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Abstract

My doctoral research focused on different issues connected to interaction

quantification in Computer Experiments. In particular, I provided new

results on two main related topics: (i) the nature and (ii) the estimation

of interactions. Concerning the first aspect, in the Thesis it is shown

that interactions can have infinitesimal, local and global effect, and that

they can be synergistic and antagonistic. Accordingly, different methods

should be used for specific interaction locations and types. I have shown

how it is possible to connect insights delivered by different methods. I

have also provided a new approach to interaction quantification based on

game theory.
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Chapter 1

Introduction

This Thesis offers a deep analysis of the multi-sided problems releted to

interaction quantification in Computer Experiments. Every Chapter is a

research paper containing an original contribution and almost all of them

have been already submitted. To better evaluate the quality of every pa-

per, I have inserted it without modifications.

In particular, Chapter 2 offers an unified review to interactions as in the

statistical literature. There it is shown that the estimation methods and

also the definition of interaction can be debated topics.

Chapter 3 is devoted to study interactions with focus on Computer Ex-

periments. It contains a general treatment concerning their nature, types,

the estimation techniques and their relative costs.

Some of these techniques are developed in Chapter 4, where asymptotic

results of the interaction estimators are derived. Hence, it is possible to

quantify uncertainty in presence of finite sample size. Also, it is possible

to make best use of model runs to achieve bigger accuracy given a total

budget of simulation runs.

When model inputs are dependent, the techniques for global interaction

quantification used in above Chapters can’t be used. Chapter 5 proposes

a new approach to overcome such difficulty using the notion of Shapley

value from game theory and opens the door to future work in this direc-
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tion. This Chapter has been accepted for pubblication in the SIAM/ASA

Journal on Uncertainty Quantification.

Chapter 6 presents the conclusions of this Thesis and future perspectives

and work that can originate from this Thesis.

Chapter 3 is a joint work with Elmar Plischke (TU Clausthal), whom

I would like to warmly thank for his time and suggestions while he was

visiting Universitá Bocconi.
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Chapter 2

Interactions in Statistical

Modeling: No Free Lunch

Abstract

The statistical literature displays a heterogeneous fragmentation of defi-

nitions, applications, interpretations of the term ‘interaction’. This has

lead the statistical community to discussions and controversies that are

still open today. In this work, we provide an exploration of the concepts

of interaction discussed in the statistical literature. We discuss the deter-

mination and role of interactions in contingency tables, in the Analysis

of Variance (ANOVA), in design of experiments, in the analysis of com-

puter experiments. We also review recent research trends concerning the

identification of interactions in dimensionally large models and in causal

inference. The analysis has several implications within each subfield, how-

ever an overarching implication of the work is that of providing us with a

way to overcome specialization barriers that several times are only appar-

ent.
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2.1 Introduction

Interactions are ubiquitous in Statistics. Identifying and interpreting them

is a fundamental part of statistical inference [Cox, 1984, Lekivetz and

Tang, 2011] and in many scientific studies determining the presence or

absence of interactions is the primary focus (see, e.g., Vansteelandt et al.

[2008]). There are several practical and theoretical reasons which motivate

the study of interaction. Interactions can provide deep insights into the

mechanisms for the outcome of an experiment. Jointly testing for a main

effect and for an interaction simultaneously may increase the power to de-

tect the effects [VanderWeele and Knol, 2014]. Identifying which factors

interact is fundamental for a correct model specification and modelling

interactions can result in increased model flexibility and predictive ability

- see Wahba et al. [1995] in smoothing spline ANOVA modelling among

others. In epidemiology, the analysis of interactions can be of help to se-

lect the optimal subgroup to treat [VanderWeele et al., 2018].

However, the statistical literature displays a heterogeneous fragmentation

of definitions, notations, applications of the term ‘interaction’, whose use

is not univocal. This has lead to discussions and, sometimes, controver-

sies that are still open today. There is a variety of techniques tailored

to specific contexts that has created fragmentation and separations. For

instance, the meaning and use of the term interactions in design of exper-

iments (DOE) is different from the meaning of interactions as intended in

the works of Lancaster [1969] and Streitberg [1990]. In connection with

genetics, Clayton [2009] writes that “this topic [interaction] has received

much attention, but with scant reference to the lively debate of the early

1980s, which was initiated in response to widespread over-interpretation

of interaction in logistic regression models. It has been widely noted that

statisticians and biologists attach different meanings to the word interac-

tion [...] the confusion between statistical and biological notions of inter-

action goes back to Fisher’s 1918 paper ” (p.2-3)

On the other hand, we have common inference problems across disciplines.

For instance, the statistical testing for interactions is problematic in ge-
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netics and in epidemiology for its low power [Greenland, 1983, Routman

and Cheverud, 1997, Bien et al., 2015] and interpretation [Clayton, 2009].

Moreover, a primary and debated issue in the analysis of interactions is

the causal interpretation of a statistical interaction model: after an an-

alyst has identified an interaction through a statistical model, does the

presence of this statistical interaction imply the existence of an underly-

ing causal physical or biological mechanism? This problem has received

much attention in the epidemiology and genetics literatures [Blot and Day,

1979, Rothman et al., 1980, VanderWeele, 2009, Clayton, 2009]. Berring-

ton de González and Cox [2007] write: “From the statistical perspective,

interaction is said to occur if the separate effects of the factors do not com-

bine additively. That is, interaction is a particular kind of non-additivity.

The terminology is in some ways unfortunate in that there is no neces-

sary implication of, say, biological interaction in the sense of synergism or

antagonism” (p.371). In this respect, VanderWeele and Robins [2008]and

VanderWeele [2010] define more ‘mechanistic’ notions of interactions.

Aim of this paper is to examine this vast literature on interactions

through a critical lens. The goal is that of helping the statistical modeler

by having a broad view of the use of the term interaction, but also the sta-

tistical community that, in this way, has a way to overcome specialization

barriers that several times are only apparent.

The paper starts analyzing interactions in contingency tables in Sec-

tion 2.2. Section 2.3 presents the classical and the alternative definitions

of interactions in the ANOVA framework, while interactions in Design of

Experiments are presented in Section 2.4. Section 2.5 discusses the role

of interactions in functional ANOVA models, with special emphasis on

functional regression and computer experiments. The problem of iden-

tifying interactions in high-dimensional statistical models is presented in

Section 2.6. With a focus on Epidemiology, Section 2.7 presents and dis-

cusses the limitations of the causal inference on statistical interactions.

The Appendix presents the additive approach to interactions introduced

by Lancaster [1969].
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2.2 Interactions in contingency tables

A contingency table is the matrix resulting from a classification of a sample

according to some attributes or characteristics of interest. In this context,

the attention of the statistician focuses on the probability of a particular

combination of attributes.

In the analysis of such table the issues in determining interactions “fre-

quently arise [...]: are the entries in the contingency table consistent with

the assumption that an individual’s possession of one attribute is inde-

pendent of his possession of any other?”[Coen, 1971, p. 379]. This ques-

tion highlights a crucial aspect: interactions in contingency tables are not

understood in terms of additivity of effects as in factorial experiments

(described in Section 2.3), but are interpreted as an association measure

among attributes “the concept of no interaction associated with this kind

of experiment has nothing to do with the way in which factors combine

to determine a response as in the case of analysis of variance models”,

[Bhapkar and Koch, 1968, p. 108]). This is particularly evident in a

2× 2 contingency table: citing Bartlett [1935], testing of independence in

a 2× 2 table may be regarded as as testing the significance of the interac-

tion between the two classifications (p. 248). In multivariate contingency

tables, Simpson [1951] introduces an association function of the attributes

to model situations in which “the cell probabilities can depart from com-

plete independence” (p. 239). Everitt [1992] uses the term interaction

“as an alternative to the term association when describing a relationship

between the qualitative variables forming a contingency table” (p. 73).

In general, there are two main theories to define interactions in mul-

tivariate contingency tables: the ‘additive’ and the ‘multiplicative’, both

motivated as generalizations of independence [Darroch, 1974]. Consider

an r × c × l contingency table with probabilities {pijk; i = 1, 2, ..., r; j =

1, 2, ..., c; k = 1, 2, ..., l},
∑
i,j,k pijk = 1. In this case, the multiplicative

definition of zero second-order interaction has been given by Roy and Kas-

tenbaum [1956] and states that there is no second-order interaction if the
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cross-products satisfy

prclpijlpickprjk = piclprjlprckpijk. (2.1)

Condition (2.1) coincides with the definition given by Bartlett [1935] for

the case of 2× 2× 2 tables

p222p112p121p211 = p122p212p221p111.

In general [Roy and Kastenbaum, 1956, Lancaster, 1971], the condition of

no multiplicative second-order interaction (2.1) can be written as

pijk = θjkφikψij for all i, j, k (2.2)

for some {θjk}, {φik}, {ψij}. Intuitively, there is no second-order interac-

tion according to the multiplicative definition if the cross-product ratios,

interpreted as a measure of association, don’t vary across layers. Hence,

this multiplicative approach to interaction has been related to the con-

cept of conditional independence of the variables [Lewis, 1962, Lancaster,

1971].

The additive definition of no second-order interaction, introduced by Lan-

caster [1951] and formulated by him in various ways [Lancaster, 1969], can

be expressed as

pijk
pi··p·j·p··k

= αjk + βik + γij for all i, j, k (2.3)

for some {αjk}, {βik}, {γij}, where dots denote marginalization of prob-

abilities. In this additive approach, the measure of association is the cor-

relation coefficient (Lancaster [1969], p. 254-260). To motivate why this

approach is usually termed ‘Lancaster-additive’, note that Darroch [1974]

proves that the definition (2.3) is equivalent to

pijk = pi··p·jk + p·j·pi·k + p··kpij· − 2pi··p·j·p··k, (2.4)

which is analogous to equation (2.34).

Both approaches have found applications in the statistical literature. Lan-

caster’s additive models have been used to investigate interactions in con-

tingency tables, for instance, in O’Neill [1982b] and in Töwe et al. [1985],
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while multiplicative models á la Bartlett can be found in Goodman [1964],

in Gart [1972] and in Patil [1974].

In general, however, the two definitions (2.2) and (2.3) are clearly not

equivalent. These two definitions are proved to be equivalent only under

certain conditions [O’Neill, 1982a] and, in two-dimensional tables, they are

both equivalent to the independence of the two variables [Darroch, 1974].

The additive and multiplicative approaches are compared in various works,

according to different criteria (Darroch [1974]; Murphy [1978]; Kroonen-

berg and Anderson [2006]). Darroch [1974] considers Lancaster’s additive

approach to the theory of interaction in contingency tables as obscuring the

“simple relationship that it has with interaction in linear factorial models”

(p. 209), although the meaning and interpretation of higher-order interac-

tions differ from their ANOVA counterparts [O’Neill, 1982b]. As a matter

of fact, Darroch [1974] concludes that both additive and multiplicative

definitions “are very far from being ideal definitions of no-interaction, but

is seems reasonable to guess that no better definition exists” (p. 213).

Nonetheless, there is no agreement about which definition should be pre-

ferred in general, because large differences can arise between the two ap-

proaches [O’Neill, 1982b]. Consequently, the literature displays a series

of discussions about controversial results and applications. For instance,

O’Neill [1982b] writes that Lancaster’s additive approach to interactions

has found large acceptance in agricultural studies, but it is used “some-

times incorrectly” (p. 167). Streitberg [1999] describes several problems

connected with the multiplicative approach; “I therefore propose to take

a fresh look at additive interactions” (p. 406). In the psychological litera-

ture, Everitt and Smith [1979] analyze a controversy about two alternative

interpretations of the interactions in the same data set (“the disagreement

[...] arises from different methods they use in defining interaction”, p.

581).

There are authors with a conciliatory position. For example, Lewis [1962]

deems Lancaster’s additive approach “not intuitively satisfactory” (p. 102)

and “lengthy and difficult to verbalize” (p. 104). However, at the same

time, he recognizes the difficulties that, “since there is not even general
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agreement on how to measure first-order interaction in a simple two-way

table, it might seem that the investigator is free to set up and justify a wide

variety of possible criteria” (p. 102). Along the same line, O’Neill [1982a]

writes that his “own view is that one’s understanding of an interaction

should be the guiding factor in selecting an appropriate definition [...] so

that an informed decision can be taken as to their relative merits” (p. 35).

More recently, Kroonenberg and Anderson [2006] suggest that there is no

unequivocal criterion, based on model interpretability, for the decision of

whether one should adopt additive or multiplicative modeling. The same

conclusion is reached by Walter and Holford [1978] in the epidemiologi-

cal literature (“the recommendation of a single model for all situations is

not desirable and the choice depends on the particular situation in hand”,

p.346).

The use of the multiplicative approach, however, has become predom-

inant with the advent of log-linear models for the analysis of contingency

tables (Bhapkar and Koch [1968]; Nelder [1974]). This idea of studying

interactions on a transformed scale is used also by Cox and Lauh [1967],

who investigate the additivity of the effects of a contingency table on a

logistic scale.

The common approach has then become to fit many log-linear and logistic

models to a given contingency table as a first step and, as a second step, to

focus on a group of models that fit reasonably well (Fowlkes et al. [1988]).

This approach has been made possible by the increase in computational

power. In this way of proceeding, interaction quantification is related to

model fit. According to Everitt [1992], the major advantages deriving

from the use of model-fitting techniques are “firstly that they provide a

systematic approach to the analysis of complex multidimensional tables

and secondly that they provide estimates of the magnitude of effects of

interests; consequently they allow the relative importance of different ef-

fects to be judged” (p. 73). However, Kroonenberg and Anderson [2006]

criticize such approach: “both the multiplicative and additive models for

three-way tables have much to offer compared to simple significance tests

and numerical inspection of the interactions or modeling of them via log-
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linear models” (p. 484).

For the log-linear modeling of multi-way contingency tables, a variety

of graphical representations is available to support the model choice and its

interpretation. In particular, the class of graphical models (Darroch et al.

[1980]; Edwards and Kreiner [1983]) can aid model selection providing

the analyst with a better understanding of complex interaction structures.

Graphical models constitute a special class of hierarchical log-linear mod-

els [Goodman, 1970] whose key feature is that they can be visualized from

graphs where vertexes represent variables and edges represent interactions.

This makes graphical models easily interpretable as the absence of an edge

corresponds to the conditional independence of the two variables (“for ex-

ample, the apparent association between two variables, occupation and

longevity, may be due to a third variable, sex, in the sense that for each

sex considered separately, occupation and longevity are independent. This

may be expressed by saying that occupation and longevity are condition-

ally independent given sex”, Edwards and Kreiner [1983], p. 553).

The above discussion shows some controversy in the interpretation of inter-

actions for symmetric tables. The situation becomes even more involved

for non-symmetric tables. Namely, in many applications multi-way con-

tingency tables may show asymmetries in the interaction structure. For

example, it may happen that two chemicals interact only at a specific

level of another chemical and this interaction vanishes at all the others

level of the third chemical: this is an example of context specific inter-

action [Højsgaard, 2003]. Højsgaard [2003] introduces the class of split

models, that are graphical models focusing on this structural asymmetry

in the interaction pattern. Split models generalize the class of graphical

models for contingency tables and are representable by split graphs. How-

ever, care is needed when drawing conclusions on interactions with these

models [Højsgaard, 2003]. In particular, “it is a delicate question whether

a context specific independence is genuine or appears simply because of

low power of some of the the tests” (p. 642). Højsgaard [2004] introduces

the more general class of context specific interaction models. This class

of log-linear models systematically reflects the asymmetric structure of



12

context specific independences and context specific interactions and ex-

tends the split models (“split models are context specific interaction mod-

els for which the focus is on context specific independence restrictions”,

Højsgaard [2004], p.143).

The theory of interactions in contingency tables, despite being a time-

honored problem in Statistics, is still an area of active research. The no-

tion of conditional relationship structures pertain to recent developments.

Hara et al. [2012] provide a general framework for modeling interaction

terms with hierarchical subspace models respecting the conditional inde-

pendence structure. Recently, for a two-way contingency table, D’Ambra

et al. [2017] study main and interaction effects by means of non-symmetric

correspondence analysis, which is a technique for studying two-way con-

tingency tables with an asymmetric relationship between the variables.

We conclude this section noting that Darroch and Speed [1983] provide

a unified framework for studying interactions in different models: mul-

tiplicative and Lancaster-additive for multi-way contingency tables, and

classical additive for complete factorial experiments, that we discuss in the

next section. In order to give this unified treatment, Darroch and Speed

[1983] introduce the definition of generalized interactions “from an alge-

braic point of view in terms of fundamental decompositions of the linear

space of functions on a product of finite sets” [Lauritzen, 2012]. Finally,

the idea of using projection operators to model interaction effects is cen-

tral in the functional ANOVA decomposition that we discuss in Section

2.5.

2.3 Interactions in the Analysis of Variance

(ANOVA)

Analysis of variance (ANOVA) of multi-factor experiments is one of the

most adopted procedures in statistical analysis to investigate differences

among group means. Nonetheless, according to Hector et al. [2010], this

technique is a debated topic within the statistical community. The main
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reasons are the difficulties in understanding ANOVA (“there is some de-

bate on how to perform ANOVA in complicated data structures [...] it

is not at all obvious that a procedure recognizable as ANOVA should be

possible at all in general settings”, Gelman [2005], p.2), and, consequently,

the ambiguities arising from its interpretation [Kempthorne, 1975, Shaw

and Mitchell-Olds, 1993]. In his historical review about ANOVA, Herr

[1986] speaks about the “considerable confusion as to how one should an-

alyze such designs” (p. 265). Interaction effects are in particular among

the most debated aspects. Precisely, the controversy concerns not only

technical aspects of interaction quantification, but also the definition of

interactions themselves. This concern appears even more serious consid-

ering the twofold role played by interactions in ANOVA modeling: as in-

dicators of the complexity of the relations within the experimental model

on the one hand, and as a criterion for choosing the appropriate statistical

model on the other hand.

To illustrate such problems, let’s consider the standard two-way ANOVA

model and let A and B be the two treatment factors, having I and J states

(or levels) respectively. The aim is to study how the value of the response

varies across cells, i.e., with different level combinations. The standard

two-way ANOVA model with Kij observations in cell (i, j) is

Yijk = µij + εijk = µ+ ai + bj + cij + εijk (2.5)

with i = 1, ..., I, j = 1, ..., J, k = 1, ...,Kij , where µ is the overall mean,

ai is the i-th main effect for A, bj is the j-th main effect for B and εijk

are independent errors distributed as N(0, σ2). The non-additivity of the

factor effects is highlighted by the presence of the interaction term cij .

For the identifiability of parameters µ, ai, bj and cij , some conditions are

usually imposed on main and interaction effects, respectively∑
i

ai = 0,
∑
j

bj = 0, (2.6)

∑
i

cij = 0 ∀j,
∑
j

cij = 0 ∀i. (2.7)
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For the estimation of such effects, different cases must be distinguished on

the basis of the number of observations in each cell. In balanced designs

the number of observations is the same for every cell, so that Kij = K.

For the analysis of such designs, ANOVA is generally considered to be the

best technique: while one factor is kept fixed, the other factor can vary

independently. The total variance can be decomposed into sum of squares

related to main and interaction effects, each of them independent χ2 with

its respective degree of freedom [Shaw and Mitchell-Olds, 1993].

Despite such situation of perfect balance, the case in which K = 1, i.e.

one observation per cell, is very controversial: the power of the test for

interaction becomes unknown, the distribution of the test statistic is diffi-

cult to treat causing ambiguity in the partition of the sum of squares, and

it becomes unclear how much importance should be attributed to interac-

tion effects or to the residual [Scheffé, 1959]. In this case, Scheffé [1959]

assumes the equality of cell variances and states that “the statistical in-

ferences are not seriously invalidated [...] by violation of the assumption

of equality of the cell variances” (p. 98). However, Snee [1982] points out

that, when there is only one observation per cell, the non-additivity of the

effects can be due either to non-homogeneous variance or to a systematic

interaction: “this distinction is necessary to properly interpret the results

of the experiment and gain an understanding of the system that generated

the data” (p. 519).

It should be noted that the “arbitrariness in the definition of effects and

interactions” (Vajda [1951], p. 283), the superficial formalizations [Herr,

1986] and the lack of a unified terminology have been relevant sources

of difficulties in the historical development of ANOVA techniques. For

instance, Tukey [1949], who is concerned about “the lack of a systematic

way to measure non-additivity”, uses with the same meaning the terms

residue, error, interaction and discrepancy, “call it what you will” (p. 232).

Another example: Finney [1948] does not state and formulate any model

and writes that “when the interaction is not negligible, estimation of the

main effects of A must depend upon circumstances, and no definition [...]

can be claimed as the only legitimate one” (p. 570).
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The problem is clearly how the interaction cij should be understood:

should it be bound together to the main effects or not? Early on, Scheffé

[1959] states that, in the presence of a non-negligible interaction, there

are difficulties in interpreting and evaluating also the main effects. The

debate on this aspect is still open and evidences the ambiguity in the role

attributed to the interaction effect.

Many authors maintain that main effects should play a predominant role

compared to interactions in a statistical analysis. Daniel [1978] writes that

“main effects are expected to predominate [...] the non-additivity may af-

flict only a small number of minority of cells, perhaps only a single cell”

(p.385). Nelder [1977] considers of “no practical interest” (p. 50) those

models having an existing interaction in presence of zero main effects and

makes an universal prohibition of such models. This prohibition is criti-

cized by his discussants Lindley, Cox, Preece, Tukey, Frane and Jennrich.

Later on, McCullagh [2000] objects that these models can occur as result

of experimental designs but are rare in other contexts.

Indeed, the asymmetry between main and interaction effects is a cru-

cial point to understand different views about interaction. For instance,

Williams [1952] proposes that main effects should minimize interactions:

“the basic assumption is that, with main effects suitably defined, interac-

tions do not exist” (p. 71). Along this line of thought, Davies and Terbeck

[1998] formulate the interaction quantification problem as a minimization

problem: “in spite of its long standing, [...] the standard definition of

interactions is counterintuitive and obfuscates than clarifies. A different

definition is given which [...] allows the detection of interactions even in

the case of one observation per cell” (p. 1279). The principal reason for

this critique is that some authors [Tukey, 1993, Davies and Terbeck, 1998,

Ning and Kim, 2008, Davies, 2012] consider the side conditions (2.7) on

the interaction term as obfuscating the real meaning of interactions and

operate a factors re-parametrization in order to transform interactions into

main effects, in the spirit of Cox [1984]: “if all or specified interactions can

be removed by transformation, part at least of the interpretation will usu-

ally exploit this” (p. 15).
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Formulating an alternative definition without the interaction constraints,

Davies [2012] considers the expected response model (2.5)

yij = µ+ ai + bj + cij , i = 1, ..., I, j = 1, ..., J, (2.8)

even with one observation per cell and defines interactions as the residuals

when the norm

||y− a− b||L0 =
∑
i,j

1{|yij − ai − bj | > 0} (2.9)

is minimized without restrictions on the parameters a and b, where 1

is the indicator function. In other words, for Davies [2012] the correct

approach is “to choose the factor effects to minimize the number of nonzero

interactions” (p. 1508).

Many authors consider the expected value of the response E[Xijk] to study

interactions with the ANOVA structure as in equation (2.8), including Cox

[1984]. In this case, the interaction measure between the factors A and B

is the quantity

cij = yij − µi· − µ·j + µ, (2.10)

where µi· and µ·j denote the mean for the i-th row and the j-th column,

respectively [Scheffé, 1959]. In the literature one can find an alternative

nonparametric definition of interaction measure in 2 × 2 factorial exper-

iments which does not require the linear model assumption (2.8), given

by Patel and Hoel [1973]. For a two-factor experiment with each factor

at two possible levels, i.e. I = J = 2, Patel and Hoel [1973] consider

the probabilities p11,12 = P (Y11k < Y12k) and p21,22 = P (Y21k < Y22k).

The Patel-Hoel definition of no interaction is that p11,12 = p21,22 and the

hypothesis for no interaction is formulated as H0 : p11,12 = p21,22. In

particular, the nonparametric test for no interaction under the Patel-Hoel

H0 shows greater power than the usual F−test for interactions.

The above discussion has concerned the case of balanced ANOVA de-

signs. The debate is even greater when the number of observations per cell

is not the same, that is, in the case of asymmetric ANOVA tables. When
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the number of observations is different across cells, the design of the ex-

periment is called unbalanced and this loss of symmetry affects statistical

inference, originating ambiguities in parameters estimation, in their inter-

pretation, in hypothesis testing and in the partition of the sum of squares

relatively to main and interaction effects [Shaw and Mitchell-Olds, 1993,

Landsheer and van den Wittenboer, 2015]. These complications have been

known for a long time and solutions to these problems have been proposed.

A very popular approach, which is implemented in most of statistical com-

puter packages, is contained in Yates [1934]. The work of Yates [1934] is

fundamental: he proposes three methods to compute sum-of-squares and

testing hypotheses, commonly known as SS I (proportional cell sizes), SS

II (fitting constants) and SS III (weighted squares of means). However, the

only general agreement is on the inadequacy of the SS I method. More-

over, there is no unanimous agreement on which one of the methods SS II

and SS III is best, as discussed in Overall and Spiegel [1969], Nelder and

Lane [1995], Lewsey et al. [2001] and Langsrud [2003]. One also does not

find unanimous agreement on the terminology to indicate these methods,

as shown in Table A in Smith and Cribbie [2014]).

Interactions play a crucial role in unbalanced designs because the choice

of the correction method depends on their significance. In this context the

estimation of interactions is a criterion for model selection: when the in-

teraction estimate is statistically significant, SS III is usually preferred to

SS II; SS II in the other case. Hence, the estimation of interaction becomes

the first step of the analysis: Ng [1994] proposes the use of preliminary

tests for the detection of interaction in two-way tables, in order to “select

the model, or to check certain assumptions and then the primary inference

is made on the basis of the outcomes of the preliminary tests” (p. 437).

However, investigators do not unanimously agree on the practical decision

rule to discriminate between SS II and SS III. For instance, Landsheer and

van den Wittenboer [2015] suggest that the criterion should be based on

the conceivability of the presence of interactions and not on their statistical

estimate.

This discussion shows that many aspects in the two-way analysis of
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factorial experiments lead to debate among statisticians concerning the

interpretation of interactions. Hector et al. [2010] wish open mindedness

in the debate, providing the recommendations of focusing on the objective

of the analysis and not on the “single right ANOVA table”.

2.4 Interactions in Factorial Designs

Factorial designs are widely used in statistical applications, from biology

to the social sciences, to engineering. In a factorial experiment the in-

vestigator is interested in gaining as much information as possible about

the effects of treatment factors which can be simultaneously varied under

the researcher’s control. Lewis and Dean [2001] write that “a major ad-

vantage of factorial experiments is the information that they provide on

interactions” (p. 633). As a matter of fact, the researcher could run a

sequence of experiments using one-at-a-time plans [Daniel, 1973], but in

this case she would not gain any information about factor interactions:

“interaction among factors can be assessed in a factorial experiment but

not from series of one-at-a-time experiments ”, [Cox and Reid, 2000]. The

literature has shown that there are many reasons for which the estimation

of interactions in experiments is fundamental although delicate. Precisely,

“ignoring interactions can lead to (i) important effects being missed, (ii)

spurious effects being detected and (iii) estimated effects having reversed

signs resulting in incorrectly recommended factor levels” (Hamada and

Wu [1991], p.3). Additionally, with application to industrial statistics,

“(a) an underlying physical mechanism may suggest a large interaction

between some factors [...] (b) it is desired to estimate specific interactions

even when they may turn out to be small [...] (c) in robust parameter

design, the interaction between a control factor and a noise factor may be

important for making a product insensitive to noise variations” (Wu and

Chen [1992] p. 162). The study of interactions in factorial experiments

presents relevant and interesting features, as we are about to see.

A first important class of designs with k factors, each at two levels, is the

class of 2k full (or complete) factorial designs, in which a single replicate
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of the experiment corresponds to a specific combination of the levels of

the factors and, hence, the number of replicates equals the number of the

possible combinations. A combination of factors is usually called treat-

ment and it can be viewed as a vertex of a k-dimensional cuboid, with the

common notation (−,+) representing the lower and upper factor level.

(A−, B+, C+) (A+, B+, C+)

(A−, B−, C+) (A+, B−, C+)

(A−, B+, C−) (A+, B+, C−)

(A−, B−, C−) (A+, B−, C−)

Figure 2.1: Cuboid representation of a 23 design.

In this situation, a main effect for a factor, say A, is defined as difference

between the mean values of all observations at the level + of A and at

level - of A. The A×B interaction effect is defined as [Wu and Hamada,

2009]

INT(A,B) =
1

2
[ȳ(A+|B+)+ ȳ(A−|B−)− ȳ(A+|B−)− ȳ(A−|B+)], (2.11)

where ȳ(A+|B+), ȳ(A−|B+), ȳ(A+|B−) and ȳ(A−|B−) are the outcome

average value of the response y at the different treatment combinations

A+B+, A−B+, A+B− and A−B−, respectively. We highlight the struc-

tural similarity of the interaction equation (2.11) to equation (2.10) and
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the symmetry of this definition in A and B. Absence of interaction is here

equivalent to the additivity of the factors effects. On the other hand, the

presence of an interaction, which is a linear function of the observations,

indicates “that the effect of one factor depends on the level of the other

factor, which explains the use of the term interaction” (Wu and Hamada

[2009], p. 164). Citing Cheng [2014], “the main effect of a treatment

factor is its effect averaged over the levels of the other factors, and the in-

teraction effects measure departures from additivity” (p.4). This intuition

is analogous to the ANOVA. For instance, when the experiment involves

two treating factors, i.e. k = 2, factorial effects can be analyzed by the

ANOVA for the two-way layout (2.5), presented in the previous section.

However, one notes that the agreement about the relation between the

formulation of interaction effects in general 2k factorial experiments and

their ANOVA modeling is not unanimous. While Wu and Hamada [2009]

consider the two approaches in principle equivalent, Box et al. [2005] write

that “for the analysis of these particular designs the use of ANOVA is con-

fusing and makes little sense” (p. 188). Moreover, in the psychological

and social sciences literatures, there is controversy about what constitutes

an interaction effect in the ANOVA of a factorial design (Jaccard [1998]).

In the design of experiments, peculiar aspects are associated to interac-

tion quantification. To illustrate, suppose that an experiment on two-level

factors A and B will be run on two different days: the first day the exper-

iment will be run with the factor combinations (A−, B−) and (A+, B+),

the second one with the combinations (A+, B−) and (A−, B+). It fol-

lows that the estimation of the main effects of A and B is done using

the results of the first day, and the interaction effect can be estimated

using the data of both days [Cheng, 2014]. Then, such interaction is said

to be confounded because its estimation procedure might result in less

precision, e.g. for different weather conditions in the two days, different

experimenter, different material and so on. To formalize, it is in gen-

eral impossible to run complete replicates under homogeneous conditions

and/or without nuisance factors. To make the experiment more efficient

and robust to noisy conditions, variables need to be arranged in blocks to
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account for non-homogeneous conditions or nuisance factor levels [Myers

et al., 2016]. Typical examples of blocks can include location, time, raw

material, operator, and so on. As we have seen, this operation might lead

some estimates of block effects to be indistinguishable from those of low-

order interaction terms: these effects are then said to be confounded with

blocks because they cannot be estimated separately. Usually the main ef-

fects are of primary interest and, hence, the researcher would like to avoid

to confound them with block effects. In order to select the optimal block-

ing scheme to arrange a 2k design in 2q blocks with q < k, the common

approach is to use the minimum aberratio criterion [Sun et al., 1997, Wu

and Hamada, 2009]: this criterion selects the blocking scheme minimizing

the number of lower order interactions that are confounded with any block

effect (because in principle no main effect should be confounded with block

effects). Therefore, in this context as well, the attention of the statistician

is focused on interactions, which are the basis of the decision rule for the

grouping scheme and its optimality.

In high-dimensional settings it often becomes impossible or too expen-

sive to observe all possible factor combinations. Then, a full 2k factorial

design, whose size grows exponentially with k, cannot be used and the

analysis has to be carried out on a smaller subset of treatment combina-

tions. This is called a fractional factorial design. Fractioning the full fac-

torial design is an more economic way to estimate the lower order effects

and, often, the only possible way. This operation has however relevant

disadvantages. Since not all experiments corresponding to all possible

treatment combinations have not been run, some factorial effects become

indistinguishable. In this case, main and interaction effects are said to be

aliased. In oder words, aliasing of effects occurs when the experimental

data in the fractional design is not able to distinguish certain main and

interaction effects among factors, making it difficult to discern between

significant and negligible interactions: citing Wu and Hamada [2009], it is

“a price one must pay for choosing a smaller design” (p. 213).

Example 2.4.1. [Cheng, 2014, Myers et al., 2016] Consider the case of a

26 experiment. There are 64 possible treatment combinations to estimate
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63 factorial effects (6 main effects, 15 two-factor interactions, 20 three-

factor interactions, 15 four-factor interactions, 6 five-factor interactions

and 1 six-factor interaction). However, when only 16 treatment combina-

tions can be experimented, there are only 15 degrees of freedom to estimate

the 63 effects: 6 are used to estimate the main effects and only 9 degrees of

freedom can be used to estimate 57 two or higher factor interaction effects.

