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Several applications involving counts present a
large proportion of zeros (excess-of-zeros data). A
popular model for such data is the hurdle model,
which explicitly models the probability of a zero
count, while assuming a sampling distribution on
the positive integers. We consider data from multiple
count processes. In this context, it is of interest to
study the patterns of counts and cluster the subjects
accordingly. We introduce a novel Bayesian approach
to cluster multiple, possibly related, zero-inflated
processes. We propose a joint model for zero-
inflated counts, specifying a hurdle model for each
process with a shifted Negative Binomial sampling
distribution. Conditionally on the model parameters,
the different processes are assumed independent,
leading to a substantial reduction in the number of
parameters as compared with traditional multivariate
approaches. The subject-specific probabilities of
zero-inflation and the parameters of the sampling
distribution are flexibly modelled via an enriched finite
mixture with random number of components. This
induces a two-level clustering of the subjects based on
the zero/non-zero patterns (outer clustering) and on
the sampling distribution (inner clustering). Posterior
inference is performed through tailored Markov
chain Monte Carlo schemes. We demonstrate the
proposed approach on an application involving
the use of the messaging service WhatsApp.
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This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and
prospects’.

1. Introduction
Count data presenting excess of zeros are commonly encountered in applications. These can arise
in several settings, such as healthcare, medicine or sociology. In this scenario, the observations
carry structural information about the data-generating process, i.e. an inflation of zeros. The
analysis of zero-inflated data requires the specification of models beyond standard count
distributions, such as Poisson or Negative Binomial. Commonly used models are the zero-inflated
[1], the hurdle [2] and the zero-altered [3] models. The first class assumes the existence of a
probability mass at zero and a distribution over N0 = {0, 1, 2, . . .}. This type of model explicitly
differentiates between the zeros originating from a common underlying process, such as the
utilization of a service, described by the sampling distribution on N0, and those arising from
a structural phenomenon, such as the ineligibility to use the service, which are modelled by
the point mass. Very popular zero-inflated models are the zero-inflated Poisson (ZIP) and the
zero-inflated negative binomial (ZINB) models, where the sampling distribution is chosen to be a
Poisson and a negative binomial, respectively. These models allow for inflation in the number of
zeros and departures from standard distributional assumptions on the moments of the sampling
distribution. For instance, the ZIP model allows the mean and the variance of the distribution
to be different from each other (as opposed to a standard Poisson distribution), while the ZINB
additionally captures overdispersion in the data.

Hurdle models are a very popular choice of distributions for modelling zero-inflated counts.
Differently from the zero-inflated ones, these models handle zeros and positive observations
separately, assuming on the latter a sampling distribution with support on N = N0 \ {0}. Thus
the distribution of the count data is given by

P(Yi = yi) =
{

(1 − pi), yi = 0

pig(yi |μi), yi > 0
(1.1)

where pi and g now capture two distinct features of the data. Hurdle models present appealing
features that can make them preferable to zero-inflated models. Firstly, hurdle distributions
allow for both inflation and deflation of zero counts. Indeed, under a zero-inflated model, the
probability of observing a zero is always greater than the corresponding probability under the
sampling distribution, thus making it impossible to capture deflation in the number of zeros [4].
Secondly, and more importantly for our work, the probability of zero counts in hurdle models
is independent of the parameters controlling the distribution of non-zero counts. This feature
improves interpretability and facilitates parameter estimation. Note that the zero-altered model
proposed by Heilbron [3] is a modified hurdle model in which the two parts are connected by
specifying a direct link between the model parameters.

Univariate models for zero-inflated data can be extended to multivariate settings, where
several variables presenting excess of zeros are recorded, e.g. in applications involving
questionnaires or microbiome data analysis. In this context, a multivariate extension of the
ZIP model has been proposed by Li et al. [5], through a finite mixture with ZIP marginals. In
this construction, the number of parameters increases linearly as the number d of zero-inflated
processes increases, as the total number of parameters is 3d + 2. See also Liu et al. [6,7] and
Tian et al. [8] for simplified versions of the previous construction involving a smaller number
of parameters and better distributional properties.

In a Bayesian parametric setting, Fox [9] proposes the joint modelling of two related zero-
inflated outcomes. Their strategy is based on the ZIP model, with the same Bernoulli component
to capture the extra zeros for both processes. Correlation between subject-specific outcomes is
accounted for through the specification of a joint random effect distribution for the parameters
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governing the sampling distribution of the two processes. Alternatively, Lee et al. [10] model the
binary variables indicating whether an observation is positive or not via a multivariate probit
model [11,12]. In this approach, the vectors of latent continuous variables characterizing the
multivariate probit are modelled jointly assuming a random unstructured correlation matrix
describing their dependence.

