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Hypertensive disorders of pregnancy occur in about 10% of pregnant
women around the world. Though there is evidence that hypertension im-
pacts maternal cardiac functions, the relation between hypertension and car-
diac dysfunctions is only partially understood. The study of this relationship
can be framed as a joint inferential problem on multiple populations, each
corresponding to a different hypertensive disorder diagnosis, that combines
multivariate information provided by a collection of cardiac function indexes.
A Bayesian nonparametric approach seems particularly suited for this setup,
and we demonstrate it on a dataset consisting of transthoracic echocardiog-
raphy results of a cohort of Indian pregnant women. We are able to perform
model selection, provide density estimates of cardiac function indexes and
a latent clustering of patients: these readily interpretable inferential outputs
allow to single out modified cardiac functions in hypertensive patients, com-
pared to healthy subjects, and progressively increased alterations with the
severity of the disorder. The analysis is based on a Bayesian nonparametric
model that relies on a novel hierarchical structure, called symmetric hierar-
chical Dirichlet process. This is suitably designed so that the mean parameters
are identified and used for model selection across populations, a penalization
for multiplicity is enforced, and the presence of unobserved relevant factors is
investigated through a latent clustering of subjects. Posterior inference relies
on a suitable Markov chain Monte Carlo algorithm, and the model behaviour
is also showcased on simulated data.

1. Introduction. Hypertensive disorders of pregnancy are a class of high blood pressure
disorders that occur during the second half of pregnancy, which include gestational hyperten-
sion, preeclampsia and severe preeclampsia. They are characterized by a diastolic blood pres-
sure higher than 90 mm Hg and/or a systolic blood pressure higher than 140 mm Hg, and they
are often accompanied by proteinuria. These disorders affect about 10% of pregnant women
around the world, with preeclampsia occurring in 2—8% of all pregnancies (Timokhina et al.
(2019)). These disorders represent one of the leading causes of maternal and fetal morbid-
ity and mortality, contributing to 7-8% of maternal death worldwide (Dolea and AbouZahr
(2003), McClure et al. (2009), Shah et al. (2009)). The World Health Organization estimates
that the incidence of preeclampsia is seven times higher in developing countries than in de-
veloped countries. However, the occurrence of these diseases appears underreported in low
and middle income countries, implying that the true incidence is unknown (Igberase and
Ebeigbe (2006), Malik, Jee and Gupta (2019)). While there is evidence that hypertensive dis-
orders of pregnancy are related with the development of cardiac dysfunctions, both in the
mother and in the child (Bellamy et al. (2007), Davis et al. (2012), AmbroZic et al. (2020),
Garcia-Gonzalez et al. (2020), Aksu et al. (2021), deMartelly et al. (2021)), there is no com-
mon agreement on the relation between the severity of hypertension and cardiac dysfunction
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(Tatapudi and Pasumarthy (2017b)) and echocardiography is not included in baseline eval-
uation of hypertensive disorders of pregnancy. Further investigations on these disorders are
needed, especially for developing countries, where women often give birth at a younger age
with respect to developed countries.

The goal of this work is to detect which cardiac function is altered and under which hyper-
tensive disorders by relying on a principled Bayesian nonparametric approach. An interesting
case-control study to explore the relation between cardiac dysfunction and hypertensive dis-
orders is provided by Tatapudi and Pasumarthy (2017a), where the measures of 10 different
cardiac function indexes were recorded in four groups of pregnant women in India. Groups
of women are characterized by different hypertensive disorder diagnoses that are naturally
ordered based on their severity: healthy (C), gestational hypertension (G), mild preeclamp-
sia (M) and severe preeclampsia (S). Hypertensive diagnoses are used as identifiers for what
we call populations of patients and we refer to cardiac function indexes also with the term
response variables. For each response variable we want to determine a partition of the four
populations of patients. This amounts to identifying similarities between different hyperten-
sive disorders with respect to each cardiac index. Supposing, for instance, that the selected
partition assigns all the populations to the same cluster, one can conclude that no alteration is
shown for the corresponding cardiac index across different hypertensive diseases.

Our goal of identifying a partition of the four patients’ populations for each of the 10 re-
sponses can be rephrased as a problem of multiple model selection: we want to select the
most plausible partition for each cardiac index. Frequentist hypothesis testing does not allow
to deal with more than two populations in a straightforward way, and pairwise comparisons
may lead to conflicting conclusions. Conversely, a Bayesian approach yields the posterior
distribution on the space of partitions, which can be used for simultaneous comparisons.
Moreover, the presence of M = 10 jointly tested cardiac indexes requires to perform model
selection repeatedly 10 times. Once again, a Bayesian approach seems to be preferred, be-
cause, as observed for instance by Scott and Berger (2006), it does not require the introduction
of a penalty term for multiple comparison, thanks to the prior distribution built-in penalty.

Here, we design a Bayesian nonparametric model that is tailored to deal with both a col-
lection of ordered populations and the multivariate information of the response variables,
while preserving the typical flexibility of nonparametric models and producing easily in-
terpretable results. When applied to the dataset on transthoracic echocardiography results
for a cohort of Indian pregnant women in Section 5, our model effectively identifies mod-
ified cardiac functions in hypertensive patients, compared to healthy subjects, and progres-
sively increased alterations with the severity of the disorder, in addition to other more subtle
findings. The observed data X; ; ,, represent the measurement of the mth response variable
(cardiac index) on the ith individual (pregnant woman) in the jth population (hyperten-
sive disorder) and, as in standard univariate ANOVA models, they are assumed to be par-
tially exchangeable across disorders. This means that, for every m € {1, ..., M}, the law of
((Xi1m)i=1,--., (Xi j.m)i>1) is invariant with respect to permutations within each sequence
of random variables, namely, for any positive integers ny, ..., ny

d
(Xi )ity oo Xigm)il)) = (KXo tm)itys - - oo Koy iy, 0m)ily)

for all permutations o of (1,...,n;), with j =1,..., J. This is a natural generalization of
exchangeability to tackle heterogeneous data and, by de Finetti’s representation theorem, it
amounts to assuming the existence of a collection of (possibly dependent) random probability
measures {77, : j=1,...,Jm=1,..., M} such that

iid .
Xijm|Tjm~njm i=1,...,nj.
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Hence, for any two populations j # j’, homogeneity corresponds to 7;,, = 7 ,, (almost
surely). However, a reliable assessment of this type of homogeneity is troublesome when
having just few patients per diagnosis, as it happens in the mild preeclampsia subsample.
Without relying on simplifying parametric assumptions, a small subsample size may not be
sufficiently informative to infer equality of entire unknown distributions. To overcome this
issue, without introducing parametric assumptions, we resort to an alternative weaker notion
of homogeneity between populations j and j’: we only require the conditional means of the
two populations to (almost surely) coincide

(D EXi jm | Tjm) =E(X; jrm | T m).