This can be done only assuming that many interaction effects are null.

In general, when the experimenter has no or little knowledge about the

relationships among factor effects, the following three guiding principles

are adopted (Wu [2015]):

• Effect hierarchy [Wu and Hamada, 2009]: lower order effects (main

effects and low order interactions) are assumed to be more important

than higher order effects, and effects of the same order are equally

important.

• Effect sparsity [Box and Hunter, 1961]: the number of important

effects is small.

• Effect heredity [Hamada and Wu, 1991]: for one interaction to be

significant, its parent main effects have to be significant.

These principles are commonly assumed also in the framework of high-

dimensional regression (Section 2.6). Historically, these principles were

implicit in the design of experiments literature (see Wu [2015] for a dis-

cussion). For examples, Cox [1984] writes that “large component main

effects are more likely to lead to appreciable interactions than small com-

ponents. Also, the interactions corresponding to larger main effects may

be in some sense of more practical importance” (p.13). Yates [1937] states

that “higher-order interactions [...] are usually of less interest than the

main effects and interactions between two factors only” (p.18).

With application to fractional factorial designs, the effect hierarchy as-

sumption justifies “the choice of optimal fractions of factorial designs”

(Wu [2015], p.613). In the literature, criteria based mostly on resolution

[Box and Hunter, 1961] and minimum aberration [Fries and Hunter, 1980]
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are popular principles for constructing, comparing and assessing fractional

factorial designs. Resolution is a property of fractional factorial designs

and concerns the propagation of aliased effects. In a resolution III de-

sign no main effect is aliased with any other main effect, but two factor

interactions are aliased with some main effects; in a resolution IV design

no main effect is aliased with two factor interactions but some two factor

interactions are aliased with other two factor interactions; in a resolution

V designs no main effect and two-factor interaction are not aliased, but

some two factor interactions are aliased with three factor interactions. It

is then desirable to have designs with higher resolution, but the resolution

can not be the only decision criterion for a design. Namely, designs with

the same resolution can be discriminated by the minimum aberration cri-

terion: in this context, denoting with R the maximum attainable design

resolution, “minimizing aberration [...] means that the smallest number

of main effects will be confounded with interactions of order R − 1, the

smallest number of two-factor interactions will be confounded with inter-

actions of order R − 2, and so forth” (Fries and Hunter [1980], p. 602).

Minimum aberration automatically implies maximum resolution. Again,

interaction effects play a primary role in the construction of designs with

certain properties.

There are other notional aspects related to interactions in the design of

experiment literature. When the experimenter needs to block a fractional

factorial design, a two factor interaction is said to be clear if it is not aliased

with any main and any other two-factor interaction effects [Wu and Chen,

1992]. The relationship between minimum aberration designs and designs

with the highest number of clear interactions is explored in Wu and Wu

[2002]. The major advantage of designs with clear two factor interactions

is that “they allow unbiased estimation of these clear two-factor in the

presence of other two-factor interactions, and therefore provide a class of

designs that are robust to non-negligible two-factor interactions” (Tang

[2006], p.137). Two factor interactions are also said to be strongly clear

if they are not aliased with three factor interactions. Lekivetz and Tang

[2011] generalize the concept of clear interaction effects introducing the
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notion of partially clear interactions: an interaction effect is partially clear

if it is orthogonal to non-negligible interactions but is allowed to be aliased

with negligible interactions.

Recently, Wu [2015] propose a different view to interactions and effect

aliasing. He shows that it is possible to de-alias effects using the notion of

conditional main effects (CME) analysis. The conditional main effect of

factor A given B at the + level is defined as [Wu and Hamada, 2009]

CME(A|B+) = ȳ(A+|B+)− ȳ(A−|B+). (2.12)

Then, it is possible to interpret CME(A|B+) as the main effect of A con-

ditional to the level + of B. Using this definition, equation (2.11) can be

rewritten as

INT(A|B) =
1

2
[CME(A|B+)−CME(A|B−)] =

1

2
[CME(B|A+)−CME(B|A−)].

(2.13)

This re-parametrization of the space of effects induces non-orthogonality

among effects. The CME analysis allows to obtain de-aliased effects, but

does not fit the framework of the three principles of factorial designs.

As Wu [2018] underlines, possible new statistical challenges will be in the

direction of developing a theoretical framework for fractional designs using

the CME analysis.

2.5 Interactions in functional ANOVA mod-

els

The functional ANOVA representation of a multivariate mapping is a fun-

damental modelling tool for a variety of problems in Statistics and ap-

plied sciences. Its wide applications include chemical sciences (Li et al.

[2001]), laboratory processes (Tarŕıo-Saavedra et al. [2011]), model emula-

tion (Muehlenstaedt et al. [2012]), finance (Wang [2006]), ecological statis-

tics (Estévez-Pérez and Vilar [2013]) and climate change studies (Sain et al.

[2011]).
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The functional ANOVA decomposition of a multivariate function is a

very powerful alternative to the classical Taylor expansion, as it is ex-

act and of finite order and provides insights about the mapping internal

structure without any assumption about the differentiability of the multi-

variate function. Consider a multivariate integrable function f(x), where

x = (x1, x2, ..., xn) ∈ X , with respect to a product measure µ. Then we

can expand f(x) as

f(x) = f0+

n∑
i=1

fi(xi)+
∑
i<j

fi,j(xi, xj)+...+f1,2,...,n(x1, x2, ..., xn), (2.14)

where
f0 = E[f ] =

∫
· · ·
∫
f(x)dµ

fi(xi) = E[f |xi]− f0 =
∫
· · ·
∫
f(x)

∏
k 6=i dµk − f0

fi,j(xi, xj) = E[f |xi, xj ]− fi(xi)− fj(xj)− f0 =
∫
· · ·
∫
f(x)

∏
k 6=i,j dµk − fi(xi)− fj(xj)− f0

· · ·

.

(2.15)

Every quantity appearing in expansion (2.14) has its corresponding ANOVA

name: the zero-degree term f0 is the mean value of f . The univariate func-

tions fi(xi) are called main effects, or first-order effects, and represent

expected variations of f as a function of xi (the main effects in the func-

tional ANOVA-type decomposition can be also called Hajek projection, see

Hajek [1968]; Takemura [1983]). The bivariate functions fi,j(xi, xj) rep-

resent the second order interaction between xi and xj and are calculated

subtracting from the expected conditional expectation of f as function of

xi and xj all the lower effects, and so on for higher order interactions. The

last term f1,2,...,n(x1, ..., xn) accounts for any residual interaction among

all the variables together. Intuitively, in this ANOVA-type formulation,

interactions are in mean the functional contributions representing what

is not explained by independent variations of lower order terms: in other

words, this is precisely the concept of interactions in an ANOVA table

now embedded in a functional setting. This motivates the designation of

the representation (2.14) as the ‘functional ANOVA decomposition’.
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The importance of the result in (2.14) is evidenced by the fact that

its proof has been obtained in alternative ways and sometime indepen-

dently by several researchers. In fact, in the literature, the research on

this fundamental tool has proceeded dispersedly across disciplines, and

(2.14) is known under different names. Historically, the classical ANOVA

decomposition originates for experimental designs in agriculture, intro-

duced by Fisher and Mackenzie [1923]. Later, Hoeffding [1948] introduces

an ANOVA-type functional decomposition of a square integrable statistic

and uses it in the study of U -statistics. This orthogonal decomposition

has become an “indispensable tool of analysis of distributional properties

of statistics” (Bloznelis and Götze [2001], p.899), so much that some au-

thors refer to this decomposition as the Hoeffding or Hoeffding-ANOVA

decomposition (Bloznelis and Götze [2001]; Peccati [2004]).

However, the connection between ANOVA and Hoeffding’s decomposi-

tion appears clearer in the work of Efron and Stein [1981]. Efron and

Stein [1981] establish the importance of Hoeffding’s result, using it “pro-

pitiously” (Karlin and Rinott [1982]) to prove their lemma on the jack-

knife estimation of variance components. In Efron and Stein [1981] one

finds clearly underlined the relation between the functional and the clas-

sical ANOVA decompositions, not explicitly stated in Hoeffding [1948]:

“a function of n independent random variables X1, X2, ..., Xn can be de-

composed into main effects, interactions, higher order interactions, etc.,

in a manner directly analogous to the decomposition of a complete n-way

ANOVA table” (p. 587). Karlin and Rinott [1982] generalize the results

of Efron and Stein, extending the decomposition to the case of random

functions of two groups of random variables.

An alternative approach to the functional ANOVA decomposition can

be found in the works of Sobol’ [1969, 1993]. He terms it “expansion into

summands of different dimensions” and adopts it in the study of quadra-

ture methods. Sobol’ proves that there exists an uniquely representation

of an integrable f(x) as sum of functions of different dimensions and con-

structs this representation by expanding f(x) into Fourier-Haar series. In

this way, he gathers “together terms corresponding to each subset of vari-
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ables. That is, where Hoeffding has an analysis, Sobol’ has a synthesis”

(Owen [2013], p. 21). Archer et al. [1997] compare ANOVA in classical

factorial design with the approach of Sobol’. Chastaing et al. [2012] refer

to the functional ANOVA representation as the Hoeffding-Sobol’ decom-

position.

Another way of proving the functional ANOVA decomposition is pro-

posed by Takemura [1983]. He demonstrates the analogy between “ANOVA

for general n-factor crossed layouts and the ANOVA-type decomposition of

square integrable statistics” (p. 894) in the context of tensor analysis and

multi-linear algebra. Moreover, he gives an historical account, showing

that functional ANOVA-type representations were known as early as the

end of the 1930s. Rabitz and Alis [1999] introduce an alternative formu-

lation of the functional ANOVA decomposition, called high-dimensional

model representation (HDMR). Their proof of the expansion is based on

a different technique with respect to previous approaches and involves

the theory of projection operators. General HDMR expansions may not

only be used “for representing the input–output mapping over the oper-

ating region of the input variables”, but are more broadly “multivariate

approximation/interpolation schemes as well as a means to analyze the rel-

evant statistics of a random output” (p. 209). In relation to the HDMR

structure, Rabitz et al. [1999] point out the analogy with the multi-body

expansion in molecular physics, which represents potential surfaces gener-

ated from the interactions among systems of atoms.

Rabitz and Alis [1999] also introduce the framework for the so-called

cut-HDMR, a different HDMR expansion which is computationally more

efficient than the functional ANOVA decomposition “as this approach does

not require the evaluation of high-dimensional integrals of the output”

(Rabitz et al. [1999] p. 13). Consider the Dirac measure located at a point

z ∈ X . This point is called the cut center, and the cut-HDMR expresses

the function f(x) as superimposition of lines, planes and hyperplanes of

higher order passing through the cut center z. Then, the cut-HDMR for
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f is

f(x) ≈ f cut(x) = f cut0 +

n∑
i=1

f cuti (xi) +
∑
i<j

f cuti,j (xi, xj) + · · · . (2.16)

In the cut-HDMR expansion (2.16), a physical meaning is attributed to

interactions. Indeed, in many physical and chemical systems, it has been

noted that higher order interactions fade away. Rabitz and Alis [1999]

write that in many physical phenomena “the first few lowest-order interac-

tion terms are often enough to approximate the output to good accuracy”

(p.228) and that “rarely are terms beyond third-order significant” (p.199):

these observations constitute an empirical argument in favour of the effect

hierarchy, discussed in Section 2.4.

On the other hand, Archer et al. [1997] state that “in sensitivity analysis

experiments, where the models are usually nonlinear and the variation in

the response much wider, it may happen that the higher order terms are

the most important [...] and so their estimation is crucial” (p. 103). There-

fore, the choice of the order of the expansion should be motivated by the

type of the analysis that a statistician wants to conduct and the informa-

tions about interaction she wants to gain from it. The expected dimension

of a function Caflisch et al. [1997] (in the superimposition and truncation

sense - to be discussed in section 2.5.2 next) is a possible criterion for

this choice. Importantly, before drawing any conclusion, the statistician

must be aware that the presence of correlated input variables affects the

expansion. The research on functional ANOVA representation with de-

pendent input variables is recent and active (Hooker [2007]; Chastaing

et al. [2012]; Li and Rabitz [2012]; Rahman [2014]; Li and Rabitz [2017];

Owen and Prieur [2017]). In particular, the orthogonality conditions in

(2.15), need to be substituted by conditions of a weaker form: these new

conditions are variously called ‘weak annihilating’ [Rahman, 2014], ‘re-

laxed vanishing’ [Li and Rabitz, 2017] and ‘hierarchical orthogonal’ [Owen

and Prieur, 2017]. In any case, the presence of dependences among the

inputs gives rise to statistical problems: the functional ANOVA decom-

position may be unavailable [Owen and Prieur, 2017]; the terms of the
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expansion becomes significantly dependent on the correlation structure of

the input variables [Rahman, 2014]; it is not clear how to discern between

total and interaction effects [Li and Rabitz, 2017]. However, when input

variables have a multivariate normal distribution and the output is linear,

the expansion can still be obtained analytically, as the next example shows.

Example 2.5.1. Consider the function f(x) = x1 + x2 + x1x2, where x

has a multivariate normal distribution with mean (0, 0, 0) and covariance

matrix

Σ =

(
1 ρ

ρ 1

)
.

Functional ANOVA decompositions of f(x) are calculated analytically for

alternative values of the correlation coefficient ρ following the approach of

Li and Rabitz [2014]; alternatively, one can use the Fourier-polynomial

expansion of Rahman [2014].

Correlation f0 f1(x1) f2(x2) f1,2(x1, x2)

ρ = 0 0 x1 x2 x1x2

ρ = 1
4

1
4

4
17x

2
1 + x1 − 4

17
4
17x

2
2 + x2 − 4

17 x1x2 − 4
17 (x2

1 + x2
2) + 15

68

ρ = 1
2

1
2

2
5x

2
1 + x1 − 2

5
2
5x

2
2 + x2 − 2

5 x1x2 − 2
5 (x2

1 + x2
2) + 3

10

ρ = 3
4

3
4

12
25x

2
1 + x1 − 12

25
12
25x

2
2 + x2 − 12

25 x1x2 − 12
25 (x2

1 + x2
2) + 21

100

ρ = − 1
2 − 1

2 − 2
5x

2
1 + x1 + 2

5 − 2
5x

2
2 + x2 + 2

5 x1x2 + 2
5 (x2

1 + x2
2)− 3

10

Table 2.1: Component functions in presence of independent and correlated

input variables.

Table 2.1 shows the four terms of the expansion for every value of

the correlation coefficient. Note that the presence of correlated inputs

affects main and interaction effects as well, similarly to what happens in
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factorial designs. In particular, this confounding between effects highlights

that care should be used in interpretation: main effects become quadratic

functions of their arguments and the interaction terms might change sign,

reverting the model interpretation.

2.5.1 Functional ANOVA regression models: the role

of interactions

Low-order ANOVA models (equivalent to cut-HDMR) possess relevant

statistical features: they capture non-linearities of real-data effects, have

the flexibility of nonparametric modeling, are well interpretable and can

overcome the curse of dimensionality in high-dimensional settings. Pio-

neering works in the statistical literature have started the use of (low-

order) functional ANOVA modeling in the context of additive regression,

spline models and generalized additive models; see among others, Stone

[1985], Hastie and Tibshirani [1990], Chen [1991], Barry [1993].

Stone [1994] considers functional ANOVA models for generalized regres-

sion and density estimation, expressing the component functions of the

decomposition using tensor product bases [Takemura, 1983]. The key idea

is to redefine “functional ANOVA in terms of projections of the function

of interest onto spaces of additive functions” [Hooker, 2007, p. 710]: main

effects, as functions of one variable, are modeled with arbitrary linear

functional spaces and interactions are modeled with their tensor product

spaces — see Huang [1998b], Rabitz and Alis [1999], Lin [2000] and Hooker

[2007].

Regarding interactions in association with the convergence rate of max-

imum likelihood estimators, Huang [1998a] writes that “by considering

additive models or by allowing interactions involving only two factors, we

can get faster rates of convergence than by using the saturated model”

(p. 59). However, the tensor product space ANOVA model proposed by

Lin [2000] “includes higher-order interactions and still has an optimal rate

that is close to the one-dimensional optimal rate” (p. 737).

Wahba et al. [1995] consider the inclusion/exclusion problem of interaction
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terms for model selection, on the basis of the model predictive capability.

This is in line with the considerations of Shmueli [2010]: “in predictive

modeling [...] there is no need to delve into the exact role of each variable

in terms of an underlying causal structure” (p. 298).

Overall, one cannot but observe the deep conceptual difference between

the selection of interaction terms based on technical aspects such as con-

vergence rate and model selection and the reasoning of Rabitz and Alis

[1999], where interactions should be present because of physical consid-

erations about the phenomenon at hand. The implication is that, if the

modeler adds or removes interaction terms only on the basis of technical

motivations, then interpretation issues about interactions are very likely

to arise, especially if one asks whether the interaction appearing in the

statistical model is the reverberation of an interaction truly characterizing

the phenomenon at hand. We discuss this issue in greater detail in Section

2.7.

2.5.2 Designs for the sensitivity analysis of computer

experiments

The rapid and on-going advances in high-fidelity mathematical modeling

and computational power have made computer experiments common tools

to simulate real-world phenomena. The simulator is often a set of com-

plex mathematical equations embedded in a computer code whose aim is

to mimic physic processes producing responses from known input factors.

In contrast to physical experiments, deterministic computer experiments

produce the same output from the same combination of input factors

[Sacks et al., 1989, Wu, 2015]. This makes the notions of blocking, ran-

domization and replication, typical in the DOE become irrelevant. More-

over, in a computer experiment one usually does not have the problem

of confounding effects, because the in silico experiments can be repeated

identically. How about the three principles for factorial designs proposed

in Section 2.4? “Effect sparsity can be invoked if there are many input

factors and a majority of them are assumed to be inert [...] effect hierar-
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chy and heredity principles may be too simplistic to be useful. It is thus

a major challenge to formulate new principles that can be used to guide

work in computer experiments” (Wu [2015], p.618).

Interactions seem to be another breaking point between physical and com-

puter experiments, even with paradoxical aspects: “in physical experimen-

tal design, the variation in the factors is often moderate (due to cost, for

instance), and as a result the interaction terms tend to be small [...] In

numerical experiments, on the other hand, factors are varied generously

over orders of magnitude, and the interaction effects can be very signifi-

cant and even predominant over the main effects” (Saltelli et al. [1999],

p.40). Hence, the possibilities of including in the computer experiment a

great number of factors and of augmenting their ranges of variation nat-

urally lead to an increase of the importance of the role of (high-order)

interactions. We present here a popular approach to escape this curse of

dimensionality in computer experiments

Let’s denote the simulator output with f(x), defined as in Section 2.5.

Its functional ANOVA decomposition, equation (2.14), is commonly used

by computer experimenters to model main effects, two-factors interactions

and so on [Sacks et al., 1989]. As we have seen, the functional ANOVA

modelling allows to overcome the curse of dimensionality posed by the large

number of input factors. Furthermore, a very popular method for global

sensitivity analysis of computer experiments is based on this decomposi-

tion Sobol’ [1969, 1993]. The total variance of f(x) is V =
∫
f2(x)dx−f2

0

while

Vi1,...,is =

∫
f2
i1,...,is(xi1 , ..., xis)dxi1 · · · dxis , (2.17)

with s = 1, ..., n denotes the partial variances computed for each term of

the functional ANOVA expansion. Then, from (2.14) and (2.17) and by

orthogonality, it follows that

V =

n∑
i=1

Vi +
∑
i<j

Vi,j + ...+ V1,2,...,n. (2.18)

Hence, every Vi1,...,is denotes the contribution of the group of variables

indexed by i1, ..., is to the total variance of the model. Thus, Sobol’ sen-



33

sitivity indeces Si1,...,is , s = 1, ..., n can be defined by

Si1,...,is =
Vi1,...,is
V

(2.19)

and they rank the variance-based importance of the main and interac-

tion effects. These indices are comparable as they are standardized, i.e.,∑n
i=1 Si +

∑
i<j Si,j + ... + S1,2,...,n = 1. This approach is a functional

analogous to the classical ANOVA of factorial experiment designs, where

the variance is decomposed into a sequence of terms of increasing dimen-

sions (see e.g. Scheffé [1959]).

It is possible to define related quantities of interest for a complete interac-

tion analysis: the total sensitivity index for input i [Homma and Saltelli,

1996] is defined by

STi = Si +

n∑
j=1,j 6=i

Si,j + ...+ S1,2,...,n (2.20)

and accounts for the total contribution of the input i, including its main

effect and its possible high-order interactions. One an then define the

indexes SIi = STi − Si as overall measures of the importance of the inter-

actions in which factor Xi is involved. Note that a similar concept can be

found in the epidemiological literature, as we discuss in Section 2.7.

Variance-based sensitivity indices are at the basis of the notion of di-

mension distribution of a function. Because the indices are positive and

sum to unity, they can be regarded as a probability mass function Caflisch

et al. [1997], Owen [2003]. In particular, letting U a random variable with

support 2Z , then one defines Pr(U = z) = Sz. Then, one calls the distribu-

tion of the cardinality of U the dimension distribution of the simulator in

the superimposition sense; and one calls the distribution of max{j : j ∈ z}
dimension distribution of the simulator in the truncation sense. Caflisch

et al. [1997], Owen [2003] then define the mean effective dimensions of a

function in the superimposition and truncation sense, as [Caflisch et al.,
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1997, Owen, 2003]:

DSuperimp =
∑
|z|>0

|z|Pr(U = z) =
∑n

i=1
STi , (2.21)

DTrunc =
∑
|z|>0

max{j : j ∈ z}Pr(U = z), (2.22)

One observes that the mean dimension in the superimposition sense coin-

cides with sum of all total sensitivity indices related to Xi [Owen, 2003].

The effective dimensions DSuperimp and DTrunc take values between 1

and n, with the minimum registered for additive models. Thus, the higher

their values, the higher the relevance and order of the interactions in the

model. Therefore, the effective dimensions provide an indication of the

size of the relevant interactions and have been exploited in works related

to dimension reduction in high-dimensional integration, such as such as

[Wang, 2006, Wang and Sloan, 2011].

Interestingly, in computer experiments the analyst has also the pos-

sibility of implementing screening designs to select the most influential

inputs and their interactions. These screening designs include the wind-

ing stairs [Chan et al., 2000] and the cell-based designs [Saltelli et al.,

2010]. Note that this screening operation is not typical in the physical ex-

periments literature, where fewer factors are under study — nonetheless,

one can find exceptions such as Cotter [1979] and Lewis and Dean [2001].

However, the underlying ideas are taken from DOE literature and adapted

in the framework of screening experiments. In fact, as far as the selection

of points in the model input space is concerned, any design applicable

for in the field experiments can be adopted in a computer experiments.

For instance, we note that the cell-based estimator of the screening de-

sign in Saltelli et al. [2010] for the second order interaction effect of model

input i is the interaction effect INT(A,B) defined for DOE in equation

(2.11), where in this context A and B denote appropriate changes in the

coordinates involving factor i (see Becker and Saltelli [2015] for additional

details).

In summary, computer experiments represent an important intersection

of methodologies from DOE and from functional ANOVA, and strategies
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to identify interactions benefit from the interplay between these two vast

subjects.

2.6 Modern approaches: interaction identi-

fication in high-dimensional settings

High-dimensionality of data is a significant feature in several branches of

modern scientific research, ranging from imaging to genetics, to network

analysis. In the recent years, the interest in identifying interactions has

rapidly grown due to the “importance of interactions in statistical infer-

ence and contemporary scientific discoveries” (Fan et al. [2015], p. 1243).

Finding interactions provides the researches with deep insights on the com-

plexity that underlies scientific models. In this respect, Hao and Zhang

[2014] write that “interaction models provide a better approximation to

the response surface, improve prediction accuracy, and bring new insight

on the interplay between predictors” (p. 1285). For example, in genome-

wide association studies, the problem of discovering gene-gene [Wang et al.,

2015, Xia et al., 2015] and gene-environment [Ma et al., 2015, He et al.,

2017] interactions is receiving much attention by researchers for the po-

tential of unveiling important mechanisms with implications for human

diseases. However, in Section 2.7 we discuss the limitations of the statis-

tical regression analysis for causal interactions in epdidemiology.

In high-dimensional regression models, statisticians face “unprecedented

challenges in identifying important interactions” (Kong et al. [2017], p.

897): the dimensionality of the problem rapidly grows considering the

large number of possible interactions, there might be irregularities in the

interaction pattern, memory requirement and computational cost are pro-

hibitive, noise accumulates while estimating the large number of param-

eters and models become unidentifiable [Fan and Song, 2010, Hao and

Zhang, 2014].

To illustrate these difficulties, consider the linear two-way interaction re-
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gression model

Y = β0 +

p∑
i=1

βiXi +
∑
i<j

βi,jXiXj + ε, (2.23)

where β0, β1, ..., βp and β1,2, β1,3, ..., βp−1,p are unknown regression coeffi-

cients1.

The model in (2.23) contains p main effects and
(
p
2

)
interaction terms.

Given a set of n i.i.d. observations {(yi, xi)}ni=1, if p is small compared to

the sample size n, common statistical procedures, such as ordinary least

squares, allow one to estimate the model parameters.

On the other hand, when p is large, the number of possible two-way in-

teractions grows at an order O(p2) and the ordinary least squares estimate

become difficult to apply (Wang and Leng [2016],p. 589). To illustrate,

consider that a common gene expression dataset [Simon and Tibshirani,

2015] involves p ∼ 20000 genes (the covariates) and n ∼ 100 patients (the

observations): in this case, the number of two-way interaction parame-

ters in model (2.23) is approximately 200 millions. To perform statistical

analyses in a ‘large p, small n’ situation, it is commonly assumed that

only a subset of variables actively contributes to the response. This prin-

ciple is equivalent to the effect sparsity in the design of experiments and

in this context assumes that only a relatively small number of regression

coefficients are significantly different from zero. As a consequence, high-

dimensional statistical modeling can be improved by performing variable

selection [Fan and Song, 2010].

In practice, however, standard variable selection techniques, such as the

Lasso [Tibshirani, 1996], treat the candidate variables “individually or

flatly” (Choi et al. [2010], p. 354), ignoring the relationship between main

and interaction effects. Indeed, in fitting the model in (2.23), it is often

of interest for the statistician to obtain a final model which satisfies cer-

tain constraints among variables. For instance, it is common practice to

1Hao and Zhang [2014] and Hao and Zhang [2017] consider another definition of

linear two-way interaction models: they add to (2.23) the quadratic terms
∑p

i=1 βi,iX
2
i

and refer to all the degree-two terms X2
i and XiXj as interactions.
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include an interaction term in the model if the corresponding main ef-

fects are in the model as well. This principle is known in the regression

modeling context also as marginality [Nelder, 1977] or hierarchy [Peixoto,

1987]. We observe that this principle is analogous to the notion of effect

heredity in DOE [Hamada and Wu, 1991]. There are two types of such re-

strictions, called the strong and weak heredity principles [Chipman, 1996].

Precisely, the strong heredity principle foresees that, if an interaction term

is included in the model, then also its corresponding main effects must be

included, that is

βi,j 6= 0 =⇒ βi 6= 0 and βj 6= 0.

The weak heredity principle foresees that an interaction term is taken into

account only if at least one of its associated main effects is included in the

model, that is

βi,j 6= 0 =⇒ βi 6= 0 or βj 6= 0.

However, the adequacy of heredity principles in variable selection is

the subject of an intense debate in the literature. Some arguments in

their favor are technical: “some statisticians argue that models violating

strong hierarchy are not sensible [...] violating strong hierarchy amounts to

postulating a special position for the origin” (Bien et al. [2013] p.1112), and

practical: “a generic variable selection method may select an interaction

term but not the corresponding main terms, and such models are difficult

to interpret in practice” (Choi et al. [2010], p.354). On the other hand,

Kong et al. [2017] observe that “the strong or weak heredity assumption

[...] may not be satisfied in certain real applications” (p. 898).

In general, Hao and Zhang [2014] classify approaches to maintain

an heredity structure in the final model into joint and two-stage pro-

cedures. Joint methods select simultaneously main and interaction effects

and search globally over all candidate models. This class includes, among

others, the SHIM [Choi et al., 2010], HL [Bien et al., 2013], FAMILY

[Haris et al., 2016] and GRESH [She et al., 2016] methods. These are

regularization-based methods in which special penalty constraints are in-

troduced to respect the heredity principle [Radchenko and James, 2010].
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In ultra-high dimensional setting (very large p) the joint analysis may

become infeasible due to “memory requirement and computational cost”

(Hao and Zhang [2014], p. 1286) and “simultaneous challenges of com-

putational expediency, statistical accuracy and algorithmic stability”(Fan

et al. [2009], p.2014). Hence, this ultra-high dimensional settings are re-

garded as the bottleneck for existing regularization methods: “when the

space of searched interactions is very large, it is much easier to find false

positives” (Lim and Hastie [2015], p.649). Two-stage methods are then

receiving increasing attention in the statistical analysis of genomics ultra-

high datasets [Wu et al., 2009, 2010]. The structure of a two-step method

is typically as follows: in the first step one performs a screening exercise to

identify strong individual effects, in the second step one performs the joint

analysis of the effects remaining after the screening. As Kong et al. [2017]

underlines, it is not necessary to assume heredity in a two-step procedure.

The iFOR [Hao and Zhang, 2014], IPDC [Kong et al., 2017] and RAMP

[Hao et al., 2018] are representatives of this class of methods.

In identifying interactions in gene-environment studies, researchers may

find nonlinear features of interactions, i.e., the effects of genetic factors can

be altered by environmental factors in a nonlinear way. There is growing

interest in models that capture this nonlinear behavior: “in the high-

dimensional data setting, studying nonlinear interaction effects has found

much attention in recent years, and a few strategies have been proposed”

[Ma et al., 2015, p. 2104]. A nonlinear two-way interaction model can be

written as

Y = β0 +

p∑
i=1

fi(Xi) +
∑
i<j

fi,j(Xi, Xj) + ε, (2.24)

and can be seen as the stochastic analogous of the second-order func-

tional ANOVA decomposition (2.16). To estimate and to perform inference

for the nonparametric component functions in a high-dimensional setting,

functional ANOVA modeling must be combined with some variable selec-

tion techniques, in analogy to the standard linear regression case. Recent

methods developed for studying nonlinear interactions in high-dimensional

datasets include VANISH [Radchenko and James, 2010], VICM [Ma and
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Song, 2015], high-dimensional GACM [Ma et al., 2015], PLVMICM [Liu

et al., 2016] and GPLVMICM [Liu et al., 2017].

2.7 Interactions and causal inference in epi-

demiology

In the previous sections we have provided a comprehensive overview to

interactions with a focus on issues emerging in their definitions and in

modeling strategies. However, an important scientific aspect concerning

interactions for the Statistician, is whether a significant interaction implies

a corresponding real physical or biological mechanism. This inference, as

underlined in VanderWeele and Knol [2014], leaves no room to a sim-

plistic intepretation. While the discussion that follows is taken from pa-

pers appeared mostly in the epidemiological literature [Greenland et al.,

2008, VanderWeele and Knol, 2014, VanderWeele, 2015], causal interac-

tions have been studied also in the context of high-dimensional data [Imai

and Ratkovic, 2013] and are relevant also for investigations in genetics,

social sciences, industry as well.

2.7.1 Inference for statistical interactions

Consider a binary outcome Y that depends on the effects of two binary

exposures G and E. As a reference, let us consider them a genetic factor

and an environmental factor respectively. When the effect of one exposure

depends in some way on the other, than the exposures are said to interact.

A first way to measure such interaction is to investigate whether the joint

effect of both factors exceeds the sum of the individual effects. Let pge =

P (Y = 1|G = g,E = e) be the probability of the outcome when G is at

the value g and E at e. Note that these probabilities represent the ‘risk’

of the (epidemiological) outcome and, hence, are not assumed to sum to

one, as it happens in contingency tables (Section 2.2). Then, a measure
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of the interaction on the additive scale is given by [VanderWeele, 2015]

(p11 − p00)− [(p10 − p00) + (p01 − p00)] = p11 − p10 − p01 + p00, (2.25)

where (p11−p00) can be seen as the joint effect of the factors and the terms

(p10 − p00) and (p01 − p00) represent the individual factor effects. When

expression (2.25) is positive, then the interaction is said to be positive,

negative otherwise. Additionally, denoting with pe the probability P (Y =

1|E = e), for independent exposures G and E one obtains

(pe=1 − pe=0) = (p01 − p00) + (p11 − p10 − p01 + p00)P (G = 1). (2.26)

This expression allows one to define the quantity pAIG=0(E) as [Vander-

Weele and Knol, 2014]

pAIG=0(E) =
(p11 − p10 − p01 + p00)P (G = 1)

(pe=1 − pe=0)
. (2.27)

This quantity represents the proportion of the overall effect of E which

is attributable to interaction, with reference category G = 0. In anal-

ogy to the total interaction index in the sensitivity analysis of computer

experiments, this measures aims at quantifying the total impact of the

interaction.