In several applications, knowledge relative to the grouping of the subjects is also available,
thus providing additional information that can be exploited in the model [13]. Moreover, the
clustering structure can be estimated by assuming a prior distribution on the partition of the
subjects, e.g. via the popular Dirichlet process [14] or a mixture with a random number of
components as proposed by Hu et al. [15]. In the context of Bayesian semiparametric approaches,
Shuler et al. [16] propose to model multivariate zero-inflated count data by linking different
Dirichlet process mixtures of ZINB models through the use of the popular dependent Dirichlet
process [17]. In particular, the probability of zeros and the sampling distribution are modelled via
two distinct single-p DDP, where the location parameters of the mixture depend on a categorical
covariate. The proposed approach yields flexible estimation of the partition of the subjects,
although it does not allow for sharing of information a priori between the two components of
the ZINB model, thus yielding two separate clustering structures. A different semiparametric
approach is proposed by Arab et al. [18], which exploits the multivariate ZIP construction of
Li et al. [5] to model bivariate count data, but the proportion of zeros and the intensity of the
sampling distribution are modelled through the introduction of spline regression terms. The
spline approach is flexible and computationally tractable when d is small. For larger dimensions,
this model would induce a non-trivial computational burden.

The focus of this work is clustering of individuals based on multiple, possibly related,
zero-inflated processes. To this end, we propose a Bayesian approach for joint modelling of zero-
inflated count data, based on finite mixtures with a random number of components. In particular,
we specify a hurdle model for each process with a shifted negative binomial sampling distribution
on the positive integers. Let n denote the sample size and d is the number of processes under
study. The subject-specific probabilities of zero-inflation pij for the ith individual and the jth
process, i = 1, . . . , n, j = 1, . . . , d, and the parameter vector of the sampling distribution μij are
flexibly modelled via an enriched mixture with a random number of components, borrowing
ideas from the Bayesian non-parametric literature on the Dirichlet process. One of the main
novelties of our work is to combine a recent representation of finite mixture models with a random
number of components presented in Argiento & De Iorio [19] with a finite extension of the
enriched non-parametric prior proposed by Wade et al. [20] to achieve a two-level clustering of
the subjects, where at the outer level individuals are clustered based on the pattern of zero/non-
zero observations, while within each outer cluster they are grouped at a finer level (which we
refer to as inner level) according to the distribution of the non-zero counts. Figure 1 provides an
illustration of the nested clustering structure.

Enriched priors in Bayesian non-parametrics generalize concepts developed by Consonni &
Veronese [21], who propose a general methodology for the construction of enriched conjugate
families for the parametric natural exponential families. The idea underlying this approach is
to decompose the joint prior distribution for a vector of parameters indexing a multivariate
exponential family into tractable conditional distributions. In particular, distributions belonging
to the multivariate natural exponential family satisfy the conditional reducibility property, which
allows reparameterizing the distribution in terms of a parameter vector, whose components are
variation and likelihood independent. Then, it is possible to construct an enriched standard
conjugate family on the parameter vector, closed under i.i.d. sampling, which leads to the
breaking down of the global inference procedure into several independent subcomponents.
Such parameterization achieves greater flexibility in prior specification relative to the standard
conjugate one, while still allowing for efficient computations (see, for example, [22]). An example
of this class of parametric priors is the enriched Dirichlet distribution [23].

In a Bayesian non-parametric framework, Wade et al. [20] first propose an enrichment of
the Dirichlet process [24] that is more flexible with respect to the precision parameter but still
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Figure 1. Example of two-level clustering induced by the enriched mixture with a random number of components. The
observations are first clustered based on their zero/non-zero patterns. Within each outer cluster, subjects are grouped based
on the sampling distribution of the non-zero observations. The inner clustering structure is here depicted via a multimodal
discrete distribution, representing a finite mixture. (Online version in colour.)

conjugate, by defining a joint random probability measure on the measurable product space
(X ,Y) in terms of the marginal and conditional distributions, PX and PY|X, and assigning
independent Dirichlet process priors to each of these terms. The enriched Dirichlet process
enables a nested clustering structure that is particularly appealing in our setting and allows for a
finer control of the dependence structure between X and Y. This construction has been employed
also in non-parametric regression problems to model the joint distribution of the response and
the covariates [25,26], as well as in longitudinal data analysis [27] and causal inference [28].
Recently, Rigon et al. [29] proposed the enriched Pitman–Yor process, which leads to a more robust
clustering estimation.