According to this definition, the detection of heterogeneities in cardiac function indexes
amounts to inferring which cardiac indexes have means that differ across diagnoses, as it
is done in standard parametric ANOVA models. Besides clustering populations according to
(1), it is also of interest to cluster patients, both within and across different groups, once the
effect of the specific hypertensive disorder is taken into account. This task may be achieved
by assuming a model that decomposes the observations as

2 ind 2
2) Xijm=0jm+eijm & jmlEijms 07 jm) ~ NEijom: 07 jm),

and the &; ; ,, have a symmetric distribution around the origin, in order to ensure E(&; j ») =
0. In view of this decomposition, we will let 6; ,, govern the clustering of populations, while
the (& jm, o*l.z, i ) s determine the clustering of individuals, namely patients, after removing
the effect of the specific hypertensive disorder. In order to pursue this, for each cardiac in-
dex m, we will specify a hierarchical process prior for (& jm, of im) that is suited to infer
the clustering structure both within and across different hypertensive disorders for a specific
cardiac index. In particular, we will deploy a novel instance of hierarchical Dirichlet process,
introduced in Teh et al. (2006), that we name symmetric to highlight its centering in 0.

Early examples of Bayesian nonparametric models for ANOVA can be found in Cifarelli
and Regazzini (1978) and Muliere and Petrone (1993), while the first popular proposal, due
to De Iorio et al. (2004), uses the dependent Dirichlet process (DDP) (MacEachern (2000))
and is, therefore, termed ANOVA-DDP. This model is mainly tailored to estimate popula-
tions’ probability distributions, while we draw inferences over clusters of populations’ means
and obtain estimates of the unknown distributions as a by-product. Moreover, the ANOVA-
DDP of De Iorio et al. (2004) was not introduced as a model selection procedure. A popular
Bayesian nonparametric model that does cluster populations and can be used for model selec-
tion, is the nested Dirichlet process of Rodriguez, Dunson and Gelfand (2008). As shown in
Camerlenghi et al. (2019a), such a prior is biased toward homogeneity, in the sense that even
a single tie between populations j and ', namely, X; ; » = X/ j/ ,, for some i and i’, entails
Tj,m = Tj, (almost surely). In order to overcome such a drawback, a novel class of nested
and more flexible priors has been proposed in Camerlenghi et al. (2019a); see also Soriano
and Ma (2017) for related work. Interesting alternatives that extend the analysis to more than
two populations can be found in Christensen and Ma (2020), Lijoi, Priinster and Rebaudo
(2022) and in Beraha, Guglielmi and Quintana (2021). Another similar proposal is the one
by Gutiérrez et al. (2019), whose model identifies differences over cases’ distributions and
the control group. These models imply that two populations belong to the same cluster if they
share the entire distribution. However, as already mentioned, distribution-based clustering is
not ideal when dealing with scenarios as the one of hypertensive dataset. Further evidence
will be provided in Section 5.1 through simulation studies. In addition, note that all these
contributions deal with only one response variable and would need to be suitably generalized
to fit the setup of this paper. As far as the contributions treating multiple response variables
are concerned, uses of nonparametric priors for multiple testing can be found, for instance, in
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Gopalan and Berry (1998), Do, Miiller and Tang (2005), Dahl and Newton (2007), Guindani,
Miiller and Zhang (2009), Martin and Tokdar (2012) and, more recently, in Cipolli, Hanson
and McLain (2016), who propose an approximate finite P6lya tree multiple testing procedure
to compare two-samples’ locations, and in Denti et al. (2021). However, in all these contri-
butions, models are developed directly over summaries of the original data (e.g., averages,
z-scores) and, as such, do not allow to draw any inference on the entire distributions and
clusters of subjects.

The outline of the paper is as follows. In Section 2 we introduce the model which makes
use of an original hierarchical prior structure for symmetric distributions (Section 2.2). In
Section 3 we derive the prior law of the random partitions induced by the model, key ingre-
dient for the Gibbs sampling scheme devised in Section 4. In Section 5 we first present a
series of simulation studies that highlight the behaviour of the model before applying it to
obtain our results on cardiac dysfunction in hypertensive disorders. Section 6 contains some
concluding remarks. As Supplementary Material we provide the datasets and Python codes,
some further background material and details about the derivation of the posterior sampling
scheme as well as additional simulation studies and results on the application, including an
analysis of prior sensitivity.

2. The Bayesian nonparametric model. The use of discrete nonparametric priors for
Bayesian model-based clustering has become standard practice. The Dirichlet process (DP)
(Ferguson (1973)) is the most popular instance, and clustering is typically addressed by re-
sorting to a mixture model which, with our data structure, amounts to

ind ~ ind -
Xi,j,m|‘/fi,j,m ~ k(Xi,j,m; 1;//i,j,m)’ l;[’i,j,m|Pj,m ~ Pjm
form=1,....M,j=1,...,Jandi=1,...,n;. Here, k(-; -) is some kernel, and the p; ,,,’s

are discrete random probability measures. Hence, the ¥; ; »,’s may exhibit ties. The model
specification for p; , will be tailored to address the following goals: (i) cluster the J proba-
bility distributions based on their means; (ii) cluster the observations X; ; ,, according to the
ties induced on the v; j »’s by the p; ,,’s for a given fixed j and across different j’s. These
two issues will be targeted separately: we first design a clustering scheme for the populations
through the specification of a prior on the means of the X; ;j »’s, and, then, we cluster the
data using a hierarchical DP having a specific invariance structure that is ideally suited to the
application at hand.

2.1. The prior on disease-specific locations. As a model for the observations, we con-
sider a nonparametric mixture of Gaussian distributions specified as

ind
3) Xijun O Eppe 02) ™ N (O + Eijum OF )

where 0,, = G, .-, 01.m), §n = G1ims -, Elnyms> 82, 1ms -+ SnJ,J,m)’ with a similar
definition for the vector 031, and N (i, 02) denotes a normal distribution with mean u and
variance o2. The assumption in (3) clearly reflects (2). Moreover, in order to account for the
two levels of clustering we are interested in, we will assume that

2 - iid ~ .
€] @1,...,0)~ P, Gijms 07 j )l djom ™~ Gjm (G =1,...,1)),
where g1, ..., qJ.m are discrete random probability measures independent from (61, ...,
0 31). Thus, the likelihood corresponds to

Mo S 1 i'm_e'm_i‘m ~
3) ]_[ HH §0(x - im 5 )Qj,m(déi,j,m,dtfi,j,m)

m=1j=1i=1Ci:j:m Oi,j.m




MODEL SELECTION FOR MATERNAL HYPERTENSIVE DISORDERS 317

with ¢ denoting the standard Gaussian density. Relevant inferences can be carried out if one
is able to marginalize this expression with respect to both (01, ...,0) and (G1.m, .- GJ.m)
foreachm=1,..., M.

