y , y
(−i)
N+1 = c(−i), ZN+1 = h, WN+1 = t

)
=

=

∫
P
(
y
(i)
N+1 = 1

∣∣∣Y , y
(−i)
N+1 = c(−i), ZN+1 = h, Z

)
LY (dZ) (4.57)

again because of connections being independent of the sub-allocations W given
(all) the allocations Z. Here, with an slight abuse of notation, we are denoting
with LY the posterior distribution of Z. Now,

P
(
y
(i)
N+1 = 1

∣∣∣Y , y
(−i)
N+1 = c(−i), ZN+1 = h, Z

)
=

= E
[
ξhZi

∣∣∣Y , y
(−i)
N+1 = c(−i), ZN+1 = h, Z

]
(4.58)

and it is easy to see that, by conjugacy, posterior distributions of the connection
probabilities are still beta laws. Finally, using Monte Carlo approximation for the
integral in (4.57)

P
(
y
(i)
N+1 = 1

∣∣∣Y , y
(−i)
N+1 = c(−i), ZN+1 = h

)
≃

≃ 1

n

n∑
s=1

a + m
(s)

h,z
(s)
i

+
∑

j∈I
z
(s)
i

\{i}

cj

a + m
(s)

h,z
(s)
i

+
∑

j∈I
z
(s)
i

\{i}

cj + b + m
(s)

h,z
(s)
i

+
∑

j∈I
z
(s)
i

\{i}

(1− cj)
(4.59)

where I
z
(s)
i

follows the definition in (4.54) and we used the expression of the beta

expectation. In words, the sums in (4.59) are counting ones and zeros in vector c
corresponding to indices of nodes assigned to the same cluster as node i, disregard-
ing the i-th entry itself. A scheme of the sampler is given in Algorithm 2, where
nMC and nGIBBS denote respectively the number of posterior sample used for the
Monte Carlo averages and the number of iteration of the Gibbs sampler with the
joint predictive distribution in (4.51) as stationary one.

Notice that if we are in the situation in which we know the connections estab-
lished by the new node joining the network and we just want to infer its allocation,
then we don’t need sampling. Indeed, this task boils down to evaluate
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4. Partially exchangeable multilayer stochastic block models

Algorithm 2 Joint prediction with PEx-SBM

Input: {(z,w)s}s=1,...,nMC

j ← v div d
for s ∈ [nMC] do

get and store m(s), m(s)

get ℓ(s), q(s)

for (h, t) ∈ [H(s) + 1]× [ℓ
(s)
d· + 1] do

compute P (ZN+1 = h, WN+1 = t |(z,w)s )
end for

end for
Initialize (ZN+1, WN+1) and yN+1

for v ∈ [nGIBBS] do
for s ∈ [nMC] do

compute
∑
i∈Ik

y
(i)
N+1 and

∑
i∈Ik

(1− y
(i)
N+1) for any k ∈ [H(s)]

compute likelihood in (4.53)
end for
compute MC average in (4.52)
sample (ZN+1, WN+1)
for i ∈ [N ] do

for s ∈ [nMC] do

compute
∑

j∈I
z
(s)
i

\{i}

y
(j)
N+1 and

∑
j∈I

z
(s)
i

\{i}

(1− y
(j)
N+1)

if ZN+1 is new then
adjust m(s) and m(s)

end if
compute expectation in (4.58)

end for
compute MC average in (4.59)

sample y
(i)
N+1

end for
record (ZN+1, yN+1)v

end for
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4.5. Application

P (ZN+1 = h, WN+1 = t |(z,w)s ) ×

×
H(s)∏
k=1

B
(
a + m

(s)
hk +

∑
i∈Ik ci, b + m

(s)
hk +

∑
i∈Ik(1− ci)

)
B(a + m

(s)
hk , b + m

(s)
hk )

(4.60)

for any (h, t) ∈
[
H(s) + 1

]
×
[
ℓ
(s)
d· + 1

]
and any sample s, take the average as in

(4.52) and normalize it. In this way, we obtain a vector of allocation probabilities
for the new node as a functional of the posterior distribution of the allocation of all
the other nodes. A point estimate for such a situation is proposed in Legramanti
et al. (2022) by means of a plug-in estimator.

