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of Università Commerciale “Luigi Bocconi” to reproduce the same for research

and teaching purposes, quoting the source;

5) that the copy of the thesis submitted online to NORMADEC is identical to the copies

handed in/sent to the members of the Thesis Board and to any other paper or digital

copy deposited at the University offices, and, as a consequence, the University is

absolved from any responsibility regarding errors, inaccuracy or omissions in the

contents of the thesis;

6) that the contents and organization of the thesis is an original work carried out by the

undersigned and does not in any way compromise the rights of third parties (Italian

law, no. 633, 22nd April 1941 and subsequent integrations and modifications),

including those regarding security of personal details; therefore the University is in

any case absolved from any responsibility whatsoever, civil, administrative or penal,

and shall be exempt from any requests or claims from third parties;

7) that the PhD thesis is not the result of work included in the regulations governing

industrial property, was not produced as part of projects financed by public or

private bodies with restrictions on the diffusion of the results, and is not subject to

patent or protection registrations, and therefore not subject to an embargo;

Date 21 October 2015

SURNAME Ali

FIRST NAME Sajid

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



i

Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 What are Control Charts exactly? . . . . . . . . . . . . . . . . . . . 2

1.1.2 Hypothesis Testing and Control Charts . . . . . . . . . . . . . . . . 5

1.1.3 Classification of Control Charts . . . . . . . . . . . . . . . . . . . . 9

1.1.4 Problems of High Quality Processes with Existing Methodologies . 11

1.2 Scope of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 An Overview of Control Charts for High Quality Processes 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Time-Between-Events Control Charts . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 CCC Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Origin of the CCC chart . . . . . . . . . . . . . . . . . . . . . . . . 21

Generalization of CCC charts . . . . . . . . . . . . . . . . . . . . . 22

Attribute charts seen as TBE charts . . . . . . . . . . . . . . . . . 23

Variable sample size charts . . . . . . . . . . . . . . . . . . . . . . . 24

Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Biasedness of ARL . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Control charts with inspection error . . . . . . . . . . . . . . . . . . 26

Regression charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Change Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Continuous TBE Charts . . . . . . . . . . . . . . . . . . . . . . . . 26

Introducing continuous time through CQC charts . . . . . . . . . . 26

Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Comparisons among TBE charts . . . . . . . . . . . . . . . . . . . . 28

Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Biasedness of ARL . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Joint control charts for monitoring frequency and magnitude . . . . 29

2.3 TBE charts with approximations . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Nonparametric Control Charts . . . . . . . . . . . . . . . . . . . . . . . . . 31

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



ii

2.4.1 High-quality processes . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 EWMA and CUSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 EWMA and CUSUM Charts using the nonconforming idea . . . . . 31

2.5.2 CUSUM and EWMA for continuous TBE . . . . . . . . . . . . . . 32

Control charts for time monitoring . . . . . . . . . . . . . . . . . . 32

Frequency and time monitoring . . . . . . . . . . . . . . . . . . . . 33

2.6 Economic Design of Control Charts . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Economic design of CCC charts . . . . . . . . . . . . . . . . . . . . 34

2.6.2 Economic design of continuous TBE charts . . . . . . . . . . . . . . 34

2.7 Some other Control Charts for Count Data . . . . . . . . . . . . . . . . . . 35

2.7.1 Control charts based on transformations . . . . . . . . . . . . . . . 35

2.7.2 Other charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Bayesian Control Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.1 Bayesian Charts for non-high-quality processes . . . . . . . . . . . . 36

Short Run Production Controlling . . . . . . . . . . . . . . . . . . . 36

Shewhart Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Memory Type / Sequential charts . . . . . . . . . . . . . . . . . . . 37

Economic Design using the Bayesian Approach . . . . . . . . . . . . 38

2.8.2 Bayesian Charts for high-quality processes . . . . . . . . . . . . . . 39

Bayesian Tolerance Intervals control charts . . . . . . . . . . . . . . 39

Regular Bayesian Charts . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Control Charts in Medical Studies . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Different Performance Evaluation Criteria of control charts . . . . . . . . . 41

2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 High Quality Process Monitoring using a Class of inter-arrival Time

Distributions of the Renewal Process 47

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 A Class of Absolutely Continuous Distributions . . . . . . . . . . . . . . . 49

3.3 Control Charts based on Generalized class of inter-arrival Times . . . . . . 51

3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Average Run Length (ARL) . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Average Length of Inspection (ALI) . . . . . . . . . . . . . . . . . . 57

3.4.3 Discussion of ARL Study . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.4 EQL and RARL for the Weibull chart . . . . . . . . . . . . . . . . 61

3.5 Effect of Parameters Estimation on ARL . . . . . . . . . . . . . . . . . . . 63

3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.1 Case Study-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.2 Case Study-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



iii

3.6.3 Case Study-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.4 Case Study-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Some Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Appendices 75

4 Monitoring the Time and Magnitude based on the Renewal Reward

Process with a Fixed Threshold 79

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Cumulative and Independent Processes . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Cumulative Damage Process . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Independent Damage Process . . . . . . . . . . . . . . . . . . . . . 86

4.3 Compound Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Control Chart Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Cumulative probability control chart . . . . . . . . . . . . . . . . . 92

4.4.2 Discussion of ARL Study (Cumulative Process) . . . . . . . . . . . 93

4.4.3 Discussion of ARL Study (Independent Process) . . . . . . . . . . . 96

4.5 Independent Compound Process with NHPP . . . . . . . . . . . . . . . . . 99

4.6 Real life examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6.1 Boxing player’s Performance Monitoring-Cumulative Process . . . . 108

4.6.2 Water Quality Monitoring-Independent Process . . . . . . . . . . . 109

4.6.3 Wire rope strength Monitoring-Cumulative Process with NHPP . . 111

4.6.4 Blood/Urine Monitoring-Independent Process with NHPP . . . . . 112

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendices 117

5 Monitoring the Time and Magnitude based on the Renewal Reward

Process with a Random Failure Threshold 121

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Random Failure Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.1 Random Failure Threshold for the Cumulative Damage Model . . . 123

5.2.2 Random Failure Threshold for the Compound Poisson Process . . . 124

5.2.3 Random Failure Threshold for Independent Damage Model . . . . . 124

5.2.4 Random failure threshold for the Compound Poisson Process . . . . 125

5.3 Control Chart Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Discussion of ARL and ALI Study for Random Failure Threshold . . . . . 126

5.4.1 Cumulative Compound Process . . . . . . . . . . . . . . . . . . . . 128

5.4.2 Independent Random Failure Threshold: Compound Poisson Process132

5.5 Real life examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



iv

5.5.1 Cardiac Monitoring-Cumulative Process with Random Failure Thresh-

old . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5.2 Radiation Monitoring-Independent Process with Random Failure

Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Appendices 141

6 Time-Between-Events Monitoring using Nonhomogeneous Poisson Pro-

cess with Power Law Intensity 143

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Some Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.1 Power Law Process (PLP) . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.2 Infinitely Divisible (ID) Distribution . . . . . . . . . . . . . . . . . 147
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Abstract

With the intense competition in the current industrial and business economies, satisfying

customer requirements is a crucial factor to industrial success, in which one of the most

important elements is the quality of products or services. Due to the modern technological

revolution, human beings are becoming more and more machines/systems dependent.

Only with high-quality products/systems or services, organizations can take advantage

in attracting and satisfying their customers, and consequently, achieve business profit.

Therefore, sustaining and improving quality is essential to all kinds of industries and

statistical quality control (SQC) techniques play an important role to achieve this goal.

The application of traditional process monitoring techniques has certain problems

and cannot be used for the high-quality process monitoring. The time-between-events

(TBE) charts have shown to be very effective in monitoring high-quality processes in

manufacturing, medical and business industries. However, existing TBE control charts are

based on the Poisson and geometric processes. This research aims to introduce advanced

TBE charts for complex TBE data using stochastic models. The new charts are introduced

based on the renewal process, renewal reward process (with fixed and random threshold),

nonhomogeneous and homogeneous Poisson processes. The renewal process in TBE setup

is used to generalize the existing TBE charts based on the Poisson process while the

renewal reward process for joint monitoring of the time and the magnitude. Similarly,

the nonhomogeneous Poisson process with power law intensity is used to generalize the

existing work to a situation where failure risk varies over time. A control chart based on

the Bayesian predictive control limits is also introduced in this thesis. Since the control

limits of the nonhomogeneous and Bayesian predictive charts are sequentially updated,

therefore, both charts are suitable for the online adaptive (sequential) monitoring. The

proposed control charts are assessed using different commonly used performance measures,

including average run length, coefficient of variation of the run length and of the length of

inspection distributions. The guidelines for various situations in which a proposed chart

would work is given in each respective chapter.

We have shown mathematically and numerically that proposed approaches improve the

effectiveness of the TBE charts. Moreover, this thesis shows that the proposed approaches

do generalize the existing TBE control charts for complex TBE data. This thesis not

only focuses on the development of the stochastic models suitable for advanced process

monitoring but also on the practical applications. Therefore, this research may provide a

basis for the future research work to improve the effectiveness of the TBE charts.
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Chapter 1

Introduction

This thesis is about the control charts’ construction based on stochastic processes. The

work is motivated by both methodological and applied problems. The aim of this chapter

is to introduce the research topics and concepts.

1.1 Introduction

Statistical quality control (SQC) techniques play a paramount role in many manufac-

turing and service industries. SQC is a branch of industrial statistics (currently not

limited to industry but also present in the medical field, business and other application

domains) which includes, primarily, the areas of acceptance sampling, statistical process

control (SPC), design of experiments (DOE), and capability analysis. Briefly speaking,

acceptance sampling methods are used in industry to take decisions about the disposition

of “lots” of manufactured items, including, accepting or rejecting individual lots; SPC

techniques are employed to monitor production processes over time to detect changes in

process performance; DOE are applied to identify significant factors affecting process and

product quality, referred to as screening or characterization, and to identify the specific

levels of the important factors that lead to optimum (or near optimum) performance; the

objective of process capability analysis is to assess whether or not a process is capable

of meeting specification limits on key quality characteristics, which include the gauge or

measurement systems’ capability analysis (cf. Woodall and Montgomery [1999]).

This research is classified under the SPC framework. However, SPC should not be con-

fused with ordinary process control in control theory, which mainly focuses on engineering

perspective (e.g. particle, and Kalman filters) while SPC deals from a statistical point of

view to improve the quality of a process. SPC is a powerful collection of problem-solving

tools useful in achieving process stability and improving capability through the reduction

of variability (cf. Montgomery [2009]). The major seven tools of SPC include histogram

or stem-and-leaf plot, check sheet, Pareto chart, cause-and-effect diagram, defect concen-
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tration diagram, scatter diagram and control chart. It has been increasingly realized that

SPC is not simply a collection of quality control tools but a way of thinking, which is

essential for a never-ending improvement of quality. SPC builds an environment in which

all individuals in an organization seek continuous improvement in quality and produc-

tivity (cf. Montgomery [2009]). This environment is best developed when management

becomes involved in the process. Arguably, SPC tools can be applied to any process.

Rao [1997] stated: “It is not surprising that the recent book on modern inventions lists

statistical quality control as one of the technological inventions of the past century. Indeed,

there has rarely been a technological invention like statistical quality control, which is so

wide in its application yet so simple in theory, which is so effective in its results so easy

to adopt and which yields so high a return yet needs so slow an investment.”

1.1.1 What are Control Charts exactly?

Among the SPC tools, the control chart is probably the most technically sophisticated.

The fundamentals of SPC and control charting were proposed by Walter Shewhart in the

1920s and 1930s. Until the mid to late 1970s there were many important advances but

relatively few individuals conducting research in this area as compared with other areas

of applied statistics. Research activity has greatly increased since about 1980 onward.

Much of the increase in interest was due to the quality revolution, which was caused by

an increasingly competitive international marketplace. Improvement in quality is still

required for the survival of many industries.

A typical control chart is shown in Figure-1.1. The control chart is a graphical display

of a quality characteristic that has been measured or computed from a sample versus the

sample number or time. The chart contains a center line (CL) that represents the average

value of the quality characteristic corresponding to the in-control state. (That is, only

chance causes are present.) Two other horizontal lines, called the upper control limit

(UCL) and the lower control limit (LCL), are also shown on the chart. These control

limits are chosen so that if the process is in-control, nearly all of the sample points

will fall between them. As long as the points fall within the control limits, the process

is assumed to be in control, and no action is necessary. However, a point that plots

outside the control limits is interpreted as evidence that the process is out-of-control, and

investigation and corrective action are required to find and eliminate the assignable cause

or causes responsible for this behavior. According to Montgomery [2009], “It is customary

to connect the sample points on the control chart with straight-line segments, so that it

is easier to visualize how the sequence of points has evolved over time.” Even if all the

points plot inside the control limits, if they behave in a systematic or non-random manner,

then this could be an indication that the process is out-of-control. To identify such non-

random patterns, sensitizing rules/run rules are commonly used (cf. Montgomery [2009],
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Figure 1.1: A typical Control Chart (Source: Montgomery [2009])

page 197).

It is important to distinguish a pair of concepts, chance causes (or common causes) and

assignable (or special) causes, in SPC. In any production process, regardless of how well

designed or carefully maintained it is, a certain amount of inherent or natural variability

will always exist. This natural variability or background noise is the cumulative effect of

many small, essentially unavoidable causes. This natural variability, in the framework of

SPC, is often called a “stable system of chance causes.” A process that is operating with

only chance causes of variation present is said to be in statistical control.

Other kinds of variability, which are generally large when compared to the background

noise, usually represent an unacceptable level of process performance, which may occa-

sionally be present in the output of the process. This source of variability that is not part

of the chance cause pattern, is usually referred to as “assignable causes.” A process that

is operating in the presence of assignable causes is said to be out-of-control (cf. Mont-

gomery [2009]). A graphical presentation for illustration of chance and special causes is

given in Figure-1.2 (where µ and σ represent the target mean and standard deviation of

a process).

One of the main purposes of control charts is to distinguish between the variation due

to the chance causes and the variation due to the assignable causes in order to prevent

overreaction and under-reaction to the process. The distinction between chance causes and

assignable causes is context dependent. The causes generally evolve over time. A chance

cause today can be an assignable cause tomorrow. One is needed to react and remove an
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Figure 1.2: Chance and assignable causes of variation (Source: Montgomery [2009])

assignable cause only if it has an economic or safety impact. Hence, these control charts

are not just an explanatory data technique but much more. Other purposes of the control

chart include assessing effectiveness of changes and communicate the performance of a

process to a user/customer.

Standard control chart usage involves phase-I and phase-II applications, with two

different and distinct objectives. According to Montgomery [2009], “In phase-I, a set of

process data is gathered and analyzed all at once in a retrospective analysis, constructing

trial control limits to determine if the process has been in control over the period of time

where the data were collected, and to see if reliable control limits can be established to

monitor future production.” This is typically the first thing that is done when control

charts are applied to any process. Control charts in phase-I primarily assist operating

personnel in bringing the process into a state of statistical control. Sometimes this type

of analysis will require several cycles in which the control chart is employed, assignable

causes are detected and corrected, revised control limits are calculated, and the out-of-

control action plan is updated and expanded. Eventually the process is stabilized, and

a clean set of data that represents in-control process performance is obtained for use in

phase II. Phase-II begins after we have a clean set of process data gathered under stable

conditions and representative of in-control process performance. In phase II, we use the

control chart to monitor the process by comparing the sample statistic for each successive

sample, as it is drawn from the process, to the control limits. We refer to Montgomery

[2009] (page 198-199) for comprehensive details of phase I & II control charts.
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1.1.2 Hypothesis Testing and Control Charts

There is a close connection between control charts and hypothesis testing or confidence

intervals. To illustrate this connection, suppose that Xt ∼ N(µ, σ2) where µ is unknown

and σ2 is known. We want to test the hypothesis H0 : µ = µ0 versus H1 : µ ̸= µ0.

To accomplish this task, take a random sample from the process and compute z0 =

|X̄−µ0|/σ/
√
n, i.e., based on the central limit theorem; choose a Type-I error probability,

i.e., α, and find the critical value zα/2 (cf. Figure-1.3b). Reject the hypothesis H0 if

|z0| > zα/2 (or via confidence interval, if µ0 > X̄ + zα/2(σ/
√
n) = UCL and µ0 <

X̄ − zα/2(σ/
√
n) = LCL, where CL = µ0. A general representation might be written

as UCL(LCL) = µ ± Lσ, where L is the distance of the control limits from the center

line CL = µ, expressed in standard deviation units.). To connect these settings with the

control charts, suppose that the vertical axis in Figure-1.1 is the sample average. Now,

if the current value falls between the control limits, we conclude that the process mean

is in-control; that is, it is equal to some value µ0. On the other hand, if it exceeds either

control limit, we conclude that the process mean is out-of-control; that is, it is equal to

some value µ1. In a sense, then, the control chart is a test of the hypothesis that the

process is in a state of statistical control. A point plotting within the control limits is

equivalent to failing to reject the hypothesis of statistical control, and a point plotting

outside the control limits is equivalent to rejecting the hypothesis of statistical control.

Therefore, there is a trade-off between narrow and wide control limits (cf. Figure-1.4)

and close connection to Type-I & II errors. A control chart that never finds anything

wrong with a process, but the process produces a bad product, (i.e., insensitivity of the

control chart) is analogous to Type-II error in statistical hypothesis testing. On the other

hand, too many false alarms destroy the operating personnels confidence in the control

chart, and they stop using it. This situation is analogous to Type-I error in statistical

hypothesis testing (cf. Montgomery [2009], page 189).

(a) Hypothesis Test versus Control Chart (b) Hypothesis Test for Normal Sample

Figure 1.3: Moving from Hypothesis Testing to Control Charts (Source: Jensen [2010])

Controversies: The fundamentals of the control charts were introduced in 1920-

1925 by Walter Andrew Shewhart working at Bell Lab., whereas the theory of statistical

hypothesis and confidence was mainly developed in 1925-1945, i.e., Karl Pearson (intro-

duced p-value in 1901), Ronald Fisher (popularized p-value, 1920-1925), Jerzy Neyman
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(a) Wide Control Limits (b) Narrow Control Limits

Figure 1.4: Trade-off Between Wide or Narrow Control Limits (Source: Jensen [2010])

(confidence interval), Egon Pearson (Type-I & II error for testing) and Abraham Walds

(sequential testing). Due to simultaneous developments, some authors write that control

charting and hypothesis testing are equivalent or very related. Juran [1997] (page 79)

referred to the control chart as “a perpetual test of significance.” Box and Kramer [1992]

stated that “process monitoring resembles a system of continuous statistical hypothesis

testing.” Vining [1998] (page 218) wrote, “The current peer review literature, which rep-

resents the standard for evaluating the effectiveness and efficiency of these methodologies,

tends to view the control chart as a sequence of hypothesis tests.”

On the other side of the issue, Deming [2000] (page 369) stated (without elaboration),

“Some books teach that use of a control chart is test of hypothesis: the process is in

control, or it is not. Such errors may derail self-study.” Further Deming wrote (page

335), “Rules for detection of special causes and for action on them are not tests of a

hypothesis that a system is in a stable state.” Therefore, Deming strongly advocated

the use of control charts, but argued ’emphatically’ against the use of hypothesis testing,

e.g., (cf. Deming [2000], page 272) “Incidentally, the chi-square and tests of significance,

taught in some statistical courses, have no application here or anywhere.”

According to Woodall [2000] “Deming argued that practical applications in industry

required “analytical” studies because of the dynamic nature of the processes for which

there is no well-defined finite population or sampling frame. He held that hypothesis

testing was inappropriate in these cases. Hahn [1996] provides a clear summary of the

distinction between what Deming referred to as analytical and enumerative studies.”

Wheeler [1995] (page 17 and Chapter 19) and Hoerl and Palm [1992] also emphasize the

difference between control charting and hypothesis testing.

Nelson [1999] noted that the following statements are incorrect:

• Shewhart charts are a graphical way of applying a sequential statistical significance

test for an out-of-control condition;

• Control limits are confidence limits on the true process mean;

• Shewhart charts are based on probabilistic models;

• Normality is required for the correct application of a chart;
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• The theoretical basis for the Shewhart control chart has some obscurities that are

difficult to teach.

Shewhart control charts are used to indicate the presence of causes that produce

important deviations from the stable operation of a process. Shewhart [1931] called these

causes “assignable,” while Deming [2000] called these causes “special” causes. When

special causes are no longer indicated, the process is said to be “in statistical control.”

“In control” does not imply that only random causes remain, nor does it imply that the

remaining values are normally distributed.

Tukey [1946] pointed out that the Shewhart control chart is not a method for detecting

deviations from randomness. He writes: “This was not Shewharts purpose, and it is easy

to construct artificial examples where non-randomness is in control or randomness is out

of control. A state of control, in Shewharts basic sense, is reached when it is uneconomic to

look for assignable causes, and experience shows that the compactness of the distribution

associated with a good control chart implies this sort of control.” A control chart tests

for the practical significance of an effect, which is different than a statistical significance

despite the fact that the word significance can be used for both. Shewhart charts are

not based on any particular probabilistic model. He did not base his choice of the 3σ

limit on any particular statistical distribution. Montgomery [2009] (page 183) added,

“We should not worry too much about assumptions such as the form of the distribution

or independence when we are applying control charts to a process to reduce variability

and achieve statistical control.”

It is sometimes suggested that data can be improved by transforming the data so it

behaves as though it came from a normal distribution. This can be appropriate if the

non-normal distribution to be transformed is known. However, there could be problems

if it has to be estimated from preliminary data. Many skewed distributions can be traced

from two normally distributed sources with different parameters (cf. Breyfogle [2003],

page 247-248).

Breyfogle [2003] wrote, “If one were to view the control chart as a statistical signif-

icance test for each point in succession, the question would then become, what is the

significance of the test? This calculation does not make sense for a situation where the

test is continued repeatedly until a significant result is obtained, even though there are

no special causes present. Similarly, when a control chart is not a statistical significance

test, the upper and lower limits do not form a confidence interval. The control chart was

developed empirically by Shewhart. Its applicability has withstood the test of time.”

However, despite of all discussions by different researchers, Shewhart in Shewhart and

Deming [1939] (page 40) seemed to take more of a middle ground in this debate as he

wrote, “As a background for the development of the operation of statistical control, the

formal mathematical theory of testing a statistical hypothesis is of outstanding impor-
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tance, but it would seem that we must continually keep in mind the fundamental difference

between the formal theory of testing a statistical hypothesis and the empirical theory of

testing of hypotheses employed in the operation of statistical control. In the latter, one

must also test the hypothesis that the sample of data was obtained under conditions that

may be considered random.”

To summarize above different views, we can say there are many similarities between

hypothesis testing and control charts, but there are certainly some differences in viewpoint

between control charts and hypothesis tests. For example, with stated hypothesis we look

for evidence to falsifying the null hypothesis, so that the analysis is similar to that of

statistical control. Moreover, an assignable cause can result in many different types of

shifts in the process parameters. For example, the mean could shift instantaneously to a

new value and remain there (this is sometimes called a sustained shift); or it could shift

abruptly; but the assignable cause could be short-lived and the mean could then return

to its nominal or in-control value; or the assignable cause could result in a steady drift or

trend in the value of the mean. In this case the power of the test remains the same across

samples whereas it changes slowly in case of shifts. We think that the main difference

is that hypothesis testing is a one-off, whereas control chart is repeated. Therefore, it is

close to sequential hypothesis testing approach. One place where the hypothesis testing

framework is useful is in analyzing the performance of a control chart (cf. Montgomery

[2009], page 183-189).

We also agree with Woodall [2000] that some of the disagreement over the relation-

ship between control charting and hypothesis testing appears to result from a failure to

distinguish between Phase-I and Phase-II applications. The theoretical approach to con-

trol charting in Phase-II, in which the form of the distribution is assumed to be known

along with values of the in-control parameters, does closely resemble repeated hypothesis

testing, especially if one considers an assignable cause to result in a sustained shift in the

parameter of interest. In some cases there is mathematical equivalence. Therefore, at

best the view that control charting is equivalent to hypothesis testing is an oversimplifi-

cation. At worst the view can prevent the application of control charts in the initial part

of Phase-I because of the failure of independence and distributional assumptions to hold.

Moreover, we think that the closest thing in nonparametric statistics literature (cf. Tibor

[1993], and Mann [1945]) to control chart is the following: H0 : the process is in-control,

versus H1 : the process is out-of-control, is the testing of trend, i.e., H0 : the observed

process has no trend, versus H1 : the observed process has some kind of trend. For more

detailed discussion of hypothesis testing, the role of statistical theory, and control charts,

see Woodall [2000], Montgomery [2009], and Breyfogle [2003].
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1.1.3 Classification of Control Charts

To date, a great number of control charts or control charting techniques has been pro-

posed under a variety of assumptions for monitoring a wide range of industrial processes.

These control charts can be classified into different categories depending on the criteria

used and the views taken. For example, control charts can be classified into variable data

control charts and attribute data control charts based on the nature of quality character-

istics. They can also be classified into phase-I control charts and phase-II control charts

depending on whether the chart is used for retrospective analysis or prospective moni-

toring. Phase-I deals with the better understanding of the process and its stability, i.e.,

construction of control limits and estimation of the parameter in the case when unknown,

while Phase-II deals with the monitoring process and is heavily dependent on the Phase-

I. An efficient control chart is a chart which detects any change quickly. Thus, Phase-I

analysis is an integral part of statistical process control. Chakraborti et al. [2008] gave an

overview of the literature for this phase, i.e., phase-I. Control chart can also be classified

into univariate and multivariate control charts. Furthermore, control charts may also

be classified into parametric and non-parametric control charts, short-run and long-run

control charts, and so on and so forth.

The variable control charts usually refer to those control charts monitoring quality

characteristics that are variables; that is, they can be measured and expressed on a

numerical or continuous (i.e., ratio) scale, e.g., time, length, temperature, weight and

radiation dose, etc. These control charts include X̄ chart, R chart, S chart, S2 chart,

range and moving range charts, quantile chart, and so on. They can be used to monitor

process mean or process variation. In many cases, they are used jointly to monitor

both. Nonetheless, in real practice, many quality characteristics cannot be conveniently

represented numerically. In such cases, we usually classify each item inspected as either

conforming or nonconforming to the specifications on that quality characteristic, e.g.

pass/fail, yes/no, presence/absence, etc. Quality characteristics of this type are called

attributes (cf. Calvin [1983], and Montgomery [2009]), and control charts for monitoring

this type of quality characteristics are consequently called attribute control charts.

Before proceeding further the following definitions and notations are necessary: A

point process is a stochastic model that describes the occurrence of events in time along

the time axis.

Definition 1.1.1 A point process is a sequence t = (tn)n≥1 of R+-valued random variables

defined on (Ω,F ,P) such that

1. P (0 < t1 ≤ t2 ≤, · · · ) = 1,

2. P (tn ≤ tn+1 <∞) = P (tn <∞)(n ≥ 1),

3. P (limn→∞ tn = ∞) = 1 (nonexplosive)
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Thus, a point process is an almost surely increasing sequence of strictly positive, possibly

infinite random variables strictly increasing as long as they are finite and with almost

sure limit ∞. The interpretation of Tn is that, if finite, it is the time point at which the

nth recording of an event occurs in any random finite time interval.

Another equivalent way to describe a point process is by a counting process, which is:

Definition 1.1.2 (Counting process) A stochastic process {N(t) =
∑

i≥0 I(ti ≤ t), t ≥
0, t ∈ T} is said to be counting process if N(t) represents the total numbers of events that

have occurred up to the time t. When N has as its argument an interval, such as N(a, b],

the result is the number of events (failure) in that particular interval.

Thus, one can write the number of failures in the interval (a, b] as N(a, b] = N(b)−N(a).

For a repairable system, let 0 < T1 < T2 < · · · denote the failure times of the system

measured in global time/scale (i.e., the time since the initial start up of the system).

The times between failures (i.e., failure times are recorded as time since the previous

failure), local time or the gaps, will be denoted by X1, X2, · · · . We have Xi = Ti − Ti−1

or equivalently Ti =
∑i

j=1Xj.

Theorem 1.1.3 (Norris [1997]) Let (N(t))t≥0 be an increasing, right-continuous integer

valued processes starting from zero. Let 0 < λ < ∞, then the following 3 conditions are

equivalent:

1. (jump chain/holding time definition) The holding times X1, X2, · · · of (N(t))t≥0 are

independent exponential random variables of parameter λ and the jump chain is

given by Ti = i, ∀i.

2. (infinitesimal definition) (N(t))t≥0 has independent increments and as h ↓ 0 uni-

formly in t,Pr{N(t+ h)−N(t)} = 1− hλ+ o(h).

3. (transition probability definition) (N(t))t≥0 has stationary independent increments

and for each t, N(t) has a Poisson distribution of parameter λt.

If (N(t))t≥0 satisfies any of these conditions then it is called a Poisson process of rate λ.

Let N(t) ∼ F (., θ), t ∈ T denotes the number of events, e.g. defects, in time interval

(0, t]. To monitor N(t), the most commonly used attribute control charts include p

chart, np chart, c chart and u chart. In these charts, F (., θ) can be Bernoulli, binomial,

geometric, negative binomial and the Poisson distribution. A graphical presentation of

charts based upon the type of data set is given in Figure-1.5. On contrary, some control

charting techniques may be applied to both types of data. A representative is the CUSUM

(cumulative sum), synthetic and the EWMA (exponentially weighted moving average)

control charts (cf. Bourke [2001]).
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Figure 1.5: Traditional Control Charts based on the types of Data

1.1.4 Problems of High Quality Processes with Existing Method-

ologies

A physical process is said to be a high-yield/high-quality process if it has a very few

N(t), i.e., defect rate is very low, e.g. parts per million (ppm) level or even parts per

billion (ppb). In statistics and medical applications, such rare defects are called rare

events. The common approach to monitor the fraction of nonconformities of a process,

attribute control charts like p, u, np and c, are the well-known charts where the number

of a defects N(t) follows binomial, negative binomial or a Poisson processes. However, for

high-quality processes where the defect rate is very low (i.e., per million or per billion,

especially in the fields of manufacturing of integrated circuits, weapon system, airplane

generator, automobile engine and many other automated processes) these charts have

certain drawbacks, i.e., high false alarm rate, the negative value of lower control limit,

control limits depend on sample size (or sample size is dependent on control limits) and

poor approximation to the normal distribution (cf. Chan et al. [2002]). For example, if we

construct a control chart where the control limits are based on the Poisson (P), binomial

(B), negative binomial (NB) and zero-inflated Poisson (ZIP) processes, the upper control
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limit (UCL) and lower control limit (LCL) are given as below:

λ± k

√
λ

n
(1.1)

nλ± k
√
nλ(1− λ) (1.2)

r(1− λ)

λ
± k

√
r(1− λ)

nλ2
(1.3)

(1− π)λ± k

√
λ(1− π)[1 + πλ]

n
(1.4)

where r, π, λ > 0 and k is the width of confidence level, which is usually set 3 for 3−σ limit

(i.e., normal approximation case). Note that when r = 1 in the NB case, Equation-1.3 will

result into the geometric (G) chart. To avoid the LCL to be zero or negative, the following

conditions must be satisfied by each of these processes: k ≤
√
nλ; k ≤

√
nλ/(1− λ); k ≤√

nr(1− λ); k ≤
√

nλ(1−π)
1+πλ

respectively. Table-1.1 is given for the above discussed pro-

cesses where λ denotes defect rate, which is part per million (ppm). Thus, to set LCL

positive one needs to consider k less than equal to the computed values which are given in

Table-1.1. In case of normal distribution, ±3σ covers 99.73% of the area below the curve,

but in case of high-quality processes based on the skewed lifetime distributions, normal

approximation does not work. in any probability distribution, ”nearly all” values are close

to the mean the precise statement being that no more than 1/k2 of the distribution’s

values can be more than k standard deviations away from the mean (or equivalently, at

least 11/k2 of the distribution’s values are within k standard deviations of the mean).

Chebychev’s inequality guarantees that the probability of a sample from its expected

value by more than k standard deviation, is at most 1/k2. Hence, to cover 99.73% area, one

can construct control limits which will give a larger interval than the one based on the gaus-

sian approximation. Another finer result than Chebychev’s inequality is Vysochanskii-

Petunin inequality, i.e., if k >
√
8/3 = 1.63299 then P (|X − µ| ≥ kσ) ≤ 4/(8k2) can

be used for the construction of the control chart. However, this result is valid only for

uni-modal distribution. Similarly, one can suggest the use of only upper control limit

without lower control limit based on the quantiles of the considered distribution. For

example, upper 99.73% control limits with p = 0.01 as n = 5, 10, 20, 50 and 100 are

1, 2, 2, 3 and 5 for the binomial distribution. Since time is measured in the number of

units and due to discreteness, the upper control limit would be meaningless for very

small p, e.g. p = 0.0001 and n = 5, upper control limit is zero. It is observed from

Table-1.1, as the numbers of nonconformities increase, the value of the coefficient of

width decreases in case of the GM chart while the reverse is true for other processes.

Note that the computations given in Table-1.1 are done by assuming the parameters are

known. Another way to look at the lower-sided control limit is in term of sample size, i.e.,
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Table 1.1: Values of the confidence constant k to get LCL positive for various processes

p(ppm)
Process 100 400 800 5000 10000 200000

G 0.999949 0.999799 0.999599 0.997497 0.994987 0.894427
P 0.010000 0.020000 0.028284 0.070712 0.100000 0.447214

Bernoulli 0.010001 0.020004 0.028296 0.070888 0.1000504 0.500000
B (n=100) 0.100005 0.200040 0.282956 0.708881 1.005038 5.000000
B (n=300) 0.173214 0.346479 0.490094 1.227818 1.740777 8.660254
NB (r=3) 0.017321 0.034641 0.048989 0.122474 0.173205 0.774597

NB (r=100) 0.100000 0.200000 0.282843 0.707107 1.000000 4.472136
ZIP (π = 0.2) 0.008944 0.017888 0.025296 0.063214 0.089353 0.392232
ZIP (π = 0.4) 0.007746 0.015491 0.021905 0.054718 0.077305 0.333333

n ≥ k2/λ;n ≥ k2(1− λ)/λ;n ≥ k2

r(1−λ) ;n ≥ k2(1+πλ)
λ(1−π) . Table-1.2 is given for the sample size

calculation for 3 − σ control limits. It is evident from Table-1.2, one needs a very large

sample size to inspect the specified nonconformities.

Table 1.2: Sample size (n) requirement with confidence constant k = 3 to get LCL
positive for various processes

p(ppm)
Process 100 400 800 5000 10000 200000

P 90000 22500 11250 1800 900 45
b 89991 22491 11241 1791 891 36
B 89991 22491 11241 1791 891 36

NB (G-r=1) 90000 22500 11250 1800 900 45
NB (r=10) 9000 2250 1125 180 90 5
ZIP (π = 0.2) 112502 28127 14065 2252 1127 59
ZIP (π = 0.4) 150006 37506 18756 3006 1506 81

Another drawback with count data is that the boundaries of the cells are arbitrary. If

the cells are too narrow, then sampling variability can cause unreliable estimates. If the

cells are too wide, then it is possible to miss a trend. Thus, traditional process monitoring

techniques for count data are not sufficient for high-quality processes.

Some previous work deals with the transformation of skewed data to be approximately

normal (cf. Brouke [1984]). However, it is observed by Santiago and Joel [2013] that the

fit in tails of the distribution can be very poor in case of transformation of the data, which

affects the ability of a control chart to detect a shift in the process. Moreover, because

charts are mostly built under the assumption of equal tail distribution of the monitoring

statistics, a transformation that does not provide a symmetric distribution may lead to

wrong conclusions when a shift occurs, thus resulting in a biased ARL.
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1.2 Scope of the Research

To overcome problems mentioned in Section-1.1.4 (i.e., high false alarm rate, meaningless

control limits and dependent on sample size), time-between-events (TBE) charts are very

useful. This research is focused on the TBE control charts, especially for high-quality

processes. A TBE control chart is defined as a control chart where the sample statistic

to plot on the chart is characterized by the time between events of concern. It must be

noted that time and event may have different interpretations depending on the particular

context. For example, in the manufacturing industry, an event means the occurrence

of the nonconforming items while time means time between two nonconforming items;

arrival of a customer is an event while time means the time between customer arrival

in the service industry, and event means the failure of a system while time means the

time between the system failures in the reliability area. An example of process data

which could be monitored by a TBE chart (specifically by a cumulative conformance

control (CCC) chart) is shown in Figure-1.6, where dots correspond to items as they are

produced by the process, Ti is the index of the i-th nonconforming item, the appearance of

which is termed “an event”, and Xi = Ti−Ti−1 is the (discrete) time between events, the

quantity which is monitored by TBE charts. If the production process is continuous, time

Figure 1.6: Difference between Count and Time-Between-Events Data

is measured by units of produced quantities and an event is the appearance of a defect in

the product, so that TBE is the quantity of product between two consecutively observed

defects (and a cumulative quantity control (CQC) chart would be used for monitoring).

Finally, TBE charts can arise either from continuous monitoring or from samples collected

at time intervals. For example, in the monitoring of item conformance, one may inspect

all items and time will increase by one at each inspection, or one may sample and inspect

n consecutive items using a given sampling interval, in which case the value of time at the

moment of inspecting the i-th unit of, let us say, the k-th sample, will be (k− 1)n+ i. In

a broader sense, TBE control charts may be categorized into two groups based on data

type, i.e., variable and attribute. For the first group, the sample statistic is usually the

variable data (e.g. time) observed between consecutive events of concern while for the

second group, the sample statistic is usually the attribute or count data.

Control charting techniques based the TBE concept has found applications in many

applied areas, especially in high-quality or high-yield processes. However, many practical
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issues with TBE control charts need to be addressed sufficiently. This has been the

motivation behind this research. The existing work is based on the Poisson process where

the distribution of time is assumed exponential. However, the major weakness of the

exponential distribution is the constant hazard rate. Examples of the exponential chart

could be seen in, exponential chart (see, e.g. Chan et al. [2000], Xie et al. [2002b]), the

exponential CUSUM (see, Borror and Keats [2003]) and the exponential EWMA (see, Liu

et al. [2007]).

This research will address a few issues, theoretical and practical, concerning the vari-

able data TBE control charts based on more appropriate stochastic processes. The overall

objective of this study is to solve the phase-I problems by using some more flexible and

comprehensive processes for the TBE data, and thus make the monitoring of high-quality

processes where event occurrence rate is low more effectively and efficiently. Specifically,

this thesis focuses on several topics regarding TBE charts to fulfill the following targets

or objectives of the study.

1. Development of control charts based on some generalized processes.

Most of the previous TBE work is based on the Poisson process where the distribu-

tion of TBE is exponential. The exponential distribution has a constant hazard, i.e.,

memoryless property. However, in reality, the defect risk may increase or decrease,

which might lead to process improvement and deterioration. Thus, we need to focus

more general stochastic processes to overcome these deficiencies of the TBE charts.

2. Classical and Bayesian methodologies for parameter estimation.

Most of the previous work on control charts has been done by assuming known

parameter’s value (an engineer has knowledge about the process) but in reality, this

assumption is difficult to meet. Classical statistics’s techniques are somehow popular

in process monitoring but based on very simple processes like normal, Poisson,

binomial, negative binomial and the exponential. Using Bayesian methodology, one

can include prior information, which will improve analysis. Moreover, sequential

updating is very helpful for online process monitoring using Bayesian methodology.

3. Joint control charts for monitoring frequency and magnitude.

There are two types of events, i.e., negative ones and positive ones. A negative

event may be a quality problem, a natural disaster or a damaging accident of any

type, whilst a positive event may refer to the purchase order of a product, the

success of an activity, the profit of business and so on. A statistical process control

system can continuously monitor the collected data of an event, which involves the

time interval X between two consecutive occurrences and the magnitude M of each

occurrence, and accordingly decides whether the situation is under control, out of

control or whether any immediate and reinforced action should be taken. Both X
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and M are random variables. An increase in the event ratio indicates a move in

a loss direction for a negative event which implies a higher than the usual rate in

damage, cost, or loss incurred by the occurrences of the events. Hence, an upward

shift represents a move in gain positive direction; downward shift results indicate

a gain movement toward the negative direction. For example, the loss of market

competence of an aged product is indicated not only by the decreased number of

purchase orders but also by the decreased amount in each order (cf. Wu et al.

[2009b] and Wu et al. [2009a]). Similarly, a fire department must be enhanced

not only when the fire outbreaks become very frequent but also when the average

damage caused by outbreaks gets very high. Hence, to study such phenomenon, we

need to consider some general processes with some advanced techniques of analysis.

The existing rate and joint X and M charts to deal such situations are not free

from criticism. For example, what to do if each event, especially magnitude is not

directly observable? Consider a process where deterioration/ improvement occurs

gradually (e.g., atomic power station) and only observable when it crosses a certain

threshold. Similarly, it is hard to distinguish and give a quick response, i.e., what

has changed, time or magnitude? Moreover, in the rate chart proportional changes

of time and magnitude, i.e., ratio M/X, stays constant.

Chapter wise breakup of the thesis is given as: In Chapter 2, we will give a comprehen-

sive overview about the existing literature related to TBE charts. In Chapter 3, a new

TBE chart based on the renewal process is proposed, allowing for a general parametric

family for the inter-arrival times’ distribution. After deriving the control structure for the

general class, the Weibull distribution chart is studied in-detail. The effect of parameter

estimation is also discussed in Chapter 3. A method to decide whether a shift is in the

shape or rate parameter is also proposed. Some real data sets as well as hypothetical

studies are included to highlight the effectiveness of the proposal.

Chapters 4 and 5 deal with joint monitoring of time and magnitude based on the

renewal reward processes. In Chapter 4, a general mathematical framework for joint

monitoring of time and magnitude with a fixed threshold is proposed. The control charts’

effectiveness is highlighted numerically. We noticed that to get an explicit form of the

first-passage distribution is difficult (and sometime impossible) therefore, we proposed an

algorithm to find the control limits for a process monitoring. Similarly, a control chart

based on the renewal reward process by assuming a random threshold is proposed in

Chapter 5.

Chapters 6 and 7 deal with sequential and adaptive process monitoring. In Chapter

6, we develop a TBE chart based on the nonhomogeneous Poisson process where a power

law intensity is particularly assumed. The control structure of the nonhomogeneous TBE

chart is designed mathematically and numerically. The effect of parameter estimation
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and some real data examples are discussed in this chapter. Contrary to sustained shifts, a

new experiment of random and time varying shifts is also conducted in Chapter 6. Since

the control limits of the proposed chart are sequentially updated, we proposed a test to

stop deterioration or drift of the control limits. By numerical studies, we showed that

proposed test improves the detection ability of the nonhomogeneous TBE chart.