Typically, interaction on the additive scale is evaluated using a linear sta-

tistical model of the form

P (Y = 1|G = g,E = e) = α0 + α1g + α2e+ α12eg, (2.28)

where α0 = p00, α1 = p10 − p00, α2 = p01 − p00 and α12 = p11 − p10 −
p01 + p00. The coefficient α12 is called the statistical interaction on the

additive scale. This coefficient assumes an important role in supporting

public health policy making [Blot and Day, 1979, Berrington de González

and Cox, 2007]. If if α12 > 0, then the consequence of a public intervention

on the factor E would be larger in the G = 1 group, larger in the G = 0

group in the other case of negative interaction α12 < 0.

Another approach to assess interaction effects is to use measures de-

fined on the multiplicative scale. One considers the risk ratios

RR10 = p10/p00, RR01 = p01/p00, RR11 = p11/p00.
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Then, one can define an interaction measure on the multiplicative scale as

[VanderWeele, 2015]
RR11

RR01RR10
=
p11p00

p01p10
. (2.29)

Note that, if p11p00 = p01p10, then there is no multiplicative interaction

(for the risk ratios): this condition is analogous to the definition of inde-

pendence for 2×2 contingency tables [Bartlett, 1935]. If p11p00/p01p10 > 1,

then the multiplicative interaction is said to be positive, otherwise nega-

tive.

In practice, interactions on the multiplicative scale are evaluated using

log-linear models for the risk ratios with the product term

logP (Y = 1|G = g,E = e) = β0 + β1g + β2e+ β12eg, (2.30)

where eβ0 = p00, eβ1 = RR10, eβ2 = RR01 and eβ12 = RR11/RR10RR01.

Hence, β12 is the statistical interaction term for the log-linear model.

On the multiplicative scale a further interaction measure is constructed as

follows. Let’s define the odds ratios

OR01 =
p01/(1− p01)

p00/(1− p00)
, OR10 =

p10/(1− p10)

p00/(1− p00)
, OR01 =

p11/(1− p11)

p00/(1− p00)
.

The interaction measure on the multiplicative scale for the odds ratios is

defined as
OR11

OR01OR10
. (2.31)

When OR11/OR01OR10 > 1(< 1), then the multiplicative interaction for

the odds ratios is said to be positive (negative).

In case-control studies, the multiplicative interaction for the odds ratios

is estimated using logistic model with the product term

logitP (Y = 1|G = g,E = e) = γ0 + γ1g + γ2e+ γ12eg, (2.32)

where eγ0 = p00/(1−p00), eγ1 = OR10, eγ2 = OR01 and eγ12 = OR11/(OR01OR10).

The coefficient γ12 is the statistical interaction in the logistic model and

measures the multiplicative interaction on the odds ratio scale. Multiplica-

tive interaction models (log-linear and logistic) are usually preferred since
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they are easier to fit and are implemented in common statistical softwares.

[VanderWeele and Knol, 2014].

In general, as it happens for the analysis of contingency tables (see Section

2.2), several reasons can be given in favour of the use of the additive or

of the multiplicative scale. However, the fact that an interaction is sig-

nificant, positive or negative, depends on the scale and results might be

different on different scales [Berrington de González and Cox, 2007]. In

fact, Greenland et al. [2008] prove that there must be an interaction on

some scale whenever both exposures have an effect on the outcome: the

only possible way not to have an interaction on both scales is that one

exposure does not have an effect on the outcome. This point “raises the

question of why interaction is of interest and which scale is to be pre-

ferred. It also makes clear that just to say that there is an interaction on

some scale is relatively uninteresting [...] provided both exposures have

an effect on the outcome, such interaction on some scale will always be

present” (VanderWeele and Knol [2014], p.37-45). Therefore, VanderWeele

and Knol [2014] and VanderWeele [2015] suggest that researchers should

provide interaction measures on both scales, since both analyses can be

informative and, in some sense, complementary.

2.7.2 Mechanistic forms of interactions

Clayton [2009] writes that “recent interest in interaction in genetics has

also been characterized by exaggerated expectations for the inferences that

can be drawn from epidemiological data [...] little can be deduced about

mechanism from the observation of statistical interaction” (p.5). Hence,

it is of practical need the possibility of drawing conclusion on more ‘mech-

anistic’ forms of interactions rather than ‘pure’ statistical ones.

A first necessary assumption to infer causality between the effects is that

they are unconfouded. Without such requirement, one can not be sure

whether the regression coefficient for interaction should be interpreted as

a measure for ‘effect modification’ or for ‘causal interaction’ [VanderWeele

and Knol, 2014]. Denote by Yeg the outcome that would have occurred
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for every subject if G = g and E = e had been fixed (this is called the

counterfactual outcome). Then, a sufficient cause interaction is present if

for some individual it holds Y11 = 1 with Y01 = Y10 = 0 [VanderWeele and

Robins, 2008]. Hence, the effects interact in a ‘mechanical’ way since their

joint presence is required in order to activate the outcome. Sufficient cause

interactions can be estimated from data: when one can assume that Yeg

is monotonic (e.g., Yeg is non-decreasing in e and in g for every subject)

and factors are unconfounded, then p11 − p10 − p01 + p00 > 0 implies a

sufficient cause interaction [Greenland et al., 2008]. The difficulty in this

case is represented by the additional assumption of the monotonicity of

effects, which can’t be verified empirically and “must be established on

substantive grounds” (VanderWeele and Knol [2014], p.51). However, the

stronger condition p11 − p10 − p01 > 0 implies the presence of a sufficient

cause interaction with the sole assumption that the effects are uncon-

founded [VanderWeele and Robins, 2008].

VanderWeele [2010] introduces a stronger notion of interaction. An

epistatic interaction is said to be present if there is a subject for whom

Y11 but Y01 = Y10 = Y00 = 0; that is, the outcome is activated if and

only if both exposures are present. To empirically test for such epistatic

interaction, VanderWeele [2010] proves that the condition p11−p10−p01−
p00 > 0 implies the presence of epistatic interaction, provided that effects

are unconfounded. Note that this condition is stronger than that for the

sufficient cause interaction (the baseline probability p00 is subtracted and

not added). Additionally, if the effect of at least one exposure is monotonic,

then p11− p10− p01 > 0 suffices to test for an epistatic interaction; if both

effects are positive and monotonic, then p11 − p10 − p01 + p00 > 0 suffices

for an epistatic interaction [VanderWeele, 2010, 2015]. Note that all these

conditions are only sufficient, i.e. if both conditions are satisfied, then

an epistatic interaction is present. However, if they are not satisfied, an

epistatic interaction might or might not be present: “one simply cannot

determine this from the data” (VanderWeele [2015], p.298).

However, the presence of mechanistic interactions (sufficient cause and

epistatic) still does not imply a real physical or biological underlying mech-
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anism. Indeed, the statistical tests of the defining conditions don’t give

information about the underlying biology: “From the assessment of sta-

tistical interaction between risk factors it is tempting to infer the nature

of the biologic interaction between the factors. However, the use of sta-

tistical analyses of epidemiologic data to infer biologic processes can be

misleading” (Siemiatycki and Thomas [1981], p.383).

2.7.3 The debate in brief

The statical analysis of interactions in complex biological systems has been

a controversial and debated point in the epidemiological literature (see the

discussion in Walter and Holford [1978], Blot and Day [1979], Rothman

et al. [1980], Siemiatycki and Thomas [1981], Thompson [1991], Clayton

[2009]). Several authors adopt the following distinction [Phillips, 2008,

VanderWeele, 2015]

1. statistical interactions are interactions due to the presence of product

terms in statistical regression models;

2. mechanistic interactions are interactions emerging when the out-

come is activated by the joint presence of the exposures;

3. biological or functional interactions: are interactions emerging when

two exposures physically interact to bring about the outcome.

Therefore, even if in some situations we can estimate and draw conclusions

about mechanistic interactions, this analysis does not allow one to make

definitive conclusions about physical interactions in biological or social

mechanisms. In this regard, [Clayton, 2009, p. 4] writes that “statistical

significant results are often heralded as significant in a wider sense”. Some

examples of such limitations can be found in Siemiatycki and Thomas

[1981], who show using the multistage model for carcinogenesis that “even

if carcinogenic factors act independently, some pairs may fit an additive

statistical model, some a multiplicative statistical model, and some nei-

ther. The elucidation of biological interactions by means of statistical
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models requires the imaginative and prudent use of inductive and deduc-

tive reasoning; it cannot be done mechanically” [Siemiatycki and Thomas,

1981, p. 383]. In such case, we note that the interaction is neither biolog-

ical nor statistical: it is only mechanicistic.

2.8 Conclusions

This work has offered a tour into the world of interactions as analyzed

in the statistical literature. In statistical modelling one can find several

dissimilar notions of ‘interaction’ and, hence, the term ‘interaction’ does

not have per se a univocal meaning. For instance, in design of experiments

interactions are mainly regarded à la Cox, i.e., as deviations from additiv-

ity, while in the analysis of contingency tables interactions are associated

with the presence of statistical dependences.

Specific features and technical aspects create alternative interpreta-

tions of the term and the techniques used to determine interactions differ

substantially depending on the application. For instance, determining in-

teractions in a computer experiment is notably different than analyzing

them in a biological context. However, there is an underlying fil rouge and

technical differences might not be conceptual. For instance, we have no-

ticed that the standard procedure for assessing interactions in contingency

tables (Section 2.2) is the same for risk factors interaction in epidemio-

logical studies (Section 2.7), although there is little overlap between these

two fields in the literature. Similarly, statistical regression models (Sec-

tion 2.6) and functional cut-ANOVA models (Section 2.5) have a common

mathematical structure, although the corresponding investigations develop

mostly independently.

A transversal theme is the challenge in interpreting interactions. In-

ferring causality from the presence of interactions, for instance, is a major

conceptual issue. We have seen that their interpretation is subject of

debate and careful scientific discussion, because it is the choice of the

model that, in some instances, can determine the presence or absence of

interactions. The difficulty in choosing the right model is not confined
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to epidemiological applications, but is present in functional ANOVA and

statistical regression analysis as well, where the statistician has to make a

decision about what terms to include in the model. In high dimensional

settings, the selection is often guided by hierarchy principles. In computer

experiments, one finds the notion of dimension distribution that provides

a quantitative measure. At the same time, one assists to applications, such

as unbalanced ANOVA tables, in which the converse happens. One deter-

mines interactions first, and uses them to decide the correction method.

What to do? The work reveals that studying interactions is a long

standing task in statistical modelling, and its importance is not decreased

by modern applications. The task is a delicate one, and care must be

undertaken whey studying interactions, as VanderWeele and Knol [2014]

well capture: “when studying interaction, it is important to clearly un-

derstand what the goal of the analysis is: What is that we are trying to

learn? What scientific or policy question are we trying to answer and how

does an interaction analysis help us?” (p.45). In this respect, this work, by

addressing issues and conceptualizations of interactions across alternative

statistical applications should be of help to the analyst in identifying the

frame of the analysis at hand.

Appendix

2.9 Lancaster’s Additive Interactions

In multivariate data analysis, it is of great importance to obtain measures

of multivariate dependence among the components of a random vector

[Joe, 1993]. Citing Ip et al. [2004], “given a distribution of multivari-

ate variables, interactions are quantities that partition the total depar-

ture from stochastic independence” (p.120). Additive interactions among

random variables are a powerful tool to describe their dependence struc-

ture. They are a representation of the multivariate joint distribution

meant to show clearly the dependencies between the elements of a ran-

dom vector [Streitberg, 1999, p. 408]. The underlying intuition dates
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back to the seminal work of Lancaster [1969]. In particular, Lancaster

[1969] characterizes the absence of additive interactions among the com-

ponents of a random vector. Let X = (X1, ..., Xn) ∈ Rn be a random

vector with joint distribution function F = F1,...,n and marginal distribu-

tions F1, ..., Fn, F1,2, ..., Fn−1,n, ..., F2,...,n. Then, X is said to contain no

Lancaster-additive interaction of order s− 1 if and only if∏
i∈A

(F ∗i − Fi) = 0, (2.33)

where A are the subsets of the indexes {1, ..., n} with s elements. In

equation (2.33), a product of the type F ∗i F
∗
j F
∗
k denotes the distribution

function Fi,j,k. For example, consider the case n = 3: the term F1F
∗
2 F
∗
3

in the expansion (F ∗1 − F1)(F ∗2 − F2)(F ∗3 − F3) denotes F1F2,3. Hence, F

does not contain any Lancaster-additive second order interaction if and

only if

F1,2,3 = F1F2,3 + F2F1,3 + F3F1,2 − 2F1F2F3. (2.34)

The above definition generalizes the classical probabilistic definition of

mutual independence, that is F1,2,...,n = F1F2 · · ·Fn. Hence, the presence

of additive interactions reflects the more realistic situations in which not

all the variables can be assumed independent: this fact explains the con-

nection between additive interactions and the decomposition of the joint

distribution F1,2,...,n according to the dependence structure. Conversely, it

is possible to recover the joint distribution F1,2,...,n in terms of its marginal

distributions under the assumption that all the interactions higher than a

certain order vanish [Zentgraf, 1975].

Lancaster’s approach has developed into the theory of additive in-

teraction measures, that has been established in the works of Lancaster

[1969],Lancaster [1971], Streitberg [1990, 1999]. Formally, an additive in-

teraction measure ∆F is a signed measure that vanishes whenever F can

be factorized as the nontrivial product of two of its multivariate marginal

distributions [Streitberg, 1990]. In this case, F is called decomposable.

For example, if n = 10 and F1,2,...,10 can be factorized as F1 ·F2,...,10, then

∆F = 0 and F is decomposable.
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In the early development of the theory, the additive interaction measure

was defined with Lancaster’s representation as

∆(L)F =

n∏
i=1

(F ∗i − Fi). (2.35)

We call this the Lancaster representation of the additive interaction mea-

sure ∆F. Later, however, Streitberg [1990] provides a counterexample for

the case n = 4, showing that ∆(L)F does not vanish in presence of two

mutually independent sub-vectors. Using the Moebius function on finite

lattices, Streitberg [1990] proves the following representation of an additive

interaction measure;

∆(S)F =
∑
π

(−1)|π|−1(|π| − 1)!Fπ, (2.36)

where the sum is taken over all partitions π of the index set {1, ..., n}. The

representations ∆(L) and ∆(S) coincide for n < 4. Ip et al. [2004] investi-

gate the relationship between the interaction measures of Lancaster (2.35)

and of Streitberg (2.36) further. Among other findings, they show that

multivariate joint cumulants k(X) can be written as the signed integral

with respect to Streitberg’s additive interaction measure as

k(X) = (−1)n
∫

∆(S)F (x)dx. (2.37)

In the statistical literature important applications of additive interac-

tion measures can be found, which illustrate the flexibility of these mod-

els. Rodŕıguez and Bárdossy [2014] use relation (2.37) for model build-

ing with application to spatial data. Lancaster’s approach has been re-

cently used for modelling dependence in Markov exchangeable processes

[Di Cecco, 2009], for testing non-parametrically the dependence in graph-

ical models [Sejdinovic et al., 2013] and for studying compatibility among

marginal densities [Wang, 2004]. In general, the well-known application of

Lancaster-additive models is the interaction quantification in contingency

tables, discussed in Section 2.2.
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Chapter 3

Interactions and

Computer Experiments:

What’s in the black-box?

Abstract

Studying interactions is crucial in understanding the structure of a simu-

lator and, more in general, of a statistical model. However, the variety of

interpretations and available techniques, as well as computational issues

make the analysis of interactions non-obvious. We base our investigation

on Cox’s interpretation of interactions as deviations from additivity. We

propose formal definitions for different interaction types, and obtain a

series of novel results that investigate the properties of interactions mea-

sures at the infinitesimal, finite and global scales. Several insights, some

of which not immediately intuitive, are discussed through counterexam-

ples and realistic case studies, with the goal of aiding the analyst in the

difficult task of making the model box less obscure.
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3.1 Introduction

The analysis of interactions is a significant task in statistics and is partic-

ularly important in computer experiments. Knowing which interactions

are relevant helps the analyst to shed light on the internal structure of the

simulator, thus opening the simulator black box and aiding interpretabil-

ity. Also, it helps analysts in deciding which terms should appear while

building an emulator. Nonetheless, several distinct elements concur in an

interaction analysis, making it a challenging task.

As a first challenge, the analyst finds a variety of interpretations in the sta-

tistical literature. In the Lancaster-Streitberg representation [Lancaster,

1971, Streitberg, 1990], interaction means the absence of statistical depen-

dence. In Cox’s interpretation [Cox, 1984], interaction means deviation

from additivity. Within Cox’s interpretation, one finds spurious interac-

tions [Friedman and Popescu, 2008], removable interactions [Berrington

de González and Cox, 2007], and context-specific interactions, in diverse

contexts such as statistical machine learning, design of experiments and

the analysis of contingency tables, respectively. This raises the question

of whether there are common interaction generating mechanisms across

these specifications. At the same time, the literature offers a variety of

techniques to analyze interactions, from mixed partial derivatives [Fruth

et al., 2014] to the bilinear coefficients of a multilinear response surface

[Zhou and Xu, 2017, p. 1675]. Then, one ought to ask whether the method

used in the investigation is, indeed, the most appropriate for the interac-

tion type at hand. In fact, alternative approaches deliver complementary

rather than equivalent insights. Thus, ideally, the analyst should apply a

combination of methods. However, determining interactions is a numeri-

cally demanding effort and computational burden is a hidden player of the

game.

The purpose of this Chapter is to offer a systematic investigation into these

issues. We address the question of defining interactions and providing a

common theoretical background. This formalization allows one to obtain a

unified view of the types of interactions discussed before in the literature,
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as well as to formalize the link between interactions, transformations and

the nature of the input-output mapping. We start proposing a definition

that formalizes Cox’s notion of interactions as deviations from additivity

[Cox, 1984], and we enrich this definition with a geometric interpretation

that links the discrete Laplace operator with the levels of a factorial design

and with results on additively separable mappings. At the infinitesimal

scale, we obtain a formal bridge between [Berrington de González and Cox,

2007]’s removable interactions and an early result by [Scheffé, 1959] provid-

ing necessary and sufficient conditions for an interaction to be removable.

We show that interactions due to piecewise-definiteness (a class defined

here that encompasses context-specific interactions) are never removable.

We provide a bridge between interactions typical of factorial experiments

(on a finite scale) and global sensitivity measures. Under model input

dependence, we connect the notion of spurious interactions of Friedman

and Popescu [2008] determination of interactions through the generalized

functional ANOVA expansion [Hooker, 2007, Li et al., 2010].

We conclude the Chapter investigating the implications of the previous

methodological findings in applications. We rely on a set of realistic simu-

lators taken from previous literature, that are representative of alternative

input-output structures and dimensions. The numerical experiments sub-

stantiate the insights of the methodological findings.

3.2 Interactions á la Cox

Let X ⊆ Rn, x ∈ X , g : X → R, and

y = g(x) + ε (3.1)

denote a generic multivariate mapping and ε a stochastic error term, with

zero mean. The simulator is called stochastic if the error term is present,

deterministic otherwise.

Interactions are interpreted as deviations from additivity. Quoting from

[Koehler and Owen, 1996, p. 262]: Increasing x1 may be an improvement

and increasing x2 may be an improvement, but increasing them both to-
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gether might make things worse. This would usually be determined from

a confirmation run in which both x1 and x2 have been increased. Two

aspects become relevant: whether the overall effect of the changes is or

not the sum of the individual effects and, if not, whether interactions are

synergistic or antagonistic.

To formalize this intuition we proceed as follows. Let x0 = (x0
1, x

0
2, . . . , x

0
n)

and x1 = (x1
1, x

1
2, . . . , x

1
n) denote any two points in X differing in at least

in two components. For the sake of notation simplicity, consider a deter-

ministic mapping for the moment and let ∆g = g(x1) − g(x0). Also, let

Z = {1, 2, . . . , n} and ik denote a generic index, let z = {i1, i2, . . . , ik},
z ⊆ Z, denote a subset of indices and −z = Z\z its complement. Let

xz = (x1
z : x0

−z) denote the point in X obtained by considering the vari-

ates with indices in z at level 1 and the remaining at level 0. Then

∆zg = g(xz) − g(x0) and ∆−zg = g(x−z) − g(x0) denote the changes

in g due to the shift of variables with indices in z and without indices in

z, respectively.

Definition 3.2.1. Let g : X → R, and consider the points defined above.

We say that g is additive on X if for all changes x0 → x1 with x0,x1 ∈ X

∆g = g(x1)− g(x0) =

n∑
i=1

∆ig, (3.2)

where ∆ig = g(xi)− g(x0) = g(x1
i : x0

−i)− g(x0).

That is, g is additive if the effect of the change x0 → x1 on g is the sum

of the individual changes provoked by each xi for all changes x0 → x1.

Alternatively, in mathematical analysis, one finds the definition of ad-

ditive mapping as a mapping that satisfies:

g =

n∑
i=1

gi(xi). (3.3)

In Supplementary Appendix B we prove that the two definitions are equiv-

alent. (Such Appendix also contains all proofs for this chapter).

Proposition 3.2.1. A mapping g : X 7→ R, X ∈ Rn satisfies equation (3.2)

if and only if it satisfies equation (3.3).
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Thus, an analyst is dealing with an interaction whenever the form of

a simulator is not compliant with (3.3). This intuition is often used in

statistical analysis. For instance, an analyst may be studying the input-

output dataset using a linear emulator, e.g., a regression curve of the form

y '
∑n
i=1 βixi. If the regression fit (evaluated by appropriate measures

of statistical significance) is low, the analyst has several options available

to improve it. The classical first attempt is the inclusion of pairwise in-

teractions terms in the emulator. For instance, she might resort to the

emulator [Zhou and Xu, 2017]:

y '
n∑
i=1

βixi +

n∑
i<j=1

βi,jxixj . (3.4)

The terms βi,jxixj in (3.4) are typically called interaction terms. If

they are statistically significant, then one concludes that interactions are

present in the simulator response. Indeed, (3.4) is not reconcilable with

(3.3), due to the interaction terms. For clarity, interaction terms in general

are not confined to a linearly multiplicative form; for example a term of the

type sin(xi+xj) makes the mapping non-additive in the inputs. However,

interaction terms are not the only interaction generating mechanism: as we

are to see, interactions may appear also when the simulator is locally the

sum of univariate functions. To address this aspect, we need the notion of

piecewise-defined function. Piecewise-defined mappings appear frequently

in statistical studies, as well as in applications of computer simulations.

Kim et al. [2005] study Gaussian processes with piecewise-defined poly-

nomial mean functions to account for the piecewise nature of spatially

distributed data; Liu and Owen [2006] address a piecewise-defined map-

ping emerging from the pricing of a down-and-out barrier option; Römisch

[2013] studies convex piecewise-defined functions in the context of quasi-

Monte Carlo numerical integration. Recently, Roustant et al. [2018] offer

a systematic approach to the Kriging emulation of computer experiments

with piecewise-defined input-output mappings.

Formally, we have the following definition [Herrera, 2007, Borgonovo

and Peccati, 2010]. Consider a finite partition of the domain X , ΠX =
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{X1,X2, ...,XL}. Then, consider a set of L mappings hl : Xl 7→ R, l =

1, 2, ..., L.

Definition 3.2.2. A mapping g is piecewise-defined if it can be written

as:

g(x) =


h1(x) if x ∈ X1

h2(x) if x ∈ X2

. . . . . . . . .

hL(x) if x ∈ XL

(3.5)

with hl(x) 6= hm(x) almost everywhere on Xl, for all l 6= m, l,m =

1, 2, ..., L.

Example 3.2.1. The following piecewise-defined mapping is studied in

Roustant et al. [2018]:

y =


0.1
(
x1 + 0.01 (x1 − 0.5)

2 )
x2; if x2 = 1, 2, 3, 4,

0.9 cos
(
2π(x1 + 0.05(x2 − 4))

)
e−x1 if x2 = 5, 6, 7,

−0.7
(
2π(x1 + 0.05(x2 − 7))

)
e−x1 if x2 = 8, 9, 10,

(3.6)

with x1 ∈ [0, 1] and x2 ∈ {1, 2, . . . , 10}.

The next example shows a piecewise-defined mapping which is locally

the sum of univariate functions.

Example 3.2.2. Given the following mapping on X = [−1, 1]2:

g =

sin(x1) + sin(x2) if − 1 ≤ x1 ≤ 0,

sin(x1) + sin(2x2) if 0 ≤ x1 ≤ 1,
(3.7)

consider the change x0 =

(
−1

2
,−1

2

)
→ x1 =

(
3

4
,

3

4

)
. One obtains

∆g = 1.2818 , ∆1g = 0.6737 , ∆2g = 0.4830, (3.8)

so that ∆g 6= ∆1g + ∆2g. Thus, g is not additive.
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The mapping in Example 3.2.2 is such that g =
∑n
i=1 gi(xi) at every

point of the domain but is not additive. The interactions are generated by

its piecewise-defined nature. This unveils a new mechanism that generates

non-null interactions. To proceed in the analysis, we propose the following

definition.

Definition 3.2.3. We say that a mapping g presents structural interac-

tions if

∆g 6=
n∑
i=1

∆ig (3.9)

for some change x0 → x1.

Thus far, we have seen two mechanisms for the presence of structural

interactions: piecewise-definiteness and the presence of interaction terms.

The two mechanisms can act simultaneously. This simultaneous pres-

ence captures Højsgaard [2004]’s intuition of context-specific interactions.

Højsgaard [2004] introduces this notion in the statistical analysis of con-

tingency tables, thus not directly in computer experiments. According to

Højsgaard [2004], an interaction is context-specific if an interaction term

appears only for given levels of another factor.

Definition 3.2.4. Given a piecewise-defined function g : X → R,X ⊆ Rn,

we say that g contains a context-specific interaction if at least one of the

restrictions hi : Xi → R of g onto Xi is not additive.

Example 3.2.3. The mapping g : [0, 1]4 → R,

g =

x1 + x2 + x3 if x4 < 0.5

x1 + x2 + x3 + x1x2 if x4 > 0.5
(3.10)

displays a context-specific interaction: the interaction term (x1x2) is there

only for x4 > 0.5.

Thus, context-specific interactions are structural interactions that are

related both to the presence of an explicit interaction term and to the
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piecewise-defined nature of the mapping. However, this leads to the ques-

tion of whether two interaction mechanisms (e.g., piecewise-definiteness

and the presence of interaction terms) are (or not) of the same nature.

To address this point, consider the notion of removable interaction.

[Berrington de González and Cox, 2007, p. 374] call an interaction remov-

able if a transformation of the outcome scale can be found that induces

additivity. To formalize this notion, we write:

Definition 3.2.5. Given a mapping g : X → R, X ⊆ Rn, we say that

g(x), x ∈ X , presents removable interactions if there exists a monotonic

transformation η(·) : g(X ) → R such that the transformed function z =

η ◦ g, z : η(g(X ))→ R is additive.

Example 3.2.4. The mapping y = x1x2 on X = [1, 2]2 presents a remov-

able interaction, as a logarithmic transformation turns this mapping into

z = ln(x1) + ln(x2).

We now prove that an interaction due to piecewise-definiteness is never

removable.

Theorem 3.2.1. Let n > 2, g : X → R, X ⊆ Rn be a piecewise-defined

function. Then, it does not exist a monotone transformation η(·) such that

η ◦ g is additive.

This result implies that the two interaction generating mechanisms, ex-

plicit interaction terms and piecewise-definiteness, are indeed of a different

nature. Moreover, we have that one can remove interactions if they are

associated with the presence of explicit interaction terms, but this removal

is not possible if interactions are generated by piecewise-definiteness.

These observations open a further theory-related question: whether

some sufficient conditions on the regularity (e.g., differentiability) of g may

rule out piecewise-definiteness as a reason for interactions. An answer is

provided in the next section.
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3.3 Differentiability, Transformations and In-

teractions

A first and widely used approach for measuring interactions in computer

experiments is through mixed higher order derivatives (see, among others,

Roustant et al. [2014]). Intuitively, because a twice differentiable addi-

tive mapping has null second and higher order mixed derivatives, a value

g′′i,j(x
0) different from zero implies that g contains interactions at x0. It is

not uncommon to find works in which the expression E
[(
g′′i,j(X)2

)]
= 0 is

used to denote the absence of interactions [Friedman and Popescu, 2008].

However, the next example shows that E
[(
g′′i,j(X)2

)]
= 0 is not a necessary

and sufficient condition for the absence of interactions, in general.

Example 3.3.1. Consider the Lebesgue measure dx on [0, 1]2 and the

function g(x) = I
{

1
2 ≤ x1 ≤ 1

}
I
{

1
2 ≤ x2 ≤ 1

}
, where I denotes the in-

dicator function. Since g′′i,j(x) = 0 almost everywhere, it follows that

E
[(
g′′i,j(X)

)2]
= 0. However, g is not additive.

In the previous example, interactions are due to the piecewise-defined

nature of the input-output mapping, and in spite of the fact that E
[(
g′′i,j(X)2

)]
=

0, we have structural interactions. However, in the next result, we pro-

vide the conditions under which E
[(
g′′i,j(X)2

)]
= 0 reassures us that g is

additive.

Theorem 3.3.1. Let X ⊂ Rn and let g : X → R. If g is additive and has

second order mixed derivatives everywhere in X , then g′′i,j(x) = 0 for all

x ∈ X . Conversely, if g′′i,j(x) = 0 for all x ∈ X , then g is additive.

Theorem 3.3.1 helps us in the investigation of whether interactions

can be attributed solely to the presence of explicit interaction terms. In

fact, consider a mapping which is twice differentiable everywhere on its

domain. Then, either the mapping is additive and then g′′i,j(x) = 0 for all

x, or, if there is an interaction, then g′′i,j(x) is different from zero and the

interaction is due to an explicit interaction term.

Related to second order differentiability is a result obtained by Scheffé

in his monograph on the analysis of variance [Scheffé, 1959]. Scheffé
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presents a sufficient condition regarding the second order derivatives of

a multivariate mapping that makes the mapping additive after transfor-

mation. Assume that η(·) and h1, h2 are twice differentiable everywhere.

Then, Scheffé’s conditions are satisfied (Scheffé [1959], p. 95, equation

4.1.12) and g solves the differential equation

g′′1,2 − w(g)g′1g
′
2 = 0. (3.11)

Example 3.3.2. The mappings s = ex1+x2 on X = R2, and t = sin(x1 +

x2) on X = [0, π]× [0, π] are not additive. However, they satisfy Scheffé’s

differential equation in (3.11) with w(s) =
1

s
and w(t) =

1

1− t2
, respec-

tively. Thus, they present removable interactions, with obvious transfor-

mations.

Equation (3.11) states a condition on the second order partial deriva-

tive of g that makes interactions removable. Note that if w(g) = 0 interac-

tions are absent (Theorem 3.3.1). More generally, Equation (3.11) is part

of the family of quasilinear elliptic differential equations

a(x1, x2, g
′
1, g
′
2)g′′1,2 + b(x1, x2, g, g

′
1, g
′
2) = 0. (3.12)

The family admits, in general, no closed form solution and it is therefore

not possible to characterize the complete set of mappings whose interac-

tions are removable.

3.4 Interactions on a Finite Scale

A second way for analyst to determine interactions is to evaluate the sim-

ulator on two alternative locations and to compare the output-variation

against a series of one-at-a-time changes. Definition 3.2.1 considers the

variation of g when the inputs undergo the change x0 → x1. Geometri-

cally, the two points x0 and x1 can be seen as the vertices of a hypercube

(see Figure 3.2 for a three-dimensional visualization).

In DOE, the first graph, G(V, E), corresponds to a 2k factorial design,

the second, G′(V ′, E ′), to a standard one-at-a-time plan [Daniel, 1973].
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The change in g across the two extremes x0 and x1, ∆g = g(x1) −
g(x0), can be decomposed in a finite-change ANOVA expansion of 2n − 1

orthogonalized effects τx
0→x1

z [Li et al., 2001]:

∆g =
∑
z∈Z

τx
0→x1

z , (3.13)

where the orthogonalized finite change τx
0→x1

z is equal to [Borgonovo,

2010]:

τx
0→x1

z = ∆zg −
∑
u⊂z

τx
0→x1

u . (3.14)

The quantity τx
0→x1

z represents the contribution to ∆g of the residual

interaction among the group of indices in z. Borrowing the notation from

Liu and Owen [2006], let z denote a group of indices and define the total

and subset finite change indices of z as τx
0→x1

z =
∑
z∩v 6=∅ τ

x0→x1

v and

τx
0→x1

z =
∑
v⊆z τ

x0→x1

v . Then,

∆g =
∑
v∩z 6=∅

τx
0→x1

v +
∑
v⊆−z

τx
0→x1

v = τx
0→x1

z + τx
0→x1

−z . (3.15)

Moreover, we find the equality τx
0→x1

{1,2,...,n} = ∆g. These two equalities are

analogues of corresponding formulas obtained for variance decomposition

in works such as Sobol’ [1993], Owen [2003]. Particularly relevant effects

in design of experiments are the total effect of a factor [Myers et al., 2016],

that represents its overall contribution to ∆g:

τx
0→x1

i =
∑
z⊇i

τx
0→x1

z , (3.16)

and its overall interaction effect:

Υx0→x1

i =
∑
z⊃i

τx
0→x1

z . (3.17)

Note that Υx0→x1

i equals the difference between the total finite change

effect τx
0→x1

i and the individual finite change effect, τi, of xi.

