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Summary

We introduce some new urn approaches to shock and default models, with a
double aim: to reproduce and generalized some existing results and to present new
ones.

The interest for shock and default models is due to their relevance for studying
everyday life events, where the concept of “default”, in its broader sense, is well-
known.

Even if they are born for apparently different purposes, shock and default models
can be considered as the two sides of the same coin.

Shock models are a particular class of models in which a system is randomly
subject to different shocks of random magnitude. Sooner or later, these shocks make
the system fail (think, for example, of an electrical system that breaks down after an
energy jolt), so one is interested in studying the probability of default and the time to
default.

Default models, on the contrary, analyze the so-called failing systems. A failing
system is a system whose probability of failure is not negligible in a fixed time horizon.

In this case, the stress is less on shocks and more on the system itself, but clearly the



final scope is in common with shock models. A failing system that everyone knows is,

unfortunately, human life.

In this thesis, we present four different models, providing both the theoretical
and the applicative aspects: a generalized extreme shock model via triangular urns, an
urn-based shock model that incorporates obsolescence, a multidimensional default urn

scheme and an urn chain model for studying interacting failures.
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Preface

Urn processes (or urn models or urn schemes) constitute a very large family of
probabilistic models in which the probability of certain events is represented in terms
of sampling, replacing and adding balls in one or more urns or boxes.

Urn problems have been an important part of the theory of probability since
the publication of the Ars conjectandi by Jakob Bernoulli in 1713 [7]. Their most
interesting characteristic is the possibility of simplifying complex probabilistic ideas,
making them intuitive and concrete, and yet guaranteeing a good level of abstraction,
that allows for general results.

As we will see in the next chapters, our choice of urn processes as a probabilistic

tool is mainly due to the following reasons:

They are particularly suitable, thanks to their efficiency, for studying chance

experiments, especially when these are characterized by countable spaces.

2. They represent an excellent way to describe the concept of “random choice”,
which can be easily tested a posteriori, but which is in principle “not accessible to

an absolute mathematical definition” (see [7], pag. XXV).

3. Simple urns can be easily compounded into new ones in order to study more
complex problems: for example, think about hyperurns and urn chains (see [50]

for details), or about random partitions and other cutting-edge problems (see,



for example, [64]). This flexibility is probably one of their most interesting

characteristics.

4. Urn schemes have as powerful as elegant combinatorial properties, that allow for

general, complex results in a rather concise form.

5. There are many relationships and isomorphisms between urn models and other
well-known mathematical objects. All this give the possibility to the researcher
of switching from one approach to the other at her/his convenience. The
isomorphism between special urn schemes and particular differential systems, as

described in [34], is one of the milestones of the present thesis.

6. Urns are very useful objects in simulations, given their natural connections with
sampling schemes. There are a lot of examples in this field and a very interesting
one is presented in [46]. Moreover, as [6] puts it, “the term simulation can be
interpreted as the statistical equivalent to the basic mathematical concept of
isomorphism which is intrinsically associated with urn models”. This explains the

wide use of urns in sampling algorithms.

As discussed in [6] and [50], the prototype of urn processes is the well-known

Polya urn, developed at the beginning of the last century to model the diffusion of in-



fectious diseases. It represents one of the simplest ways to generate beta exchangeable
random variables and it is based on the concept of reinforcement. Moreover, its multi-
dimensional version, as shown in [14], is a very useful tool to obtain the fundamental
Dirichlet distribution, an essential tool for Bayesian statistics.

Polya urn represents one of the basic pillars of the present thesis. In fact, the
aim of this research work is to apply urn processes to give alternative modelization to
well-known problems. In particular we will propose four new urn approaches to shock
and default models.

The interest for shock and default models is due to their relevance for studying
everyday life events, where the concept of “default”, in its broader sense, is common
and important. A firm that goes bankrupt, a bridge that breaks down, a financial crisis
are events that have a strong impact on human life. The same human life can be seen
as a system subject to default.

Shock and default models can be considered as the two sides of the same coin.
They simply use different perspectives to study the same subject.

Shock models are a particular class of models in which a system is randomly
subject to different shocks of random magnitude. Sooner or later, these shocks make
the system fail (think, for example, of an electrical system that breaks down after an
energy jolt), so one is interested in studying the probability of default and the time to

default.



Default models, on the contrary, analyze the so-called failing systems. A failing
system is a system whose probability of failure is not negligible in a fixed time horizon.
In this case, the stress is less on shocks and more on the system itself, but clearly the
final scope is in common with shock models. An example of failing system are firms.

This thesis can be divided into two parts: the first one presents two new urn
approaches to shock models; while the second is devoted to new urn-based default
models, with a particular stress on failing systems.

The use of urns essentially has three important advantages in the analysis of

shock and default models:

The modelization is rather intuitive and immediate, even if the underlying

calculations are not;

Urns can be considered a first attempt to study shocks and defaults from a
Bayesian nonparametrics point of view, in that they allow the researcher to

introduce her/his prior knowledge into the analysis';

The flexibility of the adopted urn schemes is a very useful characteristic for

simulations and empirical studies.

The division of the thesis into two parts is also reproduced if we look at the

methodologies we have used for our studies.

L We will come back to this point later in the thesis.



The first part is indeed basically treated by the means of the urn analytic approach
introduced in [33], [34] and further developed in [67]. Analytic urns represent a very
interesting way for dealing with balanced reinforcement matrices, since they allow to
analytically solve them, on the basis of one fundamental theorem, that builds up an
interesting isomorphism between urn processes and ordinary differential systems.

The second part, on the contrary, is developed starting from the more traditional
Polya urn, even if we introduce extra structures in order to deal with default models.

In a nutshell, this can be considered a thesis in combinatorics, both in the classi-
cal (see [1]) and the new analytical (see [35]) sense.

Every part is made up of three chapters: the first two introduce new theoretical
models, while the third is devoted to an application on actual data, in order to test the
goodness of the proposed modelization.

To go in more detail we have:

Chapter 1  We introduce a new intuitive urn approach to generalized shock mod-
els. In particular, we aim to indirectly model the moving risky threshold of gener-
alized extreme shock models introduced in [44]. The basic idea is to link the colors
of the balls in the urn with the levels of risk a system can bear. Hence we model
the evolution of the process using a special triangular reinforcement matrix, that we

solve using the analytic approach;



Chapter 2 We describe an alternative modelization to the urn-based version of
extreme shock models, using a ruinous urn, as we have called it. This new scheme
has been inspired by the interesting cannibal urn described in [65]. The aim is
to model, in a pessimistic way, a system subject to shocks of random magnitude,
starting from the assumption that, however, the system will inevitably fail because

of obsolescence;

Chapter 3  We here apply the model developed in Chapter 1 to study firms’ de-
fault, assuming that the failure of a firm is given by a series of subsequent shocks.
To prove the goodness of our results, we compare them with one of the actual mar-

ket benchmark, Altman’s Z-score;

Chapter 4  We introduce a multidimensional urn model for studying failing sys-
tems. The main purpose when studying a failing system is to calculate the proba-
bility of default and the distribution of the number of failures that may occur during
the observation period. Here we introduce a new way for calculating the probabili-
ties of joint defaults in & different homogeneous groups of defaulting systems, when
each group is characterized by some sort of rating, that’s some external information

about its reliability.

Chapter 5  Starting from Doksum construction of neutral to the right processes,

we develop a recursive model constructed by the means of interacting urns. The



aim is to introduce a stronger dependence among defaults with respect to the mul-

tidimensional urn model of the previous chapter.

Chapter 6  We finally apply our default models to data and compare them with an

effective benchmark, in order to study credit defaults.

In a word, this thesis can be considered a sort of puzzle, that tries to address
different problems by proposing new possible roads.

It is now time to conclude this preface. In doing so, I would like to quote the
famous Greek poet Challimacus (Antologia Palatina, XII 43) and remember to you,

the Reader, that

méga biblion méga kakon.
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Urn-based Shock Models



Chapter 1
Generalized extreme shock models via
triangular urns

In this chapter’ we introduce a new intuitive approach to generalized shock
models using urn processes. This allows us to indirectly model the moving
risky threshold of generalized extreme shock models introduced in [46]. The
basic idea is to link the colors of the balls in the urn with the levels of risk a
system can face. Then we model the evolution of the process using a triangular
reinforcement matrix.

Using the analytic approach proposed in [35], we explicitly derive proba-
bilities, moments and limit laws for the different types of balls, that is for the
distinct levels of risk. We also calculate the limit law for the urn composition.
Our proposed model can be considered as a way to incorporate GESM’s in a
Bayesian framework. In fact, urn processes are an important tool of Bayesian
nonparametrics, in the way they allow to compute posterior distributions with-
out an explicit knowledge of priors. Moreover, we show that our process gen-
erates asymptotically exchangeable sequences of random variables, suggesting
interesting links between our urn and the classical Polya.

1.1 Shock Models: an Introduction

11

Shock models are a particular class of models in which a system is randomly subject

to different shocks of random magnitude.

In the literature (see [46] for example) there are essentially three distinct types

of shock models: cumulative shock models, in which the failure of the system is due

2

This chapter is based on the paper "An Urn Approach to Generalized Extreme Shock Models"

by P.Cirillo and J.Hiisler, that has been presented at the EVA 2007 Conference in Bern as poster
contribution.
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to a cumulative effect; extreme shock models, whose default is caused by one single

extreme shock; and mixed model, that combines the other two types.

In [46], the authors introduce several generalizations, among which we find
generalized extreme shock models (GESM), that are the starting point of the present
chapter. In this kind of models, one assumes that a system can be harmed by some
large but non fatal shock, which jeopardizes the load the system can take without
completely damaging it. This makes the system more sensitive to subsequent shocks,
so that a less extreme shock can be sufficient for the system to break down.

Anyway, before introducing our new findings, let us now briefly review the

main results concerning shock models.

1.1.1 Basic notation

Consider a family {Z;, U;} >0 of nonnegative i.i.d. two-dimensional random vectors,
such that Z; represent the intensity of the i-th shock and U; is the time between the
(i — 1)-th and the i-th shock. Let Sp = Ty = 0 and, Vi > 1, define S, = > " | Z; -
the accumulated shock load at time n - and 7,, = >" | U; - the amount of time that
has elapsed after n shocks.

Now set u, = EZy, iy = EUy, 0% = VarZ and 6% = VarU.
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1.1.2 Cumulative Shock Models

In these models one defines the first passage time process {v(t)},o by v(t) =
min{n : S, > t}. The failure time is a random variable T, that is shown to be
a stopped random walk (see [43]).

Using renewal theory, we get the following immediate property:

V(t) q.s.

—

1
— fort — oo.
t Hz

Moreover, as in [43], it is possible to state another interesting result:

Theorem 1 If 11, and yu;; are finite, then

T,
liO] —a.s. Hu ast — 00.

t Hz
Moreover, if 03 < 400, 0% < +o0 and o = Var(u,U — pyZ) > 0,

Ty — L2
O s gN(O,l)astHoo.

s

1.1.3 Extreme Shock Models

As far as extreme shock models are concerned, the relevant stopping time is 7 (t) =
min {n : Z, > t}.

A fundamental assumption for extreme shock models is that p, = P(Z, > t) =
1—-F(t) —» 0ast — zp, where zp = {z : F((z) < 1} is the right endpoint for F’ and

F' is the distribution function of Z.
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Given that 7(¢) is geometric with mean pit, it can be easily shown that
pe7(t) <, Exp(l)ast — zp.

All this shows that the stopping times behave in two different ways for cumulative
and extreme shock models. However, also in this case, 77 is a stopped random

walk.

Theorem 2 (Gut and Hiisler - [45]) Ifp, = P(Z, >t)=1—-F(t) - 0ast — zp
and u; is finite, then

Ly = exppy) ast — zp.

1.1.4 Mixed models

Imagine a system fails when one of the following situations appears: 1) the cumula-
tive shocks reach some particular threshold level; 2) one big shock happens. In this
case the number of shocks at default is equal to min{wv(t), 7(¢)}.

To avoid that one of the two stopping times dominates the other, it is crucial
that p; and % have the same order of magnitude, that is p, — 0. In addition, assume
L is finite’.

Let ¢; represent the (1— g) —th quantile for the distribution of Z for some 6 > 0.
It is evident that ¢, — zp when ¢t — oo and that ¢, = o(t) considering that the mean

shock size is finite (see [44]).

3 This is a necessary assumption in order to merge the two models.
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Define the new stopping time
7A(t) =min{n : Z, > N}, t > 0.

Then, it is possible to get the appropriate number of shocks until failure, that is x(t) =

min{v(t), 7A(t)}. Thus, the failure time becomes 7}, ).

Theorem 3 [f 11, < +o00 and ji; < +00, then

t
#iﬂ/astﬁoo,

where

or, similarly,

1 r> =
— KMz
Additionally:
T
t(t) <, pyV oast — oo
Sk
% <, wyVast — oo
Zy, Max; < k<) Z.
t(t) 20 and 1§1;§ W20 gst — oo.

The three basic models we have presented have been generalized in several
ways, using for example delayed sums or multiple critical shocks. In [56] and [46],

one can find suitable references about these generalizations.
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As already said, a generalization of the extreme shock model is the starting
point of our urn process. Next section is just devoted to the theoretical description of

generalized extreme shock models.