In Chapter 7, we proposed a Bayesian predictive chart for the homogenous Poisson

process. The problem of sequentially updated control limits and the effect of different

shifts are discussed in this chapter. To stop deterioration or drift of the control limits,

we proposed a predictive cumulative distribution check (commonly known as a Bayesian

p-value). Some suggestions to revise prior are also discussed in Chapter 7. A procedure

to revise (select) the false alarm probability after an out-of-control signal (before setting

control limits) based on decision theory is also proposed in Chapter 7. Moreover, CUSUM

and EWMA charts are also discussed in this chapter.

To test the assumptions of the renewal process, some statistical tests are discussed

in Chapter 8. fSome tests for testing exponentiality are also discussed in Chapter 8.

Similarly, hazard rate testing, i.e., constant versus increasing or decreasing hazard rate,

is also discussed in the same chapter.

Finally, some concluding remarks and future recommendations are given in Chapter

9.
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Chapter 2

An Overview of Control Charts for

High Quality Processes

Major difficulties in the study of high-quality processes with traditional process monitoring

techniques are high false alarm rate and negative lower control limit. The purpose of time

between events control charts is to overcome the existing problems in the high-quality

process monitoring setup. Time between events charts detect an out-of-control situation

without a great loss of sensitivity as compared to the existing charts. High-quality control

charts gained much attention over the last decade due to the technological revolution.

This chapter is dedicated to providing an overview of recent research, and to presenting

it in a unifying framework. To summarize results and draw a precise conclusion from the

statistical point of view, cross tabulations are also given in this chapter.

2.1 Introduction

One of the main purposes of control charts is to distinguish between the variation due to

chance causes and the variation due to assignable causes in order to prevent overreaction

and underreaction to the process. The distinction between chance causes and assignable

causes is context dependent. The classification of causes generally evolves over time. A

chance cause today can become an assignable cause tomorrow.

For a high-quality processes with a very low defect rate (i.e., per million or per billion,

especially in the fields of manufacturing of integrated circuits, weapon system, airplane

generator, automobile engine and many other automated processes), there are certain

drawbacks in the traditional process monitoring techniques, i.e., high false alarm rates,

negative values of lower control limits for strictly positive monitored quantities, undesir-

able dependencies between sample size and control limits (when admissibility of the latter

is enforced) and poor approximation to the normal distribution (cf. Chan et al. [2002]).

There are some approximations available in the literature, however these approximations
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have certain drawbacks. Recently, Emura and Lin [2015] compared five frequently used

rules for n and p required for the normal approximation to the binomial distribution,

which is relevant for the monitoring of nonconforming units. They also proposed a new

rule for approximation, i.e., np ≥ 10 and p ≥ 0.1 or np > 15, which works well compared

to existing ones. However, the problem is not yet solved for other distributions.

To overcome these problems of traditional process monitoring techniques, an alterna-

tive is to use time-between-events (TBE) control charts (cf. Xie et al. [2002a]), which are

the focus of this review (for a general introduction to SPC and current research problems,

see instead Woodall and Montgomery [2014]).

A self-explanatory flowchart about the implementation of TBE charts is given in

Figure-2.1.

To make the review more statistically informative, a cross tabulation method with the

aid of graphs is used. Results are summarized in the conclusion section. We reviewed 114

articles related to the continuous and discrete TBE concept. Approximately 63% of the

reviewed articles deal with attribute data. As for parameter estimation, only 20.2% of

the reviewed articles is concerned with it, using either maximum likelihood, Bayesian or

nonparametric methods. As for the underling process distribution model, the geometric

distribution is being commonly used for attribute data, appearing in 21% of all articles,

while the exponential distribution, for the continuous case, is present in 23% of articles.

The rest of this chapter is organized as follows: Section 2.2 deals with the CCC and

continuous TBE charts, while the control charts based on approximations are discussed in

Section 2.3. Nonparametric control charts are discussed in Section 2.4, while Section 2.5

is devoted to the EWMA and CUSUM charts for high-quality processes. Economic design

studies of high-quality control charts is discussed in Section 2.6 while some information on

other related charts, which are very close to high-quality charting methodology, is given

in Section 2.7. The use of Bayesian methodology in SPC setup is discussed in Section 2.8

while Section 2.9 deals with control charts applications in health studies. To assess the

control charts’ performance some measures are discussed in Section 2.10. Some concluding

remarks and future suggestions to researchers are given in Section 2.11.

2.2 Time-Between-Events Control Charts

Depending on the type of data, different authors used different names for TBE chart based

on nonconformities distribution, e.g., geometric/exponential cumulative quantity control

(CQC) chart, cumulative count of conforming (CCC) chart, conforming run length (CRL)

chart, etc (see, Albers [2010]).
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Figure 2.1: A charting procedure of TBE charts

2.2.1 CCC Charts

Origin of the CCC chart

The story begins with Calvin [1983], who proposed the first high quality control chart for

geometric counts based on the geometric process. The items are inspected one by one in

each sample, and the cumulative number of sampled items is plotted against the index of

the sampling interval until when either the sample is exhausted or a nonconforming item

appears; at this point the counting is restarted. If the cumulative count falls between

the control limits, then the process is considered to be in statistical control. Goh [1987]

studied the properties of the geometric chart and named it cumulative conforming control

(CCC) chart. He recommended to plot cumulative counts only when a nonconforming
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item appears. Thus, the CCC charts differ from Shewhart-type control charts in that in

the former each time a sample is inspected one may not obtain a set of data points for

the chart statistics as in latter.

Generalization of CCC charts

Chan et al. [2003], inspired by the idea of double sampling procedures in acceptance

sampling, proposed a two-stage CCC-chart in order to improve the performance of the

one-stage CCC-chart. Analytic expressions for the average number inspected (ANI) of

this two-stage CCC-chart are obtained and compared with a previous results provided by

Chan et al. [1997b].

Lai et al. [2000] studied the high quality process in the presence of serial dependence

and developed a control chart to handle this problem. Later, Adnaik et al. [2013] employed

the idea of Lai et al. [2000] and proposed a control chart in which consecutive samples

should be distant enough in time, so that for all practical purposes, they can be considered

as if they were independent.

Lai [1997] extended the idea of Calvin [1983] and studied some properties of CCC

charts where the TBE is the waiting time for the appearance of the first pair of a conform-

ing and a nonconforming unit. Di Bucchianico et al. [2005] used CCC-r (a generalization

of the geometric CCC-chart) based on a negative binomial distribution. He et al. [2012]

proposed what they call a counted-number between omega-event attribute control chart,

abbreviated as CBΩ chart. They defined omega as: an event which denotes that one

observation falls into some certain defined interval. The purpose of the chart is to mon-

itor the number of consecutive parts between r successive omega events. The He et al.

[2012] proposal is not so much different from the well known CCC-r chart approach. The

only difference is the discretization of events that come from continuous normal data, i.e.,

instead of considering continuous data, they are classifying them as either conforming or

nonconforming, and use a CCC-r chart.

Noorossana et al. [2007] showed that the conditional procedure developed by Kural-

mani et al. [2002] is misleading because the properties of the conditional procedure were

determined based on an assumption of independence, by ignoring the information avail-

able in the previous run, which underestimates the true ARL for the CCC chart. They

incorporated the values of the previous runs or observations into the decision rule using

conditional probability, and modified the design of CCC chart.

Chang and Gan [2007] proposed an improved Shewhart np chart by using run rules

for monitoring high quality processes. They observed that runs rules are appropriate

for monitoring a distribution which is approximately unimodal and symmetric. Acosta-

Mejia [2013] suggested two geometric charts (simple and run sum chart) with runs rules.

He concluded that the proposed charts could be compared favorably with the two sided
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geometric chart based on probability limits when the fraction is very small.

Traditional cumulative conformance count (CCC) charts are used when the items from

a process are inspected one-at-a-time following the production order. In recent years, the

CCC chart has been generalized to accommodate some industry practices, where items

from a process are inspected sample by sample and not according to the production order.

(In case of variable sample size, the performance of the chart should be measured by the

average number/length inspected (ANI/ALI) instead of ARL). Lai and Govindaraju [2008]

noticed that in the case of attribute high-quality processes, although a longer in-control

ARL is ensured by design, the variance of the run length distribution may also be large

for such a design. They emphasized to compare coefficients of variation (CVs) instead

of comparing the ARL of two different charts directly. They showed that for the fixed

false alarm rate, the CV does not drop very much when the proportion of the defective

items increases drastically. The same approach is later used by Chen and Cheng [2010]

to derive the unbiased design of CCC-r charts based on negative binomial process.

For over-dispersed data, He et al. [2006] introduced a control chart for monitoring the

high-quality processes based on the generalized Poisson distribution. The performance

of the proposed control chart is evaluated in term of ARL. To validate the use of the

generalized Poisson distribution, they recommended to test it against the Poisson distri-

bution by means of formal hypothesis testing. Aebtarm and Bouguila [2010] proposed

an optimal bivariate Poisson chart for monitoring two correlated characteristics of defects

simultaneously. The authors considered the word ’optimal’ in the sense of finding a bivari-

ate Poisson probability set such that the in-control ARL is above a prescribed level. By

testing their proposal under different situations and comparing it with some previously

proposed charts, such as the NORTA (see Niaki and Abbasi [2007]), they concluded that

it is a good candidate for high-quality process monitoring.

Attribute charts seen as TBE charts

Wu et al. [2009d] used attribute inspection for normal process monitoring and suggested

an npx chart. Since the monitoring variable is continuous, in order to employ the idea of

attribute inspection and enhance the sensitivity of the proposal, they introduced warning

limits along with the traditional control limits. The warning limits help in making the

decision whether the inspected units are conforming or not, i.e., if the value of an item

lies above or below the warning limit declare it as nonconforming. If the number of

nonconforming units in a particular sampling interval is greater than the specified level

of nonconformities, the said process is declared as out-of-control. To have a desired in-

control run length, Wu et al. [2009d] optimized the warning limits and concluded that the

npx chart outperforms the traditional X̄ chart for the same inspection cost. Later, Ho

and Quinino [2013], motivated by the simplicity and performance of the npx control chart
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of Wu et al. [2009d], proposed an np2S control chart based on the binomial distribution, to

monitor the variability of a process. The comparison study is given with some traditional

control charts.

Gadre and Rattihalli [2005] proposed three group-inspection-based multi-attribute

control charts to identify process deterioration, where time between non-acceptable groups

(that is, samples) is monitored. Their proposed charts are: the Multi-Attribute np

(MAnp) chart, the Multi-Attribute Synthetic (MASyn) chart and the Multi-Attribute

Group Runs (MAGR) chart. It is shown numerically that MAGR chart performs bet-

ter than the MA-np and MA-Syn charts for deterioration detection. Later, Gadre and

Rattihalli [2008] generalized the work of Gadre and Rattihalli [2005] and proposed a unit

and group run chart to identify the increase of nonconformities in multi-attribute process.

Haridy et al. [2014] proposed a multi-attribute synthetic np (MSyn-np) chart to monitor

a multi-attribute system. To read more about multi-attribute charts, see Topalidou and

Psarakis [2009].

Variable sample size charts

Chen and Chen [2012] improved the power of the CCC chart to detect process changes

by generalizing it to variable sample size (VSS) for geometric process. To define VSS, let

n1 and n2 be the minimum and maximum sample sizes, respectively, such that n1 ≤ n ≤
n2 while keeping the sampling interval fixed at h. The decision to switch between the

maximum and minimum sample size depends on the position of the prior sample point on

the control chart. If the prior sample point falls into the safe region, the minimum sample

size n1 will be used for the current sample point and if the prior sample point falls into the

warning region, the maximum sample size n2 will be used for the current sample point.

Finally, if the sample point falls into an action region, then the process is considered to

be an out-of-control. Their proposed methodology works well as compared to existing

ones in the literature. However, their adopted approach for the calculation of the average

number of observations to signal (ANOS) is the same as suggested by Kotani et al. [2005]

for the EWMA charts based on the negative binomial in high-quality processes, except

for the VSS feature. Later, Chen [2013b] employed the idea of Chen and Chen [2012]

and proposed a generalized CCC (GCCC) chart based on the variable sampling interval

(VSI) which also takes into account the correlation between observations. The comparison

of results helps us to conclude that the presence of correlation has significant effect on

the control chart detection ability. Also, using the VSI scheme improves the detection

speed of chart in detecting changes of the fraction nonconforming than the fixed sampling

interval.

Bersimis et al. [2014] proposed a high-quality control chart which suggests to declare

the process out-of-control by utilizing information available at different stages, i.e., the
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number of conforming units observed between the (i − 1)th and the ith nonconforming

item and the number of conforming items observed between the (i−2)th and the (i−1)th

nonconforming item. To accomplish this task they proposed a compound decision rule.

By a numerical study they showed that their proposal works effectively.

Parameter estimation

Zhang et al. [2013] addressed the problem of unknown parameter estimation in a geomet-

ric chart for high-quality processes. They used the standard deviation of the run length

(SDRL) and the standard deviation of the number of inspected items to signal (SDNIS)

to show that much larger phase-I sample sizes are required in practice than stipulated

by previous research. They recommended a Bayes estimator for the in-control proportion

nonconforming to take advantage of practitioner knowledge and to avoid estimation prob-

lems when no nonconforming items are observed in phase-I sample. Recently, Chiu and

Tsai [2013] investigated the impact of estimated nonconforming fraction in a one-sided

CCC chart based on a geometric process. The run length distribution is derived as well

as the conditional probability of a false alarm rate (CFAR). With the help of a simula-

tion study, they showed that CFAR decreases for large estimated values of the parameter

associated with nonconforming.

Zhang et al. [2014b] investigated the performance of the CCC chart with VSI in

presence of estimation effect. The optimized design parameters of the CCC chart with

variable sampling intervals are obtained by using Bayesian methodology. The average

time to signal (ATS) and its standard deviation (SDTS) are calculated for both in-control

and out-of-control situations.

Biasedness of ARL

Chen [2009] motivated by the non-maximal and biased properties of the CCC-r chart

(non-maximal in the sense that the chart might not quickly detect the upward shift of

p from its nominal value p0, while biasedness means an inflation in ARL), developed a

procedure to overcome these problems. The basic idea of Chen [2009]’s approach is to

find a control interval I = [L,U ] in an admissible set S such that the slope of ARL0 is

approximately equal to zero. Later, Chen [2013a] extended his previous work reported

in Chen [2009] to obtain control limits with near-maximal and near-unbiased ARL, also

taking estimation effect into account. Chen [2013a] concluded that simulated ANI’s using

the MUVE (minimum unbiased variance estimator) are smaller than the MLE (maximum

likelihood estimator) when p > p0 while the simulated ANI’s using the MUVE are larger

than the MLE when p < p0. Hence, the MVUE is better than the MLE for detecting the

process deterioration while the MLE is better than the MVUE for detecting the process

improvement.
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Control charts with inspection error

In the usual implementation of CCC chart, it is assumed that the inspection is free of

error. However, this assumption is not true in general and may have a significant impact

on the interpretation of the control charts and their limits. To deal with this problem,

Ranjan et al. [2003] extended the work of CCC chart in presence of inspection error.

They concluded that the probability of classifying a conforming item as nonconforming

has a greater impact on the average run length (ARL) than the probability of classifying

a nonconforming item as conforming.

Regression charts

An exception alternative to CCC or CQC charts is monitoring a high quality process with

the help of regression methodology. Steiner and MacKay [2004] introduced this technique

based on the explanatory variables which cause the defects, and used the logit regression.

Although their approach is new, it is difficult to completely specify all the explanatory

variables, especially for a person who is not an engineer.

Change Point

Amiri and Khosravi [2012] proposed a maximum likelihood estimator for the change point

of the nonconforming fraction in the high-quality process with a linear-trend based on the

geometric process. The proposed estimator is compared with the estimator based on a

single step change of the process nonconforming fraction. The results supports that the

linear-trend based estimator performs better, especially when a linear trend disturbance

is present in the process.

2.2.2 Continuous TBE Charts

Introducing continuous time through CQC charts

An important generalization in the idea of Calvin is the introduction of the cumulative

quantity control (CQC) chart which was introduced by Chan et al. [2000] based on the

homogeneous Poisson process. They noticed that the CQC chart can be used no matter

whether the process defect rate is low or not, and when the process defect rate is low

or moderate the chart does not have the shortcomings as the c and u charts. CQC

chart doesn’t need a rational subgroup (a group of units produced under the same set of

conditions, i.e., phase-I data set) of samples which is necessary in usual charts, hence the

new chart is appropriate for monitoring manufacturing processes. Later, it was observed

by Chan et al. [2002] that sometimes in the CQC chart the interpretation of control limits

becomes cumbersome and to resolve technical inconvenience related to plotting, Chan
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et al. [2002] proposed a cumulative probability control (CPC) chart for exponential and

geometric processes. In the new proposed chart, the cumulative probability of the TBE

is plotted against the sample number and since the vertical axis is always between zero

and one, its interpretation is easy as compared to CCC and CQC.

Generalizations

A generalization of the CQC chart was proposed by Zhang et al. [2007a] to handle the

situation where one has to wait until the specified number, i.e. rth, of event occurrences.

Since in case of the Poisson process the distribution of time is exponential, waiting up to

the rth event leads to an Erlang distribution (gamma distribution with an integer shape

parameter). They also discussed the role of fixed and random shifts for control chart

development.

Fang et al. [2013] proposed three synthetic-type control charts to monitor the mean

TBE of a Poisson process. A synthetic control chart is particularly based on a T -chart

which is used for monitoring two different types of statistics, i.e., the location and variation

or some other summaries. In process monitoring, synthetic type charts are developed by

combining the regular Shewhart or memory type charts with conforming run length (CRL)

chart. The first proposed chart of Fang et al. [2013] is a combination of an ordinary Erlang

chart with a CRL-chart, the second is an exponential and a group CRL-chart, while the

third is an Erlang and a group CRL-chart. Their proposal outperforms in detection of

small to moderate shifts. Recently, Fang et al. [2015] extended the work of Fang et al.

[2013] and proposed a generalized group run TBE chart named GGRg − Tr (where r

denotes the time until the r-th event occurrence and g denotes the index of the CRL

group), to monitor the mean TBE of a homogenous Poisson process. With the help of a

numerical study, they showed that the choices of r = 1 or r = 2 are good for the detection

of a large size shifts, while r = 3 or r = 4 are appropriate for small to moderate shifts.

They also noticed that increasing r for fixed g does not improves the performance of a

control chart. However, increasing g (but not above 5) for the same r improves detection

speed.

Santiago and Joel [2013] used supplementary runs rules to identify whether the pro-

cess is out-of-control or not for the TBE chart (called t-chart) based on the exponential

distribution. It is observed by Santiago and Joel [2013] that the fit in tails of the distri-

bution can be very poor in case of transformation of the data, which affects the ability of

a control chart to detect a shift in the process. Moreover, because charts are mostly built

under the assumption of equal tail distribution of the monitoring statistics, a transfor-

mation that does not provide a symmetric distribution may affect the ARL in the wrong

direction when a shift occurs, thus resulting in a biased ARL.
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Xie et al. [2011] considered a bivariate TBE and proposed a control chart. They

used a Gumbel’s bivariate exponential distribution to monitor the mean vector of TBE.

However, Xie et al. [2011] did not give sufficient justification about the related counting

process which has a bivariate distribution of time.

Aslam et al. [2014] introduced an exponential TBE control chart based on the concept

of repetitive sampling by employing two control limits, i.e., warning limits and action

limits. With the help of a numerical study they showed that repetitive sampling improves

the control chart performance. Later, Aslam et al. [2015] introduced a t-control chart for

exponentially distributed quality characteristics using multiple dependent state sampling.

The proposed control chart has double control limits as the repetitive sampling chart

has, with two control coefficients. They used a kσ approach to define control limits and

showed that their proposal works effectively under different conditions.

Comparisons among TBE charts

A comparison study between the Shewhart exponential, the gamma, and the exponential

CUSUM charts, is also given in Zhang et al. [2007a]. They concluded that the gamma

chart is more sensitive than the exponential chart. However, the performance of a gamma

chart is comparable with the optimally designed exponential CUSUM chart only with

waiting up to the 4th event, i.e., r = 4.

Due to limitations in resources and working conditions, sampling inspection has to

be adopted for many SPC applications, especially when testing is destructive and/or

expensive. For this purpose, Qu et al. [2014] used sequential analysis and curtailment

techniques for the TBE control charts.

Dogu [2014] used a comparative approach to investigate the performance of the change

point methodology with the TBE control charts, i.e., CQC-r, EWMA and CUSUM charts.

The change point parameter for the gamma process was estimated using the maximum

likelihood method. Dogu [2014] recommended the use of CQC-r chart in the cases where

the prediction of the shift is difficult, the exact change detection is necessary and the

assignable cause identification is also difficult. However, if the magnitude of shift is small,

the exact change detection is not the primary focus, the design parameters are easy

to define and collecting more information about the change is costly, then EWMA and

CUSUM charts are recommended.

Parameter estimation

Kumar and Chakraborti [2015] considered the robustness problem of the in-control alarm

probability using phase-I data, i.e., how large phase-I observations should be considered

from an exponential distribution to estimate the unknown mean and have a desired in-

control performance. They proposed a two-sided control chart for monitoring the median
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based on the quartiles, i.e., the lower control limit is based on the distance between the

median and a multiple of the spacing between the median and first quartile, while for

upper sided chart it is the distance between the median and a multiple of the spacing

between the median and third quartile. With the help of numerical comparison with some

existing charts, Kumar and Chakraborti [2015] showed that the new proposal is more in-

control robust. Kumar and Chakraborti [2014a] presented improved results for tr chart

by considering the impact of parameter estimation on the performance of the phase-II tr

chart. They observed that the practitioner-to-practitioner variability (i.e., the uncertainty

in the phase-I parameter estimation) may determine control chart performances which are

far from nominal values. As a remedy, they proposed a rule for the phase-I sample size

such that the ARL (conditional on the estimated parameters) is within a given distance

from the nominal ARL with a certain high probability. They considered MLE and UMVE

estimates and noticed that using UMVUE, significantly less phase-I samples are required

to get desired control chart performances.

Biasedness of ARL

When the process is in-control the ARL must be equal to a pre-defined fixed value, say

ARLin−control = ARL0, and when the process is out-of-control the ARL must be smaller

than this fixed nominal value whenever possible, i.e., ARLout−of−control ≤ ARLin−control,

a property known as unbiasedness. Zhang et al. [2006] noticed that the exponential chart

designed with the conventional approach has the disadvantage that an ARL value may

increase when the process deviates from the nominal value. Thus, Zhang et al. [2006]

proposed an ARL unbiased design approach for phase I and II. They adopted a sequential

sampling scheme which provides a self-starting feature and can improve significantly the

ARL performance. Later, Chen and Cheng [2011] extended the work of Zhang et al.

[2006] and studied the effect of unbiasedness with unequal tails. Cheng and Chen [2011]

incorporated the runs rules into the CQC chart design to study its ARL unbiasedness.

Recently, Yang et al. [2015b] also adopted the same procedure as presented in Zhang

et al. [2006], to study the unbiasedness of the exponential chart based on the average

time to signal performance measure. They studied the phase-I and phase-II performance

of the two-sided control chart by using an unbiased estimator of the parameter and gave

a comparison study to highlight the advantages/improvements of the new proposal.

2.2.3 Joint control charts for monitoring frequency and magni-

tude

In the usual TBE charts implementation, the user continuously monitors the collected

data of an event, which involves the time interval X between two consecutive occurrences.
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However, there are many situations where a magnitude M is attached to each TBE

occurrence. The ordinary TBE charts are incapable to handle such a situation. An

example of such systems is the monitoring of a fire department which must be enhanced

not only when the fire outbreaks become very frequent but also when the average damage,

caused by outbreaks, gets very high. To monitor such events, one needs to consider marked

Poisson processes instead of ordinary Poisson processes. Wu et al. [2009b] proposed

control charts which jointly monitor TBE and the associated magnitude, without clearly

mentioning the marked Poisson assumption. Later, Wu et al. [2009a] proposed a single

control chart to monitor TBE and magnitude data by considering the ratio M/X. Wu

et al. [2009a] compared the control chart performance with Wu et al. [2009b] and showed

that joint monitoring (the so called rate chart) is more efficient than the separate control

charts. Liu et al. [2009] extended the work of Wu et al. [2009b] by considering the

associated magnitude as discrete. Liu et al. [2010] also proposed a joint control chart by

considering a truncated Poisson distribution for magnitude. The use of the exponential

distribution is common in all the above cited papers on time and magnitude charts.

2.3 TBE charts with approximations

It is noted by several authors that the high-quality chart based on the geometric dis-

tribution is quite slow to pick up relatively mild deteriorations of the process for the

small parameter value, which is unacceptable, especially in health care. To overcome this

problem, a negative binomial process chart was proposed (cf. Ohta et al. [2001b], Wu

et al. [2001] and Zhang et al. [2007a]). However, the problem of the optimal choice of

r (r is denoting the numbers of nonconformities in a given sample of size n) with esti-

mation effect in a negative binomial case, was unanswered in existing literature. Albers

[2010] motivated by this problem, noticed that a quite large sample size is required for

the optimal choice of r in the presence of estimation effect (optimality is determined by

the achievement of a desired run length). The same issue was addressed by Albers and

Kallenberg [2004a] without estimation effect. Albers [2010] obtained the approximated

optimal value of r and numerically showed that his proposal works very well. Later, the

author extended results in Albers [2011a] to the case of the binomial process. Joekes and

Barbosa [2011] also introduced a high quality control chart based on the Cornish-Fisher

expansion corrected to order n−1.5.

In industry, most systems are regularly maintained to prevent future sudden failures.

The usual reliability techniques are not helpful for the detection of early warnings of

system failures, and thus an alternative is to study such systems with control charts. To

study the properties of regularly maintained systems based on an approximation of the

Weibull distribution by an exponential distribution, Khoo and Xie [2009] used a TBE
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control chart approach. Earlier, Xie et al. [2002b] also presented a control chart for

reliability monitoring.

2.4 Nonparametric Control Charts

The standard control charts are very sensitive to estimation effects and deviations from

the normality assumption. To choose the most appropriate monitoring statistics, the first

step is the choice of the underlying distribution. In reality, this choice is often one of

many possible alternatives that fit the data equally well (or equally bad). An alternative

option is represented by nonparametric control charts.

2.4.1 High-quality processes

Albers [2011b] proposed a nonparametric version of the negative binomial chart for the

high-quality process monitoring. To minimize the effect of estimation on the proposed

MAX chart performance measure, Albers [2011b] suggested a correction factor. Later,

Albers [2012a] made a comparison study between the MAX and CUMAX for the high-

quality process monitoring. He concluded that both charts show very little difference in

performance and the choice of MAX or CUMAX remains with the practitioner or the

user.

For bivariate process monitoring, the only contribution to nonparametric control charts

for high-quality processes is that of Albers [2012b], who studied these charts for the

simultaneous monitoring of two quality characteristics.

2.5 EWMA and CUSUM

Control charts with Shewhart structure are commonly used for the detection of shifts

which are larger in size (i.e. ≥ 1.5σ), and they have the memoryless property (do not

take into account previous data and just deal with current information). To detect small

size shifts (≤ 1.5σ) and to get benefit from memory of existing data, the exponentially

weighted moving average (EWMA) and cumulative sum (CUSUM) control charts are

preferred.

2.5.1 EWMA and CUSUM Charts using the nonconforming

idea

Gan [1993] proposed a CUSUM chart for the binomial distribution and an optimal design

strategy, which allows an easy way to determine the parameters of a CUSUM chart.

The optimal choice of n, the relationship between the CUSUM chart and the sequential
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probability ratio test are also investigated in Gan [1993]. Wu et al. [2008] proposed a

CUSUM for the detection of an upward shift, while Brouke [1984] proposed a CUSUM

control chart based on non-transformed geometric counts, which is effective for the p0 ≥
0.002. Assuming the feasibility of 100% continuous inspection, Reynolds Jr and Stoumbos

[1999] proposed a CUSUM control chart which is quite effective for p0 > 0.01. Chang and

Gan [2001] studied the CUSUM chart based on the geometric, binomial and Bernoulli

distributions. They found that the use of CUSUM is effective when p0 is as small as

0.0001, which is close to the actual fraction nonconforming level seen in many high quality

processes. Later, Yeh et al. [2008] proposed an EWMA control chart based on geometric,

binomial and Bernoulli counts by extending the idea of Shu et al. [2007]. Yeh et al. [2008]

concluded that an EWMA based on geometric counts is better for the detection of small

gradual changes than the CUSUM.

Since the variance of the Bernoulli/binomial is also a function of the p0 parameter, it

significantly affects the performance of the control chart especially in phase-I. To alleviate

this problem, Spliid [2010] proposed an EWMA chart based on Bernoulli counts with a

variance stabilizing transformation. The distribution of the transformation is derived and

some comparisons are also made to the double square root transformation of the normal

distribution. Spliid concluded that the proposed EWMA works better than the CUSUM.

Duran and Albin [2009] proposed a two-sided CUSUM Arcsine method which is efficient

for the detection of both large and small shifts.

Reynolds [2013] gave a solution to the equations used in defining the Markov chain

for the Bernoulli CUSUM chart (for more detail about attribute control charts, we refer

the interested readers to a recent review provided by Woodall [1997]).

Count data are often analyzed under the assumption that they follow a Poisson distri-

bution. This distribution is very useful, but it is not appropriate when data are overdis-

persed. Chen [2012] introduced an EWMA chart based on the Poisson geometric distri-

bution for the compound Poisson process. Mavroudis and Nicolas [2013] discussed the

efficiency and verified the performance behavior of the one-sided EWMA control chart for

high-quality processes. Their designed chart is an efficient tool for detection of both up-

ward and downward shifts for the non-transformed geometric process. Later, Mavroudis

and Nikolaos [2011] extended their work on the two sided EWMA to one-sided EWMA

charts.

2.5.2 CUSUM and EWMA for continuous TBE

Control charts for time monitoring

Borror and Keats [2003] studied the robustness of the TBE CUSUM. They reported an

ARL-based study for the Weibull (fixed scale parameter) and the Lognormal (for fixed

σ) distributions. They showed that the TBE CUSUM is more robust for different sets of
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parameter values in different cases. They also noticed that there is a significant relation-

ship between the skewness of the time-between-failure distribution and the robustness of

the TBE CUSUM. However, recently Shafae et al. [2015] showed that the robustness with

respect to the shape parameter of the Weibull distribution is not as good as claimed in

the literature about CUSUM. Due to the significant impact of the shape parameter on

the control chart performance, they concluded that the value should be chosen/estimated

carefully.

Both EWMA and CUSUM are used for detection of a small size shift; however, it is

not clear which one outperforms for TBE monitoring. For this purpose, Liu et al. [2006b]

compared the TBE charts and concluded that for the processes with small improvements,

exponential EWMA charts are slightly better than the exponential CUSUM charts. Fur-

thermore, the EWMA and the CUSUM are better than the usual upper-sided CQC and

CQC-r charts. On the contrary, for the lower side, an exponential TBE chart is better

than CUSUM and EWMA. Liu et al. [2004], in a work on a general architecture for online

process monitoring, found that a simple chart (CQC-r) is more robust for small size shift

than EWMA and CUSUM in the two-sided case.

Ozsan et al. [2010], motivated by the estimation of parameter and its effect on the

control chart detection ability, studied properties of the TBE EWMA chart based on the

exponential distribution. Zhang et al. [2014a] also addressed the problem of estimation

in CUSUM chart based on the exponential TBE.

Frequency and time monitoring

Qu et al. [2011] proposed a combined Shewhart-T and a TCUSUM chart to monitor the

time interval T between the occurrences of an event. They showed that this integration of

T and TCUSUM improves the overall performance over the individual charts. Wu et al.

[2010a] proposed a CUSUM chart, called the TC-CUSUM, for monitoring a negative or

hazardous event. Their proposal uses the information from both sources, i.e., TBE and the

size of each occurrence. They used the Poisson distribution for the magnitude of events

while the exponential distribution is used for TBE. Recently, Qu et al. [2013] proposed

a generalized CUSUM (GCUSUM) for simultaneously monitoring the time interval and

magnitude of an event for which they assumed a normal distribution. In a comparison

study, they showed that the new proposal is more efficient in the detection of shifts as

compared to existing ones.

2.6 Economic Design of Control Charts

The economic design approach to control charts advocates the determination of the control

chart design parameters based on a cost-minimization model that takes into account all
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costs accepted by the choice of these parameters. Although this approach is useful, work

in this area is very slow as pointed by Woodall and Montgomery [2014]. This is happening

due to complex optimization procedures and poor statistical properties of the economic

models, which are, in general, incapable to detect process improvements as noted by

Woodall and Montgomery [1999].

2.6.1 Economic design of CCC charts

The comparative study of Ou et al. [2012] not only compares the detection speed of

the charts, but also investigates their robustness in performance. They also studied the

probability distribution of the mean shift explicitly, because it is an influential factor in

an experiment on the chart performance as the values of the shift distribution parameters

are changed following a factorial design. Yilmaz and Burnak [2013] developed a specific

cost model and with the help of a numerical study they showed that it works well as

compared to existing ones.

It is well known that, as r gets larger, the CCC-r chart becomes more sensitive to

small upward shifts. However, too many observations are required to obtain a plotting

point on the chart, and the related cost is fairly high. Thus, to trade off this problem,

Ohta et al. [2001a] determined the optimal value of r for the CCC-r chart using an

economic model. They obtained expected profits per cycle using the proposed optimal

design and compared it with existing methods. They also studied the performance of

the proposed model in the case of cost parameter misspecification. Later, Zhang et al.

[2008] also proposed an economic model to monitor the cumulative number of samples

inspected until a nonconforming sample is encountered. Zhang et al. [2008] model is useful

especially when one is interested in inspection of samples or lots without preserving the

original production order.

2.6.2 Economic design of continuous TBE charts

Zhang et al. [2011a] developed an economic model for the exponential chart for monitoring

TBE data. The design of the proposed model takes into account the random characteristic

of the process shifts and therefore better reflects the actual process conditions. The

random process shift is modelled by a Rayleigh distribution.

The fabrication of a product usually goes through several process stages in series

and integration of all these stages constitutes a multistage manufacturing system. Using

valuable information available at each stage of the process, one can enhance the detection

ability of control charts. Zhang et al. [2011b], inspired by this concept, presented an

economic design of the control chart which also takes into account multistage information

as it becomes available at each stage of the process.
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2.7 Some other Control Charts for Count Data

From now on, we will examine contributions from the literature that are not about TBE

control charts, with some exceptions. They have been included in this review because

one of the following reasons: they are recent, introduce generalizations, and are based on

non-mainstream approaches.

2.7.1 Control charts based on transformations

A traditional approach in the development of control charts is based on the transformation

of data from a skewed to an approximately normal distribution, and then use the normal

theory for the control chart development. Liu et al. [2006a] proposed a CUSUM scheme

for monitoring the TBE by transforming the exponential distributed data to approxi-

mately normal distribution shape. Later, Liu et al. [2007] proposed an EWMA chart to

monitor the exponentially distributed TBE data by using the double square root (SQRT)

transformation.

To monitor the multi-attribute high quality processes, the presence of correlation be-

tween different attributes is an important problem which affects the control chart detection

ability if multivariate normality is incorrectly assumed. Recently, Niaki and Abbasi [2007]

proposed two new methods that are based on the transformation technique to deal with

non-normality. The first method is the root transformation Xr, i.e., find r such that the

data set skewness becomes almost negligible. The second method is transforming the

data using the inverse of the NORmal-To-Anything (NORTA) transformation/algorithm.

With the help of a numerical study they showed that NORTA transformation remarkably

improves the monitoring of a process which has some dependence structure.

2.7.2 Other charts

Chen et al. [2008] proposed a control chart to monitor attribute data based on a gen-

eralized zero-inflated Poisson (GZIP) distribution. Katemee and Mayureesawan [2012]

developed a control chart based on the zero-inflated Poisson (ZIP) distribution which is a

special case of the Chen et al. [2008] proposed chart. Katemee and Mayureesawan [2012]

studied the control chart performance in detail and concluded the proposal is more effec-

tive for over or under dispersed data than the ordinary c-chart. We refer the interested

readers to Saghir and Lin [2015] for the control charts based on the dispersed count data.

Wang [2009] compared different existing approximations for p charts. He also proposed

a new approximation which can substantially improve the performance of the existing con-

trol chart, especially when the nonconformities rate is very low. Sant’Anna and Caten

[2012] proposed a beta chart based on the beta probability distribution. The comparative
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study showed that the Beta approximation to the Binomial distribution is more appro-

priate than the normal approximation. They also highlighted that the proposed chart is

more sensitive in the detection of both in-control and out-of-control situations.

Xie and Goh [1997] introduced probability control limits for the geometric distribution

which is not different from the CCC chart idea.

2.8 Bayesian Control Charts

The standard (frequentist) methods for SPC depend on long run stability to establish

a pattern against which further samples may be compared, hence very short production

runs would severely affect the performance of these methods. The use of the Bayesian

methods has an advantage due to the inclusion of prior knowledge about the process

gained through experience. Also, the sequential use of Bayes theorem is helpful in online

process monitoring.

2.8.1 Bayesian Charts for non-high-quality processes

Short Run Production Controlling

Woodward and Naylor [1993] used Bayesian methods for short run production based on

the normal process. They compared the performance of a Bayesian significance test with a

Bayesian two-stage test and concluded that the Bayesian significance test performs slightly

better. They minimized the cost of inspection in the two-stage test using a quadratic loss

function.

Sturm et al. [1990] proposed a process control procedure based on the sufficient statis-

tics for short run processes where high volume/intensive data is available. To effectively

control the mean of the normal distribution, they introduced weighted empirical Bayes

estimators for the mean and the variance. For the detection of an abrupt change, a two-

sample z type test based on the posterior distribution, is also developed. Later, Sturm

et al. [1991] used a similar approach for real time controlling.

Wu et al. [2015] proposed a conjugate Bayesian approach in low volume and multi-

batch process monitoring. The control limits are calculated using Bayes estimates of the

mean and the variance. They also compare the Bayesian and the traditional approach.

Shewhart Charts

Shewhart control limits for individual observations are usually based upon the average

of moving range, and their performance is quite good if the underlying distribution is

normal and the sample size is greater than 250. However, if the underlying distribution is

not normal, then the recommended chart is nonparametric, which requires at least 1000
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observations. Vermaat and Does [2006] proposed an alternative individual control chart

based on a semi-Bayesian method, which works well under non-normality for moderate

sample size within the range 250 to 1000.

Control chart pattern (CCP) recognition techniques are widely used to identify the

potential process problem. Naeini et al. [2012] used artificial neural network (ANN)

techniques with the help of Bayesian methodology in finding the suitable architecture

of an ANN-based CCP recognizer. Eto and Pallotta [2007] proposed a Shewhart type

control chart for the Weibull percentile. The parameters are estimated by using what

they called the Practical Bayes Estimator method, i.e., specify the prior distribution on

the parameters of interest by leaving nuisance parameters “unspecified.”

Menzefricke introduced various control charts using the Bayesian methodology in a

series of articles (cf. Menzefricke [2002, 2007, 2010a,b, 2013a,b]). Menzefricke [2002]

approach for the normal distribution consists of two stages, (i) construction of the control

chart by using a predictive distribution to derive the rejection region; (ii) evaluation of

the control chart by use of a sampling theory approach to examine the performance of the

proposed chart. Although his approach works very well for the normal distribution, for

other families like the Weibull, etc., it is extremely difficult to find the sufficient statistics

for all parameters. Riaz [2011] adopted the approach mentioned in Menzefricke [2002]

and compared of the Bayesian X̄ chart with the classical X̄ chart.

Tan and Shi [2012] noticed that multivariate quality characteristics are usually moni-

tored by a few summary statistics, i.e., either mean or variance. However, if a control chart

detects a shift in one of the summary statistics, the quality engineer needs to find which

quality characteristics have shifted and in which direction. To facilitate the identification

of the root causes, Tan and Shi [2012] proposed a Bayesian approach. They introduced

an indicator variable for each mean, that indicates whether the mean has shifted upward,

shifted downward, or remained unchanged.

Perakis and Xekalaki [2015] used a Bayesian approach for assessing the proportion of

conforming of normally distributed data. The posterior probabilities are used to decide

whether the proportion of conformance exceeds the given threshold or not. By a numerical

study, they showed that new technique is quite effective in the process capability analysis.

Memory Type / Sequential charts

Tsiamyrtzis and Hawkins [2005] proposed a control chart using the Bayesian methodology

for short production runs. Since their assumed model is a linear state space model, their

approach is a generalized version of the Kalman filter methodology for the normal process.

Later, Apley [2012] extended the work of Tsiamyrtzis and Hawkins [2005], by developing

a Markov (random walk) Bayesian model for monitoring and graphically exploring the

process mean.
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The u chart is very common for monitoring defective items based on the Poisson

process. However, the proper use of this chart requires a phase-I data to setup control

limits. In many practical situations, to obtain a sufficient phase-I data is difficult especially

due to limited resources. Bayarri and Garćıa-Donato [2005], motivated by this fact,

introduced a sequential monitoring scheme based on the predictive distribution. They

used objective, empirical and proper (sequential) Bayes methods for this purpose. They

also compared their results with the traditional frequentist implementation. They noticed

that empirical Bayes methods are somewhat easy to implement and useful to deal with

extra-Poisson variability; however, they still need the phase-I data. The sequential full

Bayesian approach, on the other hand, avoids this drawback of traditional u-charts which

makes it a powerful tool of process monitoring especially for online process monitoring.

Although Bayarri and Garćıa-Donato [2005] approach is interesting, they did not show any

performance evaluation of the proposed chart. Since the pure Bayesian credible interval

is wider than the classical or empirical Bayes ones, this approach is better suited for the

detection of large size of shifts.

Eva [2012] studied the properties of the moving range m-chart based on credible

intervals and posterior odds. Change point methodology is also considered (with geometric

prior) for normally distributed data. Eva [2012] concluded that Bayesian methodology

helps in detection of shifts.

Marcellus [2007] presented a Bayesian methodology to jointly monitor the mean and

standard deviation of a normal random variable. He compared the proposed chart per-

formance with the Shewhart and cumulative sum chart, and concluded that it works well

for the small size shifts.