In DOE, a second order interaction effect can be written as Ai,j =
1
2 [g(xi,j) + g(x0) − g(xi) − g(xj)] [Wu, 2015, eq. (3.1), p. 614]. There-

fore, we have that τx
0→x1

i,j = Ai,j/2. Similarly, one could re-write higher
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order finite change effects in terms of higher order Ai,j,...,k. For notation

simplicity, however, we shall continue with the “τ” notation.

Example 3.4.1. Consider the change in g =
x1

x1 + x2
, as x varies from

x0 = (1, 1) to x1 = (2, 5). One registers ∆g = − 3
14 , ∆g = τx

0→x1

1 +

τx
0→x2

2 + τx
0→x1

1,2 , with τx
0→x1

1 = 1
6 , τx

0→x1

2 = − 1
3 , and τx

0→x1

1,2 = − 1
21 , so

that Υx0→x1

=
(
− 1

21 ,−
1
21

)
, τx

0→x1

i =
(

5
42 ,−

8
21

)
.

The complete decomposition of ∆g in (3.13) requires to evaluate g

on all the vertices of graph G(V, E). Such knowledge is equivalent to

the determination of the Laplace operator of g on the same graph. It

is then possible to link the finite-change effects of DOE to the Laplace

operator. The link is discussed in detail in Appendix A. Because G(V, E)

has 2n vertices, determining the complete orthogonalized decomposition

of a finite change is a computationally intensive task. For instance, for

n = 20, 2n is larger than 106. However, the literature has introduced a

computational shortcut that allows us to determine the triplets τx
0→x1

i ,

Υx0→x1

i and τx
0→x1

i at a linear instead of an exponential cost in n. It can

be proven that

τx
1→x0

i = −g(x0
i : x1

−i) + g(x1) = −τx
0→x1

i , (3.18)

which is the finite scale equivalent of the so-called pick and freeze design

[Borgonovo, 2010, Gamboa et al., 2016]. Specifically, equation (3.18) sug-

gests that the individual effect of xi in the change x1 → x0 is the opposite

of the total effect of xi in the symmetric change x0 → x1. Thus, two

series of one-way sensitivities are sufficient to estimate τx
0→x1

i , Υx0→x1

i

and τx
0→x1

i , so that the total computational cost is 2n + 2 evaluations

of g instead of 2n. The link with the Laplace operator leads to another

computational shortcut. In fact, it can be proven that if g is additive,

then only two function evaluations are necessary to estimate the Laplace

operator on G(V, E) (See supplementary Proposition 3.9.1).

Let us now come to the link between interactions on a finite and on an

infinitesimal scale. Let hi = x1
i − x0

i , hj = x1
j − x0

j , j 6= i, i, j = 1, 2, . . . , n.

If g is twice differentiable, we obtain the following relationship between
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interactions effects on a finite and on an infinitesimal scale:

g′′i,j(x
0) = lim

x1→x0

Ai,j(x
0,x1)

2(x1
i − x0

i )(x
1
j − x0

j )
. (3.19)

A similar argument applies to higher order interactions. Thus, an infinites-

imal interaction can be regarded as the limit for x1 → x0 of a finite scale

interaction. Suppose now that the simulator g is differentiable. Then, we

have:

lim
x1→x0

τx
0→x1

i

hi
= lim

h→0

τi
x0→x1

hi
= g′i(x

0) and lim
x1→x0

Υx0→x1

i

hi
= 0. (3.20)

The last equality suggests that for a smooth mapping, if input changes are

sufficiently small, interaction effects present in the input mapping might

not be actually registered by finite change indices.

3.5 Global Interactions

A relevant role in computer experiments is played by the study of inter-

actions in global sensitivity analysis [Saltelli and Tarantola, 2002]. Fun-

damental for the analysis is the classical functional ANOVA expansion

[Efron and Stein, 1981]. One regards the simulator inputs as a random

vector X = {X1, X2, . . . , Xn} on measure space (X ,B(X ), FX) and as-

sumes FX =
∏n
i=1 dFi . If g ∈ L2(X ,B(X ), FX), the seminal result of

Efron and Stein [1981] allows us to write the variance of Y as:

V[Y ] =
∑

z⊂Z,z 6=∅

Vz, (3.21)

where

Vz =
∫

[gz(x
z)]

2
dFz(x

z) , and gz =
∫
g(xz : x−z)dF−z(x

−z)−
∑
v⊂z gv(x

v).

(3.22)

In (3.21), the first order term Vi (z = {i}) represents the individual con-

tribution of Xi to the variance of Y . The terms Vz represents the residual

contribution due to the interaction among the simulator inputs whose in-

dices are in z. Note that Vz is part of the H2
z test statistics for interactions
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introduced in Friedman and Popescu [2008]. Liu and Owen [2006] define

the sensitivity indices

τ2
u =

∑
z⊆u Vz and τ2

u =
∑
z∩u 6=∅ Vz. (3.23)

The index τ2
u represents the total contribution of simulator inputs with

indices in u to the variance of g. As Owen [2014, p. 247] underlines,

small values of τ2
u indicate that the simulator inputs in u have so little

influence that they can be conveniently fixed, thus reducing the problem

dimensionality. Note that if u = {i}, then τ2
i is the analog for the decom-

position of V[Y ] of the total index τx
0→x1

i for the decomposition of ∆g.

Similar connections hold for other indices, as we discussed in Section 3.4.

Hooker [2004] and subsequently Liu and Owen [2006] define the superset

importance index of a group of simulator inputs u as

Υu =
∑
z⊇u

Vz (3.24)

This index Υu measures the contribution of all terms that include the

indices in u in the ANOVA decomposition of g.

Caflisch et al. [1997] and Owen [2003]’s notions of dimension distri-

bution and mean effective dimension in the superimposition and trunca-

tion sense provide an elegant characterization of the presence of inter-

actions within the classical functional ANOVA framework. The ratios

Su = Vu/V[Y ] are regarded as the probability mass function of a ran-

dom variable, say T , whose support is 2Z , so that Pr(T = u) = Su. The

dimension distributions of g in the superimposition sense and truncation

sense are then defined as the distribution of the cardinality of T and of

max{i : i ∈ z}, respectively. From these distributions, one defines the

mean dimensions in the superimposition and truncation senses. Specif-

ically, Owen [2013] proves that the mean dimension (Dg) satisfies the

equality

Dg =
∑
u

|u|Su =

n∑
i=1

τ2
i /V[Y ]. (3.25)

Owen [2003] shows that for any additive square-integrable function the

mean dimensions in the truncation and superimposition sense as well are
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unity. As a consequence, a mean dimension in the superimposition sense

greater than unity implies that some non-null interaction terms gz with

|z| > 1 are present in the decomposition of g.

Example 3.5.1. Consider the piecewise constant simulators g1 = IE1∪···∪En
and g2 = IE1

· · · IEn , where Ei denotes the event {xi ≥ 0.5}, i = 1, 2, . . . , n.

Provided with random inputs Xi ∼ U [0, 1] iid, both simulators satisfy

Sz = 1
2n−1 for all multi-indices z. They have the same mean dimension

in the superimposition sense equal to

∑
z

|z|Sz =

∑n
j=1

(
n
j

)
j∑n

j=1

(
n
j

) =
n · 2n−1

2n − 1
≈ n

2
.

The mean dimension is greater than unity signaling the presence of inter-

actions.

On the other hand, g is said to have effective dimension s in the su-

perposition sense if
∑
|u|≤s Su ≥ 0.99 [Caflisch et al., 1997, Owen, 2003].

Consider the special case s = 1. We would say that g has dimension 1

in the superimposition sense if
∑n
i=1 Si ≥ 0.99. However, this would not

mean that the function is additive. In fact, consider the function in Ex-

ample 3.5.1, with X1 ∼ Gamma(10, 1) and X2 ∼ Gamma(10, 1). One

registers S1 + S2 = 0.999 > 0.99, although the mapping is not additive.

3.5.1 Global Interactions and Cox’s constancy of Vari-

ance

Cox [1984] and Berrington de González and Cox [2007] discuss the link

between constancy of variance and absence of interactions. The next result

offers a formalization of this intuition based on the classical functional

ANOVA expansion and the notion of heteroskedasticity.

Definition 3.5.1. A random variable Y is called homoskedastic with re-

spect to a random variable X if the conditional variance V[Y |X] is con-

stant, or heteroskedastic otherwise.
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This definition might be visualized by noting that the scatterplot of

(X,Y ) fits into a tube of constant diameter in case of homoskedasticity.

Proposition 3.5.1. The mapping g is heteroskedastic with respect to Xi if

and only if there are non-vanishing interaction terms involving Xi in the

ANOVA decomposition of V[Y ].

An interesting consequence of this result is a sufficient condition for the

conditional variance V[Y |Xi] to be greater than the unconditional variance

V[Y ]. An immediate consequence is the following.

Corollary 3.5.1. If there exists xi in the support of Xi such that V[Y |Xi =

xi] > V[Y ], then Y is heteroskedastic with respect to Xi.

This is the intriguing case in which fixing a model input based upon new

information actually increases the simulator output variance. This corol-

lary implies that this effect (i.e., the increase in variance due to learning

a factor) can happen only in the presence of interactions.

Example 3.5.2. Consider g : R2 7→ R, (X1, X2) 7→ eX1 | sin(X2)|, which

is constituted by an explicit interaction term. With X1 standard normal

and X2 normal with mean and standard deviation equal to 1, the simulator

variance is V[Y ] = 2.72, while V[Y |X2 = 1] = 3.31.

3.5.2 Linking Interactions on the Infinitesimal, Finite

and Global Scales

We have seen that a sufficient (but not necessary) condition for the absence

of interactions is the nullity of second order derivatives. Indeed, Fruth

et al. [2014] propose the crossed derivative-based global sensitivity measure

νi,j = E
[(
g′′i,j(X)

)2]
. (3.26)

Fruth et al. [2014] prove that, if g is twice differentiable and its all first

order and second order partial derivatives are in L2(FX) and if all Fi

(i = 1, . . . , n) satisfy the Poincaré inequality∫
g(x)2dFX(x) ≤ C(FX)

∫
||∇g(x)||2dFX(x),
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where C(FX) is the Poincaré constant of FX, then the following relation-

ship holds between the second order Sobol’ index Vi,j , the superset index

Υi,j and νi,j :

Vi,j ≤ Υi,j ≤ C(Fi)C(Fj)νi,j , (3.27)

where C(Fi) and C(Fj) are the Poincaré constants of the marginal distri-

butions of Xi and Xj . Then, if g′′i,j = 0 everywhere, by equation (3.27)

the second order sensitivity indices are zero. That is, absence of second

order local interactions everywhere implies absence of second order global

interactions. However, it may hold that νi,j = 0 and Vi,j 6= 0.

Proposition 3.5.2. For a piecewise-defined mapping (3.5) with additive

components hl(·), (l = 1, 2, · · · , L), it holds that νi,j = 0 for all i, j =

1, 2, . . . , n, i 6= j.

This proposition makes clear that, when interactions are only due to

piecewise-definiteness (see the case study STOCFOR3), a differentiation-

based approach would not lead to meaningful insights.

Example 3.5.3. For the mapping in Example 3.3.1, one finds S1,2 = 1/3,

while ν1,2 = 0.

Works such as Liu and Owen [2006] and Campolongo et al. [2011] show

that it is possible to build a conceptual bridge between finite change and

global interactions. The results in the previous sections allow us to take a

fresh look at this bridge. The next result connects finite-change and global

interaction measures.

Theorem 3.5.1. Let g ∈ L2(X ) and let X,Z ∼ U [0, 1]n be independent

and identically distributed. Then, for u ∈ Z, we have:

Υu = 1
2|u|

E
[
τX→Z
u

]2
, τ2

u = E
[
g(X)τZ→X

u

]
, τ2

u = 1
2E
[
τX→Z
u

]2
,

(3.28)

where |u| denotes the cardinality of u. Moreover, we have∑n
i=1 Vi =

∑n
i=1 E

[
g(X)τZ→X

i

]
and

∑
u |u|Vu = 1

2

∑n
i=1 E

[
τX→Z
i

]2
.

(3.29)
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The above result leads to the following Monte Carlo estimators that

explicitly connect indicators of interactions on a finite scale to indicators

on a global scale.

Corollary 3.5.2. The global interaction indicators (3.28) and (3.29) can

be estimated from

Υ̂u =
1

2|u|
· 1

N

N∑
k=1

[
τx

(k)→z(k)

u

]2
, (3.30)

τ̂2
u =

1

N

N∑
k=1

g(x(k))τz
(k)→x(k)

u , (3.31)

τ̂2
u =

1

2N

N∑
k=1

[
τx

(k)→z(k)

u

]2
. (3.32)

We also have
n∑
i=1

V̂i =
1

N

N∑
k=1

n∑
i=1

g(x(k))τz
(k)→x(k)

i , (3.33)

∑
u

|u|V̂u =
1

2N

N∑
k=1

n∑
i=1

[
τx

(k)→z(k)

i

]2
. (3.34)

When u = {i}, i.e. we are considering only singletons, then the estimator

(3.32) is known as the Jansen estimator of the total effect of the i-th factor

(see Campolongo et al. [2011]). When u = {i, j}, then the Monte Carlo

estimator (3.30) has been studied by [Fruth et al., 2014] and we show that

it equals:

Υ̂i,j =
1

4N

N∑
k=1

[
τx

(k)→z(k)

i,j

]2
=

1

4N

N∑
k=1

[
2A

(k)
i,j

]2
=

1

N

N∑
k=1

[
A

(k)
i,j

]2
=

1

N

N∑
k=1

[EI(k)]2.

where EI is the screening interaction effect introduced in [Campolongo

et al., 2011].

The above results show that the same finite changes give rise to al-

ternative estimators. Precisely, if we consider the indices τx
0→x1

u of the
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orthogonal decomposition of ∆g, we recover Liu and Owen’s Υu. If we con-

sider τx
0→x1

u , we obtain estimators for τ2
u and τ2

u. In terms of the Laplace

operator on the full graph, the terms ∆ug, would allow the estimation of

the Sobol’ τ2
u and τ2

u indices. Also, it is easy to see that estimators of

(3.28)–(3.29) in Theorem 3.5.1 coincide with pick-and-freeze estimators

of Gamboa et al. [2016]. This connection has the implication that if the

analyst implements a pick-and-freeze design and keeps track of the esti-

mators before squaring, she can recover the magnitude of interactions, as

well as their sign at several locations of the simulator input space. Thus,

the analyst can gain insights on whether interaction effects are synergistic

or antagonistic while performing a global sensitivity analysis.

3.5.3 Spurious Interactions: Generalized Functional

ANOVA

The identification of interactions becomes more involved for computer ex-

periments with dependent inputs. Under input dependence, interactions

may emerge even if they are not present in the input-output mapping.

Friedman and Popescu [2008] deem these as spurious interactions. In the

light of our analysis, spurious interactions are not structural but are caused

by collinearity among some simulator inputs.

Example 3.5.4. Consider the additive function Y = X2
1 +X2

6 with (X1, X2)

uniformly in
{

(x1, x2) ∈ [0, 1]2 : x2
1 + x2

2 >
1
2

}
. The mapping is additive.

Then, applying the definition of classical first order sensitivity indices we

find S1 = 0.98 and S2 = 0.16, with the first order indices accounting for

more than 100% of the output variance. To counterbalance this excess, one

would have to postulate a negative spurious interaction term S1,2 = −0.14,

which has no interpretation in the classical ANOVA frame.

The problem has remained open till the work of Hooker [2007], who

shows that one can still recover a unique functional ANOVA expansion of

the form of (3.21), by appropriately changing the conditions that allow the

determination of the component functions gz. The work of Hooker [2007]

has been followed by a series of works, such as Li et al. [2012], Chastaing
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Table 3.1: Generalized ANOVA results for the example with a Quasi-

Monte Carlo sample of size 4983. The results have been obtained applying

the generalized functional ANOVA expansion and using the D-MORPH

regression approach of Li et al. [2012] for computing the sensitivity indices.

i Ŝi Ŝci Ŝi+Ŝ
c
i Ŝi,j+Ŝ

c
i,j

1 1.1399 −0.0830 1.0570 0

2 0.0253 −0.0830 −0.0577 0

Sum 1.1652 −0.1660 0.9993 0

et al. [2012], Rahman [2014], that show that under dependence we can use

a covariance decomposition of V[Y ] that leads to

V[Y ] =
∑
∅6=z⊂Z

Vz + Cov

gz, ∑
∅6=v⊂Z,v 6=z

gv

 . (3.35)

Note that, when the inputs are independent, this formula reduces to (3.21).

Normalizing the covariance decomposition (3.35), one obtains [Li et al.,

2012]

∑
∅6=z⊂Z

 Vz
V[Y ]

+
Cov

(
gz,
∑
∅6=v⊂Z,v 6=z gv

)
V[Y ]

 =
∑
∅6=z⊂Z

[Sz + Scz] = 1.

(3.36)

In (3.36), the variance-based index Sz is the marginal contribution of the

indices in z, while the quantity Scz measures the relevance of the covari-

ances among the component functions gz, reflecting the contribution due

to correlations. Hence, Scz may be regarded as indicators of spurious in-

teractions.

Example 3.5.5 (Example 3.5.4 continued).

If we apply the generalized functional ANOVA expansion we obtain

the results in Table 3.1 which displays a non-null contribution coming

from correlations. Also, due to correlations, we find a negative overall
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Table 3.2: Interaction types versus interaction measurement.

Scale Inter.Term Piec.-def. Spurious Sign Discreteness Cost Ass. on g

Infinites. Yes No No Yes No 4nN C1

Finite Yes Yes No Yes Yes 2n -

Global Yes Yes Yes
Estimator

Dependent
Yes N22n L2

sensitivity index for S2. However, the second order terms are null, a result

in accordance with the additivity of the input-output mapping. To our

knowledge, it is the first time that the connection between covariance

decomposition and spurious interactions is addressed.

3.6 Some Implications

Table 3.2 organizes interactions according to their type (due to interac-

tion terms, generated by piecewise-definiteness, spurious) along with the

investigation scale (infinitesimal, finite, global) and the chosen interaction

measure.

Table 3.2 synthesizes the following observations regarding the identifi-

cation of interactions based on our previous results. If the statistician is

relying on interaction measures based on differentiation, on an infinites-

imal scale, she will detect structural interactions if they are due to ex-

plicit interaction terms, but may not identify structural interactions due

to piecewise-definiteness. However, using partial derivatives the analyst

is reassured not to measure spurious interactions and has an indication

on the sign of interactions. Using finite-change interaction measures, the

analyst unveils structural interactions due to piecewise-definiteness and to

interaction terms, does not detect spurious interactions, and gains insights

on the sign of interactions. Global methods allow to appreciate structural

interactions as well as spurious interactions. The detection of sign depends

on the estimator. For instance, Theorem 3.5.1 shows that we can link a

pick-and freeze design to finite change indices: if the sign of the estimates
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is registered before taking the square, then one obtains, simultaneously,

information on interactions on the finite and global scales.

In deciding the approach, considerations regarding computational bur-

den play a crucial role. On an infinitesimal scale, a brute force calcula-

tion of second order derivatives based on second order Newton’s ratios.

demands 4n model runs. If the estimation of the second order deriva-

tives is randomized at N locations in X , the estimation cost becomes

CNewton = 4 · n · N . This number of evaluations is a lower limit as one

should repeat the calculation for a sequence of decreasing values of the

increments used in Newton’s ratio, till a limit is approached. Alterna-

tively, the analyst could resort to automatic differentiation. Here, one

obtains derivatives while evaluating the computer code without requiring

additional model runs. However, the automatic differentiation subroutine

needs direct access to the source code of the simulator. If such access

is not available, then the approach cannot be applied; conversely, careful

programming is needed not to increase the running time of the simulator.

On a finite scale, the computational cost associated with the determi-

nation of interactions up to order k is Ck =
∑k
s=0

(
n
s

)
. If k = n (e.g., in

a full factorial design) the analyst incurs a cost of 2n model runs. How-

ever, if the analyst wishes to achieve a less granular information, she can

use computational shortcuts. For instance, it is possible to compute the

indices τx
0→x1

i , Υx0→x1

i and τi
x0

at a cost of 2n+ 2 model runs using the

shortcut in equation (3.18). Moreover, several efficient designs allow one

to compute interaction effects up to a desired order, avoiding the cost of

a full factorial design.

For global interactions, calculating the complete variance decomposi-

tion in (3.21) using a brute force approach has a cost of CV = 2nN2, where

N is a suitable size of a random simulator input sample. The literature

has introduced designs that abate this computational cost. For instance,

the modified pick-and-freeze method of Saltelli [2002] allows one to obtain

estimates for the first order, total order and second order superset indices

at a cost of N(n+2) model runs. Alternatively, an analyst may proceed at

a cost of N model runs by fitting an emulator over the input-output sam-
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ple generated for uncertainty quantification. Depending on the emulation

approach used in the analysis, analytical formulas for the estimators of

variance-based sensitivity indices of all orders may be available. Then, if

the fit is accurate, one has a computationally convenient way of calculating

global sensitivity measures.

Given also the considerations on computational burden, ideally, the

analyst could follow a three step procedure: specify which interaction

type she is concerned with, select the quantification measure (e.g., partial

derivative, finite change, variance based) and, finally, select a design that

allows to estimate such measure. To illustrate: Is the analyst interested in

the precise interaction between two specific simulator inputs xi and xj at

x0 or as they move across two scenarios x0 → x1? Then, in the first case

partial derivatives are an appropriate measure of interaction, in the second

case the analyst needs a factorial experiment with 4 simulator evaluations.

Or, is the analyst just asking whether there are interactions at all (in any

form)? Then, a design that allows the estimation of first order variance-

based indices could be the most convenient to apply; if their sum is lower

than unity, we know that interactions are there. On a global scale, if the

analyst is interested in knowing whether interactions are synergistic or

antagonistic, she needs a design that allows to retain information on the

sign of interactions (see Corollary 3.5.2 and the following discussion).

3.7 Case Studies

In this section, we illustrate some aspects of the previous analysis via a set

of simulators previously studied in the literature. The analysis is carried

out on a desktop with Intel(R) core i7-7700HQ CPU at 2.80GHz and RAM

64G. All calculations are performed in Matlab R2017b.

We start with the Wing-weight function, recently used in Jiménez

Rugama and Gilquin [2018] to test the estimation of Sobol’ indices. Simu-

lator size (n = 10) and running time (0.02 sec) do not lead to any compu-

tational issue for this simulator. Jiménez Rugama and Gilquin [2018] offer

estimates of global sensitivity measures from an input-output sample of
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Graph a): Original Mapping
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Graph b): After Logarithmic Transformation
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Graph c): Using Kriging Predictions
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Figure 3.3: Interaction Analysis of the Wing-weight simulator on a Finite

Scale: Graph a) calculating the finite change indices using the original

code; Graph b) after a transformation of the original code; Graph c) using

a Kriging emulator instead of the original code.

size N = 65, 536. Their accurate estimates (see Table 12 [Jiménez Rugama

and Gilquin, 2018, p. 736]) lead to
∑10
i=1 Ŝi = 0.9814, i.e., the sum of first

order variance-based indices is close to unity, signaling that interactions

do not play a major role on a global scale. Indeed, fitting an additive

linear regression surface to the input-output sample leads to a highly sig-

nificant fit with a coefficient of model determination R2 = 0.982 (We used

an N = 65, 536 sample from the simulator and the fitlm.m subroutine).

Consider now an analyst evaluating the change in model output across

the bounds of the model inputs, namely x0 = (150, 220, 6,−10, 16, .5, .08, 2.5, 1700, .025)

and x1 = (200, 300, 11, 10, 45, 1, .18, 6, 2500, .08) [Jiménez Rugama and

Gilquin, 2018]. One registers g(x0) = 158.30, g(x1) = 432.50, and ∆y =

274.20. The complete decomposition of the finite change using (3.17) re-

quires 1, 024 model evaluations and is feasible in about 20 seconds for this

simulator. Figure 3.3 reports the first (τx
0→x1

i ), total (τx
0→x1

i ) and in-

teraction effects (Υx0→x1

i ) for this finite change. Figure 3.3 shows that,

on a finite scale, interactions are of the same order (if not higher) than
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individual effects. Now, suppose for a moment that the analyst were to

use the fitted linear surface instead of the original simulator to analyze the

change. She would obtain glinear(x0) = 141.55 and glinear(x1) = 413.25,

with ∆glinear = 271.70. Thus, the linear approximation of the magnitude

of ∆g is accurate. However, an evaluation of interactions using the linear

approximation would not be meaningful, because the emulator is additive.

Suppose that, instead of the linear regression, the analyst were to fit a

Kriging emulator [Santner et al., 2003] and then analyze the interactions

using the Kriging surface instead of the original model. She would obtain

the results in graph c) of Figure 3.3. The Kriging surface would reveal

interactions, however with indications different from the ones yielded by

the original simulator. For instance, input X7 is attributed an individual

effect higher than its total effect and an overall positive interaction effect,

while using the original simulator we register a total effect prevailing over

the individual effect and a negative overall interaction effect.

For further analysis, we compared the previous results with the insights

of an interaction analysis at the infinitesimal scale. We calculated second

order partial derivatives at 1, 000 locations in the model input space, via

automatic differentiation. The partial derivatives have then been squared

and averaged to obtain an estimator of νi,j in (3.26). The analysis reveals

38 non null second order interactions, with some significant ones, such as

the interactions between X7 and X8, X7 and X3, and X7 and X6. Second

order interactions involving model inputs X2, X5 and X9 are present but

negligible in size.

Graph b) shows the results of an interaction analysis on Wing-weight

performed after the original model output has been subjected to a log-

arithmic transformation. The graph shows that interactions are almost

completely removed. This result indicates that interactions are mainly re-

lated to the presence of explicit interaction terms in the simulator structure

and not to piecewise-definiteness. This is indeed in line with the structure

of the simulator, which is not piecewise-defined and is constituted by the

sum of two terms, with the main one involving the product/power of in-

puts X1 to X9, the second involving the product between the sole X1 and
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X10.

Now, Wing-weight’s size does not raise any computational concern.

We then consider a simulator of larger size, STOCFOR3, the largest linear

program in the well-known Netlib repository. Linear programs are funda-

mental simulators in business planning, but linear optimization appears

in several problems, comprising statistical analyses and regression, with

the famous Dantzig’s selector of Candes and Tao [2007] as an outstanding

example. The input data of STOCFOR3 are freely available. We study

the sensitivity of the optimal value of this linear program to changes in its

23,541 coefficients for variations of ±99% of their values. In other words,

we consider graph a) in Figure 3.2, in which x0 and x1 are the extremes

of the 23,541-dimensional hyperbox. We observe that the output of this

simulator is, at any value of the coefficients, a linearly additive map.

Given the simulator size, the shortcut in equation 3.18 turns out es-

sential in this case — to illustrate, there are about 2.7 · 108 second order

interactions. With 47, 084 simulator evaluations we can obtain all first

(τx
0→x1

i ), total (τx
0→x1

i ) and interaction effects (Υx0→x1

i ). Each simu-

lator evaluation entails a new optimization. The analysis takes about

14 hours on the above mentioned computer. Figure 3.4 reports the finite

change effects for the first 10 simulator inputs ranked using the magnitude

of τx
0→x1

i . Figure 3.4 shows that, indeed, interaction effects are present in

the simulator response. These interactions are due to the piecewise-defined

nature of the simulator. In fact, denoting with z∗ the optimal solution at

x ∈ X , the input-output mapping of any linear program is a mapping of

the type

y =


xz∗1 if x ∈ X1

xz∗2 if x ∈ X2

...

xz∗m x ∈ Xm.

(3.37)

This mapping is locally linear and additive. Note that second order deriva-

tives are null at any point x ∈ X , while the mapping is not additive (see

also Proposition 3.5.2). More generally, these results shows that interac-

tions associated with variations in the coefficients of a linear program are
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Figure 3.4: Interaction effects for the first ten most important coefficients

of the STOCFOR3 simulator.

due to piecewise-definiteness.

Finally, we discuss the analysis of a simulator with a discrete input-

output nature. The mapping of interest is the dynamical population model

for the Gopherus agassizii desert tortoise by Hodgson and Townley [2004].

The simulator utilizes a Leslie matrix with eight size classes. At each

time step, the simulator dynamically computes the promotion rate to the

next class and the survival rate within each class. Only the last three

classes can produce off-springs, that enter class 1. The spectral radius of

the Leslie matrix is close to but lower than unity, so that the population

eventually dies out. The output value of the model is the number of time

steps for which at least two individuals remain alive. The state vector is

rounded down to the next integer to account for the discrete nature of

the problem. The model input is the vector of the initial class values,

x0 = (89, 163, 62, 27, 16, 13, 29, 5).

Given the discrete nature of the problem, an interaction analysis can be

carried out at a finite change and a global scale, but a differentiation

approach is ruled out.

On a global scale, we use discrete uniform distributions between x0 and

x1, with x1 = x0+20, and independent inputs. At N = 50, 000, we register
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Figure 3.5: Finite change interaction Effects for the Gopherus agassizii

simulator of Hodgson and Townley [2004].

variance-based indices equal to Ŝ1 = 0.0014, Ŝ2 = 0.0032, Ŝ3 = 0.0045,

Ŝ4 = 0.0277, Ŝ5 = 0.0773, Ŝ6 = 0.3103, Ŝ7 = 0.3134, Ŝ8 = 0.2350. The

sum of first order indices accounts for about 97% of the simulator output

variance, showing that interactions do not play a major role on a global

scale. An analysis of interactions on a finite scale for the change x0 → x1

produces the results in Figure 3.5. Figure 3.5 shows that the simulator

responds additively to the change in X8, but interaction effects are relevant

and tend to be opposite to individual effects for all other model inputs.

Note that inputs X2 and X3 have a negligible first order variance-based

index. However, they are associated with a non-negligible first order finite

change effect. Thus, insights yielded by an analysis at a global scale do

not translate directly at a finite scale for the Gopherus agassizii simulator

as well.
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3.8 Conclusions

This work has studied the determination of interactions in computer ex-

periments analyzing theoretical as well as implementation aspects. The

investigation has brought together several but sparse facts offered in the

literature, while proposing new results and definitions towards offering a

unified view of the problem.

We have proceeded by distinguishing the analysis of interactions at

the infinitesimal, finite and global scales, and we have provided formal

bridges and links across the different scales. The analysis has led to the

identification of three main interaction generating mechanisms: input cor-

relations, that lead to spurious interactions, explicit interaction terms and

piecewise-definiteness, that lead to structural interactions. While the lit-

erature examination as well as our results have not revealed alternative

interaction generation mechanisms, we cannot exclude other possibilities.

In this respect, this work would provide guidance in interpreting such new

mechanisms.

On the implementation side, the analysis shows that the statistician

must clearly formulate the interaction analysis up front to properly identify

the scale and the method. She must also decide up front whether she

is performing the analysis on the original scale and whether or not to

substitute the original simulator with an emulator.

We note that the formal considerations carried out in this work for de-

terministic simulators can be applied to stochastic simulators with a white

noise as in equation (3.1), if one replaces the deterministic model output

y with E[Y ].1 We lastly observe that, while the analysis of interactions

1In fact, given the simulator in equation (3.1), for any value of X we obtain a

conditional distribution of Y given X, because the stochastic error term is not null.

That is, in general, a stochastic simulator maps X onto the space of distributions on

(Y,B(Y )). The mapped distribution is conditional on X = x∗, that is, FY |X(y). In

the context of stochastic simulation the analyst is often interested in some performance

measure built on Y and often this performance measure is the expected value of Y .

In this case, we have E[Y |X = x0] = g(x0). Then, when x shifts from x0 to x1, it is

E[Y |X = x1] = g(x1). Therefore, ∆E[Y |X = x0] = E[Y |X = x1] − E[Y |X = x0] =

g(x1) − g(x0) = ∆g. Thus, the definition of interactions in that applied previously to
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has concerned computer experiments in this work, the mathematical defi-

nitions apply also to the analysis of field experiments. Nonetheless, there

are notable technical and interpretation differences between the two, and

a complete analysis is out of reach for the present paper. We refer the

interested reader to Wu [2015] for a detailed discussion and suggestions of

further readings.

3.9 Appendix A: Connection with the Laplace

Operator

This section discusses the link between the orthogonalized decomposition

of a finite change and the discrete Laplace operator. The discrete Laplace

operator has found many applications in Statistics, including Bayesian

function estimation on graphs Kirichenko and van Zanten [2017]. We refer

to the graphs in Figure 3.2 in the main body of the paper (see Section 3.4).

Consider the hypercube having x0 and x1 on opposite vertices, i.e., the

set of points connected to x0 by variation in one or more coordinate. This

is the set of nodes in graph G(V, E):

V = {x0,xi,x{i,j}, . . . ,x{1,2,...,n−1},x1}, (3.38)

where the superscripts indicate which coordinates of the base case x0 are

shifted to those of x1 with xz = (x0
−z : x1

z). These points are reached from

x0 by changing single coordinates, pairs, triplets, and so on, including the

change in all coordinates. The set of edges E is formed connecting all points

in V to x0 via one edge. Graph (a) in Figure 3.2 offers a visualization in

three dimensions.