1.2 Generalized Extreme Shock Models

Following [46], we assume that large but not fatal shocks may effect system’s toler-
ance to subsequent shocks. To be more exact, for a fixed ¢, a shock Z; can damage
the system if it is larger than a certain boundary value 3, < t. As long as Z; < ¢ the
system does not fail. The crucial hypothesis is the following: if a first nonfatal shock
comes with values in [5,, {] the maximum load limit of the system is no more ¢, but
decrease to ay(1) € [5,, ], since the system has been damaged. At this point, if an-
other large but not too strong shock occurs in [3,, «;(1)], the new crucial threshold is
lowered again to a;(2) € [3,, a;(1)] and so on until the system fails. We could call

all this “risky threshold mechanism”. It is obvious to say that, V¢
t=a;(0) > (1) > ay(2) > ... > 3, (1.1)
We define the stopping time
7(t) =min{n: Z, > au(Li(n — 1))}

with

La(t) =) 1{z5p, and Ly(0) = 0.

=1
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When the o, (k)’s are all the same, a generalized extreme shock model simply
behaves as an extreme shock one: it suffices to replace Z; with (Z; — f3,) .

More interesting is the case for different levels o (k).

Let o (k) be nonrandom: the distribution of 7(¢) can be derived using the in-
dependence of the Z;’s. In particular, the event {7(t) > m}, ., corresponds to “the
union of the disjoint events that there are exactly j nonfatal shocks up to the index

m” (see [46]), that’s L;(m) = j for 0 < j < m. Setting H,;:lo = 1, we have

P{r(t) >m} = Z (T) F™ 9 (8,) [ ] [F(eu(k) — F(By)] -

As far as the asymptotic behavior of the model, it clearly depends on three
fundamental elements: the distribution F' and the two boundaries (k) and /3,. The
sequence {oy(k)},. . for example, can be defined in different ways: it could be
parametrized as a;(k) = t(1 — ak®) V j3,, which is linear for § = 1, or some other
functional forms. However, it is possible to identify two major cases of interest.

Consider

fim L0200 _ o
t=oo  F(8,)

where F(x) = 1— F(z). If ¢ > 0, when a shock exceeds f3,, the chance of exceeding
one of the a;(k)’s is not asymptotically negligible. In particular, it is possible to state

the following result:
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Theorem 4 (Gut and Hiisler - [46]) Assume that ;([go;’)) — ¢y, for every k and
F(B,) — 0. Then
_ mi I
P (F(B,)r(t) > m) —>Z —m Tt T H 1—cg)ast — oo

Jj=0

If on the contrary ¢ = 0, the boundary 3, has no influence on the extreme
shocks exceeding the oy (k) levels and the previous theorem does not hold, since 7(¢)
is not properly normalized with F(3,). Anyway another theorem helps us in solving

the problem:

Theorem 5 (Gut and Hiisler - [46]) Let F(ay(c0)) — 0 ast — oo. Assume that:

Flavk) _,
Flar(c0))

— ay, holds for every k with Fo‘ ))) — 0. If ag_1as k — oo, then

P (F(oy(00))7(t) >m) =e ™,
At this point, the asymptotic behavior of the failure time 77 is described as
follows:
Theorem 6 (Gut and Hiisler - [46]) Assume that either the conditions of Theorem
4 or 5 hold. Let y; be defined. Then
il t pyVoast — oo,

where V' is the random variable with distribution given by Theorem 4 or 5 respec-

tively.

In this work our aim is to model the risky threshold mechanism without ex-

plicitly defining the moving threshold o, (k). The idea is to create three different risk
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Default set

i Risk set

Safe set

Figure 1.1: Example of the process with the three risk levels.

areas for the system - no risk or safe, risky and default - and to work with the proba-
bility for the process to enter each area. If every time the process enters the risky area
the probability of failing increases, we can consider such a modelization a sort of in-
tuitive approach to GESM’s, getting around the definition of the moving threshold.
In some sense, reinforcing the probability for the system to fail is like making the
risky threshold move down. To do this we are going to use a special triangular urn
process, discussed in the next section. This approach permits to use the good combi-
natorial properties of urns to study shock phenomena. Figure 1.1 gives an idea of the

process.
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1.3 The Urn Model

To model GESM’s we introduce a particular urn process, completely characterized
by its initial composition and its reinforcement matrix. In particular we make use of
a Polya-like urn, with which we aim to replicate and generalize the results in [46].

Assume we have an urn containing balls of three different colors: z, y, and
w; each color represents a possible state of risk for the process. In details, x-balls
are related to the safe state, y-balls to the risky state and w-balls embody the default
state.

Therefore, the evolution of the process is described by the following steps:

At time n a ball is sampled from the urn. The probability of sampling a

particular ball obviously depends on the urn composition at time n — 1;

2. According to the color of the ball, the process enters (or remains in) one of the
three states of risk. For example, if the sampled ball is of type x, the process is

in a safe state, while it fails if the chosen ball is w;

The urn is then reinforced according to its reinforcement matrix, that fully

describes the sampling scheme.

1.3.1 The reinforcement matrix

The reinforcement matrix is a fundamental component of the urn process, since it

determines how the process behaves each time a ball is sampled from the urn. In order
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to model the positive dependence between the risky and the default states, we will
make use of a particular reinforcement rule, represented by the following balanced

matrix, which is constant over time:

Ty w
x |6 00

RM= y |0 6 X |,whereA\=60—-9>0 (1.2)
w |0 0 6

This matrix says that (see also figure 1.2 for a graphical example):

each time an x-ball is sampled, # balls of type x are reintroduced in the urn;

2.  if the sampled ball is y, the urn is reinforced with ¢ y-balls and A w-balls (and

this models dependence);

if a w-ball is picked up, € balls of the same color are put in the urn*.

In particular we will also assume two simple conditions:

1 Let 09 # 0, not to have degenerate cases.

2 Let \=60—0 >0, as an expression of the positive dependence between y and w

balls.

1.3.2 The analytic approach

The so-called analytic approach to urn models was first introduced in [35], [36] and

then further developed in [70]. It represents a very interesting way for dealing with

4 In reality, the reinforcement  is fictitious: it is only necessary for calculations. In fact when a

w—Dball is sampled the system fails and the process stops.
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Figure 1.2: Example of triangular urn process for ag = 6, by = 3, co = 1, § = 3 and

0 =2.

balanced urns (for another approach based on martingales see [50]), since it allows

to analytically solve them, on the basis of one fundamental theorem, which is the urn

isomorphism theorem presented in [36].

We here mention an adapted version of the main theorem in [36], which is

based on the following definition.

Definition 1 Given a 3 x 3 triangular urn model, whose reinforcement matrix is

M: ) a?/B70-77T7X77€Z7

oo
S 3 ™
Q 2 <

the associated differential system is the ordinary differential system

T = ;paJrlwaX
Y= =yt
w = wot

where T represents differentiation with respect to the independent variable time z.
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At this point we can state the following.

Theorem 7 (Flajolet, Gabarro, Pekari - [35]) Consider a balanced urn of the form
M, as above, which is initialized with aq balls of color x, by balls of type y and cq for
w. Let x, yo and wq be three complex numbers and assume that at least one of them
is different from zero. Let h, (2; %0, Yo, Wo), hy (2;To, Yo, wo) and hy, (2; 20, Yo, Wo)
be the solutions to the associated differential system >, with initial conditions xy, o

and wy. The generating function of urn histories satisfies (for z small enough)

H (z; 20, Y0, wo) = hy (25 0, Yo, W)™ hy (23 2o, Yo, wo)bo ho (25 20, Yo, wo) ™ -

So, following [36], it is possible to establish a fundamental isomorphism be-
tween discrete-time balanced urn processes and particular ordinary differential sys-
tems, that are nonlinear, autonomous and characterized by a simple monomial form.
Such a relationship gives the possibility of analytically solving the urn process in
finite terms, finding out the underlying generating function.

In our case, the reinforcement matrix RM determines the following ODE sys-

tem:

= 20t 2(0) = o
Y =1 g=ywt withic. { y(0)=yo (1.3)
W = witt w(0) = wo

which is explicitly solvable.
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In fact, the x and w components are immediately obtainable by simple integra-
tion:
(t) = xo(1 — Oabt) "7 (4)

w(t) = wo(1 — Owlt) s, (5)

Then, noting that 5y °~! = w?*, the solution is:

=

o(0) = (1 = 5 (w5 = [wn(2 — 0ty ] )

Given these solutions, we can then state the following proposition.

Proposition 8 Consider an urn process with a reinforcement matrix RM as in 1.2,
that satisfies conditions 1 and 2, and with an initial composition (ag, by, ¢o) of balls.

The 4-variables generating function of urn histories is:
bo

H(zz,y,w) = x“oybowco(l—&t@z)_%o(1—9w9z)_%0 (1 — yow™° (1 - (1- 9w02)3>> ’
Proof. The proof of the proposition is an immediate consequence of the multidi-
mensional version of the urn isomorphism theorem, given the ODE system we have
defined. W

The possibility of having an explicit form for H(z; x, y, w) is an useful result.
It allows us to directly compute the closed-form expressions of the factorial moments

of the number of x,y and w-balls in the urn by simply differentiating the generating

function. Then, using the Stirling numbers of the second kind {’;} (for a reference,
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see [37]), it is straightforward to recover the k-th power moment of N as F [N ’“} =

> {THELN),).

Proposition 9 Let X, Y, and W,, represent the number of x, y and w balls in the
urn at time n. Their moments show to be hypergeometric functions, that is finite lin-

ear combinations of product and quotients of Euler Gamma functions. In particular:

E[X,] = j—;)(to +nb),

ElY, = bOFF(Efiz) ns + O(ng_l)7
0
E[W,] [(to ao) 2] Fr(to?)ni +0(ns Y,

)’
(%
(2)"T () s 5
B[(Y)] = 0' =5 mgmyon' + 0(n7),
r(57)

where to = ag + by +¢co, A\ =60 — 6 and (-)(n) represents the standard Pochhammer
formula. Since this values are obtained through asymptotic approximations, their

accuracy increases as n — oQ.

Proof. We split the proof into two parts



26

We consider z balls. It quite easy to see that they are driven by a standard 3 x 3
Polya urn. In fact, since there is no interaction between the z-balls and the
others, we can aggregate the reinforcement of y and w balls and then obtain a
standard (6) (9) 8 reinforcement urn. Hence the result immediately follows

000
from corollary 2.1 in [70], that’s by using standard Lagrange inversion.

Since for y and w balls the methodology is the same, we will prove the result
only for Y,,.

Set €, = LntD) Taking derivatives of the multivariate generating function, one

()"

has

BV = 1) (0= 14 D] = G ) v,
where [2"] represents the standard notation for the operation of coefficient
extraction’.

Thanks to some simple but tedious manipulations and a small recurrence, it is

possible to discover that

bo ® (tg+16)s by ® (to+(1=1)8)6
Bl = (%) a-o 8 () o

At this point, noting that for v; < vy, [2"] (1 — 2)™7" = o([2"] (1 — 2)772) (fora
reference, see [37]), we have that only the first term influences the asymptotic
behavior. So, thanks to a coefficient extraction with respect to z, we get the

desired result.

5

Q-

Let f(X) = > i2, uiz® be a generating function. One simply has [2] f(z) = [z™] > 0y aiz’ =
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An immediate consequence of this proposition is that, for example, the law
leading the number of y balls in the urn is not Gaussian, since one can easily verify
that expectation and standard deviation show the same order of growth. Similar re-
sults holds for the w balls. Finally, the number of z balls follows a standard Polya

urn, whose behavior is different and well-known.

1.4 Urn’s results and shock models

With our urn process we are trying to model shock models, so we are particularly
interested in the dynamics of y and w balls, representing the risky and the default
states. For example, it would be useful to know something about the limit distribution
of Y,, (and analogously of W,,).

Looking at the moments of Y;, and W,, we have obtained in Proposition 9 and
comparing them with those presented in [70] for a 2 x 2 triangular urn, we find that,
up to scaling, they are the same. So, thanks to the standard moment convergence

theorem (for a reference, see [12]) we can adapt some results in [70] to our case.

Proposition 10 7he random variable Y,, has a local limit law whose density is char-
acterized by generalized Mittag-Leffler functions. In particular, for any compact set

S of RT and any ~y € S such that 'yn% is an integer, we have that

)

PlY, =by+ 5'yn%] = n*%gy(’y) + O(n’%)
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where the error term holds uniformly with respect to v € S. Moreover, the function

gy(+) is defined on R according to the following series expansion:

_ (%) Yy v
N TR e S GOl

An analogous reasoning is valid for W,, with g,,(-)

£-3 _1\k 7
W’Y Z( 1) F(/{:—f—l)r (t(rbgfk/\)

20 ‘o
A [4 k>0

NS
g
—
)
N—
I
oS
SN—

where v € S and ’ynz_% is an integer.

Proof. The result comes from some cumbersome calculations for extracting coeffi-
cients from the generating function of urn histories, with respect to y (or w) and then
to z, using singularity analysis as in [28], [34] and [53].

In particular, we know that our function is analytic in a proper Camembert region.
Then, defining a proper contour we approach the singularity at distance % More
specifically, we choose a quite standard semi-complete circle C' (see figure 1.3 for

further details®). Hence we apply Cauchy integral formula, according to which

) = - [ T

9 +1 7
21t Jo 2"

In the specific, from the generating function we have

"] (1 — 02) " (1 — —ez)g)k P [a_ > (1 —(1-2)

271 C

S[-9

k dz
Zn+1’

SN

where k = yne.