Economic Design using the Bayesian Approach

In process monitoring, the process may go out-of-control due to the occurrence of any

of several independent assignable causes, while in existing literature, only a single cause

is considered for an assignable cause. It is also assumed widely that the time until each

specific cause occurs has an identical exponential distribution. This assumption of iden-

tical distribution may be hard to meet in practice. Silver and Bischak [2004] proposed a

control chart where the distribution of an assignable cause is assumed to be exponential

with unknown parameter, not necessarily the same of other causes. They considered the

Bayesian approach to deal with random causes of failure. Later, Bischak and Silver [2004]

generalized their work with data augmentation through MCMC approach.

Nenes and Tagaras [2007] studied the economic design of X̄ chart using the Bayesian

methodology for a short run production. The numerical study of Nenes and Tagaras

[2007] indicates that there are potential savings by using the Bayesian scheme.
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Wang [2012] extended the ideas presented in Makis [2009] and Yin and Makis [2011];

and proposed a simulation-based multivariate Bayesian (economic) control chart. The

proposed control chart is very useful for monitoring real-time condition-based maintenance

of complex systems. Wang [2012] used the concept of delay time discussed by Wang and

Jia [2007] to compute the posterior probability function of the underlying state given

observed monitoring information history. Since, the model involves many parameters,

Wang [2012] used Markov Chain simulations to obtain the optimal parameters of the chart.

This author also noticed that the computation using MCMC could be time consuming if

the number of simulated renewal cycles are substantially large.

2.8.2 Bayesian Charts for high-quality processes

Bayesian Tolerance Intervals control charts

Tolerance intervals can be used for the monitoring of a process. As opposite to con-

fidence intervals, which tell us about an unknown population parameter, a tolerance

interval provides information on the entire population with the specified probability. To

be more precise, a tolerance interval is expected to capture a certain proportion or more

of the population with a given confidence level. Hamada [2002] motivated by this idea,

used Bayesian tolerance intervals for determining the control limits of Poisson distribu-

tion. He compared results with the frequentist tolerance interval and concluded that the

Bayesian methodology helps to improve the process monitoring. Later, Demirhan and

Hamurkaroglu [2014] constructed a X̄ control chart using the Bayesian tolerance interval

for the exponential distribution. To obtain an initial guess of the hyperparameters, they

used an empirical Bayesian approach. The performance of the Bayesian tolerance interval

chart was also compared with the EWMA and CUSUM.

Regular Bayesian Charts

Toubia-Stucky et al. [2012] used the sequential Bayesian approach for detection of a small

process deterioration in the case of CCC chart. Their approach is self-starting, and thus

suitable for short runs production monitoring.

Lee et al. [2013] introduced a Bernoulli CUSUM chart by using the Bayesian method-

ology. They notice that the usage of prior (previous run) information not only helps to

improve process monitoring but also useful when no nonconforming items are observed in

the process.

Raubenheimer and van der Merwe [2014] designed a Bayesian c chart using uniform

and Jeffreys’ priors. They compared the performance of the Bayesian chart with the

classical chart, and concluded that the Bayesian chart performance is better than the

classical.
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2.9 Control Charts in Medical Studies

In health care monitoring, the occurrence of some types of failures, i.e., a malfunctioning

instrument or delayed help to a patient, the discovery of some kind of physiological defect

(a potentially fatal disease or a congenital defect), are rare phenomena. One needs to pay

special attention to study these rare events and the idea of TBE is particularly suited

for medical studies. To see some reviews about the use of control charts in health care

monitoring, we refer to Sonesson and Bock [2003], Thor et al. [2007] (for a meta analysis

about control charts usage in health care monitoring), Shaha [1995], Benneyan [1998a,b],

Woodall [2006] and Mohammed et al. [2008] (for x, u, c, p, mr charts). A comprehensive

overview about the use of the p chart in the surveillance is given by Szarka and Woodall

[2011]. Some other recent contributions to this area are: correlated multi-attributes

charts proposed by Niaki and Abbasi [2007]; an EWMA chart for Poisson counts with

time-varying sample size based on probability control limits by Shen et al. [2013]; sample

size varying smoothing parameter of EWMA chart by Shu et al. [2014]; time varying

Bernoulli CUSUM by Tian et al. [2015], and charts based on a truncated zero-inflated

binomial distribution studied by Fatahi et al. [2010]. An application in animal sciences

of control charts could be seen in De Vries and Reneau [2010] where an advantage of

control charts is pointed out over the randomized experiments. De Vries and Reneau

[2010] noticed that with the help of control charts, an immediate intervention decision is

possible, because in the case of an experiment one has to wait till the end of the experiment

to evaluate a treatment effect.

Albers [2011c], motivated by the heterogeneity among the patients in medical studies,

noticed that the assumption of every unit having the same probability p of being defective

is rarely met, hence a richer parametric family is needed to overcome this problem. Al-

though the geometric chart is most commonly used in such situations, a known drawback

of this chart is that it requires a rather long time to react to a moderate increase of the fail-

ure probability p. Only large deteriorations quickly produce a signal of an out-of-control

process. In health monitoring, this is not a usually accepted criterion. An alternative

control chart is based on the negative binomial distribution, which is more useful in such

situations, besides allowing for overdispersion. Earlier, Hoffman [2003] had introduced

a control chart based on the negative binomial distribution instead that on the Poisson

distribution. Albers [2012a] extended Albers [2011c] to nonparametric control charts by

proposing MAX and MIN charts and studied their properties.

Spliid [2007] introduced an EWMA chart by assuming a geometric distribution for

the failure counts and showed that the proposed EWMA helps in online surveillance of

medical procedures.

Alemi and Neuhauser [2004] used the TBE control charts based on the exponential

distribution for monitoring the asthma attacks. Dogu [2012] compared the performance of
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the CQC-r charts with EWMA and CUSUM charts, and suggested the use of the CQC-r

chart for monitoring medical errors. Recently, Schuh et al. [2014] analyzed the frequency

of accidents by using the CUSUM chart. They compared the performance of a Poisson

CUSUM with an exponential CUSUM and showed that shorter periods of aggregation for

the TBE monitoring leads to a more timely indication of an increased accident frequency.

They also highlighted some issues related to data aggregation and its effect on the control

charts performance.

From an applied point of view, the problem of zero inflation/rare events, is not only

common in the industrial or medical processes, but it is also present in agricultural sci-

ences, i.e., counting the number of insects per leaf in pest counting studies, etc. Therefore,

Sim and Lim [2008] proposed zero inflated models to study the pest counting problem

with zero inflated binomial and Poisson models. They used uniform and Jeffreys’ priors

to design the charts, and noticed that control charts based on intervals resulting from

assuming Jeffreys’ prior are more efficient than the classical methodology.

2.10 Different Performance Evaluation Criteria of con-

trol charts

In this section, we recall some widely accepted criteria to evaluate control charts perfor-

mance, which are suitable for high-quality process monitoring as well. The first perfor-

mance measure is average run length (ARL) defined as: the average number of data points

that must be plotted before a point indicates an out-of-control situation (or the expecta-

tion of the stopping time defined as ARL = mini{i : Xi /∈ [LCLi, UCLi]}). Ideally, one

wants larger in-control ARL (denoted by ARL0) and shorter/smaller out-of-control ARL

(denoted by ARL1). Another criterion used as an alternative of the ARL is average time to

signal (ATS) or average length of inspection (ALI) defined as the average time taken by a

chart to produce an out-of-control signal. Mathematically, it is ATS = ARL×E(X). De-

pending on the type of data being monitored, some other names for ATS are: ANI-average

number of items inspected, AQI-average quantity of products inspected. To compare the

performance of two charts, the in-control ARL should be large enough while an out-of-

control ARL should be small (the same rule is valid/true for ATS and ALI). A chart with

smaller out-of-control ARL at specific shift is considered to be more effective than the

other. Some other supplementary indicators are being used by many practitioners and

researchers, are the standard deviation of the run length distribution (SDRL) (standard

deviation of the length of inspection, SDLI) and quartiles of the run length (and length

of inspection) distribution.

The ARL is the most commonly used criterion to evaluate the performance of control

charts, but it is not free from criticism, i.e., change point problem with mixture pre-
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change models, detection schemes with finite detection delays can have an infinite ARLs,

the underlying geometric distribution, dispersion in ARL curve etc. (see Mei [2008],

and Tartakovsky [2008]). It is also difficult to predict the values of process shifts in

most applications, especially in the case of online process monitoring. Therefore, it is

important to have a control chart which has a good performance over the entire/whole

range of process shifts rather than at a specific shift point. Thus, for this purpose, ratio of

ARL (RARL), extra quadratic loss (EQL) and the performance comparison index (PCI)

measures are used. Let f(δ) be a distribution of shifts selected on the basis of the process

behavior, then RARL can be written as

RARL =

∫ δmax

δmin

ARL(δ)

ARLS(δ)
f(δ)dδ (2.1)

Note that a chart producing the smallest ARL is usually selected as the specific or bench-

mark in case of RARL. This measure is quite useful not only when the impact of a range of

shifts is the main focus but also when one wants to compare control charts having a scale

difference in the ARL (this measure has minimum impact/effect of the scale differences).

Another criterion is EQL which directly evaluates the expected loss due to poor quality.

EQL can be calculated as

EQL =

∫ δmax

δmin

δ2ARL(δ)f(δ)dδ (2.2)

This EQL has two advantages over the RARL. First, the loss function behind the deriva-

tion of EQL, is a more comprehensive measure of the charting performance than ARL

because it considers all the contributors to the quality cost including the time to signal and

the magnitude of δ shift. Second, the evaluation of EQL does not require a pre-specified

benchmark chart. Thus, minimization of EQL will reduce the loss in quality incurred in

the out-of-control situations.

A Performance Comparison Index (PCI), is also used as the measure of the relative

overall performance of the charts. This is the ratio between the EQL values of two control

charts and serves as a measure of the relative effectiveness of two charts like RARL (see

details in Wu et al. [2009c], Wu et al. [2010b], Ou et al. [2011], and references cited

therein).

Since, all the performance criteria are a function of ARL, so if the ARL has some poor

characteristics then other criteria too have poor properties. Thus, it is indeed a necessity

of modern quality to have a new criterion, which should not be a function of ARL.
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2.11 Conclusion

We have reviewed 114 articles (cf. Table-2.1, Figure-2.2) related to the TBE or high-

quality concept and 63% of the reviewed articles deal with discrete or attribute data

while 31% deal with continuous data and the remaining (6%) with both. Thus, the

trend of research is highly influenced by the discrete distributions. Of our reviewed

articles, only 23 deal with the parameter estimation problem while in the remaining ones

(i.e. 91 articles) the parameter is assumed known (cf. Table- 2.2, Figure-2.3). The

maximum likelihood method is used 4 times in the continuous case while 6 times in the

discrete case. The use of Bayesian methods is not very popular in the continuous case

as compared to the discrete case (cf. Table- 2.3). Geometric and negative Binomial

models are commonly used in discrete cases while the exponential model is used for

continuous data (cf. Table-2.4). The category “others” in Table-2.4, includes charts based

on nonparametric, multivariate, Lognormal, inflated and normal models. It is observed

that CUSUM, EWMA and synthetic or joint charts are used for both types of data.

Table 2.1: Article Reviewed by Data Type

Data Type Count %
Discrete 72 63.16

Continuous 35 30.70
Both 7 6.14
Total 114 100

Table 2.2: Parameter Estimation for TBE Setup

Method Count %
No 91 79.82
MLE 10 8.77

Bayesian 7 6.14
MLE& Bayesian 3 2.63
Nonparametric 3 2.63

Total 114 100

It is evident from the cited literature, that earlier control charts are either based on ap-

proximations or simple processes. Therefore, this thesis make a number of contributions

to the field of high-quality process monitoring. First, we generalize the existing TBE

control charts by assuming renewal process (cf. Chapter 3) for events N(t). Second, we
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Table 2.3: Parameter Estimation with respect to Data Type

Method Continuous Discrete Both Total
No 28 56 7 91
MLE 4 6 10

Bayesian 1 6 7
MLE& Bayesian 1 2 3
Nonparametric 1 2 3

Total 35 72 7 114

Table 2.4: The use of different Processes for the designing of TBE Charts

Process Count % Total
Bernoulli 6 5.26
Binomial 4 3.51

Exponential 26 22.81
Geometric 24 21.05

Negative Binomial 16 14.04
Poisson 6 5.26
Others 32 28.07
Total 114 100 114

Data
Chart Continuous Discrete Total

Shewhart 27 54 81
CUSUM 8 10 18
EWMA 3 9 12

Nonparametric . 3 3
Total 38 76 114

extend TBE control charts to handle both the time and the associated magnitude using

the renewal reward processes (cf. Chapters 4 and 5). We consider fixed (cf. Chapter

4) and random (cf. Chapter 5) threshold scenarios for time and magnitude monitoring.

Third, we introduce a TBE chart for online process monitoring (cf. Chapter 6) based on

nonhomogeneous Poisson process with power law intensity. Finally, we develop an adap-

tive TBE chart for sequential process monitoring using the Bayesian predictive approach.
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Figure 2.3: Parameter Estimation for TBE Setup
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Chapter 3

High Quality Process Monitoring

using a Class of inter-arrival Time

Distributions of the Renewal Process

For high-quality processes where defect rate is very low, e.g. part per million (ppm), TBE

control charts have several advantages over the ordinary control charts. Existing TBE

control charts are based on the Poisson process, thus the distribution for TBE is assumed

to be exponential. However, the exponential distribution is not suitable in many appli-

cations, where the failure rate is not constant. In this chapter, we develop a new TBE

control chart based on the renewal process where any continuous lifetime distribution for

TBE can be assumed. Particularly, we allow for a parametric class of absolutely contin-

uous distributions for TBE, which includes some well known and commonly used lifetime

distributions, i.e., exponential, Rayleigh, Weibull, Burr type XII, Pareto and Gompertz

distributions. The control structure of the proposed chart is designed mathematically and

numerically (for numerical calculations, we used the Weibull distribution due to its rele-

vance in reliability). The performance of the proposed control charts is evaluated in terms

of some standard useful measures, including average run length (ARL), standard deviation

of run length, coefficient of variation of the run length, expected quality loss (EQL) and

relative ARL (RARL). The effect of parameter estimation, using both maximum likelihood

and Bayesian methods, is also discussed. The study also presents an illustrative example

and four case studies to highlight the practical aspects of the proposal.

3.1 Motivation

The available TBE control charts can be categorized into two groups: attribute TBE and

variable TBE. Most of the attribute TBE charts are based on the geometric distribution

(cf. Section-2.11), such as the cumulative count control (CCC) chart, or on the negative
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binomial distribution (e.g. the CCC-r chart). One special variable TBE chart is the

cumulative quantity control (CQC) chart. As the occurrence of the events follows a

Poisson process, the time between two events follow an exponential distribution, so CQC

can also be called exponential chart, sometimes denoted as t-chart. From the substantial

review presented in Chapter-2, it is apparent that the existing available CQC charts are

based on the exponential distribution, i.e., Poisson process, (cf. Section-2.2.2 and 2.11).

Therefore, the main aim of this chapter is to introduce a generalized version of the existing

CQC charts.

In this chapter, we consider the development of a control chart based on the renewal

process where the distribution of TBE is assumed to belong to a class of absolutely

continuous distributions. This class includes exponential, Rayleigh, Weibull (there is a

debate about the distribution name in the literature, e.g., Stoyan [2013]), Burr type XII,

Pareto and Gompertz distributions. A renewal process can be regarded as a generalization

of the ordinary Poisson process, where the distribution of time is replaced by any other

lifetime distribution in place of the exponential distribution. Thus, the present chapter

is a generalization of the existing TBE charts. We also include a study of the control

chart performance in the presence in presence of parameter estimation error.The Poisson

process defined by Theorem-1.1.3 is also called the homogenous Poisson process (HPP).

The major weakness of this process is the constant rate assumption. However, HPP(λ)

can be generalized to a renewal process by letting any other lifetime distribution instead

of exponential distribution.

Definition 3.1.1 A counting process {N(t), t ≥ 0, t ∈ T} with independent and identi-

cally distributed (iid) inter-arrival times X1, X2, · · · having a common distribution F is

called a renewal process.

The use of a renewal process is motivated by TBE with a non-constant hazard rate.

Consider, for example, an industrial process in which a sensor signals that a filter must

be substituted. The hazard of getting a substitution signal increase with time because

impurities trapped within the filter accumulate. After changing the filter a renewal takes

place, represented by a new filter with the same hazard function. An increased renewal

frequency with respect to the nominal, would indicate an upstream problem in the process

because filters are changed too often. The renewal theory has many applications, espe-

cially in the field of repairable systems, component testing, the time intervals of successive

earthquakes in a particular region and so on.

The rest of the chapter is organized as follows: in Section 3.2, the class of distribu-

tions is defined. The design of the TBE chart for high-quality processes is discussed in

Section 3.3. In Section 3.4, some performance criteria for the evaluation of control chart

performance are presented. These performance criteria are: average run length, expected

quadratic loss and relative average run length. The Bayesian and the classical methods
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for the estimation of unknown parameters are discussed in Section 3.5. In Section 3.6, an

illustrative example to explain how the proposed methodology in real situations can be

used is discussed with four case studies. Finally, we conclude the chapter in Section 3.7.

3.2 A Class of Absolutely Continuous Distributions

The purpose of this section is to introduce a general class for N(t), renewal process, to

generalize existing TBE charts. Consider the following parametric family of distribution

functions:

Fλ,β(x) = 1− exp
{
−λβM(x)

}
; x, β, λ > 0 (3.1)

where λ, β are the rate and shape parameters, and M(x) is an increasing and positive

function in x, which may be dependent on the shape parameter, β. This general model in-

cludes several lifetime distributions such as exponential, Rayleigh, Weibull, Burr type XII

(compound Weibull), Pareto, linear failure rate and Gompertz, among others. Ahmadi

et al. [2015] defined a similar class of distributions, but with a different parametriza-

tion. Table-3.1 displays the functions M(x) and the corresponding distribution functions

Fλ,β(x) for some lifetime distributions.

Table 3.1: Some well-known lifetime distributions belongs to the general family in
Equation-3.1

Distribution M(x) Condition Fλ,β(x)
exponential x β = 1 1− exp(−λx)
Rayleigh x2 β = 2 1− exp(−(λx)2)
Weibull xβ β > 0 1− exp

(
−(λx)β

)
Burr type XII ln(1 + xβ) β > 0 1−

(
1 + xβ

)−λβ
Pareto ln

(
1 + x/β

)
β > 0 1−

(
1 + x/β

)−λβ
Gompertz {exp(βx)− 1}/β β > 0 1− exp

(
−λβ{exp(βx)− 1}/β

)
Linear Failure Rate x+ x2/2 β = 1 1− exp

(
−λ(x+ x2/2)

)
The Rayleigh, Gompertz and linear failure rate distributions have increasing failure

rates while the Pareto one is decreasing. The Burr XII is a uni-modal distribution and

has a non-monotone failure rate (for β > 1, the failure rate has one critical point at

(β − 1)1/β), which makes its interpretation technical especially in reliability. This distri-

bution is a good candidate to study a system or disease whose mortality reaches a peak

after some finite time period and then gradually decreases. Moreover, the limiting dis-

tribution of the Burr XII as x → ∞, is a Weibull distribution. The Weibull distribution

allows increasing, decreasing and constant failure rates, depending upon the shape param-

eter β. This property not only gives an advantage over the exponential which only allows a

constant failure rate, but also over other distributions which have increasing, decreasing or
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non-monotone failure rates. Thus, among the distributions given in Table-3.1, the Weibull

distribution is very popular lifetime distributions, and other distributions mentioned in

Table-3.1 are somehow special cases of the Weibull distribution. Since its introduction,

the Weibull distribution, has been used in many applied fields to model lifetimes of many

types of manufactured items, such as vacuum tubes, ball bearings and electrical insula-

tion. It is also used in biomedical applications, for example, as the distribution of time

to the occurrence (diagnosis) of tumors in human population or in laboratory animals.

Furthermore, it is a suitable model for extreme value data, such as the strength of certain

materials. Recently, empirical studies have shown that Weibull distribution is superior to

the classical stable distributions, including the normal distribution, for fitting empirical

economic data; see, for example, Murthy et al. [2004], and Yannaros [1994]. Although

we shall provide TBE control charts construction based on the distributions mentioned

in Table-3.1, our main focus will be on the Weibull distribution for numerical study.

In this work we focus on TBE charts and not interested in CCC charts. If someone

is interested in developing a control chart based on counts N(t), the exact distribution of

the counting process could be found from the direct relationship between the arrival time

and the number of events. Let Tn be a time from the measurement origin at which the

n-th event occurs and let N(t) denote the number of events that have occurred up until

the time t. Thus, Tn ≤ t ⇐⇒ N(t) ≥ n. To derive a Weibull count model, the challenge

is associated with the solution of the convolution integral implied by this relationship. As

noted by McShane et al. [2008], this type of integral is easily solved for the exponential

as well as the gamma distributions. However, by Taylor’s series approximation obtained

by expanding the exponential factor “exp(−(λx)β)” for both the cdf and the pdf of the

Weibull, we have F (x) =
∑∞

j=1
(−1)j+1(λx)βj

Γ(j+1)
and f(x) =

∑∞
j=1

(−1)j+1βjλβjxβj−1

Γ(j+1)
, respectively.

Thus, using the relationship between inter-arrival time and number of events, McShane

et al. [2008] developed a Weibull count model as

Cn(t) = Pr(N(t) = n) = Pr(N(t) ≥ n)− Pr(N(t) ≥ n+ 1) (3.2)

= Pr(Tn ≤ t)− Pr(Tn+1 ≤ t) =
∞∑
j=n

(−1)j+n(λt)βjϕnj
Γ(βj + 1)

, n = 0, 1, 2, · · · .

Here, ϕ0
j = Γ(βj+1)/Γ(j+1), j = 0, 1, 2, · · · and ϕn+1

j =
∑j−1

m=n ϕ
n
mΓ(βj−βm+1)/Γ(j−

m+ 1), for n = 0, 1, · · · and j = n+ 1, n+ 2, · · · .
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3.3 Control Charts based on Generalized class of inter-

arrival Times

Let X be the time between the appearance of two nonconformities (inter-arrival time),

with distribution given in Equation-3.1. After choosing M(x), a two-sided generalized

quantity control chart (GQCC) can be constructed by equating Equation-3.1 to α/2,

1 − α/2 and 1/2 which results in the lower control limit (LCL), upper control limit

(UCL) and central limit (CL), respectively (cf. Chan et al. [2000]), where α is the pre-

specified probability of false alarm. Mathematically, we can write it as: i.e., Fλ,β(LCL) =

1 − exp
{
−λβM(LCL)

}
= α/2, Fλ,β(UCL) = 1 − exp

{
−λβM(UCL)

}
= 1 − α/2, and

Fλ,β(CL) = 1− exp
{
−λβM(CL)

}
= 0.5. Table-3.2 displays the simplified forms of LCL

and UCL for the distributions mentioned in Table- 3.1.

Table 3.2: Lower and Upper control limits for the distributions given in Table-3.1

Distribution LCL UCL
exponential λ−1[− ln(1− α/2)] λ−1[− ln(α/2)]

Rayleigh λ−1
√

[− ln(1− α/2)] λ−1
√

[− ln(α/2)]

Weibull λ−1
[
− ln(1− α/2)

]1/β
λ−1

[
− ln(α/2)

]1/β
Burr type XII

[
(1− α/2)−1/λβ − 1

]1/β [
(α/2)−1/λβ − 1

]1/β
Pareto β

[
(1− α/2)−1/λβ − 1

]
β
[
(α/2)−1/λβ − 1

]
Gompertz β−1 ln

[
1 + β{− ln(1− α/2)}/λβ

]
β−1 ln

[
1 + β{− ln(α/2)}/λβ

]
Linear Failure Rate

√
1 + 2{− ln(1− α/2)}/λ− 1

√
1 + 2{− ln(α/2)}/λ− 1

The control chart is obtained by plotting the observed value of TBE Xi against the

failure/sample number. If the point is plotted below the LCL Xi < LCL then it is a

signal that the process may have deteriorated while if a point is plotted above the UCL

Xi > UCL, it is a sign of that process may have improved.

In some areas of application, one-directional changes are the ones of the greatest con-

cern. For example, in the manufacturing industry, engineers want to prevent an increase

in the nonconformities, but decreases in the nonconforming fraction is in-consequential.

In health care applications, detecting the increase of medication administration errors

is very important since it might lead to morbidity and mortality of patients. However,

the decrease of medication administration errors is taken for granted. Thus, a one-sided

control chart would be more suitable than traditional two-sided charts in these circum-

stances. A one sided Weibull quantity control chart (WQCC) can be obtained by equat-

ing the Equation-3.1 (i.e., with M(x) = xβ) equal to α, so that LCL is LCLone−sided =

λ−1
[
− ln(1− α)

] 1
β
without UCL.

Remark 3.3.1 The cumulative probability control chart is a control chart in which the

observed cumulative probability is plotted against the failure number. Since the cumulative
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probability is plotted and due to this reason the vertical axis of plot always lies between

zero and one which makes its interpretation easier. To construct a cumulative probability

chart, the lower and upper control limits for the two-sided control charts are α/2 and

1 − α/2 respectively. Similarly, a one-sided control chart can be constructed by taking

LCL = α and UCL = 1− α.

3.4 Performance Evaluation

In this section, we will examine various control chart performance measures commonly

used by practitioners. These are: average run length (ARL), expected quality loss (EQL)

and relative average run length (RARL). The first measure (i.e. ARL) is used to evaluate

the performance of a chart at any specified shift, while EQL and RARL are used for

performance evaluation on an assumed shift range. The description of these measures for

the proposed chart is given in the following subsections.

3.4.1 Average Run Length (ARL)

The average run length (ARL) is a measure of the expected number of consecutive samples

taken until the sample statistic fall outside the control limits. Mathematically, the ARL

is expectation of stopping time L = min{i : Xi /∈ [LCLi, UCLi]} and L in most cases is a

discrete random variable, taking on integer values. As a consequence, L as a function of

the parameter will be piecewise constant with jumps (cf. Fu and Hu [1999], page 398).

Suppose that a TBE chart is constructed such that the probabilities of false alarm

for the one-sided charts are αU and αL to get the UCL and LCL, respectively, while

α = αU + αL is the false alarm probability for the two-sided chart. To compute ARL, we

have the following proposition:

Proposition 3.4.1 The expressions of the ARLs to receive a signal for the un-natural

variations below the LCL, above the UCL and either below the LCL or above the UCL are

given in Table-3.3, where β∗ = β1
β0

and λ∗ = λ1
λ0

denote the magnitude of the shifts in the

shape and the rate parameters of the process.

Proof : The expressions of the ARLs are obtained as ARLL = 1
F (LCL)

, ARLU = 1
1−F (UCL)

and ARLL∪U = 1
F (LCL)+1−F (UCL)

, where F (.) is taken from Table-3.1.

The usage of λ∗ and β∗ simplifies the notations and it is clear that 0 < β∗, λ∗ < 1 indicates

process improvement, while β∗, λ∗ > 1 indicates process deterioration.

Table-3.3 contains the explicit expressions of the ARL for the distributions mentioned

in Table-3.1. It is interesting to note that the expressions of ARL for the exponential lin-

ear failure rate distributions are the same, because LCLlinearfailure+(LCL2
linearfailure)/2 =
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LCLexponential. Moreover, the behavior of the TBE control charts could not match expec-

tations. For example, consider that the probability of an alarm for process deterioration

in the Weibull case is Pr(X ≤ LCL) = 1− exp{−(λ0LCL)
β1}, with λ = λ0 and β = β1,

where LCL is obtained from Table 3.2. Then, if λ0LCL < 1, the alarm probability

decreases as β1 increases, so that it is smaller than its under-control nominal value for

β1 > β0. For example, with α = 0.0027, λ0 = 0.0005, β0 = 1.5, β1 = 1.8 one obtains

an alarm probability of 0.0004 < 0.0027. Hence, one should be very careful about the

control chart design, due to the significant effect of the shape parameter. The control

chart’ detection ability in such a situation would be undermined, which results into the

biased performance (first mentioned in Mann [1945]) of the chart. Thus, one should be

very careful about the control chart design due to the significant effect of the shape pa-

rameter. We refer to Yang et al. [2015a,c] for some recent developments about biasedness

of exponential and gamma charts.

Since the design of a control chart is often based on ARL, a large in-control ARL is

ensured by design, but the variance of the run length distribution can be large. This

basically poses difficulties on the shop floor because of widely varying frequencies of false

alarms and, in general, control chart signals. As a consequence, the chart signal might

be ignored or acted upon selectively. Thus, in such scenario, sometimes the coefficient of

variation (CV) is examined when control chart performances are considered and we also

do so in our study.

As we mentioned above, from here our discussion will be restricted to the WQCC

chart due to the vast application of the Weibull distribution. The implementation of the

Weibull charts requires the knowledge of the both parameters whereas, in reality, one

might have the knowledge about either the shape or the rate parameter. To tackle such

a situation, we suggest to find the shifted/adjusted value of the non-available parameter

by using the mean. To explain it further, let us suppose that β0 and λ0 are the in-control

shape and rate parameters which result into m0 = λ−1
0 Γ(β−1

0 + 1). Furthermore, suppose

that we know β1 and interested in finding the λ1. To accomplish this task, we denote

mb(β1, λ0) = λ−1
0 Γ(β−1

1 + 1) and equate it to λ−1
1 Γ(β−1

0 + 1) which would result into

λ1 =
λ1Γ(β

−1
0 +1)

mb(β1,λ0)
=

λ0Γ(β
−1
0 +1)

Γ(β−1
1 +1)

. For example, if the in-control rate and shape parameters

are λ0 = 0.0005, β0 = 1.5 while we know β1 = 1.3 the out-of-control shape parameter,

then the λ1 = 0.000489 should be used to design the Weibull chart. Similarly, by knowing

the λ1 one can find β1 by solving Γ(β−1
1 + 1) = Γ(β−1

0 + 1)λ0/λ1.
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Table 3.3: ARL expressions for the distributions listed in Table-3.1.

Distribution ARLL ARLU ARLL∪U

exponential [1− (1− αL)
λ∗

]−1 [αλ∗
U ]−1 [1− (1− α/2)λ

∗
+ (α/2)λ

∗
]−1

Rayleigh [1− (1− αL)
λ∗2

]−1 [αλ∗2
U ]−1 [1− (1− α/2)λ

∗2
+ (α/2)λ

∗2
]−1

Weibull
[
1− exp

(
−λ∗β0β

∗{− ln(1− αL)
}β∗)]−1

exp
(
λ∗β0β

∗{− ln(αU )
}β∗) [

1− exp
(
−λ∗β0β

∗{− ln(1− α/2)
}β∗)

+exp
(
−λ∗β0β

∗{− ln(α/2)
}β∗)]−1

Burr Type XII
[
1−

{
1 +

(
(1− αL)

−1/λ
β0
0 − 1

)β∗}−λ1
β1

]−1 [{
1 +

(
(αU )−1/λ

β0
0 − 1

)β∗}−λ
β1
1

]−1

[
1−

{
1 +

(
(1− α/2)−1/λ

β0
0 − 1

)β∗}−λ1
β1

+
{
1 +

(
(α/2)−1/λ

β0
0 − 1

)β∗}−λ1
β1

]−1

Pareto
[
1−

{
1 + β∗−1

(
(1− αL)

−1/λ
β0
0 − 1

)}−λ
β1
1

]−1 [{
1 + β∗−1

(
(αU )−1/λ

β0
0 − 1

)}−λ
β1
1

]−1

[
1−

{
1 + β∗−1

(
(1− α/2)−1/λ

β0
0 − 1

)}−λ
β1
1

+
{
1 + β∗−1

(
(α/2)−1/λ

β0
0 − 1

)}−λ
β1
1

]−1

Gompertz
[
1− exp−(λ1

β1/β1)
{(

1− β0 ln(1− αL)/λ
β0
0

)}β∗]−1 [
exp−(λ1

β1/β1)
{(

1− β0 ln(αU )/λβ0
0

)}β∗]−1

[
1− exp−(λ1

β1/β1)
{(

1− β0 ln(1− α/2)/λβ0
0

)}β∗

+exp−(λ1
β1/β1)

{(
1− β0 ln(α/2)/λ

β0
0

)}β∗]−1

Linear Failure Rate [1− (1− αL)
λ∗

]−1 [αλ∗
U ]−1 [1− (1− α/2)λ

∗
+ (α/2)λ

∗
]−1

Table 3.4: ARL study of the PI-IHR case using α = 0.0027, λ0 = 0.0005, β0 = 1.5 and λ1 ∈ {0.0003, 0.0001, 0.00005},
β1 ∈ {1, 1.2, 1.4, 1.5, 2} for the upper and two-sided Weibull charts.

β λ
Two-Sided Upper-Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

1
ARL 23.9761 7.79972 2.0124 1.41962 26.3241 7.11561 1.9234 1.38687
CV 0.978924 0.933697 0.709282 0.543679 0.980822 0.927073 0.692884 0.528158

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.2
ARL 63.1362 11.272 1.92542 1.33024 63.1237 9.44529 1.82368 1.29893
CV 0.992049 0.954612 0.693277 0.498252 0.992047 0.945583 0.672055 0.479722

CVLI 0.997625 0.986621 0.918913 0.880217 0.997624 0.984013 0.914177 0.877127

1.4
ARL 198.18 16.9804 1.84354 1.26091 191.254 13.0609 1.73663 1.23263
CV 0.997474 0.970108 0.676436 0.454888 0.997382 0.960955 0.651286 0.434426

CVLI 0.998798 0.985879 0.861221 0.788892 0.998754 0.981601 0.85194 0.783381

1.5
ARL 370.37 21.2746 1.80541 1.23232 370.37 15.6241 1.69725 1.20567
CV 0.998649 0.976215 0.667914 0.434193 0.998649 0.967469 0.640946 0.413018

CVLI 0.999272 0.987251 0.837527 0.750075 0.999272 0.9826 0.826091 0.743602

2
ARL 6516.86 86.4081 1.64208 1.13201 44182 47.0206 1.53395 1.11289
CV 0.999923 0.994197 0.625312 0.341485 0.999989 0.989309 0.589988 0.318495

CVLI 0.999944 0.995786 0.746601 0.598322 0.999992 0.992242 0.725407 0.589034
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Table 3.5: ARL study of the TD-IHR case using α = 0.0027, λ0 = 0.0005, β0 = 1.5 and λ1 ∈ {0.005, 0.01, 0.1},
β1 ∈ {1, 1.2, 1.4, 1.5, 2} for the lower and two-sided Weibull charts.

β λ
Two-Sided Lower-Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

1
ARL 23.9761 8.69323 4.61187 1.09506 52.0284 5.66884 3.1086 1.02105
CV 0.978924 0.940727 0.884968 0.294629 0.990343 0.907522 0.823597 0.143598

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.2
ARL 63.1362 12.9661 5.93864 1.05686 113.855 7.66384 3.6399 1.00619
CV 0.992049 0.960664 0.911927 0.231959 0.995599 0.932479 0.851626 0.0784368

CVLI 0.997625 0.98838 0.974449 0.846478 0.998683 0.980259 0.957962 0.838003

1.4
ARL 198.18 19.475 7.70011 1.03132 249.871 10.436 4.284 1.00126
CV 0.997474 0.973988 0.932808 0.17427 0.997997 0.950883 0.875542 0.0354862

CVLI 0.998798 0.987699 0.968586 0.733675 0.999047 0.976919 0.942786 0.724166

1.5
ARL 370.37 23.912 8.78621 1.0224 370.37 12.2034 4.65541 1.00048
CV 0.998649 0.978867 0.941374 0.14801 0.998649 0.958152 0.886113 0.0218503

CVLI 0.999272 0.988665 0.968841 0.687609 0.999272 0.977667 0.94033 0.679158

2
ARL 6516.86 67.4636 17.2456 1.00255 2655.51 27.0532 7.15007 1.000010
CV 0.999923 0.992561 0.970574 0.0504509 0.999812 0.981344 0.927438 0.000535165

CVLI 0.999944 0.994599 0.978702 0.52449 0.999863 0.986477 0.947817 0.522723

Table 3.6: ARL study of the TI-DHR case using α = 0.0027, λ0 = 0.0005, β0 = 0.5 and λ1 ∈ {0.0003, 0.0001, 0.00005},
β1 ∈ {0.3, 0.45, 0.5, 0.55, 0.8} for the upper and two-sided Weibull charts.

β λ
Two-Sided Upper-Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.1
ARL 2.14293 2.11003 2.03261 1.98093 4.16563 3.8799 3.36945 3.1062
CV 0.730308 0.725308 0.712757 0.703695 0.871746 0.861546 0.83858 0.823446

CVLI 293.626 295.907 301.489 305.397 210.602 218.218 234.165 243.885

0.3
ARL 15.7135 11.6483 6.29416 4.53652 18.2658 12.0888 6.00446 4.28862
CV 0.967657 0.956112 0.917127 0.882931 0.972241 0.957747 0.912939 0.875685

CVLI 1.67254 1.85058 2.34247 2.68807 1.59569 1.82656 2.38824 2.75419

0.45
ARL 146.618 66.5816 13.9264 6.92151 141.37 51.1389 11.0219 5.79396
CV 0.996584 0.992462 0.963428 0.924945 0.996457 0.990174 0.953557 0.909619

CVLI 1.01956 1.0426 1.18995 1.35535 1.02028 1.05512 1.23515 1.41416

0.50
ARL 370.37 142.202 18.9822 8.05326 370.37 97.6466 14.0841 6.49044
CV 0.998649 0.996478 0.973303 0.935856 0.998649 0.994866 0.963845 0.919743

CVLI 1.00539 1.01397 1.10033 1.22339 1.00539 1.02028 1.13314 1.27133

0.55
ARL 962.073 339.947 26.7218 9.46367 1170.24 207.368 18.4535 7.32416
CV 0.99948 0.998528 0.98111 0.945692 0.999573 0.997586 0.972528 0.929228

CVLI 1.00149 1.0042 1.05218 1.1412 1.00122 1.00688 1.07473 1.17926

0.8
ARL 38992.5 54818.4 286.875 25.8247 28971500 90944.6 114.578 15.228
CV 0.999987 0.999991 0.998256 0.980448 1 0.999995 0.995627 0.966608

CVLI 1.00001 1.00001 1.00103 1.01134 1.0000 1.0000 1.00257 1.01915
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Table 3.7: ARL study of the PD-DHR case using α = 0.0027, λ0 = 0.0005, β0 = 0.5 and λ1 ∈ {0.005, 0.01, 0.1},
β1 ∈ {0.3, 0.45, 0.5, 0.55, 0.8} for the lower and two-sided Weibull charts.

β λ
Two-Sided Lower-Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.1
ARL 2.14293 2.24911 2.26264 2.23078 3.78845 3.12392 2.95264 2.4641
CV 0.730308 0.745238 0.74702 0.742783 0.857927 0.824554 0.813216 0.770825
CVLI 293.626 286.612 285.754 287.787 220.837 243.193 250.147 273.824

0.3
ARL 15.7135 25.5046 21.7161 11.2554 35.2424 17.916 14.6482 7.5997
CV 0.967657 0.9802 0.976704 0.954544 0.98571 0.971691 0.965263 0.931888
CVLI 1.67254 1.45168 1.51676 1.87331 1.34216 1.60512 1.71117 2.17171

0.45
ARL 146.618 136.152 99.8061 35.7372 205.26 73.1526 53.6855 19.3748
CV 0.996584 0.996321 0.994978 0.98591 0.997561 0.993141 0.990643 0.973851
CVLI 1.01956 1.02105 1.02861 1.07801 1.01401 1.03884 1.05257 1.13974

0.50
ARL 370.37 234.585 166.023 52.8445 370.37 117.464 83.2065 26.657
CV 0.998649 0.997866 0.996984 0.990493 0.998649 0.995734 0.993973 0.981064
CVLI 1.00539 1.00849 1.01197 1.03716 1.00539 1.01688 1.02375 1.07241

0.55
ARL 962.073 404.434 276.395 78.2588 668.62 188.802 129.114 36.7506
CV 0.99948 0.998763 0.998189 0.99359 0.999252 0.997348 0.99612 0.986301
CVLI 1.00149 1.00353 1.00516 1.01812 1.00214 1.00755 1.01102 1.0382
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(a) Lower-sided Weibull Chart (TD-case) (b) Two-sided Weibull Chart (TD-case)

(c) Upper-sided Weibull Chart (PD-case) (d) Two-sided Weibull Chart (PD-case)

Figure 3.1: Process Deterioration Detection using λ0 = 0.0005, β = 1.5

3.4.2 Average Length of Inspection (ALI)

Suppose SN =
∑N

i=1Xi denotes the total length of inspection or elapsed time until

the first out-of-control signal is issued. Therefore, by using Wald’s equation, we have

ALI = E{E(SN |N)} = E(N)E(X) = ARL × E(X) and V ar(SN) = V ar{E(SN |N)} +
E{V ar(SN
|N)} = E(N × V ar(X)) + V ar(N × E(X)) = E(N)V ar(X) + V ar(N)E2(X) (cf. Chan

et al. [1997a], and Lai and Govindaraju [2008]). For our proposed chart, ALI for the

lower-sided, upper-sided and two-sided control charts is defined as: ALIL = λ−1Γ(β−1 +

1)×ARLL, ALIU = λ−1Γ(β−1+1)×ARLU and ALIL∪U = λ−1Γ(β−1+1)×ARLL∪U where

E(X) = λ−1Γ(β−1 + 1) is the mean of the Weibull distribution, whereas the variance is

given by V ar(X) = λ−2
[
Γ(2β−1 + 1)− Γ2(β−1 + 1)

]
.

Similarly, the variance of the ALI can be written as V ar(SN) =
1
p
V ar(X)+1−p

p2
E2(X) =

ARL · V ar(X) + [ARL · E(X)]2 − ARL · [E(X)]2] and finally the coefficient of variation

is defined as CV LI = CV (SN) =

√
V ar(SN )

E(SN )
.
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(a) Lower-sided Weibull Chart (PI-case) (b) Two-sided Weibull Chart (PI-case)

(c) Upper-sided Weibull Chart (TI-case) (d) Two-sided Weibull Chart (TI-case)

Figure 3.2: Process Improvement Detection using λ0 = 0.0005, β = 0.5

3.4.3 Discussion of ARL Study

Definition 3.4.3.1 For the Weibull distribution, if β > 1, i.e., increasing hazard rate

(IHR), and λ is decreasing then the system is partial improvement (PI). We label this

situation as the PI-IHR.