In this work, we consider the joint distribution of d zero-inflated process, where the d-
dimensional vectors of probabilities (pi1, . . . , pid) correspond to X, while the parameters of the
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sampling distributions μij correspond to Y. The enrichment of the prior is achieved by modelling
both PX and PY|X through a mixture with a random number of components (see, for instance,
[30]). We exploit the recent construction by Argiento & De Iorio [19] based on normalized
independent finite point processes (Norm-IFPP), which allows for a wider choice of prior
distributions for the unnormalized weights of the mixture. Therefore, the proposed model offers
more flexibility, while preserving computational tractability.

The motivating application for the proposed model is the analysis of multiple count data
collected from a questionnaire on the frequency of use of the messaging service WhatsApp
[31]. In particular, the questionnaire concerns the sharing of COVID-19-related information via
WhatsApp messages, either directly or by forwarding, over the course of a week. For each subject,
responses to the same seven questions are recorded over seven consecutive days, providing
information on a subject’s WhatsApp use (see the electronic supplementary material, Table S1). In
this set-up, the multiple count processes correspond to the seven questions, all of which display
an excess of zeros (see the electronic supplementary material, Figure S2).

The manuscript is organized as follows. Section 2 introduces a novel enriched prior process
for multiple zero-inflated outcomes, while §3 describes the Markov chain Monte Carlo (MCMC)
algorithm designed for posterior inference. We demonstrate the model on the WhatsApp
application in §4. We conclude the paper in §5.

2. The model

(a) Likelihood
Let Yij be the count of subject i = 1, . . . , n for outcome j = 1, . . . , d and let Yi = (Yi1, . . . , Yid) be the
d-dimensional vector of observations for subject i. To take into account the zero-inflated nature of
the data, we assume for each outcome j a hurdle model. Each observed count Yij is equal to zero
with probability 1 − pij, while with probability pij it is distributed according to a probability mass
function (pmf) g(· |μij) with support on N. Assuming conditional independence among responses,
the likelihood for a subject is given by

P(Yi = yi | pi,μi) =
d∏

j=1

f (yij | pij,μij) f (y | p,μ) =
{

1 − p, y = 0

p g(y |μ), y> 0
(2.1)

with pi = (pi1, . . . , pid) ∈ (0, 1)d, μi = (μi1, . . . ,μid), i = 1, . . . , n. In what follows, we set g to be a
shifted negative binomial distribution with parameters μij = (rij, θij) and pmf:

g(y | rij, θij) = (y + rij − 2)!

(rij − 1)!(y − 1)!
θ

y−1
ij (1 − θij)

rij , y ∈ N, (2.2)

where rij ∈ N and θij ∈ (0, 1), for i = 1, . . . , n and j = 1, . . . , d. Different parametric choices for g are
possible (e.g. a shifted Poisson), or even non-parametric alternatives could be employed. Note
that the conditional independence assumption among the multiple processes leads to a significant
reduction in the number of parameters as compared with multivariate zero-inflated models.

(b) Enriched finite mixture model
In this work, we propose an enriched extension of the Norm-IFPP of Argiento & De Iorio [19] and
specify a joint prior for (pi,μi) as conditionally dependent processes. This allows us to account
for interindividual heterogeneity, overdispersion and outliers and induces data-driven nested
clustering of the observations. Each subject is first assigned to an outer cluster, and then clustered
again at an inner level, providing increased interpretability. Differently from previous work on
Bayesian non-parametric enriched processes, we opt for a finite mixture with a random number of
components, where the weights are obtained through the normalization of a finite point process.
Finite mixture models with a random number of components have received increasing attention
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Algorithm 1. Conditional algorithm.

Input:
(
yij
)

ij and parameter initialization
Output: posterior distribution of cluster allocation and other parameters

for i in 1:n do
Sample ci and zi from

P[ci = m, zi = s | rest] ∝ Γm �ms

d∏
j=1

f
(
yij | p�m, r�ms, θ

�
ms

)
end for
Compute K, the number of allocated components at the outer level
Relabel the outer level clusters so that the first K components of the mixture are allocated

Sample the latent variable ū from Gamma
(

n,
∑M

m=1 Γm

)
Set M = K + x, where

x ∼ qx qx ∝ (x + K)!
x!

ψout(ū)xqM(K + x) for x = 0, 1, . . .

Sample the unnormalized weights of the outer measure from

P[Γm ∈ dω | rest] ∝ωnm e−ωūhout(ω) dω for m = 1, . . . , M

where nm is the cardinality of outer level cluster m and nm = 0 for m>K
for m in 1:K do

Sample p�m from the full conditional.
Compute the number Km of allocated components at the inner level
Relabel the inner level clusters so that the first Km components are allocated

Sample the latent variable um from Gamma
(

nm,
∑Sm

s=1 �ms

)
Set Sm = Km + x where

x ∼ qx qx ∝ (x + Km)!
x!