6 This picture is an elaboration of Fig. 9 in [36].
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Figure 1.3: Integration contour for the extraction of coefficients, where, given
meR", d, =1 + mn~% and D, = \/d? +n=2.

Then we choose z = 1 — %, obtaining

I (ko 1 _ )
PY, = by + k] ~ (5) ’y%o’l t%e’wy”dt,
(%) Q

where () is a clockwise oriented negative loop around the negative real axis, as in
[37].

At this point, we keep T and, using Maple, expand the other terms.

The Hankel representation of Gamma functions (see [1]) allows to conclude
the proof. W

This last proposition is undoubtedly important, since it gives us very helpful
information about our urn process. In fact, as known from complex analysis, the

generalized Mittag-Leffler function ), ., W is an entire function and a
> Bo_k5

)

special case of hyperbolic function. In particular, it interpolates between a purely
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exponential law and a power-law behavior (see [66]). This makes our modelization

rather flexible. For example:

For ¢y = 0, that is if there are no w balls in the initial composition of the urn so
that the process cannot fail immediately, the function g, (y) represents a Paretian

stable law of index g.

If ¢y < 6, on the contrary, g(-) becomes a Gamma distribution (even an

exponential for by = §).

0 2 4 3 8 0 12 14 16 18 20
n

Figure 1.4: Limit law for Y,, for different values of 6 and 4. Initial composition
(20,5,1).

The main consequence of this flexibility is that, for example, we are able to

indirectly reproduce the results of Theorems 4 and 5, which was one of our first aims.
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For example, consider the standard GESM in [46]. Computing the probability that
Y10 > bg using 1.6 is like asking in [46] which is the probability for the system
to overcome the risky threshold for the first time in n = 10. In the same way,
P [W,, > ¢| represents the probability for the model to fail at time 7.

Figures 1.4 gives an idea of the limit laws for Y,, for particular values of § and

0 and given urn initial compositions.

1.5 The Bayesian perspective

We mentioned that the urn approach to GESM’s can be seen as a Bayesian perspective
on shock models. In fact, thanks to the urn modelization, the researcher is able to
introduce in the process its prior knowledge by acting on the initial composition of
the urn or on the reinforcement quantities # and .

For example, as we have seen in the previous section, changing the values of
ap, by and ¢q influences the limit law of Y,,. In the same way, modifying the number
of balls that reinforce the process, we obtain different values for the moments and
the probabilities of the three distinct colors in the urn. So, if we have observed a
certain behavior for an actual system and we want to model it, we can intervene
on the parameters of the urn processes, incorporating information. In fact, while in
general we expect by and ¢ to be quite small, since shocks and default are generally
considered extreme events, there could be a particular application in which the system

is constantly affected by shocks, so that by can be greater. Therefore, modifying the
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initial values of the system, we are able to make prediction and compute posterior
distributions for the process without an explicit knowledge of priors, and this surely
simplifies the analysis.

Another interesting characteristic of our urn process is that, asymptotically, its
composition - that is the proportions of different colors in the urn - behaves like that
of a standard Polya urn, following a Dirichlet distribution (see [14] for an appealing
perspective about Dirichlet distribution).

A similar result can be obtained looking at the basic definition of our reinforce-
ment matrix. In fact, using the terminology of [69], if we standardize our reinforce-
ment matrix by dividing each term by 6, that is the balance of the urn, we can say
that our urn is essentially Polya, since 1 is a multiple (multiplicity is 2) eigenvalue
for L—llRM . Moreover if § > g (that is y-balls reinforce themselves more than they do
for w-balls), we also have that our urn process is /large and semisimple, according to

the definition of [69].

Proposition 11 Consider the urn process we have defined above. Let U, represent
the composition of the urn at time n, so that Uy = (ag, by, co). Then the quantity
%Un converges almost surely and in any LP, p > 1, to a random vector Vir, +
Vory 4+ Vars where the vectors 1,719 and r3 are the dual basis of%RMT and the

random vector (V1, Vs, V3) has a Dirichlet distribution, whose density on the simplex
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(uy > 0,u, > 0,u, > 0,u; + uy + uy, = 1) of R? is given by

1
bo— =[Acp—dag
to quo U,y co 5;,[ ]

2 (a0 + co) ' (b — o) I (5 [Aco — dao])’

where u,, represents the proportion of T balls in the urn.

Proof. First one computes the Jordan basis for the process, starting from its rein-

forcement matrix. As known a Jordan basis is a basis satisfying
RMb;1 = Aibia
RMbi’j = )\ibi,j + bi,jfl-

Given the Jordan basis, the dual ones are calculated.

Then, using theorem 1 in [69], the result immediately follows. W

In Bayesian statistics, an important form of dependence among random vari-
ables is exchangeability. The possibility of having exchangeable sequences is in fact
very useful when studying the properties of as particular stochastic process.

Let X,, Yn,, W, represent the proportions of x,  and w balls in the urn at
time n. Unfortunately, it is easy to verify that, because of the lack of symmetry in the
reinforcement matrix, the sequences {Yn}, {7n} and {Wn} are not exchangeable
in the sense of de Finetti (see [25]). However, they all show an useful property

introduced in [8] and further investigated in [9].

Definition 2 ([8]) 4 sequence {Z,}, -, defined on a probability space ({2, L, P),
that take values in the measurable space (E,X) and is adapted to a filtration F =

(fn)nzo’ is said to be conditionally identically distributed with respect to F (F-c.i.d.)
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E[f(Ze) |Fnl = Ef (Zir) | Fal acs.

forall k > n > 0 and all bounded measurable f : E — R.

Proposition 12 Let {Wn} represent the sequence of the proportions of the balls
of type w generated by the urn process defined in Section 3 up to time n. Set the
Sfiltration F such that Fy = {@,Q} and F,, = o (W1, W, ..., W,,) for n. > 1. Then

the sequence {Wn} is F-c.i.d. Similar results hold for {Yn} and {?n}

Proof. To prove the proposition it is sufficient to show that (E [W,41]F,]) _ isa

F-martingale.
First, note that

Co + Z?:l /\1{Rz‘:y} + Z?:l Ql{Ri:w}
to + no

E [Wnﬂ\]:n] = a.s. foralln > 1,

where R, represents the color of the ball sampled at time n from the urn and 1, is
the indicator function.

Forn = 0 we have E [E [Wy|Fi] |Fo] = E [Ws] = E[W1] = E [W1|F)
as. Forn>1, F WTL+1|FTL} =F Wn+1|W1,W2, ,Wn] a.s. Then

Co + Z?:l >‘1{Rz‘=y} + Z:‘L:l 01{3i=w}
to+ (n+1)0
E [/\1{Rn+1=y} + Hl{Rn,+1=w}|~7_—n}
to+ (n+1)0

=F [WnJrl’fn] a.S.

E [E [WnJrQ‘fnJrl] ’Fn] = +

Similar proofs hold for {771} and {Yn} |
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This is a very interesting results. In fact, it has an immediate consequence,
that gives us useful information about the dependence structure induced by our urn

process.

Corollary 13 The sequence {Wn} is asymptotically exchangeable in the sense of

[2]. The same for {Xn} and {?n}

Proof. The proof'is a direct application of Lemma 2.4 and Theorem 2.5 in [8]. B
This last corollary, together with Proposition 11, shows that, asymptotically,
our urn process, even introducing some dependence among the balls, does not differ

substantially from the classical Polya urn.

1.6 Conclusions

In this chapter we have proposed a new way for analyzing generalized extreme shock
models using a special triangular urn process. The reinforcement matrix builds a
positive dependence between the risky and the default states, indirectly modelling
the moving threshold mechanism first introduced in [46]. The choice of an analytic
approach to the urn has given us the possibility of explicitly derive probabilities,
moments and limit laws for the three different types of balls, that is for the three
distinct levels of risk. Using the algebraic approach proposed in [69], we have also

calculated the limit law for the urn composition.
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Moreover, the flexibility of the urn approach seems to be quite interesting, since
it allows to incorporate prior knowledge into the process, opening GESM’s to the
Bayesian perspective. In fact, modifying the initial composition of the urn and the
reinforcement quantities, the researcher can actively introduce his knowledge of the
phenomenon into the modellisation.

In the future, it could be worth to introduce other forms of dependence among
the states or let the reinforcement matrix evolve over time, as suggested in [64].
Moreover, it would be interesting to verify if other kinds of shock models could be

modelled using urns, as we propose, for example, in the next chapter.
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Chapter 2
An Alternative: The Ruinous Urn

This chapter introduces an alternative modelization to the urn-based version
of generalized extreme shock models, following a recent research direction we
have undertaken.

The idea of a generalized ruinous urn, as we have called it, has been inspired
by the interesting cannibal urn described in [68]. The main characteristic of the
ruinous urn is that it is not tenable, according to the definition of [36].

The aim is to model, in a pessimistic way, a system subject to shocks of ran-
dom magnitude, starting from the assumption that, however, the system will
inevitably fail. In fact, we will assume that it may default both for an extreme
shock and for natural obsolescence, since the passage of time inescapably de-
teriorates the system.

We will show that this modelization produces interesting results.

2.1 Introduction

As we have seen in the previous chapter, shock models are a class of models that
study the behavior of a system subject to shocks of random magnitude. In particular
extreme shock models assume that the system fails after one big extreme shock that
overcomes a certain endurance threshold.

Anyway, it is not ludicrous to reckon that obsolescence plays an important role
in the life of the system. The passage of time has an unavoidable effect on system
resilience to shocks and, even if no extreme shock occurs, sooner or later the system

will break down for the usage.
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The Ruinous Urn we are about to present is our modelization for such a sit-
uation and it can be considered an alternative to the triangular urn we have already

described.

As we will see, the new urn can be considered a combination of three different

urn schemes:

e a generalized Polya triangular urn, as the one of the previous chapter;
e asacrificial urn, in the sense of [35];
e Pittel’s cannibal urn (see [68]).
Hence, before analyzing the Ruinous Urn in detail, it can be useful to briefly

revise some basics aspects of sacrificial and Pittel’s urns, view that triangular urns

have been already treated.

2.1.1 Sacrificial urns

Sacrificial urns are a class of urns in which one or more colors sacrifice themselves
all to the good of the remaining ones. Famous examples of sacrificial urns are the

two-chamber Ehrenfest urn (presented in [31]), whose reinforcement matrix is

-1 1
=[]

and the peak-in-perms Mahmoud urn (see [55]), with

s
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Suitable references on the subject can be [35] and [36]. The second one will also
represent the canvas of this short introduction on sacrificial urns.
The general form for a 2 x 2 sacrificial urn is given by the initial composition

(ap, by) and the following balanced reinforcement matrix:

o B
M:{v 5}’

where « < 1,v-8 # 0and 0 = o + 8 = 7 + . Moreover the urn is assumed

tenable, as per the following definition.

Definition 3 An sacrificial urn with reinforcement matrix M is said tenable when

the diagonal entry o < 1 is such that |« divides both ay and 7.

For convenience, set p = v — «a, so = ag + by, S, = So + no and remember the

definition of the following hypergoniometric functions (see [54] and [37]).

Definition 4 Let ¢ € Z" and £ € QF be two parameters. The fundamental integral

J = Jy¢ is defined as

J = —_— 2.1
The pseudo-sine function S = Sy ¢ is defined in a complex neighbourhood of 0

as the inverse of J,

The pseudo-cosine function C = Cy is defined in a complex neighbourhood

of 0 as

==

C(z) = (1+ S()")F,
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where the principal determination of the k—th root is adopted.

S and C' can be considered higher degree analogues of standard trigonometric
or hyperbolic functions’ (see [37]). For this reason it is quite easy to show that they
are analytic® at 0, and in particular S(z) = z + O(2?™1) and C(2) = 1 4+ O(z?).

Moreover it can be shown that the fundamental integral of equation 2.1 can be
written in a hypergeometric form and the same for the pseudo-sine and the pseudo-
cosine functions. Following [1], the hypergeometric function is defined as a combi-

nation of products and quotients of Gamma functions, or

a,b abz  ala+1)b(b+ 1) 22
H ’ = 14+ —= il
[ c ‘x] N c T c(e+1) 2!

20 ()i
- Z ()

1=0

Z@'

)
L(t+1)

-],

This last property is very useful for calculations, since it dramatically simplifies the

So we have

3 1
J@g(z) =zH |: 1 _ﬁ%

work of symbolic languages such as Maplel1°.

We are now ready to present the main theorem related to sacrificial urns.

T For example, if ¢ = 2 and ¢ = 1, we have J(u) = arcsinh(u), S(u) = sinh(u) and C(u) =
cosh(u).

8 Here, an analytic function is a function that is locally given by a convergent power series. This

clarification is meant to avoid the common superimposition between analytic and holomorphic func-
tions.
In this thesis we refer to the definitions of [37].

9 As said before, Maple 11 has been the main symbolic language we have used for performing or

controlling all our calculations.
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Theorem 14 (Flajolet et al. [36]) Consider a balanced sacrificial urn, whose rein-
forcement matrix M = [ ?; g } is such that « < 1l and ~ - (-0 # 0. Then the
bivariate generating function of urn histories, for (x, z) in a neighbourhood of (0, 0),

is given by
H(z,1) = A7S(—azA” 4 (@A) "2 C(—azA7 + J(@™"A%) "%,

where A = (1 — xp)%, J is the fundamental integral, S is the pseudo-sine function

and C'is the pseudo-cosine function with k = —&.