Definition 3.4.3.2 For the Weibull distribution, if β > 1, i.e., increasing hazard rate

(IHR), and λ is increasing then the system is totally deteriorating (TD). We label this

situation as the TD-IHR.

Definition 3.4.3.3 For the Weibull distribution, if β < 1, i.e., decreasing hazard rate

(DHR), and λ is decreasing then the system is totally improving (TI). We label this situ-

ation as the TI-DHR.

Definition 3.4.3.4 For the Weibull distribution, if β < 1, i.e., decreasing hazard rate

(DHR), and λ is increasing then the system is partially deteriorating (PD). We label this

situation as the PD-DHR.
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We considered shifts for the following cases:

A Increasing Hazard Rate (IHR), i.e., β > 1)

1. λ decreases from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005} for β0 = 1.5 to

β1 ∈ {1, 1.2, 1.5, 2} [i.e. Partial Improvement (PI)].

2. λ increases from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1} for β0 = 1.5 to β1 ∈
{1, 1.2, 1.5, 2} [i.e. Total Deterioration (TD)].

B Decreasing Hazard Rate (DHR), i.e., β < 1)

1. λ decreases from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005} for β0 = 0.5 to

β1 ∈ {0.1, 0.3, 0.45, 0.55} [i.e. Total Improvement (TI)].

2. λ increases from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1} for β0 = 0.5 to β1 ∈
{0.1, 0.3, 0.45, 0.55} [i.e. Partial Deterioration (PD)].

We noticed from the ARL tables that when the λ1 = λ0 and β1 = β0, the ARL value

is equal to the nominal value, i.e., 370. Note that here we are reporting ARL discussion

for α = 0.0027. However, the graphical presentation for some other choices of α is given

in Figure-A.1 of Appendix A, i.e., Section-3.7. We examine the control chart’s detection

performance, varying one parameter as the other one is held fixed.

Case A-1 (PI-IHR) a decrease in λ: When the system improves, the effect should

be reflected by decrease in λ, i.e., the system fails occasionally. However, in case of two or

more parameters families, the behavior (i.e., related to improvement or deterioration) is

also dependent on the other parameters, e.g. the shape, location or both parameters. Since

the Weibull distribution is a two parameters distribution, we fixed the shape parameter

β0 = 1.5 (for in-control process) while β1 ∈ {1, 1.2, 1.5, 2} to represent an out-of-control

situation. The rate parameter shifts from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005}.
This situation can be labeled as a partial improvement (PI) because β > 1 and the rate

parameter of the distribution is gradually decreasing, which will result into a decrease rate

of events’ occurrences. When the system partially improve, the practitioner is more gener-

ally concerned in the process improvement detection for its sustainability/maintainability,

and for this purpose, the upper-sided control chart is commonly used/employed. In Table-

3.4, we computed the ARL values for two-sided and upper-sided charts. The coefficient

of variation (CV) value is also reported without parentheses below the ARL (standard

deviation of the run length can be recovered by using the CV and the ARL values).

Some remarks are very clear from Table-3.4. The shift in the shape parameter has a

significant effect, and it is not robust as claimed in some previous studies, e.g. Borror and

Keats [2003]. As the size of a shift gets larger, the ARL values also increases, which is a

clear sign of its significant impact on the control chart performance. For β < 1.5, the ARL
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values are smaller than the case of β > 1.5. For fixed β, the shift in the rate parameter,

i.e. λ, is detected very quickly; however, the detection of a shift with two-sided chart

is quicker than the upper-sided chart. We also studied the average length of inspection

(ALI) properties and noticed that this measure is not scale free. Therefore, we are only

reporting the CV values, here. For small to moderate shifts, the CV values of the ARL

are smaller than ALI. The CV value also gradually decreases as the size of the shift in

the rate parameter increases. Some selected graphical presentations of this are given in

Figure-3.1.

Case A-2 (TD-IHR) an increase in λ: This is an important case because it

detects process deterioration. When λ increases (with β > 1) from its nominal value, we

expect a process/system would fail more frequently. This situation can be named as a

total deterioration (TD). In our study, we fixed the shape parameter β0 = 1.5 (for in-

control process) while β1 ∈ {1, 1.2, 1.5, 2} to represent out-of-control situation. The rate

parameter shifts from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}. We used the lower-sided

chart and further it was compared to the two-sided chart. To detect process deterioration,

the ARL values of the lower and the two sided charts have been tabulated in Table-3.5.

The ARL values for β < 1.5 in the first two columns are smaller as compared to the

case when we have β > 1.5. This conclusion is the same as noted in the case of process

improvement. Thus, again the effect of the shape parameter is very significant on the

control chart performance. As a shift in the rate parameter occurs, the lower-sided chart

outperforms than the two-sided chart. The CV values gradually decrease, as the size of a

shift in λ increases, which means that the out-of-control situations will be detected very

quickly with the Weibull chart. The graphical presentation of ARL is given in Figure-3.1.

Case B-1 (TI-DHR) a decrease in λ: It is a sign of system improvement if the

shape parameter β of the Weibull distribution is less than one. Moreover, if the rate

λ parameter also becomes small, i.e., λ1 < λ0, then such a situation can be labeled as

a total improvement (TI) (as the rate of occurrences for the renewal process is defined

as E(X)−1 and for the Weibull distribution it depends on both, i.e., the rate and the

shape parameters). Thus, here one needs to use an upper-sided control chart for the

improvement detection. For study purposes, we fixed the shape parameter β0 = 0.5 (for

in-control process) while β1 ∈ {0.1, 0.3, 0.45, 0.55} to represent out-of-control situation.

The rate parameter shifts from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005}. In Table-

3.6, we computed the ARL values for the two-sided and the upper-sided charts. The

coefficient of variation (CV) value is also reported without parentheses below the ARL

(standard deviation of the run length distribution can be recovered by using the CV and

ARL values).

From Table-3.6 (and Figure-3.2), it is clear that large-size shifts either in the shape or

rate parameter can be detected quickly. The two-sided chart is good to detect large-size

shifts in the shape parameter β. However, for small to moderate shifts, the upper-sided
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chart is efficient in the detection of shifts than the two-sided chart. For β > 0.5 and

λ = 0.0005, the ARL value is larger than the nominal standard, which is a sign that the

shape parameter significantly affects the control chart performance.

For fixed β, the CV values decrease with the occurrence of a shift in the rate parameter,

which means that the proposal is good to detect large size shifts. This conclusion is also

true for the case when the rate parameter is fixed and a shift occurs in the shape parameter

β. The proposal would take larger time/data points to detect shifts in the case of β > 0.5

than β < 0.5.

Case B-2 (PD-DHR) an increase in λ: In this case, we consider a situation where

β is less than one and event’s occurrence rate increases. Thus, a system will have some

deterioration, and we label this case as a partial deterioration (PD). For this purpose, we

fixed the shape parameter β0 = 0.5 (for in-control process) while β1 ∈ {0.1, 0.3, 0.45, 0.55}
to represent out-of-control situation. The rate parameter shifts from λ0 = 0.0005 to

λ1 ∈ {0.005, 0.01, 0.1}. The ARL study is conducted to study the chart performance, and

results are given in Table-3.7 (Figure-3.2).

For fixed λ, to detect a large shift in the shape parameter, the two-sided chart is

efficient while the lower-sided chart is appropriate for the detection of small to moderate

shifts. We also notice that the CV values are less than one for large size shifts and are

close to one for small to moderate shifts. Therefore, the proposal chart is good to detect

large shifts. When the process is in-control, i.e., λ1 = λ0 and β1 = β0, the ARL value is

equal to the nominal value, i.e., 370. But if β1 > β0 and λ1 = λ0, the ARL values are

greater than 370. Thus, we suggest to consider either unbiased design of ARL or different

sensitizing rules to improve the control chart performance.

3.4.4 EQL and RARL for the Weibull chart

To assess the overall performance of the control charts, the expected quadratic loss (EQL)

and relative average run length (RARL) are commonly used measures. EQL (Ou et al.

[2012]) evaluate the expected loss due to poor quality. It can be described as the weighted

average of the ARL over a range of shifts, i.e., θmin < θ < θmax with the weight θ2, where

θ is general notation, which may denote a shift in the shape or rate parameter.

EQL(.) =
1

θmax − θmin

∫ θmax

θmin

θ2ARL(θ) dθ (3.3)

In Equation-3.3, we considered the uniform distribution of the shifts; however, this distri-

bution can be any other distribution. A general equation of EQL can be written as given

below:

EQL(.) =

∫ θmax

θmin

θ2ARL(θ)f(θ) dθ (3.4)
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where f(θ) is a distribution of the shifts. For the joint monitoring of shifts in rate and

shape parameters of the Weibull distribution, one can write the EQL equation as follows:

EQL =

∫ λ∗max

λ∗min

∫ β∗
max

β∗
min

λ∗2β∗2ARL(β∗, λ∗)f(λ∗)f(β∗) dλ∗dβ∗ (3.5)

A chart with minimum EQL is considered to be a standard chart. Similarly, the RARL

is defined as the integration of the ratio of ARL of the specific and existing charts over a

range of shifts.

RARL(.) =
1

θmax − θmin

∫ θmax

θmin

ARL(θ)

ARLspecific(θ)
dθ (3.6)

For the specific chart RARL = 1 while for other charts’ RARL > 1 which implies that the

performance of the specific chart is mediocre as compared to existing chart. The general

equation for any distribution of the shift is given below (Equation-3.7):

RARL(.) =

∫ θmax

θmin

ARL(θ)

ARLspecific(θ)
f(θ) dθ (3.7)

RARL(.) =

∫ λ∗max

λ∗min

∫ β∗
max

β∗
min

ARL(λ∗, β∗)

ARLspecific(λ∗, β∗)
f(λ∗)f(β∗) dλ∗dβ∗ (3.8)

These types of performance measures have been considered many authors in literature,

e.g. see Ou et al. [2012], Shamsuzzaman and Wu [2012] and Chan et al. [2000], and

references cited therein.

Table 3.8: EQL and RARL estimation at different false alarm probability

EQL RARL
ARL0 Lower- Upper- Two- Lower- Upper- Two-

Sided Sided Sided Sided Sided Sided
20,000 0.494749 16.93226 1.05824 17.3723 98.1932 22.18
2000 0.219303 16.51073 0.229966 5.05194 75.2284 7.79427
740.74 0.21592 16.28782 0.217552 2.70819 65.3263 4.17344
370.37 0.215468 16.11149 0.215912 1.84688 58.4179 2.70819
200 0.215352 15.93651 0.215491 1.42448 52.2782 1.91887

The EQL and RARL with λ0 = 0.0005 and β0 = 1.5 have been numerically computed

using the statistical software R, R Core Team [2013], considering a uniform distribution

for both shifts over the range of [0.00005 < λ < 0.5] and [0.5 < β < 2.5]. The choice

of uniform distribution has been done purely illustrative purposes, and one can consider

some more realistic distributions for shifts. We compared the exponential chart to the

Weibull chart. Both the EQL and RARL have a decreasing trend with the increase of the

false alarm probability (Table-3.8), and the Weibull chart is superior to the counterpart

according to the RARL index.
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3.5 Effect of Parameters Estimation on ARL

In the traditional quality control setup, the parameters are assumed to be known, i.e.,

an engineer has knowledge about the system including the parameters. However, outside

this engineering box, most researchers and practitioners, have little knowledge about

the system so that the assumption of known parameters is difficult to fulfil. When the

parameters are unknown or unspecified, these should be estimated from reference data

or Phase-I data. A comprehensive overview of the effect of parameter estimation is given

by Psarakis et al. [2014]. Here, to see the effect of estimation on ARL, we examine two

estimation methods, namely the maximum likelihood and the Bayesian method. Here we

are reporting only results while the derivations can be seen in Appendix B (cf. Section-

3.7).

Case I- Maximum Likelihood estimation: The maximum likelihood method is

the most commonly used method, and it has very nice properties, e.g. invariance property,

asymptotic efficiency, etc. To estimate parameters with the maximum likelihood method,

some necessary derivations are given in the Appendix B (cf. Section-3.7). When the

parameters are estimated using the ML method, we have Table-3.9, while Table-3.12 is

devoted to the ARL with estimation effect.

Table 3.9: MLE Estimation with β0 = 1.5 and λ0 = 0.0005

Sample Size β̂ Shift in β λ̂ Shift in λ
n = 30 1.63 1.086667 0.00042 0.840000

(0.232667) (0.000050)
n = 60 1.519768 1.013179 0.000487 0.974000

(0.152778) (0.000044)
n = 100 1.545705 1.030470 0.000504 1.008000

(0.120719) (0.000034)
n = 150 1.5410593 1.027373 0.000494 0.988000

(0.098105) (0.000028)
n = 300 1.50314 1.002093 0.000507 1.014

(0.050815) (0.000008)

Case II: Bayesian estimation: Bayesian methodology is the most comprehensive

way of combining current state of knowledge with the prior information available about

phenomena, which are summarized by posterior distribution with the help of Bayes the-

orem. However, for parameter estimation in Bayesian, the choice of an appropriate loss

function plays an important role, and it is very reliant on the phenomena under study.

Many researchers believe that loss function is part of the problem or phenomena, but most

of the time it is extremely difficult to find appropriate loss function, hence analysts prefer

to use well known square error loss function. Serel [2009] highlighted various important

aspects of loss functions. Here, for general purpose, we are comparing eight different loss
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functions named as squared error loss function (SELF), weighted squared error loss func-

tion (WSELF), modified squared error loss function (MSELF), squared logarithmic loss

function (SLLF), entropy loss function (ELF), K- loss function (KLF), precautionary loss

function (PLF) and the Degroot loss function (DLF). Table-3.10 shows the estimators of

θ under various loss functions (LF) while the numerical procedure to evaluate them in

given in Appendix B (cf. Section-3.7).

Table 3.10: Best decision functions d for estimating θ under various loss functions

LF Mathematical Form Form of d∗ Posterior Risk
SELF (θ − d)2 E(θ|x) V ar(θ|x)

WSELF (θ−d)2
θ

(E(θ−1|x))−1 E(θ|x)− E−1(θ−1|x)
MSELF

(
1− d

θ

)2 E(θ−1|x)
E(θ−2|x) 1− E2(θ−1|x)

E(θ−2|x)
SLLF (log θ − log d)2 exp(E(log θ|x)) V ar(log θ|x)
ELF d

θ
− log d

θ
− 1 (E(θ−1|x))−1 E(log θ|x) + log(E(θ−1|x))

KLF
(√

d
θ
−
√

θ
d

)2 √
E(θ|x)
E(θ−1|x) 2[

√
E(θ|x)E(θ−1|x)− 1]

DLF (θ−d)2
d2

E(θ2|x)
E(θ|x)

V ar(θ|x)
E(θ2|x)

PLF (θ−d)2
d

√
E(θ2|x) 2[

√
E(θ2|x)− E(θ|x)]

The samples of sizes 30, 60, 100, 150, 300, 500, 700, 1000, 1500 and 2000 are considered

from a Weibull distribution with parameters λ = 0.0005 and β = 1.5, using the different

loss functions for the Bayesian estimation. To get an idea of the effect of the different loss

functions, in Table-3.11 we have reported the Bayesian estimates, their posterior risk and

the “shift”, that is, the ratio between the estimated value of the parameter and the true

value. We may observe that DLF and PLF are unsuitable for analysis because they have a

high value of posterior risk as compared to the other loss functions. The hyperparameters

value’s for the rate parameter λ are such that the mean of prior distribution is greater

or equal to three times its variance, while for the shape parameter, hyperparameters are

considered such that the prior distribution has variance less than 0.1, i.e., very informative

prior. The following steps have been followed for the computation of ARL:

1. Select a sample size (say n).

2. Choose a very large m to repeat the process of calculation (we used m = 100000).

3. Generate a sample of selected size n, find the MLE and the Bayes estimates (i.e.,

at each iteration of m, MLE is obtained by satisfying the stopping criteria, i.e.,

0.00000001 while Bayes estimates using the information given in Appendix-B, Section-

3.7), and compute the ARL using the estimated parameters.

The effect of estimation on the control chart performance is multidimensional because

it is not only a result of the accuracy and precision of parameter estimates, but also of
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Table 3.12: ARL comparison based on the MLE and Bayes method using α = 0.0027 for
the lower, upper and two-sided Weibull charts.

Method MLE Bayes
Sample Size Two-SidedUpper-SidedLower-Sided Two-Sided Upper-SidedLower-Sided

30 ARL 1778.4870 1743.0491 987.4395 2249.1078 3674.4069 1234.1535
(1779.87) (1743.0491) (986.9394) (2248.6073) (3673.9068) (1233.6529)

CV 0.9972 1.0 0.9995 0.9979 0.9993 0.9979

60 ARL 709.3625 1400.1993 553.1646 1933.3382 3372.2518 1136.3468
(708.8623) (1400.1943) (552.6644) (1932.8381) (3371.7518) (1135.8467)

CV 0.9993 0.9999 0.9991 0.9997 0.9999 0.9996

100 ARL 534.7478 965.4525 463.4751 971.1008 1206.0304 691.1763
(534.2476) (964.9523) (462.9748) (970.6007) (1205.5303) (690.6761)

CV 0.9991 0.9995 0.99989 0.9995 0.9996 0.9993

150 ARL 469.7063 614.2744 427.5369 476.3881 543.2111 413.0249
(469.2059) (613.7742) (427.0367) (475.8878) (542.7108) (412.5246)

CV 0.9989 0.9992 0.9988 0.9989 0.99908 0.9988

300 ARL 416.6861 460.8013 397.6209 408.0156 447.1089 385.1683
(416.1858) (460.3010) (397.1206) (407.0127) (446.3073) (384.0327)

CV 0.9988 0.9989 0.9987 0.9975 0.9982 0.9971

500 ARL 396.5640 418.5591 385.9183 388.0156 398.1090 375.1683
(396.0637) (418.0588) (385.4180) (387.0127) (397.0729) (374.0367)

CV 0.99874 0.9988 0.9987 0.9974 0.9974 0.9969

700 ARL 390.0456 404.7264 382.1929 378.1043 390.1256 373.0459
(389.5453) (404.7264) (381.6926) (377.1253) (389.1675) (372.4051)

CV 0.9987 0.9988 0.9987 0.9974 0.9975 0.9983

1000 ARL 383.5246 393.4354 378.1595 376.4287 385.6921 372.5679
(383.0243) (392.9351) (377.6592) (375.4081) (384.0621) (372.0121)

CV 0.9987 0.9987 0.9987 0.9973 0.9958 0.9985

1500 ARL 379.0529 385.4103 375.4691 374.0565 379.1487 371.9874
(378.5526) (384.9099) (374.9688) (373.5061) (378.4173) (370.0987)

CV 0.9987 0.9987 0.9987 0.9985 0.9981 0.9949

2000 ARL 376.8916 381.6237 374.1894 372.4629 378.1090 371.0863
(376.3913) (381.1234) (373.6890) (371.0427) (373.2092) (370.0326)

CV 0.9987 0.9987 0.9987 0.9962 0.9978 0.9972

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



67

50
0

15
00

Two−Sided Chart

Sample Size

A
R

L

30 60 100 150 300 500 700 1000 1500 2000

Lines

MLE
Bayes
Known

50
0

15
00

Sample Size

S
D

R
L

30 60 100 150 300 500 700 1000 1500 2000

Lines

MLE
Bayes
Known

0.
99

5
0.

99
8

Sample Size

C
V

R
L

30 60 100 150 300 500 700 1000 1500 2000

Lines

MLE Bayes Known

(a) Estimation effect on Two-Sided chart
for MLE versus Bayes

50
0

20
00

35
00

Upper−Sided Chart

Sample Size

A
R

L

30 60 100 150 300 500 700 1000 1500 2000

Lines

MLE
Bayes
Known

50
0

20
00

35
00

Sample Size

S
D

R
L

30 60 100 150 300 500 700 1000 1500 2000

Lines

MLE
Bayes
True

0.
99

5
0.

99
8

Sample Size

C
V

R
L

30 60 100 150 300 500 700 1000 1500 2000

Lines

MLE Bayes True

(b) Estimation effect on Upper-Sided
chart for MLE versus Bayes

40
0

80
0

12
00

Lower−Sided Chart

Sample Size

A
R

L

30 60 100 150 300 500 700 1000 1500 2000

Lines

MLE
Bayes
known

40
0

80
0

12
00

Sample Size

S
D

R
L

30 60 100 150 300 500 700 1000 1500 2000

Lines

MLE
Bayes
Known

0.
99

4
0.

99
7

1.
00

0

Sample Size

C
V

R
L

30 60 100 150 300 500 700 1000 1500 2000

Lines

MLE Bayes Known

(c) Estimation effect on Lower-Sided chart for MLE
versus Bayes

Figure 3.3: Sample size requirement to minimize the effect of estimation on the Weibull
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the choice of the design parameter and of the size of a shift to be detected. In Table-3.12,

or Figure-3.3, we have reported the estimated ARL obtained as an average over the m

samples, along its sample standard deviation and CV. The estimated ARL should be close

to its (true) nominal value of 370.37. The ARL estimated from the Bayesian method is

larger than that obtained from the MLE for the smaller sample sizes. As the sample size

increases, the Bayesian methodology starts to do better than the MLE on the CV. Thus,

for small sample sizes the Bayesian estimates should be used with care (because of a

possibly adverse effect of a bad choice of hyperparameters). Table-3.12 or Figure-3.3 may

also suggest the phase-I sample size required to attain the nominal ARL, which is between

1000 and 1500 for the MLE and between 700 and 1000 for the Bayesian estimator.

To see the estimation effect, we compared the relative estimation error or %deviation.

The relative estimation error is defined as the difference between the true parameter

and its estimated value divided by the true value, i.e., %deviation= 100 × (Known −
Estimated)/Known. Thus, we have obtained the results (for the two-sided chart at

the sample of size n = 700) %deviation= 100 × (MLE − Known)/Known = 5.04, and

%deviation= 100× (Bayes−Known)/Known = 2.05. Thus, the %deviation for the Bayes

estimates is less as compared to the MLE. This also signify the usefulness of the Bayesian

methodology.

3.6 Applications

We present an illustrative example about the proposed chart by using the terminologies

as suggested by Chan et al. [2000] in this section.

A radar speed is an electronic device that is used to measure the speed of moving

objects. It is used in law-enforcement to measure the speed of moving vehicles and is

often used in professional spectator sport, for such things as the measurement of the

speed of pitched baseballs, runners and tennis serves. A radar speed gun is a Doppler

radar unit that may be hand-held, vehicle-mounted or static. A radar speed gun should

be efficient in the detection of true over-speeding as compared to false alarm. False alarms

can occur; however, due to the large number of devices, such as automatic door openers

(such as the ones at supermarkets) and adaptive automotive cruise control, that operates

in the same part of the electromagnetic spectrum as radar guns.

Since, the speed of each moving object is considered independent of others, thus,

radar speed gun is a good example of the renewal process. A study of the detection

ability of over-speeding, i.e., to differentiate between true and false alarm over speeding,

has been designed by considering the Weibull distribution for time-between-events. For

this purpose, we generated fifteen observations from the in-control process with β = 1.5

and λ = 0.0005 while the next 8 observations by using β = 1.8 and λ = 0.05, and the
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last 7 observations from β = 1.2 and λ = 0.0001. The resulting data set is given in

Table-3.13, where X denotes time in second between the detection of faults (i.e., over-

speed events) using the speed gun. The value of the false alarm probability has been

assigned as α = 0.0027 to design a two-sided control chart. For these specifications, we

have: Lower limit-ln(LCL) = 3.196252, Central limit-ln(CL) = 7.356561 and Upper limit-

ln(UCL) = 8.859721. The natural logarithm of the data (cf. Table-3.13) and of the control

limits is taken for a better presentation of the chart. The lower control limit for a single

limit Weibull chart is ln(LCL) = 3.658801. For comparison purposes, the exponential

chart has also been constructed, with ln(LCL) = 0.891371, ln(CL) = 7.131833 and

ln(UCL) = 9.386574. Note that the control limits for the exponential chart have been

derived assuming an exponential distribution with the same expectation of the Weibull.

For example, by assuming λ = 0.0005 and β = 1.5, the mean of the Weibull distribution is

1805.491. Thus, we obtain the rate parameter λ = 0.000554 of the exponential distribution

by solving 1
λ
= 1805.491. The graphical presentation of the chart is given in Figure-3.4.

A cumulative probability control (CPC) chart has also been designed using the Weibull

distribution and results are given in the last column of Table-3.13.

For the above specifications and computed control limits, Table-3.13 contains a hy-

pothetical data set for monitoring and implementation of Weibull chart. In Table 3.13,

’i.c’, ’im.’, and ’o.c’ stand for ’in-control’, ’improved’, and ’out-of-control’, respectively, as

defined by Chan et al. [2000]. It is clear from Table-3.13 and Figure-3.4 that using our

proposal an out-of-control signal is detected efficiently as compared to the exponential

chart. Using the CPC chart the conclusion is almost similar except for sample numbers

21 and 24 where Weibull chart has marked them in-control observations while with CPC

chart, sample number 21 is out-of-control (deteriorated) and 24 is improved. Note that

this discrepancy is probably due to rounding up on the probability scale. The CPC and

the TBE charts must give the same result, because the one is obtained as a monotone

transformation of the other. In Figure-3.4 we plotted black ′∗′s to represent in-control

observations, red circles • for process deterioration and blue filled triangles △ for the pro-

cess improvement. The vertical line at the sample number 15 indicates the change from

in-control to out-of-control. It is clear from Figure-3.4 that the Weibull charts detects

over-speeding more efficiently than the exponential chart.

In the rest of this section we have re-examined four existing case studies on real data with

our proposed methodology. In the first three ones there is no phase-I sample, therefore we

use in-sample estimates of the Weibull parameters to set up the control chart and monitor

the data retrospectively, just to highlight differences in detection ability with respect to

the previously used charts. Then it will be the task of the quality engineer to inspect

out-of-control signals and decide which ones are to be retained for the estimation sample.
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Table 3.13: Inspection of the over-speeding Process

Sample X log of Indication Cumulative
# X Probability
1 1340.45480 7.200764 >LCL i.c. 0.422298
2 4945.24666 8.506182 >LCL i.c. 0.979516
3 810.16855 6.697242 >LCL i.c. 0.227266
4 3101.73864 8.039718 >LCL i.c. 0.855049
5 341.21877 5.832524 >LCL i.c. 0.068044
6 1320.22008 7.185554 >LCL i.c. 0.415104
7 2855.82146 7.957115 >LCL i.c. 0.818461
8 877.76561 6.777380 >LCL i.c. 0.252299
9 3129.40554 8.048598 >LCL i.c. 0.858755
10 2112.02827 7.655404 >LCL i.c. 0.662161
11 1444.51715 7.275530 >LCL i.c. 0.458719
12 3786.18889 8.239115 >LCL i.c. 0.926075
13 792.63814 6.675367 >LCL i.c. 0.220808
14 2406.01341 7.785726 >LCL i.c. 0.732725
15 683.47965 6.527197 >LCL i.c. 0.181086
16 16.12755 2.780529 <LCL o.c. 0.000724
17 20.43008 3.017008 <LCL o.c. 0.001032
18 15.65355 2.750698 <LCL o.c. 0.000692
19 19.39071 2.964794 <LCL o.c. 0.000954
20 15.53536 2.743118 <LCL o.c. 0.000684
21 32.41899 3.478744 >LCL i.c. 0.002062∗
22 20.92817 3.041096 <LCL o.c. 0.001069
23 20.15432 3.003419 <LCL o.c. 0.001011
24 6813.59698 8.826675 <UCL i.c. 0.998142∗∗
25 1913.52687 7.556703 <UCL i.c. 0.607748
26 7171.13431 8.877819 >UCL im. 0.998875
27 8100.56679 8.999689 >UCL im. 0.999712
28 1383.17086 7.232134 <UCL i.c. 0.437370
29 8186.35518 9.010224 >UCL im. 0.999747
30 10853.47681 9.292241 >UCL im. 0.999997

In the fourth case-study, a phase-I sample has been assumed instead.

3.6.1 Case Study-1

Using the data set given by Chan et al. [2000], we established a chart based on the

Weibull distribution. With the help of Kolmogorov-Smirnov test, we found distance

D = 0.08081 and p-value = 0.8875 based on simulation because the parameters of the

Weibull distribution have been estimated from the data. Hence, TBE data are Weibull

distributed. The estimated parameter values from the data set are λ̂ = 0.000541 and

β̂ = 2.386482 while standard errors are 0.000034 and 0.274314, respectively. For the

exponential distribution, we have λ̂ = 0.000611 with standard error 0.000088. Thus, for

the Weibull distribution, we have LCL = 116.000132, CL = 1585.273981 and UCL =

4077.786333 respectively at α = 0.0027 and LCL = 719.910558, CL = 1585.273981

and UCL = 2621.686928 respectively at α = 0.2. For the exponential chart, we have,

LCL = 2.210985, CL = 1134.447104 and UCL = 10814.48558 respectively at α = 0.0027

while LCL = 172.439469, CL = 1134.447104 and UCL = 3768.551707 respectively at
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Figure 3.4: Weibull Quantity Control Chart for Radar Speed Gun

α = 0.2. Chan et al. [2000] concluded that there is no indication that the process is an

out-of-control even for α = 0.2. But in our case, with α = 0.2, six values, i.e., 262.53,

445.65, 500.5, 525.4,600.1 and 644.99 are out-of-control (cf. Figure-C.1 given in Appendix

C, i.e., Section-3.7) while for α = 0.0027 the performance of both charts, i.e., the Weibull

and the exponential charts, is the same. Hence, our proposed methodology proves more

sensitive to out-of-control situations.

3.6.2 Case Study-2

Chen [2014] provided the number of hours between failures for the last 20 failures of an

important valve. The time between failures data are right skewed and therefore not nor-

mally distributed. Using the Kolmogorov-Smirnov test and computing the p-value from

simulation, we found D = 0.1108 and p− value = 0.9431. To apply the proposed control

scheme to monitor the failure data, we have λ̂ = 0.001408 with standard error 0.000315

based on the exponential distribution while λ̂ = 0.001548 and β̂0 = 0.827572 with stan-

dard errors 0.000439, 0.147769, respectively, based on the Weibull distribution. Further,
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suppose that α = 0.0027 and for this we have LCL = 0.220298 for the Weibull chart while

LCL = 0.959215 for the exponential chart. Thus, both charts, neither the exponential

nor the Weibull chart signalled an alarm, which leads us to the same conclusion as Chen

[2014] that the failure mechanism of this valve is in-control.

3.6.3 Case Study-3

Santiago and Joel [2013] considered a data set of a large hospital system concerned with

a very high rate of hospital-acquired urinary tract infections (UTIs). Specifically, the

hospital would like to track the frequency of patients being discharged who had acquired

a UTI, and to quickly identify an increase in infection rate or, conversely, monitor whether

material changes result in fewer infections or not. They considered data set of days in

between discharge of males patients in nosocomial urinary tract infections. The parameter

of the exponential distribution is estimated 4.755961 with 0.647204 standard error. Using

the Weibull, we have λ̂ = 4.677767 and β̂ = 1.040100 with standard errors 0.646299 and

0.108493 respectively. For the exponential chart, we have LCL = 0.000284 and UCL =

1.387734 while for the Weibull chart, we have LCL = 0.000373 and UCL = 1.313386,

respectively. Hence, it is evident from these limits that the data do not show any signs

of process degradation or improvement. However, the established chart can be used to

detect such changes as quickly as possible in future.

3.6.4 Case Study-4

This data set is taken from Jarrett [1979] and has recently been used by Yang et al.

[2015a,c] to develop unbiased design of the exponential and gamma charts. The data

set is about the time intervals in days between explosions in coal mines from 15 march

1851 to 22 March 1962. There are total 190 observations and Yang et al. [2015a] con-

sidered first 30 observations as a phase-I to estimate the rate parameter of the exponen-

tial chart. Therefore, for comparison purpose, we are also considering first 30 observa-

tions to estimate the parameters of the Weibull distribution with false alarm probability

α = 0.002703. The estimated parameters of the Weibull distribution with standard devi-

ation (given in parentheses) using first 30 observations are: λ̂ = 0.009439(0.000005) and

β̂ = 0.821536(0.012857), for the exponential distribution we have λ̂ = 0.008408(0.001535).

For comparison, the simple exponential and the corresponding ARL-unbiased exponen-

tial (cf. Yang et al. [2015a]) charts are also given in Figure- 3.5a. The control limits, i.e.,

LCL and UCL, of the two-sided charts are given as: (0.1608485, 785.7446) for the expo-

nential, (0.23, 884.5) for the ARL-unbiased exponential and finally (0.03411682, 1054.806)

for the Weibull chart. These control limits are used to monitor the later data, i.e., from

number 31 to 190 plotted in Figure-3.5a. In Figure-3.5a we have labelled the first 30 ob-
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servations as phase-I data while the rest as phase-II, a vertical line is used to differentiate

these two phases. There is a signal of process deterioration at the 80th sample number by

all charts. Ten sample points, 14, 134, 137, 151, 153, 156, 182, 187, 188, 189, fall outside

the upper control limit of a simple exponential chart while seven sample points, 134, 153,

156, 182, 187, 188 and 189, do the same with the ARL-unbiased exponential chart. With

our proposed Weibull chart, it is observed that six sample points, 134, 153, 156, 182 187

and 188, are above the upper-control limit. Therefore, the Weibull chart gives less alarm

than the exponential and ARL-unbiased exponential charts. After the first out-of-control

signal at the 80th sample point, there is no alarm during a long period, i.e., from 81 to

133. The first TBE observation above the Weibull UCL is on the 134th point and then

we start to observe more signal which all fall above the UCL. Therefore, it means that

the safety of coal-mining began to improve between 1900− 1920.

To diagnose the cause of an alarm and to decide which parameter has been shifted,

we suggest the use of the coefficient of variation of the Weibull distribution, which should

be calculated at every signal point, using all TBEs in the monitoring sample up to that

point. The rationale for doing this is that the CV of the Weibull distribution depends on

the shape parameter β only (i.e., E(X) = λ−1Γ(β−1 + 1), V ar(X) = λ−2{Γ(2β−1 + 1)−
Γ2(β−1 +1)} and CV =

√
Γ(2β−1+1)−Γ2(β−1+1)

Γ(β−1+1)
), so if it does not change after a signal, it is

likely that a shift as occurred in the rate parameter λ, whereas if the CV changes, then

the shift will be attributed to β. To get a first impression of this use of the CV, we have

produced Figure-3.5b, where we labeled the CV curve segments with the parameter which

is more likely to have shifted. We noticed that the shape parameter is shifting and our

previous conclusion ’that the safety of coal-mining began to improve between 1900−1920’

is supported by Figure-3.5b. Note that to estimate parameters of the Weibull distribution,

we excluded the 80th point because its value is zero and computation of the ML estimates

in case of the Weibull distribution are impossible with this value.

3.7 Some Final Remarks

The fundamental assumption of a Poisson process is that inter-arrival times are exponen-

tial distributed, which limits application to phenomena with constant hazard rate. Thus,

one needs to consider some more flexible processes than Poisson process. In this chapter,

we have proposed a new control chart for high-quality process monitoring based on the

renewal process, allowing for a general parametric family for the inter-arrival times’ dis-

tribution. This class includes not only the well-known Weibull distribution, but also the

exponential, the Rayleigh, the Pareto, the Burr type XII, the Gompertz and the linear

failure rate distributions. The expressions of LCL, UCL and ARL have been provided for

all distributions while a numerical study has been carried out on the Weibull distribution,
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Figure 3.5: Coal-mining Explosion Monitoring and Identification of Shifts

due to its application in different fields.

Different properties of WQCC have been investigated in-detail, including ARL, CVLI,

EQL and RARL. The effect of parameter estimation on the in-control run length has

been discussed in detail considering both the MLE and Bayesian estimation methods. A

similar work should be done to assess the effect of estimation on the out-of-control run

length distribution. To identify the shift, i.e., which parameter has been shifted after

getting an alarm/signal, we proposed the use of a coefficient of variation as it has been

illustrated in case study 4.

Since the new proposed control chart is the generalization of the existing exponential

cumulative quantity control chart, we believe that it will be more useful to monitor

complex reliability data.

In the next chapter, we extend TBE control charts to handle both the time and associ-

ated magnitude using the renewal reward process with a fixed threshold (cf. Chapter-4).
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Appendix

In this appendix, some additional plots and necessary derivations to estimates of the

unknown parameters of the Weibull distribution are given.

Appendix A: Additional ARL Plots

The graphical presentation of the ARL for α = 0.0001, β0 = 1.5 and λ0 = 0.0005 is given

in Figure-A.1 (cf. Section-3.4.3)

Appendix B: Estimation of the Weibull Parameters

In this appendix, some derivation details about the maximum likelihood and the Bayesian

method (cf. Section-3.5) are given to estimate unknown parameters of the Weibull distri-

bution.

Case I: Method of Maximum Likelihood (ML): The following are the likelihood

and log-likelihood equations for the Weibull distribution.

L(λ, β,x) = βn
n∏
i=1

xβ−1
i λnβ exp

(
−

n∑
i=1

(xiλ)
β

)
(B.1)

lnL(λ, β,x) = l(λ, β,x) = n ln β + (β − 1)
n∑
i=1

lnxi + nβ lnλ− λβ
n∑
i=1

xβi (B.2)

To obtain maximum likelihood estimators, the partial derivative with respect to λ is

∂l(.)

∂λ
=
nβ

λ
− βλβ−1

n∑
i=1

xβi = 0 =⇒ λ̂ =

[
n∑n
i=1 x

β̂
i

]1/β̂

The profile log-likelihood, i.e., after replacing the value of λ̂ is given by

lp(λ̂, β,x) = n ln β + (β − 1)
n∑
i=1

lnxi + n(lnn− 1)− n ln(
n∑
i=1

xβi ) (B.3)

∂lp(.)

∂β
=
n

β
+

n∑
i=1

lnxi −
n
∑n

i=1 x
β
i ln(xi)∑n

i=1 x
β
i

= 0

=⇒ 1

β
=

1

n

n∑
i=1

ln
1

xi
+

∑n
i=1 x

β
i ln(xi)∑n

i=1 x
β
i

= h(β)

We propose a simple iterative scheme to solve for β. Start with an initial guess of β(0),
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(a) Lower-sided ARL for β0 = 1.5
(TD-case)

(b) Upper-sided ARL for β0 = 1.5
(PD-case)

(c) Two-sided ARL for β0 = 1.5
(d) Lower-sided ARL for β0 = 0.5

(PI-case)

(e) Upper-sided ARL for β0 = 0.5
(TI-case) (f) Two-sided ARL for β0 = 0.5

Figure A.1: Plots of ARL for α = 0.0001 and λ0 = 0.0005
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obtain β(1) = h(β(0))−1 and proceeding in this way, obtain β(n+1) = h(β(n))−1. Stop the

iterative procedure, when |β(n+1) − β(n)| < ϵ, some pre-assigned tolerance limit.

Case 2: Bayesian Method: For the Bayesian estimation of the Weibull distribution,

let re-parameterized the density function by assuming ϕ = λβ and we have f(x, β, λ) =

βxβ−1ϕ exp(−ϕxβ)I(0,∞). Following the approach suggested by Joarder et al. [2011], it is

assumed that ϕ has a gamma prior Gamma(c, d); c, d > 0 while for β no specific form of

prior p(β) is assumed. However, it is only assumed that the support of β prior is (0,∞),

is independent of ϕ and log-concave density. We have the joint posterior distribution is

given as p(β, ϕ|x) ∝ βn exp(β(
∑n

i=1 lnxi))ϕ
(n+c)−1 exp(−ϕ(d +

∑n
i=1 x

β
i )) · p(β). Thus,

p(β|x) ∝ βn exp(β(
∑n

i=1 lnxi))

(d+
∑n

i=1 x
β
i )

n+c
× p(β) and p(ϕ|β,x) = Gamma(n+ c, d+

∑n
i=1 x

β
i ). We need

the following results for further development.

Theorem B.1 The conditional density function of β given data is log-concave.

Proof : Ignoring the additive constant, the posterior of β given data can be written as

ln p(β|x) ∝ n ln β + β
∑n

i=1 xi + ln p(β)− (n+ c) ln(d+
∑n

i=1 x
β
i ) and

∂ ln p(β|x)/∂β = n
β
+
∑n

i=1 ln(xi)−
(n+c)

∑n
i=1 xi lnxi

d+
∑n

i=1 x
β
i

+ ∂ ln(p(β))
∂β

.

Thus, it is log-concave.

Note that we used gamma distribution as a prior for the shape parameter, i.e., p(β). A

simulation based consistent estimate of E[g(β, λ)] = θ can be obtained using following

steps:

1. Generate β from p(β|x) using the method suggested by Devroye [1984].

2. Generate ϕ from p(ϕ|β,x).

3. Repeat Step 1 and Step 2 and obtain (βi, ϕi) for i = 1, 2, · · · ,M .

4. Obtain λi from step 3, i.e., (βi, λi = ϕ
1/βi
i ).

5. An approximate Bayes estimate of θ under the squared error loss function can be

obtained by

θ̂ = ĝB(β, λ) =
1

M

M∑
i=1

θi

Similarly, the Bayes estimates for other loss functions can be computed with the help of

the above algorithm.

Appendix C: CQC and CPC charts for Case Study-1

The CQC and CPC charts of the Case Study-1 (cf. Section-3.6) at α = 0.0027 and α = 0.2

false alarm probabilities:

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



78

2
4

6
8

Failure #

lo
g(

T
B

E
)

0 4 8 12 16 20 24 28 32 36 40 44 48

Failure Monitoring

log(TBE)
LCL−Exp
UCL−Exp
LCL−WE
UCL−WE

(a) Cumulative Quantity Plot at α = 0.0027

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

Failure #

lo
g(

T
B

E
)

0 4 8 12 16 20 24 28 32 36 40 44 48

Failure Monitoring

log(TBE)
LCL−Exp
UCL−Exp
LCL−WE
UCL−WE

(b) Cumulative Quantity Plot at α = 0.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Failure #

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0 4 8 12 16 20 24 28 32 36 40 44 48

Failure Monitoring

LCL
UCL
CP−Exp
CP−WD

(c) Cumulative Probability Plot at α = 0.0027
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(d) Cumulative Probability Plot at α = 0.2

Figure C.1: Control Charts for the Case Study-1 at various False Alarm Probabilities
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Chapter 4

Monitoring the Time and Magnitude

based on the Renewal Reward

Process with a Fixed Threshold

In Chapter 3, we proposed a high-quality chart to monitor TBE based on the renewal

process. In this chapter, we extend Chapter 3 and propose a new control chart for the joint

monitoring of time and magnitude based on the renewal reward process. Existing charts to

monitor such scenarios are based on the assumptions of the marked Poisson process which

are not suitable to handle complex monitoring, i.e., proportional changes in time and

magnitude which especially occur in reliability (damage) engineering. Particularly, we are

considering two cases for reward/magnitude; (i) magnitude is cumulative over time and,

(ii) magnitude is non-cumulative or independent over time. Therefore, our proposal is

not only a generalization of the existing charts, but also suitable for complex monitoring.