4.5 Application

In Examples 4.1 and 4.2 we presented some real-world cases where a model for
clustering nodes of a network divided in different layers, taking into account both
such division and the connectivity patterns between the nodes. In this Section we
apply PEx-SBM both to simulated data and to a real criminal dataset, named In-
finito network, which represent the principal application also in Legramanti et al.
(2022). Summaries of the posterior distribution from the MCMC samples we ob-
tain as described in Section 4.4, such as point estimates and credible regions, are
retrieved using variation of information (VI) based algorithms presented in Wade
and Ghahramani (2018). Briefly, the VI metric, introduced in Meilă (2007), mea-
sures the discrepancy between partitions evaluating their entropies, relatively to
their shared information. In optimization terms, a point estimate ẑ is obtained
minimizing the posterior expected VI distance from a posterior drawn, that is

ẑ = arg min
z

E [ VI(Z, z) |Y ] (4.61)

with z varying in the set of all partitions of [N ].

4.5.1 Simulation scenarios

In order to establish the clustering performances of our model, we apply it to
synthetic networks, where a ‘true’ partition driving the connections exists. In
particular, inspired by real-data application we present in Section 4.5.2, we built a
criminal-like scenario where the true clusters are intra-layer, inter -layer and also
exactly coincident with layers. We also cared of considering both layers and clusters
of various numerosities. A realization of the adjacency matrix of such network is
plotted in the left part of Figure 4.5. The network is composed as follows. We have
d = 4 layers with N = N1 + N2 + N3 + N4 = 30 + 30 + 15 + 5, the first 3 of which
share the same structure: 2/3 of the nodes of each layer are in a intra-layer cluster,
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4. Partially exchangeable multilayer stochastic block models

Figure 4.5: Criminal-like simulation scenarios: plain and noisy

1/6 is in an another intra-layer one, while the remaining 1/6 is in a common inter -
layer cluster; finally, layer 4 coincide with a cluster. Hence the true number of
clusters is H = 8. In Figure 4.5, shades of the same color denotes the division in
layer (red, blue, green, purple), while the particular shade is a cluster: the lighter,
almost white shade of red green and blue indicates the inter -layer cluster. In the
criminal metaphor, layers are subgroups of a criminal organization, e.g. with a
different geographic influence area, while clusters are actual collaborative groups
in criminal activities, the former being known, while the latter being the object
of our inference. We designed the connection probabilities considering the large
intra-layer cluster in each layer as operatives, the small one as local supervisors,
the inter -layer one as shared supervisors and the layer-coincident one as bosses.
A heatmap of the matrix of connection probabilities is plotted in the left half of
Figure 4.6, where clusters are ordered as follows.

Cluster

1 red operatives
2 blue operatives
3 green operatives
4 red supervisors
5 blue supervisors
6 green supervisors
7 shared supervisors
8 bosses
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Figure 4.6: Connection probabilities for criminal-like simulation scenario: plain
and noisy

This choice favours a hierarchical structure for the communication chain, which is
a reasonable assumption for a criminal network: e.g., operatives are probably in
contact with their fellows and their local supervisors, not so much with operatives
in other layers or shared supervisors, at all with the bosses, who are very con-
nected among them and communicate directly just with shared supervisors. Given
the connection probabilities and the described partition, we generated edges via
independent Bernoulli trials, as in a SBM. We applied PEx-SBM posterior sam-
pling algorithm to this network, choosing a H-DP directed prior on the partition.
A point estimate of the posterior partition distribution, obtained via the VI-based
algorithms in Wade and Ghahramani (2018) from posterior samples, is plotted in
Figure 4.7. As in Section 4.3.3, the shape of the nodes indicates their layer, while
the color represents the inferred clustering, matching cluster colors in Figure 4.5.
Such point estimate coincides with the true partition.

We also considered noisy versions of such synthetic networks: we perturbed
connection probabilities towards 1/2, by drawing for each entry from a beta dis-
tribution re-scaled between the actual value and 1/2, so that the beta parameters
control the amount of noise. Such perturbation results in a general whitening effect,
appreciable in Figure 4.6. Also, in a realization of the adjacency matrix plotted
in the right half of Figure 4.5 we see that the connection patterns are significantly
less clear, above all for small clusters. A point estimate of the posterior clustering
for a realization of such noisy network is given in Figure 4.8: again this summary
coincides with the true partition. The effect of the perturbation is also visible in
the representation of the network itself in Figure 4.8, which employs the algorithm
described in Fruchterman and Reingold (1991), based on equilibrium states of a sys-
tem in which nodes are electrically charged and edges act like springs. For example,
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Figure 4.7: Criminal-like simulation scenario: point estimate

Figure 4.8: Noisy criminal-like simulation scenario: point estimate
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E [ VI(Z,Z0) |Y ] VI(Z,Zb)

HDP-SBM 0.026198 0.130944
ESBM 0.067406 0.230043

Table 4.1: Criminal-like simulation scenario: performance comparison

as an effect of the noise, one of the bosses, which are the more sparsely connected
nodes, creates enough edges to reach the middle of the network. Nonetheless, the
point estimate places it in the right cluster.