A special case of sacrificial urns are the so-called semi-sacrificial ones. The
main feature is that, given the reinforcement matrix M, < 1 and 6 > 0, that is
there is only one color that sacrifices itself, while the other is a hanger-on.

As we will see, at a first glance, our ruinous urn and a standard semi-sacrificial
urn can seem a lot alike. Notwithstanding they are quite different, since our urn
violates two fundamental assumptions of sacrificial urns: it is not tenable and v = 0

sothaty -3 = 0.

2.1.2 A sketch on Pittel’s cannibal urn

In 1960, R.F. Greene introduced, in an unpublished and nowhere-to-be-found paper,
a simple urn model to study the behavior of cannibal tribes. That model has been
renewed and deeply analyzed by Pittel in [68], that is why it is now known as Pittel’s

cannibal urn.
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Imagine we have a population made up of cannibal and non-cannibal individ-
uals. At every time step, a non-cannibal is selected as victim and removed. Then
another member in the remaining population is selected at random. If the selected in-
dividual is a cannibal s/he remains the same, but if s/he is not a cannibal, s/he then
becomes an antropophagous.

The reinforcement matrix of this urn process is simply given by

p_ 0 —1 | cannibal
|1 =2 | non — cannibal.

This matrix is interesting since it is clearly not tenable. Moreover it is charac-
terized by the presence of a set of absorbing states, that is to say states characterized
by only one kind of balls - in this case those representing cannibals. To be more ex-
act, the urn process continues until one the elements of X = {(i,n) : n > 0}, with
t = 0, 1, is reached.

Starting from a given initial composition (ay, by), the urn evolves to (a; = a;_1,
by = b1 — 1) with probability bf_la_tl—;lat_l andto (a; = a;_1 + 1,b; = by — 2) with

probability bt_bt*1_1

R E— where a; and b; represent the number of cannibals and non-

cannibals in the urn at time ¢. Figure 2.1 gives an idea of the urn behavior starting
from the initial composition of 8 non-cannibals and 5 cannibals.

In his paper [68], Pittel has shown that the number of cannibals remaining when
there are no more non-cannibals in the population is asymptotically normal as long
as by # o(ap). In this last case he has demonstrated the presence of a Poisson limit

law.
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spEqIumEs

4.5 5.6

@3)

On)  (1n) Non-cannibals

Figure 2.1: Example of Pittel’s cannibal urn with initial composition (8, 5). In red
the absorbing set.

2.2 The Ruinous Urn

It is now time to introduce the 2 X 2 ruinous urn by describing its reinforcement

matrix and properties.

Consider the following reinforcement matrix

T o 00—«
M—y{o - } 2.2)

where a < —1 and o > 0.

We can then do some do some obvious considerations:

1. theurn is balanced, i.e. at every time step we add ¢ balls in the urn;

2. the reinforcement matrix is triangular, but & < —1 so that we cannot apply the

same results of the previous chapter;
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3. the tenability property is clearly violated, view that v = 0;

4.  the matrix M does not characterize a sacrificial (or semi-sacrificial) urn, since it

presents a null term on the anti-diagonal;

5. As Pittel’s cannibal urn, the ruinous urn possesses a set of absorbing states

S ={(0,k): k>0}.

Before analyzing in detail the urn behavior, it can be useful to briefly describe
how it works and the connections with shock models.

The urn is initialized with aq balls of type x, representing the safe state'®, and
bo balls of type y, symbolizing default. When a ball is sampled from the urn, its color
is observed and the urn is then reinforced according to the matrix M. In particular,
if a z—ball is chosen, we remove |a| x—balls from the urn and we add § = 0 — «
y—balls. If, on the contrary, a y — ball is picked up, we simply reintroduce the ball
together with other o balls of the same type.

Two clear consequences of this modelization are:

1. x—balls are destined to disappear from the urn (and this produces the absorbing

set .S);

2.  the probability of picking a y—ball inescapably increases over time.

10 See the previous chapter for a more detailed description about the relationships between urn colors

and risk states.
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In this way, we obtain that the passage of time increases the probability of de-
fault of the system, both by direct reinforcement'' and by decrease of the probability
of surviving. In a nutshell, the ruinous urn makes the system fail not only when a
y — ball is sampled, but also when there are no more x—balls available.

Set X;, > 0 and Y,, > 0 to represent the number of =z and y—balls in the
urn at time n, while C), is the color of the n—th ball sampled. We are interested in

calculating

that represents the probability of a default due to obsolescence, and

PCy =y,
that embodies the probability of a default due to an extreme shock. Finally it is worth
to consider the stopping time 7¥ = min {n : C,, = y}.
In order to derive the above probabilities and the other properties of the ruinous

urn we need the following tedious but useful lemmas.

Lemma 15 Let M be a reinforcement matrix as in equation 2.2 . We know that the

associated differential system is
a+l, c—o

Y= { ;?f;vmy wz‘thi.c.{ ;3((8; :;f . 2.3)

We remember that the reinforcement « 4 (3 is fictitious, since it is only necessary for doing calcu-
lations. In fact, as already said, when a y—ball is sampled the system fails and the process stops.

11
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Then =% — y~* is a first integral for the system.

Proof. We simply need to solve the system and verify that

et (m—a o y—a) — —Oé.flf_a_ljf =+ ay—a—ly — 0

a

This guarantees that x=* — y~“ is constant. W

Lemma 16 Consider the differential equation

i = xa—l—lya—a'

We can eliminate the variable y simply using the first integral defined in the previous

lemma.

Proof. Let X(t) = X (t;x0,%0) and Y (t) = Y (¢;x0, yo) represent the solution of
the differential system 2.3. If zyyo # 0 then, for ¢ in a neighborhood of 0, we have
that X ()™ =Y (t) “ =2,% —y "

Thus

a—o

a—i—l(x—a _D—a) a

=X

where D = (y;® — ;%) " «. W

Let us introduce a change of variable that will help us in calculations. Set

X(t) = X(t;:canU):StDUJrla

Y(t) = Y(t;wo,y0) = wtD7t

Then the system 2.3 can be rewritten as
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[e]3

 _ oatl(—«a o — -1
Z = { 5= U+<18 +1) with i.c. { 2(0) = oD
w=w

’U)(O) = yoD_l
From this new formulation we obtain

s
Sa—i—l(s—a + ]_)

1=

x—0o

and integrating

s(t) —a—1
zoD-1 (1 +u=®) "o

Now set 1) = u~?, so that we obtain

/s(t)_” dw
—at = — s
zpope (1+9)

This last expression should be familiar view that it can be expressed by the

means of the fundamental integral introduced in Definition 4. In fact
—at = Jye(s(t)™) = Jpe(xg" D),

where ¢ = 1and § = =

We are now ready to state the following fundamental result.

Proposition 17 Consider a balanced ruinous urn with reinforcement matrix M =
a 0—a« S .
{ 0 o } a < —1and o > 0. Initialized the urn with ag > by > 0 balls

(remember sy = ag + by) and let S be the pseudo-sine function. Then its bivariate

generating function of urn histories is given by

H(t;a,y) = (2% = 5p™) * S(—at + (@ D) (1—0yt) 2. (24)
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Proof. Once again (see the previous chapter), the generating function is simply
given by the application of theorem 7, once we have noticed the following elements:

1. The solution of §y = y° ! is easily derived as yo(1 — oy t)*i;
2. Since —at = Jye(s(t)™) — Jye(xg @ D), we have that
s % = S(—at + Joe(x" D).

But we known that X; = stD° ™!, so X (t)~“ is immediately obtained.

It is now time to study the probability of default of the system.

Proposition 18 Given a ruinous urn as described above, we have that

P[Xn:a0+al]:(z+%;— >Li(_l)j(;><n<o_1)n+b0—aj>7

()" =
and, in particular
P[X,, = 0] = pn?U™(1 4+ O(n™ 1),

where p > 0 is a constant, ¢ = (—°%2) and U = Betaf(1, _g)

oo

Proof. By construction we know that x—balls can only decrease in measure of «.
So X, can only be equal to max(ag + «l,0) with [ € Z.
Then, we set y = 1 and we perform coefficient extraction with respect to x,

noting the presence of the group (1 — a:*a)é, whose expansion is well-known, being
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a slight modification of Stirling formula (see [74]). At this point, we expand'? the
[—th power upon performing coefficient extraction with respect to ¢.

The probability P[X,, = 0] can be easily computed from H(¢;0,1) = S(—at) = (1—

ot)_b70 using, as usual the [t"] operation. W

On the contrary, given the simplicity of the result, no proposition is needed to
study the probability P [C,, = y].

Moreover, as far as the stopping time 7¥ = min {n : C}, = y} is concerned, we
trivially have

n—1

Ty>n:HX)—(|—ZY

) 7
i=1

Proposition 19 The moment of a ruinous urn have hypergeometric form, i.e. they

are C—linear combinations of hypergeometric terms.

Proof. In order to prove the proposition, first notice that

e - D] HEa, )
E[(Xn)l] - [t"]H(t§x71> 7
_ P -1 HE L)
E[(Y,)] = H(ELy)

where [a"] is the usual operation of coefficient extraction.
Then notice that J and S are hypergoniometric functions (see [54]) and the

result follows. W

12 Even in this case, calculations have been performed using Maple 11.
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In this case, without defining the parameters in 1/, it is not possible to explic-
itly derive the moments of order /. For example, Maple 11 stops processing while
searching the general solution.

Finally, we can give the following last result, that represents a clear link be-

tween the ruinous urn and sacrificial urns.

Proposition 20 Let ag > by > 0 and 0 ~ sg. The number X,, of x—>balls at time n

is such that

Xy — pun 1 [T e 1
P|l————< = (2 2 zdt + O 2),
{ vvno T 4 (2m) /—ooe +0m™)
E[X5)] Var(Xy)

where p = lim,,_, and v = lim,,_, o

Proof. Consider the following. For x — 1 we have

[t"|H (t;x,1) ~ %T(x)—n—l7

Q —a =J . .
where 7(z) = 277 )., (ija) — [(1fx_a)] is the radius of convergence of
H(t;x,1).

Now, from the previous proposition, we have (set s = x not to confuse nota-

tion)

v [ [(n =D H(t;s,1) (1) ntl N
B = S = ) O]

An analysis of F(sX") shows that it can be seen as the (n + 1)—th power of a fixed
function. A consequence of this is that X, automatically corresponds to the sum

of n 4+ 1 independent identically distributed random variables. It is rather intuitive
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to expect a Gaussian law in asymptotics. Fortunately the quasi-powers central limit
theorem of [47] helps us in proving all this.

At this point, the coefficients can be obtained by extraction from r(x). B

2.3 A brief sketch about higher dimensional versions

What we have written for the 2 X 2 ruinous urn can be obviously adapted to higher
dimensional urns.

In particular, this is a research direction we are still involved in. No need to
underline the amounts of messy calculations that are required in order to get useful
results. Anyway, some observations are always possible.

Consider the following 3 x 3 cases:

x [a b f

My = y [0 ¢ d|,ac<—landb,d,e,f>0
z 0 0 e
z [a b 0

My = y |0 ¢ d]|.a,c<—1landb,d,e >0,
z 0 0 e

where the balance of each row is equal to s.

The first one, M, is the simplest one. In fact, the reinforcement matrix can be

sS—a

divided into two smaller ruinous matrices: the first one, [ @ } , describes the

0

behavior of x—balls; while the second, { ¢ Z } , 1s related to y and w—balls.

0
The second case, M,, can be divided into two matrices, but in this situation

some problems about y—balls occur. In particular one has to model the dependence

among the two smaller matrices that both influence x—balls.
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2.4 Conclusions

In this chapter we have introduced the so-called Ruinous Urn, in order to model shock
models that incorporate obsolescence.

The idea is to make the probability of default increase not only by direct rein-
forcement, but also by decreasing the probability of surviving.

Further analysis is needed for higher dimensional versions of the urn. This is a

first step in order to produce useful applications.
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Chapter 3
Applying Urn-based GESM’s to Firms
defaults

In the literature, there are several methods to estimate the probability of firms’
default, from simple judgement-based methods to more complicated artificial
intelligence systems and statistical regression models.

In this chapter® we propose a first simple application of the urn-based general-
ized extreme shock model we have presented.

3.1 Introduction

Modelling the probability of firms’ default is a crucial issue for banks and finan-
cial institutions: assessing credit reliability of current and prospective counterparts is
essential in defining loans operations in the banking business.

In the literature, one can find several methods to estimate the probability of
firms’ default, from simple judgement-based methods (see, for example, [72] ) to
more complicated artificial intelligence systems (a review in [77]) and statistical re-
gression models ([24], [29]). The implementation of a reliable model to forecast the
probability of default involves the determination of a period of observation. In order
to identify default events, one has to control each debtor over time, identifying each

transition from a non-default to a default state.