Some comparison studies are also conducted in this chapter to show the flexibility of our

proposal.

4.1 Motivation

Traditional TBE charts considered the time intervalX between the occurrences of an event

by completely ignoring the magnitudeM (or frequency F ) attached to the particular time

point (cf. Chapter 2-3). However, there are many real applications where the time as

well as the magnitude is very important and ignoring one of them leads to misleading

conclusions. The M or F may be the amount of loss or the number of items incurred by

the occurrence of a particular event, and in turn determines the severity of the event. For

example, a task team to control the infectious disease like bird flu (malaria prevention and

elimination) must be enhanced not only when the outbreaks of this infection become very

frequent, but also when the number of poultry (people) infected in each outbreaks get
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very high. Similarly, the loss of market competitiveness of an aged product is indicated

not only by the decreased number of purchase order, but also by the decreased number of

items in each order. The fire department must be well equipped not only after a specific

time period or when the outbreaks become very frequent, but also when the average

damaged caused by each outbreak gets very high. Similarly, the traffic police must be

enhanced in terms of capacity when the number of deaths increases in traffic accidents.

In the textile industry, a printing machine should be replaced not only when it frequently

stops working, but also when it prints large pieces of defected cloth.

Usually, there are two types of events in the above reported cases: negative ones and

positive ones. A negative event may be the failure of a system, a traffic accident, an

outbreak of infection or rejection of a product lot; whilst a positive event may refer to the

success of a program, the arrival of a customer or control of an infection in the population,

etc. Consider the random times where we are interested in the magnitude/damage caused

by the occurrence of each event, e.g., people affected by the earthquake (alternatively

magnitude of the earthquake), area (of land) affected by the earthquake or flood, etc. In

each of such situations, both the magnitude/damage and the TBE are random variables,

and will be denoted byM and X, respectively. Note that this procedure of collecting data

is different from the traditional sampling approach where a constant sampling interval is

used to develop traditional control charts. One can consider this method as similar to the

event sampling, i.e., records every occurrence of certain pre-determined events.

The existing time and magnitude control charts (cf. Section-2.2.3 and 2.5.2) are based

on the marked Poisson process (though the authors did not mention it explicitly) that

worked well in somehow simple problems. For example, the rate chart does not react

timely if there are proportional changes in time and magnitude. This happens because

the ratio ofM/X stays constant. Moreover, there are certain situations where magnitude

is not directly observable. Therefore, to deal such complex situations, the existing time

and magnitude charts have poor performance. It is to be noted that the basic assumption

of a marked Poisson process is that inter-arrival times are exponentially distributed, which

limits application to phenomena with constant hazard rate. Hence, one needs to consider

some more flexible processes than a Poisson process.

In this chapter, we propose a control chart to monitor the TBE, X, and magnitude,

M , based on the renewal reward process where any lifetime distribution for the time and

magnitude can be considered. Therefore, our proposal is not only a generalization of the

existing charts, but also suitable for complex monitoring, i.e., when damage is not directly

observable. We quote here some motivational examples from such complex fields:

Example 1: Boxing In a boxing fight, a knockout may be caused either by a series of

small to moderate punches or just by a really big punch. Each player has its own

critical threshold after which he wins or loses. The real challenge is how to differ-
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entiate either match is fixed or genuine one. Similarly the decision and monitoring

of the effect of physical or mental training on the player’s performance, is of a great

interest.

Example 2: Fatigue, tenacity (Gut and Hüsler [2010]) A material, for example, a

rope or a wire, can break either because of the cumulative effect of “normal” loads

after a certain time period or because of a sudden big load, e.g., coat hanger. The

potential threat to such material is to determine critical time and how to sort out

faulty material with respect to material capacity.

Example 3: Environmental damage (Gut and Hüsler [2010]) There are environ-

mental protocols, which must be followed and ensured by each factory before releas-

ing wastage. A factory may leak poisonous waste products into a river; however,

after some time the vegetation and the fish in the river are dead due to cumulative

effect of poison. Alternatively, they might be killed because of some catastrophe in

the factory that, instantaneously, pours a huge amount of waste into the river.

Example 4: Doping test The use of banned performance-enhancing drugs in sports

is commonly referred to as doping particularly by the organizations that regulate

sporting competitions. The use of drugs to enhance performance is considered

unethical by most international sports organizations, including the International

Olympic Committee, although ethicists have argued that it is not different from the

use of new materials in the construction of suits and sporting equipment, which can

also aid performance and give competitors an unfair advantage. To test whether a

player has used banned drug or not, blood and urine samples of the player are taken.

However, some certain elements which are banned might be present in some other

medications. Therefore, results from the blood and urine tests would be positive

if the player is using any medicine, which includes that particular elements of the

banned drugs. Thus, there could be two types of effects from banned drugs on a

player’s health, i.e., cumulative and independent. Since every element in the human

blood has a certain threshold and if any un-natural treatment is taken to enhance

the performance would simply increase the ratio of particular cells. To test whether

it is a natural presence of the particular element or an un-natural is a big question

which modern sport industry is facing.

Note that a failure of a system or unit is generally categorized into two failure modes:

catastrophic failure, in which the system or unit fails by some sudden shock or damage,

and degradation failure, in which the system fails by physical deterioration suffered from

some reward or damage. In this study we shall assume that both the X and M are

independent; however, these could be dependent in some application. The rest of the

study is organized as follows: Section 4.2 deals with some definitions about the renewal,
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renewal reward and damage processes. Discussion about the compound Poisson process,

which is a special case of the renewal reward process, is given in Section 4.3. The control

chart construction and a numerical study of performance measures, are given in Section

4.4. Control charts based on the nonhomogeneous Poisson process (NHPP) are discussed

in Section 4.5. The implementation of the proposals in the real-life situations, is given in

the Section 4.6. Finally, we conclude the chapter in Section 4.7.

4.2 Cumulative and Independent Processes

In this section, we shall introduce some necessary definitions and derivations that are

required for the development of time and magnitude charts. We denote N(t) as a renewal

process while Xi TBE and Mi as a reward associated with Xi for i ≥ 1. A fundamental

characterization of the Poisson process is given in Theorem-1.1.3. However, it is interesting

to note that the points of a Poisson process might be labeled with some extra information.

Such kind of a process is known as marked Poisson process in literature. The formal

definition is given below:

Definition 4.2.1 Suppose that X1, X2, · · · , are the waiting times of the Poisson process,

and M1,M2, · · · are independent random variables denoting the outcome of an associated

random variable, the mark, having a common distribution function G. The sequence of

pairs (X1,M1), (X2,M2), · · · is called a marked Poisson process.

Definition 4.2.2 A counting process {N(t), t ≥ 0, t ∈ T} with independent and iden-

tically distributed (iid) inter-arrival times X1, X2, · · · with a common distribution F is

called a renewal process.

Definition 4.2.3 Let Mi denote the reward (such as damage, wear, fatigue, cost or risk)

that is attached with each inter-arrival times Xi, i.e., there is a associated renewal counting

process N(t) = sup{n ≥ 0, Sn ≤ t} where Sn =
∑n

i=1Xi with S0 = 0, for i ≥ 1. If

the sequence of pairs (Xi,Mi) for i = 1, 2, · · · is independent and identically distributed

(might be dependent), then the stochastic process Y (t) =
∑N(t)

i=1 Mi is called a renewal

reward process.

Therefore, the renewal reward process is a generalization of the marked Poisson process.

There are various names of the renewal reward process in the literature, e.g., cumulative

process, jump process or doubly stochastic process (cf. Nakagawa [2005]).

To construct a control chart based on the renewal reward process, we need to work out:

(i) the distribution of the total increment at time t, that is Pr{Y (t) ≤ m}, (ii) the total

expected increment at time t, i.e., E(Y (t)), (iii) Pr{Z ≤ t} where Z = mint{Y (t) > K},
i.e., the first-passage distribution to a critical point; and finally, (iv) the mean time to
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a critical point E{Z}. All these four points are very important, but for the (complex)

time and magnitude monitoring point (iii) is the most important. Therefore, in the below

sections, we shall discuss these points in-detail.

4.2.1 Cumulative Damage Process

Definition 4.2.1.1 A unit/system is subject to shocks and suffers some damage (M).

Suppose that each damage is additive and the system or unit fails when the total damage

has exceeded a failure threshold K (sometimes also known as a critical threshold), where

0 < K < ∞, for the first time (cf. Figure-4.1). A process with such a behavior is known

as a cumulative damage process.

Figure 4.1: Process for a standard cumulative damage model

Let F (x) = Pr{Xi ≤ x} and G(m) = Pr{Mi ≤ m} be the cumulative distribution

functions of Xi and Mi respectively, with finite means. In addition, suppose K be a fixed

threshold of the increment and define Z = mint{Y (t) > K}. We are interested in the

first-passage distribution to a critical point K, i.e., Pr(Z ≤ t). Then from elementary

renewal theorem, the number of events N(t) in [0, t] has the density, i.e., the probability

of an increment at the (n+ 1)th event in [0, t] is,

Pr{N(t) = n} = F (n)(t)− F (n+1)(t), n = 0, 1, 2, · · · (4.1)
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where ϕ(n) denotes the n-fold Stieltjes convolution of any function ϕ with itself, and

ϕ(0) = 1 for t ≥ 0. Therefore,

Pr

{N(t)∑
k=0

Mk ≤ m,N(t) = n

}
= Pr

{N(t)∑
k=0

Mk ≤ m|N(t) = n

}
Pr{N(t) = n}

= G(n)(m)[F (n)(t)− F (n+1)(t)]

The distribution of the total increment at time t is given by

Pr{Y (t) ≤ m} =
∞∑
n=0

Pr

{N(t)∑
k=0

Mk ≤ m,N(t) = n

}
(4.2)

=
∞∑
n=0

[F (n)(t)− F (n+1)(t)]G(n)(m)

and the survival probability is Pr{Y (t) > m} =
∑∞

n=0[G
(n)(m) − G(n+1)(m)]F (n+1)(t).

The total expected increment at time t is

E{Y (t)} =

∫ ∞

0

mdPr{Y (t) ≤ m} = E(M)E{N(t)} (4.3)

where E{N(t)} =
∑∞

n=1 F
(n)(t) is a renewal function with distribution F (t) and represents

the expected number of events occurred in [0, t]. Moreover, it has a Laplace Stieltjes (LS)

transformation which is given by F ∗(s)
1−F ∗(s)

. The total expected value can be naturally

explained as the product of the average amount of increment suffered from each damage

and the expected number of events in time [0, t]. From Theorem 3.1 in Nakagawa [2007]

(page 55), if µi(F ), µi(G) <∞ (i = 1, 2, 3) and σ2
F = µ2 − µ2, then as t→ ∞

E{N(t)} =
t

µ
+
σ2
F

2µ2
− 1

2
+O(1)

V ar{N(t)} =
σ2
F t

µ3
+

5σ4
F

4µ4
+

2σ2
F

µ2
+

3

4
− 2µ3

3µ3
+O(1)

where O(h)/h→ 0 as h→ 0. Thus,

E{Y (t)} = E

{
E

{N(t)∑
k=1

Mk|N(t) = n

}}
= E(M)E{N(t)} ≈ E(M)

(
t

µ
+
σ2
F − µ2

2µ2

)
(4.4)
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and

V ar{Y (t)} =E{Y 2(t)} − (E{Y (t)})2 = E

{
E

{N(t)∑
k=1

Mk

N(t)∑
j=1

Mj|N(t) = n

}}
− (4.5)

(E{Y (t)})2 = V ar{N(t)}(E{M})2 + E{N(t)}V ar{M}

≈ (E{M})2
{
t

µ

(
σ2
F

µ2
+

σ2
G

E{M}

)
+

5σ4
F

4µ4
+

2σ2
F

µ2
+

3

4
− 2µ3

3µ3

}
+
σ2
G

2

(
σ2
F

µ2
− 1

)
Using Theorem 1.2 (page 8) in Nakagawa [2007], we have limt→∞

E{Y (t)}
t

= E{M}
µ

, limt→∞

V ar{Y (t)}
t

= (E{M})2
µ

(
σ2
F

µ2
+

σ2
G

E{M}

)
. Similarly, by applying Theorem 1.4, in Nakagawa [2007]

(page 9), we have the following asymptotic distribution of Y (t)

lim
t→∞

Pr

{
Y (t)− E{M}t/µ√

((E{M})2t/µ)(σ2
F/µ+ σ2

G/(E{M})2)
≤ x

}
=

1√
2π

∫ x

−∞
exp(−w2/2)dw

(4.6)

Now, assume that the process ends when the total increment crosses a threshold level K, a

so-called critical point. In such a scenario, the probability that the total increment exceeds

a threshold level K at the (n+1)th event is G(n)(K)−G(n+1)(K) for n = 0, 1, 2, · · · ; then
define Z = mint{Y (t) > K}. Since the event of {Z ≤ t} and {Y (t) > K} are equivalent,

the first-passage distribution to the critical point is

ϕ(t) = Pr{Z ≤ t} =
∞∑
n=0

[G(n)(K)−G(n+1)(K)]F (n+1)(t) (4.7)

and its Laplace-Stieltjes (LS) transform is

ϕ∗(s) =

∫ ∞

0

exp(−st)dPr{Z ≤ t} =
∞∑
n=0

[G(n)(K)−G(n+1)(K)][F ∗(s)]n+1 (4.8)

where ϕ∗ denotes the LS transform of any function ϕ i.e., ϕ∗(s) =
∫∞
0

exp(−st)dϕ(t).
Finally, the mean time to a critical point is

E(Z) =

∫ ∞

0

tdPr{Z ≤ t} =
∂ϕ∗(s)

∂s
|s=0 = µ[1 +MG(K)] (4.9)

where MG(K) =
∑∞

n=1G
(n)(K) represents the expected number of events before a crit-

ical point. Further, it can be simplified using elementary renewal function as E(Z) ≈

µ

(
K

E{M} +
σ2
G+(E{M})2
2(E{M})2

)
. If the distribution of jumps (reward or shock) has an increasing
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failure rate property, then µK
E{M} < E(Z) ≤ µ

(
K

E{M} + 1
)
.

If events occur in the nonhomogeneous Poisson process with an intensity function λ(t)

and a mean value function Λ(t) =
∫ t
0
λ(u)du, i.e., the density function can be written as

Pr{N(t) = n} = [Λ(t)]n

n!
exp(−Λ(t)) for n = 0, 1, 2, · · · ; then we have

Pr{Y (t) ≤ m} =
∞∑
n=0

G(n)(m)
[Λ(t)]n

n!
exp(−Λ(t)) (4.10)

where E{Y (t)} = Λ(t)E{M} and E{Z} =
∑∞

n=0G
(n)(K)

∫∞
0

[Λ(t)]n

n!
exp(−Λ(t)). More-

over, if each event is assumed to occur at a constant time T ∗, i.e., F (t) is a degenerate

distribution placing unit mass at time T ∗, then Pr{Z ≤ t} = 1 − G[t/T ∗](K) and the

mean time to a critical point K will be E{Z} =
∫∞
0
G[t/T ∗](K)dt, where [t/T ∗] denotes

the greatest integer less than or equal to t/T ∗. However, if G(m) = 0 for m < 1 and 1 for

m ≥ 1, and K = n, then Pr{Z ≤ t} = F (n+1)(t) and E(Z) = (n+ 1)µ.

4.2.2 Independent Damage Process

Definition 4.2.2.1 Consider a process where the total increment is not additive, i.e.,

increments are independent. The process will end when one amount of reward exceeds the

threshold level K. This type of process is called independent damage model (cf. Figure-

4.2).

Figure 4.2: Process for a independent damage model

The industrial examples of such models are the fracture of brittle materials and semi-

conductor parts that have failed by some over-current or fault voltage. To compute the

first-passage distribution to a critical point, let F and G be the cumulative distribution

functions of time X and magnitude M , respectively, with finite means. In addition, sup-

pose K be the threshold level of the increment and define Z = mint{Y (t) > K}. We are
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interested in Pr(Z ≤ t) which is the first-passage distribution to a critical point. The

first-passage distribution of the critical point is (cf. Nakagawa [2007])

Pr{Z ≤ t} =
∞∑
n=0

[Gn(K)−Gn+1(K)]F (n+1)(t) (4.11)

and its Laplace-Stieltjes (LS) transform is (see derivation details in Appendix-4.7)

ϕ(s) =

∫ ∞

0

exp(−st)dPr{Z ≤ t} =
[1−G(K)]F ∗(s)

1−G(K)F ∗(s)
(4.12)

Note that Equation-4.11 does not have the convolution (.) for the magnitude distribution

as compared to Equation-4.7, which is implied by the definition of the independent process,

i.e., the process will end when one amount of reward exceeds the threshold level K. The

mean time to the critical point K is E(Z) = ∂ϕ(s)
∂s

|s=0 = µX
1−GM (K)

. If shock occurs in a

nonhomogeneous Poisson process with a mean value function Λ(t), then

Pr{Z ≤ t} =
∞∑
n=0

{1−Gn(K)} [Λ(t)]
n

n!
exp(−Λ(t)) = 1− exp

[
−{1−G(K)}Λ(t)

]
(4.13)

and E{Z} =
∫∞
0

exp
[
−{1 − G(K)}Λ(t)

]
dt. Similarly, if the events occur at a constant

time T ∗, i.e., F (t) is the degenerate distribution placing unit mass at time T ∗, then

Pr{Z ≤ t} = 1 − [G(K)][t/T
∗] and mean time to the critical point would be E{Z} =∫∞

0
[[G(K)][t/T

∗]]dt, where [t/T ∗] denotes the greatest integer less than or equal to t/T ∗.

4.3 Compound Poisson Process

A generalization of the Poisson process to a situation where multiple arrivals are allowed,

is called the compound Poisson process. The example of this process is batch arrivals, e.g.,

passengers exiting/entering a train at railway station, or the arrival of multiple claims to

an insurance company.

Definition 4.3.1 Suppose N(t) be a Poisson process where shocks occur with the rate

λ and consider a sequence Mi of IID random variables independent of N(t). Then, the

counting process Y (t) =
∑N(t)

i=1 Mi for N(t) = 0, 1, 2, · · · and Y (t) = 0 when N(t) = 0, is

called a compound Poisson process.

We are interested in finding the distribution of total increment by considering the cumu-

lative and independent damage scenarios for the compound Poisson process. This task is

easy to accomplish as we have defined a flexible framework in Section-4.2. Therefore, the
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distribution of the total increment for the cumulative damage scenario is:

Pr{Y (t) ≤ m} =
∞∑
n=0

G(n)(m)
(λt)n

n!
exp(−λt) (4.14)

If we let G∗(s) be the Laplace transformation of G(m), then Equation-4.14 can be written

as ∫ ∞

0

exp(−sm)dPr{Y (t) ≤ m} =
∞∑
n=0

[G∗(s)]n
(λt)n

n!
exp(−λt) = exp{−λt[1−G∗(s)]}

(4.15)

Since, E{N(t)} = V ar{N(t)} = λt, we have (cf. Equation-4.3) E{Y (t)} = λtE(M) and

V ar{Y (t)} = λtE(M2), respectively. The distribution of first passage time to a critical

point K is

ϕ(t) = Pr{Z ≤ t} = Pr{Y (t) > K} =
∞∑
n=0

[G(n)(K)−G(n+1)(K)]
∞∑

j=n+1

(λt)j

j!
exp(−λt)

(4.16)

and it has the LS transformation as given below

ϕ∗(s) =

∫ ∞

0

exp(−st)dϕ(t) =
∞∑
n=0

[G(n)(K)−G(n+1)(K)]

(
λ

λ+ s

)n+1

(4.17)

We have E(Z) = ∂ϕ∗(s)
∂s

|s=0 =
1+GM (K)

λ
and V ar(Z) = ∂2ϕ∗(s)

∂s2
|s=0−{E(Z)}2 = 2

λ

∑∞
n=0(n+

1)G(n)(K)− {E(Z)}2.

Example#1: Suppose that the time and the damage both have the exponential

distribution with mean 1/λ and 1/θ, respectively, i.e., F (x) = 1− exp(−λx) and G(m) =

1 − exp(−θm). Then, to derive a first passage distribution for the cumulative process

we have to solve
∫∞
0

exp(−sm)dPr{Y ≤ m} = exp(−λt[s/(s + θ)]), and its inversion

can be written as (cf. Barlow and Proschan [1965], and Graf [2004]) (for an alternative

representation, see Appendix A (cf. Section-4.7)

Pr{Y (t) ≤ t} = exp(−λt)
[
1 +

√
λθt

∫ x

0

exp(−θw)w−0.5I1(2
√
λθtw)dw

]
(4.18)

where Ii is the Bessel function of order i for the imaginary argument defined as Ii(x) =∑∞
k=0

(x/2)2k+1

k!(k+i)!
. Thus, we have

Pr{Z ≤ t} = 1− exp(−λt)
[
1 +

√
λθt

∫ K

0

exp(−θw)w−0.5I1(2
√
λθtw)dw

]
(4.19)
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and E{Y (t)} = λt
θ
, E{Z} = θK+1

λ
, V ar{Y (t)} = 2λt

θ2
and V ar{Z} = 2θK+1

λ2
, respectively.

It is to be noted that E{Y (t)} is increasing linearly with time t and therefore, we have
E{Y (t)}
K+θ−1 = t

E(Z)
.

Example#2: The first passage distribution of the independent damage scenario

for the exponentially distributed time and magnitude is:

Pr{Z ≤ t} = 1− exp(−λt exp(−θK)) (4.20)

which is again exponential distribution with parameter λ exp(−θK). Therefore, we have

E(Z) = exp(θK)
λ

and V ar(Z) = exp(2θK)
λ2

.

In Equation-4.20, we have considered the exponential distribution for the magni-

tude. One can also consider a gamma distribution for the magnitude. However, the

real task is to solve the Laplace integral
∫∞
0

exp(−sx)dPr{Y ≤ x} = exp(−λt[1 −
(θ/(s + θ))β]) = exp(−λt) exp(λt(θ/(s + θ))β). One can write exp(λt(θ/(s + θ))β) as∑∞

n=0
(λt)n

n!

(
θ
s+θ

)nβ
. Now its LS inversion is

∑∞
n=0

(λt)n

n!

(
−nβλ×1F1[1+nβ, 2,−tλ]

)
, where

1F1 denotes the Kummer Confluent Hypergeometric function. By comparing this expres-

sion with Equation-4.20, one can notice that the first passage distribution has become

very complicated after replacing the exponential distribution with a gamma.

Example#3: Suppose that the time of the events’ occurrence follows the nonho-

mogeneous Poisson process with intensity Λ(t) (cf. Zacks [2004]), specifically power law

intensity. Moreover, let the magnitude (or reward) has the exponential distribution with

the rate θ. With these time and magnitude specifications, the first passage distribution

to the critical point K of the cumulative damage is (cf. Equation-4.10):

Pr{Z ≤ t} = 1−
∞∑
n=0

(λt)nβ exp
(
−(λt)β

)
Γ(n,Kθ)

Γ(n+ 1)Γ(n)
(4.21)

with the mean E(Z) =
∑∞

n=0
θnΓ(n+1/β)Kn−1 exp(−θK)

λβΓ(n+1)Γ(n)
= exp(−Kθ)θΓ(1+1/β)1F1(1+1/β,2,Kθ)

βλ
and

E(Z2) = 2
∑∞

n=0
θnΓ(n+2/β)Kn−1 exp(−θK)

λ2βΓ(n+1)Γ(n)
= 2 exp(−Kθ)θΓ(1+2/β)1F1(1+2/β,2,Kθ)

βλ2
, i.e.,∫∞

0
[Λ(t)]n

Γ(n+1)
exp(−Λ(t))dt = Γ(n+1/β)

λβΓ(n+1)
.

Example#4: Again, suppose that the magnitude of the events follows the exponential

distribution while nonhomogeneous Poisson process for the time. Note that here we

consider nonhomogeneous Poisson process with the power law intensity. The first passage

distribution in the case of independent damage is given below (cf. Equation-4.13):

Pr{Z ≤ t} = 1− exp

(
− exp(−Kθ)(λt)β

)
(4.22)

with E(Z) = Γ(1+1/β)(
exp(−Kθ)λβ

)1/β and E(Z2) = Γ(1+2/β)(
exp(−Kθ)λβ

)2/β .

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



90

4.4 Control Chart Construction

To construct control charts using the first passage distribution, we need to modify the

definition of TBE presented in Section-1.2. In the current context, we shall consider the

following definition:

Definition 4.4.1 For the cumulative processes, we define TBE as the time of the first

passage distribution to cross a critical point (cf. Figure-4.1 or 4.2), i.e., Xi = Ti−Ti−1 =

Zi for i > 0 and T0 = 0, where Zi is i-th time point at which the damage crossed the

critical threshold.

Let α denotes the probability of the false alarm. To construct a two-sided control chart

based on Equations-[4.19-4.22] equate them to α/2 and 1 − α/2, i.e., find the specified

percentiles of the first passage distribution, to get the lower control limit (LCL) and the

upper control limit (UCL), respectively. Statistically speaking, we need to find LCL =

F−1(α/2) and UCL = F−1(1 − α/2), where F−1(p) = inf{t ∈ R+ : p ≤ F (Z)} and

0 < p < 1, for the two-sided control chart. Note that inf represents infimum function and

can be replaced with minimum function if F (.) is continuous. A one-sided control chart

could be designed by finding the α percentile of the first passage distributions to get the

LCL for the detection of process deterioration. Similarly, the upper-sided control chart

could also be designed by finding the 1 − α percentile to get UCL for the detection of

process improvement. We describe the monitoring procedure as follows: If a TBE falls

below the LCL, then it means that a process might have been statistically deteriorated,

therefore declare it an out-of-control. However, if a point falls above the UCL, then the

process could be thought statistically improved at the specified false alarm probability.

The process is thought to be statistically in-control if the time point falls between the

LCL and the UCL.

To assess the performance of the control chart, we shall use the average run length

(ARL) and the average length of inspection (ALI). The ARL is the number of points

that, on average will be plotted on the control chart before an out-of-control signal is

appeared, i.e., for in-control situation ARL = 1/α while for out-of-control situation, it is

ARL = 1/(1 − ζ) where ζ denotes the type-II error. The ALI is defined as the average

time (or length) of inspection which one has to wait before to get an out-of-control signal

and can be written as ALI = ARL× E(X) (cf. 2.10).

It is worth mentioning that to get an explicit expression of the first passage distribu-

tion, for the construction of a control chart, is extremely difficult in general cases, e.g.

consider the Weibull distribution for the time and the magnitude. Therefore, we propose

Algorithm-4.1 to compute the control limits in general cases. This algorithm is applicable

to any suitable choice of time and magnitude distributions.

Similarly, we have Algorithm-4.2 for the ARL computation.
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Algorithm 4.1 Control Limits Computation for the First Passage Distribution’ to a
fixed Critical Threshold

1: Select p = 1 or p = 2 for the Process◃ where p = 1 - Cumulative, p = 2 - Independent
2: Choose parameters values to generate X and M from FX and GM

3: Fix K
4: for i = 1 to S do ◃ where S is large, e.g., 106

5: do
6: Sample Xj and Mj, j ≥ 1
7: if p == 1 then
8: SMj =

∑j
l=1Ml

9: else
10: SMj =Mj

11: end if
12: while SMj < K
13: Zi =

∑j
l=1Xl

14: end for
15: Compute the Specified Quantiles of Zi to find the LCL and UCL, respectively.

Algorithm 4.2 ARL Computation for the Two-Sided Chart based on the Renewal
Reward Process with a fixed Critical Threshold

1: Select p = 1 or p = 2 for the Process◃ where p = 1 - Cumulative, p = 2 - Independent
2: Choose shifted parameters values to generate X and M from FX and GM

3: Fix K
4: for h = 1 to S do ◃ where S is large, e.g., 106

5: for i = 1 to S do
6: do
7: Sample Xj and Mj, j ≥ 1
8: if p == 1 then
9: SMj =

∑j
l=1Ml

10: else
11: SMj =Mj

12: end if
13: while SMj < K
14: Zi =

∑j
l=1Xl

15: if Zi < LCL||Zi > UCL then
16: RLh = i, break
17: end if
18: end for
19: end for
20: Compute Mean of RLh.
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As we have noticed in Section-3.4 that the design of a control chart is often based

on ARL, a large in-control ARL is ensured by design, but the variance of the run length

distribution can be large. Thus, in such scenario, the coefficient of variation (CV) provides

good insights instead of ARL. An advantage of CV is that different control charts with

close ARL can be compared. Moreover, it is a scale-free measure. We have noticed in

Chapter-3.3, that ALI is not a scale-free measure; therefore, we shall report only the CV

values of the ALI.

In addition to these performance measures of the control charts, the quartiles of the

run length distribution are also studied in-detail. We give a discussion for the detection

of process deterioration and improvement using the one and the two sided control charts,

in the following subsections.

It is quite possible that one might have knowledge about a shift in either the time or

the magnitude distribution. Therefore, to find the resulting shift in other distribution’s

parameter, one can use the mean of the first passage distribution. To demonstrate it for

the cumulative process, let us suppose that θ0 and λ0 are the in-control rate parameters

which result intom0 = (θ0K+1)/λ0. Furthermore, suppose that we know θ1 and interested

in finding λ1. To accomplish this task, we denote mt(θ1, λ0) = (θ1K + 1)/λ0 and equate

it to (θ0K +1)/λ1 which would result into λ1 =
θ0K+1
mt(θ1,λ0)

= λ0(θ0K+1)
θ1K+1

. Hence, by using the

knowledge of θ1 one can find λ1. For example, if the in-control rate parameters of the time

and magnitude are λ0 = 0.0005 and θ0 = 0.001, respectively. We know the out-of-control

value of θ1 = 0.003 and interested in finding the corresponding λ1 for K = 300. For these

specifications, we have λ1 = 0.000342. Similarly, λ1 can be found by utilizing the λ1 from

θ1 =
λ0ml(θ0,λ1)−1

K)
= λ0(θ0K+1)−λ1

λ1K
.

To find the shifted/adjusted parameter value in the independent process we have θ1 =
ln(λ0)+θ−0K−ln(λ1)

K
, i.e., by using the λ1, and λ1 = λ0 exp{K(θ0 − θ1)} for θ1. Similarly, for

the independent process with NHPP for the time, we have: θ1 =
β1
K

[
ln

{
λ0Γ(1+β

−1
0 )

λ1Γ(1+β
−1
1 )

}
−Kθ0

β0

]
,

λ1 = λ0 exp
(
K
[
θ0
β1
− θ1

β0

])Γ(1+β−1
1 )

Γ(1+β−1
0 )

and solve Γ(1+β−1
1 ) exp(Kθ0/β1) =

λ1Γ(1+β
−1
0 ) exp(Kθ1/β0)

λ0

to get β1.

4.4.1 Cumulative probability control chart

The cumulative probability control chart is a control chart in which the observed cumu-

lative probability is plotted against the sample number (time) (cf. Chan et al. [2002]).

Since the cumulative probability is plotted, the vertical axis of the plot always lies be-

tween zero and one, which makes its interpretation easier. To construct a cumulative

probability chart, the lower and the upper control limits for the two-sided chart are α/2

and 1 − α/2, respectively. Similarly, a one-sided control chart can be constructed by

considering LCL = α and UCL = 1 − α. If an unequal probability of the false alarm is
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selected, then α might be replaced by αL and αU subject to αL + αU = α. The decision

rules regarding the process improvement or deterioration, are similar as in the CQC chart.

4.4.2 Discussion of ARL Study (Cumulative Process)

The performance of the charts is evaluated detecting a wide range of shifts. This is done

because in practice, the actual shift size is unknown. We considered the shifts for the

following two cases:

A λ decreases from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005} while θ increases from

θ0 = 0.001 to θ1 ∈ {0.005, 0.002, 0.01}.

B λ increases from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1} and θ decreases form θ0 = 0.001

to θ1 ∈ {0.00001, 0.0005, 0.0001}.

Note that when the process is in-control, i.e., no shift in the process parameters, the ARL

values of the one and the two sided charts are equal to the specified in-control ARL value,

i.e., 370.

Case A: an increase in θ (or decrease in λ): The system improves if the damage

decreases, which will result an increase of the time, i.e., the system fails occasionally. In

other words, θ will increase and result into a decreased rate of the first-passage distribu-

tion. In our study, we fixed the magnitude rate parameter θ0 = 0.001 (for in-control pro-

cess) while θ1 ∈ {0.005, 0.002, 0.01} to represent out-of-control situation. The rate param-

eter of the time distribution shifted from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005}.
Since the system improves, an engineer is generally more concerned in the process im-

provement detection and for this purpose, the Upper-sided control chart is employed. We

have computed the ARL, CVs of the run-length distribution and the length of inspection,

for the two-sided and the upper-sided charts in Table-4.1. The standard deviation of the

ARL can easily be recovered using the ARL and the CV values.

Table-4.1 shows some interesting results. By examining the ARL values, it is evident

that the one-sided chart detects the shifts efficiently than the two-sided control chart. The

said effectiveness of the one-sided charts can be assessed by the coefficient of variation

values. The ARL values show a decreasing pattern as the shift in the rate parameter

of the magnitude distribution occurs. We also have observed that the designed charts,

i.e., upper and two-sided charts, obey the unbiased property of the ARL. However, this

unbiasedness is not guaranteed if the magnitude/damage starts increasing, suddenly. In

this case, ARL would be biased and the two-sided chart outperforms for λ0 = λ1 (∀θ) than
the upper-sided chart. The CV of the run length distribution is smaller and less stable

than the CV of the length of inspection. Therefore, one could observe a mixed behavior

of the CVLI as compared to the CV of the run length. Moreover, it is indication that the

length of inspection distribution is more inflated than the run length distribution. The
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quartiles of the run-length distribution are also computed (not reported here for the sake

of space), and we noticed that as the large-size shift in the rate parameter of the time

distribution occurs, the run length distribution becomes highly skewed and mean of the

run length gets greater than Q3. However, for small to moderate shifts, either in rate

parameter of the magnitude or time distribution, the ARL is less than Q3, but greater

than Q2. Thus, runs rules to study the ARL performance may not be effective in such

highly skewed distribution.

Case B: a decrease in θ (or an increase in λ): This is the most important case

since it detects the process deterioration. In this case, the rate of the magnitude/damage

θ will increase and results into more frequent system failures. In our study, we fixed the

rate parameter of the magnitude distribution θ0 = 0.001 (for in-control process) while

θ1 ∈ {0.00001, 0.0005, 0.0001} to represent out-of-control situation. The rate parameter

of the TBE distribution shifted from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}. When a

system deteriorates, a practitioner or an engineer should use the lower-sided control chart

contrary to the upper-sided chart, which is used for the process improvement. Thus, for

comparison purposes, we report the ARL values for the lower and two sided control charts

with their CV in Table-4.2.

From Table-4.2 we have noticed that the lower-sided chart is efficient in the detection

of process deterioration than the two-sided chart. As the shift in the rate parameter of the

time distribution occurs, the ARL values get smaller, and this pattern can be verified from

the CV values. A shift of large size (either in the magnitude or time distribution) could be

detected quickly as compared to the small shift. When the time distribution is in-control,

i.e., λ0 = λ1, but have a shift in the magnitude, i.e., θ1 < θ0, then for the two-sided chart,

we observe a reverse behavior of the ARL as compared to the process improvement case.

Here, the ARL is clearly biased, which was not the case in process improvement. However,

the lower-sided chart is free from such shortcomings, and we advocate its superiority over

the two-sided chart. Again, in this case, the CV values of the run length have been

observed smaller than the length of inspection, and both CVs support the superiority of

the one-sided chart over the two-sided chart. We have also computed the quartiles, and

observed that ARL value was smaller than the Q3. Therefore, the run length distribution

is not highly skewed as we observed in the case of process improvement.
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Table 4.1: ARL based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and λ1 ∈ {0.0003, 0.0001, 0.00005}, θ1 ∈ {0.00001, 0.0001, 0.01} for
upper and two-sided cumulative process charts.

θ λ
Upper-Sided Two-Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.001
ARL 370.37 32.0474 3.05326 1.73591 370.37 46.1792 3.46456 1.84701
CV 0.998649 0.984274 0.820049 0.651102 0.998649 0.989113 0.843424 0.67719
CVLI 0.999928 0.999169 0.991241 0.984541 0.999928 0.999423 0.992285 0.985478

0.002
ARL 160.761 17.9681 2.40352 1.52591 231.902 25.2764 2.66728 1.60262
CV 0.996885 0.971775 0.764162 0.587072 0.997842 0.980019 0.790624 0.613205
CVLI 0.999563 0.996079 0.970305 0.952807 0.999697 0.997214 0.973282 0.955119

0.005
ARL 35.3429 6.41082 1.58941 1.22365 57.4729 8.37106 1.69522 1.25651
CV 0.985751 0.918702 0.608964 0.42752 0.991262 0.938371 0.640394 0.451823
CVLI 0.994894 0.971517 0.879489 0.840118 0.996863 0.978261 0.88749 0.844684

0.01
ARL 8.95931 2.69559 1.19192 1.06527 13.0939 3.2243 1.22946 1.07618
CV 0.942541 0.79311 0.401274 0.247524 0.961056 0.830575 0.432009 0.266064
CVLI 0.968099 0.889565 0.726687 0.686996 0.978285 0.908594 0.736533 0.690883

Table 4.2: ARL based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and λ1 ∈ {0.005, 0.01, 0.1}, θ1 ∈ {0.00001, 0.0001, 0.0005} for lower
and two-sided cumulative process charts.

β λ
Lower-Sided Two-Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.00001
ARL 275.351 27.9881 14.2486 1.93436 474.139 55.5067 28.0056 3.28049
CV 0.998182 0.981973 0.96427 0.695006 0.998945 0.990951 0.981984 0.833767
CVLI 1.0000 1.0000 1.0000 0.999998 1.0000 1.0000 1.0000 0.999999

0.0001
ARL 282.872 28.74 14.6243 1.97018 470.16 57.0118 28.758 3.35473
CV 0.998231 0.982449 0.965205 0.701735 0.998936 0.991191 0.98246 0.837803
CVLI 0.999999 0.999985 0.999971 0.999785 0.999999 0.999993 0.999985 0.999874

0.0005
ARL 318.868 32.3338 16.4177 2.13813 436.744 64.2106 32.3542 3.70586
CV 0.998431 0.984415 0.969067 0.72959 0.998855 0.992183 0.984425 0.854492
CVLI 0.999973 0.999737 0.999482 0.996014 0.999981 0.999868 0.999737 0.997702

0.001
ARL 370.37 37.4646 18.9721 2.36971 370.37 74.5005 37.4882 4.19766
CV 0.998649 0.986564 0.973289 0.760268 0.998649 0.993266 0.986572 0.872795
CVLI 0.999928 0.999289 0.998596 0.9887 0.999928 0.999643 0.999289 0.993636
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4.4.3 Discussion of ARL Study (Independent Process)

We are considering shifts for the following two cases:

A λ decreases from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005} while θ increases form

θ0 = 0.001 to θ1 ∈ {0.005, 0.002, 0.01}.

B λ increases from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1} and θ decreases form θ0 = 0.001

to θ1 ∈ {0.00001, 0.0005, 0.0001}.

We examine the system performance by varying one parameter as the other one is holding

fixed. It is to be noted that when the process is in-control, i.e., no shift in the process

parameters, the ARL is equal to the specified in-control ARL value, i.e., 370.

Case A: an increase in θ (or decrease in λ): In this case, we fixed the rate

parameter of the magnitude distribution θ0 = 0.001 (for in-control process) while θ1 ∈
{0.002, 0.005, 0.01} to represent out-of-control situation. Similarly, the rate parameter of

the time distribution shifts from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005}. Again for

the detection of process improvement, the Upper-sided control chart is being used in this

study, and it would further be compared with the two-sided chart. In Table-4.3, we have

computed the ARL values of the two-sided and upper-sided charts. The coefficient of

variation (CV) value is also reported below the ARL and standard deviation of the run-

length can easily be recovered. As noted previously, the ALI is not a scale-free measure,

therefore, we decided to report only the CV values of the ALI.

In the process improvement case, as the shift occurs in the rate parameter of magnitude

distribution, then time distribution also shifts, i.e., the rate parameter of the first passage

time distribution becomes small, and therefore, the mean and the variance get large

with the size of the shift. Note that a small parameter value means the case where the

parameter has smaller value than its nominal, i.e., the mean with λ = 0.0005 is smaller

than the λ = 0.0001. The said remark is also true for the variance.

From Table-4.3, it is clear that one-sided chart is more efficient in the detection of

shifts than the two-sided control chart. The CV of the run-length and the length of

inspection also supports the superiority of the upper-sided control chart. The large-size

shifts either in the rate parameter of time distribution or magnitude distribution can be

detected quickly contrary to the small shift. It is noticed that ARL values gradually

decrease with the shift in the rate parameter of magnitude distribution. However, we

observed that if the rate parameter of the time distribution was fixed at the nominal

value, i.e., λ = 0.0005, and the rate parameter of a magnitude distribution decreased,

then the ARL values would be greater than the nominal value. Although this behavior

violates the unbiased property of the ARL, it is expected as the time to cross the critical

threshold is strongly dependent on the magnitude distribution. The CV of the length of

inspection distribution is almost noninformative, and it is difficult to decide which chart
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outperforms. However, the CV of the run of length distribution supports the superiority

of the upper-sided chart. It is observed from the quartiles’ (not reported here for the sake

of space) that a very large shift either in a damage or time will result into a highly skewed

distribution of the run-length, i.e., ARL will be greater than Q3. However, for small to

moderate shifts, the ARL is less than Q3 but greater than the median, i.e., Q2.

Case B: a decrease in θ (or an increase in λ): This is a crucial case since

it detects the process deterioration. In this case, θ would decrease and result into an

increase rate parameter of the first-passage distribution. Hence, the system failure will

be more frequent. In our study, we fixed the rate parameter of the damage/magnitude

distribution θ0 = 0.001 (for in-control process) while θ1 ∈ {0.00001, 0.0005, 0.0001} to

represent out-of-control situation. The rate parameter of the time distribution shifts from

λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}. When the process deteriorates, the practitioner

needs to use the lower-sided control chart. Thus, in our numerical study, we are presenting

the ARL values for the lower-sided chart. Moreover, a comparison of the two-sided control

chart with the lower-sided is also given in Table-4.4.