This specification allows to address the model selection problem in the following way. If
M™ stands for the space of all partitions of the J populations for the mth cardiac function
index, then M™ = {M}" : b =1,...,card(P,)} where P; is the collection of all possible
partitions of [J] = {1, ..., J}. In our specific case, J =4 and card(Py) = 15; thus, we have
15 competing models per cardiac index. Each competing model corresponds to a specific
partition in M™. In particular, the partition arises from ties between the population specific
means in 6,,, and hence, the distribution P in (4) needs to associate positive probabilities to
ties between the parameters within the vector 8,,, foreachm =1, ..., M.

Let us start considering as distribution P a well-known effective clustering prior, that is, a
mixture of DPs in the spirit of Antoniak (1974), namely,

~ iid - .
91,m|pml’l\‘pm ]:1,...,1,
© ﬁmlwi’igDP(a),Gm) m=1,...,M,
a)'\'pa),

where DP(w, G,,;) denotes the DP with concentration parameter « and nonatomic baseline
probability measure G,, and p,, is a probability measure on R™. The discreteness of the
DP implies the presence (with positive probability) of ties within the vector of locations 6,,
associated to a certain cardiac index m, as desired. The ties give rise to a random partition: as
shown in Antoniak (1974), the probability of observing a specific partition of the elements in
0, consisting of k < J distinct values with respective frequencies ny, ..., nyx coincides with

%) 0w, ... nk)=w—kﬁ(n,~—1)!
ke () ’

i=1

where (w); =I'(w + J)/ I'(w). The use of a shared concentration parameter over (7) to ad-
dress multiple model selection has been already successfully employed in Moser, Rodriguez
and Lofland (2021), where they cluster parameters in a probit model. When there is no pre-
experimental information available on competing partitions, the use of (7) as a prior for
model selection has some relevant benefits. Indeed, it induces borrowing of strength across
diagnoses, and, being w random, it generates borrowing of information also across cardiac
indexes, thus improving the Bayesian learning mechanism. These two features can also be
given a frequentist interpretation in terms of desirable penalties. As a matter of fact, the pro-
cedure penalizes for the multiplicity of the model selections that are performed. The penalty
has to be meant in the following way: while J and/or M increase, the prior odds change in fa-
vor of less complex models. For more details on this, see Scott and Berger (2010). Summing
up, the mixture of DPs automatically induces a prior distribution on {M" :m =1,..., M}
that arises from (7) combined with the prior p, on w, and it presents desirable properties
for model selection that can be interpreted either in terms of borrowing of information or in
terms of penalties.

However, in the analysis of hypertensive disorders, some prior information on competing
models is available, and this is not yet incorporated in (7). In fact, as already mentioned, there
is a natural order of the diagnoses, which is given by the severity of the disorders, that is, C,
G, M, S. Partitions that do not comply with this ordering, for example, {{C, SHG}, {M}},
should be excluded from the support of the prior. Thus, we consider a prior over M™ that
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associates zero probability to partitions that do not respect the natural order of the diagnoses
and a probability proportional to that in (7) for the remaining partitions, that is,

®) PM| o) l'[,((])(nl, s, ng)  if My i.s compatible with the natural order,
otherwise.
This amounts to a distribution P for (01, ..., 0,), given by

ind
(Ql,ma---aej,m)la)’\’ Pw,Gm m=1,..., M,

)

w'\'pa)’

where P, ¢, is the distribution obtained sampling a partition, according to (8), and associ-
ating to each cluster a unique value sampled from G,,. Using (9) as a prior for the disease-
specific locations, we preserve the desirable properties of the mixture of DPs mentioned
before, while incorporating prior information on the severity of the diseases.

As detailed in the next section, we further define random probability measures g; ,, that
satisfy the symmetry condition

(10) Gjm(Ax B)=q;m((—A) x B) as.

for any A and B. This condition ensures that the parameters 6; ,,, for j =1,...,J and
m=1,...,M, in (3) are identified, namely, E(X; j n | Om.qjm) = 0jn With probability
one. This identifiability property is crucial to make inference over the location parameters
0,,’s. Similar model specifications for discrete exchangeable data have been proposed and
studied in Dalal (1979b), Doss (1984), Diaconis and Freedman (1986) and Ghosal, Ghosh
and Ramamoorthi (1999) of which (5) represents a generalization to density functions and
partially exchangeable data.

2.2. The prior for the error terms. While the clustering of populations is governed by (8),
we use a mixture of hierarchical discrete processes for the error terms. This has the advantage
of modeling the clustering of the observations, both within and across different samples,
once the disease-specific effects are accounted for. This clustering structure allows to model
heterogeneity across patients in a much more realistic way with respect to standard ANOVA
models based on assumption of normality. Cardiac indexes may be influenced by a number of
factors that are not directly observed in the study, such as preexisting conditions (Hall, George
and Granger (2018)) and psychosocial factors (Pedersen et al. (2017)). These unobserved
relevant factors may be shared across patients with the same or a different diagnosis and may
also result in outliers. To take into account this latent heterogeneity of the data, we introduce
the hierarchical symmetric DP that satisfies the symmetry condition in (10) and, moreover,
allows to model heterogeneous data similarly to the hugely popular hierarchical DP (Teh et
al. (2006)).

The basic building block of the proposed prior is the invariant Dirichlet process which was
introduced for a single population (J/ = 1) in an exchangeable framework by Dalal (1979a).
Such a modification of the DP satisfies a symmetry condition, in the sense that it is a random
probability measure that is invariant with respect to a chosen group of transformations G.
A more formal definition and detailed description of the invariant DP can be found in Section
A of the Supplementary Material (Franzolini, Lijoi and Priinster (2023)). For our purposes it
is enough to consider the specific case of the symmetric Dirichlet process, which can be con-
structed through a symmetrization of a Dirichlet process. Consider a nonatomic probability
measure Py on R, and let Qo ~ DP(a, Pp). If

Qo(A) + Qo(—A)

(11) 0(A) = 5 VA € BR),
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where —A = {x e R: —x € A}, then Q is symmetric about 0 (almost surely) and termed
symmetric DP, in symbols Q ~ s-DP(«, Py). For convenience and without loss of generality,
we assume that Py is symmetric: this implies that Py is the expected value of Q making it an
interpretable parameter. The random probability measure Q is the basic building block of the
hierarchical process that we use to model the heterogeneity of the error terms across different
populations, j =1, ..., J, in such a way that clusters identified by the unique values can be
shared within and across populations. This prior is termed symmetric hierarchical Dirichlet
process (s-HDP) and described as

-~ - ind ~
qjm | Vj.ms40,m x S'DP(Vj,m, qo,m)
(12) )

- ind
Go.m | @ ™ $-DP(atyy, Pom)

where y; , and «,, are positive parameters and P, is a nonatomic probability distribution
symmetric about 0. We use the notation (§1,m, ..., qJs.m) ~ s-HDP(p,,, om, Po,m), wWhere
Ym = Vi,m» ..., ¥jm). This definition clearly ensures the validity of (10). A graphical model
representation of the overall proposed model is displayed in Figure 1.