13" This chapter is based on the paper "Modelling Credit Default with Generalized Extreme Shock

Models" by P. Cirillo and J. Hiisler.
The paper has been presented at the Economic Lunch Seminar Series of the University of Pisa,
Department of Economics.
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In this chapter we propose a new stochastic model for the probability of firms’
default starting from the results in [18], presented in chapter 1, and in [19]. As
seen, this constructive model is based on an urn process, characterized by a special
essentially Polya'* triangular reinforcement matrix. In particular, assuming that a
firm can experience three different levels of risk (safe, risk and default), we introduce
a dependence among the last two levels, so that the probability of default increases
every time the firm enters the risky state, while it decreases (but does not disappear)
the more the firm spends in the non-risky one. The levels of risk are determined on
the basis of aggregate balance indices. Figure 3.1 shows an example of the process.

As far as the results are concerned, we are both able to predict firms’ de-
fault probabilities with a good degree of approximation (using Altman’s Z-score as
a benchmark) and to obtain limit distributions that nicely reproduce the empirical

results one can find in the literature (see [38]).

3.2 A Simple Financial Application

We now present a first simple application of the urn-based generalized extreme shock
model.
Despite its simplicity, the results are comparable with those of the actual market

benchmark, that is Altman’s Z-score.

14 Anurn is defined essentially Polya if, after normalisation, the maximum eigenvalue is equal to the

unity with a multiplicity greater or equal to 2.
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Figure 3.1: Example of the process with a;, = ag+ k0, by, = by+kd and ¢, = co+ k.

The possibility of having asymptotic approximations for moments and proba-
bilities can be seen as a useful tool for the analysis. In fact, it allows to explicitly

compute the desired quantities without performing long and tedious simulations.

3.2.1 The Data

For our analysis, we have used data from the CEBI database. CEBI is a comprehen-
sive database first developed by the Bank of Italy and now maintained by Centrale
dei Bilanci Srl. It represents the biggest Italian industrial dataset and it contains
firm-level observations and balance sheets of thousands of firms.

Our experiment has been performed with a subset of 380 manufacturing firms

that respect the following conditions:
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1.  All firms’ data are active in the period 1982-2000;

2. For every firm we have reliable information about capital and financial ratios

and each has more than 100 employees;

3. They have been under bank control for possible insolvency at least once.

As far as the microstructure is concerned, the selected firms are comparable
with those originally used by Altman in his famous paper [4], that we use as the
benchmark in this work.

For every firm we have considered the following standard balance ratios: work-
ing capital / total assets (), retained earnings / total assets (75), EBIT / total assets
(r3), market value of equity / book value of total liabilities (r4), sales / total assets

(75), equity ratio (1¢) and debt ratio (7).

3.2.2 Initialization of the process

In order to use our urn model in applications it is fundamental to decide the way the
process is initialized and reinforced.

As far as reinforcement, we have simply set § = 3 and § = 2 for every firm.
These values are the best we have obtained using a simple grid method. In particular,
we have run our model several times, making the parameters change, but always re-
specting conditions 1 and 2, until we have found the best combination of parameters,

that is the one that minimizes the distance between the actual distribution of defaults
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and the one given by the model, using the supremum metrics. The grid method is ob-
viously a very naive way to calibrate a model’s parameters. An alternative efficient
and robust method could be represented by indirect inference, a simulation-based es-
timation technique introduced in [42]. Anyway, view that this is a first application
and considering that this approach is quite common in urn models (see [52] or [6]),
we prefer not to perplex our first computations.

This combination also assures that our reinforcement matrix RN is semi-
simple and essentially Polya.

As far as the initial composition of firms’ urns, we have developed the follow-
ing heuristic method, based on well-known stylized facts of industrial economics.
Suitable references can be found in [10], [11], [38], [39] and [65].

We first consider the equity ratio as a proxy of the proportion of x—balls. In
fact, it is known that a firm with an equity ratio greater than 0.5 can be considered
financially robust (see [38]). Hence, for every firm we trivially have ag = round(rg *
100).

As far as the y and w—Dballs, expressing the risky and the default states, we
combine the debt ratio with the complement of the equity ratio. Unlike the equity
ratio, a higher debt ratio can be read as a signal of danger for firms’ reliability (see
[38], [39] and [65]), because of the excessive financial exposure. In particular, we

have set by = round [r7 * (1 — rg) * 100] and co = round [(1 — r6)(1 — 77) * 100].
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firm year | equity ratio | debtratio | ap | by | co | default

code T6 7 int+1
IM223A | 1982 0.42 0.71 42 | 41 | 17 0
IM?298A | 1982 0.62 0.52 62 | 20 | 18 0
IM567B | 1982 0.68 0.37 68 | 12 | 20 1
IM1031B | 1982 0.39 0.66 39 | 40 | 21 1
IM1988A | 1982 0.72 0.57 72 116 | 12 0

Table 3.1: Example of initial urn composition for some firms of the dataset

It is easy to verify that, for every firm, the initial number of balls in the urn is equal
to 100.

Let us analyze some firms, in order to better understand the data and the pro-
cedure. Table 3.1 summarizes the fundamental data for 5 different firms: using the
equity ratio and the debt ratio, it is simple to derive ag by and cy, by simply apply-
ing the formula we have proposed. The last column represents a dummy variable we
have created to control for defaults (0 no default, 1 default).

If we consider all firms together, the average numbers of initialized x, y and
w—balls in the urns are 48, 39 and 13 respectively. Figure 3.2 shows the distributions

for ag by and cy all over the firms.

3.2.3 Results

Given the initial composition and the reinforcement matrix, for every firm we are
able to compute all the probabilities we are interested in.

Using the results of Sections 2 and 3, it is possible to derive the probability of
having a certain amount of z-balls or the probability of picking a w-ball (that’s actual

default) at time n. In a nutshell, we can say if a firm is in a safe, risky or default
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Figure 3.2: Kernel estimates for the distributions of ag, by and .

level. In particular, in this experiment, we assume that a firm fails at time n 4 1 if
the probability of extracting a w-ball is equal to or greater than 0.20 at time n, that
represents a very common threshold value in studying firms’ dynamics (see [39]).
For every firm, in every period, we have compared our predictions about fail-
ures with actual data and simple Altman’s ones.
Altman’s Z-score [4] is a popular measure, based on discriminant analysis, to

classify firms’ riskiness. In particular, using Altman’s original formulation we have

Z =0.012r; + 0.01473 4+ 0.033r3 + 0.00674 4+ 0.999r5.

According to this score, a firm is likely to default if Z < 1.8, it is safe if Z > 3,

while it is in a “gray” condition otherwise.
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Obviously we have also directly estimated the Z-score on CEBI data set to
understand if its general formulation can be used on Italian data. The result we have

obtained using standard regression techniques is the following

Z* = 0.014r; + 0.0137r5 4+ 0.052r5 + 0.007r4 + 0.955 5,
(0.0062) (0.0057) (0.039) (0.0028) (0.3413)

where in brackets one can read the standard errors. As one can easily see, in our
estimation exercise the sensitivity of 3 is not significant.

In order to verify if there are substantial differences among our estimates and
Altman’s, we have imposed the standard restrictions and constraints on the two equa-
tions. The results are a little ambiguous and it is not possible to state that the differ-
ences are clear but, at the same time, we cannot completely reject them. For these
reasons, in order to simplify the analysis, we have preferred to use the original Z-
score formulation, as commonly done by practitioners. The subsequent results do not
significantly change even if we use our estimates of Altman’s Z.

For 245 firms from 380, our model seems to perform as good as Altman’s
Z-score. In particular, both methods correctly predict firms’ default. However, for
72 firms from 380, our model seems to behave better. As far as the remaining 63
firms, both Altman’s Z (apart from 8 correctly predicted firms) and the Ugesm are
not able to predict default in the right way. However, while Altman’s method usually
underestimates the possibility of a failure, our model seems to be more pessimistic:
for 40 firms from 63 we generally predict failure 2-3 periods before actual default.

This is not correct, but it can be considered as a good result if we take the point of



61

Ugesm | Z-score
correct 83% 66%
no correct | 17% 34%

Table 3.2: Comparison of the number of correctly predicted defaults for Ugesm and
Altman’s Z-score

Ugesm Z-score
underestimated | 63% (2.7) | 28% (1.4)
overestimated | 37% (3.2) | 72% (2.3)

Table 3.3: Analysis of the 63 not correctly predicted firms. In brackets the average
number of periods of difference between actual defaults and predictions

view of a bank or of another financial institution: a more prudent behavior is required
for this kind of companies (consider Basel II, for example).
Table 3.2 compares our findings (the Ugesm) with the ones we have obtained

using the Z-score. In particular we show:

The percentage of correctly reproduced firms (correct), which means those firms

whose behavior is rightly predicted;

The percentage of incorrectly reproduced firms (not correct), that indicates those
firms whose probability of failing is not correctly estimated and that, according

to our calculations, have gone bankrupt before or after the actual time.

Table 3.3, on the contrary, focuses on our 63 not correctly predicted firms,
analyzing the number of underestimated and overestimated defaults. In particular,
we show how many defaults are wrongly expected before actual failure and how

many after, also giving information about the average period of error.
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Figure 3.3: Kernel estimates of the number of defaults over time using the Ugesm
and Altman Z-score and comparison with actual data.

Finally, in Figures 3.3 and 3.4, we give some results about the time pooled

distribution of the number of defaults in the panel. It is easy to verify that the Ugesm
seems to better reproduce the actual defaults’ dynamics, showing a more similar

shape. Kernel estimates have been obtained using the Epanechnikov kernel.

3.3 Conclusions

In this chapter we have proposed a new way for analyzing firms’ default probabilities
using a special triangular urn process. The reinforcement matrix models a positive

dependence between the risky and the default states. The choice of the analytic ap-

proach to the urn has given us the possibility of explicitly deriving probabilities, mo-

62
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Figure 3.4: Cumulative distribution functions for the number of defaults over time in
actual data and the two models.

ments and limit laws for the three different types of balls, that is for the three distinct
levels of risk.

This first application has shown the good capabilities of the urn-based gener-
alized extreme shock model in applications. In particular, we can be rather pleased
with the obtained results, if we consider that our model behaves better than the one
of the standard market benchmarks.

Moreover, the flexibility of the urn approach seems to be quite interesting, since
it allows to incorporate prior knowledge into the process, opening the analysis to the

Bayesian perspective. In fact, modifying the initial composition of the urn and the
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reinforcement quantities, the researcher can actively introduce his knowledge of the
phenomenon into the modeling.

Obviously, a lot of improvements are needed. In particular, we need to improve
the calibration of the reinforcement matrix parameters, using more statistically robust
techniques. As already said, we might use indirect inference to estimate ¢ and 9, as
we will show in a forthcoming paper.

Finally, as far as the data, it could be interesting to extend our studies to more
general firms. In fact, considering firms that have been under bank control surely
simplifies our analysis, since their probability of defaults is surely higher than the

average.
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Chapter 4
A Multidimensional Default Model for
Failing Systems

In this chapter we introduce two new models for studying failing systems.
A failing system (FS) is a system whose probability of failure is not negligible
in a fixed time horizon (for example one year). The interest for such a topic is
due to its diffusion in real-life problems: financial portfolios, electrical and me-
chanical systems, firms, the world wide web (and so on) can all be considered
failing systems.

The main purpose when studying a FS is to calculate the probability of de-
fault and the distribution of the number of failures that may occur during the
observation period.

Here we introduce a new way for calculating the probabilities of joint de-
faults in £ different homogeneous groups of defaulting systems, when each
group is characterized by some sort of rating, that’s some external information
about its reliability.

In our modelization, we will make use of a multidimensional urn scheme.
We finally give an idea of one possible generalization.

4.1 The Multidimensional Urn Model

We now introduce a simple default model based on the Polya urn mechanism'. The
properties of this well-known sampling scheme will help us in calculations, even if
the use of a particular superstructure introduces some minor differences. The results
we achieve are interesting for two different reasons: they serve as starting point for

future research and they show to be useful in applications, as we will see in the last

15 This chapter represents the evolution of a basic model [ 16], I developed when I was a student of

Sant’ Anna School of Advanced Studies in Pisa.
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chapter of this thesis. Finally, even in this case, the urn modelization represents an

intuitive tool to model dependence.

Consider NV failing systems divided into & homogeneous groups. Each group
will consist of n; elements, such that Z?Zl n; = N. Assume that each group is
characterized by a rating v;, 7 = 1,..., k, i.e. some sort of information about the
reliability of its components. A fundamental hypothesis of our analysis is that the set
G ={y; : j = 1,..,k} is a poset. In other words, there exists a relation < on &

which is reflexive, antisymmetric and transitive or, formally,

Vr Ve
if 7, 3 7sand v, 3 v, theny, =,

if v, 2 v,and v, 3 v, then vy, 3 ;.

Without any loss of generality, we will assume that the k& group are completely
ordered according to their ratings and, in particular, v, 2= vy 72 ... 22 Vi1 2o V- We
will read the relation 77 as "better than" so, for example, v, = v, means that group
1 is "better than" group 2 and, as a consequence of this, the £—th group is the worst
one, since it is characterized by the lowest reliability.

Let U represent a multicolored Polya urn with k£ + 1 different types of balls and

reinforcement matrix
RM = (6 +1) - Ixs,

where [ is the identity matrix.
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For each color i = 1,...,k, k + 1, there are «; balls into the urn, so that the
initial composition A is equal to Zfill Q.

Starting from this well-known urn scheme, we will now describe a model for
the analysis of joint default probabilities. For the sake of simplicity, we will assume

that each FS can be characterized by only two states: safety and default.