By examining Table-4.4 we noticed that the lower-sided chart is efficient in the detec-

tion of process deterioration than the two-sided chart. We observe that the ARL of the

two-sided chart is biased as compared to the lower-sided chart, especially when a shift is

only in the rate parameter of the magnitude distribution. However, if we fix the damage

distribution and introduce a shift in the rate parameter of the time distribution, then the

ARL values get small, i.e., control charts’ detection ability improves. A shift of large size

either in time or damage will be detected quickly as compared to the small shift. The CV

of the run length distribution advocates the effectiveness of the lower-sided chart whereas

the CV of the length of inspection distribution is not too informative. We also computed

the quartiles of the run-length distribution (not reported here) and found that the ARL

values lie between the median and Q3, which means that the run-length distribution is

not highly skewed as we have observed in the case of process improvement.
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Table 4.3: ARL based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and λ1 ∈ {0.0003, 0.0001 , 0.00005}, θ1 ∈ {0.005, 0.002, 0.01} for
upper and two-sided Independent process charts.

θ λ
Upper-Sided Two-Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.001
ARL 370.37 34.7682 3.26383 1.80661 370.37 50.5407 3.74536 1.93577
CV 0.998649 0.985514 0.832833 0.668189 0.998649 0.990058 0.856156 0.695276
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.002
ARL 79.9636 13.8591 2.40203 1.54985 117.873 18.6488 2.66041 1.63125
CV 0.993727 0.963247 0.763993 0.59563 0.995749 0.972819 0.790012 0.62207
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.005
ARL 5.93825 2.91202 1.42801 1.19499 7.29518 3.29797 1.48872 1.22014
CV 0.911921 0.810306 0.547472 0.40395 0.928937 0.834735 0.572959 0.424764
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.01
ARL 1.48808 1.26933 1.08274 1.04055 1.55882 1.30522 1.09286 1.0454
CV 0.572707 0.460636 0.276441 0.197406 0.59874 0.483576 0.29149 0.20839
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.4: ARL based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and λ1 ∈ {0.005, 0.01, 0.1}, θ1 ∈ {0.00001, 0.0005, 0.0001} for lower
and two-sided Independent process charts.

θ λ
Lower-Sided Two-Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.00001
ARL 275.33 27.986 14.2476 1.93426 511.818 55.5047 28.0046 3.28039
CV 0.998182 0.981971 0.964268 0.694987 0.999023 0.990951 0.981983 0.833762
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.0001
ARL 282.852 28.7381 14.6235 1.9703 514.881 57.0099 28.7572 3.35486
CV 0.998231 0.982447 0.965203 0.701757 0.999028 0.991191 0.982459 0.837809
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.0005
ARL 318.85 32.3376 16.4227 2.14376 492.206 64.2144 32.3592 3.71177
CV 0.998431 0.984417 0.969076 0.730432 0.998984 0.992183 0.984427 0.854744
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.001
ARL 370.37 37.4893 18.998 2.39419 370.37 74.5252 37.5143 4.22369
CV 0.998649 0.986573 0.973326 0.763101 0.998649 0.993268 0.986582 0.873636
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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4.5 Independent Compound Process with NHPP

We considered shifts for the following cases:

A Increasing Hazard Rate (IHR), i.e., β > 1 (Process Deterioration)

1. λ shifts from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005}, β from β0 = 1.5 to

β1 ∈ {1, 1.2, 1.5, 2} [i.e., Partial Improvement (PI)], and θ from θ0 = 0.001 to

θ1 ∈ {0.005, 0.01}.

2. λ shifts from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}, β form β0 = 1.5 to

β1 ∈ {1, 1.2, 1.5, 2} [i.e., Total Deterioration (TD)], and θ from θ0 = 0.001 to

θ1 ∈ {0.0001, 0.0005}.

B Decreasing Hazard Rate (DHR), i.e., β < 1 (Process Improvement)

1. λ shifts from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005}, β from β0 = 0.5

to β1 ∈ {0.2, 0.45, 0.5, 0.55, 0.7} [i.e., Total Improvement (TI)], and θ from

θ0 = 0.001 to θ1 ∈ {0.005, 0.01}.

2. λ shifts from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}, β form β0 = 0.5 to

β1 ∈ {0.2, 0.45, 0.5, 0.55, 0.7} [i.e., Partial Deterioration (PD)], and θ from

θ0 = 0.001 to θ1 ∈ {0.0001, 0.0005}.

It is observed that when there is neither a shift in the NHPP parameters nor in the

magnitude distribution, the ARL values of the one and the two sided charts are equal to

the nominal value, i.e., 370.

Case A-1: an increase in θ (or decrease in λ): When the rate parameter of the

magnitude/damage distribution increases, the chances to cross the fixed threshold become

less, which results into an increase of the TBE. Here, we consider the NHPP with power

law intensity for time, which depends on the rate and the shape parameters, respectively.

Therefore, if the shape parameter β is greater than one, the overall performance of the

system would deteriorate. However, one could observe some improvements in the system

performance if the rate parameter of the NHPP decreases. In a practical sense, this could

happen due to replacement of some components in the deteriorating system. Thus, this

case can be labeled as a partial improvement (PI). When the system temporarily improves,

the effect should be reflected by temporarily increase in the TBE, i.e., failure of the system

might be less frequent for a short period of time. In our study, we fixed the magnitude

rate parameter θ0 = 0.001 (for in-control process) while θ1 ∈ {0.005, 0.01} to represent an

out-of-control situation. The in-control shape parameter of the NHPP is β0 = 1.5 while

the β1 ∈ {1.0, 1.2, 2.0} to represent an out-of-control situation. The rate parameter of

NHPP shifts from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005}. When a system partially

improves, an engineer is generally more concerned in the process improvement detection
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to maintain its sustainability. Therefore, the upper-sided control chart is a good candidate

for this purpose. In Table-4.5, we have computed the ARL values of two and upper-sided

charts. The coefficient of variation (CV) values of the run length and of the length of

inspection distributions have also been reported below the ARL.

From Table-4.5, clearly, the one-sided chart is efficient in the detection of a shift than

the two-sided chart. The said superiority is also evident to the CVs of the run length

and the length of inspection distributions. For fixed β, the values of the ARL decrease

gradually with the occurrence of a shift in θ, i.e., magnitude’s rate parameter, and a large

shift either in θ or λ could be detected quickly than the moderate to small shifts. However,

the value of the ARL is significantly dependent on the shape parameter β. When the rate

parameters of the magnitude and of the time distributions are in-control, both charts

follow the unbiased property of the ARL. However, it is violated if the shape parameter

becomes greater than its nominal value, i.e., β > 1.5. This violation is serious in the case

of lower-sided chart. We also computed the quartiles of the run length distribution (not

reported here for the sake of space) and observed that the ARL is between Q2 and Q3 for

small to moderate shifts while greater than Q3 for large shifts. This behavior implies that

the run-length distribution is highly skewed for large shifts, and therefore, an extreme

care is needed to design ARL unbiased design chart.

Case A-2: a decrease in θ (or an increase in λ): This is the most important

case because in this case, a process engineer is concerned to detect the process deteri-

oration. Since we have assumed the shape parameter of the NHPP greater than one,

the overall process would deteriorate. However, in the case of the NHPP, deterioration

also depends on the magnitude’s rate parameter. For a fixed threshold, when the rate of

the magnitude/damage increases it shorten TBE and therefore, a system fails frequently.

Thus, such kind of situation can be labeled as a total deterioration (TD). In our study, we

fixed the rate parameter of the magnitude/damage distribution θ0 = 0.001 (for in-control

process) while θ1 ∈ {0.0001, 0.0005} to represent an out-of-control situation. The rate

parameter of the NHPP shifts from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}. Moreover, the

in-control shape parameter of the NHPP is assumed β0 = 1.5 while β1 ∈ {1.0, 1.2, 2.0}
for out-of-control situation. When the system deteriorates, the practitioner should use

the lower-sided control chart in contrast to the upper-sided chart. Thus, in our numer-

ical study, we present ARL study of the lower-sided chart and further compare it with

the two-sided control chart. The values of the CV of the run length and the length of

inspection distributions have also been reported in Table-4.6.

In this case, when λ = 0.0005 and a large shift occurs in magnitude’s rate parameter;

the ARL of the two-sided chart is smaller than the lower-sided chart. This behavior is

not specific to any particular value of the shape parameter but observed for all assumed

choices of the shape parameter, β, in this study. However, we noticed that when a shift

occurs in the rate parameter of the TBE distribution, i.e., λ, the lower-sided chart is
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efficient in the detection of process deterioration than the two-sided chart. It has also

been observed that when β1 > β0, the ARL values are greater than the corresponding

nominal value, i.e., 370, which is a sign that the shape parameter of the NHPP has a

significant effect on the control chart’s efficiency. Therefore, one must be very careful in

the choice of the shape parameter to study control chart’ performance, as it leads to a

biased design of the ARL. The CV values also support the effectiveness of the lower-sided

chart except the case which we have discussed already. For the fixed β, when a shift

occurs in θ, i.e., the magnitude distribution parameter, the values of the ARL decrease

with the increase of a shift. From the quartiles’ study, it is observed that for the small to

moderate shifts, the ARL values are smaller than Q3 but greater than the median, i.e.,

Q2. Moreover, the run length distribution is highly skewed in the presence of large shifts.

Case B-1: an increase in θ (or decrease in λ): In this case, we assume the value

of the shape parameter β less than one while the rate parameter λ decreases from its

nominal value. Therefore, the overall performance of a system would improve, and this

case could be labeled as a total improvement (TI). In the case of TI, the system would

take a long time (as the damage/magnitude becomes small) to react and produce an out-

of-control signal. For illustration purpose, in our study we fixed the magnitude/damage

rate parameter θ0 = 0.001 (for in-control process) while θ1 ∈ {0.005, 0.01} to represent

an out-of-control situation. The in-control shape parameter of the NHPP is assumed

β0 = 0.5 while β1 ∈ {0.2, 0.45, 0.55, 0.7} to represent an out-of-control situation. The

rate parameter of the NHPP shifted from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005}.
We again consider the upper-sided chart and the two-sided chart to detect the process

improvement. In Table-4.7, we have tabulated the ARL values for two-sided and upper-

sided charts.

From Table-4.7, one can observe that when a large shift occurs in the shape param-

eter of the NHPP against a small shift in the magnitude parameter, the two-sided chart

becomes more efficient in the detection of a shift than the one-sided chart, and this con-

clusion is also supported by the CV. However, there is no objection on the superiority of

the upper-sided chart when the shift in β is small to moderate. It has also been observed

that for the small value of β, i.e., 0.2, the CV of the length of inspection is greater than

the process deterioration case. We observed that ARL equal to the nominal value when

there was no shift in either the time distribution or magnitude distribution’ parameters.

However, when β1 > β0 and θ1 = θ0, λ1 = λ0, we observed a biased behavior of the ARL.

This is again an obvious sign that there is a great impact of the shape parameter on

the control charts’ detection ability. For fixed β, when the process has an up-sided shift

(θ > 0.001) in θ, the ARL values decrease gradually and vice versa. We also computed

the quartiles of the run-length distribution, and it is observed that for small to moderate

shifts in β, θ and λ, the distribution of the run length is less skewed as compared to the

case of large shifts in the process.
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Case B-2: a decrease in θ (or an increase in λ): This is another important case

because β < 1, i.e., the overall performance of the system is improving but due to some

sudden changes that can occur in the workforce, material or in the environment, the rate

parameters of the magnitude distribution might (suddenly) increase. Consequently, the

rate parameter of the first-passage distribution to a critical threshold would be increased.

Thus, the process deteriorates, and one could label this case as a partial deteriorate (PD).

To detect the process deterioration, we used the lower-sided chart which further has been

compared with the two-sided chart. In our study, we fixed the rate parameter of the

magnitude distribution θ0 = 0.001 (for in-control process) while θ1 ∈ {0.0001, 0.0005}
to represent an out-of-control situation. The rate parameter of the NHPP shifts from

λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}. Similarly, a nominal value of the shape parameter

of the NHPP is β0 = 0.5 while β1 ∈ {0.2, 0.45, 0.55, 0.7} to represent an out-of-control

situation. The values of the ARL with the CVs of the run-length and the length of

inspection have been reported in Table-4.8.

In this case, when β1 = 0.2 and λ = 0.0005, the superiority of the lower-sided chart is

undermined by the two-sided chart. This happens because of β, which is less than one and

a sign of the process improvement, therefore, two-sided chart with the upper control limit

performs better than the counterpart one-sided chart. The superiority of the lower-sided

chart has no question mark for a large shift either in λ or θ. For fixed β and θ, the large

shifts in the rate parameter would be detected quickly than the small shifts. The CV of the

length of inspection is very large as compared to the process deterioration, especially when

β1 = 0.2, and it leads to a similar conclusion as we did notice in the TI case. Moreover,

the CV gradually increases with the shift in the rate parameter of the TBE. Therefore,

we can conclude that the effect of the shape parameter on the control chart’s detection

ability is significant. Although both charts for θ = 0.001, β = 0.5 and λ = 0.0005 have

desired in-control performance, i.e., 370, we noticed that the ARL violates the unbiased

property when β > 0.5. Since there is a significant impact of the shape parameter on the

control chart’ performance, one must be very careful to interpret an out-of-control alarm

raised by the chart. Moreover, we suggest to consider the unbiased design of the control

charts in such situations.
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Table 4.5: ARL study of the PI-IHR case using α = 0.0027 λ0 = 0.0005, β0 = 1.5, θ0 = 0.001 and λ1 ∈ {0.0003, , 0.0001, 0.00005},
β1 ∈ {1, 1.2, 2}, θ1 ∈ {0.005, 0.01} for upper and two sided Independent NHPP charts.

β θ λ
Upper Sided Two Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

1.0

0.005
ARL 2.43832 1.70708 1.19514 1.09322 2.58833 1.77225 1.21061 1.10032

0.768038 0.643588 0.404076 0.292018 0.783358 0.66011 0.417098 0.301946
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.001
ARL 19.2836 5.90355 1.80733 1.34437 19.1108 6.47495 1.88337 1.37314

0.973726 0.911378 0.668355 0.50612 0.973485 0.919543 0.521288 0.521286
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.01
ARL 1.22003 1.12674 1.04058 1.02009 1.23764 1.13652 1.04359 1.02157

0.424677 0.335384 0.197472 0.140326 0.438192 0.346584 0.204384 0.145296
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.2

0.005
ARL 3.24065 1.8907 1.18582 1.07701 3.5952 2.00259 1.2044 1.08433

0.831517 0.686365 0.395856 0.267397 0.849618 0.707563 0.411963 0.278881
CVLI 0.952655 0.917357 0.864496 0.849604 0.957428 0.866747 0.850709 0.882145

0.001
ARL 49.5858 8.28749 1.76097 1.27929 53.1879 9.82679 1.85344 1.30832

0.989865 0.937729 0.657367 0.467245 0.990555 0.947754 0.678574 0.485452
CVLI 0.996974 0.981759 0.910972 0.875107 0.99718 0.984638 0.915619 0.878071

0.01
ARL 1.29998 1.15272 1.03876 1.01669 1.33142 1.16777 1.04238 1.01823

0.480373 0.363985 0.193171 0.128129 0.49892 0.379034 0.201635 0.133809
CVLI 0.877234 0.860289 0.843555 0.839836 0.88033 0.862234 0.844148 0.840101

1.5

0.005
ARL 5.93825 2.28857 1.17273 1.05795 7.29518 2.52055 1.19478 1.06494

0.911921 0.750364 0.383782 0.234043 0.928937 0.776699 0.403767 0.246947
CVLI 0.953537 0.874346 0.735111 0.700373 0.962349 0.886655 0.740858 0.702758

0.001
ARL 370.37 15.6241 1.69725 1.20567 370.37 21.2746 1.80541 1.23232

0.998649 0.967469 0.640946 0.413018 0.998649 0.976215 0.667914 0.434193
CVLI 0.999272 0.9826 0.826091 0.743602 0.999272 0.987251 0.837527 0.750075

0.01
ARL 1.48808 1.2029 1.03619 1.01265 1.55882 1.22916 1.04051 1.01414

0.572707 0.410702 0.18689 0.111763 0.59874 0.431785 0.197313 0.118075
CVLI 0.798616 0.74291 0.692694 0.683909 0.808842 0.749326 0.69425 0.68448

2

0.005
ARL 35.1777 3.60294 1.15306 1.03625 61.8233 4.41837 1.1795 1.04214

0.985684 0.84997 0.364335 0.187023 0.991879 0.879586 0.390108 0.201079
CVLI 0.989616 0.893469 0.608038 0.546498 0.994105 0.914064 0.619549 0.550113

0.001
ARL 136079 70.496 1.60454 1.12548 6018.7 137.686 1.73 1.14686

0.999996 0.992882 0.613816 0.333902 0.999917 0.996362 0.649588 0.357851
CVLI 0.999997 0.994832 0.739636 0.595203 0.99994 0.997357 0.761516 0.605232

0.01
ARL 2.21319 1.33109 1.03229 1.00798 2.51158 1.3931 1.03752 1.00925

0.740381 0.498733 0.176855 0.088954 0.775786 0.531203 0.190176 0.095744
CVLI 0.819526 0.673803 0.544032 0.528195 0.842992 0.691603 0.547288 0.529057
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Table 4.6: ARL study of the TD-IHR case using α = 0.0027 λ0 = 0.0005, β0 = 1.5, θ0 = 0.001 and λ1 ∈ {0.005, 0.01, 0.1},
β1 ∈ {1, 1.2, 2}, θ1 ∈ {0.0001, 0.0005} for lower and two sided Independent NHPP charts.

β θ λ
Lower Sided Two Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

1.0

0.0001
ARL 43.9732 4.86628 2.71177 1.01015 33.5856 7.41582 3.97598 1.05841

0.988564 0.89135 0.794504 0.100222 0.985 0.930136 0.865153 0.234925
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.0005
ARL 49.5155 5.41837 2.9846 1.01719 26.7066 8.29466 4.41337 1.08293

0.989851 0.903019 0.815443 0.129997 0.981099 0.937785 0.879441 0.276735
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.001 ARL
57.4473 6.20921 3.3765 1.03075 19.1108 9.55288 5.04025 1.12301
0.991258 0.915942 0.838949 0.172725 0.973485 0.946213 0.89532 0.330964

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.2

0.0001
ARL 92.3844 6.31182 3.05643 1.00188 100.288 10.6077 4.91497 1.02794

0.994573 0.91737 0.820256 0.043271 0.995002 0.951698 0.892491 0.164863
CVLI 0.998377 0.975979 0.949726 0.837237 0.998505 0.985777 0.969043 0.841753

0.0005
ARL 104.099 7.04936 3.37446 1.00382 79.5717 11.8944 5.47331 1.0426

0.995185 0.92636 0.838842 0.0617181 0.993696 0.957041 0.904044 0.202139
CVLI 0.99856 0.97852 0.954577 0.837584 0.998116 0.987326 0.972246 0.844184

0.001
ARL 120.865 8.10543 3.83085 1.00834 53.1879 13.7362 6.2731 1.06813

0.995855 0.936283 0.859629 0.09097 0.990555 0.962912 0.916837 0.252562
CVLI 0.99876 0.981345 0.960101 0.838382 0.99718 0.989035 0.975829 0.848243

1.5

0.0001
ARL 282.852 9.43806 3.68314 1.00004 514.881 18.3742 6.83102 1.00675

0.998231 0.94554 0.853518 0.006679 0.999028 0.972407 0.92391 0.081867
CVLI 0.999047 0.971026 0.923936 0.678986 0.999476 0.985223 0.959737 0.681624

0.0005 ARL
318.85 10.5754 4.08265 1.00014 492.206 20.652 7.63504 1.01194

0.998431 0.951547 0.868942 0.0117686 0.998984 0.975489 0.932215 0.108646
CVLI 0.999154 0.974183 0.931653 0.679024 0.999452 0.986864 0.964056 0.683638

0.001 ARL
370.37 12.2034 4.65541 1.00048 370.37 23.912 8.78621 1.0224

0.998649 0.958152 0.886113 0.021850 0.998649 0.978867 0.941374 0.14801
CVLI 0.999272 0.977667 0.94033 0.679158 0.999272 0.988665 0.968841 0.687609

2

0.0001
ARL 1834.4 18.8436 5.10292 1.0 4625.48 46.755 12.0705 1.00018

0.999727 0.973104 0.896679 0.000018 0.999892 0.989248 0.957681 0.013246
CVLI 0.999802 0.980526 0.926056 0.522723 0.999921 0.992198 0.969428 0.522845

0.0005
ARL 2068.22 21.1812 5.68541 1 5212.22 52.6519 13.544 1.00047

0.999758 0.976109 0.907806 0.000063 0.999904 0.990458 0.962375 0.0215999
CVLI 0.999824 0.982695 0.933901 0.522723 0.99993 0.993074 0.9728 0.523047

0.001
ARL 2402.85 24.527 6.51974 1.0 6018.7 61.0914 15.653 1.00136

0.999792 0.979402 0.920119 0.000242 0.999917 0.991782 0.96753 0.036851
CVLI 0.999849 0.985073 0.942618 0.522723 0.99994 0.994034 0.976509 0.523666
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Table 4.7: ARL study of the TI-DHR case using α = 0.0027 λ0 = 0.0005, β0 = 1.5, θ0 = 0.001 and λ1 ∈ {0.0003, 0.0001, 0.00005},
β1 ∈ {0.2, 0.45, 0.55, 0.7}, θ1 ∈ {0.005, 0.01} for upper and two sided Independent NHPP charts.

β θ λ
Upper Sided Two Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.2

0.001
ARL 5.47706 4.64323 3.42992 2.9241 4.41028 3.95036 3.14587 2.75816

0.904113 0.885795 0.841694 0.811181 0.87935 0.86421 0.825908 0.798398
CVLI 6.82971 7.40553 8.59581 9.30034 7.59511 8.01781 8.97046 9.57289

0.005
ARL 1.66896 1.58797 1.44952 1.38151 1.65791 1.58051 1.44663 1.38016

0.633107 0.608494 0.556882 0.525504 0.629946 0.606048 0.55564 0.524831
CVLI 12.2798 12.587 13.1708 13.4893 12.3204 12.6165 13.1839 13.4959

0.01
ARL 1.12107 1.1087 1.08636 1.07477 1.12186 1.10945 1.08702 1.07537

0.328631 0.313118 0.281949 0.263765 0.329576 0.314088 0.282938 0.264747
CVLI 14.9666 15.0496 15.2028 15.2842 14.9614 15.0445 15.1982 15.28

0.45

0.001
ARL 122.125 45.525 10.2672 5.50081 133.657 59.7646 12.9001 6.53913

0.995897 0.988956 0.950054 0.904549 0.996252 0.991599 0.960459 0.920366
CVLI 1.02344 1.06172 1.25069 1.43287 1.02144 1.04734 1.20377 1.37328

0.005
ARL 4.25142 3.15831 2.01671 1.67114 4.92965 3.5555 2.16893 1.76277

0.874519 0.826665 0.71003 0.633723 0.89283 0.847789 0.734128 0.657807
CVLI 1.53708 1.68352 1.96788 2.11342 1.47484 1.62152 1.91597 2.07035

0.01
ARL 1.38116 1.29254 1.16943 1.1214 1.42839 1.32756 1.18867 1.13488

0.525331 0.47574 0.380637 0.329026 0.547643 0.496727 0.398403 0.344746
CVLI 2.27911 2.34135 2.44003 2.48313 2.24848 2.31597 2.42354 2.47074

0.5

0.001
ARL 370.37 97.6466 14.0841 6.49044 370.37 142.202 18.9822 8.05326

0.998649 0.994866 0.963845 0.919743 0.998649 0.996478 0.973303 0.935856
CVLI 1.00539 1.02028 1.13314 1.27133 1.00539 1.01397 1.10033 1.22339

0.005
ARL 5.93825 3.97441 2.21815 1.75652 7.29518 4.66515 2.43414 1.87594

0.911921 0.865096 0.741062 0.656271 0.928937 0.886366 0.767579 0.683326
CVLI 1.29368 1.41649 1.67431 1.81031 1.24431 1.36287 1.62582 1.76982

0.01
ARL 1.48808 1.36055 1.19454 1.13394 1.55882 1.4104 1.21963 1.15073

0.572707 0.514787 0.403557 0.343682 0.59874 0.539429 0.424355 0.361918
CVLI 1.92042 1.98494 2.08532 2.1278 1.8884 1.95859 2.06874 2.11567

0.55

0.001
ARL 1451.17 243.948 20.1668 7.78204 1013.3 391.732 29.5092 10.1327

0.999655 0.997948 0.974892 0.933541 0.999506 0.998723 0.98291 0.949373
CVLI 1.00099 1.00585 1.06859 1.16948 1.00141 1.00365 1.04736 1.13242

0.005
ARL 8.95966 5.23649 2.47143 1.85521 11.875 6.48334 2.77834 2.00971

0.942544 0.899462 0.771607 0.678952 0.956969 0.919651 0.800045 0.708814
CVLI 1.14863 1.24355 1.46893 1.59446 1.11398 1.20055 1.42473 1.55683

0.01
ARL 1.63112 1.4469 1.22371 1.14785 1.73778 1.5178 1.25613 1.16854

0.622031 0.55576 0.427567 0.358899 0.651579 0.584083 0.451558 0.379777
CVLI 1.65957 1.72555 1.82708 1.86888 1.62681 1.69857 1.81048 1.85704

0.7

0.001
ARL 787730 13296.5 81.5081 15.0135 9215.3 10978.9 169.576 23.6435

0.999999 0.999962 0.993847 0.966123 0.999946 0.999954 0.997047 0.978624
CVLI 1.0000 1.00004 1.00696 1.03723 1.00006 1.00005 1.00335 1.0238
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0.005
ARL 59.6973 17.4601 3.76394 2.26126 118.124 28.1982 4.70145 2.59306

0.991589 0.970941 0.856925 0.746838 0.995758 0.982108 0.887299 0.783809
CVLI 1.00949 1.03209 1.14128 1.2262 1.00481 1.01999 1.11454 1.19964

0.01
ARL 2.4904 1.89294 1.34414 1.19968 2.90246 2.10691 1.41253 1.2369

0.773601 0.686821 0.505992 0.407977 0.809608 0.724825 0.540418 0.437639
CVLI 1.20716 1.26552 1.3591 1.39612 1.17996 1.24115 1.34392 1.38586

Table 4.8: ARL study of the PD-DHR case using α = 0.0027 λ0 = 0.0005, β0 = 1.5, θ0 = 0.001 and λ1 ∈ {0.005, 0.01, 0.1},
β1 ∈ {0.2, 0.45, 0.55, 0.7}, θ1 ∈ {0.0001, 0.0005} for lower and two sided Independent NHPP charts.

β θ λ
Lower Sided Two Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.2

0.0001
ARL 10.239 6.65307 5.86033 3.89698 5.8026 7.08964 6.82208 4.94005

0.949913 0.921788 0.910693 0.862201 0.90976 0.926795 0.923806 0.893069
CVLI 5.04147 6.21101 6.60755 8.07169 6.63959 6.02185 6.13561 7.18379

0.0005
ARL 11.4787 7.4343 6.54001 4.32416 5.16783 7.06442 7.07082 5.45709

0.955448 0.930316 0.920378 0.876779 0.898051 0.926523 0.926592 0.903743
CVLI 4.77279 5.88455 6.26309 7.66908 7.02682 6.0323 6.02964 6.84193

0.001
ARL 13.2531 8.55289 7.51333 4.93645 4.41028 6.68151 7.04857 6.11518

0.961533 0.939724 0.931076 0.892987 0.87935 0.922135 0.926352 0.914589
CVLI 4.45685 5.49817 5.85442 7.18635 7.59511 6.19812 6.03889 6.47162

0.45

0.0001
ARL 161.57 57.6511 42.338 15.3496 233.988 107.211 78.6173 28.2197

0.996901 0.991289 0.98812 0.966877 0.997861 0.995325 0.99362 0.982122
CVLI 1.01777 1.04904 1.06622 1.17363 1.0123 1.02666 1.03619 1.09785

0.0005
ARL 182.106 64.9374 47.6717 17.2415 198.424 120.815 88.5768 31.7532

0.997251 0.99227 0.989456 0.970567 0.997477 0.995853 0.994339 0.984128
CVLI 1.01578 1.04365 1.05902 1.15585 1.01449 1.02369 1.03218 1.0874

0.001
ARL 211.496 75.3651 55.3052 19.9494 133.657 140.281 102.83 36.8102

0.997633 0.993343 0.990918 0.974614 0.996252 0.996429 0.995126 0.986323
CVLI 1.0136 1.03772 1.05107 1.13595 1.02144 1.02044 1.02778 1.07581

0.5

0.0001
ARL 282.852 89.7882 63.637 20.4694 514.881 179.196 126.857 40.4596

0.998231 0.994416 0.992112 0.975267 0.999028 0.997206 0.996051 0.987565
CVLI 1.00705 1.02203 1.03095 1.09335 1.00388 1.0111 1.01564 1.04827

0.0005
ARL 318.85 101.172 71.6864 23.0145 492.206 201.979 142.967 45.5538

0.998431 0.995046 0.993001 0.978033 0.998984 0.997521 0.996497 0.988963
CVLI 1.00625 1.01958 1.02752 1.08342 1.00406 1.00985 1.01389 1.04298

0.001
ARL 370.37 117.464 83.2065 26.657 370.37 234.585 166.023 52.8445

0.998649 0.995734 0.993973 0.981064 0.998649 0.997866 0.996984 0.990493
CVLI 1.00539 1.01688 1.02375 1.07241 1.00539 1.00849 1.01197 1.03716

0.55

0.0001
ARL 495.455 139.998 95.7804 27.3565 1039.12 299.742 204.888 58.1058

0.99899 0.996422 0.994766 0.981553 0.999519 0.998331 0.997557 0.991358
CVLI 1.00288 1.01017 1.01483 1.051 1.00138 1.00476 1.00696 1.02433

0.0005
ARL 558.561 157.783 107.928 30.7799 1103.94 337.894 230.947 65.45

0.999104 0.996826 0.995357 0.983621 0.999547 0.998519 0.997833 0.992331
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CVLI 1.00256 1.00903 1.01317 1.04545 1.0013 1.00423 1.00618 1.02162

0.001
ARL 648.874 183.237 125.313 35.6794 1013.3 392.496 268.241 75.9608

0.999229 0.997268 0.996002 0.985887 0.999506 0.998725 0.998134 0.993396
CVLI 1.0022 1.00778 1.01135 1.03932 1.00141 1.00364 1.00532 1.01866

0.7

0.0001
ARL 2666.71 532.479 327.971 65.8404 7043.28 1405.73 865.52 173.095

0.999812 0.999061 0.998474 0.992377 0.999929 0.999644 0.999422 0.997107
CVLI 1.00021 1.00107 1.00173 1.00861 1.00008 1.0004 1.00066 1.00328

0.0005
ARL 3006.64 600.304 369.723 74.1708 7940.64 1584.89 975.808 195.1

0.999834 0.999167 0.998647 0.993236 0.999937 0.999684 0.999487 0.997434
CVLI 1.00019 1.00095 1.00154 1.00765 1.00007 1.00036 1.00058 1.00291

0.001
ARL 3493.14 697.373 429.476 86.0929 9215.3 1841.3 1133.65 226.593

0.999857 0.999283 0.998835 0.994175 0.999946 0.999728 0.999559 0.997791
CVLI 1.00016 1.00082 1.00132 1.00659 1.00006 1.00031 1.0005 1.00251
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4.6 Real life examples

In this section, we are intended to discuss some illustrative real-life examples for the

implementation of the proposed control charts. Note that we use α = 0.0027 to develop

these control charts.

4.6.1 Boxing player’s Performance Monitoring-Cumulative Pro-

cess

Let’s suppose that we want to study the performance of a boxing player (cf. Eample 1

given in Section-4.1) in a training session. In such games, the mind of a player plays an

important role. It could be difficult to win a match when player’s mental condition is

disturbed. Therefore, suppose that we hire the services of two psychologists, and want

to decide whose (psychologists) couching could be effective to improve the player per-

formance. In a boxing fight, a knockout may be caused either by a series of small to

moderate punches or just by a really big punch. Thus, we are interested to know/ differ-

entiate whether the player has been lost the game genuinely or due to some psychological

issues, i.e., couching is not effective. For this purpose, we have collected a data set of

40 observations, which is about the game lost by a player after 300 seconds, i.e., critical

threshold is equal to 300 second. The first 20 observations have been collected before

introducing the intervention of a therapist. Note that we shall examine the effectiveness

of a therapy by two different therapists to decide which one was good for the player

couching. The first 20 in-control observations as given in Table-4.9 were generated us-

ing λ = 0.0005, θ = 0.001, and the next 10 (i.e., collected after the therapy of the first

psychologist) from λ = 0.0001, θ = 0.001. Similarly, the last 10 (i.e., collected after the

therapy of second psychologist) from λ = 0.01, θ = 0.001. The bold values in Table-

4.9 denote the occurrence of a shift while the values with a ⋆ represent the detection

of the shift by the control chart. Using the first 20 observations, the control limits are

LCL = ln(3.64695) = 1.293891 and UCL = ln(16321.1) = 9.700214. In Figure-4.3a, the

natural logarithm of the data and of the control limits is taken for a better presentation

of the chart. It is clear from Figure-4.3a that our proposed chart detects the player’s per-

formance, i.e., improvement and deterioration, in terms of the treatment, very efficiently.

Moreover, this conclusion is in accordance with the simulation study (cf. Section-4.4).

It is observed from Figure-4.3a that the therapy of the first psychologist is effective as

compared to the second therapist. The cumulative probability control chart also leads to

the same conclusion (cf. Figure-4.3b).

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



109

Table 4.9: Simulated failure time data of the Cumulative Process

Failure Inter-failure ln(X) Cumulative Failure Inter-failure ln(X) Cumulative
# time (X) Probability # time (X) Probability
1 924.377 6.8291 0.4742 21 18283.98 9.8138⋆ 0.2641
2 2601.66 7.8639 0.4444 22 4082.99 8.3146 0.9779
3 2895.77 7.9710 0.9785 23 695.201 6.5442 0.9971
4 268.329 5.5922 0.5521 24 819.318 6.7085 0.9996⋆
5 1672.99 7.4224 0.3936 25 7070.88 8.8637 0.2991
6 2024.72 7.6132 0.7941 26 2716.55 7.9071 0.1408
7 1002.97 6.9107 0.3192 27 6546.95 8.7868 0.7931
8 999.332 6.9071 0.2779 28 1478.42 7.2987 0.9565
9 650.125 6.4772 0.1244 29 2421.04 7.7919 0.9999
10 526.436 6.2661 0.5235 30 10508.8 9.2599 0.9999
11 4926.25 8.5023 0.3253 31 29.3991 3.3809 0.0029
12 1372.49 7.2244 0.5779 32 118.681 4.7764 0.0049
13 892.819 6.7945 0.7437 33 54.1987 3.9927 0.0232
14 854.872 6.7509 0.2375 34 22.09 3.0951 0.0075
15 496.659 6.2079 0.1135 35 1.3452 0.2965⋆ 0.0359
16 10943.1 9.3005 0.9481 36 101.146 4.6166 0.0195
17 1759.06 7.4725 0.9903 37 39.7277 3.6821 0.0006
18 2409.34 7.7871 0.9944 38 34.1069 3.5295 0.0226
19 1972.39 7.5870 0.3097 39 26.2636 3.2682 0.0024
20 29.2355 3.3754 0.8301 40 220.035 5.3938 0.0115

4.6.2 Water Quality Monitoring-Independent Process

There are the environmental protocols which must be followed and ensured by each factory

before releasing wastage. A factory may leak poisonous waste products into a river; how-

ever, after some time the vegetation and the fish in the river are dead due to a cumulative

or an accidental effect of poison pouring. To differentiate between an accidental and inten-

tional wastage/checmical/poison poring into river, which caused to die the under-water

habitant, we propose an independent process to monitor water quality. Conductivity of

the water can be used to check water quality.

Conductivity is a measure of the capability of a solution such as water in a stream to

pass an electric current. This is an indicator of the concentration of dissolved electrolyte

ions in the water. It doesn’t identify the specific ions in the water. However, significant

increases in conductivity may be an indicator that polluting discharges have entered the

water. Every creek will have a baseline conductivity depending on the local geology and

soils. Higher conductivity will result from the presence of various ions, including nitrate,

phosphate, and sodium. The basic unit of measurement for conductivity is micromhos

per centimeter (mhos/cm) or microsiemens per centimeter (S/cm). Either can be used;

they are the same. It is a measure of the inverse of the amount of resistance an electric

charge meets in traveling through the water. Distilled water has a conductivity ranging

from 0.5 to 3 S/cm, while most streams range between 50 to 1500 S/cm. Freshwater

streams ideally should have a conductivity between 150 to 500 S/cm to support diverse

aquatic life.
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(b) Cumulative Probability Control Chart

Figure 4.3: Control Chart for the Cumulative Process Monitoring

Let suppose that conductivity should be at-least 300 S/cm for a particular river/stream

which is near to a factory. The 40 observations have been generated in Table-4.10

to check the stream water quality where data are about the hours between crossing

the threshold of the conductivity. First 20 in-control observations (cf. Table-4.10) are

generated using K = 300, λ = 0.0005, θ = 0.001, the next 10 (i.e., process deteri-

oration) from λ = 0.1, θ = 0.0001 and the last 10 (i.e., process improvement) from

λ = 0.0001, θ = 0.001. The bold values in Table-4.10 denote the occurrence of a shift

while values with a ⋆ represent the detection of the shift by the proposed control chart.

Using the first 20 observations, the control limits are LCL = ln(3.64708) = 1.293927

and UCL = ln(17838.8) = 9.789131. Note that here the process improvement means

the water quality is improving, i.e., conductivity level is decreasing, while the process

deterioration means that conductivity level is increasing, i.e., water quality is becoming

poor. In Figure-4.4a, the natural logarithm of the data and of the control limits is taken

for a better presentation of the chart. From Figure-4.4a, clearly, the process is in-control

for the first 20 observations. A shift of the process deterioration was occurred at the

sample number 21, and it was immediately detected by the chart. Similarly, another shift

was occurred at the sample number 31 which was detected at the sample number 36. A

cumulative probability control chart has also been constructed (cf. Figure-4.4b), and it

leads to a similar conclusion as we have in Figure-4.4a.
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Table 4.10: Simulated failure time data of the Independent Process

Failure Inter-failure ln(X) CP Failure Inter-failure ln(X) CP
# time (X) # time (X)
1 28.1469 3.3374 0.0104 21 1.6689 0.5122⋆ 0.0006⋆
2 5375.9799 8.5897 0.8635 22 38.7736 3.6577 0.0143
3 4899.0753 8.4968 0.8371 23 30.4048 3.4146 0.0112
4 326.0282 5.7869 0.1138 24 6.0719 1.8037 0.0023
5 3792.8213 8.2409 0.7546 25 7.2365 1.9791 0.0027
6 468.8966 6.1504 0.1594 26 1.6809 0.5193⋆ 0.0006⋆
7 7043.6737 8.8599 0.9264 27 9.3069 2.2308 0.0034
8 8111.0884 9.0009 0.9504 28 14.0128 2.6399 0.0052
9 1824.1795 7.5089 0.4912 29 8.7200 2.1656 0.0032
10 524.2249 6.2619 0.1765 30 4.8538 1.5798 0.0018
11 5259.7901 8.5679 0.8575 31 2710.1264 7.9048 0.6335
12 1500.3225 7.3134 0.4264 32 4673.8559 8.4497 0.8229
13 2280.1749 7.7320 0.5703 33 834.6655 6.7270 0.2659
14 1772.6952 7.4803 0.4814 34 91.5559 4.5169 0.0334
15 2828.1483 7.9474 0.6492 35 13853.8589 9.5363 0.9941
16 2570.5627 7.8519 0.6141 36 33313.4361 10.4137⋆ 0.9999⋆
17 498.3389 6.2113 0.1686 37 1697.9908 7.4372 0.4669
18 3595.0558 8.1873 0.7359 38 418.0323 6.0356 0.1435
19 2743.4973 7.9169 0.6380 39 33.6614 3.5164 0.0124
20 1489.9068 7.3065 0.4241 40 2546.4320 7.8425 0.6106

4.6.3 Wire rope strength Monitoring-Cumulative Process with

NHPP

Wire ropes of a properly designed and maintained crane will deteriorate throughout their

entire service life by two principal deterioration mechanisms, which are: external and

internal fatigue, caused by bending over sheaves or winding on drums, and crushing caused

by spooling on multilayered drums (cf. Weischedel [2003]). An experiment is designed to

see the compatibility of wire rope with two different sheaves/winding on drums. Suppose

that a wire rope of diameter 1 in., (or 26 mm) have 300 kN (Kilonewton) breaking strength.

A data set of the damage of a wire rope is collected and given in Table-4.11. Note that

there are two methods for the inspection of wire ropes, i.e., visual and electromagnetic

inspection, and electromagnetic inspection was used in our experiment. The first 20 in-

control observations are generated using K = 300, β = 1.5, λ = 0.0005, θ = 0.001, the

next 10 (i.e., a new model of the sheave was introduced for testing the wire compatibility)

from λ = 0.0001, θ = 0.005, β = 1.2 and the last 10 (i.e. a second model of the sheave was

introduced for testing wire compatibility) from λ = 0.01, θ = 0.0005, β = 1.6. The bold

values given in Table-4.11 denote the occurrence of the shift, i.e., a new model of the sheave

was introduced, while values with ⋆ represent the detection of the shift, i.e., compatibility

of the sheave with wire rope, by the control chart. Using the first 20 observations we have

the control limits LCL = ln(2.781067) = 1.022835 and UCL = ln(7810.433) = 8.963216.

From Table-4.11 or Figure-4.5, clearly, the first model of the sheave is more compatible

with the wire rope than the second one.
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(b) Cumulative Probability Control Chart

Figure 4.4: Control Chart for the Independent Process

4.6.4 Blood/Urine Monitoring-Independent Process with NHPP

We have quoted the example of banned performance-enhancing drugs in Section-4.1 (cf.