Then, let g be a function of the vertices, i.e., g : V → R. Given a

reference vertex v ∈ V, one writes the discrete Laplace operator as

(Lg)(v) =
∑
u∼v

(g(v)− g(u)) , (3.39)

g(X) applies to E[Y |X].
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where u ∼ v denote the edges of the graph, (u, v) ∈ E . Then, for the graph

G(V, E) specified above one finds

−(Lg)(x0) =

n∑
i=1

∆ig +
∑
j>i

∆i,jg + · · ·+
n∑
i=1

∆−ig + ∆g. (3.40)

Proposition 3.9.1. Given g and G(V, E) defined above, if g is additive then

(Lg)(x0) = −∆g · n · (2n − 1), (3.41)

and ∑
x∼x0,x∈V

g(x) = (2n − 1)
[
n ·∆g + g(x0)

]
. (3.42)

Equations (3.41) and (3.42) show that, if g is additive, the discrete

Laplace operator on G(V, E) can be computed by just two evaluations of

g, at x0 and x1 respectively. Additionally, if g(x0) = 0, a simple rewriting

of equation (3.42) shows that

1

n

∑
x∼x0,x∈V

g(x) = (2n − 1) ∆g, (3.43)

that is the mean effect of g can be computed using only these two evalu-

ations.

Consider now a subgraph of G(V, E), in which the set of nodes contains

n + 2 vertices determined by x0, x1 and all the evaluation points xi, for

all i ∈ Z. We denote this graph by V ′ (main text Figure 3.2 (b) ). Then,

each one of these vertices is connected to x0 by one edge, so that the set

of edges has cardinality n+ 1.

Proposition 3.9.2. Given G(V ′, E ′), and g : V ′ 7→ R, if g is additive then

(Lg) (x0) + 2∆g = 0. (3.44)

On the other hand, let’s consider G(V ′, E ′) and a generic mapping g

not necessarily additive. Then, the application of the Laplace operator

leads to (Lg) (x0) + 2∆g 6= 0, and, specifically,

(Lg) (x0) + 2∆g = ∆g −
n∑
i=1

∆ig. (3.45)
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3.10 Appendix B: Proofs

Proof. Proof of Proposition 3.9.1.

Equation (3.41) holds as ∆zg = g(x̄z)−g(x0) =
∑k
j=1

(
g(x1

ij
)− g(x0

ij
)
)
.

Then, noting that equation (3.39) can be written also as

−(Lg)(x0) =
∑
x∼x0

(
g(x)− g(x0)

)
=

(∑
x∼x0

g(x)

)
− (2n − 1) g(x0),

we obtain equation (3.42).

Proof. Proof of Proposition 3.9.2.

Rewriting equation (3.44), one finds− (Lg) (x0) =
∑
{x1}∪{x̄i,i=1,...,n.}

(
g(u)− g(x0)

)
=

g(x1)− g(x0) +
∑n
i=1 ∆ig, because all the n+ 1 edges incident to x0 must

be included. Then, g(x1) − g(x0) = ∆g by definition, and
∑n
i=1 ∆ig is

also equal to ∆g by Definition 3.2.

Lemma 3.10.1. A function is additive in xi on X if and only if it is

additively separable between xi and x−i on X , that is for all x0,x1 ∈ X ,

∆g = ∆ig + ∆−ig.

Proof. Proof of Lemma 3.10.1.

First of all, by mathematical analysis, g is additively separable between

xi and x−i if

g(x0
i : x1

−i) + g(x1
i : x0

−i)− g(x0
i : x0

−i) = g(x1
i : x1

−i) (3.46)

for all points in X . Let us now suppose that g is additive in xi, as per

definition 3.2.1. Then, we can write:

∆g = ∆ig + ∆−ig, (3.47)

which is equivalent to

g(x1
i : x1

−i)−g(x0
i : x0

−i) = g(x1
i : x0

−i)−g(x0
i : x0

−i)+g(x0
i : x1

−i)−g(x0
i : x0

−i).

(3.48)

Then, rewriting, we have:

g(x1
i : x1

−i) = g(x1
i : x0

−i) + g(x0
i : x1

−i)− g(x0
i : x0

−i), (3.49)
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which is (3.46). Conversely, starting with equation (3.46) and subtracting

g(x0
i : x0

−i) on both sides, we obtain equation (3.47)

Proof. Proof of Proposition 3.2.1. By Lemma 3.10.1, if g is additive, it is

separately additive in all variables. Then, consider the change x0 → x1.

Then, for every i = 1, 2, . . . , n we can write ∆g = ∆ig + ∆−ig. Summing

over i, we have n∆g =
∑n
i=1 ∆ig +

∑n
i=1 ∆−ig, which implies n∆g =∑n

i=1 ∆ig+(n−1)
∑n
i=1 ∆ig. The converse implication is straightforward.

Proof. Proof of Theorem 3.2.1.

By contradiction, suppose that exists a transformation η to additivity.

By Scheffé [1970], this happens if and only if
(
∂g
∂xi

)/(
∂g
∂xj

)
is a function of

only xi, xj , ∀i, j. However,
(
∂g
∂xi

)/(
∂g
∂xj

)
is in general function of x since

the expression of the constituents changes according also to the remaining

variables x−ij .

Proof. Proof of Theorem 3.3.1.

If g is of the form
∑n
i=1gi(xi) then g′′i,j,k(x) for all x ∈ X . Conversely,

suppose that the second derivatives are null everywhere. Then, consider

the change the function between two points in X . We can expand such

change using a Taylor series:

g(x1) = g(x0) +

n∑
i=1

g′i(x
0)(x1

i − x0
i ) +

n∑
i,j=1

1

2
g′′i,j(x

0)(x1
i − x0

i )(x
1
j − x0

j )

+

n∑
i,j,k=1

1

6
g′′′i,j,k(x0)(x1

i − x0
i )(x

1
j − x0

j )(x
1
k − x0

k) + ...

(3.50)

Then, note that the assumption g′′i,j(x) = 0 for all x ∈ X implies that

the function g′′i,j(x) is a constant on X and infinitely many times differ-

entiable, with null derivatives of all orders. This implies that all mixed

derivatives from order 2 onwards are null. Therefore, we have g(x) =
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g(x0) +
∑n
i=1 g

′
i(x

0)(xi − x0
i ). By the previous expression, one can write

g(x1)− g(x0) =

n∑
i=1

g′i(x
0)(xi − x0

i ).

Now, observe that

g(xi : x0
−i)−g(x0) = g′i(x

0)(xi−x0
i )+

n∑
i=1

1

2
g′′i (x0)(xi−x0

i )
2+

n∑
i=1

1

6
g′′′i (x0)(xi−x0

i )
3+. . .

Again, by the nullity of the second and higher order derivatives, we obtain

g(xi : x0
−i)− g(x0) = g′i(x

0)(xi − x0
i ).

Then, this shows that

g(xi : x0
−i)− g(x0) = g′i(x

0)(xi − x0
i ),

and therefore

g(x1)− g(x0) =

n∑
i=1

g′i(x
0)(xi − x0

i ) =

n∑
i=1

g(xi : x0
−i)− g(x0),

Proof. Proof of Proposition 3.5.1.

By definition,

V[Y |Xi] = E
[
(Y − E [Y |Xi])

2 |Xi

]
. (3.51)

Now, E[Y |Xi = xi] is g0+gi(xi) so that Y −E[Y |Xi = xi] =
∑
j 6=i gj(xj)+∑

|α|≥2 gα(xα). Hence,

V[Y |Xi] = E


∑
j 6=i

gj(xj) +
∑
|α|≥2

gα(xα)

2
∣∣∣∣∣∣∣Xi

 (3.52)

Then, due to the orthogonality of the functions in (3.52), we can write

V[Y |Xi] =
∑
j 6=i

E
[
g2
j (xj)

]
+
∑
|α|≥2

E
[
gα(xα)2

∣∣Xi

]
. (3.53)
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Now, the first sum,
∑
j 6=i E[g2

j (xj)], does not depend on Xi. Thus, if

only these terms were present in the decomposition, we would not have

heteroskedasticity. Under heteroskedasticity, at least one of the terms

E[gα(xα)2|Xi] with i ∈ α has to be different from zero, because V[Y |Xi] is

not constant. Thus, we have interaction terms in the function and these

terms involve Xi. Conversely, if there is at least one multi-index α with

|α| ≥ 2 and i ∈ α, we have that V[Y |Xi] varies with Xi and, therefore,

there is heteroskedasticity.

Proof of Corollary 3.5.1. Based upon the variance decomposition formula,

E[V[Y |Xi]] ≤ V[Y ] holds. Then, if there is a point where V[Y |Xi = xi] >

V[Y ], the conditional variance cannot be a constant.

Proof of Proposition 3.5.2. Consider the set Ω =
⋃
l,m ∂Xl ∩ ∂Xm, where

∂ denoted the frontier. Since ΠX is a partition, this set has Lebesgue-

measure zero. Hence, νi,j = E
[(
g′′i,j(X)

)2]
= 0 by the additivity of the

component functions in (3.5).

Proof of Theorem 3.5.1. By Theorem 1 in Liu and Owen [2006], the su-

perset importance can be written as

Υ2
u =

1

2|u|

∫ ∑
v⊆u

(−1)|u−v|g(xv, z−v)

2

dxudz.

We note that, rewriting the expression of τx→z
u , we find that τx→z

u =∑
v⊆u(−1)|u−v|g(xv, z−v). Using this equality, it follows that

Υ2
u =

1

2|u|

∫
(τx→z
u )

2
dxudz,

proving the first statement in (3.28). The second statement can be proved

rewriting the estimator of the Sobol index

τ2
u = E[g(X)(g(Xu : Z−u)− g(Z))] =

∑
v⊆u

E
[
g(X)τZ→X

v

]
.
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The third statement follows analogously as

τ2
u = 1

2E[(g(Zu : X−u)− g(X))]2 =
1

2
E

∑
v⊆u

τX→Z
v

2

.

In order to prove (3.29), by Theorem 2.2 in Owen [2013] it holds that∑
u |u|Vu =

∑n
i=1 τ

2
i . By (3.28), it becomes

∑
u

|u|Vu =
1

2

n∑
i=1

E
[
τX→Z
i

]2
.

For the other equality in (3.29), we consider the equation
∑n
i=1 Vi =∑n

i=1 τ
2
i at page 32 in Owen [2013] and plug in the estimator for τ2

i in

(3.28).
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Chapter 4

Screening with finite

changes: from

Elementary Effects to

Effective Dimension

Abstract

Screening is an essential task in simulation. Several successful methods are

based on one-at-a-time designs. This work shows that by properly exploit-

ing these designs one obtains not only global measures of the relevance of

inputs, but also of the relevance and sign of interactions. We follow a

files-rouge that links the sensitivity measures of Tornado diagrams to the

Morris method and to global sensitivity measures. Specifically, in a differ-

ent approach as in Campolongo et al. [2011], we show that replicates of

one-at-a-time effects yield estimators of Sobol’ total indices, individual and

interaction indices as well as of the mean effective dimension, and these

quantities can be obtained from a suitably defined variance-covariance
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matrix of one-at-a-time effects. It is then possible to prove the exact re-

lationship between Morris and Sobol’ total sensitivity indices. We obtain

asymptotic results that yield confidence intervals around the estimates at

finite sample sizes. The new insights are illustrated by application to well

known simulators such as the Asian option, the assemble-to-order and the

space probabilistic safety assessment codes.

4.1 Introduction

Computer simulations support analysts in understanding and describing

the behavior of complex operational systems Nelson [2013]. The steady

increase in computing power allows greater sophistication in modeling and

analysts can address systems of increasing complexity. This complexity,

however, leads analysts to face transparency and interpretability issues.

An important recommendation that emerges in the simulation literature

is that an analyst should frame the simulation up front Kleijnen [2017],

for designing an experiment that will yield the desired information [Con-

way, 1963, p. 47]. Proper planning allows the analyst to better exploit

the simulator runs: she can not only understand the time and resources

needed to estimate a system performance metric reliably, but she can also

prepare for extracting additional managerial/modelling insights. In this

context, designs aimed at reducing problem complexity and dimensional-

ity (screening designs, henceforth) play an essential role. Identification of

the most important inputs simplifies result communication, evidencing the

factors on which to focus managerial attention. Also, dimension reduction

allows the fitting of metamodels, that, in turn, enable deeper analyses to

be performed in a time efficient manner [Wan et al., 2006, Kleijnen, 2017].

When dimension reduction is concerned, analysts ought to compute

indicators of the relevance and size of interactions. Best practice would

require the estimation of quantities such as total variance-based sensitivity

indices and effective dimensions (see [Owen, 2003] among others), which

pertain to the realm of global sensitivity analysis. There has been con-

siderable interest in the literature in investigating the link between these
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measures and screening designs [Campolongo et al., 2007, 2011], and, in

particular with the Morris method [Morris, 1991], that, together with se-

quential bifurcation [Bettonvil and Kleijnen, 1997], is one of the most

popular screening methods in simulation [Shi and Chen, 2018] (even if

sometimes not suggested - see Campolongo et al. [2011]).

However, currently there is no formal way to connect the sensitivity

measures of the Morris method with the notion of effective dimensions. At

the same time, the link between Morris second sensitivity measure (called

here σ2
EEi

; see Section 4.3.2 for the definition) and total order sensitivity

indices has been hinted in previous works [Campolongo et al., 2011, Shi

and Chen, 2017] but not formally established. Moreover, the number of

replicates needed to link screening with global approaches might be high.

Thus, it is important for the analyst to have a measure of uncertainty in

the estimates at finite sample sizes.

The objective of this Chapter is to develop a statistical analysis based

on finite changes to understand the common features of the Sobol’ and

the Morris’ importance indices.

In particular, we revisit the Morris method, with the goal of filling-

in the above-mentioned gaps. We observe that several designs in the

literature are based on one-at-a-time input variations, with or without

replicates (the corresponding sensitivity measures are called main effects,

henceforth). We start analyzing the statistical properties of main effects.

We calculate the mean and variance of finite changes both under random

sampling and under Morris’ design. We show that the use of different

designs lead to different estimates of the mean and variance of the main

effects. Then, we show that Sobol’ total order variance-based sensitiv-

ity indices as well as Owen superset variance-based indices of pairs [Liu

and Owen, 2006] can be estimated from the empirical covariance matrix

of main effects. This is appealing since we can estimate the interaction

structure and total effects simply by looking at variations of one-factor-

at-a-time designs in the input space. Thus, the analyst obtains a detailed

picture of the relevance of interactions and the dimensionality of the sim-

ulator from replicates of one-at-a-time effects. This result is then used
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to establish the formal relationship between Morris σ2
EEi

and Sobol’ total

order indices, justifying the interpretation of σ2
EEi

as a measure of inter-

action and non-linearity proposed in previous works [Campolongo et al.,

2011, Shi and Chen, 2017].

From a computational viewpoint, we show that the estimation can be

made more efficient by exploiting a symmetry property of the main effects,

which we use to obtain an alternative estimator of the mean dimension.

Simultaneously, the analyst obtains a sample of overall interaction effects,

that deliver information on the sign of interactions. The computational

cost is the cost of the Morris method plus one simulator run.

We then perform an asymptotic analysis, which yields the following

main insights. First, Morris σ2
EEi

is a biased estimator of the total Sobol’

indices, if replicates are performed according to the original Morris tra-

jectories. However, it becomes an unbiased estimator, if trajectories are

randomly sampled across the whole input space (see, e.g. the radial design

of Campolongo et al. [2011]). Second, at any finite sample size the analyst

obtains confidence intervals that allow her to quantify uncertainty in the

estimates of total order Sobol’ indices, mean dimension, first order Sobol’

indices and Morris µi. Third, findings in Cheng [1997] and Boukouvalas

et al. [2014] are extended to generic input-output mappings.

We carry out numerical experiments for a series of case studies, and

discuss results for the Asian option code developed in Nelson [2013], the

Assemply-to-Order simulator used in Hong and Nelson [2006] and the

NASA space probabilistic safety assessment code developed in Borgonovo

and Smith [2011]. The design yields insights not only into the key-drivers

of simulator variability, but also into the sign, relevance and order of inter-

actions, as well as on the direction of change in the model output associated

with the variation of each input.
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Table 4.1: A brief summary of methods for screening simulation experi-

ments.

Without Replicates Without Metamodel

Tornado Diagrams Howard [1988], Borgonovo and Smith [2011]

Without Replicates With Metamodel

One-at-a-time Daniel [1973], Cotter [1979]

Sequential Bifurcation Bettonvil and Kleijnen [1997]

With Replicates Without Metamodel

Morris Method Morris [1991], Campolongo et al. [2011], Shi and Chen [2017]

With Metamodel

Kriging Schonlau and Welch [2006], Binois et al. [2019]

4.2 Simulation Input Screening: Related Lit-

erature

The literature on simulation experiments is vast and space limitations do

not allow us a complete investigation. For broad overviews of the field, we

refer to Chick [2001], Nelson [2004] among others, and to the monographs

of Nelson [2013], Kleijnen [2015]. When screening is concerned, the sim-

ulation literature is entangled with the statistical literature of computer

experiments as the overviews of Chen et al. [2016], Kleijnen [2017] show.

Although originally developed for physical experiments [Woods and Lewis,

2017], screening techniques are pervasive in simulation experiments. Table

4.1 presents a summary of the methods we review here. The grouping is

for expository purposes only and does not aim to be a categorization.

Designs that allow the determination of all main and interaction ef-

fects are full factorial designs [Kleijnen, 2017]. However, early on it has

been recognized that the computational cost of full factorial designs can

make them impractical [see [Jacoby and Harrison, 1962, p. 121]]. This has

motivated the search for designs that allow analysts to diminish computa-

tional burden for the identification of the most important inputs (screen-
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ing methods). The simplest designs foresee the variation of one input at a

time. In the statistical literature, they are proposed and analyzed in early

works such as Daniel [1973], Cotter [1979], Baker and Bargmann [1985].

These methods are based on the variation of one input at a time when

the response is assumed to follow a linear model with interactions and

their sensitivity measures are the difference between: a) the linear model

output value when one of the inputs is shifted at the sensitivity case; and

b) the linear model output value when all the inputs are at the base case.

These sensitivity measures are called main effects. Cotter [1979] presents

an extension of one-at-a-time designs using a fold-over approach in which

the factors are varied not only from the base case to the sensitivity case

(forward pass) but also from the sensitivity to the reference case (back-

ward pass). As discussed later on by Qu and Wu [2005], Tang and Xu

[2014], this fold-over property allows one to increase the design resolution,

minimizing the contamination of high-order effects on the estimation of

main effects.

In the simulation literature, one of the most successful screening meth-

ods based on a metamodel is sequential bifurcation [Bettonvil and Kleij-

nen, 1997, Kleijnen et al., 2006]. In this approach, one assumes a multilin-

ear metamodel, either additive or with interaction terms. The simulator

inputs are fixed at two levels (called high and low). The procedure fore-

sees the initial grouping of the simulator inputs into two (usual) or more

groups. The simulator is evaluated with all the inputs in a group at the

low or at the high level. The group that leads to the highest change in sim-

ulator output is regarded as important and is further split into subgroups.

The procedure then continues with group splitting until the main effects

of important factors are determined. The method performs at best when

the assumption of monotonicity in each of the inputs is satisfied [Shi and

Kleijnen, 2018]. Over the years sequential bifurcation has been refined in

several directions. Please refer to the works of Cheng [1997], Wan et al.

[2006] and Ankenman et al. [2014] (see also [Kleijnen, 2015, ch. 4] ) for

further details.

A further important class is represented by design for screening while
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applying kriging emulation (see the works of Schonlau and Welch [2006],

Kleijnen [2015], Woods and Lewis [2017], Binois et al. [2019] for overviews).

In parallel, one can find screening methods without metamodels. In

the design at basis of Tornado diagrams the sensitivity measures of Daniel

[1973], Cotter [1979] are computed without assuming a metamodel (and

without replicates). (Tornado diagrams are a well known graphical sen-

sitivity analysis tool in the management science literature since the work

of Eschenbach [1992] and are implemented in popular software packages

such as Treeage, @Risk by Palisade.) Generalized Tornado Diagrams [Bor-

gonovo and Smith, 2011] allow one to include sensitivity measures for in-

teractions using a design that resembles the fold-over intuition of Cotter

[1979]. A successful screening approach with replicates but without meta-

model is the Morris method [Morris, 1991]. The Morris design foresees the

selection of an appropriate grid of points in the model input space, and

then the sampling of a trajectory on this grid. Main effects are computed

from a series of d one-at-a-time input changes in correspondence of each

point in the trajectory (d denotes the number of simulator inputs). The

method has been the subject of intensive investigations over the years. Re-

cently, Boukouvalas et al. [2014] introduce a sequential procedure for the

selection of the number of replicates, allowing this number to vary across

the simulator inputs. Shi and Chen [2017] introduce sequential statistical

tests for controlling the probability of type I and type II errors in the

estimation of main and interaction effects (the so-called controlled Morris

method). Ge and Menendez [2017] discuss the computation of Morris el-

ementary effects in the context of simulation experiments with dependent

inputs. After a first extension in Alam et al. [2004], Shi and Chen [2018]

thoroughly address the properties of Morris method for simulators with a

stochastic response, proposing several results for the optimal allocation of

model runs between the inner and outer loops of a stochastic simulation.

As Morris and Moore [2015] underline, it is a small step from screening

to sensitivity analysis. If replicates of the screening design are computed

over the whole input space and the corresponding sensitivity estimators

are averaged, then one obtains a bridge towards estimating global sensi-
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tivity indices. Several works have explored this connection under different

perspectives, and reviews can be found in [Saltelli et al., 1995, Campo-

longo F et al., 2000, Becker and Saltelli, 2015, Kleijnen, 2015, Woods and

Lewis, 2017]. Relevant to our work are the findings in [Campolongo et al.,

2007, 2011], where a radial design with replicates is used to estimate both

Morriss sensitivity measures and total order variance-based sensitivity in-

dices. In the work, the close connection between Morris σ2
EEi

and Sobol’

total indices is underlined, although not formally established.

The previous analysis highlights a files-rouge across the methods: in all

the above-mentioned designs the sensitivity measures are main effects built

after computing one-at-a-time sensitivities, with or without replicates. In

the reminder, we show that deeper insights can be extracted from these

designs by exploiting some symmetry effects that we are to analyze.

4.3 Screening: the Role of Main Effects

Let X denote the simulator input space, and let X ⊆ Rd, where d is the

number of simulator inputs (or the dimension of the simulator). If the

simulator inputs are uncertain, we denote by (X ,B(X ),PX) the simulator

input probability space and by FX . Then, we let

Y = g(X) + ε(X) (4.1)

denote the simulator input-output mapping. In equation (4.1), g is a mul-

tivariate function g : X 7→ R, and ε(X) is a stochastic error term such

that E[ε(X)] = 0. The simulator is called deterministic if this term is

null, stochastic otherwise. The error term can be homoskedastic (i.e., in-

dependent of X) or heteroskedastic. Then, we note that by equation (4.1),

we have E[Y |X = x0] = g(x0) + E[ε(x0)]. If we write this expression as

E[Y |X = x0] = g̃(x0), then, the considerations we are to draw in the re-

minder hold for a deterministic simulator as well as for the expected value

of a stochastic simulator with the type of response in (4.1). Nonetheless,

also for notation simplicity, we shall maintain the symbol g(x0). When

the simulator is stochastic one often adopts the symbol θ in lieu of x, and
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the term parameters instead of the term simulator inputs. We shall use

these two terms equivalently in the reminder.

4.3.1 Designs without replicates

Consider now two possible simulator input levels x0,x1 ∈ X and the cor-

responding simulator output responses g(x0) and g(x1). We can consider

x0 and x1 as base case and sensitivity case, respectively. When the simu-

lator inputs vary from the base to the sensitivity case (0→ 1, henceforth)

the change in model output is ∆0→1g = g(x1)− g(x0). This is equivalent

to evaluating the simulator on two opposite vertices of the hypercube (see

the left graph of Figure 4.1 for a two dimensional representation).

∆0→1g can be dissected in 2d − 1 orthogonal effects [Li et al., 2001,

Borgonovo, 2010]:

∆0→1g =

d∑
i=1

φ0→1
i +

∑
i<j

φ0→1
i,j + · · ·+ φ0→1

1,2,...,d (4.2)

where

φ0→1
i = g

(
x1
i : x0

−i
)
− g

(
x0
)

φ0→1
i,j = g

(
x1
i,j : x0

−{i,j}

)
− g

(
x0
)
− φ0→1

i − φ0→1
j

φ0→1
i,j,k = g

(
x1
i,j,k : x0

−{i,j,k}

)
− g

(
x0
)
− φ0→1

i − φ0→1
j − φ0→1

k − φ0→1
i,j − φ0→1

j,k − φ0→1
i,k

...

(4.3)

In the above equation,
(
x1
i : x0

−i
)

denotes the point in the model input

space in which all inputs are at the base case with the exception of xi (see

the left graph in Figure 4.1 for a visualization in two dimensions).

The effect φ0→1
i is the main effect of xi for the shift x0 → x1. Simi-

larly, (x1
i,j : x0

−{i,j}) denotes the point in which all inputs are at the base

case, but for the pair xi and xj . The second order effect φ0→1
i,j quantifies

the residual interaction given that both xi and xj are shifted at the sen-

sitivity case, and given that their individual effects are subtracted from
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Figure 4.1: Non replicated OAT design (upper graph). Replicated OAT

design (bottom graph).
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the change g(x1
i,j : x0

−{i,j}) − g
(
x0
)
. Let then u ⊂ {1, 2, ..., d} denote a

set of indices. The quantity φ0→1
u is a measure of the contribution of the

residual interaction of the indices in u to the finite change ∆0→1g. One

can then define the total contribution of xi to ∆0→1g as

τ0→1
i =

∑
i∈u

φ0→1
u , (4.4)

and the total interaction contribution as

Υ0→1
i = τ0→1

i − φ0→1
i . (4.5)

Determining all the φ0→1
u effects in (4.3) requires the evaluating the simu-

lator on all the vertices of the hypercube joining x0 and x1, which corre-

sponds to a full factorial design [Daniel, 1973]. As already underlined in

Jacoby and Harrison [1962] a full factorial design becomes rapidly infea-

sible. Therefore, the literature has proposed designs to reduce computa-

tional burden while determining interaction effects.

In the design of Cotter [1979], one evaluates the first order effects for

the change x0 → x1 and for the opposite change x0 → x1 , obtaining

the set of effects: φ0→1
i and φ1→0

i , i = 1, 2, ..., d. These designs are then

constructed by (i) one run g(x0), (ii) d runs to compute g(x1
i : x0

−i) for all

i, (iii) d runs g(x0
i : x1

−i), and (iv) one run g(x1). We now show that it

is possible to exploit the fold-over design of Cotter to obtain information

about interactions.

Proposition 4.3.1. From Cotter’s fold-over design, it is possible to estimate

the triplet of indices φ0→1
i ,Υ0→1

i and τ0→1
i .

Note that, if d = 2, 3, this design is equal to a full factorial design and,

thus, one is actually estimating all individual and interaction effects in 4.3.

4.3.2 Introducing Replicates

One key-intuition common across several designs is to introduce replicates

[Kleijnen, 2015]. Replicates allow one to compute main or interaction ef-

fects at several locations xk, k = 0, 1, . . . , N in X . These locations can be
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selected in alternative ways. One can sample N points randomly using

crude, Quasi-Monte Carlo [Wang and Sloan, 2011] or Latin-Hypercube

designs or others [Pronzato and Müller, 2012]. We call trajectory the se-

quence of points T = {x0 → x1 → · · · → xN}. To illustrate, in the method

of Morris, the model input space X is reported to the unit hypercube so

that X = [0, 1]d and each interval is split into p levels. The right graph in

Figure 4.1 provides a visual representation for p=3. This creates a grid G
of pd points. Trajectories are then sequences of points randomly sampled

from G; that is, in the Morris design, T ⊂ G. Evaluating the model at

T , one obtains a set of N output changes ∆r→r+1g, r = 0, 1, ..., N − 1.

Because each of these changes can be decomposed via (4.2), in principle

one obtains a set of 2d · N effects φk→k+1
u . However, this quantification

becomes rapidly impractical, because the number of simulator evaluations

grows exponentially with d. If, instead, one considers computing only

main effects, she can run the code (d+ 1) ·N to obtain N replicates of d

main effects. In this respect, we regard main effects as a population, and

denote the corresponding random vector with Φ = {Φ1,Φ2, . . . ,Φd}.
Morris [1991] proposes to normalize the main effects into Newton ra-

tios, defining the elementary effect for the k → k + 1 change as

EEk→k+1
i =

φk→k+1
i

∆
, (4.6)

where ∆ = x1
i − x0

i . Precisely, in the Morris design one typically chooses

∆ = p(2(p − 1))−1. The suggestion is then to take the mean of the ele-

mentary effects as importance measure:

µ̂i =

∑N−1
k=0 EEk→k+1

i

N
, i = 1, 2, ..., d. (4.7)

Campolongo et al. [2011] propose the absolute value of Morris elementary

effect to define the importance measure

µ̂∗i =

∑N−1
k=1

∣∣EEk→k+1
i

∣∣
N

, (4.8)

to take into account potential annihilating effects in equation (4.6) when

g is not monotonic (see also Becker and Saltelli [2015]). Because equation
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(4.7) is prevalent in the simulation arena (see the recent studies in Shi and

Chen [2018]), we will privilege such sensitivity measure in the reminder.

Morris also proposes the sensitivity measure

σ̂2
EEi =

∑N
k=1

(
EEk→k+1

i − µ̂i
)2

N − 1
(4.9)

as a measure of non linearity and interaction.

Morris µ̂i and σ̂EEi are related to Φ as follows:

µ̂i =
φi
∆
, i = 1, 2, ..., d, (4.10)

where φi =
∑N−1
k=0 φk→k+1

i

N , and

σ̂2
EEi =

∑N
k=1

(
φk→k+1
i − µ̂i∆

)2
(N − 1)∆2

. (4.11)

Now, let us explore the idea of a folding-over a design with replicates.

For each trajectory x0 → x1 → ... → xN we consider also the reverse

trajectory xN → xN−1 → ... → x0 and estimates elementary effects also

on this trajectory. Then, we calculate 2N main effects. However, the

indices φk→k+1
i and the corresponding φk+1→k

i are paired. By Proposition

4.3.1, we can compute N first order, N total and N overall interaction

effects (Υ0→1
i ) at a cost of (2d+ 2) ·N model runs. We remark that this

approach gains in economy but loses in explorativity of the input space.

In the next sections, we further explore how we can use this information.

4.4 Morris σ̂2
EEi

and Total Sobol’ Indices

To prove the results of this section, we need to link OAT designs to variance

decomposition. If g ∈ L2(X ,B(X ), FX), and FX is a product measure, the

classical results of Efron and Stein [1981], Sobol’ [1993], Wang [2006] allows

us to write the variance of Y as:

σ2
Y =

∑
u

σ2
u, (4.12)
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where

σ2
u =

∫
[gu(xu)]

2
dFu(xu), (4.13)

and gu is obtained from

gu(xu) =

∫
g(xu : s−u)dF−u(s−u)−

∑
v⊂u

gv(xv). (4.14)

The variance-decomposition in (4.12) is analogous to the finite change

decomposition in (4.2). The variance of Y is decomposed in 2d terms,

with the first order terms σ2
i and the interaction terms σ2

u apportioning

σ2
Y to the individual contribution of Xi and the contribution of the residual

interaction among the inputs in u. One then defines (see Wagner [1995],

Homma and Saltelli [1996], Liu and Owen [2006] among others) the triplets

of global (or variance-based) sensitivity indices:

τ2
i = σ2

i ,

τ2
i =

∑
i∈v

σ2
v , (4.15)

and

Υ2
i = τ2

i − τ2
i , (4.16)

where τ2
i is the first order variance based index of Xi, τ

2
i is Homma and

Saltelli [1996]’s total index and Υ2
i is Liu and Owen [2006]’s interaction

index. Note that τ2
i is the sum of all terms in the right hand side of (4.12)

that contain a contribution from Xi, while Υ2
i contains only the contri-

butions coming from subsets of cardinality greater than 1, thus arising

from interactions with other inputs. In the literature one often finds the

normalized version of these indices. They are called Sobol’ indices and

denoted by Su.

We are then ready to link main effects to variance-based indices and

to the notion of mean effective dimension. In this section, we focus on

the total indices τ2
i and, specifically, we show that with a replicated fold-

over design we are able to obtain estimators of the total τ2
i and first order

indices τ2
i .
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Proposition 4.4.1. Let g ∈ L2(X ,B(X ), FX) where FX is a product mea-

sure and suppose that X,X1 ∼ FX are independent. The variance-based

indices τ2
i and τ2

i can be written as

τ2
i =

1

2
E
[(

ΦX→X1

i

)2
]

(4.17)

and

τ2
i = E

[
g(X) · ΦX1→X

i

]
. (4.18)

Corollary 4.4.1. Assume that
(
x0,x1

)
(k)
∼ (FX, FX) , k = 1, ..., N, are

an iid sample. Then, Monte Carlo estimators of τ2
u and τ2

u are respectively

τ̂
2

i =

∑N−1
k=0

(
φk→k+1
i

)2
2N

(4.19)

and

τ̂2
i =

∑N−1
k=0 g(x0

(k)) ·
(
φk+1→k
i

)
N

. (4.20)

Proposition 4.4.1 and Corollary 4.4.1 state the following. A forward

pass, x0 → x1 → ... → xN , of a replicated fold-over design allows us to

obtain a set of first order finite change effects. By squaring and averaging

them, we obtain an estimator of the total variance-based sensitivity indices

(4.19). At the same time, by multiplying the main effects of the backward

pass φk+1→k
i by g(x0

(k+1)) and averaging, we obtain an estimate of the first

order variance-based sensitivity indices τ̂
2

i .