Still referring to the decomposition of the observations into disease-specific locations and
an error term, thatis, X; j » = 0 m + &, j m, it turns out that the &; ; ;,’s are from a symmetric
hierarchical DP mixture (s-HDP mixture) with a normal kernel. Hence, the patients’ clusters
are identified through the &; ; ,, which, according to (3), are conditionally independent from
a N(&i jm, al-% im)» given (& jm, of jm)- The choice of the specific invariant DP is aimed
at ensuring that E(g; j u|gjm) = 0. The clusters identified by the s-HDP mixture can be
interpreted as representing common unobserved factors across patients, once the disease-
specific locations have been accounted for. Indeed, for any pair of patients, we may consider

the decomposition X j m — Xi7 jr.m = A(m) + A(m) +(ei,jm —eir, j’,m), Where Aém) =0jm—

0" m A(m) &i.jom — &, j.mand e; j , and e;r js p, are independent and normally distributed

random Varlables with zero mean and variances 02 n and 0 7 itm , respectively.

Hence, patients’ clustering reflects the res1dual heterogenelty that is not captured by the

disease-specific component A( ™) and are related to the subject-specific locations Aém) nd

@‘ﬁ@ qo’m @

&1
i

2,J,m

FI1G. 1. Graphical representation of the model. Each node represents a random variable and each rectangle
denotes conditional i.i.d. replications of the model within the rectangle.
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to the zero-mean error component (e; jm — €/, j,m). In view of this interpretation, using a
s-HDP mixture over error terms offers a three-fold advantage. First, the presence of clearly
separated clusters of patients within and across populations will indicate the presence of un-
observed relevant factors which affect the cardiac response variables. Second, single patients
with very low probabilities of co-clustering with all other subjects will have to be interpreted
as outliers. Finally, the estimated clustering structure can also be used to check whether the
relative effect of a certain disease (with respect to another) is fully explained by the corre-
sponding Aém). To clarify this last point consider two diseases: if the posterior co-clustering
probabilities among patients sharing the same disease are different between the two popula-
tions, this will indicate that different diagnoses not only have an influence on disease-specific
locations (which is measured by Aém)), but they also have an impact on the shape of the dis-
tribution of the corresponding cardiac index. More details on this can be found in Section D

of the Supplementary Material (Franzolini, Lijoi and Priinster (2023)).

3. Marginal distributions and random partitions. As emphasized in the previous sec-
tions, ties among the 6; ,,’s and the (&; j n, o*l% j,m)’s are relevant for inferring the clustering
structure both among the populations (hypertensive diseases) and among the individual units
(patients). Indeed, for each m (cardiac index) they induce a random partition that emerges as
a composition of two partitions generated, respectively, by the prior in (9) and the s-HDP. The
laws of these random partitions are not only crucial to understand the clustering mechanism
but also necessary in order to derive posterior sampling schemes. In this section such a law
is derived and used to compute the predictive distributions that, jointly with the likelihood,
determine the full conditionals of the Gibbs sampler devised in Section 4. To reduce the no-
tational burden, in this and the following section, we remove the dependence of observations
and parameters on the specific response variable m and denote with ¢; ; the pair (§; ;, crl.% i)
and with ¢ the collection (¢1,1, ..., @10, P2,15 -+ Dn;, 7).

Conditionally on w, the law of the partition in (8) leads to the following predictive distri-
bution for the disease-specific locations:

Oilw,01,...,0j—1~aj(w,01,...,0;-1)8;_, + [1—aj(w,61,...,0;-1)]G,
where
D)) " (ny, ..., ng)
Z(Aj) H,((J)(nl,...,nk)

where the sum at the denominator runs over the set of partitions consistent with the one

(13) aj(w,01,...,0j_1) =

El

generated by (61, ..., 6;_1) and the one at the numerator runs over a subset of those partitions
where one further has 6; = 6;_;. For j =4, the predictive equals
S st "G it =6=6
1 = = y
3% w43 R
)
04| w,61,62,0 ) G if0) #6, =063,
4 | 1,602,603 ) — 293+w+2 if0) #6, =03

" 1893 + wcj_ 1G otherwise.
Explicit expressions for the function a, for j = 1, 2, 3, can be easily computed, using (13)
and (8), and are provided in Section B of the Supplementary Material (Franzolini, Lijoi and
Priinster (2023)).
Moving to second-level partitions induced by the s-HDP, we recall that the key concept for
studying random partitions on multisample data is the partially exchangeable partition proba-
bility function (pEPPF); see, for example, Lijoi, Nipoti and Priinster (2014) and Camerlenghi
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et al. (2019b). The pEPPF returns the probability of a specific multisample partition and
represents the appropriate generalization of the well-known single-sample EPPF, which in
the DP case corresponds to (7). Discreteness of the s-HDP (g1, ..., ¢») in (12) induces a
partition of the elements of ¢ into equivalence classes identified by the distinct values. Tak-
ing into account the underlying partially exchangeable structure, such a random partition is
characterized by the pEPPF