Example 4). Sport regulatory authorities are very conscious of conducting a banned per-

formance -enhancing drug test, which ends up them in a court for intentionally defaming

the player. Modern sport industry is facing a hard challenge to differentiate/ decide

whether the presence of a particular element is natural or un-natural. Therefore, to assist

the decision committee, we are proposing the use of the control chart based on the NHPP.

Most of the international sports organizations support the view that sample should be

taken at random or surprised interval of the time to check the ratio of blood/urine el-

ements. If the player has used banned medicine, then we should expect that the ratio

of particular elements in blood or urine would be greater than a normal threshold and

consequently, it shortened TBE and vice versa. Moreover, the presence of the particular

element might increase or decrease over time; therefore, the use of NHPP for the time is

justified.

Suppose that the time follows the NHPP and the magnitude exponential distribution.

The first 20 in-control observations are generated using K = 300, β = 1.5, λ = 0.0005, θ =

0.001, the next 10 (i.e., the player has not used any un-natural medication to enhance

performance and crossing a threshold might be due to couching effect or something else)

from λ = 0.0001, θ = 0.0001, β = 1.5 and the last 10 (i.e., the player has used something

related to banned elements) from λ = 0.01, θ = 0.001, β = 1.2. The bold values in
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Table 4.11: Simulated failure time data of the Cumulative NHPP Process

Failure Inter-failure ln(X) Failure Inter-failure ln(X)
# time (X) # time (X)
1 2768.6589 7.9261 21 30661.352 10.3308⋆
2 509.6796 6.2338 22 4800.129 8.4764
3 65.0466 4.1751 23 39422.263 10.5821⋆
4 1996.4771 7.5991 24 2814.991 7.9427
5 2460.8649 7.8083 25 45614.794 10.7279⋆
6 362.6931 5.8936 26 3294.383 8.0999
7 4691.9587 8.4536 27 29880.27 10.3049⋆
8 1618.9652 7.3895 28 18598.064 9.8308⋆
9 1047.5022 6.9542 29 13269.856 9.4933⋆
10 251.1014 5.5259 30 3807.075 8.2446
11 1594.2674 7.3742 31 24.4297 3.1958
12 1609.6292 7.3838 32 1.9718 0.6789⋆
13 326.3924 5.7881 33 33.5553 3.5132
14 1921.9849 7.5611 34 1.1259 0.1186⋆
15 1100.0725 7.0031 35 186.1773 5.2267
16 1392.7834 7.2391 36 29.3798 3.3803
17 274.8661 5.6163 37 28.1168 3.3364
18 438.0057 6.0822 38 81.9651 4.4063
19 1390.1253 7.2372 39 69.5601 4.2422
20 4681.3031 8.4513 40 108.9579 4.6909

Table-4.12 denote the occurrence of a shift while values with ⋆ represent the detection

of a shift by the control chart. Using the first 20 observations, the control limits are

LCL = ln(29.852) = 3.396252 and UCL = ln(8601.75) = 9.059721. In Figure-4.6a, the

natural logarithm of the data and of the control limits is taken for a better presentation

of the chart. From Figure-4.6a it is clear that for the first 20 observations, the process

is under control. A process improvement shift occurs at the sample number 21, and it is

detected by the chart at the sample number 24. Another process deterioration shift occurs

at the sample number 31 which is detected efficiently at the sample point 37. Note that

the process improvement means that the player’s blood/urine is normal or the specific

element of the prohibited drug has been decreased. Similarly, the process deterioration

indicates that the particular element of the banned drug is found in the blood/urine above

the allowed or normal level, i.e., its usage has been increased. Note that in the process

improvement case, the chances of the TBE to cross a threshold will be increased and

vice versa for the process deterioration. A cumulative probability control chart has also

been constructed (cf. Figure-4.6b), and it leads to a similar conclusion as we have in

Figure-4.6a.

4.7 Conclusion

In the existing literature to jointly monitor the time and the magnitude, the marked

Poisson process is commonly used. However, control charts based on the marked Poisson
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Figure 4.5: Control Chart for the NHPP Cumulative Process

process are not suitable for the situations where we have proportional changes either in

the time or magnitude and if the damage is not directly observable. Moreover, due to a

restrictive assumption of the Poisson process, i.e., constant failure rate, the existing charts

are unsuitable for complex process monitoring, especially in reliability engineering. In this

chapter, we proposed four different control charts based on the renewal reward process.

Algorithms to compute the control limits and the ARL have also been proposed in this

study, and therefore, one could consider any lifetime distribution for the time and the

magnitude to develop/construct a control chart. Our work is not only a generalization of

the existing work, but also open a new era in the development and monitoring of time and

magnitude charts, especially in the reliability. Furthermore, the proposed methodology

is different from the existing work in the sense that we do not consider a ratio of the

time and magnitude. Instead, we develop the first passage distribution using the renewal

reward processes to design a control chart.

The performance of the new chart has been examined in detail, i.e., from the rational

and design assessment point of view. The effectiveness of the proposed charts lies in their

sensitivity to detect simultaneous shifts, i.e., time and magnitude. The ARL, CVs of the

run-length and the length of inspection distributions have been studied in detail to assess
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Table 4.12: Simulated failure time data of the NHPP Independent Process

Failure Inter-failure ln(X) Cumulative Failure Inter-failure ln(X) Cumulative
# time (X) Probability # time (X) Probability
1 1819.5871 7.5064 0.4742 21 1110.7636 7.0128 0.2641
2 1714.0535 7.4466 0.4444 22 5959.7661 8.6928 0.9779
3 5988.3976 8.6976 0.9785 23 7935.5397 8.9791 0.9971
4 2110.8378 7.6548 0.5521 24 9721.0584 9.1821⋆ 0.9996⋆
5 1539.3253 7.3391 0.3936 25 1225.4800 7.1111 0.2991
6 3313.9600 8.1059 0.7941 26 694.9024 6.5438 0.1408
7 1291.5744 7.1636 0.3192 27 3307.8218 8.1041 0.7931
8 1156.4074 7.0531 0.2779 28 5233.0565 8.5628 0.9565
9 636.0273 6.4552 0.1244 29 13679.2098 9.5236⋆ 0.9999⋆
10 2000.7505 7.6013 0.5235 30 12267.1852 9.4147⋆ 0.9999⋆
11 1311.5818 7.1789 0.3253 31 50.5818 3.9236 0.0029
12 2213.6531 7.7024 0.5779 32 70.0774 4.2496 0.0049
13 3000.3620 8.0065 0.7437 33 200.2886 5.2998 0.0232
14 1023.2941 6.9308 0.2375 34 94.1414 4.5448 0.0075
15 595.7251 6.3898 0.1135 35 268.8099 5.5940 0.0358
16 5033.9409 8.5239 0.9481 36 177.9667 5.1816 0.0195
17 6786.7041 8.8227 0.9903 37 17.6168 2.8689⋆ 0.0006⋆
18 7311.4314 8.8972 0.9944 38 196.9976 5.2832 0.0226
19 1260.5173 7.1393 0.3098 39 43.4578 3.7718 0.0024
20 3577.9860 8.1826 0.8301 40 124.6388 4.8254 0.0114

the performance of the control charts. Moreover, some practical aspects to highlight the

abilities of different proposed charts in various situations have also been discussed in this

chapter. From our simulation study as well as from illustrative applications, it is evident

that our proposals work efficiently.

In this chapter, we assumed the exponential distribution for the magnitude. However,

in the real applications, this may not be well fitted to a situation under study, and some

other suitable distributions could be considered for the construction of control charts.

For this purpose, one can use our mathematical formulation and algorithms designed

for the numerical computations. In the future, development of the time and magnitude

charts using the nonparametric approach would be an interesting study. A comprehensive

study is required to see the effect of parameter estimation on the time and magnitude

control chart’ performance. More advanced control charts like CUSUM and EWMA,

can also be developed within the renewal reward framework to monitor the time and

the magnitude. Furthermore, we assumed that X and M are independent; however,

these might be dependent in some application. Therefore, the current work could also be

extended to such situations.

In the next chapter, we extend the current work to a random threshold (cf. Chapter-5)

scenario.
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(b) Cumulative Probability Control Chart

Figure 4.6: Control Chart for the NHPP Independent Process
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Appendix

Appendix A: Some Details

Since E[N(t)] =
∑∞

n=1 Pr[N(t) ≥ n] (cf. Section-4.2) but the event N(t) ≥ n is same as

Sn ≤ t. Therefore, E[N(t)] could be expressed in terms of the distribution function of

Sn, n ≥ 1 as E[N(t)] =
∑∞

n=1 Pr[Sn ≤ t]. Although this expression looks fairly simple, it

becomes increasingly complex with the increasing t. As t increases, there is an increasing

set of values of n for which Pr(Sn ≤ t) is significant, and Pr(Sn ≤ t) itself is not easy to

calculate if the inter-arrival distribution FX(x) is complex/complicated.

We know that Sn = Sn−1+Xn for each n ≥ 1 (with S0 = 0), and since Xn and Sn−1 are

independent by definition, we can use convolution to get Pr(Sn ≤ t) =
∫ t
x=0

Pr(Sn−1 ≤
t− x)dFX(x) for n ≥ 2. Therefore,

E[N(t)] = FX(t) +

∫ t

x=0

∞∑
n=2

Pr(Sn−1 ≤ t− x)dFX(x) (A.1)

= FX(t) +

∫ t

x=0

∞∑
n=1

Pr(Sn ≤ t− x)dFX(x) = FX(t) +

∫ t

x=0

E[N(t− x)]dFX(x)

for t > 0.

If we assume that X has density fX(x), and this density has a Laplace transform

Lx(s) =
∫∞
0
fX(x) exp(−sx)dx, then the Laplace transform of E[N(t)] is Lm(s) =

LX(s)
s

+

Lm(s)LX(s). Therefore, we have Lm(s) =
LX(s)

s[1−LX(s)]
.

Note that
∑∞

n=0G
n = 1

1−G ,
∑∞

n=0G
nF n+1 = F

1−FG and
∑∞

n=0G
n+1F n+1 = FG

1−FG .

Appendix B: An Alternative Representation of First Passage Dis-

tribution of the Cumulative Process

Note that exp(−λts/(s + θ)) (cf. Section-4.3) can be written as exp(−λts/(s + θ)) =∑∞
n=0

(−1)n(λt)nsn

n!(s+θ)n
and it’s inverse LS is:

∑∞
n=0

(−1)n(λt)n

n!
{−nλ1F1[1 + n, 2,−tλ]}, where

1F1[a, b, z] denotes the Kumer Confluent Hypergeometric function.

The general form of the Kumer Confluent Hypergeometric function can be defined

as 1F1[a, b, z] =
∑∞

k=0(a)k/(b)kz
k/k!, where (.)k denotes the rising factorial, i.e., (d)k =

d(d + 1)(d + 2) · · · (d + n − 1). Thus, using the Hypergeometric function, we have an

alternative representation of the inverse of the LS transform. An integral representation

of the Hypergeometric function was given by Abramowitz and Stegun [1974] (pp. 505)

which is defined as: 1F1[a, b, z] =
Γ(b)

Γ(b−a)Γ(a)

∫ 1

0
exp(zt)ta−1(1−t)b−a−1dt. Moreover, one can

also define it in terms of the Laplace integral, i.e., 1F1[a, b, z] =
1

Γ(a)

∫∞
0

exp(−zt)ta−1(1−
t)b−a−1dt.

In mathematics, a confluent hypergeometric function is a solution of the confluent
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hypergeometric equation, which is a degenerate form of the hypergeometric differential

equation w(z): z d
2w
dz2

+ (b− z)dw
dz

− aw, where two of the three regular singularities merge

into an irregular singularity.

The Bessel function is a solution of the differential equation z2 d
2w
dz2

+ z dw
dz

− (z2 − v2)w

where v denotes the order of the Bessel function. By using the Taylor series, it can be

written as Jv(z) =
∑∞

n=0
(−1)n(z/2)2n+v

n!Γ(n+v+1)
. It has also an integral representation which can

be written as: Jv(z) =
1
π

∫ π
0
exp(vt− z sin(t))dt− sin(vπ)

π

∫∞
0

exp(−z sinh(t)− vt)dt. More-

over, one can also define it with the imaginary argument, i.e., Iv(z) = −ι−vJv(ιz) =∑∞
n=0

(z/2)2n+v

n!Γ(n+v+1)
whereas the integral form is: Iv(z) = 1

π

∫ π
0
exp(z cos(θ)) cos(vθ)dθ −

sin(vπ)
π

∫∞
0

exp(−z cosh(t)−vt)dt, i.e., we have differential equation z2 d2w
dz2

+z dw
dz
−(z2+v2)w.

A relation of the Kummer Confluent Hypergeometric with the Bessel function was

given by Olver et al. [2010] (pp. 255) and defined as

Jv(z) =
(z/2)v

Γ(v + 1)
0F1(v + 1; z2/4) =

(z/2)v

Γ(v + 1)
exp(−z)1F1[v + 0.5, 2v + 1, 2z] (B.1)

where 0F1[a, z] is called the confluent hypergeometric function given by

0F1[a, z] =
∑∞

k=0
zk

(a)kk!
.

Appendix C: Estimation of Parameters

In this appendix, we shall derive the probability density function and especially the partial

derivatives to find maximum likelihood estimators of the parameters.

Cumulative Process (Model 1):

Assume that both the time and magnitude have the exponential distribution with the rate

parameter λ and θ, respectively. Therefore, for the cumulative process, the cumulative

density function of the first passage distribution is given below:

Pr{Z ≤ t} = 1− exp(−λt)
[
1 +

√
λθt

∫ K

0

exp(−θw)w−0.5I1(2
√
λθtw)dw

]
(C.1)

where Ii is the Bessel function of order i for the imaginary argument defined by Ii(x) =∑∞
k=0

(x/2)2k+1

k!(k+i)!
. After differentiating with respect to t, we have the density function

f(t) =

√
λ exp(−tλ)
2
√
tθ

[
θ(2tλ− 1)

∫ K

0

exp(−θw)w−0.5I1(2
√
λθtw)dw + 2

(√
tθλ− (C.2)

√
tλθ1.5

2

∫ K

0

exp(−θw)
{
I0(2

√
λθtw) + I2(2

√
λθtw)

}
dw

)]
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Independent Process (Model 2):

Suppose that both the time and magnitude have the exponential distribution with the

rate parameter λ and θ, respectively. Thus, for the independent process, the cumulative

density function of the first passage distribution is given as:

Pr{Z ≤ t} = 1− exp(−λt exp(−θK)) (C.3)

and density function is

f(t) = λ exp
(
−θK − λt exp(−θK)

)
(C.4)

Therefore, the log-likelihood function of the first passage distribution is given below:

l(.) = n ln(λ)− nθK − λ
n∑
i=1

ti exp(−θK) (C.5)

and

∂l(.)

∂λ
=
n

λ
−

n∑
i=1

ti exp(−θK) = 0 =⇒ λ̂ =
n exp(θK)∑n

i=1 ti
(C.6)

∂l(.)

∂θ
= −nK + λK exp(−θK)

n∑
i=1

ti = 0 =⇒ θ̂ =
1

K
ln
(λ∑n

i=1 ti
n

)
(C.7)

∂2l(.)

∂λ2
= − n

λ2
(C.8)

∂2l(.)

∂λ∂θ
= K

n∑
i=1

ti exp(−θK) (C.9)

∂2l(.)

∂θ2
= −λK2 exp(−θK)

n∑
i=1

ti (C.10)

Independent Process with NHPP intensity (Model 3):

Assume that the time follows NHPP with power law intensity and magnitude has the

exponential distribution with the rate parameter θ. Then, for the independent process,

the cumulative density function of the first passage distribution is given below:

Pr{Z ≤ t} = 1− exp

(
− exp(−Kθ)(λt)β

)
(C.11)

and it has density function given by

f(t) = βλβtβ−1 exp
(
−θK − exp(−θK)(λt)β

)
(C.12)
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The log-likelihood can be written as

l(.) = n ln(β) + nβ ln(λ) + (β − 1)
n∑
i=1

ln(ti)− nθK − λβ exp(−θK)
n∑
i=1

tβi (C.13)

and the normal equations to find the likelihood estimators are

∂l(.)

∂θ
= −nK + λβK exp(−θK)

n∑
i=1

tβi = 0 =⇒ θ̂ =
1

K
ln

(
λβ

∑n
i=1 t

β
i

n

)
(C.14)

∂l(.)

∂λ
=
nβ

λ
− βλβ−1 exp(−θK)

n∑
i=1

tβi = 0 =⇒ λ̂ =

(
n exp(θK)∑n

i=1 t
β
i

)1/β

(C.15)

∂l(.)

∂β
=
n

β
+ n ln(λ) +

n∑
i=1

ti − λβ exp(−θK){ln(λ)
n∑
i=1

tβi +
n∑
i=1

tβi ln(ti)} =⇒

β̂ = h(β) =
n

λβ exp(−θK){ln(λ)
∑n

i=1 t
β
i +

∑n
i=1 t

β
i ln(ti)} − n ln(λ)−

∑n
i=1 ti

(C.16)

∂2l(.)

∂θ2
= −K2λβ exp(−θK)

n∑
i=1

tβi (C.17)

∂2l(.)

∂θ∂λ
= Kβλβ−1 exp(−θK)

n∑
i=1

tβi (C.18)

∂2l(.)

∂θ∂β
= Kλβ exp(−θK){ln(λ)

n∑
i=1

tβi +
n∑
i=1

tβi ln(ti)} (C.19)

∂2l(.)

∂λ2
= −nβ

λ2
− β(β − 1)λβ−2 exp(−θK)

n∑
i=1

tβi (C.20)

∂2l(.)

∂λ∂β
=
n

λ
− λβ−1 exp(−θK)

n∑
i=1

tβi − βλβ−1 ln(λ) exp(−θK)
n∑
i=1

tβi− (C.21)

βλβ−1 exp(−θK)
n∑
i=1

tβi ln(ti)

∂2l(.)

∂β2
= − n

β2
− λβ(lnλ)2 exp(−θK)

n∑
i=1

tβi − 2λβ ln(λ) exp(−θK)
n∑
i=1

tβi ln(ti) (C.22)

−λβ exp(−θK)
n∑
i=1

tβi {ln(ti)}2
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Chapter 5

Monitoring the Time and Magnitude

based on the Renewal Reward

Process with a Random Failure

Threshold

In the previous chapter, i.e., Chapter-4, we have proposed some monitoring strategies for

the cumulative and the independent processes by assuming a fixed threshold. However, in

many situations, this assumption of the fixed threshold is not suitable, e.g., radioactivity

or disease monitoring, and one needs to replace it with a random threshold. Therefore,

contrary to Chapter 4, here we shall consider the case of a random failure threshold to

develop a new monitoring strategy. Some comparison studies are also given in this chapter

to show the effectiveness of our proposal.

5.1 Introduction

In Chapter 4, we assumed that a fixed critical threshold/failure level for the process

monitoring. However, there are many situations where the assumption of the fixed critical

threshold is not valid. We quote here some motivational examples from such complex

fields:

Example 1: Radioactivity An atomic power station normally emits a daily amount

of the radioactivity, which after some (large) time may cause a higher rate of the

cancer in the nearby population. Similarly, a fault in the nuclear plant is either

cause of cumulative damages or sudden deadly shock. Since, the nuclear systems

are not readily accessible for inspection due to high levels of radiation, i.e., each

shock is not directly observable, the time when damage exceeds the critical point
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may be recorded. A maintenance engineer keeps the record of these critical points of

different plants. There could be natural and un-natural causes of a plant failure and

monitoring of such events, is a real challenge. Moreover, the risk of the radioactivity

can vary with time, i.e., stochastic effect of radiation, and every authority tries to

minimize it as much as possible.

Example 2: Cardiac monitoring Cardiac monitoring generally refers to continuous

monitoring of the heart activity, usually by an electrocardiography. Currently, a

handy device is used to monitor the heart rate, which displays an assessment of

patients condition relative to their cardiac rhythm. A medical doctor knows the

critical threshold of the normal rhythm of a heart and may use it to see the effec-

tiveness of a treatment on the patient’s health. For example, in hypertension case, a

patient heart beat gradually or suddenly starts changing from normal to an abnor-

mal rhythm, and many peaks would cross the normal threshold. This phenomenon

is significantly dependent on the patient’s medical history. If a medicine/treatment

is an effective, then the risk of hypertension should be decreased with the passage

of time, and vice versa. Note that the heart rhythm might change due to the cu-

mulative or independent effect of a series of events. Moreover, the critical value of

a normal heart’s rhythm is also dependent on different factors, e.g., age, sex, smok-

ing, diet and exercise, etc. Therefore, to develop an efficient monitoring strategy,

the random critical threshold makes more sense than a fixed threshold for different

patients.

Similar examples of the random failure threshold could be found in terrorism surveil-

lance, flood or dam’s water level monitoring, etc. Therefore, in such situations, one should

consider process monitoring with a random threshold instead of a fixed threshold. In this

chapter, we assumed a random failure threshold for the renewal reward process and pro-

posed control charts. Note that we will use the same notations as discussed in Chapter 4.

The rest of the chapter is organized as follows: We present definitions of the cumulative

and the independent processes by assuming random threshold in Section 5.2. Discussion

about the compound Poisson process assuming the random threshold is also given in the

same Section 5.2. The control chart construction is given in 5.3 while the assessment of

the control charts by the performance measure ARL, is given in Section 5.4. The imple-

mentation of proposals in the real-life situations, is discussed in Section 5.5. Finally, we

conclude the chapter in Section 5.6.

5.2 Random Failure Threshold

As we have explained in the introduction (cf. Section-5.1) that in many situations, the

failure threshold K may varies with time, i.e., dependent on the operating environment.
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Figure 5.1: Process for a standard cumulative damage model with random failure
threshold

Therefore, the idea of a constant failure threshold is not suitable in many situations and

one needs to replace the constant failure threshold with a random threshold. For this

purpose, let D(k) be the distribution of failure threshold such that D(0) = 0. In this

chapter, we are interested in finding the distribution of a first passage time to a random

failure threshold and develop a monitoring scheme. The idea is to replace K with its

distribution D(k). Therefore, we shall use Equation-4.7 in the next section to get the first

passage distribution.

5.2.1 Random Failure Threshold for the Cumulative Damage

Model

To define the first passage distribution with a random failure threshold for the cumulative

damage, we replace the constant K with its distribution in Equation-4.7, i.e., replace K

with D(k) (cf. Esary et al. [1973]). Thus, we have

Pr{Z ≤ t} =
∞∑
n=0

F (n+1)(t)

∫ ∞

0

[G(n)(k)−G(n+1)(k)]dD(k) (5.1)

the first passage distribution with a random threshold. To understand better the cu-

mulative damage with a random failure threshold, a graphical presentation is given in

Figure-5.1. The mean time to a random critical threshold can be written as: E(Z) =

µ
∫∞
0
[1 +MG(k)]dD(k).
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5.2.2 Random Failure Threshold for the Compound Poisson Pro-

cess

Consider a random failure threshold, i.e., K is not constant but has a distribution D(k) =

Pr{K ≤ k}, for the cumulative damage. The first passage distribution to a random

critical threshold of the compound Poisson process, can be derived as:

Pr{Z ≤ t} =
∞∑
n=0

∫ ∞

0

[
G(n)(k)−G(n+1)(k)

]
dD(k)

∞∑
j=n+1

(λt)j

j!
exp(−λt) (5.2)

and it has the mean E(Z) = 1
λ

∑∞
n=0

∫∞
0
G(n)(k)dD(k).

Example 1: If we suppose that a random failure threshold has the exponential dis-

tribution, i.e., D(k) = 1− exp(−βk), then the LS transform of Equation- is∫ ∞

0

exp(−st)dPr{Z ≤ t} =
∞∑
n=0

(
λ

s+ λ

)n+1
βθn

(θ + β)n+1
=

λβ

s(θ + β) + λβ
(5.3)

i.e.,
∫∞
0

(
G(n)(k)−G(n+1)(k)

)
dD(k) = βθn

(θ+β)n+1 . To find the first passage distribution, we

have the inverse LS transform of Equation-5.3 given as

Pr{Z ≤ t} = 1− exp

(
− λβt

θ + β

)
(5.4)

which is clearly exponential distribution with the rate parameter λβ
θ+β

. Therefore, we have

E(Z) = θ+β
λβ

and V ar(Z) =
(
θ+β
λβ

)2
.

5.2.3 Random Failure Threshold for Independent Damage Model

In previous Section 5.2.1, we defined the cumulative damage model with a random failure

threshold. However, in this section, we extend the same idea and define the independent

damage model with a random threshold. Therefore, Equation-4.12 can be modified as

given below:

Pr{Z ≤ t} =
∞∑
n=0

F (n+1)(t)

∫ ∞

0

[Gn(k)−Gn+1(k)]dD(k) (5.5)

and its mean time is E(Z) = µ
∑∞

n=0

∫∞
0
[G(k)]ndD(k). The graphical presentation of the

independent damage model with a random failure threshold is given in Figure-5.2.
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Figure 5.2: Process for a independent cumulative damage model

5.2.4 Random failure threshold for the Compound Poisson Pro-

cess

To define the first passage distribution of the independent damage model to a random

threshold, we consider the compound Poisson process for N(t). Therefore,

Pr{Z ≤ t} =
∞∑
n=0

∫ ∞

0

[
Gn(k)−Gn+1(k)

]
dD(k)

∞∑
j=n+1

(λt)j

j!
exp(−λt) (5.6)

which has the mean E(Z) = 1
λ

∑∞
n=0

∫∞
0
Gn(k)dD(k).

Example 2: Suppose that we have exponential distribution with the rate parameter

β for the random failure threshold. To find the first passage distribution, Equation-5.6

can be written as:

Pr{Z > t} =

∫ ∞

0

exp(−λt exp(−θk))β exp(−βk)dk (5.7)

=
∞∑
j=0

(−λt)j

j!

∫ ∞

0

β exp(−(β + jθ)k)dk =
∞∑
j=0

(−λt)j

j!

β

β + jθ

=
β(tλ)−β/θ

θ
Γ(β/θ, 0, tλ)

where Γ(β/θ, 0, tλ) =
∫ tλ
0
kβ/θ−1 exp(−k)dk is the generalized incomplete gamma function

(cf. Chaudhry and Zubair [1994]). Furthermore, the generalized gamma can be simplified

as Γ(β/θ, 0, tλ) = Γ(β/θ) − Γ(β/θ, tλ). The mean time to a critical point is E(Z) =
1
λ

∫∞
0

exp(θk)β exp(−βk)dk = β
λ(β−θ) for β > θ, and it would be equal to ∞ for β ≤ θ.
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5.3 Control Chart Construction

In this section, we are interested to develop control charts for the cumulative processes by

assuming a random failure threshold. For this purpose, let α denotes the probability of

the false alarm. To construct a two-sided control chart based on Equations-5.4 and 5.7,

find LCL = F−1(α/2) and UCL = F−1(1 − α/2), respectively, i.e., find the lower and

upper percentiles of the first passage distribution at the specified false alarm probability

to get the lower control limit (LCL) and the upper control limit (UCL). Similarly, a

one-sided control chart can be designed by finding a lower percentile of the first passage

distribution at α level to get only the LCL for the detection of a process deterioration.

To monitor the process improvement, an upper-sided control chart can be designed by

finding the UCL = F−1(1−α) of the first passage distribution to a random critical point.

The monitoring procedure using the proposed charts is the same as we have defined in

Section-4.4. Moreover, one can also find the CPC charts, and procedure is exactly the

same as we have described in Section-4.4 of Chapter-4.

By following the arguments of finding the adjusted parameter value as explained in

Section-4.4, we have θ1 = β1
[
λ0(θ0+β0)
λ1β0

− 1
]
, λ1 = λ0β0(θ0+β1)

β1(θ1+β0)
and β1 = θ0λ1β0

λ0(θ1+β0)−λ1β0 for

the cumulative process with a random failure threshold. Similarly, for the independent

process with a random failure threshold, we have θ1 = β1
[
β0(λ0−λ1)+λ1θ0

λ0β0

]
, λ1 =

β1λ0(β0−θ1)
β0(β1−θ0)

and β1 =
β0λ0θ0

β0(λ0−λ1)+λ1θ1 .

To assess the performance of the proposed control charts, we use the ARL, quartiles of

the run length distribution, the coefficient of variance of the run length and of the length

of inspection distributions, respectively. We shall discuss these performances measures

for the detection of a process deterioration and improvement using the one and the two

sided control charts.

As we noticed in Chapter 4 that to get an explicit expression of the first passage

distribution to a critical point is extremely difficult, if not impossible, for the construction

of a control chart in general cases, e.g. considering the Weibull distribution for the time

and the magnitude. Therefore, we propose the following Algorithm-5.1 to compute the

control limits in general cases.

Similarly, we have Algorithm-5.2 for the ARL computation.

5.4 Discussion of ARL and ALI Study for Random

Failure Threshold

In this section, we study the performance of the control charts proposed in Section-

5.3. We suppose that TBE, damage and the random failure threshold follow exponential

distributions with the rate parameters λ, θ and β, respectively.

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



127

Algorithm 5.1 Control Limits Computation for the First Passage Distribution’ to a
random Critical Threshold

1: Select p = 1 or p = 2 for the Process◃ where p = 1 - Cumulative, p = 2 - Independent
2: Choose parameters values to generate X, M , and K from FX , GM and DK , respec-

tively.
3: for i = 1 to S do ◃ where S is large, e.g., 106

4: do
5: Sample Xj, Mj and Kj, j ≥ 1
6: if p == 1 then
7: SMj =

∑j
l=1Ml

8: else
9: SMj =Mj

10: end if
11: while SMj < Kj

12: Zi =
∑j

l=1Xl

13: end for
14: Compute the Specified Quantiles of Zi to find the LCL and UCL, respectively.

Algorithm 5.2 ARL Computation for the Two-Sided Chart based on the Renewal
Reward Process with a random Critical Threshold

1: Select p = 1 or p = 2 for the Process◃ where p = 1 - Cumulative, p = 2 - Independent
2: Choose shifted parameters values to generate X, M and K from FX , GM and DK

3: for m = 1 to S do ◃ where S is large, e.g., 106

4: for i = 1 to S do
5: do
6: Sample Xj, Mj and Kj, j ≥ 1
7: if p == 1 then
8: SMj =

∑j
l=1Ml

9: else
10: SMj =Mj

11: end if
12: while SMj < Kj

13: Zi =
∑j

l=1Xl

14: if Zi < LCL||Zi > UCL then
15: RLm = i, break
16: end if
17: end for
18: end for
19: Compute Mean of RLm.
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5.4.1 Cumulative Compound Process

We are considering shifts for the following two cases:

A λ decreases from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005} while θ shifts from

θ0 = 0.001 to θ1 ∈ {0.05, 0.01} and β from β0 = 0.2 to β1 ∈ {0.1, 0.3}.

B λ increases from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1} while θ shifts from θ0 = 0.001

to θ1 ∈ {0.0001, 0.01} and β from β0 = 0.2 to β1 ∈ {0.1, 0.3}.

It is noticed that when there is no shift in the rate parameter of the time, magni-

tude/damage and the random failure distributions, the ARL is equal to the nominal

value, i.e., 370.

Case A: an increase in θ (or decrease in λ): When a system improves, the damage

becomes small and therefore, the system takes long time to cross a critical threshold. This

improvement effect is reflected by the rate parameter of the first-passage distribution, i.e.,

it decreases, and the system fails occasionally. In our study, we fixed the magnitude dis-

tribution’s rate parameter θ0 = 0.001 (for in-control process) while θ1 ∈ {0.05, 0.01} to

represent the out-of-control situation. The in-control parameter of the random threshold,

exponential distribution with the rate parameter β, is β0 = 0.2 while let the β1 ∈ {0.1, 0.3}
to represent out-of-control situation. Similarly, the rate parameter of the time shifted from

λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005}. When the system improves, an engineer

is generally more concerned in the process improvement detection and for this purpose,

the Upper-sided control chart should be used. We have computed the ARL values for

the two-sided and the upper-sided charts in Table-5.1. The coefficient of variation (CV)

values of the run length and of the length of inspection have also been reported below the

ARL.

From Table-5.1, it is noticed that the one-sided chart is efficient in the detection of

the shift than the two-sided control chart. However, the superiority of the one-sided chart

is undermined when the random threshold distribution’s rate parameter shifted from

β0 = 0.2 to β1 = 0.1 for θ0 = 0.001. The large-size shifts, whether in the rate parameter

of the time, failure threshold or magnitude distribution could be detected quickly as

opposite to small shifts. The effectiveness of the one-sided chart could also be assessed by

the coefficient of variation values. For the fixed λ and θ, the ARL decreases with the size

of a shift in the rate parameter of the random failure threshold. Moreover, we observed

that the CVLI (scale dependent) was noninformative as compared to the CV of run length

distribution. The quartiles of the run length distribution have also been computed (not

reported here for the sake of space), and we observed that for small to moderate shifts,

the ARL values were smaller than Q3 while for large shifts, the ARL was greater than

Q3.
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Case B: a decrease in θ (or an increase in λ): This is the most important case

because it detects the process deterioration. In this case, the rate parameter of the mag-

nitude/damage would increase and lead to cross the threshold more often. Therefore, the

time between event’s occurrences decrease and result into an increased rate parameter of

the first-passage distribution. In our study, we fixed the rate parameter of the magnitude

distribution θ0 = 0.001 (for in-control process) while θ1 ∈ {0.0001, 0.01} to represent

the out-of-control situation. The rate parameter of the TBE distribution shifted from

λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}. Similarly, the rate parameter of the random failure

threshold is β0 = 0.2 for the in-control situation while β1 ∈ {0.1, 0.3} for the out-of-control
situation. When the system deteriorates, a practitioner or an engineer needs to use the

lower-sided control chart instead of the upper-sided chart. Thus, in Table-5.2, we have

presented the ARL values for the lower and the two sided control charts.

In this case, the lower-sided chart is efficient than the two-sided chart in the detection

of a process deterioration, especially when θ decreases. However, if θ increases, i.e.,

damage becomes the small, then two-sided control would be very effective. This behavior

is according to expectation because when θ decreases, the system will show improvements

signs, and therefore, the use of the lower-sided chart must be avoided. Since the two-sided

chart has UCL, its performance is good as compared to the one-sided chart. The ARL

values get smaller as the shift in the rate parameter of the time distribution occurs, and

this pattern can be verified from the CV values. For fixed λ and β, when a shift occurs

in θ, it slightly improves the detection ability of the chart. Therefore, this behavior

suggests that with a random failure threshold, the original distribution of the TBE plays

an important role than the damage or random failure threshold. From the quartiles’

computations, we observed that the ARL values were smaller than Q3, but greater than

the median, i.e., Q2. Therefore, the run-length distribution is not highly skewed as we

observed in the case of process improvement.
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Table 5.1: ARL using α = 0.0027 λ0 = 0.0005, β0 = 0.2, θ0 = 0.001 and λ1 ∈ {0.0003, 0.0001, 0.00005},
β1 ∈ {0.1, 0.3}, θ1 ∈ {0.05, 0.01} for upper and two sided charts based on compound (cumulative) process with random failure

threshold.

β θ λ
Upper Sided Two Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.1

0.001
ARL 359.683 34.1627 3.24477 1.80132 365.202 49.6078 3.72098 1.92945

0.998609 0.985255 0.831752 0.666973 0.99863 0.98987 0.855134 0.694059
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.01
ARL 222.228 25.5906 2.94686 1.71664 276.074 36.411 3.34201 1.82846

0.997748 0.980267 0.812808 0.646117 0.998187 0.986172 0.837125 0.673121
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.05 ARL
52.6001 10.7793 2.20901 1.48627 77.7999 14.1338 2.42295 1.55671
0.990449 0.952486 0.739803 0.571993 0.993552 0.963975 0.766342 0.598011

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.2

0.001
ARL 370.37 34.7682 3.26383 1.80661 370.37 50.5407 3.74536 1.93577

0.998649 0.985514 0.832833 0.668189 0.998649 0.990058 0.856156 0.695276
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.01
ARL 287.443 29.8628 3.10249 1.76139 324.243 42.9819 3.53947 1.88175

0.998259 0.983114 0.823212 0.657469 0.998457 0.988299 0.847037 0.684529
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.05
ARL 116.194 17.3424 2.58843 1.60886 166.254 23.852 2.89181 1.70075

0.995688 0.970741 0.783368 0.615176 0.996988 0.978813 0.808824 0.641892
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.3

0.001
ARL 374.027 34.9737 3.27025 1.80838 372.092 50.8574 3.75358 1.93789

0.998662 0.9856 0.833194 0.668595 0.998655 0.99012 0.856497 0.695683
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.01 ARL
314.924 31.5445 3.15967 1.77754 341.162 45.5728 3.6123 1.90103
0.998411 0.984022 0.826747 0.661382 0.998533 0.988968 0.850393 0.688455

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.05 ARL
163.191 21.2627 2.77038 1.66445 220.468 29.7908 3.11952 1.76649
0.996931 0.976201 0.799399 0.631822 0.99773 0.983073 0.82428 0.658716

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5.2: ARL using α = 0.0027 λ0 = 0.0005, β0 = 0.2, θ0 = 0.001 and λ1 ∈ {0.005, 0.01, 0.1}, β1 ∈ {0.1, 0.3}, θ1 ∈ {0.0001, 0.01}
for lower and two sided charts based on compound (cumulative) process with random failure threshold.

β θ λ
Lower Sided Two Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.1

0.0001
ARL 368.898 37.3421 18.9244 2.38701 374.502 74.2306 37.367 4.20905

0.998644 0.986519 0.973221 0.762277 0.998664 0.993241 0.986528 0.873165
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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0.001
ARL 372.211 37.6733 19.09 2.40317 365.202 74.8935 37.6984 4.24199

0.998656 0.986639 0.973456 0.764123 0.99863 0.993301 0.986648 0.874221
CVLI 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.01
ARL 405.333 40.9854 20.7458 2.56517 276.074 81.5224 41.0127 4.57162

0.998766 0.987725 0.975601 0.781129 0.998187 0.993848 0.987733 0.883889
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.2

0.0001
ARL 368.714 37.3237 18.9152 2.38611 375.018 74.1937 37.3486 4.20722

0.998643 0.986513 0.973207 0.762173 0.998666 0.993238 0.986522 0.873106
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.001
ARL 370.37 37.4893 18.998 2.39419 370.37 74.5252 37.5143 4.22369

0.998649 0.986573 0.973326 0.763101 0.998649 0.993268 0.986582 0.873636
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.01
ARL 386.932 39.1453 19.8259 2.4751 324.243 77.8397 39.1714 4.38845

0.998707 0.987144 0.974454 0.771994 0.998457 0.993556 0.987153 0.878709
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.3

0.0001
ARL 368.653 37.3175 18.9122 2.38581 375.19 74.1815 37.3424 4.20661

0.998643 0.98651 0.973203 0.762139 0.998666 0.993237 0.98652 0.873086
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.001
ARL 369.757 37.4279 18.9674 2.3912 372.092 74.4024 37.4529 4.21759

0.998647 0.986551 0.973282 0.762758 0.998655 0.993257 0.98656 0.87344
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.01
ARL 380.798 38.532 19.5193 2.44511 341.162 76.6121 38.5577 4.32742

0.998686 0.986938 0.974048 0.768779 0.998533 0.993452 0.986947 0.876878
CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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5.4.2 Independent Random Failure Threshold: Compound Pois-

son Process

We consider the shifts for the following two cases:

A λ decreases from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005} while θ shifts from

θ0 = 0.001 to θ1 ∈ {0.04, 0.01} and β from β0 = 0.2 to β1 ∈ {0.1, 0.3}.

B λ increases from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1} while θ shifts from θ0 = 0.001

to θ1 ∈ {0.0001, 0.01} and β from β0 = 0.2 to β1 ∈ {0.1, 0.3}.

It is observed from the ARL study that when the process is in-control, i.e., no shift in the

process parameters, the ARL value is equal to the specified in-control ARL value, i.e.,

370.

Case A: an increase in θ (or decrease in λ): When the system improves, the dam-

age/magnitude associated with each event becomes small and system takes a long time

to cross random threshold and therefore, this leads to a decrease in the rate parameter

of the first passage distribution, i.e., the system fails occasionally. In our study, we fixed

the magnitude’ rate parameter θ0 = 0.001 (for in-control process) while θ1 ∈ {0.04, 0.01}
to represent an out-of-control situation. The in-control rate parameter of the random

failure threshold, i.e., exponential distribution with the rate β, shifted from β0 = 0.2 to

β1 ∈ {0.1, 0.3}. The rate parameter of the time distribution shifted from λ0 = 0.0005 to

λ1 ∈ {0.0003, 0.0001, 0.00005}. Here again, we shall use the upper-sided control chart for

detection of the process improvement. In Table-5.3, we have computed the ARL values

for the two-sided and the upper-sided charts. The CVs of the run-length and of the length

of inspection distributions have also been reported in Table-5.3.

From Table-5.3, it is clear that the one-sided chart is more efficient in the detection

of shifts than the two-sided control chart. The superiority of the upper-sided chart is

also evident when a shift occurs either in λ or θ for the fixed β. However, the effect of

a shift on β is minor, especially when β1 < β0 as compared to the case β1 > β0. The

large shifts either in the rate parameter of the time, random failure threshold or the

magnitude distribution would be detected quickly as compared to the small shifts. The

said effectiveness of the one-sided chart could also be assessed by the coefficient of variance

values of the run length and of the length of inspection distributions. The CVs of the

run length and of the length of inspection distributions, and quartiles of the run-length

distribution also advocate the superiority of the upper-sided chart over the two-sided

chart. It has been noticed from the quartiles’ study that as a large shift in the time

distribution occurs, the run-length distribution becomes highly skewed and therefore, the

ARL gets greater than Q3.

Case B: a decrease in θ (or an increase in λ): This is an important case as

it detects the process deterioration. In this case, the damage/magnitude increases, and
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it leads to cross the random threshold more frequently. This in turn shorten the time

between the system failure and thus, the system would be prone to frequent failure. In

our study, we fixed the rate parameter of the magnitude distribution θ0 = 0.001 (for an

in-control process) while θ1 ∈ {0.0001, 0.01} to represent out-of-control situation. The

rate parameter of the time distribution shifts from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}.
Similarly, the rate parameter of the random failure threshold was fixed β0 = 0.2 for in-

control situation while β1 ∈ {0.1, 0.3} to represent out-of-control situation. Once again,

we would use the lower-sided control chart to detect the process deterioration and further

it would be compared with the two-sided control chart. The ARL values of the lower and

two sided control charts have been reported in Table-5.4. Moreover, the CVs of the run-

length and of the length of inspection distributions have also been computed in Table-5.4.