Moreover, we compared the performances of PEx-SBM with the supervised
version of the ESBM described in Legramanti et al. (2022). As mentioned in
Section 4.3.1, in this model it is possible to enforce the layer division information
via a product partition prior with covariates on the random partition, as in Müller
et al. (2011). In particular we employed a DP prior with a Dirichlet-multinomial
scheme for enforcing categorical covariates representing the division in layers. In
Tables 4.1 and 4.2 we compare results, for both the plain and noisy case, in terms
of posterior expected VI distance from the true clustering and VI radius of 95%
credible balls, that is VI distance between the point estimate and a partition on
the boundary of the credible ball. See Wade and Ghahramani (2018) for details on
such validation quantities. Furthermore, we performed leave-one-out prediction
on the criminal-like simulation scenario for the allocation of every node in the
network, using the strategy described in conclusion of Section 4.4.2. We report
some results on uncertainty quantification of the prediction. For node 11, that
is a red operative, i.e. in cluster 1, the posterior allocation probabilities are the
following

p̂11 = (0.9213, 0.0008, 0, 0.0017, 0.0762, 0, 0, 0, 0) (4.62)

where the last entry is the probability that node 11 creates a new cluster, not yet
seen in all the others. For node 77, that is a boss, i.e. in cluster 8, we have

p̂77 = (0.0012, 0.0152, 0.0017, 0.0131, 0.1189, 0.0021, 0,0.7100, 0.1377) (4.63)

In general we compared the true clustering of the full network with the estimate
obtained as follows. We consider the VI point estimate obtained with HDP-

E [ VI(Z,Z0) |Y ] VI(Z,Zb)

HDP-SBM 0.368974 0.705689
ESBM 0.523805 0.781609

Table 4.2: Noisy criminal-like simulation scenario: performance comparison
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SBM of the clustering for the leave-one-out network and we complete it with the
most probable predictive allocation for the left-out node. Doing this for nodes
1, 6, 11, 31, 36, 41, 61, 63, 66, 76, which are representative of all the others (there is
one node for any available choice of levels for the couple layer-cluster), we obtain
perfect match between the estimate and the truth in any case.

4.5.2 Infinito network

The real-world data we analyze for illustrating the clustering performances of our
model are derived by an Italian law enforcement operation, named Operazione
Infinito, aiming to disrupt the Lombardy branch of ’Ndrangheta, a criminal or-
ganization with roots in Calabria, but known to be operating all over Italy, with
worldwide connections. Data, together with the pre-trial detention order triggered
by the Giudice per le indagini preliminari di Milano from which they are ex-
trapolated, are available at https://sites.google.com/site/ucinetsoftware/
datasets/covert-networks. For a thorough account on the raw data see Legra-
manti et al. (2022). We used the clean data available at https://github.com/

danieledurante/ESBM/tree/master/Application, which are structured as fol-
lows. We have 84 registered criminals, each with an affiliation to a geographical
sub-group of the organization, called locale. The division in locali will be the di-
vision in layers in our model and there are 5 of them. An undirected connection
between two criminals exists whenever they co-participated in a meeting, up to law
enforcement knowledge. As an additive information, which we are not enforcing
into the model, criminals are also classified as bosses or affiliates of their own lo-
cale, again according to law enforcement judgement. We applied PEx-SBM to this
node-colored network, with a H-DP driven prior on the partition. For the shown
results, hyperparameters are set to θ = θ0 = 5. The resulting point estimate for
the posterior clustering is showed in Figure 4.9. The estimate is again obtained by
means of VI algorithms acting on the posterior samples given by Algorithm 1. In
the representation, again the shape of the nodes is giving the layer they belong to,
that is the locale, while the color indicates the cluster according to the posterior
inference. Moreover, large nodes are those classified as bosses by law enforcement.

We report here some remarks on the posterior clustering. There are several
characteristics of the Infinito network which are remarkably grasped by PEx-SBM
inference. Indeed, with the full reports of the investigations in hand, one can
observe that a number of dynamics of the network are well depicted by the point
estimate showed in Figure 4.9.