ψin(um)xqS(Km + x) for x = 0, 1, . . .

Sample the unnormalized weights of the mth inner mixture from

P[�ms ∈ dq | rest] ∝ qnms e−ωum hin(q) dq for s = 1, . . . , Sm

where nms is the cardinality of inner level cluster s and nms = 0 for s>Km
for s in 1:Km do

Sample (r�ms, θ
�
ms) from the full conditional

end for
for s in (Km + 1):Sm do

Sample r�ms from the prior
Sample θ�ms from the prior

end for
end for
for m in (K + 1):M do

Sample p�m and Sm from the prior
for s in 1:Sm do

Sample �ms from the prior
Sample r�ms from the prior
Sample θ�ms from the prior

end for
end for

in the last years (see, for example, [30,32]). The representation of Argiento & De Iorio [19] allows
for the specification of a wide range of distributions for the weights and simultaneously leads
to effective and widely applicable MCMC schemes on which algorithms 1 and 2 are based.
More specifically, they show that a finite mixture model is equivalent to a realization of a
stochastic process with random dimension and infinite-dimensional support, leading to flexible
distributions for the weights of the mixture given by the normalization of a finite point process.
We thus employ this approach as it allows for efficient computations via a conditional algorithm,
as compared with labour-intensive reversible jump algorithms common in mixture models. An
alternative efficient conditional sampler for mixtures with a random number of components is
the recently proposed telescopic sampler [33].

In the proposed framework, the observations are assumed to be sampled from a mixture with
an inner and an outer component. As kernel of the mixture, we assume the hurdle model in (2.1),
which distinguishes between the probabilities of being non-zero pi and the parameters of the
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Algorithm 2. Marginal algorithm.

Input:
(
yij
)

ij and parameter initialization
Output: posterior distribution of cluster allocation and other posterior summaries

for i in 1:n do
Sample ci

P[ci = m | c−(i), z−(i), Ū, U1, . . . , UK]

∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n−(i)

m + γM

)∏d
j=1

MBern

(
y∗

jC+(i)
m

)
MBern

(
y∗

jC−(i)
m

)
⎛⎝n−(i)

ms + γS

L−(i)
m

∏d
j=1

MNB

(
y∗

jC+(i)
ms

)
MNB

(
y∗

jC−(i)
ms

)

+ L−(i)
m − n−(i)

m − γS

L−(i)
m

∏d
j=1 MNB

(
yij
))

if m = mold

ΛM + (K−(i) + 1)(ū + 1)γM

ΛM + K−(i) (ū + 1)γM

ΛM γM

(ū + 1)γM

∏d
j=1 MBern

(
yij
)MNB

(
yij
)

otherwise

where n−(i)
m and n−(i)

ms are the cardinalities of outer and inner clusters after removing the
ith observation, C−(i)

m = Cm \ {i} and C+(i)
m = Cm ∪ {i}, and similarly for C+(i)

ms , C−(i)
ms , K(−i) and K−(i)

m .
Here the subscript ‘old’ denotes an existing (occupied) cluster and

L−(i)
m =

ΛS +
(

K−(i)
m + 1

)
(um + 1)γS

ΛS + K−(i)
m (um + 1)γS

ΛS γS

(um + 1)γS
+ n−(i)

m + γS

Sample zi

P[zi = s | c, z−(i), Um]

∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−(i)
ms + γS)

∏d
j=1

MNB

(
y∗

jC+(i)
ms

)
MNB

(
y∗

jC−(i)
ms

) if s = sold

ΛS +
(

K−(i)
m + 1

)
(um + 1)γS

ΛS + K−(i)
m (um + 1)γS

ΛS γS

(um + 1)γS

∏d
j=1 MNB

(
yij
)

otherwise

Note that when a subject i is assigned to a new outer cluster, then the full conditional
distribution of zi is degenerate and a new auxiliary variable Um has to be sampled before
moving to the next subject i + 1.
end for
Sample the latent variables Ū and U1, . . . , UK from their full conditional:

P
[
Ū = ū | rest

]∝( ΛM

(ū + 1)γM
+ K

)
exp

{
ΛM

(ū + 1)γM

}
ūn−1

(ū + 1)n+KγM
, ū> 0

P [Um = um | rest] ∝
(

ΛS

(um + 1)γS
+ Km

)
exp

{
Λs

(um + 1)γS

}
(um)

nm−1

(um + 1)nm+KmγS
, um > 0

sampling distribution (ri, θ i). The components of the outer mixture are determined by different
probabilities of non-zero outcomes, denoted with p�m = (p�m1, . . . , p�md), for m = 1, . . . , M, with M
the number of outer mixture components. The components of the inner mixtures are characterized
by distinct parameters of the sampling distribution, denoted with r�ms = (r�ms1, . . . , r�msd) and
θ�ms = (θ�ms1, . . . , θ�msd), for s = 1, . . . , Sm and m = 1, . . . , M, where Sm is the number of mixture
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components within the mth outer mixture component. Letting ψ�msj = (p�mj, r�msj, θ
�
msj) and ψ�ms =