Then, by taking the difference τ̂
2

i − τ̂2
i , we obtain an estimator of the

overall variance-based interaction index Υ̂2
i . Therefore, Proposition 4.4.1

and Corollary 4.4.1 suggest that with a forward and a backward trajectory,

we are able to estimate the triplets of global first, total and interaction

indices for all simulator inputs. The cost of this design is 2N(d+1) model

runs.



101

4.5 Interaction Indices and Effective Dimen-

sions from Main Effects

Caflisch et al. [1997], Owen [2003] introduce the notion of dimension distri-

bution to help the analyst in understanding the relevance of interactions

in the variance decomposition in (4.12). These works have been origi-

nally motivated by the study of the performance of Quasi-Monte Carlo

(QMC) methods, and, in particular, of the conditions under which QMC

outperforms simple Monte Carlo. The notion of dimension distribution

and effective dimensions provide the theoretical background for such in-

vestigation and have found notable application in financial engineering.

we refer to works such as Wang [2006], Wang and Sloan [2011], Wang and

Tan [2013], Wang and Leng [2016] for a thorough overview. In this work,

we focus on the mean dimension in the superimposition sense.

Formally, the mean dimension of g in the superimposition sense is defined

as

Dg =

∑
u |u|σ2

u

σ2
, (4.21)

where |u| is the cardinality of u. The value of Dg is the average of the

cardinality of a group of indices weighted by its fractional contribution

to the variance of the model output. For characterizing interactions, it

is interesting to consider the sum
∑d
i=1 Υ2

i . This quantity is null if g is

additive and, if it is different from zero, it is a measure of the total overall

impact of interaction effects in g.

Proposition 4.5.1. Under the assumptions of Proposition 4.4.1, given a

multivariate simulator g and the overall interaction indices in (5.16), we

have:
d∑
i=1

Υ2
i =

∑
u

|u|σ2
u −

d∑
i=1

τ2
i , (4.22)

and
d∑
i=1

Υ2
i =

∑
|u|>1

|u|σ2
u (4.23)
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Proposition (4.17) suggests that the sum of the overall interaction in-

dices Υ2
i exceeds the sum of all the first order indices by the the numera-

tor of the mean dimension in the superimposition sense. In particular, we

have: ∑
u

|u|σ2
u =

d∑
i=1

Υ2
i +

d∑
i=1

τ2
i . (4.24)

If we divide equations (4.22) and (4.23) by σ2
Y , we obtain

Dg = DAdd
g +DInt

g where DAdd
g =

∑d
i=1 τ

2
i

σ2
Y

, DInt
g =

∑d
i=1 Υ2

i

σ2
Y

,

(4.25)

so that the mean dimension is decomposed into an additive and an inter-

action component. We recall that Wang [2006] regards DAdd
g as a measure

of the degree of additivity of g: if DAdd
g = 1, (close to 1), then g is addi-

tive (nearly additive). In fact, if and only if g is additive, DInt
g = 0, and

Dg = DAdd
g , and

∑d
i=1 τ

2
i = σ2

Y , so that Dg = 1. Conversely, if DInt
g � 1,

then g is dominated by interaction effects.

The following result connects main effects and Υ2
i .

Proposition 4.5.2. The overall interaction index Υ2
i can be written as

Υ2
i =

1

2
E
[(

ΦX→X1

i

)2

− 2 · g(X) · ΦX1→X
i

]
. (4.26)

The sum
∑d
i=1 Υ2

i is given by

d∑
i=1

Υ2
i =

d∑
i=1

E
[
−g(X) ·

(
ΦX→X1

i + ΦX1→X
i

)]
. (4.27)

Moreover, the numerator of the mean dimension in the superimposition

sense can be written as

∑
u

|u|σ2
u = E

[
−g(X) ·

d∑
i=1

ΦX→X1

i

]
. (4.28)

Equations (4.26), (4.27) and (4.28) relate several measures of interac-

tion on a global scale to main effects computed using OAT replicates.
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Corollary 4.5.1. Monte Carlo estimators for sensitivity indices (4.26),

(4.27) and (4.28) are respectively given by

Υ̂2
i =

∑N−1
k=0

[(
φk→k+1
i

)2 − 2g(x0
(k)) · φ

k+1→k
i

]
2N

, (4.29)

d∑
i=1

Υ̂2
i =

2
∑d
i=1

∑N−1
k=0

[
−g(x0

(k)) ·
(
φk→k+1
i + φk+1→k

i

)]
N

(4.30)

and ∑
u

|u|σ̂2
u = −

d∑
i=1

N−1∑
k=0

g(x0
(k)) ·

(
φk→k+1
i

)
N

. (4.31)

Corollary 4.5.1 shows that information on the structure of the simu-

lator and on the relevance of interactions can be obtained by computing

replicates of main effects. Specifically, one can estimate the overall global

interaction index associated with each simulator input (4.29), and the

numerator of the mean effective dimension (4.31). Equations (4.27) and

(4.30) show that the corresponding estimator of
∑d
i=1 Υ̂2

i is based on a

fold-over design, as they register the presence of ΦX→X1

i and ΦX1→X
i . It

is also possible to rewrite the estimator of
∑d
i=1 Υ2

i as follows.

Corollary 4.5.2. The Monte Carlo estimator of Υ2
i can be rewritten as

d∑
i=1

Υ̂2
i =

∑d
i=1

∑N
k=1 g(x0

(k)) ·
[
g(x0)− g(x0

−i : x1
i ) + g(x1)− g(x0

i : x1
−i)
]
(k)

N

=
2
∑d
i=1

∑N
k=1 g(x0

(k)) ·A
i,−i
(k)

N
,

(4.32)

where Ai,−i(k) = g(x0) − g(x0
−i : x1

i ) + g(x1) − g(x0
i : x1

−i) is the two-factor

interaction effect introduced in Design of Experiments Wu [2015], and

also used for the sensitivity analysis of computer experiments Fruth et al.

[2014].

By Ai,−i(k) one can obtain the interaction measure EIi,−i(k) =
∣∣∣Ai,−i(k)

∣∣∣ used

in Campolongo et al. [2011]. Equation (4.32) shows that
∑d
i=1 Υ̂2

i is the
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mean of replicated two-level full factorial designs weighted by g(x0
(k)), the

output value at the initial point.

Note that all these estimators are based on main effects, that are also

an ingredient of Morris µi and σi. Thus, designs based on the replicates of

OAT allow the analyst to compute both the statistics of elementary effects

and Sobol’ sensitivity indices using the same batch of simulations. This

can be of great interest to modelers Campolongo et al. [2011]. The total

cost of these estimators is N (2d+ 2). However, the cost can be reduced

to the same cost as the Morris method, as the next section discusses.

4.6 A Symmetry Effect: Two Possible Choices

In the above discussion, we have considered a design based on a forward

and a backward pass of a trajectory. However, the order with which the

simulator is evaluated on the two trajectories is immaterial.

Theorem 4.6.1. The following equalities hold for τ2
i and Υ2

i :

τ2
i = E

[
g(X1) · ΦX→X1

i

]
, (4.33)

and

Υ2
i =

1

2
E
[
ΦX→X1

i ·
(

ΦX→X1

i − 2g(X1)
)]
. (4.34)

Theorem 4.6.1 establishes a symmetry property. In particular, (4.33)

is the mirror of (4.18) in which X1 and ΦX→X1

i replace X and ΦX1→X
i .

Similarly, (4.34) suggests that the total interaction index Υ2
i can be com-

puted from the main effects ΦX→X1

i evaluations plus the evaluation of g

at X1.

Corollary 4.6.1. We have the following Monte Carlo estimates for τ2
i

and Υ2
i :

τ̂2
i =

∑N−1
k=0

[
g(xk+1) · φk→k+1

i

]
N

, (4.35)

and

Υ̂2
i =

∑N−1
k=0

[
φk→k+1
i ·

(
φk→k+1
i − 2g(xk+1)

)]
2N

. (4.36)
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Corollaries 4.4.1 and 4.6.1 show that, by knowledge of the main effects

φk→k+1
i , we obtain estimates of the first order variance-based indices, τ̂2

i

[equation (4.35)], of the interaction indices, Υ̂2
i [equation (4.36)], of the

total order indices [equation (4.19)], of the mean effective dimension Dg,

via equation (4.36). The cost of the analysis is N(d + 1)+1 model runs

(the cost of the Morris method plus one model run) and all estimates are

obtained from a forward trajectory.

Now, at the same cost C, we can perform a fold-over design, with

N/2(d+ 1) runs for the forward pass and corresponding N/2(d+ 1) runs

in the opposite direction. If we do so, we have available N(d+1)/2 forward

main effects φk→k+1
i but also N(d+ 1)/2 main effects from the backward

pass. As we discussed, these two sets of indices are, in fact, N main effects

to be used in the relevant equations (e.g. (4.19) and (4.35)). This number

is the same as in the full forward design. However, we gain the estimates

of N/2 interaction indices φIi at randomized locations.

In summary, given a budget C equal to the cost of the Morris method

plus one, an analyst has two possible choices: a) run N replicates in a

fully forward design; b) split the replicates into forward and backward

trajectories. This second choice allows the computation of the interaction

indices φIi , which also provide information on the sign of interactions. In

addition, all other sensitivity measures we have discussed can be estimated

as well, with the same precision as in the fully forward design.

4.7 Asymptotic Analysis

In estimation, it is of practical interest to obtain measures of the error at

finite sample sizes. We consider the population Φ and denote by V [·] and

V [̂·] the population and the sample variance, respectively.

Lemma 4.7.1. Under the assumptions of Proposition 4.4.1 we register

E [Φi] = 0, (4.37)

V [Φi] = 2τ2
i (4.38)
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C [Φi,Φj ] = Υ2
ij (4.39)

and

V
[
Φ̄i
]

=
2

N
τ2
i , (4.40)

where Φ̄i = 1
N

∑N−1
k=0 g

(
xk+1
i : xk−i

)
− g

(
xk
)

is the empirical mean of Φi.

Lemma 4.7.1 implies that the mean of a main effect is zero, and its vari-

ance equals twice the total-order variance-based indices. Equations (4.37)-

(4.40) suggest that main effects of important inputs will show greater

variability than main effects of unimportant inputs. Thus, given a sam-

ple of main effects, the analysts can have a rough idea of the relative

inputs importance plotting their distribution and considering their disper-

sion around zero. In a screening exercise this result is reassuring. If we

register small variability of the empirical mean of Φi, then it is safe to

expect that Xi is an input of low relevance. Also, the covariance of two

main effects is equal to the so-called superset importance of Xi, Xj , Υ2
i,j

[Liu and Owen, 2006]. This term is null when g is additive and a value

different from zero indicates the presence of interactions in g that involve

Xi and Xj . This information can be visualized in a variance-covariance

matrix of the main effects

Υ =


2τ̄2

1 Υ2
12 · · · Υ2

1d

Υ2
12 2τ̄2

2 · · · Υ2
2d

...
...

. . .
...

Υ2
1d Υ2

2d · · · 2τ̄2
d

 . (4.41)

Moreover, because
∑
u |u|σ2

u =
∑d
i=1 τ

2
i by Owen [2013], one finds that

Dg =
trace(Υ)

2σ2
Y

,

so that the mean dimension is the normalized sum of the diagonal entries

of Υ.

Example 4.7.1. Consider g (X) = X1 ·X2 ·X3 with the three inputs iid

N (1, 1). Analytically, we find τ̄2
i = 4 and Υ2

ij = 2 for i = 1, 2, 3, i 6= j.
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Correspondingly, the variance-covariance matrix is Υ =

 8 2 2

2 8 2

2 2 8

 .

Consider now a numerical estimation at large sample size. At N = 50, 000

(the sample is generated through crude Monte Carlo) applying the empir-

ical estimator of the covariance between the main effects, we find

Υ̂ =

 8.0717 2.0419 2.0122

2.0419 7.9686 2.0022

2.0122 2.0022 7.8928

 .

Theorem 4.7.1. Under the assumption of Proposition 4.4.1, we have

√
N Φ̄i −→ N

(
0, 2τ2

i

)
(4.42)

for N →∞, i = 1, 2, ..., d.

This result suggests 4.7.1 that the means of the Φi are asymptotically

normal with null mean and variance 2τ2
i /N .

Theorem 4.7.2. Assume that E
[
g(X)4

]
= µ4 < ∞ and all inputs are

independent. Then, for N →∞ we have

√
N
(
τ̂2
i,N − τ2

i

)
−→ N

(
0,V

[
g (X) · ΦX1→X

i

])
, (4.43)

√
N
(
τ̂

2

i,N − τ2
i

)
−→ N

(
0,
µ4 − 4τ4

i

4

)
(4.44)

and

√
N

(
d∑
i=1

τ̂
2

i,N −
∑
u

|u|σ2
u

)
−→ N

(
0,
dµ4 − 4

∑d
i=1 τ

4
i

4

)
. (4.45)

Theorem 4.7.2 suggests that main effect-based estimators of first and

total order indices are asymptotically normal, unbiased and their variance

tends to zero as the sample size increases. Equations (4.43) and (4.44)

yield confidence intervals for variance-based sensitivity indices. Equation

(4.45) yields confidence intervals for the numerator of the mean effective

dimension of g.
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Of interest is also the asymptotic behaviour of the estimators of the

normalized sensitivity indices and of the effective dimension. We let

Si =
τ2
i

σ2
Y

, Ti =
τ2
i

σ2
Y

and Ii =
Υ2
i

σ2
Y

, (4.46)

denote the individual, total and interaction Sobol’ indices respectively.

Note that, by (4.25), Dg =
∑d
i=1 (Si + Ii) .

Theorem 4.7.3. Under the assumptions of Theorem 4.7.2, we have:

√
N
(
Ŝi,N − Si

)
−→ N (0,ΓSi) (4.47)

√
N
(
T̂i,N − Ti

)
−→ N (0,ΓTi) (4.48)

and √
N
(
D̂N −Dg

)
−→ N

(
0,ΓDg

)
(4.49)

where µ4 the fourth moment of g, the estimators are given by

Ŝi,N =
τ̂2
i

σ̂2
Y

, T̂i,N =
τ̂

2

i

σ̂2
Y

and D̂N =

∑d
i=1 τ̂

2

i,N

σ̂2
Y

(4.50)

and the asymptotic variances are

ΓSi =
V
[
g(X1) · ΦX→X1

i

]
+ S2

i

(
µ4 − σ4

Y

)
− 2SiC

[
g(X1) · ΦX→X1

i , (g(X)− µ)
2
]

σ4
Y

,

(4.51)

ΓTi =
µ4 − 4τ4

i + 4T 2
i

(
µ4 − σ4

Y

)
− 4TiC

[
(ΦX→X1

i )2, (g(X)− µ)
2
]

4σ4
Y

(4.52)

and

ΓDg =
dµ4 − 4

∑d
i=1 τ

4
i + 4D2

g

(
µ4 − σ4

Y

)
− 4DgC

[∑d
i=1(ΦX→X1

i )2, (g(X)− µ)
2
]

4σ4
Y

.

(4.53)

For first order indices, Janon et al. [2014] obtained confidence intervals

for estimators based on the pick-and-freeze design and regard Si as the
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result of a covariance calculation. Our approach, instead, allows one to

consider the total indices Ti as variance of main effects. Indeed, because

the main effects have zero mean (Lemma 4.7.1), the estimator of the total

Sobol’ indices is expressed as a variance of main effects, by (4.38) we have

T 2
i =

1

2

V [Φi]

σ2
Y

. (4.54)

From (4.54), Ti can now be interpreted as the (halved) proportion of the

simulator variance due to the one-at-a-time variations of the model input

of interest. Theorem 4.7.3 then characterizes the asymptotic behavior of

Ti and Dg.

4.8 Finite changes with constant step size ∆

We can sample in two ways: random sampling or Morris’ sampling with

fixed ∆. Lemma 4.7.1 and Theorem 4.7.1 lead to the asymptotic properties

of Morris µi and σi, with a caveat. Morris definition of trajectories is linked

to a predefined grid in the model input space. However, consider still

that ∆ is fixed, but one abandons the grid and computes the elementary

effects at locations in X independently sampled (through a Monte Carlo

or another space filling design). Because EEi are Newton ratios, one is

sampling approximations of partial derivatives at randomized locations in

X . This way of proceeding resembles the estimation of sensitivity measures

in the Distributed Evaluation of Local Sensitivity Analysis (DELSA), in

derivative-based methods and in radial design sampling [Rakovec et al.,

2014, Campolongo et al., 2011].

In the case we use Morris sampling with constant ∆, we obtain notable

differences in the properties of the estimators. First, let us define the finite

change effect obtained with the Morris method as

∆Φi = g(X0
i + ∆ : X0

−i)− g(X0).

We observe that this finite change is the numerator of EEi. Now, as

opposed to Φi , ∆Φi does not have null expectation. In general we obtain

EEi ·∆ = ∆Φi
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therefore passing to the mean value

E[∆Φi] = µi∆. (4.55)

Example 4.8.1. Consider a linear model:

Y =
d∑
i=1

βiXi + a

We have that

E[∆Φi] = βi∆

Instead the variance of elementary effects can be computed as follows.

Corollary 4.8.1. For any finite N and ∆ in a Morris design, we have:

σ̂2
EEi =

N

N − 1

2∆τ̂
2

i

∆2
− N

N − 1
µ̂2
i (4.56)

where

∆τ̂
2

i =

∑N−1
k=0

(
∆φ

k→k+1
i

)2
∆2

.

Several works in the literature (see Campolongo et al. [2011] among

others) have hinted at the fact that the variance of elementary effects

is a measure of non linearity and interactions. Note that (4.56) is used

to construct test statistics for hypothesis testing in the controlled Morris

method in Shi et al. [2016].

However, note that ∆τ
2
i is a biased estimator of Saltelli-Sobol’ total

index t of the i-th input since every couple of points is forced to have the

i-th component at distance ∆. We show how we can eliminate this bias

arisen from the constrained sampling strategy in next section.

4.8.1 Debiasing ∆τ
2
i as an estimator of the total effect

It is possible to debias the Sobol’ index ∆τ
2
i evuated using the finite

changes φ∆
i with fixed step ∆. Ideed, one finds

Φ2
i =

(
g(X1

i : X0
−i)− g(X0)

)2
=
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=
(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i) + g(X0

i + ∆ : X0
−i)− g(X0)

)2
=

=
(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
)2

+
(
g(X0

i + ∆ : X0
−i)− g(X0)

)2
+

+2
(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
) (
g(X0

i + ∆ : X0
−i)− g(X0)

)
=

=
(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
)2

+∆Φ2
i+2

(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
)
·∆Φi

Hence, the bias arising from using the fixed-step sampling can be writ-

ten as

Bias
(
Φ2
i − ∆Φ2

i

)
=
(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
)2

(4.57)

+2
(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
)
· ∆Φi

Taking expected values and dividing by 2, we get

τ2
i =

1

2
E
[(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
)2]

+ ∆τ
2
i+ (4.58)

E
[(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
)
· ∆Φi

]
and finally

Bias
(
τ2
i − ∆τ

2
i

)
=

1

2
E
[(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
)2]

+ (4.59)

+E
[(
g(X1

i : X0
−i)− g(X0

i + ∆ : X0
−i)
)
· ∆Φi

]
.

Example 4.8.2. Consider the product of three normal variables in Ex-

ample 4.7.1. We consider the debiased finite-change estimators of τ2
i = 4

for ∆ = 0.1, ∆ = 0.5, ∆ = 1 and ∆ = 2 and we compare them with

the finite-change estimator based on two independent realizations under

random sampling (RS). Results are displayed in next Figure 4.2. We can

see that in both panels the Sobol’ total indices converge. We check numer-

ically equation (4.56). For instance, in the case ∆ = 0.1, we find after

N = 25, 000 that σ̂2
EEi

= 2.9358 and that N
N−1

2∆τ̂
2
i

∆2 − N
N−1 µ̂

2
i = 2.9357.

This case is interesting since we can see that the blue line corresponds to

the worst estimators. However, this is natural since it is the smallest step

size considered and it would require more runs to explore the input space.
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Figure 4.2: Comparison betweem biased (left) and debiased (rigth) ∆τ
2
i

as estimator of τ2
i .
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Asymptotically, one finds the following behaviour.

Proposition 4.8.1. Under assumptions of Proposition 4.4.1 with constant

∆, one has

σ2
EEi = 2

∆τ
2
i

∆2
− µ2

i (4.60)

and

V [µ̂i] =
σ̂2
EEi

N
i = 1, ..., d, . (4.61)

where

∆τ
2
i =

1

2
E
[
(∆Φi)

2
]
. (4.62)

and µi is defined in equation (4.55).

Equation (4.60) is, theoretically, the limit for N → ∞ of equation

(4.56) and shows that Morris’ σ2
EEi

becomes proportional to ∆τ
2
i . In

particular, correcting the bias in equation (4.60) it is possible to formally

connect the variance of Morris’ elementary effects to Sobol’ indices as

σ2
EEi =

2

∆2

(
τ2
i −Bias

(
τ2
i − ∆τ

2
i

))
− µ2

i =
2

∆2
τ2
i − bg(∆, i) (4.63)

where bg(∆, i) = 2
∆2Bias

(
τ2
i − ∆τ

2
i

)
+ µ2

i .

Proposition 4.8.2. For the population of EEi’s obtained through random

sampling, we have:

√
N (µ̂i − µi) −→ N

(
0,

2

∆2 ∆τ
2
i − µ2

i

)
(4.64)

for N →∞, where µi is the mean value of the elementary effect EEi.

More in general, these results suggest that, fixed ∆, Newton ratios are

asymptotically distributed as a normal random variable with mean µi and

variance 2
∆2 ∆

τ2
i−µ2

i . This result connects this work with earlier findings of

Zazanis and Suri [1993], who investigate the asymptotic convergence rate

of Newton ratios. Zazanis and Suri [1993] show that, if ∆∗ is chosen to be

the optimal increment (i.e. the increment that minimizes the mean square

error of the finite-difference estimator), then the corresponding estimator
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µ̂∗i converges at a rate of order N−1/4, which is smaller than the Monte

Carlo rate O(N−1/2).

Thus far, we have not made any assumption on the functional form of

g. This results in a connection of the findings in previous works, such as

Cheng [1997], Boukouvalas et al. [2014].

Example 4.8.3. Consider the linear model in Example 4.8.1. It follows

that EEi = βi and µi = βi. Thus, σ2
EEi

= 0. On the other hand, it holds

that ∆τ
2
i = 1

2β
2
i ∆2. Consequently, we obtain that the variance in (4.64)

becomes 2
∆2 ∆τ

2
i − µ2

i = β2
i − β2

i = 0.

Boukouvalas et al. [2014] propose a screening method for simulation

experiments based on the elementary effects method. Their algorithm

discriminates the inputs with linear and nonlinear effects using a threshold

value for the variance of the elementary effects. It is assumed that the data

follow a linear noise model for the i−th input of the type

Y (xi) = axi + b+ εi, (4.65)

where εi ∼ N
(
0, γ2

)
. For this linear model, they prove that µ̂i ∼ N

(
a, 2

N∆2 γ
2
)
.

Note that this result holds because the quantity of interest is Y . In the

quantity of interest were E[Y ], we would find µ̂i = a and V[µ̂i] = 0 (see

Example 4.8.1). This is the same result we would obtain by setting γ = 0

in eq. (4.65), that is, for a deterministic code.

We can generalize these findings. Cheng [1997] considers the sequential

bifurcation method [Bettonvil and Kleijnen, 1997] for the stochastic model

Y (x) = β0 + β1(x1 − x0
1) + ...+ βd(xd − x0

d) + ε, (4.66)

where the error ε is independent of X. We assume that it is normally

distributed with zero mean and variance γ2. Following the sequential bi-

furcation method, Cheng [1997] evaluates the model at the points x(j)and

x where
x

(j)
i = x0

i + ∆ i = 1, 2, ..., j

x
(j)
i = x0

i i = j + 1, ..., d.
(4.67)
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Then, for j < k, Cheng [1997] defines the scaled finite difference D(j, k) =[
g(x(k))− g(x(j))

]
/∆. This can be rewritten as D(j, k) =

∑k
i=j+1 ∆Φi/∆,

which has expectation E [D(j, k)] =
∑k
i=j+1 βi. Note that the mean of the

elementary effects is equal to µi = βi. Hence, the variance of D(j, k) can

be expressed as V [D(j, k)] = 2
∆2 γ

2. Thus, we find that

D̂(j, k) ∼ N

 k∑
i=j+1

βi,
2

N∆2
γ2

 . (4.68)

Thus, we have find the same result in Cheng [1997] considering Morris’

elementary effects in the special case of a linear function.

We finally note that as in the above-mentioned works, we make the

assumption that model inputs are independent. In Section 4.10.1 in the

Appendix we briefly describe the case of dependent inputs.

4.9 Case Studies

The purpose of this section is to examine the numerical behavior in the case

of well known and realistic simulators previously used in the simulation

literature.

Regarding computational cost, proposition 4.5.2 and Theorem 4.6.1

suggest that the estimators of τ2
i , τ

2
i , and Υ2

i and D require N(d+ 1) + 1

simulator evaluations. Nominally, this is the cost of the Morris method

plus one model evaluation.

Regarding insights, the literature has made inference from sensitiv-

ity measures systematic through the notion of sensitivity analysis setting

[Saltelli and Tarantola, 2002]. Among sensitivity analysis settings we re-

call factor prioritization (or fixing), interaction identification and trend

determination. The estimates of total order indices provide indication

about factor prioritization. The estimates of the mean dimension, the Υ

matrix and the overall interaction indices Υi inform us about the magni-

tude of interactions. Moreover, if the analyst uses a folded-over design,

she obtains information about the sign of interactions, with computation
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of the Υ0→1
i indices. Finally, as well known, the sign of elementary ef-

fects suggests whether g is increasing or decreasing in Xi. For instance,

if g is monotonic (increasing or decreasing), then all Newton ratios are

either positive or negative. Therefore, a change in sign of Newton ratios

across some locations in X communicates to the analyst that the simulator

response is not monotonic in Xi.

We discuss these insights for the Asian Option pricing simulator in

Nelson [2013], the ATO Simulator of Hong and Nelson [2006] and the

NASA space mission code of Borgonovo and Smith [2011].

4.9.1 Asian Option value

Asian options are among the most popular and studied path-dependent

financial options [Wang and Sloan, 2011, Cai et al., 2015]. The payoff of

an Asian option depends on the average price of the underlying asset over

a time period. Nelson [2013] considers the simulation of the value of an

Asian option

v = E
[
e−rT

(
X̄(T )−K

)+]
, (4.69)

where T = 1 is the maturity, r is the risk-free interest rate and K is the

strike price. The underlying asset has initial value X(0) and volatility

σ2. The quantity X̄(T ) =
∫ T

0
X(t)dt is the time-average of the Brown-

ian motion. The base case scenario of the simulation is (σ, r,X(0),K) =

(0.3, 0.05, 50, 55). In order to demonstrate the design, we consider a vari-

ation range for each input with low and high extremes equal, respectively,

to 5% and 195% of the base-case value. For every input combination,

we used 10000 inner stochastic replicates of the option pricing model and

averaged to find the estimated expected value v̂.

As a screening design, we opt for the mirror scheme, with 10000 forward

and 10000 backward replications, for a total of 80, 000 evaluations of v̂.

The analysis requires 2 hours and 45 minutes on a personal computer with

64GB RAM, and processor Intel(R) Core(TM) i7-7700HQ, 2.80GHZ. The

subroutines are developed in MATLAB.

Figure 4.3a reports the empirical distributions of the main effects of



117

the four simulator inputs. The densities in Figure 4.3a are obtained by

fitting the 20,000 realizations of Φσ, Φr, ΦX(0), and ΦK with the Matlab

ksdensity.m subroutine. The realizations of ΦX(0) and ΦK display greater

variability around the mean value (zero) than the realizations of Φσ and

Φr. This is confirmed by the barplots in Figure 4.3b, that report the

corresponding main effects mean values and variances. The variance of

ΦX(0) and ΦK are much larger than the corresponding variances of Φσ

and Φr, that are close to zero.

The replicates allow one to move some steps also towards global sensitivity

measures. For the totals, Ti, Figure 4.4a reports the point estimates and

corresponding confidence intervals as N increases, as per equations (4.48)-

(4.50).

Figure 4.4a suggests the following. Across all values of N , the point

estimates T̂K and T̂X(0) are greater than the point estimates of T̂K and

T̂X(0). However, the confidence intervals allow one to clearly separate them

after N > 400 replicates. As N increases, the confidence intervals shrink

towards the point estimates. At N = 10000, we find T̂X(0) = 0.6025 with

95% confidence interval given by [0.5646, 0.6404].

We can also determine the empirical normalized variance-covariance

matrix of the main effects (4.41):

Υ̂

σ̂2
=


0.0043 0.0002 0.0014 0.0020

0.0002 0.0008 0.0005 0.0000

0.0014 0.0005 1.2048 0.2043

0.0020 0.0000 0.2043 1.2122

 .

The matrix shows that X(0) and K owe their influence not only to their

individual contribution but also to a strong interaction, as can be seen

from its off-diagonal entries.

Regarding the overall deviation of the simulator response from additiv-

ity, the design also allows one to estimate the dimension distribution of the

simulator. Figure 4.4b shows D̂g in equation (4.50) as N increases. Start-

ing at about N ' 2000 we obtain confidence that the dimension distribu-

tion is at about D̂g = 1.25, with 95% confidence interval [1.06, 1.44]. At
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120

N = 10000, we obtain D̂g = 1.22, with 95% confidence interval [1.16, 1.28].

This result is consistent with the results in Υ̂, indicating that interactions

of order greater than 2 are not relevant.

Concerning the sign of interactions, we report the scatterplot of the

Υ0→1
i indices in Figure 4.5a. This scatterplot shows both positive and

negative realizations of the indices, indicating that the overall interactions

can be both positive and negative. This could indicate to the analyst that

the simultaneous variations in the simulator inputs may have synergistic

or antagonistic effects, depending on their actual location in the input

space. If understanding further the precise nature of pairwise interactions

as well as their regional behavior is of interest, the analyst can then plan

additional experiments aimed at the estimation of pairwise interactions.

Finally, concerning direction of change, the scatterplots of Morris ele-

mentary effects in Figure 4.5b provide a way to visualize the information

delivered by Newton ratios. From the graphs, one notes that the realiza-

tions of Newton ratios have negative values for X(0) and K, while they

assume positive or negative values for σ and r. Here, we observe that the

most appropriate setting for the use of Newton ratios is possibly direction

of change rather than prioritization. In fact, if one were to calculate Mor-

ris σ2
EEi

directly from the realizations of the Newton ratios in Figure 4.5b,

one would rank σ and r much more important than X(0) and K. However,

the Newton ratios of r have different units than, for instance, the Newton

ratios of K and, consequently, σ2
EEK

and σ2
EEr

cannot be compared. In

order to compare them, one would have to recompute Morris σ2
EEi

after

standardizing all the model inputs on the [0,1] a-dimensional scale. This

step is not necessary if one uses the empirical variance of main effects.

4.9.2 The Stochastic Assemble-to-Order Simulator

The Stochastic Assemble-to-Order (ATO) model is a discrete-event sim-

ulator for supply-chain management [Glasserman and Wang, 1998]. We

consider the ATO simulator as in Hong and Nelson [2006], in the im-

plementation by Jing Xie available at www.simopt.org. The system is
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made of orders form M different customers following independent Pois-

son arrival processes with constant rates λm, m = 1, ...,M . Orders are

assembled from K different items, requiring amk items of type k, with

k = 1, ...,K. For each customer’s order, items can be key or non-key. If

key items are not available in stock, the customer cancels the order and

leaves the system. If all key items are in stock, the customer buys the

product assembled by the key items and the available non-key items. The

profit for each sold item is pk and the holding cost for each of them in the

inventory is hk. Each item has inventory capacity ck and a target-based

stock tk and a demand triggers a replenishment order. The production

time for the item k is normally distributed with mean µk and standard

deviation σk (truncated at 0).

In the simulation the values M = 5, K = 8 and ck = 20 are assigned.

We consider the 22 uncertain inputs detailed in Table 4.2. They com-

prise the item prices, the target inventory level per item, the holding cost

(identical for all items), and the mean arrival time of the customers. We

select the mirror design with up to N = 10000 replicates. The analysis

takes about 19 hours on the above mentioned personal computer. We

focus on the identification of the most important inputs and on the mean

dimension in this case. Figure 4.6a reports the values of the estimates of

Ti, Ii and Si defined in (4.46), as the number of replicates increases from

N = 100 to N = 10000. For the variance-based sensitivity indices, we

record stable estimates for N ≥500. Holding cost for every item (input

X14, equal for every item) the price of the sixth item (input X6) and four

target inventory items (inputs X15, X18, X19, X20) have the greatest im-

pact on the final profit, with X20 resulting as the most important input

according to Ti.