At first, we notice that, even if such information is not included in the model,
the PEx-SBM clustering manages to disentangle core-periphery structures given
by boss-affiliate dynamics. For 3 of the locali (circles, triangles and rectangles)
affiliates and bosses are clustered separately, suggesting that in those locali the
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Figure 4.9: Infinito network: point estimate

connectivity patterns of these two kinds of nodes are different, as may be expected.
Also, often some affiliates are allocated in a bosses cluster of his locale: this suggests
that, since the communicative behaviour of such nodes is so similar to the bosses’
one, they may have been misclassified by law enforcement or in any case they
should be considered very close to the high part of the hierarchy of their locale.

Inter -layers clusters are inferred, as desired. They should reflect collaborative
schemes between criminals in different locali. In particular the cluster of circle
affiliates includes also a square affiliate: such allocation encompasses the fact that,
as can be found in the reports, the square affiliate was attempting to create a new
locale, and looking for affiliates in a different influence area from his original one.

The reports often refer to the murder of one of the triangles locale bosses. The
consequences in the connectivity behaviour of such disruptive event can be read
in our posterior clustering. The triangles one is the most divided layer. Some of
its affiliates are allocated in the cluster of the squares locale. Moreover, even if a
bosses cluster is present (pink), there is also a small cluster of affiliates (orange)
which seems to form a core-periphery structure with other affiliates (blue). Nodes
in orange cluster happen to be more closely involved in the murder, according to
reports.

Finally, the posterior clustering seems to be able to spot special nodes of the
network. The only inferred singleton (green triangle) should have a unique pattern
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4. Partially exchangeable multilayer stochastic block models

of connections and in turn a peculiar role in the criminal organization. Indeed, this
is the case: the green triangle is the oldest node in the network, and, as can be found
in the reports, their role is considered to be of coordination and communication
with Calabria-based branches of the same macro-organization.

The application of the supervised version of ESBM to the Infinito network,
with locale affiliation as covariate, results in a similar clustering point estimate,
but in wider credible balls, as showed in Table 4.3.

VI(Z,Zb)

HDP-SBM 0.457569
ESBM 0.4903655

Table 4.3: Infinito network: performance comparison

4.6 Conclusions and further work

In this work we propose a new generation of models for clustering nodes in multi-
layer networks. In particular, looking at nodes as statistical units, we parallel their
division in layers in node-colored networks and the division in sub-populations of
individuals in partially exchangeable schemes. This analogy brings us to structure
a model which enforces such distributional invariance on latent characteristic of the
nodes, directing a partition conditionally on which we define a connectivity model.
Having the goal of an across-layers clustering, we do so by employing hierarchi-
cal discrete random probability measures. As we underlined in previous Sections,
partial exchangeability is a good fit for the specific kind of multilayer networks we
focus on in this work, but not for others. We described edge-colored networks in
Section 4.2 and we argued how the strong link existing between nodes in different
layers is not encompassed by partial exchangeability. However, other invariance
structures may be appropriate for other types of multilayer networks. In general,
we believe this work to be the first step into a way of designing models for complex
networks, by enclosing their structures in invariance hypotheses. In particular an
extension in this direction is represented by employing separate exchangeability for
edge-colored networks. This hypothesis allows the distribution of a matrix of ob-
servables to be invariant with respect to rigid permutations of rows and columns.
In symbols, let X = (Xji)

i=1,...,N
j=1,...,d then

(X11, . . . , X1N , . . . , Xd1, . . . , XdN )
d
=

d
= (Xπ1(1)π2(1), . . . , Xπ1(1)π2(N), . . . , Xπ1(d)π2(1), . . . , Xπ1(d)π2(N)) (4.64)
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for any π1 ∈ Sd and π2 ∈ SN , the symmetric groups of [d] and [N ] respectively. See
Lin et al. (2021) for a recent review, a comparison with partial exchangeability and
insightful modeling instances. It is clear that this kind of invariance is suitable for
edge-colored networks: if we think of each entry of X as attached to a node, with
different rows referring to different layers, while a column contains the copies of
the same node across layers, if we just allow for rigid permutations we are keeping
track of the link between copies, as well as assuming exchangeability for the colors
of the edges.

Another fundamental work direction is the implementation of algorithms for
the m-step-ahead prediction with PEx-SBM, that is the joint modeling of alloca-
tions and connections of m unobserved new nodes joining the network, given the
connections of the old nodes. In this task, we expect the Kolmogorov consistency
of PEx-SBM to be a real game-changer in terms of predictive power, as we can
fully leverage the intrinsic predictive structure of the model and the available urn
scheme of the hierarchical prior.
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