(ψ�ms1, . . . ,ψ�msd), the mixture model is as follows:

Yi | {ψ�ms}, w, {qm} iid∼
M∑

m=1

wm︸ ︷︷ ︸
outer level

Sm∑
s=1

qms︸ ︷︷ ︸
inner level

d∏
j=1

f (yij |ψ�msj)

qm = (qm1, . . . , qmSm ) | Sm ∼ DirichletSm (γS, . . . , γS)

w = (w1, . . . , wM) | M ∼ DirichletM(γM, . . . , γM)

p�m
iid∼

d∏
j=1

Beta(α,β)

r�ms
iid∼

d∏
j=1

Geometric(ζ )

θ�ms
iid∼

d∏
j=1

Beta(η, λ)

S1, . . . , SM | M
iid∼ Poi0(ΛS)

M ∼ Poi0(ΛM) (2.3)

where the kernel f (yij |ψ�msj) is defined via conditionally independent hurdle models in (2.1)–
(2.2). Here DirichletM(γM, . . . , γM) denotes the symmetric Dirichlet distribution defined on the
(M − 1)-dimensional simplex with mean 1/M, which is the distribution of the normalized mixture
weights. Beta(α,β) indicates the Beta distribution with mean α/(α + β) and variance αβ/((α +
β)2(α + β + 1)), Geometric(ζ ) the Geometric distribution with mean 1/ζ , and Poi0(Λ) the shifted
Poisson distribution, such that if X ∼ Poi0(Λ) then X − 1 has a Poisson distribution with mean Λ.
Moreover, M and Sm, for m = 1, . . . , M, indicate the random number of components at the outer
and inner level of the enriched Norm-IFPP, respectively.

The outer mixture is a mixture of multivariate Bernoulli distributions, and coincides with the
widely used latent class model [34]. Moreover, being conditionally independent of the actual
values of the non-zero observations, it offers further computation advantages as shown in §3.

Model (2.3) induces a partition of the subject indices {1, . . . , n} at an outer and an inner level.
Let ci and zi, for i = 1, . . . , n, denote the allocation variables which indicate to which component
of the mixture each subject is assigned to at the outer and inner level, respectively. When
two subjects, i and l, are assigned to the same component of the outer level mixture, then the
probabilities of observing a zero for the two subjects are the same, pi = pl, and the two subjects
are assigned to the same cluster, i.e. ci = cl. Moreover, if the two subjects are also assigned to the
same component of the inner level mixture, we have zi = zl and μi =μl (with obviously ci = cl).
However, the vectors of parameters μi and μl characterizing the sampling distribution might
be different even when ci = cl and, consequently, the two subjects might be assigned to different
clusters at the inner level. This is reflected in the components of the vectors of parameters (pi,μi)
and (pl,μl), which might share only the component corresponding to the probability of zero
outcomes or both components.

Using allocation variables, the conditional dependence structure between outer and inner
levels is the following. Let

Ỹij =
{

1 if Yij > 0

0 if Yij = 0
, (2.4)

Ỹi = (Ỹi1, . . . , Ỹid), Cm = {i : ci = m} and Cms = {i : ci = m, zi = s}.
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Outer mixture:

Ỹi | pi ∼
d∏

j=1

p̃
yij

ij (1 − pij )̃
yij , ỹij ∈ {0, 1}

pi = p�ci

p�1, . . . , p�M | M
iid∼

d∏
j=1

Beta(α,β)

Pr(ci = m) ∝ Γm, m = 1, . . . , M

Γ1, . . . ,ΓM
iid∼ Gamma(γM, 1)

M ∼ Poi0(ΛM) (2.5)

Inner mixture:

Yi | M, ci = m, p�m, rmi, θmi ∼
d∏

j=1

f (yij | p�mj, rmij, θmij)

(rmi, θmi) = (r�mzi
, θ�mzi

)

r�m1, . . . , r�mSm
|Sm

iid∼
d∏

j=1

Geometric(ζ )

θ�m1, . . . , θ�mSm
|Sm

iid∼
d∏

j=1

Beta(η, λ)