The block of the empirical normalized variance-covariance matrix re-

stricted to the most influential inputs at N = 10000, is

Υ̂|14,15,18,20

σ̂2
=


0.3413 0.0000 0.0000 0.0059

0.0000 0.2613 0.0052 0.0155

0.0000 0.0052 0.3883 0.0284

0.0059 0.0155 0.0284 1.0928

 .



123

Parameter Distribution Parameters Description

p1 uniform 0.5 1.5 price item 1

p2 uniform 1 3 price item 2

p3 uniform 2 4 price item 3

p4 uniform 2 6 price item 4

p5 uniform 3 7 price item 5

p6 uniform 3 9 price item 6

p7 uniform 4 10 price item 7

p8 uniform 4 12 price item 8

λ1 normal 3.6 .36 arrival customer 1

λ2 normal 3 .3 arrival customer 2

λ3 normal 2.4 .24 arrival customer 3

λ4 normal 1.8 .18 arrival customer 4

λ5 normal 1.2 .12 arrival customer 5

h1 = · · · = h8 uniform 1 3 holding costs

ti, i = 1, ..., 8 discrete uniform 0 10 target inventory item i

Table 4.2: Inputs of the ATO simulator model. The parameters of the

uniform distributions are the minimum and maximum, while those of the

normal distributions are the mean and standard deviation respectively.



124

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N=[50,100,...,10000] 104

-1.5

-1

-0.5

0

0.5

1

1.5

2

T
i e

st
im

at
e

X
20

(a) T̂i with confidence intervals as N increases.

10 50 100 500 1000 2000 5000 10000

N=[10,50,100,...,10000]

-6

-4

-2

0

2

4

6

8

10

E
ffe

ct
iv

e 
D

im
en

si
on

(b) D̂g and corresponding 95% confidence interval.
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Figure 4.7: ATO simulator: scatterplot of EEi for the first four most

important inputs.

We recall that the diagonal entries are twice the estimates of T̂i at N =

10000. The off-diagonal entries signal that interactions among these four

most important inputs are not relevant. This might indicate an overall

low relevance of interactions. We look for a confirmation computing the

effective dimension. Figure 4.6b displays the point estimates and confi-

dence interval of Dg as N increases. The point estimates converge towards

D̂g = 1.3162, with a 95% confidence interval [1.249, 1.383]. This result

shows that, overall, interactions do not play a major role in the simulator

response. Therefore, for the sake of space, we do not enter into results for

the sign of the overall interactions in this case, although they are available.

Regarding direction of change, Figure 4.7 reports the elementary effects

associated with the four most relevant simulator inputs. We observe that

the holding cost (X14) is associated with negative realizations of the New-

ton ratios at all instances. An increase in holding costs is detrimental to

the expected profit and a monotonically decreasing behavior is consistent

with expectations. The target inventory items (inputs X15, X18, X20) have

both positive and negative elementary effects, signaling that the expected

profit is not monotonic in these variables. We recall that these variables

are the targets of the optimization. A monotonic behavior would rule out
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the possibility of a convex behavior of the expected profit.

4.9.3 A probabilistic safety assessment model for NASA

space missions

Borgonovo and Smith [2011] study the presence of interactions in the

probabilistic safety assessment (PSA) simulator developed to support the

designing and planning a NASA lunar space mission. This simulator is

aimed to support risk managers towards ensuring the highest levels of

performance and safety. The simulator describes eight phases of the space

mission, from launch and first orbit around the Earth, to final Earth land-

ing (see Borgonovo and Smith [2011] for further details on the simulator).

The output of this computer code is the probability of loss of mission,

modeled as a function of 872 inputs, which for privacy reason are labeled

by X1, X2, .... In Borgonovo and Smith [2011] the simulator is analyzed

within a generalized Tornado Diagram approach. The design foresees that

the simulator is run at two extreme points of the model input space x0

and x1 with no replicates. The sensitivity measures, in the notation of this

work, are one set of main effects φ0→1
i , one total order interaction effect

Υ0→1
i and one total effect τ0→1

i for each input. We run the simulator (we

thank C.L. Smith for making the code available) under the folded-over

Morris design with up to N = 100000 replicates. The computation takes

2.5 hours on the above-mentioned calculator, with a parallel calculus pro-

vision and 4 cores. At the end of the simulations, a sample of 200000 main

effects for each input is available.

As far as the identification of the most important inputs is concerned,

Figure 4.8a reports the values of the estimates of Ti, Ii and Si defined in

(4.46), as the number of replicates increases from N = 100 to N = 100000.

For Ti and Ii we record stable estimates at N ≥4×104 (we do not display

confidence intervals for the sake of space).

The most important inputs are X152 and X143, whose total order in-

dex is five times greater than the total order index of X748 the third

most important input. These inputs are also the three most important in-
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Figure 4.8: NASA space PSA: Estimates of variance-based sensitivity in-

dices and dimension distribution as N increases.
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puts according to Si. When compared to results in Borgonovo and Smith

[2011], one notes that inputs X152, X143 and X374 are identified as the

most important in that work. This evidences that insights delivered by

sensitivity analysis strongly depend on the adopted approach (and scale).

In particular, X374 is important for the change across the two scenarios

analyzed in Borgonovo and Smith [2011], but not on a global scale, when

changes across additional scenarios are considered. From the second and

third graphs in Figure 4.8a, one observes that X152 and X143 are involved

in significant interactions, while X748 is not.

Figure 4.8b displays the point estimates and confidence interval of the

effective dimension as the sample size increases. One notes that the es-

timated effective dimension converges towards a value D̂g = 1.63, with a

95% confidence interval Dg ∈ [0.971, 2.295]. This result shows that, over-

all, only interactions of order about 2 matter in the global simulator re-

sponse, but higher order interactions having a negligible role. When com-

pared to results for the ATO simulator, one can note that a percentage-wise

wider confidence interval in the NASA case. This is reasonable to expect

given the substantially higher dimensionality of this simulator. However,

note also that by the estimates we are reassured that the mean dimension

distribution will not exceed 2. Given a simulator with 870 inputs, this

result signals an overall low relevance of interactions.

Regarding the sign of interactions, results show (we do not display the

graphs for space reasons) that the indices Υ0→1
i are both be positive and

negative. Thus, overall interactions can be antagonistic or synergistic.

Regarding trend, all realizations of Newton ratios (Morris elementary ef-

fects) are non-negative. This result confirms the monotonically increasing

dependence of the probability of loss of mission on the simulator inputs

due to the fact that the underlying system is coherent (for further details

on the system, please see Borgonovo and Smith [2011]).
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4.10 Conclusions

We have offered an investigation of screening approaches whose sensitivity

measures are based on one-at-a-time designs. The findings provide a theo-

retical files-rouge that starts from Tornado diagrams and ends into global

sensitivity indices. The approach has allowed us to establish the formal

link between Morris σ2
EEi

and Sobol’ total indices. The asymptotic anal-

ysis, while generalizing some previous results, has suggested confidence

intervals for the Morris as well as variance-based sensitivity measures and

mean dimensions, allowing the analyst to determine the uncertainty in

the estimates at finite sample sizes. We have exploited a symmetry effect

to propose a design that allows the estimation of Morris elementary ef-

fects, total order indices, mean dimension and overall interaction indices

at the cost of the Morris method plus one additional run. The design

yields information, aside on the relative importance of the inputs, also on

whether interaction effects can be synergistic or antagonistic and whether

their variations impact positively or negatively the output of interest. In

terms of future research, our results show that the most important inputs

are the ones associated with the largest confidence intervals, while inputs

that are not important are also associated with a lowest variability of the

estimates. This information can then be useful for the analyst to search

for the optimal number of replicates depending on whether the goal is to

accurately estimate the most important inputs or to rapidly identify the

non-relevant ones.

Appendix

4.10.1 The case of Dependent Inputs

We now relax the assumption that X and X1 are no independently dis-

tributed but allow them to be described by the joint probability density

p
(
X,X1

)
. Under independent inputs, it holds
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τ2
i =

1

2

∫ (
g
(
X1
i : X−i

)
− g (X)

)2
p(X)p(X1)dXdX1

=
1

2

∫ (
ΦX→X1

i

)2

p(X)p(X1)dXdX1

=
1

2
Ep(X)p(X1)

[
ΦX→X1

i

]2 . (4.70)

Equation (4.70) coincides with equation (4.17).

However, in presence of dependent inputs, Kucherenko et al. [2012]

define the variance index τ2,ind
i which accounts for the variance related to

the input group indexed by i and its interactions with −i, but excludes

the variance caused by the dependence of i with −i. This way, by the

law of the total variance, σ2
Y = τ2,ind

i + τ2,full
i , where τ2,full

i includes the

variance caused by the dependence between the input groups indexed by i

and −i. Kucherenko et al. [2012] and Mara et al. [2015] define the formula

τ2,ind
i =

1

2

∫ (
g
(
X1
i : X−i

)
− g (X)

)2
p(X)p(X1

i |X−i)dXdX1

=
1

2

∫ (
ΦX→X1

i

)2

p(X)p(X1
i |X−i)dXdX1

i

=
1

2
Ep(X)p(X1

i |X−i)

[
ΦX→X1

i

]2
.

(4.71)

Hence, the dependence among inputs impacts the finite change indices

only indirectly, through the sampling of the points where these indices are

constructed.

This is also the case if one adopts the elementary effects under dependent

inputs.

Recently, Ge and Menendez [2017] extend the Morris method to the

case of dependent inputs. Precisely, these authors use both the radial

sampling of Campolongo and the trajectory sampling of Morris to generate

independent samples. Then, they transform these samples into dependent

samples and construct elementary effects for both the independent and

dependent cases.
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4.10.2 Proofs

Proof. Proof of Proposition 4.3.1. The proof benefits from exploiting a

previous result in the literature that states the following [Borgonovo, 2010,

Proposition 1]:

τ1→0
i = g(x1)− g(x0

i : x1
−i).

Then, recognizing that φ1→0
i = −(g(x1) − g(x0

i : x1
−i)), one has φ1→0

i =

−τ1→0
i . Thus, because Cotter’s design allows us to compute φ0→1

i and

φ0→1
i , we can compute φ0→1

i , τ1→0
i and then, by (4.5),Υ0→1

i .

Proof. Proof of Proposition 4.4.1. Sobol’ [1993] shows the identity τ2
i =

1
2E
[
g(X1

i : X−i)− g(X)
]2

. Considering that φ0→1
i = g

(
x1
i : x0

−i
)
−g
(
x0
)
,

we obtain equation (4.17). Regarding the sensitivity index τ2
i , Saltelli

[2002] shows that it can be rewritten as τ2
i = E

[
g(X) ·

(
g(Xi : X1

−i)− g(X1)
)]

and hence τ2
i = E

[
g(X) · ΦX1→X

i

]
.

Proof. Proof of Proposition 4.5.1. Consider the equality Υ2
i = τ2

i and sum-

ming over i = 1, 2, ..., d we have
∑d
i=1 Υ2

i =
∑d
i=1

(
τ2
i − τ2

i

)
=
∑
u |u|σ2

u−∑d
i=1 τ

2
i by Theorem 2 in Liu and Owen [2006], which is equation (4.22).

Equation (4.23) follows from previous equation writing
∑
u |u|σ2

u =
∑d
i=1 τ

2
i+∑

|u|>1 |u|σ2
u.

Proof. Proof of Corollary 4.8.1. We have



132

σ̂2
EEi =

∑N−1
k=0

(
EEk→k+1

i

)2 − (
∑N−1
k=0 EEk→k+1

i )
2

N

N − 1

=

∑N−1
k=0

(
EEk→k+1

i

)2
N − 1

· ∆2

∆2
−

(∑N−1
k=0 EEk→k+1

i

)2

N(N − 1)

=

∑N−1
k=0

(
∆φ

k→k+1
i

)2
(N − 1)∆2

− N (µ̂i)
2

N − 1

=
N

N − 1

2∆τ̂
2

i

∆2
− N

N − 1
µ̂2
i

Proof. Proof of Proposition 4.5.2. We start proving equations (4.26). By

equation (5.16) it holds,

Υ2
i = τ2

i − τ2
i =

1

2
E
[
ΦX→X1

i

]2
− E

[
g(X) · ΦX1→X

i

]
=

1

2

∫ [(
ΦX→X1

i

)2

− 2 · g(X) · ΦX1→X
i

]
dXdX1.

(4.72)

Summing over all i = 1, ..., d inputs we get

d∑
i=1

Υ2
i =

d∑
i=1

(
τ2
i − τ2

i

)
=

d∑
i=1

τ2
i −

d∑
i=1

τ2
i

=

d∑
i=1

E
[
g(X) ·

(
g(X)− g(X−i : X1

i ) + g(X1)− g(Xi : X1
−i)
)]

=

d∑
i=1

E
[
−g(X) ·

(
ΦX→X1

i + ΦX1→X
i

)]
,

(4.73)

which proves equation (4.27). Note that we have used the equalities

d∑
i=1

τ2
i =

d∑
i=1

E
[
g(X) ·

(
g(X)− g(X−i : X1

i )
)]

=

d∑
i=1

E
[
−g(X) · ΦX→X1

i

]
(4.74)
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and

d∑
i=1

τ2
i =

d∑
i=1

E
[
g(X) ·

(
g(Xi : X1

−i)− g(X1)
)]

=

d∑
i=1

E
[
g(X) · ΦX1→X

i

]
(4.75)

which can be found in [Owen, 2013, p. 32]. Moreover, since
∑
u |u|σ2

u =∑d
i=1 τ

2
i , by (4.74) the equation (4.28) follows.

Proof. Proof of Theorem 4.6.1. Since X and X1 are independent and

distributed according to FX, also X1 and X are. Hence, it follows

τ2
i = E

[
g(X) · ΦX1→X

i

]
= E

[
g(X1) · ΦX→X1

i

]
after relabeling the initial and final evaluation points. Equation (4.34)

follows combining (4.17) and (4.33) as

d∑
i=1

Υ2
i =

d∑
i=1

(
τ2
i − τ2

i

)
=

d∑
i=1

(
1

2
E
[
ΦX→X1

i

]2
− E

[
g(X1) · ΦX→X1

i

])
.

Proof. Proof of Lemma 4.7.1. Given X and X1 independent and iden-

tically distributed under FX, the population mean of the finite change

related to the i-th input is zero since

E
[
ΦX→X1

i

]
=

∫ ∫ (
g
(
X1
i : X−i

)
− g (X)

)
dXdX1

i = 0.

Consider now µ = E [g]. It holds by Owen [2013]

V
[
ΦX→X1

i

]
= V

[
g
(
X1
i : X−i

)
− g (X)

]
= 2σ2

Y − 2C
[
g
(
X1
i : X−i

)
, g (X)

]
= 2σ2

Y − 2
(
Θi,∅ − µ2

)
= 2σ2

Y − 2
(
τ2
−i + µ2 − µ2

)
= 2τ2

i

(4.76)
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using the equality σ2
Y = τ2

−i + τ2
i , where the bilinear terms Θu,v =

E
[
g
(
X1
u : X−u

)
· g
(
X1
v : X−v

)]
, u, v ⊆ {1, 2, ..., d}, constitute the entries

of the Sobol’ matrix introduced by Owen [2013]. Using the terms Θu,v,

we can now prove equation (4.39). We have

C [Φi,Φj ] = E [ΦiΦj ]− E [Φi]E [Φj ]

= E
[
g
(
X1
j : X−j

)
g
(
X1
i : X−i

)
− g

(
X1
j : X−j

)
g (X)

− g (X) g
(
X1
i : X−i

)
+ g (X)

2 ]
= Θi,j −Θ∅,j −Θ∅,i + σ2

= τ2
−{i,j} − τ

2
−j − τ2

−i + σ2

= τ̄2
i + τ̄2

j − τ̄2
i,j

=
∑

u⊇{(i,j)}

σ2
u = Υ2

i,j

To prove (4.40), as in the proof of Proposition 7.1 in Owen [2013], we

consider the following empirical estimators of the mean µ

µ̂ =
1

N

N∑
k=1

g(x0)(k), µ̂′ =
1

N

N∑
k=1

g(x1
i : x0

−i)(k).

Note that µ̂′ − µ̂ = Φ̄i. Then, we have

V
[
Φ̄i
]

= E
[
(µ̂′ − µ̂)

2
]

= V (µ̂′)+V (µ̂)−2C (µ̂, µ̂′) =
2

N

[
σ2
Y − τ2

−i
]

=
2

N
τ2
i .

Proof. Proof of Theorem 4.7.1. The population variance of the finite

change from X to X1 is 2τ2
i by equation (4.40). By Lemma 4.7.1 and

applying the Central Limit Theorem and the Law of Large Numbers, it

follows

Φ̄X→X1

i ∼ N
(

0, 2
τ2
i

N

)
as N →∞.

The population mean of the elementary effects EEi is µi (which is in

general different from zero). The population variance is 2
∆2 ∆τ

2
i − µ2 by
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Corollary 4.8.1. Then, the result is a direct application of the Central

Limit Theorem to the elementary effects EEi.

Proof. Proof of Theorem 4.7.2. To prove equation (4.43), consider the

estimator

τ̂2
i,N =

1

N

N∑
k=1

g(x0
(k)) ·

(
φ1→0
i

)
(k)
.

As in Janon et al. [2014], defining the quantity

Uk =
(
g(x0

(k))g(x0
i : x1

−i)(k), g(x0
(k))g(x1

(k))
)

one finds

τ̂2
u,N = ψ

(
1

N

N∑
k=1

Uk

)
= ψ

(
ŪN
)

with

ψ(x, y) = x− y.

By the Central Limit Theorem, for N →∞
√
N
(
ŪN − µ

)
−→ N (0,Γ) ,

where Γ is the covariance matrix of U1 and the vector of mean values is

µ =

(
Θ{1,...,d},i

Θ{1,...,d},∅

)

where the bilinear terms Θu,v = E
[
g
(
X0
u : X1

−u
)
· g
(
X0
v : X1

−v
)]

are the

entries of the Sobol’ matrix in Owen [2013]. Hence,

ŪN =
(

Θ̂{1,...,d},i, Θ̂{1,...,d},∅

)
(N)

coincides with the sample estimators given at page 27 in Owen [2013]. By

the Delta-method, we then have

√
N
(
τ̂2
i,N − τ2

i

)
−→ N

(
0,∇ψ(µ)TΓ∇ψ(µ)

)
.
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The gradient is given by ∇ψ(x, y) = (1,−1)T so that

∇ψ(µ)TΓ∇ψ(µ) =

= (1,−1)

(
V
[
g(X0)g(X0

i : X1
−i)
]

C
[
g(X0)g(X0

i : X1
−i), g(X0)g(X1)

]
C
[
g(X0)g(X0

i : X1
−i), g(X0)g(X1)

]
V
[
g(X0)g(X1)

] )(
1

−1

)
= V

[
g(X0)g(X0

i : X1
−i)
]

+ V
[
g(X0)g(X1)

]
− 2C

[
g(X0)g(X0

i : X1
−i), g(X0)g(X1)

]
= V

[
g
(
X0
)
· φ1→0

i

]
.

In particular, note that

ψ
(
Θ{1,...,d},i,Θ{1,...,d},∅

)
= τ2

i .

Formula (4.44) can be proven similarly. Precisely, posing Uk =
[
g(x1

i : x0
−i)(k) − g(x1

(k))
]2

,

by the Central Limit Theorem one finds

√
N
(
ŪN − µ

)
−→ N (0,Γ)

where Γ = V
[(
φ0→1
i

)2]
and

µ =

∫ (
φ0→1
i

)2
dX0dX1 = 2

(
E
[
g2
]
−Θi,∅

)
= 2

(
E
[
g2
]
− (E [g])

2 − τ2
−i

)
= 2

(
V [g]− τ2

−i
)

= 2τ2
i .

Then, apply the Delta-method using the transformation ψ(t) = 1
2 t and

consider that V
[
(ΦX→X1

i )2
]

= µ4 −
(
2τ2
i

)2 − µ4 − 4τ2
iµ

2 = µ4 −
(
2τ2
i

)2
being the mean of finite changes zero. The limit (4.45) follows from (4.44),

the fact that the finite changes are independent and
∑d
i=1 τ

2
i =

∑
u |u|σ2

u

(Theorem 2.2 of Owen [2013]).

Proof. Proof of Theorem 4.7.3. We prove (4.49). Consider the asymptotic

normality of the sample variance estimator
√
N
(
S2
N − σ2

Y

)
→ N

(
0, µ4 − σ2

Y

)
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(see, e. g., van der Vaart [2000]) . Hence, by (4.45)

√
N


d∑
i=1

τ̂
2

i,N

S2
N

 −→

N


∑
u

|u|σ2
u

σ2
Y

,


1

4

d∑
i=1

V
[
(ΦX→X1

i )2
]

C

[
1

2

d∑
i=1

(ΦX→X1

i )2, (g(X)− µ)
2

]

C

[
1

2

d∑
i=1

(ΦX→X1

i )2, (g(X)− µ)
2

]
µ4 − σ2

Y



 .

(4.77)

Consider the function ψ(x, y) = x
y with gradient ∇ψ(x, y) = ( 1

y ,−
x
y2 ). It

holds for N →∞

ψ

(
d∑
i=1

τ̂
2

i,N , S
2
N

)
=

∑d
i=1 τ̂

2

i,N

S2
N

→
∑
u |u|σ2

u

σ2
Y

= Dg. (4.78)

By the Delta-method, we then have

√
N

(
ψ

(
d∑
i=1

τ̂
2

i,N , S
2
N

)
− ψ

(∑
u

|u|σ2
u, σ

2
Y

))
−→

N

0,∇ψ

(∑
u

|u|σ2
u, σ

2
Y

)T
Γ∇ψ

(∑
u

|u|σ2
u, σ

2
Y

)
where Γ is the variance-covariance matrix in (4.77). It follows

∇ψ

(∑
u

|u|σ2
u, σ

2
Y

)T
Γ∇ψ

(∑
u

|u|σ2
u, σ

2
Y

)
=

(
1

σ2
Y

,−
∑
u |u|σ2

u

σ4
Y

)T
Γ

(
1

σ2
Y

,−
∑
u |u|σ2

u

σ4
Y

)

=

∑d
i=1 V

[
(ΦX→X1

i )2
]

4σ4
Y

+
D2
g

(
µ4 − σ4

Y

)
σ4
Y

− 2
Dg$

σ4
Y

=

∑d
i=1 V

[
(ΦX→X1

i )2
]

+ 4D2
g

(
µ4 − σ4

Y

)
− 8Dg$

4σ4
Y

.
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where$ = C
[

1
2

∑d
i=1(ΦX→X1

i )2, (g(X)− µ)
2
]
. Considering that V

[
(ΦX→X1

i )2
]

=

µ4 −
(
2τ2
i

)2
, the limit (4.49) follows.

The limits (4.47) and (4.48) can be proved analogously considering (4.43)

and (4.44) respectively.

Proof. Proof of Proposition 4.8.1. The variance of the elementary effects

EEi can be found by consistency of the estimators of the sample variance

(4.56) and of the sample mean (4.7). Equation (4.61) can be obtained

considering that the variance of the sample mean is the sample variance

divided by the number of observations N .
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Chapter 5

A Shapley-Owen index for

interaction quantification

Abstract

The recent work of Art Owen [2014, J. Uncertainty Quantification, 2, p.

245-251] has introduced the Shapley value as an importance measure for

global sensitivity analysis (Shapley effect, henceforth). When inputs are

dependent, using Shapley effects provides a strategy to overcome concep-

tual difficulties related to the interpretation of Sobol’ sensitivity indices.

However, Shapley effects have been formulated thus far only to quantify

the importance of individual model inputs, without providing information

about interactions. This article extends the above-mentioned work to pro-

pose a Shapley sensitivity measure for interaction effects. We make use of

the generalized Shapley value introduced by Guillermo Owen [1972, Man-

agement Science, 18(52), p. 64-79] and axiomatized later on in Grabisch

and Roubens [1999, Int. J. Game Theory, 28(4), p. 547-565]. In paral-

lel to the work of Art Owen, we propose this Shapley-Owen effect as a

tool for global interaction quantification in presence of dependent inputs.

We show that using this index it is also possible to gain insights on the
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synergistic/antagonistic nature of interactions.

5.1 Introduction

Running computer experiments is nowadays a standard procedure to sup-

port scientific investigations in several disciplines, from engineering to

chemistry. Scientific models are often regarded as black-boxes, because

in realistic applications the functional form of the input-output mapping

is not available analytically. When model inputs are uncertain, global sen-

sitivity analysis supports is essential for analysts to gain insights about the

key-drivers of uncertainty. Sobol’ indices are among the most well known

global sensitivity measures [Sobol’, 1993]. These importance measures

rank model inputs based on their contribution (individual or in interac-

tions with other model inputs) to the model output variance. However,

the assumption of model input independence, which plays a crucial role

in granting a transparent interpretation of these indices, may not hold in

realistic applications. To deal with this complication, alternative methods

have been developed to restore the Sobol’ approach via generalized func-

tional ANOVA decompositions [Chastaing et al., 2012, Rahman, 2014] or

via the use of moment-independent sensitivity measures [Borgonovo and

Plischke, 2016].

Art Owen [2014] has proposed the use of the Shapley value [Shapley,

1953], typical in the economic literature, to measure variable importance

bypassing the problem of decomposing variance under dependence [Owen

and Prieur, 2017]. In Economics, the Shapley value attributes the value

created by a team to each of its members. If the team is identified by

a set of random model inputs and the economic value generated by the

team is identified with their explanatory power, then the Shapley value

becomes a measure of the relative model input importance. In this way, the

Shapley value has recently received attention as a tool for global sensitivity

analysis [Song et al., 2016, Owen and Prieur, 2017, Iooss and Prieur, 2019].

However, there is no analogous approach for measuring the importance of

interaction effects, because the Shapley value assigns value to singular
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inputs/agents.

In this paper, we consider the Shapley-Owen value for interactions in

groups of players as introduced by Guillermo Owen [Owen, 1972], which

extends the Shapley value for singular agents to a group of agents S. We

show that the Shapley-Owen effect can also provide information about

the nature of interaction in presence of dependent inputs. That is, this

global index allows to discriminate whether an interaction is synergistic

(i.e., two model inputs are related by a positive cooperation) or antag-

onistic (negative cooperation among the model inputs). We show how

this Shapley-Owen effect is connected to well-known interaction measures,

such as the superset importance measure of Liu and Owen [2006] and the

factorial moments of the dimension distribution of Owen [2003]. We also

discuss the link between Shapley effects and Sobol’ indices for the case in

which the analyst is not able to specify a unique joint distribution for the

model inputs, but assigns a mixture of possible distributions.

The remainder of this paper is organized as follows. Section 2 intro-

duces the functional ANOVA decomposition and presents Sobol’ indices.

Section 3 reviews the Shapley value as an importance measure for in-

dividual model inputs. Section 4 presents the Shapley-Owen value, its

axiomatization and its connection to the Shapley value, the superset im-

portance index and the dimension distribution. Section 5 shows that the

invariance properties of the (individual) Shapley effect don’t generalize to

the (group) Shapley-Owen effect. Section 6 contains results on Sobol’ and

Shapley-Owen values under mixtures. Section 7 illustrates the analysis

of interactions via test cases of Owen and Prieur [2017], Iooss and Prieur

[2019].

5.2 Functional ANOVA and global sensitiv-

ity analysis

Consider a function g(x) : X → R, where X ⊆ Rn. This function may

represent the input-output mapping of a computer code or a surrogate



142

model of a complex system, and is generally not available in closed form.

Let’s assume that g is square integrable and that it depends on n inputs

xj , with j ∈ N := {1, 2, ..., n}. For a subset T ⊆ N , denote by |T | its

cardinality and by −T = N \ T its complement.

Let the model inputs be uncertain and let (X ,B (X ) , µ) denote the cor-

responding probability space, with µ : B (X ) → [0, 1] a product measure.

Under the assumption that g ∈ L2 (X ,B (X ) , µ), the functional ANOVA

representation of g [Efron and Stein, 1981] is written as:

g(x) =
∑
T⊆N

gT (xT ),

where xT are the components of x indexed by T ⊆ N and the functions

gT are recursively defined by

gT (xT ) =

∫ (
g(x)−

∑
L⊂T

gL(xL)

)
dµ(x−T ).

The components gT (xT ) are referred to as the functional ANOVA effects

of xT . They are orthogonal:
∫
gT (xT )gL(xL)dx = 0 for T 6= L. Defining

the variance components σ2
T = V[gT (xT )], effect orthogonality leads to the

well-known decomposition formula

σ2 = V[g(x)] =
∑

T⊆N\{∅}

σ2
T . (5.1)

The global sensitivity analysis of g is typically performed using Sobol’

indices. The two importance indices for subset T are

τ2
T = V [E (g(x)|xT )] =

∑
L⊆T

σ2
L (5.2)

and

τ2
T = E [V (g(x)|x−T )] =

∑
L:L∩T 6=∅

σ2
L. (5.3)

In particular, the index τ2
T represents the variance explained by xT and

can be considered as a natural importance measure for the set T . Con-

versely, τ2
T can be interpreted as the expected remaining variance once the

inputs x−T are known [Song et al., 2016]. These indices satisfy τ2
T ≤ τ2

T

and τ2
T = σ2 − τ2

−T .
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5.3 The Shapley value

The Shapley value of model input xj , seen as a player in a cooperative

game, is a measure of the value of player j in a set of players T ⊆ N . It

is given by

φνj =
∑

T⊆N\{j}

(n− |T | − 1)!|T |!
n!

[ν(T ∪ {j})− ν(T )] , (5.4)

where the value function ν(T ), the value attained by the subcoalition

T, is assumed to satisfy the condition ν(∅) = 0. The properties of value

functions have been extensively studied in the literature. For theoretical

aspects, we refer to works such as Grabisch and Roubens [1999], Grabisch

[2006], who present alternative axiomatizations of ν(T ) showing that value

functions of monotonic games coincides with Choquet capacities, among

other results. Based on previous considerations in Section 2, Owen [2014]

and Owen and Prieur [2017] suggest as value function of subset T in a

sensitivity analysis the variance explained by its members xj with j ∈ T ,

that is

ν(T ) = τ2
T . (5.5)

Song et al. [2016] prove that one obtains the same Shapley value by setting

ν(T ) = τ̄2
T . (5.6)

and Owen and Prieur [2017] write that this provides an alternative way

to compute Shapley value (p. 990). Since
∑n
j=1 φ

ν
j = 1 and φνj ≥ 0 for

every j = 1, ..., n, Owen (2014) Owen [2014] inteprets equation (5.4) as an

importance measure for variable xj . When the inputs are independent and

the value function is given by (5.2), Owen [2014] proves that the Shapley

effect for the j-th input can be written as

φ
τ 2

j =
∑

T⊆N :j∈T

σ2
T

|T |
, (5.7)

meaning that the Shapley effect takes into account the Sobol’ individual

effect plus all the interaction effects involving j divided by the size of the
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coalition/interaction term. This connection between Sobol’ indices and

the Shapley effect can be seen by the bracketing property [Owen, 2014]

τ2
j ≤ φ

τ 2

j ≤ τ
2
j . (5.8)

Subsequent works, such as Song et al. [2016], Owen and Prieur [2017] and

Iooss and Prieur [2019] also discuss the fact that Shapley effects remain

appropriate also in the presence of correlations among inputs. Namely,

in this case, the calculation and interpretation of Sobol’ indices become

difficult (see Chastaing et al. [2012], Rahman [2014]). Hence, other ap-

proaches have been developed to deal with dependent inputs in computer

experiments [Borgonovo and Plischke, 2016].

5.4 Interactions and the Shapley-Owen value

The Shapley value is a way to apportion the value of a game to one of

its players. Thus, it is an importance measure at an individual level.

However, the question emerges of what is the value of the coalition of two

or more players and whether this coalition is synergetic, i.e., the value of

the coalition is higher than the sum of the Shapley values in individual

players. This leads to the question of measuring interactions when using

Shapley effects. A series of works in the Economics literature has addressed

this question and the measure of interactions in Shapley values is the so-

called Shapley-Owen value, introduced by Guillermo Owen [Owen, 1972].

The Shapley-Owen value is a well-known method of attributing value to

the interactions in a coalition of players in a game. We follow here the

presentation given in Grabisch and Roubens [1999]. The Shapley-Owen

value for players of a coalition S with value function ν is denoted φνS and

is defined by:

φνS =
∑

T⊆N\S

(n− |T | − |S|)!|T |!
(n− |S|+ 1)!

∑
L⊆S

(−1)|S|−|L|ν(L ∪ T ). (5.9)

This index represents the residual interaction value of a coalition of players

{i1, i2, ....iS}. To illustrate, consider S = {i, j}. Then, we are interested
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in the interaction between inputs and (5.9) becomes

φνi,j =
∑

T⊆N\{i,j}

(n− |T | − 2)!|T |!
(n− 1)!