The mechanism is as follows:

Look at all the failing systems and choose one of them. Obviously, it is part of

one of the & groups and thus it is associated to a rating v;, j = 1, ..., k.
Now consider the multicolor Polya urn: pick a ball and look at its color ¢;

If the color is such that i € {1, ..., j} then the system fails and must be removed,

otherwise if i € {j + 1, ..., k + 1} the systems is safe;
Return the ball in the urn and add § extra balls of the same color.

Choose another failing system (even the same) and return to step 1.

In this way we are clearly introducing a positive dependence among the de-
faults.
Let Y, be a random unit vector with & + 1 rows representing the color of the

n—th sampled ball, i.e.

!/

Y, = (1),(2),..., 0,1, 0,..., 0| ifthen — th sampled ball has color ;.

§=175 i+ k1
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Let C, = [Cp1, ..., Cpn 1] be the vector of the conditional probabilities that

the n—th sampled ball shows a particular color, with
!/
Ci= P (Yn _ {01 0] |Y1,...,Yn_1).
1 ) k+1

/!
For convenience, in what follows, set u; = [(1), v 1y koll . Thanks to the
i +
underlying Polya urn scheme, it is possible to state the following proposition, whose

proof is already known (see [6] for details).

Proposition 21  The random vectors (Y ), -, are exchangeable. In particular:

[0 125 (ay + 0)
()"

where €, = Y ", u;, and ()Y is the standard Pochammer formula.

PlYi=u, ... Y, =u,] =

Y

Moreover, the random vector C,, of the conditional probabilities shows inter-

esting properties.

Proposition 22  The sequence (C, ;). -, is bounded martingale for every 1 < j <

k + 1. Almost surely, it converges to the limit

a.s a; +0 (Zn ! Y

Hence (C,,),~, is convergent martingale according to the filtration F,, = 0 (Y1, ..., Y,,)

with fl = {@, Q}
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Proof. By construction we have that 0 < P, ; < 1 is F,,—adapted. For this reason,

we only have to prove that (), ; is a martingale:

a; 90 (Z?:_f Yij)
A+6(n—1)
a; +6 (i) Yig) + 0B Va1l Fai]
A+d(n—1)
(A+6(n—2)) Cary +6Co s,

A+d6(n—1)

= Chay

E [Cn»j“”tnfl] fnfl

Proposition 23 Set k > 1 fixed. Let (Y,),>, be an exchangeable sequence of
vectors with values in {uy, ..., up+1}. Then there exist a random vector (C ..., Ci11)

with values in {(cl, ey 1) € [0, 1) | SO = 1} such that:

n k+1 ~€j
P|Y Yi=E|[C1,..Con| “T(n+ 1) ]] -
i=1 j=1 7

and
A .
Oj:r}inoloﬁé_lm’j 1<j<k+1,

k+1
where Zj; ¢; =nand E € NiT,

Proof. The proofis a simple and direct application of de Finetti’s theorem (see [25])

for Polya urn schemes (see [41]). B
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4.1.1 Number of defaults and joint probabilities

The previous proposition is very useful if we want to calculate the joint distribution
of the numbers of defaults within the k different groups. Let (D, ..., D;)’ be the
vector of interest, where D; represents the number of failures within the j—th group
of FS’s.

Now remember that N = Zj nj, o (Ch,...,Crr1) € Foo and that wrt (C1, ..., Cy)
the Y,,’s are i.i.d.

It is straightforward to see that

P [Dl = €1, ...,Dk = Ek] =

n1 ni1+nsg 2 N k
=P E Y;,l = €1, E E Yz‘,j = €2, ..y E E Yi,j = €k
i=1 i=ni1+1 j=1 i=N-np+1 j=1

k ; € j nj—¢
=E]] (”J) (io) (1— j CZ)
j=1 | NG i=1 i=1

Hence, looking at the distribution of (C1, ..., Cy1), we have

k+1 €1+...+¢€;
E[C?---CZZT] = L|P ﬂ ﬂ Yi=wu} || Chy s Crn

Jj=1 \i=e1+...+€;_1+1
I ()"
j=
H"
5

The random vector (CY, ..., Cxy1) shows a bounded support, so its moments
characterize its distribution function. In particular, as demonstrated in [14], we have

that
F(Zkﬂ ﬁ) an %3 _q

frra(ers oo cpyr) = ﬁl«j) )
j=1

I1;=
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where % > 0,0 < j < k+ land Y0/ ¢; = 1. So (C,...,Cyy1) is Dirichlet
distributed Lj41(%, ..., ).
This last result is very useful when calculating the marginal distribution of D;,

that is the number of defaults in the :—th group. In fact, using the amalgamation prop-

erty of the Dirichlet distribution (see [41]), we have that 22:1 C; ~ Beta (Ej,gj) ,

where @; = S/_, % and b; = Zf;lﬂ <. Hence
j €j ] n;—e€;
pio=ol = £|(M)(Se) (-xe) | e
J i=1 i=1
_ (n]) B(a] + Ej;’gj -+ nj — Gj)
€ B(a;; b))

and we find the so-called beta-binomial (or compound binomial) distribution, which
is very common in risk analysis. The interested reader can find more details in [33]
and [41].

At this point we are ready to state the following:

Proposition 24 For the multidimensional urn model we have constructed, the joint
default probability P [Dy = €1, ..., Dy = €], that is the joint probability of the num-
bers of failures in the different rating groups, is distributed according to a mixture of

beta-binomial distributions.

Proof. We have seen that
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Then using simple manipulations and the relationships we have underlined, we can

continue showing that

T Be) (-50) -

7j=1 %
1-p1 1= 5 s k 4 k T
n
)L () ()
j=1 j=1 j=1
k+1 k k L

PO ) 17 6

k+1hF (i) Hcff (1 — Zch> degdeg_q1 -+ - dey

h=1+ 5 ) h=1 h=1

Now, remembering equation 4.1 and the properties of the beta function B, we get

k+1 ap

H <n]> thFz(;sh; Z <Z) B (i + 813 Tk + 1k — €) - (4.2)

= h=1 6 /) s1=0

€k+€k1 s1 €+ € s
k k—1 — 21
. E < S )B(Tk1+52;7'k+1+7'k+nk1+nk_€k_€k1+51)'
2

so=0

€2 k—51,k—2 -
€2k — S1,k—2 ~ ~ ~ ~
: E ( . ’ B (To 4 Sgp—1;Tak+1 + Mok —€2,k + 515—2) -
k

5p—1=0 -1

B (71 + €1k — 51,513 To k1 + M1k —€16 + S1.k—1)

] . ~ b
where s_; = 50 =0, 7; = %]and, in general, T, = Y ., x;. A

1=qa

4.1.2 Some more results about the number of defaults

We have seen that the random vector (C1, ..., Cy1) is Dirichlet distributed Ly 1 (71, ..., Tg11)-
This result, that is one of the consequences of using Polia-like urns, can be used to

deeply analyze the descriptive statistics of the number of defaults.
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First note that, trivially,

E[Yi,] = E[C)] = # (4.3)
and
Var (Yi;) = E[C] (1 - E[C}]). (4.4)

Hence, it is straightforward to see that

—E|3 3

j=1 i=1

S k+1
i=1

ZRSZE[Q’] —n M
i=1 j

Analogously, as far as the variance of the number of defaults is concerned,

remembering that

we have

vl

Var (D) = Var <i Z sz)

j=1 i=1
= (n? - n, <ZZOOU CZ,CI>+nS (iiCov Gir Y >
i=1 [=1 i=1 [=1
_ M ns+%) (S ,<__ ) S )
o\ &G )

Using similar calculations, it is then possible to compute the covariance and all
the other descriptive statistics one may be interested in. All this can be very useful in

applications, as we will see in the last chapter.
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4.2 A Possible Generalization

We now give a sketch about a generalized multidimensional urn scheme, starting
from the reinforced urn process approach proposed in [60].

The main idea is to merge the positive aspects of both constructions, creating an
interesting Bayesian approach to default analysis. The study of the model is still go-
ing on and this section represents only a possible development of the basic approach

we have introduced.

4.2.1 A brief introduction to RUP’s

Reinforced urn processes (RUP’s) are a particular class of stochastic processes intro-
duced by Muliere, Secchi and Walker in [60]. Having in mind the definition of [23],
they can be seen as a reinforced random walk on a state space of urns.

Their usefulness is strictly linked to their characteristics of reinforcement and
partial exchangeability, which are fundamental for constructing prior distributions
and perform Bayesian nonparametric analysis. As a matter of fact, reinforced urn
processes can be seen as a new approach to Bayesian analysis, as underlined in [60]
and [76].

The definition of a RUP is essentially based on four distinct elements, that fully

describe its behavior.

Definition 5 (Muliere et al. [60]) Let
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S be a countable state space;

E ={c1,...,c} k > 1 afinite set of colors;

o U(x) = (ny(c1),...,nz(ck)) an unr composition function that maps S into the

set of k-tuples of nonnegative numbers whose sum is strictly positive;

q:S x E — S alaw of motion such that for every x,y € S, there is at most

one color c(x,y) € E such that q(z, c(x,y)) = y.

Fix Xg =29 € S. Ifforn > 1 X,y = x, a ball is picked from the urn
associated to x and its color c¢ discovered. Then X,, = q(z,c) and the urn is Polya
reinforced.

At this point, the sequence X = {X,,, n > 0} is defined Reinforced Urn Process

with initial state xqand parameters S, F, U and q, or

X ~ RUP(%, 8, E,U,q).

Now, for every x € .5, set
Ry ={y € S :ny(c(z,y)) >0} and R” = {z,}

to be the set of all the states one can reach from state = in one step.

Moreover define, for every n > 1,

RIA — U R,
]

z€RIn—1
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and

R= G RI",
n=0

the latter representing the set of all the states visited by the Reinforced Urn Process.

Using the approach proposed in [26], it is possible to show that a Reinforced
Urn Process is partially exchangeable in the sense of Diaconis and Freedman (see
[26] and [60]).

Moreover, if X ~ RUP(zo, S, E, U, q) is recurrent, that is there is a positive
probability of visiting a particular state in a finite number of steps, it can be demon-
strated that the reinforced urn process is a mixture of Markov chains. In particular,
there exist a probability measure ;. on the set p of stochastic matrix on R X R such
that for every n > 1 and (21, ..., z,,)

n—1
P[Xo=2x0,....,Xp =11] = Hﬂ(xj,mj+1)p(d7r).
© =0

So, given a random matrix IT of p with distribution , set I1(z) to be the x—th
row of II for z € R, and «(z) the measure on R that assigns a mass n,.(c) to ¢(x, ¢)

for every color ¢ such that n,(c) > 0 and 0 otherwise. Hence the following holds:

Theorem 25 [f the Reinforced Urn Process X = {X,,n > 1} is recurrent, the
rows of 11 are mutually independent random probability distributions on R and, for

all x € R, the law of 11(x) is that of a Dirichlet process with parameter o(x).
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4.2.2 Back to defaults

We can now construct the so-called Reinforced Urn Process for Defaults or Rating
RUP (RRUP), by combining the standard RUP approach with the multidimensional
default scheme we have introduced in the previous section. The idea can be consid-
ered a generalization of the approach proposed in [5].

Consider the following elements:

e a countable state space S representing time (even in a fictitious sense);

e asetof £+ 1 colors £ = {ci,...,ck11}, & > 1, as required by the

multidimensional default urn scheme;

e an urn composition function U(z) = (n(c1),...,n(ck)), whose Polya
reinforcement is ¢, that maps S into the set of & + 1-tuples of nonnegative

numbers whose sum is strictly positive;

e a sampling mechanism as the one described in the previous section, with the

only difference that now, after sampling, we move to the next step urn;

e a law of motion such that

(5.c) = 0ifi=1
DG = pr1ifi=2,.. k+1

This construction entails two important consequences:
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1. Atevery time step we consider a different multidimensional default urn, whose
behavior is equal to the one we have already described before. This is important

in performing calculations. In particular, for every urn,

Y

N\ B(ad: 4 d b .
P[Dj _ dj] _ <Z]> (aj + ]7NJ j‘ny i)
J B(aj; b;)

where a; = Zg:l @ and gj = Z?ijl—i—l nzfsc'j)-
For P[D; = €y, ..., Dy = €], equation 4.2 still holds, once we have simply

changed the parameters according to the new construction;

2. Time is set to 0 and the process is re-initialized every time a ball of color ¢;
is sampled. This choice is simply due to the construction of the process. In
fact, thanks to the rating scheme, if a c; ball is picked up we necessarily have a

default, view that it is associated to the best rating group.

As usual, we are interested in the joint number of defaults for the k risk groups.
Embedding the multidimensional scheme into the reinforced urn process framework
gives the possibility of easily obtaining these quantities. Some considerations can be

made:

1. Inevery time period we can have at most one default;

2. If we consider the first rating group, that is the one associated with the

re-initialization of the RRUP, we have that for every cycle/block of the process
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(in the terminology of [60]) we can observe at most one default. So, in general,

after m cycles we cannot have more than m defaults in the first rating group;

For the other risk groups we can have a greater number of defaults d but, for
every block, they cannot exceed the number z of elapsed periods (i.e. d < x)

before re-initialization.