Pr(zi = s | ci = m) ∝�ms, i ∈ Cm, s = 1, . . . , Sm

�m1, . . . ,�mSm

iid∼ Gamma(γS, 1)

S1, . . . , SM | M
iid∼ Poi0(ΛS), (2.6)

where, as before, we denote with pm
�, rms

� and θms
� the component-specific parameters, which

are assumed a priori independent and Gamma(α,β) is the Gamma distribution with mean α/β
and variance α/β2. The choice of Gamma distribution for the unnormalized weight of the
mixture leads to the standard Dirichlet distribution for the normalized weights. In this setting,
the computations are greatly simplified by the introduction of a latent variable, conditionally on
which the unnormalized weights are independent. See Argiento & De Iorio [19] for details. Note
that the inner mixture is here defined conditionally on the probabilities pm,j of being zero and
not on Ỹi. Thus, while conditioning on pm,j, Yi is still allowed to present zero entries. Finally, we
highlight that representations (2.3) and (2.5)–(2.6) are equivalent.

3. Inference
Posterior inference can be performed through both a conditional and a marginal algorithm,
derived by extending the algorithms by Argiento & De Iorio [19] to the enriched set-up. The
conditional algorithm is described in algorithm 1, while in algorithm 2 we present the marginal
one.

The conditional algorithm is very flexible and allows for different prior distributions on the
weights of the two mixtures as well as on M and Sm (see [19] for details). In algorithm 2, we
use the notation qM and qS to denote the prior on M and Sm, respectively, and we set them both
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equal to a shifted Poisson for the application in §4. Furthermore, hout and hin denote the prior
distribution on the unnormalized weights (in our case Gamma distributions) of the outer and
inner mixture, respectively, ψout(u) and ψin(u) denote the corresponding Laplace transforms of
hout and hin (in our case ψout(u) = (u + 1)−γM and ψin(u) = (u + 1)−γS ).

To implement the marginal algorithm, we need to derive the marginal likelihood of the data,
conditionally on cluster membership. The likelihood in equation (2.3) can be written as

n∏
i=1

d∏
j=1

{
(1 − pij)

1−̃yij p̃
yij

ij

{ (yij + rij − 2)!

(rij − 1)!(yij − 1)!
θ

yij−1
ij (1 − θij)

rij

}̃yij
}

. (3.1)

Recall that ci and zi denote the labels of the clusters to which the ith subject belongs to in the outer
and the inner clustering, respectively. The marginal likelihood of the data conditionally on the
cluster allocation is obtained marginalizing with respect to the prior distributions defined in (2.5)
and (2.6). For a vector of counts y, we obtain:

M(y | c, z) =
d∏

j=1

⎧⎨⎩
K∏

m=1

⎧⎨⎩MBern(y∗
jCm

)
Km∏
s=1

MNB(y∗
jCms

)

⎫⎬⎭
⎫⎬⎭

MBern(y) = B(α + n1,β + n0)
B(α,β)

and MNB(y) =
+∞∑
r=1

{
B
(
η +∑i(yi − 1)̃yi, λ+ r

∑
i ỹi
)

B(η, λ)

∏
i

(
(yi + r − 2)!

(r − 1)!(yi − 1)!

)ỹi

(1 − ζ )r−1ζ

}

where Cm = {i : ci = m}, Cms = {i : ci = m, zi = s}, y∗
jCm

is the vector of observations yij such that ci = m,
for j = 1, . . . , d. Similarly, y∗

jCms
is the vector of observations yij such that ci = m and zi = s. Moreover,

B(·, ·) denotes the Beta function, n1 =∑i ỹi, n0 =∑i(1 − ỹi), ỹi is defined as in equation (2.4) and
the last two summations run over the elements of the vector ỹ. Here K and Km are the numbers
of clusters at the outer and inner level, respectively. Note that by cluster we mean an occupied
component (i.e. a mixture component to which at least one observation has been assigned), with
K ≤ M and Km ≤ Sm, m = 1, . . . , M.

When implementing the marginal algorithm, after updating the latent variables Ū and Um, we
could add an extra step involving a shuffle of the nested partition structure as suggested by Wade
et al. [25] to improve mixing. More details and an empirical comparison of the two algorithms are
provided in Section S3 of the electronic supplementary material.