(14) M @y,....n)=E (f 1‘[1‘[~”f”(d¢l)

j=lh=1

where nj = (n; 1,...,n;) are nonnegative integers, for any j = 1,...,J, such that n;
is the number of elements in ¢ corresponding to population j and belonging to cluster /.
Thus, ZJJ-:1 njp>1forany h=1,... k, Zﬁ:] nj,=n; and Zﬁ:] ZJJ-:1 njn=N.The
determination of probability distributions of this type is challenging, and, only recently, the
first explicit instances have appeared in the literature; see, for example, Lijoi, Nipoti and
Priinster (2014), Camerlenghi et al. (2019a) and Camerlenghi et al. (2019b). With respect to
the hierarchical case considered in Camerlenghi et al. (2019b), the main difference is that here
we have to take into account the specific structure (11) of the g; ,,. The almost sure symmetry
of the process generates a natural random matching between sets in the induced partition.
Therefore, instead of studying the marginal law in (14), we derive the joint law of the partition
and of the random matching. Formally, consider a specific partition {AT, Al ..., A, ALl
of ¢, such that, for s = 1, ..., k, all the elements in A" belong to R* x R*, all the elements
in A, belong to R™ x R* and, if ¢;, j € A;lL and ¢;/ j € A, then the elementwise absolute
values of ¢;, ; and ¢;/ ;: are equal. Denote with n;r ;, the number of elements in AhJr N{¢;,j.i =
1,...,n;} and with n;h the number of elementsin A, N{¢; j,i =1, ...,n;}. The probability
of observing {A], AT, ..., A, A }is

(15) 0t om™ . ongt g T) = (Lkl_ll_[q,m h+"/h(d¢)>

j=lh=1

with n'}' = (ntl, . n;r «)- As for the determination of (15), a more intuitive understand-
ing may be gained if one considers its corresponding Chinese restaurant franchise (CRF)
metaphor which displays a variation of both the standard Chinese restaurant franchise of Teh
et al. (2006) and the skewed Chinese restaurant process of Iglesias, Orellana and Quintana
(2009). Figure 2 provides a graphical representation. The scheme is as follows: there are J
restaurants sharing the same menu, and the customers are identified by their choice of ¢; ;,
but, unlike in the usual CRF, at each table two symmetric dishes are served. Denote with

(0 i= (& I 637-) and —¢; i= (—§& I at%;f) the two dishes served at table ¢ in restaurant j,

S d1a dr1 P21 P61 O51
P31

P41 (@1 - o5 —¢5"

o o7

P42
$3.2

FIG. 2. Chinese restaurant franchise representation of the symmetric hierarchical DP for J =2 populations.
Each circle represents a table.
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with ¢* = (§,*, o} “*2) and - = (=&, G;f*z) the Ath pair of dishes in the menu and with
n;.f p and n; , the number of customers in restaurant j eating dish ¢, and —¢;*, respectively.
This means that two options are available to a customer entering restaurant j: she/he will ei-
ther sit at an already occupied table, with probability proportional to the number of customers
at that table or will sit at a new table with probability proportional to the concentration pa-
rameter y;. In the former case, the customer will choose the dish ¢z with probability 1/2
and qbt otherwise. In the latter case the customer will eat a dish served at another table of
the franchlse with probability proportional to half the number of tables that serve that dish
or will make a new order with probability proportional to the concentration parameter «. In
view of this scheme, the probability in (15) turns out to be

0N wf,...,n7) =2"VAM (mf + 07, 0t +07),

and l:I,(CN) on the right-hand side is the pEPPF of the hierarchical DP, derived in Camerlenghi
et al. (2019b), namely,

= (V) L T n ¢
T (nl,...,nw:(]'[ — f')Z(a) 1‘[(@ h—l)'l"[P<Kn]h—fzjh>

where each sums runs over all ;5 in {1,...,n;,},if nj, > 1 and equals 1 if n;, =0,
whereas £, j = ZJJ 1£j.nand [€] = ZJ (ke j.h- Note that the latent variable £ ; is the
number of tables in restaurant j serving the hth pair of dishes. Moreover, K, , is a random
variable denoting the number of distinct clusters, out of n; ; observations generated by a DP
with parameter y; and diffuse baseline Py, and it is well known that

fj.h

P(Knj = L) = ,)
njh

where |s(n 5, £ )| is the signless Stirling number of the first kind. In view of this, one can
deduce the predictive distribution

gy = VI « .
P(bn+1.j € 19) i—l-l—yj;lﬂ—i—an(e'(b)})()()

+n; ; 1
h ]h Vi o.h
+ [’ n<e|¢>]
;; nj+vy;j nj+yj2e:|€|+a

y <5¢;;*(-) + 8_¢;;*(-))
2 9
where
Zj,h

= D! 1_[ o (”fh 1 g gj,h)|]l{1,...,njh+n;h}(£j,h)

+”;h

is the posterior distribution of the latent Varlables £ p’s and 1 4 is the indicator function of
set A.

4. Posterior inference. The findings of the previous section are the key ingredients to
perform posterior inference with a marginal Gibbs sampler. The output of the sampler is
structured into three levels: the first produces posterior probabilities on partitions of disease-
specific locations; the second generates density estimates; the third provides clusters of pa-
tients. For notational simplicity we omit the dependence on m, except for the description of
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the sampling step that generates a) Recall that @ = (61, ...,60,) and ¢ = {(¢1,;, - . o bn;, DE

Jj=1,...,J}, with ¢; ; = (& ;, a -). The target dlStI‘lbuthH of the sampler is the joint dis-
trlbutlon of 0, ¢ and w, condltlonalfy on the observed data X.

Sampling ¢. 1In view of the CRF representation of the s-HDP, #; ; stands for the label of
the table where the ith customer in restaurant j sits and 4, ; for the dish label served at table
t in restaurant j and with ¢ and k we denote the corresponding arrays. Moreover, define the
assignment variable s; ; = 1(¢; j = ¢;;,j,j) — 1(¢i,j = —¢;’;_i’j) and s is the corresponding
arrays. In order to generate ¢, we need to sample: "

(i) (ti,j,si,j) fori = 1,...,nj andj: 1,...,J;
(ii) hyjfortetand j=1,...,J;
(i) ¢;* forh € h.

Note that, using the latent allocation indicators in ¢ and k, the sampling scheme is more
efficient than sampling directly from the full conditional of each ¢; ;, since the algorithm can
update more than one parameter simultaneously (Neal (2000)). Define ¢; ; = X; j — 0;, and
denote with h(g; j m|¢*) the conditional normal density of &; ;, given ¢* = (§*, 2*) whlle
the marginal density is

iei) = [ e 1) Pocdg).
To sample (z; ;, s;, j) from their joint full conditional, we first sample #; ; from
P(tij=t1 =G D) D) (i) g i)

o ( J)pold(gl j|¢t J) ifr e t_(i’j)
Vjpnew(gt,ﬂ‘b** (i, ])) iff = new

where ¢t~ g0 ¢*=@D =00 coincide with the arrays ¢, b ¢*, ¢** after having
removed the entries corresponding to the ith customer in restaurant j. Moreover,

1 1
pola(ei 197 ;) = Sheijler ;) + Shleijl = 67 ),

and
)

i l,
pnew(t‘:i,j|¢>i<>k (lvj)) Z L

€]+«

1 1
{ (lj|¢ )+5h(81,]|_¢;:*)} (lj)

|€| +a

Then, we sample s;_ ; from its full conditional

h(gijlof ) ifs=1,
J— *,t' i€ i) X o] li j
plsij=s19%1i).€.j) [h(si,jl —r ) ifs=—1.