[ν(T ∪ {i, j})− ν(T ∪ {i})− ν(T ∪ {j}) + ν(T )]

(5.10)

which coincides with the index of interaction importance defined by Gra-

bisch and Labreuche [2001]. The underlying idea in the construction of

this index is that, for instance in the case of two players i and j, the sign

and the magnitude of ν(T ∪ {i, j})− ν(T ∪ {i})− ν(T ∪ {j}) + ν(T ), av-

eraged over all other possible coalitions T , should give information about

the interaction between the two players. In fact, there is a link between

value and interaction: if the interaction is positive, then joining the coali-

tion is profitable and the value of the coalition is greater than the sum of

the individual values. Conversely, in the case of a negative interaction, the

value of the coalition is less than the sum: note that both effects depend

on the chosen value function.

As it happens for the Shapley value, also the Shapley-Owen value for in-

teractions can be characterized through several appealing properties [Gra-

bisch and Roubens, 1999]:

1. (Linearity) φν+w
S = φνS + φwS for every S ⊆ N and for any value

function ν and w.

2. (Dummy) If i is a dummy player for ν, then φνi = ν({i}) and

φνS∪{i} = 0 for every S ⊆ N \ {i} with S 6= ∅.

3. (Symmetry) For all ν and for all permutations π on N , φνS = φπνπS ,

where the game πν is defined by πν(πS) = ν(S), where πS =

{π(i), i ∈ S} for all S ⊆ N .

4. (Recursivity) φν obeys the following recurrence formula for every

S ⊆ N, |S| > 1, any ν and any j ∈ S: φνS = φ
µj
S\{j} − φ

νN\{j}

S\{j} where

µj(S) = ν(S ∪ {j}) − ν({j}) and νN\{j} denotes the value of the

game on N \ {j} players.

Grabish and Roubens Grabisch and Roubens [1999] prove that the Shapley-

Owen value for interactions (5.9) is the only interaction index that satisfies
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the above properties and whose restriction to singletons corresponds to the

Shapley value in (5.4). The Shapley-Owen effect can be also expressed as

Grabisch [1997], Grabisch and Roubens [1999]

φνS =
∑
T⊇S

1

|T | − |S|+ 1
m(T ), (5.11)

where m is the Moebius transform of the value function ν. As in Owen

Owen [2014], we consider (5.5) as the value function. For notation sim-

plicity, we pose φ
τ 2

S = φS , when there is no risk of ambiguity. Following

the terminology of Song et al. [2016], in the context of global sensitivity

analysis we refer to φS as the Shapley-Owen effects of S. With this choice

of ν(T ), Grabisch and Roubens Grabisch and Roubens [1999]’s properties

2 and 3 above admit the following interpretation for sensitivity measures.

If the i-th model input is a dummy variable, then it doesn’t interact with

any other input, so that φi = τ2
i and φS∪{i} = 0. On the other hand, when

considering input group S, the order in which the inputs are considered

is irrelevant, because φS is invariant under any permutation of S because

of the symmetry property τ2
S = τ2

πS . We now illustrate the recursivity

axiom considering first the pair of inputs xi and xj . To link value and in-

teraction, Grabisch and Roubens [1999] require that the interaction effect

satisfies

φνij = φν
[ij]

[ij] − φ
N\i
j − φN\ji , (5.12)

where [ij] is a single hypothetical player representing the inputs i and

j and ν[ij] is the reduced game defined as ν[ij](S) = ν(S) and ν[ij](S ∪
[ij]) = ν(S ∪ {i, j}) for any S ⊆ N \ {i, j}. The recursivity axiom is a

generalization of (5.12) to any coalition and Grabisch and Roubens [1999]

write that it has an interesting interpretation [...] the interaction of the

players in S is equal to the interaction between the players in S \ j in the

omnipresence of j, minus the interaction between the players of S \ j (in

the absence of j) (p. 558). Note that this property holds for variance-

based sensitivity indices under independence. In fact, by orthogonality,

we have that σ2
i,j = E[Y |Xi, Xj ]−σ2

i −σ2
j , where σ2

i,j plays the role of φνij ,

E[Y |Xi, Xj ] of φν
[ij]

[ij] , σ2
j of φ

N\i
j and σ2

i of φ
N\j
i .
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Then, Grabisch and Roubens (1999) Grabisch and Roubens [1999]

show that the interaction effect satisfying the above three axioms takes

the following form:

φS =
∑

T⊆N\S

(n− |T | − |S|)!|T |!
(n− |S|+ 1)!

∑
L⊆S

(−1)|S|−|L|τ2
L∪T . (5.13)

As a special case, for singletons, i.e. for S = {j}, the Shapley-Owen effect

(5.13) coincides with the Shapley effect, because

φj =
1

n

∑
T⊆N\{j}

(
n− 1

|T |

)−1 ∑
L⊆{j}

(−1)1−|L|τ2
L∪T =

1

n

∑
T⊆N\{j}

(
n− 1

|T |

)−1 [
τ2
T∪j − τ2

T

]
,

(5.14)

which is the Shapley value (5.4) with value function (5.5) (see equation (1)

in Owen [2014]). When inputs are independent, φS can be characterized

further.

Theorem 5.4.1. Consider the ANOVA decomposition in (5.1) with inde-

pendent inputs. Then, the Shapley-Owen effect is

φS =
∑
T⊇S

σ2
T

|T | − |S|+ 1
. (5.15)

Proof. It follows immediately from equation (5.11), where the Moebius

transform of (5.2) is given by
∑
L⊆T (−1)|T |−|L|τ2

L = σ2
T (see, e. g., Liu

and Owen [2006]).

Equation (5.15) is a generalization of the result for Shapley effects in

Theorem 1 of Owen [2014]. Indeed, considering the singleton S = {i},
from (5.15) one immediately obtains (5.7). Moreover, we directly find

σ2
S ≤ φS ≤ Υ2

S (5.16)

where Υ2
S =

∑
T⊇S σ

2
T is the superset importance index [Liu and Owen,

2006] that involves the interactions to which group S contributes. Inequal-

ity (5.16) is the ‘interaction’ version of the bracketing property for Shapley

effects (5.8). We can further investigate the relation between Shapley-

Owen effects, superset importance indices and the dimension distribution.
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Let U be a randomly chosen subset of 1, 2, ..., n with Pr(U = u)=σ2
u/σ

2.

This distribution is called dimension distribution [Owen, 2003].

Theorem 5.4.2. Assume that the model inputs are independent. Then,

for s ≥ 2, ∑
|S|=s

φS =
σ2

s!
µ(s−1), (5.17)

where µ(k) = E[|U |(|U | − 1) · · · (|U | − k + 1)] is the k-th factorial moment

of the dimension distribution.

Proof. By equation (5.11) we get∑
|S|=s

φS =
∑
|S|=s

∑
T⊇S

1

|T | − s+ 1
m(T ) =

∑
T

m(T )
1

|T | − s+ 1

∑
|S|=s

IT⊇S

=
∑
T

m(T )
1

|T | − s+ 1

(
|T |
s

)
=

1

s

∑
T

(
|T |
s− 1

)
m(T )

Under input independence, by Theorem 4 in Liu and Owen Liu and Owen

[2006] one finds

∑
|S|=s

φS =
1

s

∑
T

(
|T |
s− 1

)
σ2
T =

1

s

∑
|V |=s−1

Υ2
V =

1

s

σ2

(s− 1)!
µ(s−1).

Equation (5.17) holds for s = 1, as well. Since the zeroth factorial

moment is unity, equation (5.17) yields
∑n
i=1 φi = σ2, which is a property

of the Shapley effect (see Owen [2014]). This property of Shapley effects

holds also in case of dependent inputs [Owen and Prieur, 2017].

The highest-order Shapley-Owen effect (5.13), i.e. the Shapley-Owen

effect of all indices (S = N) becomes

φN =
∑
L⊆N

(−1)n−|L|τ2
L = σ2

N (5.18)

by equation (6) in Liu and Owen [2006]. In this case, by (5.16) the Shapley-

Owen effect becomes the N−order term in the ANOVA decomposition.
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When inputs are dependent, the sign and magnitude of σ2
N provide insights

about the the relevance of the interaction among all inputs, as well as about

whether the overall interaction is synergistic or antagonistic, respectively.

Conversely, when inputs are independent, this term is always non-negative.

We illustrate these concepts further with the example in Section 5.7.1.

5.5 Invariance, bijections and equivalence classes

The aim of this section is to investigate the impact of the selection of the

value function on the form of Shapley-Owen effects.

Following the approach in Owen and Prieur [2017], suppose that we trans-

form each input xj into zj = fj(xj), where fj is a bijection for every

j = 1, ...n. Let’s define g̃(z) = g
(
f−1

1 (z1), ..., f−1
n (zn)

)
and denote by ψS

the Shapley-Owen effect for the group of variables S in g̃(z). Then, be-

cause V [E (g̃(z)|zT )] = V [E (g(x)|xT )] , then ψS = φS , where φS is the

value related to the function g(x).

In general, let’s consider the set V of all possible value functions ν.

Then, on V consider the relation

ν1 ∼ ν2 if φν1

S = φν2

S ∀S ⊆ N.

Since this relation is clearly symmetric, reflexive and transitive, it is an

equivalence relation. Its equivalence classes are made of all the value func-

tions that generate the same Shapley-Owen effect. It follows that, by the

previous result, these classes are invariant under bijections of their input

variables. The question is whether we can characterize these equivalence

classes in general. As a matter of fact, Song et al. [2016] prove that the

Shapley effects defined with the values τ2
T and τ̄2

T coincide. However,

this does not hold for Shapley-Owen effects. As an example, consider the

case of N = 2 independent inputs and focus on φ12. Using the identity
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σ2 − τ2
−T = τ2

T , by equation (5.18), we have

φ
τ 2

12 =
∑

L⊆{1,2}

(−1)2−|L|τ2
L

= τ2
12 − τ2

1 − τ2
2 = σ2

12 = τ2
1 + τ2

2 − τ2
12

= −
∑

L⊆{1,2}

(−1)2−|L|τ2
L = −φτ

2

12 .

Note the symmetry: φτ
2

12 is always non-positive, φ
τ 2

12 always non-negative

and they coincide in absolute value.

Then, differently from the Shapley effect, it is more complicated to find

value functions which generate the same Shapley-Owen effect for measur-

ing interactions. However, we may require a weaker condition:

ν1 ∼ ν2 if sign(φν1

S ) = sign(φν2

S ) ∀S ⊆ N,

that is we only require that the two value functions generate Shapley-

Owen indices of the same sign. Thus, they provide the same information

about the nature (but not the magnitude) of the interaction. Namely,

the final aim is to obtain indications about the presence of synergistic or

antagonistic effect. This point should be further investigated in the future.

5.6 Sobol’ and Shapley-Owen Effects under

Mixtures

It is often a difficult task for the analyst to assign an unique distribution

to the inputs of a computer experiment. The work [Borgonovo et al.,

2018] considers the set M of possible distributions of the model inputs.

For the sake of simplicity, consider M finite or countable, so that M ={
µ1, ..., µM

}
. Then, the analyst may opt for representing the uncertainty

through the mixture distribution

µ(x) =

M∑
i=1

pmµ
m(x), (5.19)
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assigning a prior Pµ = {p1, ..., pM}, with pm > 0 and
∑M
i=1 pm = 1, over

the component measures in M. The following relation with the Sobol’

indices holds. Let µτ̄
2
L, µτ

2
L and µm τ̄

2
L denote the Sobol’ indices under the

mixture distribution (5.19), prior Pµ, and under a given component of the

mixture, respectively.

Proposition 5.6.1. Given the probability space (M,F (M) , Pµ), suppose

that

f ∈
⋃
µm∈M L2 (X ,B (X ) , µm). Then µτ̄

2
L and µτ

2
Lare given, respectively,

by

µτ
2
L = VPµ [Eµm (f(x)|xL)] (5.20)

and

µτ̄
2
L =

M∑
m=1

pm ·µm τ̄2
L. (5.21)

Proof. By the law of total variance

V [f(x)] = EPµ [V (f(x)|µm (xL))] + VPµ [E (f(x)|µm (xL))] .

In particular, equation (5.21) holds since

µτ̄
2
−L = EPµ [V (f(x)|µm (xL))] =

M∑
i=1

pmE [V (f(x)|µm (xL))] =

M∑
i=1

pm·µm τ̄2
−L.

Both Sobol’ indices µτ̄
2
L and µτ

2
L can be used as value functions to

construct the Shapley-Owen interaction effect. In particular, using µτ̄
2
L,

one can find the following characterization.

Corollary 5.6.1. Under the assumptions of Proposition 5.6.1, it holds:

φµ
τ̄2

S =

M∑
m=1

pm · φµ
m τ̄2

S (5.22)
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The proof is immediate by linearity. Note that an analogous repre-

sentation cannot be found using µτ
2
L as value function. Equation (5.22)

shows that the Shapley-Owen effect corresponding to a mixture of Sobol’

indices is the mixture of the corresponding Shapley-Owen effects with the

same weights. However, as shown in Borgonovo et al. [2018] the mixture

of Sobol’ indices does not equal the total model output variance, as it

excludes the portion of the variance due to the variation of the expected

value of g(X) across the alternative distributions in the mixture. How-

ever, the overall Shapley effect that applies to the mixture distribution

µX taken as reference distribution for the analysis remains well defined.

Note that because correlations are induced by µX, Sobol’ indices are not

readily defined for µX.

5.7 Test cases

In this section, we compute Shapley-Owen effects for test cases developed

in previous works on Shapley effects [Owen and Prieur, 2017, Iooss and

Prieur, 2019].

5.7.1 Bivariate Gaussian linear model

We consider the bivariate Gaussian linear model given in Iooss and Prieur

[2019]. Formally, g(X) = β>X with X ∼ N (µ,Γ), where

µ =

(
µ1

µ2

)
, β =

(
β1

β2

)
and Γ =

(
γ2

1 ργ1γ2

ργ1γ2 γ2
2

)
,

with −1 ≤ ρ ≤ 1, γ1 > 0 and γ2 > 0. One finds that the output variance

is given by

σ2 = V [g(X)] = β2
1γ

2
1 + 2ρβ1β2γ1γ2 + β2

2γ
2
2 . (5.23)

By (5.5), the Sobol’ indices are τ2
∅ = 0, τ2

1 = (β1γ1 + ρβ2γ2)
2
, τ2

2 =

(β2γ2 + ρβ1γ1)
2

and τ2
12 = σ2. By equation (5.14), we can find the Shapley
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effect φj for inputs j = 1, 2, which are given by (see Iooss and Prieur [2019])

σ2φ1 = β2
1γ

2
1(1−ρ

2

2
)+ρβ1β2γ1γ2+β2

2γ
2
2

ρ2

2
, σ2φ2 = β2

2γ
2
2(1−ρ

2

2
)+ρβ1β2γ1γ2+β2

1γ
2
1

ρ2

2
.

We obtain the Shapley-Owen effect φ12 by equation (5.13), as:

φ12 =
∑

L⊆{1,2}

(−1)2−|L|τ2
L = σ2 − τ2

1 − τ2
2

= −ρ2β2
2γ

2
2 − 2ρβ1β2γ1γ2 − ρ2β2

1γ
2
1 .

Note that φ12 is null for independent inputs (and thus equation (5.18)

holds with the Sobol’ index σ2
12 = 0). Under correlations, φ12 can be

positive or negative. Figure 5.1 shows the value of φ12 as a function of ρ

Figure 5.1: φ12 as a function of ρ for the example in Section 5.7.1.

for the parameterization γ1 = 2, γ2 = 3, β2 = 1 and β1 = 4 (continuous
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line), β1 = 3 (dashed line) and β1 = −3 (dotted line). The expression of

the Shapley-Owen effect φ12 shows that it has a quadratic behaviour, as

shown in Figure 5.1. It is then interesting to investigate the maximum

cooperation. By differentiation, one finds the point of maximum at

ρ∗ = − β1β2γ1γ2

β2
1γ

2
1 + β2

2γ
2
2

.

This point of maximum lies in [−1, 0) when the coefficients β1 and β2

are concordant, and in (0, 1] when they are discordant. In particular, for

ρ < ρ∗(ρ > ρ∗), φ12 is strictly increasing(decreasing). In correspondence

of ρ∗, one has

φ∗12 =
β2

1β
2
2γ

2
1γ

2
2

β2
1γ

2
1 + β2

2γ
2
2

> 0,

suggesting that the maximal cooperation between X1 and X2 is always

positive. Moreover, at ρ∗, we have that the term 2ρβ1β2γ1γ2 in (5.23)

becomes

2ρ∗β1β2γ1γ2 = −2
β2

1β
2
2γ

2
1γ

2
2

β2
1γ

2
1 + β2

2γ
2
2

< 0,

which indicates that the maximum cooperation is attained in connection

to a reduction of the model output variance.

In the statistical literature, an interaction effect which is present even if

g is linear is called spurious [Friedman and Popescu, 2008]. In the context

of predictive modeling, Friedman and Popescu [2008] deem an interaction

effect spurious if it is present in the predictive model but not in the true

model underlying the real relationships among inputs and output. They

write that These spurious interactions can occur when there is a high

degree of collinearity among some (or all) of the predictor variables (p.

936). In this case, the Shapley-Owen effect sheds light on the mechanism

of spurious interactions — see Section 5.7.3.

5.7.2 Bivariate linear model with copula dependence

We consider the same functional linear model g(X) = β>X as before,

but, as in Owen and Prieur [2017], we use the Farlie-Gumbel-Morgenstern
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(FGM) copula for the vector X ∈ [0, 1]2, whose joint distribution function

is described by

cθ(X) = 1 + θ(1− 2X1)(1− 2X2), −1 ≤ θ ≤ 1,

where each component is marginally uniform, Xi ∼ U [0, 1], i = 1, 2. The

parameter θ tunes the dependence in X. One can show that cor(X1, X2) =

θ/3. Owen and Prieur Owen and Prieur [2017] prove that the output

variance is given by σ2 = (β2
1 + β2

2)/12 + β1β2θ/18 and that the Shapley

effects are

φ1 =
σ2

2

(
1 +

(
1− θ2

9

)
β2

1 − β2
2

12σ2

)
, φ2 =

σ2

2

(
1 +

(
1− θ2

9

)
β2

2 − β2
1

12σ2

)
.

Owen and Prieur Owen and Prieur [2017] also provide the expressions for

the Sobol’ indices

τ2
1 =

1

12

(
β1 +

θ

3
β2

)2

and τ2
2 =

1

12

(
β2 +

θ

3
β1

)2

.

Inserting these expressions into (5.18) one finds the Shapley-Owen effect

φ12 = − 1

18

(
θ2

6
(β2

1 + β2
2) + θβ1β2

)
.

The effect φ12 can be positive and negative as well. Figure 5.2 reports

three different cases. The continuous line is the case β1 = 3, β2 = 1; the

dashed line in the case β1 = −4, β2 = −1; the dotted line in the case β1 =

−0.5, β2 = 1. Figure 5.2 shows that the Shapley-Owen effect evidences

some similarities with the interaction effect for the same functional form

for g of the test case in section 5.7.1, even if the inputs are assigned

different supports, marginal distributions and dependence structure in this

test case.

5.7.3 Gaussian model with three inputs and interac-

tion term

In this section, we examine the model with interactions studied in Iooss

and Prieur Iooss and Prieur [2019], given by g(X) = X1 + X2X3 with
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Figure 5.2: φ12 as a function of θ for the example in Section 5.7.2.

X ∼ N (µ,Γ), where

µ =

 0

0

0

 and Γ =

 γ2
1 0 ργ1γ3

0 γ2
2 0

ργ1γ3 0 γ2
3

 .

The Shapley effects are derived in Iooss and Prieur [2019]

φ1 = γ2
1

(
1−ρ

2

2

)
+
γ2

2γ
2
3

6
ρ2, φ2 =

γ2
2γ

2
3

6
(3+ρ2), φ3 =

ρ2γ2
1

2
+
γ2

2γ
2
3(3− 2ρ2)

6
.

Note that, differently from Iooss and Prieur [2019], we are working with

the non-normalized Sobol’ indices as value function. Saltelli and Tarantola

[2002] consider a model with a similar dependence between X1 and X2 and
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write that interactions may be ”carried over” by correlation. This effect

is a possibility only when the input is correlated, and is absent when the

input is not correlated (p. 705). We investigate this effect by means of the

Shapley-Owen indices. After some algebra, we obtain

φ12 =
ρ2γ2

2γ
2
3

2
, φ13 = −ρ2

(
γ2

1 +
γ2

2γ
2
3

2

)
, φ23 =

(
1− ρ2

2

)
γ2

2γ
2
3 .

Figure 5.3: Shapley-Owen indices as functions of ρ for the example in

Section 5.7.3.

Figure 5.3 visualizes these indices for the case of unitary variances.

Note that φ23 is indeed related to the structural interaction term X2X3.

However, as the absolute value of the correlation increases, the value of
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φ23 decreases and the value of φ12 increases. Because φ12 depends on ρ2

and φ23 on 1 − ρ2/2, the value from φ23 is actually carried over to φ12

(this provides a formal explanation to the above-mentioned observation

of Saltelli and Tarantola [2002]). This interaction is then spurious. Note

that φ12 and φ23 coincide in case of maximal dependence, meaning that

the spurious interaction between X1 and X2 has the same explanatory

power as the structural interaction between X2 and X3. This is reasonable

because for perfectly correlated X1 and X3, the product X2X3 behaves as

the product X1X2, which is not present in the original model. Also, under

dependence, φ23 is not bracketed between σ2
23 and Υ2

23. Indeed, it holds

that σ2
23 = γ2

2γ
2
3 and Υ2

23 = (1 − ρ2)γ2
2γ

2
3 and hence the inequality (5.16)

is inverted, with

Υ2
23 ≤ φ23 ≤ σ2

23.

This result is similar to the results of Iooss and Prieur [2019], who show

that for the Shapley effects φ1 and φ3 the inequality (5.8) is inverted under

input dependence. We also observe that φ13 is always non-positive, indi-

cating that X1 and X3 possess a lower explanatory power when considered

jointly rather than when considered individually.

Let us then analyse the case in which model inputs are independent

(we can then set ρ = 0). This case allows us to investigate more closely the

relationship between the Shapley-Owen effect φ23 and the corresponding

variance-based interaction index σ2
23, that can be calculated analytically.

In fact, it turns out that the Shapley-Owen effect φ23 coincides with σ2
23

and with the superset importance Υ2
23 in this case. Under independence,

we also have σ2
12 = σ2

13 = 0. Note that in this case also φ12 and φ13 vanish.

5.7.4 Maximum of exponential random variables

Keinan at al. Keinan et al. [2004] consider a network of neurons e1, ..., en

where every neuron ei has independent lifetime xj exponentially distributed

with mean λi, i = 1, 2, ..., n. These authors adopt the Shapley effect to

determine the importance of the elements of the network. In their setting

the value function of a group of neurons is the mean amount of survival
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time of at least a part of the group, that is ν(T ) = E[maxi∈T xi]. They

provide the expression of the Shapley effect in the case n = 3. Owen and

Prieur Owen and Prieur [2017] prove the general equation for arbitrary n

(see [Owen and Prieur, 2017, p. 1001])

φj =
∑
T :j∈T

1

|T |
(−1)|T |−1 1∑

l∈T λl
.

We can extend this result to the Shapley-Owen effect between pairs of

neurons, neurons i and j, i, j = 1, 2, ..., n.

Theorem 5.7.1. Let the value function for a set T ⊆ N be ν(T ) =

E[maxi∈T xi] where x1, ..., xn are independent distributed exponential ran-

dom variables with mean 1/λ1, ..., 1/λn respectively. Then, the Shapley-

Owen effect (5.10) for the interaction between xi and xj is

φij =
∑

T :{i,j}∈T

1

|T | − 1
(−1)|T |−1 1∑

l∈T λl
.

Proof. See Appendix.

5.8 Conclusions and future research

In this paper, we have proposed the Shapley-Owen effect as a global mea-

sure of interactions. The fact that the indices are well posed in the presence

of input dependencies and that they deliver insights on whether interac-

tions are synergistic or antagonistic, are desirable properties for global

sensitivity measures.

Open issues for future research comprise both methodological and com-

putational aspects. On the theoretical side, a further comparison of the

type of insight on interactions delivered by Shapley-Owen effects with re-

spect to variance-based indices in the presence of input dependence. This

entails to compare in detail the construction underlying the Shapley-Owen

effects to the construction underlying variance-based indices as defined in
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works such as Li et al. [2010], Chastaing et al. [2012], Rahman [2014]. A

second research line is the interpretation of Shapley-Owen effects using

alternative value functions. In fact, we have seen that, while the value

functions τ2 and τ2 are equivalent for Shapley effects (as proven in Song

et al. [2016]), they are not for Shapley-Owen effects. Thus, the subject of

the “best” value function to be chosen for measuring interaction effects is

an open one.

A further relevant research line is the study of the numerical estima-

tion of Shapely-Owen effects. This study is, in turn, related to the esti-

mation of individual Shapley-effects, which is a topical research subject,

and whose importance is underlined in works such as Song et al. [2016],

Iooss and Prieur [2019], Broto et al. [2019], and Benoumechiara and Elie-

Dit-Cosaque [2019]. In this respect, we note that a brute force algorithm

for the calculation of individual Shapley effects would lead to all terms

required for the calculation of Shapley-Owen effects as well. However,

such algorithm would become soon infeasible, given the high number of

terms it would require. On the other hand, the permutation strategy of

Song et al. Song et al. [2016] represents a first approach to decrease the

number of model evaluations of individual Shapley effects. Benoumechiara

and Elie-Dit-Cosaque Benoumechiara and Elie-Dit-Cosaque [2019] couple

such an approach with a metamodel, to further reduce the compuational

time. Then, one can argue that a similar approach could represent a break-

through towards the computationally efficient estimation of Shapley-Owen

effects. However, further research is needed to understand whether the

Song et al.’s permutation strategy can be modified for the calculation of

Shapley-Owen effects. Another potential application of our findings con-

cerns the Bayesian analysis of Shapley-Owen effects under mixtures, with

the possibility of nesting these measures in a Bayesian paradigm similarly

to the suggestion in Owen and Prieur [2017] for Shapley effects.
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Appendix

Proof. Proof of Theorem (5.7.1). By Proposition 6.1 in Owen and Prieur

[2017], one finds

ν(T ) =
∑
∅6=L⊆T

(−1)|L|−1 1∑
l∈L λl

.

Following the proof of Theorem 4.8 in Owen and Prieur [2017], one finds

that ν(T ∪ {i, j})− ν(T ∪ {i})− ν(T ∪ {j}) + ν(T ) equals to∑
∅6=L⊆T∪{i,j}

(−1)|L|−1 1∑
l∈L λl

−
∑

∅6=L⊆T∪{i}

(−1)|L|−1 1∑
l∈L λl

−
∑

∅6=L⊆T∪{j}

(−1)|L|−1 1∑
l∈L λl

+
∑
∅6=L⊆T

(−1)|L|−1 1∑
l∈L λl

=

=
∑

W⊆T∪{i}

(−1)|W |
1∑

l∈W∪{j} λl
−
∑
W⊆T

(−1)|W |
1∑

l∈W∪{j} λl

=
∑
Z⊆T

(−1)|Z|−1 1∑
l∈Z∪{i,j} λl

.

Inserting this expression in (5.10) it follows that

φij =
∑

T⊆N\{i,j}

(n− |T | − 2)!|T |!
(n− 1)!

[ν(T ∪ {i, j})− ν(T ∪ {i})− ν(T ∪ {j}) + ν(T )]

=
∑

T⊆N\{i,j}

(n− |T | − 2)!|T |!
(n− 1)!

∑
Z⊆T

(−1)|Z|−1 1∑
l∈Z∪{i,j} λl

=
∑

Z⊆N\{i,j}

(−1)|Z|−1 1∑
l∈Z∪{i,j} λl

∑
V⊆N\Z∪{i,j}

(n− |Z| − |V | − 2)!(|Z|+ |V |)!
(n− 1)!
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where we have introduced the variable V so that T = Z ∪ V . Then, we

write the internal sum on V as

n−|Z|−2∑
r=0

(n− |Z| − r − 2)!(|Z|+ r)!

(n− 1)!

(
n− 2− |Z|

r

)
=

n−|Z|−2∑
r=0

(|Z|+ r)!(n− |Z| − 2)!

r!(n− 1)!

=
(n− |Z| − 2)!

(n− 1)!

n−|Z|−2∑
r=0

(|Z|+ r)!

r!

|Z|!
|Z|!

=
(n− |Z| − 2)!

(n− 1)!

n−|Z|−2∑
r=0

(
|Z|+ r

r

)
=

(n− |Z| − 2)!

(n− 1)!

(
n− 1

n− |Z| − 2

)
=

1

|Z|+ 1

where we have used the equality for binomial coefficient

K∑
r=0

(
L+ r

r

)
=

(
K + L+ 1

K

)
.

Thus, it follows that

φij =
∑

Z⊆N\{i,j}

1

|Z|+ 1
(−1)|Z|−1 1∑

l∈Z∪{i,j} λl
,

which yields the result of the Theorem after the change of variable Z ∪
{i, j} = T .
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Chapter 6

Conclusions and

Perspectives

As shown in the Chapters of this Thesis, the study of interactions can

not be a straightforward exercise in the sensitivity analysis of computer

experiments. In particular, this Thesis has developed material about the

identification, quantification and interpretation of interactions. The gen-

eral reccomendation is to integrate and use different estimation methods

which can deliver complenetary rather redundant information. This in-

formation is essential to correctly interpret the code at hand and/or to

understand whether the modellists need to adjust the computer model.

In particular, in the Thesis I have developed new approaches to study

interactions. On one hand, the whole interaction structure can be investi-

gated by replicated one-factor-at-a-time (OFAT) experiments. This result

is to me quite surprising and in the future I will inestigate its application

to supersaturated OFAT designs in the context of screening large experi-

ments, such as the Iterated Fractional Factorial Designs. Also, the use of

tensiorial products might be beneficial to discover higher order interaction

structures.

It also emerged from the Thesis (Chapter 2) that some authors mean
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by interactions the Cox’s notion of deviation of additivity of the effects.

Lancaster instead defines interactions as the pressence of statistical de-

pendence between two random effects. In a way, this is the philosophical

distinction between the approach of Sobol’ (implicitly based on Cox’s def-

inition) and that one of moment-independent measures (Lancaster’s defi-

nition) in computer experiments. With my advisor and Elmar Plischke I

am going to investigate more deeply this interesting relationship.

In Chapter 4 one example concerns the sequential bifurcation method

used for screening with finite changes. In light of the connections between

Sobol’ indices and Morris’ elementary effects described in that Chapter,

I think that it will be interesting to understand the relationship between

variance-based totals and this methods. The question could be: are the

Kleijnen estimators ”statistically” connected to Sobol’ indices?

On the other hand, a new interaction measure has been proposed in

Chapter 5, namely the Shapley-Owen effects. In my opinion this opens

the door to many new research questions, for instance: their algorithmic

calculation, their interpretation, their approximation in high dimensional

problems (since they are very costly to evaluate).

Other new perspectives concern the study of the Shapley value in dif-

ferent contexts, including: the sensitivity analysis of extremes and the

sensitivity analysis in machine learning applications. In particular, one

future extension are the Shapley effects for global sensitivity analysis of

extremes. In such case, we can consider as value function

ν(u) = τ (p)
u =

∫
· · ·
∫ p∏

k=1

f(xu : z
(k)
−u)dx

p∏
k=1

dz(k) − µp (6.1)

where where z(1), ..., z(p) ∈ [0, 1]d, p ≥ 2 and µ is the mean of f . The

index τ
(p)
u has been introduced by Owen et al. [2014] and it is called higher

order Sobol’ index. These indices are related to the decomposition of the

skewness of the model output. The interpretation of τ
(3)
i > 0 is that the

i-th model input is responsible for making the output reach its maximum,

while τ
(3)
i < 0 its minimum. Thus, higher order Shapley effects can be
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defined to gain such information in presence of dependent inputs.

The Shapley value is also used in the machine learning literature for

determining feature importance. In particular, we have come up with the

following general framework:

• ν(z) = f(xz : x0
−z) − f(x0) (finite-change SA): sensitivity analysis

of neural networks in the DeepLIFT explanation model [Shrikumar

et al., 2017, Lundberg and Lee, 2017].

• ν(z) = E
[
f(xz : x0

−z)
]
− E

[
f(x0)

]
(partial dependence function):

sensitivity analysis for predictive learning based on rules [Hooker,

2004, Friedman and Popescu, 2008, Goldstein et al., 2015, Guidotti

et al., 2018]

• ν(z) = E [f(x)|xz]−E [f(x)] (nonparametric regression curve): sensi-

tivity analysis in predictive models [Štrumbelj and Kononenko, 2011,

2014] and in the SHAP method [Lundberg and Lee, 2017, Aas et al.,

2019]

• ν(z) = V [E [f(x)|xz]] (conditional variance): sensitivity analysis of

complex models considered by Owen [2014].

This shows that sensitivity analysis using the Shapley value in the machine

learning literature is conduced at different scales and there is the need of

integrating these approaches in a unique framework.

Both ongoing works on Shapley values are in collaboration with Elmar

Plischke.
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