4. Application to WhatsApp use during COVID-19

(a) Data description and preprocessing
We apply our model to a dataset on WhatsApp use during COVID-19 [31]. The data consist of
a questionnaire filled out by participants living in India. Each subject answers the same d = 7
questions for T = 7 consecutive days on the number of (j = 1) COVID-19 messages forwarded,
(j = 2) WhatsApp groups to which COVID-19 messages were forwarded, (j = 3) people to
whom COVID-19 messages were forwarded, (j = 4) unique forwarded messages received in
personal chats, (j = 5) people from whom forwarded messages were received, (j = 6) personal
chats that discussed COVID-19, (j = 7) WhatsApp groups that mentioned COVID-19. Table S1
in the electronic supplementary material provides the list of the questions, as well as a brief
description. In what follows, the first replicate (t = 1) corresponds to Sunday for all subjects, t = 2
to Monday, up to T = 7 corresponding to Saturday. The questionnaire responses were collected in
June and July 2021, during India’s infection wave of the Delta variant of the SARS-CoV-2 virus
that causes coronavirus disease 2019 (COVID-19).

From the initial 1156 respondents, we remove two subjects for which no answers are available,
resulting in a final sample size of n = 1154. Moreover, 19% of the observations are missing. We also
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Figure 2. Posterior distribution of the number of outer mixture components M (a) and clusters K , i.e. number of occupied
components to which at least one observation is assigned (b). (Online version in colour.)

treat counts higher than 400, which are very rare (seven observations out of 56 546), as missing
data as they are very far from the range of the majority of the data. We handle missing data using
a two-step procedure. Firstly, whenever possible, we recover missing zeros using deterministic
imputation based on respondents’ answers to other sections of the questionnaire. For instance, if
the answer to the question ‘Did you send any message of this kind today?’ is ‘No’ and there is
a missing value for the question ‘How many?’, we can reasonably assume that the answer to the
latter question is zero. In this way, we can recover 0.5% of the missing observations. Secondly,
the remaining missing values are imputed using random forest imputation (as implemented in
the R package mice [35]). In Section S2 of the electronic supplementary material, we provide
more details on the data imputation technique and we present an empirical study to quantify the
impact of data imputation on the results presented in the next section. Figure S2 of the electronic
supplementary material displays the data after imputation.

To account for the fact that T repeated observations are available for each subject and process,
we need to slightly modify model (2.3). We do so by assuming that the different time points
are independent of each other, so that repeated observations can be straightforwardly included
in the proposed model. Let Yijt denote the count for the ith subject and the jth process at time
t, i = 1, . . . , n, j = 1, . . . , d and t = 1, . . . , T. We assume that Yijt are conditionally independent,
given the parameters of the model. Thus, the likelihood contribution of each subject i is given
by
∏T

t=1
∏d

j=1 f (yijt |ψ�msj). It must be highlighted that we are clustering individuals based on the
pattern of all their observations, at each time point t and for each process j.

Finally we note that, thanks to the probabilistic structure of the hurdle model for zero-inflated
data, pi and the sampling distribution g(· |μi) reflect two distinct features of the respondents’
behaviour: pi represents the probability of engaging in some COVID-19 related WhatsApp
activity, while g(· |μi) captures the behaviour of those subjects who have actually engaged in
the activity.

(b) Results
Posterior inference is performed through the conditional algorithm described in algorithm 1. We
run the algorithm for 15 000 MCMC iterations, discarding the first 5000 as burn-in.

Figure 2 shows that, at the outer level, the posterior distributions of the number of both
components and clusters present a mode at the value three.

As point estimate of the cluster allocation, we report the configuration that minimizes the
posterior expectation of Binder’s loss function [36] under equal misclassification costs, which is a
common choice in the applied Bayesian non-parametrics literature [37]. Briefly, this expectation of
the loss measures the difference for all possible pairs of subjects between the posterior probability
of co-clustering and the estimated cluster allocation. We refer to the resulting cluster allocation as
the Binder estimate.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 M

ar
ch

 2
02

3 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220145

...............................................................

0

0.2

0.4

0.6

1 2 3

outer clusters

re
la

tiv
e 

fr
eq

ue
nc

y 

1 2 3 4 5 6 7

Cluster 1

Cluster 2

Cluster 3
0

0.2

0.4

0.6

0.8

1.0

variable j

(a) (b)

Figure 3. Relative frequency of the outer clusters (a) and the posterior means of the cluster-specific probabilities of a non-zero
count p�mj (b) corresponding to the posterior estimate of the clustering allocation obtained byminimizing Binder’s loss function.
(a) Outer clusters relative frequencies and (b) Outer level Bernoulli parameters p�mj . (Online version in colour.)
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Figure 4. Estimated pmfs for the seven questions within each outer cluster (conditionally on the counts being positive)
corresponding to the posterior estimate of the clustering allocation obtained byminimizing Binder’s loss function. Shaded areas
represent the 95% credible intervals. (a) Question 1, (b) Question 2, (c) Question 3, (d) Question 4, (e) Question 5, (f ) Question 6
and (g) Question 7. (Online version in colour.)