The conditional distribution of 4, ; is

p(hl‘,j =h | t, h_(t’j), ¢**_(Z’j), S, E)

e 1 hGigeijlén  itheh™ @),
{G, )i, j=t}
o [ hGijeijld)Pode) if h=h"".
{G, )i, j=t}
Finally, when P, is conjugate with respect to the Gaussian kernel, the full conditional

distribution of ¢;* is obtained in closed form as posterior distribution of a Gaussian model,
using as observations the collection {(s;,j€; ;) : hy; ;,j = h}.
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Sampling 6. When sampling the disease-specific location parameters, one can rely on a
Chinese restaurant process restricted to those partitions that are consistent with the ordering
of the diseases. Thus, in order to generate @, we first sample the labels ¢ty = {t1, ..., t;}, where
t; is the label of the table where the jth customer sits. Then, we sample the dish 6 associated
to table 7 for all 7 € t. If z; j = X; j — &, the conditional density of zj = (z1,j, ..., Zn;,j)
associated to the location parameter 0%, given o ; = (01,j,...,0, i j).1s

1 1z, — 0%)?
for(@jlo ) = —————exp] = > S22
j1o; AL, o p 22 o2

ij
Under the prior in (9), the full conditional distribution of ¢4 is provided by

i=1

p(tj=t|t1,.‘.,l‘j_1,9j—1yzj,0’j)

a(w,01,...,0;-1) fo;_(zjlo ;) ifr =t;,
o« {[1 —a(w,el,...,9_,-_1)]ff9(z_,-|a4,-)G(d9) if r ="V,
0 otherwise.

Finally, when G is conjugate with respect to the Gaussian kernel, the full conditional distri-
bution of 6/, given {z; : t; =1}, is obtained in closed form using conjugacy of the Normal-
Normal model.

Sampling the concentration parameter. Finally, the concentration parameter w can be
sampled through an importance sampling step using as importance distribution the prior p,,
over w. Denoting with M,, the selected partition for 8, and with T,, the number of clusters
in M,,, we have

wim=t Tn=M

(0 +2)M (@ +w+3)M

pM, m=1,...,M) X py(®)

5. Results.

5.1. Simulation studies. We perform a series of simulation studies with two main goals.
First, we aim to highlight the drawbacks of clustering based on the entire distribution with
respect to our proposal in the context of small sample sizes. Second, we check the model’s
ability of detecting the presence of underlying relevant factors in the sense described in Sec-
tion 2.2.

To accomplish the first goal, we compare the results obtained using our model with the
nested Dirichlet process (NDP) (Rodriguez, Dunson and Gelfand (2008)), arguably the most
popular Bayesian model to cluster populations. Mimicking the real hypertensive dataset, we
simulate data for four samples, ideally corresponding to four diseases, with respective sample
sizes of 50, 19, 9 and 22, which correspond to the sample sizes of the real data investigated
in Section 5.2. Since the NDP does not allow to treat jointly multiple response variables,
we consider only one response variable to ensure a fair comparison. The observations are
sampled from the following distributions and 100 simulation studies are performed:

Xi1 2 0.5M(0,0.5) +0.5M'(2,0.5) fori=1,....n;

Xi2 05N (2,0.5) +0.5N4,05) fori=1,...,n;
Xi3 205N @,0.5) +0.5N6,05) fori=1,...,n3;
Xia 05N (6,0.5) +0.5N (8,05 fori=1,...,na.
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Note that the true data generating process corresponds to samples from distinct distributions
with pairwise sharing of a mixture component. Alternative scenarios are considered in the
additional simulation studies that can be found in Section D of the Supplementary Material
(Franzolini, Lijoi and Priinster (2023)).

The implementation of the NDP was carried out through the marginal sampling scheme,
proposed in Zuanetti et al. (2018), which is suitably extended to accommodate hyperpriors
on the concentration parameters of the NDP. To simplify the choice of the hyperparameters,
as suggested by Gelman et al. (2013, p. 535 and p. 551-554), we estimate both models over
standardized data. For our model we set G,, = N'(0,1) and Py, =NIG(u =0,7 = 1,0 =
2,8 =4). Here, NIG(u, 7, , 8) indicates a normal inverse gamma distribution. The base
distribution for the NDP is NIG(x =0, t = 0.01, @ = 3, 8 = 3), as in Rodriguez, Dunson
and Gelfand (2008). Finally, we use gamma priors with shape 3 and rate 3 for all concentra-
tion parameters, which is a common choice. For each simulation study, we perform 10,000
iterations of the MCMC algorithms, with the first 5000 used as burn-in.

Table 1 displays summaries of the results on population clustering, darker rows correspond
to partitions that are not consistent with the natural ordering of the diseases. The true cluster-
ing structure is given by the finest partition. As already observed in Rodriguez, Dunson and
Gelfand (2008), the NDP tends to identify fewer rather than more clusters, due to the pres-
ence of small sample sizes. Using the maximum a posteriori estimate, our model correctly
identifies the partition in 99 out of 100 simulation studies and a partition with three elements
or more in 100 out of 100 simulation studies. The same counts for the NDP are, respectively,
zero out of 100 and 21 out of 100. Analogous conclusions can be drawn looking at posterior
probability averages and medians across the 100 simulation studies (see Table 1) leaving no
doubt about the model to be preferred under this scenario.

Finally, we randomly select three simulation studies among the 100 to better understand
the performance in estimating the other model parameters. Here, we comment on one of the
studies; the other two, leading to similar results, are reported in Section D.1.1 of the Supple-
mentary Material (Franzolini, Lijoi and Priinster (2023)). Figure 3(a) shows point estimates
and credible intervals for the population-specific location parameters 61, 62, 83, 64. The true
means belong to the 95% credible intervals.