It is not difficult to see that, when considering a RRUP, equation 4.2 must be
modified introducing Stirling numbers of the first kind, in order to consider permuta-
tion cycles.

As we will see in the last chapter, there are no substantial problems in simu-
lating the RRUP. The implementation in Fortran code, indeed, is a little messy, but
not in the least impossible. At the moment we are working on a more efficient and
time-saving algorithm. Most of the problems, while studying the RRUP, are due to

the research of a compact combinatorial form for the results.

4.3 Conclusions

We have introduced a multidimensional default scheme based on a multicolored ver-
sion of Polya urn. The sampling mechanism allows for building dependence among

defaults, showing interesting results as far as probabilities are concerned.
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We have also proposed a first generalization of the scheme using the reinforced
urn process framework. Here we have presented some preliminary results, view that

our research is still going on.
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Chapter 5
The Interacting Urn Chain Model

This chapter is dedicated to a recursive model constructed by the means of
interacting urns. The aim is to introduce a stronger dependence among defaults
with respect to the multidimensional urn model we have previously presented.
Some seminal ideas for such a construction have been introduced in [57] and
[63], where systems of interacting Polya urns are discussed. Anyway, the main
references for our interacting urn chain, which is based on an iterative frame-
work of interacting urns, are [27], [61] and [76].

In particular, the basic ideas in [61] can be considered the very starting point
of this work.

We first present the general model, with few assumptions and very general
results. Then we impose some more conditions on urns’ behavior obtaining
more complete and applicable results.

5.1 General scheme

Suppose we have N failing systems divided into & different homogeneous groups of
risk with n; elements 1 = 1, ..., k.

Once again, assume that, thanks to some external information, there is the pos-
sibility of ordering the distint groups. In particular, we require that the first group
is the best one and the last the worst, where the label "best" and "worst" are related
to the probability of default C; of the different groups. In general - and this is not a
strong neither a ludicrous assumption - we want that C; < C;,4 fori =1, ... k.

Hence, the aim of this chapter is to model the dependence among failures both
within and between the k groups, introducing a specific scheme based - what a sur-

prise - on urns.
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Having in mind the construction of [27], we consider C7, ..., C} independent
random variables such that C' € (0, 1). We then construct the probabilities of failure

of the k groups as

Ol - Cik
Co=0C1+(1-C1)C5
k

Crh=Cia+(1-C)Cr=1-]]-0C)).

=1

It is easy to verify that:

1.  this construction respects all our assumptions, so that the better groups of FS’s

show a lower probability of default;

2.  the probabilities of default of the different groups are strictly linked together by

the means of the recursive scheme.

So, thanks to this simple and intuitive iterative modelization, we obtain the
probabilities of default for the different risk groups and, for every FS, we are able to
say in which measure it is likely to fail.

We now introduce a particular class of stochastic processes, that will be very

useful for our analysis.
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Definition 6 (Doksum Doksum [27]) The random distribution function F' is said
to be neutral to the right if for each h > 1 and t, < ... < t}, there exist nonnegative

independent random variables V1, ..., V}, such that

(F(tl)’F(tQ)a“'>F(th)) =L (‘/171_(1_‘/1) (1_‘/2)""71_1_[(1_‘/;))'

The equations

vield
j—1
F(t)~ F(ti) =V, [[(1- V)
i=1
and
F(t;))—F(t;_
V}:( (t;) (t 1))j:1’.__,handt0:—00~

(1= F(tj-1))
Thus “F is neutral to the right” mainly means that the normalized increments

(F'(ta) = F(t)  (F(th) = F(tha))

F(ty), (1—F(t)) R (1—F(th-1))

are independent for all the t; < ... < ty.

Neutral to the right processes have been introduced to generalize Ferguson’s
Dirichlet processes. For their conjugacy property and construction, neutral to the
right processes have become an essential tool of Bayesian statistics, especially for

studying censored data.

Proposition 26 The process that governs the probabilities of failure C; 1 = 1, ..., k

is a neutral to the right process.
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Proof. Firstofalllet F; = C; — C;_1.with: = 1,....k and F; = (]. Itis easy to

verify that

k—1
(B, B, .., ) (or,c*; (1—cp), i [J - c:)) SENERY
=1

This, as shown in remark 3.1b in [27], assures that the process governing (C, Cs, ..., Cy)
is neutral to the right. W

Let D;, 7 = 1, ..., k, be the number of failures in the i—th group with n; ele-
ments. The (marginal) probability of having D; = d; failures in the i—th group is
equal to

n;

PD;=d)=E Kd) C%(1 - ci)"i—di} — E[P[D; = d;|C;_]] .

Then, using standard combinatorial considerations, the joint default probabilities can

easily be computed as

n T
P [Dl = dh - D, = dk] = F |: dl)Ofl(l . Cl>n1—d1 <d2> O;lz<1 . C2>n2—d2 -
2

<
(o
(G-

These results, even if interesting, are not very useful in practice. However, they

where E; = S, E;.

can be further developed if we assume some more information about the random

variables C7, ..., C}.
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5.2 Polya Urn Chain

We now want to deepen what we have found in the previous section.

Consider k two-color Polya urns. We will make them evolve and interact as
described above.

Attime ¢t = 1 each urn contains w; ; white balls and b, ; black ballsi = 1, ..., £.
When sampled, every urn is Polya reinforced with r; balls of the same color that
has been selected'®. In this way, at time ¢, each urn is equal to itself in ¢ — 1 plus
reinforcement.

Hence, as known (see [33] and [52]), we have that, using Polya urns, we can
obtain C}, ~ Beta <%, ?) At this point, following the recursive scheme, once

again we have

Cl,t = Cit
C2,t = Cl,t + (1 - Ol,t) ;,t
k
Cri =Crorp + (1= Croy)Cry =1~ H (1 - Cz‘*,t) :
=1
This construction, also shown in Figure 5.1, has three interesting consequences:
1. The Polya urn scheme guarantees the dependence among the failures within the

same group of risk;

16 No need to describe the Polya sampling scheme once again.
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€= (1-CIC,

Figure 5.1: Graphical example of the urn chain mechanism.

The construction of the probabilities 7, ..., C} induces dependence among the
defaults of the different & groups. In fact, if the probability of default of a better
group increases, automatically the probabilities of failure for the worse rating

groups do the same.

The use of Polya urns allows for the incorporation of prior and empirical

knowledge in the model, as we will see in the next chapter.

Given these details, we have that, at time ¢ = 1, the number of default in the first
group (the best one) follows, once again, the well-known beta-bernoulli distribution

(see [14] and [33]), or

Y

w11 b1

nl,l) B(_rl +diq; g - din)
b

dy B(®:t; 241

ry T

P =) = (

where - we remember - 7 ; is the number of failing systems in group 1 at time ¢ = 1.
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Then, after some tedious calculations, it follows that the joint probability of

failure, for t = 1,2, ..., is given by"’

ny

PID =t D= i) = () B0 (0F) (i)

d
d
Z ( k>B(7'k+dk—81;SOk+nk—dk)‘

S
s1=0 1

dpy1-j+85-1
+1—j Jj—1 . =~
: E < BTy, dira—j + 851 = 855 01— + Ter1—jp — dipr—j — Sj-1)

S .
5;=0 J
da+5sk—2
dy + Sk—2 ) ~
. E . B(Ta 4 s3 + Sp—2 — Sk—1; Py + Moy — doy — Sk—2)
k—1
sg—1=0

B(1y 4 di + sp—1;0, + i — di — 5p—1),

w; b; ~ b
where 7, = f, ;= 7{—Jﬁtand Nap = D iy Nit-

Proposition 27 The process that governs the probabilities of failure C; 1 = 1, ..., k
is a beta-Stacy process, as defined in [76), characterized by the initial compositions

of the k urns.

Before giving the proof, let us spend some words about this new process.

The beta-Stacy process, introduced by [76], is a special case of neutral to the
right process. The most interesting aspect of the beta-Stacy process is that it virtually
encapsulates all the neutral to the right processes mentioned in the literature. In their

work, Walker and Muliere [76] give both a discrete and continuous definition of the

17 In what follows, in order not to abuse in notation, we will omit the time indication, so that Z1,: 1S

X1.
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process, whose name comes from the beta-Stacy distribution introduced in [21]. As
far as the discrete case is concerned, it suffices to notice that our urn chain is nothing
but the construction of a discrete beta-Stacy process by the means of Polya urns. For
the continous case, on the contrary, we suggest [76] and [61] as suitable references.

Proof. Since the beta-Stacy process is a special case of neutral to the right process,
when the independent variables are Betas, it is straightforward to prove the proposi-

tion. In fact, using equation 5.1 we known that
E1 - Cf
Ey = C3(1-C7)

k—1

E.=Cr]Ja-cp).

i=1
An obvious consequence of this is that
By o~ S(ri59131)

By By ~ (795091 — E1)

k—1
Bl Bjry o By~ Sl =Y Ey),
j=1

where $(a; b; c) is the so-called beta-Stacy distribution introduced by [58], whose

density function is

1 Si(e—a)!
e Jioe )
B(a, b)x cato-1_ 1 ()

Hence the final result immediately follows. B
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Corollary 28 Given the construction above and E; = C; — C;_1 we have that

b b
(E17E27 7Ek> —L GD (E, ceny % —1 —k) ,

r1 Tk’ﬁ’”wrk

where G D is the generalized Dirichlet distribution introduced in [21].

Proof. This is a clear consequence of the beta-Stacy process. Remembering that this
process generalizes the Dirichlet distribution, it suffices to apply the results in [76]
and [61] for the proof. W

Finally, it is possible to have some additional information about the behavior of
the probabilities of default in the entire model, simply using the following immediate

corollary.

Corollary 29 Forevery k> 1, B, <1 — Z;:ll E;. Moreover

k k—1
E|) Ej| =0+ (1-on)E|> Ej,
j=1 j=1
where Ey = 0 and 0, = Th:f%.

5.3 Conclusions

In this chapter we have proposed a new model for studying the behavior of fail-
ing systems, when their defaults show some sort of dependence both within and be-
tween groups of homogeneous characteristics. In this way the urn chain model tries

to address some problems that are not solved by wide used modelizations such as
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CreditRisk+© by Credit Suisse or RiskMetrics(C) by JP Morgan Chase (see [30] for
a reference).

As shown, the model presents a very general framework that can be simply
specialized by better defining the properties of random variables C7, ..., C}. In par-
ticular, if we assume that they come from the famous Polya urn scheme, we are able
to explicitly derive all the information we need about the number of defaults and the
probabilities of failures. Obviously, properly changing the generation mechanism
of the CY, ..., C} variables, it is possible to get different result. An idea is to use
Ehrenfest-like urns. This would be the object of future studies.

Finally, as we will show in the next chapter and in [20], the Polya Chain Model,
using CreditRisk+© as a benchmark, performs surprisingly well, suggesting useful

developments and applications.
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Chapter 6
An application to Credit Risk Modelling

This chapter is devoted to the application of the multidimensional and the
urn chain model to credit risk modelling.

This cutting-edge topic is quite important for banks and financial institu-
tions, mainly because of the Basel II Accord, that contains recommendations
on banking laws and regulations issued by the Basel Committee on Banking
Supervision.

Credit risk, that represents one of the major risk factors for banks, is the risk
of loss due to a debtor’s non-payment of a loan or other line of credit.

In the literature there are a lot of models concerning credit risk and some
of them are very used by practitioners. In particular, CreditRisk+© by Credit
Suisse is a fundamental tool for assessing credit risk. For these reasons, we
have chosen to use it as a benchmark.

6.1 Introduction

Credit risk is risk due to uncertainty in a counterparty’s ability to meet its obligations.
Since there are many types of counterparties and many different types of obligations,
credit risk takes many forms and institutions manage it in different ways.

In general in assessing credit risk from a single counterparty, an institution

must consider three issues:

1. the default probability, that is the likelihood that the counterparty will default
on its obligation either over the life of the obligation or over some specified

horizon;
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the credit exposure, that is to say how large the outstanding obligation will be

when the default happens;

the recovery rate, which represents the fraction of the exposure that can be

recovered through bankruptcy proceedings or other similar methods.

In order to place credit exposure and credit quality - the counterparty’s ability
to perform on that obligation - in perspective, one has to remember that every risk
comprises two elements: exposure and uncertainty. For credit risk, credit exposure
represents the former, and credit quality represents the latter.

Many banks, investment managers and insurance companies hire their own
credit analysts who prepare credit ratings for internal use. Other firms, such as
Moody’s and Standard and Poor’s, are in the business of developing credit ratings
for use by investors or other third parties.

There are many ways credit risk can be managed or mitigated. The “first line
of defense” is the using credit scoring or credit analysis to avoid extending credit to
parties that entail excessive credit risk. For these reasons several models, such as
CreditRisk+(c), RiskMetrics(©) and Credit Monitor(c), have been developed and an
interesting survey can be found in [3].

Here we have chosen to use CreditRisk+(c) as a benchmark, for it represents
the most used approach to credit scoring. In the next section we spend some words

to introduce this model.
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6.2 A sketch on the CreditRisk+(c) Model

The CreditRisk+(c) model, developed by Credit Suisse, is a proprietary model de-
scribed in [22].
The main aim of the model is to estimate the unexpected loss in a portfolio of

credit obligations. The basic assumptions are:

e credit obligations are evaluated at their face values, ignoring market values;
e counterparties can experience only two states: default and non default;

e the recovery rate is not computed in CreditRisk+(c), but it is assumed it has

been applied before running the model;

e debtors are grouped into exposure bands, in which defaults are modelled
using a Poisson process, whose intensity measure is given by the sum of the

probabilities of default of all the counterparties in the group;

o the default processes of the different groups can be uncorrelated (base model)

or correlated (volatile default rates model).