The Binder estimate of the outer clustering contains three clusters, whose characteristics are
summarized in figures 3 and 4. The largest cluster corresponds to WhatsApp users who on most
days report a zero count for all d = 7 questions. The individuals in the other two clusters use
WhatsApp more frequently when it comes to forwarding COVID-19 messages (j = 1, 2), receiving
forwarded messages (j = 3, 4, 5) and having COVID-19 mentioned in their WhatsApp groups (j =
7). The main feature distinguishing Cluster 2 from Cluster 3 in terms of probabilities pi of non-
zero counts is that on most days Cluster 2, unlike Cluster 3, discusses COVID-19 also in personal
chats (question j = 6).

Figures 5 and 6 display the main characteristics of the inner clusters. We are interested in the
posterior distribution of the number of the inner clusters per outer cluster, as well as the inner
clustering within each outer cluster. To this end, we run the MCMC algorithm fixing the outer
cluster allocation to its Binder estimate, thus obtaining the conditional posterior distribution of the
inner clustering. The results reveal substantial variability in the distribution of non-zero counts
within outer Clusters 1 and 2 (see figure 5c). The majority of counts in outer Cluster 1 are zero,
leaving little variation in the counts for the inner clustering. As most individuals present zero
counts (for most processes) at an inner cluster level, it becomes difficult to detect specific patterns
as it is also evident from the fact that many co-clustering probabilities are in the range 0.3–0.6
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Figure 5. Posterior distribution of the number of inner clusters per outer cluster (a), relative frequency of the inner clusters
corresponding to the Binder estimate of the inner cluster allocation (b), cluster-specific empirical means of the counts (c).
For outer Cluster 1, the latter is only shown for the four largest inner clusters for visualization purposes. Results are obtained
conditionally on the Binder estimate of the outer clustering. (Online version in colour.)

(see figure 6). Notably, around a quarter of the individuals in outer Cluster 2, as captured by its
inner Cluster 2, forward COVID-19 messages to many more people (question j = 3) than subjects
in inner Cluster 1 of outer Cluster 2. Figure 4 also supports the fact that outer Cluster 2 engages
with WhatsApp in a much more persistent manner than the other outer clusters. These results
highlight that a sizeable minority of WhatsApp users has a relatively large propensity to spread
COVID-19 messages during a critical phase of the pandemic. This is in line with a similar survey
in Singapore [38] and findings on ‘superspreaders’ on other social media.
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Figure 6. Heatmaps of the posterior co-clustering probabilities for the inner clusters per outer cluster. Results are obtained
conditionally on the Binder estimate of the outer cluster allocation. Observations are reordered based on the co-clustering
probability profiles, through hierarchical clustering. (a) Outer Cluster 1, (b) outer Cluster 2 and (c) outer Cluster 3. (Online version
in colour.)

5. Conclusion
In this work, we propose a Bayesian model for multiple zero-inflated count data, building on
the well-established hurdle model and exploiting the flexibility of finite mixture models with
a random number of components. The main contribution of this work is the construction of
an enriched finite mixture with a random number of components, which allows for two-level
(nested) clustering of the subjects based on their pattern of counts across different processes.
This structure enhances interpretability of the results and has the potential to better capture
important features of the data. We design a conditional and a marginal MCMC sampling
scheme to perform posterior inference. The proposed methodology has wide applicability, since
excess-of-zeros count data arise in many fields. Our motivating application involves answers
to a questionnaire on the use of WhatsApp in India during the COVID-19 pandemic. Our
analysis identifies a two-level clustering of the subjects: the outer cluster allocation reflects daily
probabilities of engaging in different WhatsApp activities, while the inner level informs on
the number of messages conditionally on the fact that the subject is indeed receiving/sending
messages on WhatsApp. Any two subjects are clustered together if they show a similar
pattern across the multiple responses. We find three different well-distinguished respondent
behaviours corresponding to the three outer clusters: (i) subjects with low probability of
daily utilization; (ii) subjects with high probability of sending/receiving all types of messages
and (iii) subjects with high probability for all considered messages except for non-forwarded
messages in personal chats. Interestingly, the inner level clustering and the outer cluster-specific
estimates of the sampling distribution g highlight similarities between the outer Clusters 1
and 3, where subjects tend to send/receive fewer messages compared with outer Cluster 2.
Moreover, we are able to identify those subjects with a high propensity to spread COVID-
19 messages during the critical phase of the pandemic and for these subjects we do not find
notable differences in terms of types of messages sent or received. Our results are in line
with existing literature on the topic. Future work involves the development of more complex
clustering hierarchies and techniques able to identify processes that most inform the clustering
structure.
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