TABLE 1
Simulation studies summaries
sHDP NDP
MAP Average Median MAP Average Median
Partitions count post. prob. post. prob. count post. prob.  post. prob.
{1,2,3,4} 0 0.000 0.000 0 0.000 0.000
{1}{2,3.4} 0 0.000 0.000 2 0.020 0.000
{1,2}{3.4} 0 0.000 0.000 72 0.695 0.860
{1,3,4}{2} 0 0.000 0.000 0 0.000 0.000
{1}{2}{3.4} 0 0.027 0.007 3 0.035 0.000
{1,2,3}{4} 0 0.000 0.000 5 0.061 0.000
{1,4}{2,3} 0 0.000 0.000 0 0.000 0.000
{1}{2,3}{4} 1 0.054 0.015 0 0.014 0.000
{1,3}{2,4} 0 0.000 0.000 0 0.000 0.000
{1,2,4}{3} 0 0.000 0.000 0 0.000 0.000
{1}{2,4}{3} 0 0.000 0.000 0 0.000 0.000
{1,2}{3}{4} 0 0.004 0.000 18 0.175 0.032
{1,3}{2}{4} 0 0.000 0.000 0 0.000 0.000
{1,4}{2}{3} 0 0.000 0.000 0 0.000 0.000
{1}1{2}{3}{4} 99 0.915 0.954 0 0.000 0.000
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FIG. 3. Panel (a): Mean point estimates and 95% credible intervals for the four populations, vertical lines
correspond to true values. Panel (b): Posterior distribution on the number of second-level clusters. Panels (c) and
(d): Heatmaps of second-level clustering, darker colors correspond to higher probability of co-clustering; in (c)
patients are ordered based on the diagnosis and the four black squares highlight the within-sample probabilities,
and in (d) patients are reordered based on co-clustering probabilities.

Moreover, it turns out that the model is able to detect the presence of two clusters of sub-
jects leading to a posterior distribution for the number of clusters that is rather concentrated
on the true value; see Figure 3(b)-3(d). Moreover, the point estimate for the subject partition,
obtained minimizing the Binder loss function, also contains two clusters, proving the abil-
ity of the model to detect the underlying relevant factor. In Section D of the Supplementary
Material (Franzolini, Lijoi and Priinster (2023)), a number of additional simulation studies
are conducted, both using alternative specifications over the disorder-specific parameters and
different data generating mechanisms: the results highlight a good performance of the model,
which appears also able to detect outliers, identify other effects of the disorders than those
affecting the location and produce reliable outputs even under deviation from symmetry.

5.2. Impact of hypertensive disorders on maternal cardiac dysfunction. Our analysis
is based on the dataset of Tatapudi and Pasumarthy (2017a), which can be obtained from
https://doi.org/10.17632/d72zr4xggx.1. The dataset contains observations for 10 cardiac
function measurements, collected through a prospective case-control study on women in the
third semester of pregnancy, divided in n1 = 50 control cases (C), n, = 19 patients with ges-
tational hypertension (G), n3 = 9 patients with mild preeclampsia (M) and n4 = 22 patients
with severe preeclampsia (S). The cases are women admitted from 2012 to 2014 to the King
George Hospital in Visakhapatnam, India. The healthy sample is composed by normoten-
sive pregnant women. All women with hypertension were on antihypertensive treatment with
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TABLE 2
Posterior probabilities over partitions of means. Maximum a posteriori probabilities are in bold

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A

{C,G,M,S} 0.021  0.000 0.000 0.000 0.000 0365 0.303 0.096 0.000 0.000
{C}H{GM,S} 0.002 0.546 0.001 0.083 0.016 0.078 0.190 0.021 0.036 0.000
{C,GHM,S} 0.002 0.000 0.001 0.000 0.000 0.037 0.038 0.072 0.076 0.049
{CM,S}HG} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{CHG}HM,S} 0.001 0.139 0.001 0.019 0.024 0.028 0.078 0.042 0.232 0.055
{C,GM}{S} 0.463 0.000 0.595 0.000 0.000 0276 0.045 0.498 0.020 0.002
{C,S}{G,M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{CHG,M}{S} 0.146 0.099 0.188 0.551 0.672 0.074 0.164 0.092 0.260 0.033
{C,M}{G,S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{CHG,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C.GHM}{S} 0.233  0.000 0.107 0.000 0.000 0.083 0.062 0.114 0.091 0.371
{CMHG}{S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{CSHG}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{CHGHM}{S} 0133 0216 0.108 0347 0.288 0.060 0.121 0.065 0.287 0.491

> logis (p;pi) 0.501 0430 0415 0361 0289 0.632 0.688 0.598 0.613 0.424

oral Labetalol or Nifedipine. Women with severe hypertension were treated with either oral
nifedipine and parenteral labetalol or a combination. For more details on the dataset, we refer
to Tatapudi and Pasumarthy (2017b). The prior specification is the same as in the previous
section. Sections E.2 and E.3 of the Supplementary Material (Franzolini, Lijoi and Priinster
(2023)) contain a prior-sensitivity analysis and show rather robust results w.r.t. different prior
specifications. Inference is based on 10,000 MCMC iterations, with the first half used as
burn-in.

Table 2 displays the posterior distributions for the partitions of unknown disease-specific
means along with the corresponding entropy measurements that can be used as measures of
uncertainty. First, note that if one takes also the ordering among distinct disease-specific lo-
cations into account, the posterior partition probabilities are, as desired, concentrated on spe-
cific orders of the associated unique values for all 10 cardiac indexes. For instance, we have
P({Oc,c1 =0c,c1 = Om,ci}{0s,c1} | X) =POc,c1 =0c,c1 = Om,c1 > 0s,c1 | X) =0.463. The
ordered partitions with the highest posterior probability are displayed in Table 3.

Considering the posterior probabilities summarized in Table 2 and in Table 3, we find
that the cardiac index (CI) is reduced in severe preeclampsia, compared to all other patients,
indicating reduced myocardial contractility in the presence of the most severe disorder. The
cardiac work index (CWI) is a good indicator to distinguish between cases and control but

TABLE 3
Posterior probabilities over ordered partitions of means

ordered partition with
cardiac index  highest posterior probability  posterior prob

CI (C.GM}>{S} 0.463
CWI {C}<{GM,S} 0.546
LVMI {C,G,M}<{S} 0.595
IVST {CI<{GM}<{S} 0.548
LVPW {CI<{GM}<{S} 0.671
EF {C,G,M.,S} 0.365
FS {C.G,M.,S} 0.303
EW {C,G,M}>{S} 0.497
AW {C}<{GM}<({S} 0.256

E/A {C}>{G}>{M}>{S} 0.466
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not among cases. The left ventricular mass index (LVMI) is increased in severe preeclampsia
patients, compared to other pregnant women, indicating ventricular remodelling. Moreover,
interventricular septal thickness (IVST) and left ventricular posterior wall thickness (LVPW)
display a similar behaviour as they differ both between cases and controls and between severe
preeclampsia and other disorders: this suggests a progressive increase in the indexes with the
severity of the disorder. The posterior probabilities associated to indexes of systolic function,
such as ejection fraction (EF) and fraction shortening (FS), are relatively concentrated on
the partition of complete homogeneity, letting us to conclude that no differences are present
among patients. As for the parameters of the diastolic function, the posterior distribution for
the E-wave indicator identifies a modified index in severe preeclampsia patients, while the
mean E/A ratio indicates a decreasing diastolic function with the severity of the disorder. The
posterior for the A-wave index is actually concentrated on three distinct partitions, leaving
a relatively high uncertainty regarding the modifications of the index. However, considering
jointly the three partitions with the highest posterior probability, differences are detected
between control and cases with a total posterior probability equal to 0.779. Figure 4 shows
point estimates and credible intervals for disorder-specific location parameters for the first
two cardiac indexes. Analogous plots for all cardiac indexes can be found in Section E.1 of
the Supplementary Material (Franzolini, Lijoi and Priinster (2023)).