Moreover, the CreditRisk+(c) model can be implemented in two different ways:

e Analytical approach (or closed form model), in which the solution of the
model is derived analytically, by using the fundamental properties of Poisson

Processes.
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e Monte Carlo approach, that uses simulations to create scenarios from which

one can obtain the distribution of losses and apply the VaR methodology.

In this chapter we will only deal with the analytical approach, in order to have
closed form solutions, as in our modelizations. Moreover we will consider the base

model because of some constraints on data availability.

The starting point of the CreditRisk+(c) model is the following equation for the

random portfolio loss L over all obligors A, that is

L= ZlAVA,
A

where 14 is the exposure net of recovery and

1= 1if A fails
A7) 0 otherwise °

L is considered in units of [, where [ is used as numeraire (see [22]).

Set p 4 to be the unconditional default probability of obligor A. The dependence
between obligors is incorporated in the common risk factor R which is assumed to be
Gamma distributed with mean ¢ = ) , p and variance o. In particular, R represents
the intensity of the number of defaults in the economy as a whole. At this point it is

possible to derive the expected loss E as

E = ZpAl/A.
A

In order to get the loss distribution, the CreditRisk+(c) model assumes that the

events 14, conditionally on R, are Poisson variables. Hence, it turns out that the
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probability generating function G(z) = Y~ p(n)z" of the portfolio loss is such

G(z) = (1 —o*ut <,u_1 ZpAz”A — 1)) ’ .

Standard considerations (see [22] for further details) on the probability gen-

that

[§)

erating function GG(z) show that the coefficients of the power expansion are given

min(m,n)
pim) = ————— > (:E:zm>[ﬁu2n+(1—aﬁtﬂﬂ}mn—j%

(n+o2u=1) j=1  \Awa=j

where m is the largest exposure in the portfolio in terms of [ units and
2 1y i
p(0) = (1+ 0%~ 52,

These equations can be further extended to the case of several segments, with,
for example, a set of systematic risk factors Ry, ..., Ry. In particular, the extension
for the case of independent Gamma distributed segments is given in [22].

Finally, as far as the number of defaults D is concerned, because of its assump-

tions, the CreditRisk+(c) model requires that, in every groupi =1, ..., k

e iy
4l

where 1, 1s the expected number of defaults in group ¢. So, because of the assumed

independence of defaults between groups,

k —u,,d

e M us
P(Dy=di,o, Dy = di) = [[ P(D: = di) = —,
i=1 ’
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where d = Zle d;. Hence the total number of defaults trivially follows a Poisson

distribution.

6.3 The Data

The subsequent analysis is based on Moody’s data in [59], about defaults and recov-
ery rates of European corporate bond issuers from 1989 to 2006. These data have the

following characteristics:

e The traditional 21 risk classes of Moody’s are here collapsed into 4 greater
groups: AAA-AA, A-BAA, BA-B and C firms. This is due to the not

commercial but academic nature of the dataset;

e For every rating group we have the total number of firms and the number of

defaults from 1989 to 2006.

Tables 6.1 and 6.2 aggregate and summarize the available data about defaults.
For every risk class and for every year, the first number (above) represents the total
amount of bond issuers in the class, while the second (below) is the number of actual
defaults'®.

These data are sufficient for implementing our three default models (the mul-
tidimensional urn, the RRUP and the Polya urn chain) and for comparing them with

the basic CreditRisk+(c) model, that is the purpose of this chapter. In what follows

18 Note the 09-11 effects on firms’ defaults: 2002 is the worst year for every risk class.



1989 [ 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997
304 312 208 302 325 326 333 321 330

AAA-AA 2 0 0 0 1 0 0 0 1
601 605 627 631 644 657 653 657 666

A-BAA 0 4 0 0 3 2 0 0 1
BALB 322 343 341 345 356 367 362 371 372
2 0 3 3 7 0 0 3 1

c 33 26 24 22 35 25 22 39 45
9 6 3 3 14 10 7 5 5

Table 6.1: Moody’s data. Part I.

1998 [ 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006
342 342 338 345 323 380 402 409 409

AAA-AA 0 0 0 0 2 0 0 1 0
365 374 377 378 383 392 386 381 377

A-BAA 1 0 3 2 6 0 2 0 1
BALB 403 405 398 407 396 403 404 411 409
3 1 1 0 9 6 5 0 2

c 37 44 51 56 63 74 77 79 72
11 4 6 7 20 17 11 8 6

Table 6.2: Moody’s data. Part II.
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we will consider the pooled case, summing the different risk classes over the years.

Obviously, a fundamental step for the analysis is to estimate the different parameters

of interest, as we discuss in the next section.

6.4 Implementing the models

In describing how we have implemented the different models, starting from the ac-

tual data in [59], we can consider three different initializations: the one of the two

multidimensional models, the one of the Polya urn chain and the one related to

CreditRisk+(c). Since we do not have an in-depth knowledge of the phenomena we

are describing - we are not economists or financial gurus, we cannot express any a
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priori representation of the behavior of firms and their defaults. For these reasons,

we do prefer to use actual data to objectively initialize the models.

6.4.1 The Multidimensional Urn and the RRUP

The Multidimensional Urn and the RRUP models are initialized in the same way.
After all, the RRUP is nothing but a generalization of the simpler multidimensional
case. In fact, at every time point, the different urns are standard Polya urns and
this makes implementation easier. The main difference between the two model is
given by the computational algorithms: for the RRUP model, indeed, the amount of
calculation is sensibly greater.

From equation 4.2 and remembering the amalgamation property of the Dirich-

let distribution, we know that the frequency of defaults for D, is Z;Zl C; and that

m

> G = % > (Vi Vi)
j=1 =1

At this point, following a standard approach (see [52]), we can consider ;l—T asa
proxy of 2521 C;, where d, represents the number of observed defaults in the group

r, as in tables 6.1 and 6.2. Then, it follows that, setting 7; = Z— fori =1,...k,

(71,72—71,73—72,---,%—%71)

can be considered a sample from

(C1, .oy Cpgr) ~ £k+1(%7 e ali;rl)-
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AAA—-AA | A-BAA | BA-B | C IN
’ 7's | 0.1123 0.8445 4.2611 17.6161 | 25.4346

Table 6.3: Dirichlet parameters for multidimensional models

This last results in an optimal starting point for the generalized expectation
maximization (GEM) algorithm approach to Polya urns proposed in [71] and [73].
The GEM algorithm is a well-known estimation technique and there is no need to
describe it here. A very complete discussion of the topic can be easily found in [40]
or in any other book about computational statistics.

The main idea in [71] and [73], that we have adapted to our case, is to use
the GEM algorithm to maximize the log-likelihood function one can deduce from
equation 4.2, once assumed that the available observations are incomplete. In fact,
given equation 4.2, it suffices to estimate the theoretical moments of equations 4.3
and 4.4, using a standard estimation method (e.g. the method of moments (see [40])),
and then to run the GEM algorithm to get the desired likelihood.

Table 6.3 contains the estimates' for the starting multidimensional urn. Col-
umn IN is the instrumental group we have created by merging the AAA-AA and the
C groups. As a matter of fact, our model needs k£ + 1 groups, so, in order to have

estimates for the four main risk classes, we require an extra fictitious group.

19 All the codes for computations have been written using Fortan language.
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AAA—AA | A—BAA | BA-B | C
Y's | 1.5234 2.2312 3.5677 5.2113
p's | 8239.23 5485.19 427.94 98.381

Table 6.4: MLE estimates for the Polya Urn Chain

6.4.2 The Polya Urn Chain

Even for the Polya Urn Chain the vector (71,79 — 71,73 — T2, ..., Tk — Tk_1) can be

considered a realization of

b b
By, B ~GD [ 2L, 220 2R
( 1 ) ) (7’ ) ) ) ;

1 Tk T1 Tk
In this case, in order to apply the method of moments, we need to use the
theoretical moments derived in [21] for the Generalized Dirichlet distribution and to
compare them with the empirical ones. In particular, trivial but tedious calculations

show that, setting ¢»; = % and p; = *~,

Il Ty Pm leMl
p;, = [M( 1) ](Pz Mz)
' ME(LH —Pi1)— PSS
where M; and S; are the sample mean and variance, P; = i 17 + and L;
J pst1
s=1 ¢ +p,+1

Table 6.4 contains the estimates for the Polya Urn Chain.

6.4.3 CreditRisk+©

As far as CreditRisk+(c) is concerned, simply notice that tables 6.1 and 6.2 contain

all the information we need to estimate the model parameters. In particular, given
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the total number of firms in the groups and the related number of defaults, it is very
simple to derive the intensity measures we need to perform calculations as y1; = 4

4
.9
j

j=1,..k

6.5 The Results

We are now ready to analyze the results of our very demanding simulations, that have
required awhile, using an euphemism. In particular, the hardest calculations have
been those of the RRUP model. Anyway, the use of Fortran codes for the algorithms
has sensibly reduced the running time, with respect to other languages used for the
initial trials.

Figure 6.1 shows the comparison of the pdf’s for the number of defaults in the
AAA-AA risk classes using the different models and their properties about marginal
distributions. As one can clearly see, the differences are extremely moderate. We
can only appreciate a substantial similarity between the multidimensional urn model
and the RRUP. All this is also confirmed by Figure 6.2, in which we consider the
different cdf’s and we compare them with the empirical one calculated on the actual
data in [59]. Here it is possible to see that the model which better reproduce actual
data seems to be the Polya urn chain.

Figures 6.3 and 6.4 show the results for the A-BAA classes. Here the CreditRisk+(C)
model and the Polya urn chain perform very similarly, while the worst one seems to

be the RRUP.
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Figure 6.1: Comparison of the kernel density estimates for the number of defaults in

the AAA-AA risk classes.
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Figure 6.2: Comparison of the cumulative distribution functions for the number of

defaults in the AAA-AA risk classes.
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Figure 6.5: Comparison of the kernel density estimates for the number of defaults in

the BA-B risk classes.
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Figure 6.6: Comparison of the cumulative distribution functions for the number of

defaults in the BA-B risk classes.
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Figure 6.7: Comparison of the kernel density estimates for the number of defaults in
the C risk class.

For the firms belonging to the BA-B risk group, Figures 6.5 and 6.6 display
how the Polya chain gives the best results, if compared with the other models. The
multidimensional models, on the contrary, are those that worse reproduce actual data.

In Figures 6.7 and 6.8, we analyze the most dangerous risk class, the one made
up of C ranking bond issuers. In this case, that can be considered the most important
one, view that we are interested in the number of defaults in the worst risk class,
CreditRisk+(c) seems to give the less accurate estimates. This is probably due to the
use of the basic model, however we cannot deny the very good behavior of the Polya

urn chain, even in this case.
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Figure 6.8: Comparison of the cumulative distribution functions for the number of
defaults in the C risk class.

6.6 Conclusions

Finally we have applied our theoretical models to actual data and compared them
with one of the standard model used by practitioners. The results, even if they could
be further developed, give interesting information about the goodness of fit of the
models.

In particular, the RRUP model, despite its demanding calculations, seems to
be the less accurate in estimating the distribution of the number of defaults in the
different risk classes. In practice, it simply reproduces the results of the multidi-
mensional urn model, suggesting that, without improvements, it is better to use the

simpler time-saving model.
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On the contrary, the Polya urn chain seems to be the best model, with the
most accurate estimates. It overreaches both the multidimensional urn models and
CreditRisk+(c). This is probably due to its construction, that strongly builds depen-
dence among the risk groups, better reproducing the empirical evidence. All this

suggests to better develop the chain mechanism, in order to improve the results.
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Concluding Remarks

It is now time to summarize what we have done to have an useful vue d’ensemble.

Our aim was to propose some new urn approaches to shock and default models,
to see if it was possible to reproduce and generalize existing results.

In addition, mainly if we think about the ruinous urn and the urn chain model,
we have also introduced some new - and we hope interesting - results.

For our purposes we have made use of combinatorial methods, both in the clas-
sical and the analytical approach. This last one, in particular, has shown very good ca-
pabilities in solving problems that cannot be easily treated using the standard method-
ology. The isomorphism between urn schemes and differential systems have many
fascinating properties and consequences and we aim to continue this line of research
in the future.

Even if further work is needed, we have also seen that our urn-based shock and
defaults models seem to have good applications, allowing for the study of real-life
phenomena.

In general, the results we have obtained can be considered the very first part of a

series of researches one could pursue. In particular, some ideas could be:

e To extend the class of urn-based shock models, also focusing on higher
dimensional versions. One could use elliptic urns in order to model cumulative

shock models;
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e To study (generalized) extreme shock models when the reinforcement matrix is
not constant over time. If the changing rule is deterministic, this only produces

messier calculations, but what about the random case?

e To consider time varying ratings in default models, also modeling the case in

which one failing systems migrates from one risk group to another;

e To develop new applications, also using more accurate and robust estimation

techniques.

These are only a few possible roads we want to investigate in the immediate

future. The rest is up to imagination.
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