Table 4 shows the results obtained using the prior in (7), instead of (8). We remark that
for all 10 cardiac indexes, the posterior associates negligible probabilities to partitions that

TABLE 4
Posterior probabilities over partitions of means. Maximum a posteriori probabilities are in bold

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A
(C,G,M,S} 0.019 0.000 0.000 0000 0.000 0.332 0247 0078 0000 0.000
{CHGM,S} 0.002 0.643 0001 0.114 0031 0065 0.130 0.048 0.080 0.000
{C,GH{M,S} 0.004 0.000 0.03 0000 0.000 0044 0019 0.152 0.073 0.103
{C,M,S}HG} 0.004 0.000 0.00 0.000 0.000 0037 0.105 0.013 0.000 0.000
(CHG}HM,S} 0.002 0.065 0.002 0047 0.078 0027 0036 0063 0424 0.167
(C,GM}{S} 0.316 0.000 0.527 0.00 0.000 0.178 0.032 0.288 0.002 0.000
{C,S}{GM} 0.023 0.000 0.000 0.000 0.000 0019 0.103 0.006 0.000 0.000
{CHG.M}{S} 0.173 0.089 0.124 0472 0.594 0.033 0.054 0064 0.140 0.042
{CM}{G,S} 0.002 0.000 0.001 0003 0000 0044 0031 0017 0.000 0.000
{C,G,S}{M} 0.018 0.000 0.000 0000 0.000 0061 0067 0016 0.000 0.000

{CHG,S}{M} 0.005 0.163 0.001 0.095 0.006 0.028 0.040 0015 0.016 0.000
[C,GHM]}{S} 0213 0.000 0.124 0000 0.000 0052 0014 0.121 0.036 0.241
{C,M}{G}{S} 0.074 0.000 0.137 0.003 0.000 0.041 0.022 0055 0.001 0.000
{C,SHG}HM} 0.014 0.000 0.00 0.000 0000 0011 0.067 0.004 0.000 0.000
{CHGHM}{S} 0.133 0.040 0.079 0265 0291 0.029 0033 0059 0229 0.448

> logys (pi_pi) 0.687 0407 0509 0501 0371 0.828 0.886 0.823 0.582 0.505
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FI1G. 5. Panels (a) and (d): Density estimates. Panels (b)—(c) and (e)—(f): heatmaps of the posterior probabilities
of co-clustering; in (b) and (e) patients are ordered based on the diagnosis, and the four black squares highlight
the within-sample probabilities; in (c) and (f), patients are reordered based on co-clustering probabilities.

are in contrast with the natural order of the diagnoses. This is particularly reassuring in that
the model, even without imposing such an order a priori, is able to single it out systemati-
cally across cardiac indexes. Moreover, we observe how the partitions identified by MAP are
the same of Table 2 for all cardiac index, except AW. However, even under this alternative
prior, the A-wave index is concentrated on the same three distinct partitions, leading to the
conclusion that there exists a difference between cases and control.

As far as prediction and second-level clustering are concerned, Figure 5 displays the den-
sity estimates and the heatmap of co-clustering probabilities between pairs of patients for the
E/A ratio and LVMI. Figure 5(b) shows that co-clustering probabilities are similar within and
across diagnoses, indicating that the effect of the diseases on the distribution of the cardiac
index is mostly explained through shifts between disease-specific locations. Moreover, Fig-
ure 5(b) suggests the presence of three outliers that have low probability of co-clustering
with all the other subjects and that would be ignored by the model using a more tradi-
tional ANOVA structure. On the other hand, Figure 5(e) shows a slightly different pattern
for co-clustering probabilities in the fourth square, which suggests that the heterogeneity be-
tween severe preeclampsia patients and the other patients is not entirely explained by shifts in
disease-specific locations. Finally, Figure 5(f) suggests the presence of an underlying relevant
factor. The corresponding figures for all 10 response variables are reported in Section E.1 of
the Supplementary Material (Franzolini, Lijoi and Priinster (2023)) and can be used for pre-
diction and for a graphical analysis aimed at controlling the presence of underlying relevant
factors, outliers and differences across diseases distinct from shifts between disease-specific
locations.

Our results are coherent with almost all of the findings in Tatapudi and Pasumarthy
(2017b), where results were obtained through a series of independent frequentist tests. How-
ever, importantly, we are able to provide more insights thanks to the simultaneous comparison
approach and the latent clustering of subjects. For instance, considering the response LVMI,
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Tatapudi and Pasumarthy (2017b) detected a significant increase in cases compared to con-
trols and an increase in severe preeclampsia compared to gestational hypertensive and mild
preeclampsia patients. Such results do not clarify whether a modification exists between the
control group and gestational hypertensive patients or between the latter and mild preeclamp-
sia patients. Moreover, in contrast to our analysis, their results do not provide any information
concerning the presence of underlying common factors, outliers or distributional effects (dif-
ferent from shifts in locations).

6. Concluding remarks. We designed a Bayesian nonparametric model to detect clus-
ters of hypertensive disorders over different cardiac function indexes and found modified car-
diac functions in hypertensive patients compared to healthy subjects as well as progressively
increased alterations with the severity of the disorder. The proposed model has application
potential also beyond the considered setup when the goal is to cluster populations according
to multivariate information: it borrows strength across response variables, preserves the flex-
ibility intrinsic to nonparametric models and correctly detects partitions of populations, even
in presence of small sample sizes when alternative distribution-based clustering models tend
to underestimate the number of clusters. The key component of the model is the s-HDP, a
hierarchical nonparametric structure for the error terms that offers flexibility and serves as a
tool to investigate the presence of unobserved factors, outliers and effects other than changes
in locations. Interesting extensions of the model include generalizations to other types of in-
variances in order to accommodate identifiability in generalized linear models, for instance,
with count data and a log link function as well as generalizations to other types of processes
beyond the Dirichlet process.
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