One can easily recover the standard deviation of the run-length distribution using the

ARL and the CV values.

Again, the one-sided chart is efficient in the detection of process deterioration than

the two-sided chart. However, the said superiority is subject to the rate parameter of

the time distribution, i.e., both charts compete each other, especially when λ = 0.0005.

We observed that the detection ability of the both charts was greatly improved as a

shift in the rate parameter of the time distribution was occurred. This behavior could

also be verified from the CV of the run-length distribution. However, it is also observed

that the effect of the magnitude is very significant as compared to the random failure

distribution (cf. Table-5.4). A shift of large size would be detected quickly than the

small to moderate size of the shift. When θ1 > θ0 and λ0 = 0.0005, it has been noticed

that the ARL is greater than its nominal value, and two-sided chart outperforms than

the lower-sided chart. However, one should be very careful in interpretation because it is

not the violation of the ARL’s unbiasedness property. This is happening because when

the damage decreases the chart would take long time to cross a threshold, and the use

of LCL is inappropriate in such a situation. Since the two-sided chart has the UCL, its

performance is better than the lower-sided control chart. Therefore, to design a control

chart one must be very careful about the choice of parameters, especially in estimation

as the parameters have a significant effect on the control chart performance (cf. Table-

5.4). The examination of the quartiles reveals that for the large shifts, the ARL values

are smaller than Q3 (but are greater than median, i.e., Q2). Therefore, the run-length

distribution becomes highly skewed with the size of a shift.
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Table 5.3: ARL using α = 0.0027 λ0 = 0.0005, β0 = 0.2, θ0 = 0.001 and λ1 ∈ {0.0003, 0.0001, 0.00005},
β1 ∈ {0.1, 0.3}, θ1 ∈ {0.04, 0.01} for upper and two sided charts based on compound (independent) process with random failure

threshold.

β θ λ
Upper Sided Two Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.1

0.001
ARL 359.207 34.1503 3.24483 1.80137 364.892 49.5862 3.72107 1.92951

0.998607 0.98525 0.831756 0.666984 0.998629 0.989865 0.855138 0.694071
CVLI 0.998607 0.985252 0.831775 0.667027 0.998629 0.989866 0.855154 0.694109

0.01
ARL 189.434 24.3157 2.93205 1.71457 239.82 34.1754 3.32094 1.8257

0.997357 0.979221 0.811752 0.645572 0.997913 0.985261 0.835991 0.672506
CVLI 0.99739 0.979484 0.814374 0.651194 0.997939 0.985447 0.838239 0.677577

0.04
ARL 26.9025 9.16146 2.25974 1.51642 33.7868 11.2518 2.47344 1.59023

0.981238 0.943847 0.74664 0.583568 0.98509 0.954529 0.771819 0.609229
CVLI 0.996276 0.989024 0.954722 0.931724 0.997036 0.991073 0.958718 0.935004

0.2

0.001
ARL 370.37 34.7719 3.26406 1.80668 370.37 50.5472 3.74569 1.93586

0.998649 0.985516 0.832846 0.668205 0.998649 0.990059 0.85617 0.695295
CVLI 0.998649 0.985516 0.832851 0.668216 0.998649 0.990059 0.856174 0.695304

0.01
ARL 275.419 29.4414 3.09809 1.76081 314.019 42.2419 3.53319 1.88098

0.998183 0.98287 0.822934 0.657328 0.998406 0.988093 0.846741 0.68437
CVLI 0.998188 0.982918 0.823479 0.658527 0.998411 0.988126 0.847205 0.685448

0.04
ARL 87.4395 16.748 2.6532 1.63518 117.866 22.3928 2.9664 1.731

0.994265 0.969686 0.789365 0.623255 0.995749 0.977416 0.814181 0.649846
CVLI 0.994649 0.971737 0.805123 0.655146 0.996033 0.827868 0.854142 0.678832

0.3

0.001
ARL 374.119 34.9805 3.27051 1.80846 372.149 50.8693 3.75396 1.93799

0.998663 0.985603 0.833209 0.668613 0.998656 0.990122 0.856513 0.695703
CVLI 0.998663 0.985603 0.833211 0.668617 0.998656 0.990122 0.856515 0.695707

0.01
ARL 308.996 31.3433 3.15771 1.77731 336.632 45.2202 3.6095 1.90072

0.998381 0.983918 0.826629 0.661326 0.998514 0.988881 0.850267 0.688392
CVLI 0.998382 0.983938 0.826857 0.661832 0.998515 0.988894 0.850461 0.688847

0.04
ARL 145.782 21.4072 2.8316 1.68629 192.068 29.6081 3.19288 1.79192

0.996564 0.976364 0.804266 0.637951 0.997393 0.982968 0.828736 0.664785
CVLI 0.996648 0.976944 0.809571 0.64912 0.997457 0.983384 0.833304 0.674884

Table 5.4: ARL using α = 0.0027 λ0 = 0.0005, β0 = 0.2, θ0 = 0.001 and λ1 ∈ {0.005, 0.01, 0.1}, β1 ∈ {0.1, 0.3}, θ1 ∈ {0.0001, 0.01}
for lower and two sided charts based on compound (independent) process with random failure threshold.

β θ λ
Lower Sided Two Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.1

0.0001
ARL 368.898 37.3421 18.9244 2.38701 374.6 74.2306 37.367 4.20905

0.998644 0.986519 0.973221 0.762277 0.998664 0.993241 0.986528 0.873165
CVLI 0.998644 0.986519 0.973221 0.762277 0.998664 0.993241 0.986529 0.873165
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0.001
ARL 372.211 37.6733 19.09 2.40322 364.892 74.8935 37.6985 4.24204

0.998656 0.986639 0.973456 0.764128 0.998629 0.993301 0.986648 0.874222
CVLI 0.998656 0.98664 0.973459 0.764156 0.998629 0.993302 0.986649 0.874236

0.01
ARL 405.337 40.9895 20.7499 2.56935 239.82 81.5266 41.0169 4.57582

0.998766 0.987726 0.975606 0.781535 0.997913 0.993848 0.987735 0.884002
CVLI 0.998781 0.987881 0.975915 0.784642 0.997939 0.993925 0.987889 0.885546

0.2

0.0001
ARL 368.714 37.3237 18.9152 2.38611 375.12 74.1937 37.3486 4.20722

0.998643 0.986513 0.973207 0.762173 0.998666 0.993238 0.986522 0.873106
CVLI 0.998643 0.986513 0.973207 0.762174 0.998666 0.993238 0.986522 0.873106

0.001
ARL 370.37 37.4893 18.998 2.39421 370.37 74.5252 37.5143 4.2237

0.998649 0.986573 0.973326 0.763102 0.998649 0.993268 0.986582 0.873637
CVLI 0.998649 0.986573 0.973326 0.763109 0.998649 0.993268 0.986582 0.87364

0.01
ARL 386.933 39.1464 19.827 2.47622 314.019 77.8408 39.1726 4.38959

0.998707 0.987145 0.974456 0.772114 0.998406 0.993556 0.987153 0.878743
CVLI 0.998711 0.987181 0.974528 0.77284 0.998411 0.993574 0.987189 0.879103

0.3

0.0001
ARL 368.653 37.3175 18.9122 2.38581 375.292 74.1815 37.3424 4.20661

0.998643 0.98651 0.973203 0.762139 0.998667 0.993237 0.98652 0.873086
CVLI 0.998643 0.986511 0.973203 0.762139 0.998667 0.993237 0.98652 0.873086

0.001
ARL 369.757 37.4279 18.9674 2.39121 372.149 74.4024 37.4529 4.2176

0.998647 0.986551 0.973282 0.762759 0.998656 0.993257 0.98656 0.87344
CVLI 0.998647 0.986551 0.973282 0.762762 0.998656 0.993257 0.98656 0.873442

0.01
ARL 380.798 38.5325 19.5198 2.44563 336.632 76.6126 38.5582 4.32794

0.998686 0.986939 0.974048 0.768835 0.998514 0.993452 0.986947 0.876894
0.998688 0.986954 0.97408 0.769151 0.998515 0.99346 0.986963 0.877051
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5.5 Real life examples

In this section, we discuss two illustrative examples for the implementation of the proposed

control charts. Note that we use α = 0.0027 to develop these control charts.

5.5.1 Cardiac Monitoring-Cumulative Process with Random Fail-

ure Threshold

In the introduction section (cf. Section-5.1), we have given a motivational example (see

example 2) about the cardiac monitoring. To study such events, i.e., to monitor the time

to a critical threshold and see treatment effectiveness, we propose here the cumulative

process with a random failure threshold. The random failure threshold is assumed because

each event has a different level of severity, and it is hard to fix the threshold without

having some knowledge about person’s health. In other words, the critical point cannot

be fixed in advanced. We are interested to decide whether the treatment of hypertension

is effective or not. Mostly, the effect of a treatment on the patient health is additive;

therefore, the doctor has to wait for a few time periods to decide whether new treatment

is effective or not. That’s why we are advocating the use of the cumulative process with

a random threshold.

To monitor a person’s heart condition with two hypertension treatments, we generated

40 observations using the cumulative process with a random failure threshold. The first 20

in-control observations (cf. Table-5.5) have been generated using β = 0.2, λ = 0.0005, θ =

0.001, the next 10 (i.e., adopting the first hypertension treatment) from λ = 0.00005, θ =

0.001, β = 0.1 and the last 10 (i.e., using the second treatment) from λ = 0.1, θ =

0.0001, β = 0.2. The bold values given in Table-5.5 denote the occurrences of the shift

while the values with a ⋆ represent the detection of the shift at that particular sample

point by the control chart. Using the first 20 observations, the control limits are: LCL =

ln(2.71533) = 0.998913 and UCL = ln(13281.4) = 9.494119. In Figure-5.3a, the natural

logarithm of the data and of the control limits is taken for a better presentation of the

chart. From Figure-5.3a it is clear that for the first 20 observations, the process was

statistically in-control. A shift of the process improvement occurred at the sample number

21 which was efficiently detected. Again, another shift occurred at the sample number

31 which was detected at the sample number 33, i.e., an indication that treatment is not

effective (process deterioration). A CPC chart has also been developed in Figure-5.3b,

and we support the same conclusion as we have in the case of CQC chart. Note that

here a process improvement means the new treatment is effective, i.e., hypertension is

under control, and the patient heart rhythm performing well while a process deterioration
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Table 5.5: Simulated failure time data of the Cumulative Random Process

Failure Inter-failure ln(X) Cumulative Failure Inter-failure ln(X) Cumulative
# time (X) Probability # time (X) Probability
1 1358.6356 7.2142 0.4913 21 14621.1015 9.5902⋆ 0.9993
2 1455.9690 7.2834 0.5154 22 31992.3574 10.3733⋆ 1
3 1190.2321 7.0819 0.4469 23 806.2818 6.6924 0.3304
4 171.7995 5.1463 0.0819 24 4653.1388 8.4453 0.9012
5 213.2174 5.3623 0.1007 25 4678.5287 8.4507 0.9025
6 549.4725 6.3089 0.2392 26 9464.1135 9.1553 0.9909
7 769.6276 6.6459 0.3181 27 16041.8204 9.6829⋆ 0.9997⋆
8 92.6176 4.5285 0.0450 28 19609.4364 9.8838⋆ 0.9999⋆
9 2232.0274 7.7107 0.6706 29 18912.2774 9.8476⋆ 0.9999⋆
10 5647.7267 8.6390 0.9398 30 16712.0086 9.7239⋆ 0.9998⋆
11 139.1173 4.9353 0.0669 31 46123.4917 10.7391 1⋆
12 5.0298 1.6154 0.0025 32 16.8552 2.8247 0.0084
13 1688.7102 7.4317 0.5684 33 1.8656 0.6236⋆ 0.0009⋆
14 5304.9566 8.5764 0.9286 34 1.6743 0.5154⋆ 0.0008⋆
15 2971.2229 7.9967 0.7719 35 1.2551 0.2272⋆ 0.0006⋆
16 250.7712 5.5245 0.1173 36 8.5577 2.1469 0.0043
17 913.7152 6.8175 0.3653 37 5.2704 1.6621 0.0026
18 573.7196 6.3521 0.2483 38 3.3900 1.2208 0.0017
19 5494.8959 8.6116 0.9350 39 1.1046 0.0995⋆ 0.0006⋆
20 2603.9642 7.8648 0.7262 40 13.6607 2.6145 0.0068

means the treatment is not effective and heat rhythm has increased than a normal rate.

5.5.2 Radiation Monitoring-Independent Process with Random

Failure Threshold

As we have quoted an example of radioactivity in the introduction section (cf. Example-

1 in Section-5.1), and we are interested in monitoring its level near a nuclear plant. Note

that there could be natural and un-natural causes of radioactivity and monitoring of such

events, is really a challenge. Here, we propose the independent process with a random

failure threshold to monitor radioactivity level. We consider the independent process as

the radioactivity level changes over time.

The first 20 in-control observations in Table-5.6, are generated using β = 0.2, λ =

0.0005, θ = 0.001, the next 10 (i.e., radioactivity level decreased and the process has been

improved) from λ = 0.0001, θ = 0.001, β = 0.2 and the last 10 (i.e., process deterioration

means that the radioactivity level has been increased) from λ = 0.01, θ = 0.001, β = 0.2.

The bold values given in Table-5.6 denote the occurrence of the shift while the values with

a ⋆ represent the detection of a shift. Using the first 20 observations, the control limits

are: LCL = ln(2.71533) = 0.998913 and UCL = ln(13282.5) = 9.494203. A shift of the

process improvement was occurred at the sample number 21, and detected by the control

chart at the sample number 22. Again, another process deterioration shift occurred at

the sample number 31 which was detected at the sample number 36. In Figure-5.4a, the

natural logarithm of the data and of the control limits is taken for a better presentation of
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Figure 5.3: Control Chart for the Cumulative Process with Random Failure Threshold

the chart. Clearly, first the process improves, i.e., radioactivity level has been decreased,

while in the last 10 observations, the process has been deteriorated, i.e., radioactivity

level has been increased. Moreover, the same conclusion is supported by the CPC chart

(cf. Figure-5.4b).

5.6 Conclusion

In this chapter, we have proposed two different control charts assuming a random fail-

ure threshold based on the renewal reward process. Although after defining a general

mathematical setup of the renewal reward process with a random failure threshold, we

resorted ourselves to the compound Poisson process. The compound Poisson process

was assumed just for illustration purposes, i.e., to get an explicit distribution of the first

passage time. However, we have also purposed a computational algorithm to find the

first passage distribution by any lifetime distribution of the time, damage and threshold.

Therefore, this work is actually a generalization of the previous chapter, i.e., Chapter 4,

where we assumed a fixed failure threshold.

The effective performance of proposed charts lies in their sensitivity to detect the

simultaneous shifts of TBE, magnitude/damage and the random threshold. The ARL

study with the CVs of the run-length and of the length of inspection distributions have

been conducted to assess the performance of the control charts under different conditions.

For our assumed parameter values, we noticed that the effect of a random threshold or the

magnitude distribution was less significant than the TBE distribution itself. Therefore,

one must be very careful about the choice of different parameters, especially in estima-
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Table 5.6: Simulated failure time data of the Independent Failure Process

Failure Inter-failure ln(X) Cumulative Failure Inter-failure ln(X) Cumulative
# time (X) Probability # time (X) Probability
1 1409.92 7.2513 0.5041 21 3266.91 8.0916 0.8032
2 3674.38 8.2091 0.8393 22 31807.2 10.3675⋆ 1⋆
3 2698.71 7.9005 0.7388 23 1354.41 7.2111 0.4903
4 2541.87 7.8407 0.7177 24 17142.8 9.7493⋆ 0.9998⋆
5 1304.95 7.1739 0.4776 25 10110.3 9.2213 0.9935
6 2219.62 7.7051 0.6686 26 9193.45 9.1263 0.9897
7 463.459 6.1387 0.2059 27 1262.78 7.1411 0.4665
8 3634.95 8.1984 0.8361 28 746.301 6.6151 0.3102
9 1170.39 7.0651 0.4414 29 31628.3 10.3618⋆ 1⋆
10 2456.87 7.8066 0.7198 30 1832.02 7.5132 0.5981
11 915.5 6.8195 0.3659 31 14.4584 2.6713 0.0072
12 788.862 6.6706 0.3246 32 17.5116 2.8629 0.0087
13 1741.02 7.4622 0.5794 33 86.9144 4.4649 0.0414
14 2410.72 7.7877 0.6886 34 5.5391 1.7118 0.0028
15 3433.98 8.1415 0.8189 35 92.418 4.5263 0.0449
16 3174.49 8.0629 0.7939 36 2.5434 0.9335⋆ 0.0013⋆
17 611.132 6.4153 0.2622 37 155.455 5.0464 0.0744
18 2939.43 7.9859 0.7683 38 129.656 4.8649 0.0625
19 1460.29 7.2864 0.5164 39 145.026 4.9769 0.0696
20 3055.25 8.0246 0.7813 40 514.848 6.2439 0.2259

tion. The run-length distribution becomes highly skewed for the large shifts either in the

time, magnitude or random threshold’ rate parameter. Moreover, the one-sided charts

outperform than the two-sided charts in almost all cases. It is worth mentioning that

there are few exceptions where the superiority of the one-sided chart is undermined, but

these cases are specific to damage/magnitude distribution. The shift in the rate param-

eter of the damage distribution plays an important role in the choice of the chart. It is

clear from our simulation study as well as from the real-life applications that the proposed

monitoring strategies are efficient in the detection of different size shifts simultaneously.

In this chapter, we assumed the exponential distribution for the magnitude and random

failure threshold. However, in the real applications, this distribution may not be well

fitted to a situation, and thus some other suitable distributions can be considered for

the analysis with our defined general procedure. A nonparametric approach could be

considered, which is an alternative interesting option to parametric charts, for the time

and magnitude charts. More advanced control charts like CUSUM and EWMA, are an

open issue for the new proposal.

In the next chapter, we introduce a TBE chart based on nonhomogeneous Poisson

process for sequential process monitoring (cf. Chapter-6).
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Figure 5.4: Control Chart for the Independent Process with Random Failure Threshold
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Appendix

In this appendix, we derive the probability density function and partial derivatives to find

the maximum likelihood estimates of the unknown parameters.

Appendix A: Cumulative Process with random failure threshold

(Model 1):

Suppose that the time, magnitude and random failure threshold are exponentially dis-

tributed with the rate parameters λ, θ and β, respectively. The distribution function of

the first passage distribution for the cumulative process is:

Pr{Z < t} = 1− β(tλ)−β/θ

θ
Γ(β/θ, 0, tλ) (1)

where Γ(β/θ, 0, tλ) =
∫ tλ
0
xβ/θ−1 exp(−x)dx is the generalized incomplete gamma function

(cf. Chaudhry and Zubair [1994]). Further, it can be written as Γ(β/θ, 0, tλ) = Γ(β/θ)−
Γ(β/θ, tλ). Therefore, the density function is:

f(t) =
β[−θ exp(−tλ) + β(tλ)−β/θΓ(β/θ, 0, tλ)]

tθ2
(2)

Appendix A: Independent Process with random failure threshold

(Model 2):

To derive a first passage distribution for the independent process, suppose that the time,

the magnitude and the random failure threshold are exponentially distributed with the

rate parameters λ, θ and β, respectively. The cumulative distribution function of the first

passage distribution is given as:

Pr{Z ≤ t} = 1− exp

(
− λβt

θ + β

)
(3)

and it has pdf

f(t) =
λβ

θ + β
exp

(
− λβt

θ + β

)
(4)

The log-likelihood function is

l(.) = n ln(λ) + n ln(β)− n ln(θ + β)− λβ

θ + β

n∑
i=1

ti (5)
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and we have the normal equations:

∂l(.)

∂λ
=
n

λ
− β

θ + β

n∑
i=1

ti = 0 =⇒ λ̂ =
n(θ + β)

β
∑n

i=1 ti
(6)

∂l(.)

∂β
=
n

β
− n

θ + β
− λθ

∑n
i=1 ti

(θ + β)2
= 0 =⇒ β̂ =

nθ

λ
∑n

i=1 ti − n
(7)

∂l(.)

∂θ
= − n

θ + β
+
λβ

∑n
i=1 ti

(θ + β)2
= 0 =⇒ θ̂ =

β(λ
∑n

i=1 ti − n)

n
(8)

∂2l(.)

∂λ2
= −n

λ
(9)

∂2l(.)

∂λ∂θ
=
β
∑n

i=1 ti
(θ + β)2

(10)

∂2l(.)

∂λ∂β
= −θ

∑n
i=1 ti

(θ + β)2
(11)

∂2l(.)

∂β2
= − n

β2
+

n

(θ + β)2
+

2λθ
∑n

i=1 ti
(θ + β)3

(12)

∂2l(.)

∂β∂θ
=

n

(θ + β)2
− λ(β − θ)

∑n
i=1 ti

(θ + β)3
(13)

∂2l(.)

∂θ2
=

n

(θ + β)2
− 2λβ

∑n
i=1 ti

(θ + β)3
(14)
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Chapter 6

Time-Between-Events Monitoring

using Nonhomogeneous Poisson

Process with Power Law Intensity

In Chapters 3-5, we have introduced TBE control charts for the renewal and the renewal

reward processes. However, there are many situations where we need an adaptive moni-

toring, e.g. health, flood, food, system or terrorist surveillance. Therefore, the proposed

charts are not useful, especially in sequential monitoring. The aim of this chapter is to

introduce an adaptive TBE chart. Therefore, we introduce a new time-between-events

control chart for high-quality processes based on nonhomogeneous Poisson process by as-

suming the Power law process (commonly known as the Weibull process). Since the control

limits of the proposal are sequentially updated, our proposed chart is suitable for the on-

line process monitoring. The performance of the proposed control chart is evaluated in

terms of some standard measures, including the average run length (ARL), coefficient of

variation (CV) of the run length distribution, expected quality loss (EQL) and the relative

ARL (RARL). The study also presents three examples to highlight the practical aspects of

the proposal.

6.1 Introduction

From Chapter 2 (particularly Section-2.11), it is evident that the available continuous

TBE charts are developed using the Poisson process. In the homogeneous Poisson process,

the underlying distribution of time is exponential, which has a constant hazard rate.

However, in many applied fields, it is difficult to verify that each unit has the same

risk level and therefore, it may be realistic to assume (depending upon situation) that the

items/products/systems have different levels of risk, which may vary with time, e.g. health

surveillance. To generalize the existing TBE charts, we used the renewal (cf. Chapter 3)
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and the renewal reward (cf. Chapters 4 & 5) processes. However, these charts are suitable

only if the risk level is fixed. Moreover, the introduced charts are not adaptive. There

are many situations where we need an adaptive monitoring, e.g. an old system would

be prone to more failures than a new one. Similar examples could be found in the fields

of health, flood, food, system or terrorist surveillance, etc. Recently, Purdy et al. [2014]

noticed that it is useful to develop risk varying control charts in a health surveillance

because the number of patients in the hospital may stay constant over time, but the age

distribution among the population (patients) may change, which result into an increase

risk of the sick population. Therefore, one needs to consider some alternative classes of

underlying processes such as a nonhomogeneous Poisson process.

The main aim of this chapter is to introduce an adaptive process monitoring strategy.

Therefore, we consider a nonhomogeneous Poisson process with Power law intensity to

develop the TBE control charts. A nonhomogeneous Poisson process with the power

law intensity is also commonly known as the power law process. Note that there are

different names of the power law process such as the Weibull process, the AMSAA model

(name due to its adoption by the United States army for material testing, i.e., United

States Army Material Systems Analysis Activity), and Duane’s model, etc. Since the

control limits of the proposed chart are sequentially updated, the proposed control chart

is adaptive and suitable for online process monitoring. In the existing state of the art,

the nonhomogeneous/inhomogeneous Poisson process has been used to describe numerous

random phenomena, including cyclone prediction, arrival times of calls to a call center

in a hospital laboratory, arrival times of aircraft to the airspace around an airport and

database transaction times, etc.

The rest of the chapter is organized as follows: In Section 6.2, some definitions related

to nonhomogeneous Poisson, Lévy and power law processes, are given. The design of the

power law process TBE chart is described in Section 6.3. In Section 6.4, some performance

criteria for the evaluation of control charts effectiveness are discussed. These performance

criteria include: average run length, coefficient of variance of the run length distribution,

expected quadratic loss and the relative average run length. Some experiments related to

random and sustained (fixed) shifts are also discussed in Section 6.4. The Bayesian and

the classical methods for the estimation of unknown parameters are discussed in Section

6.5. The optimal stopping time based on two types of maintenance is also studied in the

same Section 6.5. In Section 6.6, some goodness of fit tests are discussed. In Section 6.7,

we discuss three illustrative examples to explain how the proposed methodology can be

implemented in practical situations. Finally, we conclude the chapter in Section 6.8.
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6.2 Some Preliminaries

In this section, we provide some necessary information for the further developments.

We have defined HPP in Theorem-1.1.3. It is worth mentioning once again that the

distribution of TBE in the HPP is exponential. This limits its application to many

complex problems. Therefore, an alternative of the HPP is the NHPP. The NHPP is

defined as:

Theorem 6.2.1 (Insua et al. [2012]) A process N(t)t≥0 be an increasing, right-continuous

integer valued processes starting from zero. Let 0 < λ(t) <∞, then it is called nonhomo-

geneous Poisson process (NHPP) if:

1. N(0)=0 i.e. no event at time zero.

2. the number of events N(s2)−N(s1) and N(t2)−N(t1) in disjoint intervals (s1, s2]

and (t1, t2] are independent random variables (independent increments).

3. there exists a function λ(t) such that lim∆t→0
Pr(N(t+∆t)−N(t)=1)

∆t
= λ(t).

4. for each t > 0, lim∆t→0
Pr(N(t+∆t)−N(t)=≥2)

∆t
= 0.

If N(t)t≥0 satisfies these conditions then it is called a nonhomogeneous Poisson process of

rate λ(t).

An important consequence of Theorem-6.2.1, i.e., conditions (i-iv), is that the number of

failures in the interval (s, t] where t > s, has the Poisson distribution with the parameter∫ t
s
λ(u)du, i.e.,

Pr(N(t)−N(s) = k) =
(
∫ t
s
λ(u)du)k

k!
exp

(
−
∫ t

s

λ(u)du
)
. (6.1)

Moreover, the stationarity assumption of the HPP has also been relaxed here. The func-

tion λ(t) and Λ(t) =
∫ t
0
λ(u)du are called the intensity function, and the cumulative inten-

sity function of the NHPP process, respectively. Also, if λ(t) = λ, then the NHPP (λ(.))

is reduced to the homogeneous Poisson process HPP (λ). Moreover,
∫ t
s
λ(u)du is the mean

and the variance of the NHPP, i.e., mean and variance of the time interval s to t. The

following are the properties of the NHPP:

• Conditioning on the Numbers: Given the total number of arrivals N(t) = n in the

interval (0, t] from a NHPP, the arrival instants of these n arrivals are distributed

independently in the interval (0, t] with the density function λ(t)∫ t
s λ(u)du

.

• Superposition: The superposition of the two NHHP with intensities λ1(t) and λ2(t)

is a NHPP with intensity λ(t) = λ1(t) + λ2(t).
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• Random Selection: A random selection from NHPP with intensity λ(t) such that

each interval is selected, independent of others with the probability p(t) (may depend

on time) results in NHPP with intensity p(t)λ(t).

• Random Split: If a NHPP with intensity λ(t) is randomly split into two sub-processes

with probabilities p1(t) and p2(t) with p1(t) + p2(t) = 1 then the resulting sub-

processes are independent NHPP with intensities p1(t)λ(t) and p2(t)λ(t) respec-

tively.

Since NHPP is characterized by an intensity function that varies over time, allowing events

to be more or less likely at different time periods. As a consequence, the NHPP has no

stationary increments unlike the HPP. Therefore, this property make NHPP suitable to

describe rare (or high-quality) events whose rate of occurrence evolves over time (cf. Insua

et al. [2012]). A typical example can be given by the life cycle of a new product, which is

subject to an initial greater number of failures,followed by a steady rate of failures until

they start occurring more and more, i.e., wear-out of the product.

Simulation of NHPP: The following is the steps of the NHPP generation using the

random sampling or thinning approach.

1. Set t=0, n=0 and fix T.

2. Generate a random number U ∼ U(0, 1).

3. Set X = − 1
λ
ln(u).

4. t = t+X and if t > T then stop.

5. Generate a random number U ∼ U(0, 1).

6. If U ≤ λ(t)
λ
, set n = n+ 1, Tn = t.

7. Go to step 2.

Note that n denotes the number of events in the time interval (0, T ] and T1, · · · , Tn are

the successive n event times of the NHPP(λ(t)) in this time interval.

6.2.1 Power Law Process (PLP)

The NHPP(λ(.)) for which λ(t) = λ(t;λ, β) = βλβtβ−1, where λ and β > 0 are the

rate and the shape parameters, is called the power law process (PLP) and denoted by

PLP (λ, β).

Simulation of the PLP: To simulate event times of the PLP(λ, β) until a given number

of jumps (failure), the following formula is commonly used.

Ti = Ti−1 +
1

λ

[
ln

1

1− u

] 1
β (6.2)
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for i = 1, 2, . . . ;T0 = 0 and ui are the random numbers from U(0, 1).

6.2.2 Infinitely Divisible (ID) Distribution

Consider a random variable T in a probability space (Ω,B(R), µ) and its characteris-

tic function is given by ϕ(u) = Eµ[exp (ιuT )] = Eµ[cosuT ] + ιEµ[sinuT ] where ι =√
−1 and u ∈ R, then we state the following:

Definition 6.2.2.1 The law µ is called infinitely divisible (ID) if for any integer n > 0,

there exists a probability measure µn such that ϕµ(u) = [ϕµn(u)]
n.

In other words, µ can be expressed as the n-th convolution power of µn and T as the sum

T (ω)
D≡

∑n
i=1 Ti(ω) for ω ∈ Ω, where {Ti}i=1,··· ,n is a family of i.i.d. random variables

having a common law µn. It is interesting to note that the family of all infinitely divisible

distributions is closed under linear transformation, convolutions and limits.

Theorem 6.2.2.2 The NHPP is a infinitely divisible (ID).

Proof : Since,

ϕN(t)(u) = Eµk [exp(ukι)] =
∞∑
k=0

exp(−Λ(t))
Λ(t)k

k!
exp(ukι)

= exp
(
Λ(t)

(
exp(uι)− 1

))
=

[
exp

(Λ(t)
n

(
exp(uι)− 1

))]n
Note that ϕN(t)(u) = exp(Ψµ(u)), where Ψµ(u) = Λ(t)

(
exp(uι)− 1

)
. Hence, NHPP is ID.

6.2.3 Nonhomogeneous Lévy Process (NHLP)

NHLP is a general class of processes as compared to the homogeneous Lévy process where

one can replace the assumption of stationary increments with non-stationary increments.

To define it, let’s assume that a stochastic basis (Ω,F ,F,P), i.e., a probability space is

equipped with the filtration F = Ft = N(t)t≥0. Here, filtration means an increasing and

right continuous family of sub-σ-fields of F.

Definition 6.2.3.1 (Andersen [2008]) An adapted, right continuous process N(t)t≥0 with

N(0) = 0 almost surely (a.s.) is a nonhomogeneous Lévy process if

• N has increments independent of the past, i.e., N(t) − N(s) is independent of

Ft; 0 ≤< t <∞;

• N is continuous in probability, i.e., ∀ϵ > 0, lims→0Pr(|N(t+ s)−N(t)| ≥ ϵ) = 0
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Theorem 6.2.3.2 (Cont and Tankov [2004]) Consider a collection of triples (a,Σ, v) ≡
{(at,Σt, vt), t ≥ 0}, such that

1. For all t; at is a d× 1 vector, Σt is a positive definite d× d matrix and vt is positive

measure on Rd
0 ≡ (R \ {0})d with

∫
Rd
0
(1 ∧ absx2)vt(dx) <∞.

2. Positiveness: a0 = 0,Σ0 = 0, v0 = 0 and for all s, t such that for s ≤ t; At−As is a

positive definite d× d matrix and vt(A) ≥ vs(A) for all measurable sets A ∈ B(Rd).

3. Continuity: If s → t then as → at,Σs → Σt and vs(A) → vt(A) for all measurable

sets A ∈ B(Rd) such that A ⊂ {x : |x| > ϵ} for some ϵ > 0

then by considering N be a d−dimensional nonhomogeneous Lévy process, one can write

the Lévy Khintchine formula as follows:

ψN(u, t) = E[exp(ιuTNt)] = exp(Ψ(u, t))

where

Ψ(u, t) = ιuTat − 0.5uTΣtu+

∫
Rd
0

[exp(ιuTN)− 1− ιuTN1{|x|<1}]vt(dx)

The triplet (at,Σt, vt) characterizes the process and knows as a Lévy triplet or spot char-

acteristics.

The standard version of the Lévy-Khintchine formula is naturally obtained as a special

case when at = bt,Σt = Γt, vt = µt, i.e., characteristic triplet of the homogeneous Lévy

process will be (b,Γ, µ) (cf. Kluge [2005]).

Theorem 6.2.3.3 The NHPP is NHLP.

Proof : From Lévy-Khintchine nonhomogeneous formulation, one can get at = 0,Σt = 0

and vt = Λ(t)δt where δt is the Dirac measure supported on {1}. Thus, it is a NHLP.

6.3 Control Charts for the Power Law Process

In this section, we introduce a new TBE control chart using the PLP. Before proceeding

further, we give joint and conditional distributions of the n successive times.

Let T1, T2, · · · , Tn denote the first n successive times of the occurrence of the failures

from the PLP. We assume the following form of the failure rate: λ(t) = βλβtβ−1, where λ

and β are the rate and the shape parameters, respectively. The joint probability density

function of T1, T2, · · · , Tn can be written as (cf. Muralidharan et al. [2008]):

f(t1, t2, · · · , tn) = (βλβ)n
n∏
i=1

tβ−1
i exp

(
−(tnλ)

β
)

(6.3)
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for 0 < t1 < t2 < · · · < tn < ∞ and λ, β > 0. For a known β, tn is a complete suffi-

cient statistic for λ. The following densities can easily be derived by suitably integrating

Equation-6.3 as follows:

f(ti) =

∫
t1

∫
t2

∫
t3

· · ·
∫
ti−1

∫
ti+1

· · ·
∫
tn

f(t1, t2, · · · , tn)dt1dt2 · · · dti−1dti+1 · · · dtn

=
βλiβ

Γ(i)
tiβ−1
i exp

(
−(tiλ)

β
)
, 0 < ti <∞ (6.4)

f(ti, tn) =

∫
t1

∫
t2

∫
t3

· · ·
∫
ti−1

∫
ti+1

· · ·
∫
tn−1

f(t1, t2, · · · , tn)dt1dt2 · · · dti−1dti+1 · · · dtn−1

=
β2λnβ

Γ(i)Γ(n− i)
tiβ−1
i tβ−1

n (tβn − tβi )
n−i−1 exp

(
−(tnλ)

β
)
, 0 < ti < tn <∞

(6.5)

and

f(tn) =
βλnβ

Γ(n)
tnβ−1
n exp

(
−(tnλ)

β
)
, 0 < tn <∞

Moreover, the conditional distribution of ti given tn is

f(ti|tn) =
Γ(n)

Γ(i)Γ(n− i)

β

tn

(
ti
tn

)iβ−1[
1−

(
ti
tn

)β]n−i−1

0 < ti < tn < T <∞

Thus, the true reliability of this process depends on the entire history of the failures

process. Moreover, the reliability of the process at time t based on the distribution of

Ti = ti can be written as follows:

Ri(t) = P (Ti > t) =

∫ ∞

t

f(ti)dti =
Γ(i, tβλβ)

Γ(i)
, i > 0 (6.6)

This reliability will depend on the i-th realizations of the process. If i = n then the

reliability will be based on the first n realizations (cf. Muralidharan et al. [2008]). Note

that for a PLP process, apart from the time to first failure, intervals between points are

not Weibull-distributed.

As we have explained in the introduction section (cf. Section-6.1) that in many appli-

cations, the event rate varies (or drifts) over time, and thus the time T may be assumed

to follow a PLP. We know that for the PLP, the event rate is proportional to a power of

the time. This power is equal to the shape parameter minus one. As a result, a value

of the shape parameter greater than one indicates that the event rate will increase with

time. This happens if events are more likely to occur as time goes on. Similarly, the shape

parameter less than indicates that the event rate will decrease with time, i.e., the system
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improves.

To develop a TBE chart using the PLP, we need to work out the conditional density

of Ti given Ti−1 for i ≥ 1 and T0 = 0. Thanks to the independent increments property of

the NHPP (cf. Theorem-6.2.1), the conditional distribution function of Ti given Ti−1 can

be derived as follows:

P (Ti ≤ ti|Ti−1 = ti−1) = 1− P (N(ti)−N(Ti−1) = 0|Ti−1 = ti−1) (6.7)

= 1− P (N(ti)−N(ti−1) = 0) = 1− exp
(
Λ(ti)− Λ(ti−1)

)
where Ti = Ti−1+Xi, i.e., Xi = Ti−Ti−1, and by letting Xi = x it becomes Ti = Ti−1+x.

Therefore,

P (Xi ≤ x) = 1− exp
(
−Λ(ti−1 + x) + Λ(ti−1)

)
(6.8)

In particular, for the PLP, i.e., λ(t) = βλβtβ−1, the waiting time to the next failure given

a failure at a time ti−1, has the distribution function

FXi
(x|Ti−1 = ti−1) = P (Xi ≤ x) = 1− exp

(
−λβ

[
(ti−1 + x)β − tβi−1

])
(6.9)

To derive the mean time between failure for the PLP, we need:

f(x|ti−1) =
d

dti
F (x|ti−1) = βλβ(ti−1 + x)β−1 exp

(
−λβ

[
(ti−1 + x)β − tβi−1

])
(6.10)

Thus,

E(X) =

∫ ∞

0

xf(x|ti−1)dx = (λti−1)
β−1 exp

(
λti−1

)β ×R

= (λti−1)
β−1 exp

(
λti−1

)β[1
λ
Γ
(
2β−1, (λti−1)

β)− ti−1Γ
(
1β−1, (λti−1)

β)

]
(6.11)

where R =

[
1
λ

∫∞
(λti−1)β

u2/β−1 exp(−u)du− ti−1

∫∞
(λti−1)β

u1/β−1 exp(−u)du
]
and Γ(.) is the

incomplete gamma function, i.e., Γ(a, x) =
∫∞
x
va−1 exp(−v)dv.

A two-sided TBE power law quantity control (PLQC) chart can be constructed by

evaluating the specified percentiles of Equation-6.9, i.e., find the LCL = F−1(α/2|Ti−1 =

ti−1) and UCL = F−1(1 − α/2|Ti−1 = ti−1) to get the lower control limit (LCL) and

upper control limit (UCL), respectively. Note that α is the pre-specified false alarm

probability. The simplified form of the control limits for the PLP can be expressed

as follows: LCLi =
[
tβi−1 +

1
λβ

ln 2
2−α

] 1
β − ti−1, CLi =

[
tβi−1 +

1
λβ

ln(2)
] 1

β − ti−1 , and

UCLi =
[
tβi−1 +

1
λβ

ln 2
α

] 1
β − ti−1.

The decision criterion for the PLQC chart is as follows: For the two-sided PLQC

chart, the plotting statistic X, i.e., TBE, is plotted against the failure number whenever
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a defect is observed. If a point is plotted below the LCL, then it is a signal that the

process has (statistically) deteriorated. Similarly, if a point is plotted above the UCL,

then it is a sign that the process may have improved. It is interesting to note that

the above reported control limits are sequentially updated with the step i − 1 observed

failure time. Therefore, the proposal is appropriate not only for the off-line process

monitoring, but also for the online process monitoring. However, this flexibility has a

price that will be discussed in the next section. To detect only the process deterioration,

a single limit PLQC chart can be obtained by finding LCL = F−1(α|Ti−1 = ti−1), i.e.,

LCLone−sided =
[
tβi−1 +

1
λβ

ln 1
1−α

] 1
β − ti−1, without the UCL, or UCL = +∞.

6.3.1 An extension of the PLQC chart

As we have noticed in Section-3.4 that sometime the interpretation of the TBE con-

trol chart is difficult, and an alternative was suggested by Chan et al. [2002], i.e., CPC

chart. We define a power law cumulative probability control (PLCPC) charts by plotting

Equation-6.9 against the LCL = α/2 and the UCL = 1− α/2, respectively.

6.4 Performance Evaluation

In this section, we use the average run length (ARL), the coefficient of variance of the

run length distribution (CV), expected quality loss (EQL) and the relative average run

length (RARL) to assess the control chart performance (cf. Section-3.4).

6.4.1 Average Run Length (ARL)

The average of the number of samples taken from a process until the monitoring statistic

falls outside the control limits is known as the ARL (cf. Section-3.4). To assess the ARL

performance of the PLQC charts, a simulation study has been conducted, and results are

given in Tables 6.1-6.2, and Figure-6.1. We used 0.0027 as the false alarm probability

to calculate the ARL values, i.e., the in-control ARL is 370. Note that first we would

study the chart performance by using one-step ahead control limits and then extend to full

sequential settings. We generated data by introducing different size of shifts, as mentioned

in Tables 6.1-6.2/Figure-6.1, and monitored with the one-step ahead control limits. The

index when the control limits detected an out-of-control signal was noted. This process

was repeated a large number of times, e.g. 106, and the average of the out-of-control

indexes or failure numbers have been given in Tables 6.1-6.2/ Figure-6.1. Moreover, the

CV values have also been tabulated in Tables 6.1-6.2.
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Figure 6.1: One step ahead ARL for process deterioration detection at α = 0.0027

6.4.2 Discussion on the ARL study (one-step ahead)

We considered the shifts for the following two cases:

A λ decreases from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005} while β shifts from

β0 = 1.5 to β1 ∈ {1, 1.2, 1.5, 2} (i.e., PI-IHR).

B λ increases from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1} and β shifts from β0 = 1.5 to

β1 ∈ {1, 1.2, 1.5, 2} (i.e., TD-IHR).

When the process is in-control, i.e., λ1 = λ0 and β1 = β0, the ARL value is equal to the

nominal value, i.e., 370.

Case A- a decrease in λ: When the rate parameter decreases from its nominal

value, the system shows some improvement signs. Therefore, the role of an expert in

such a situation would be to maintain that position for the system stability. Since the

shape parameter β is greater than one, the overall system performance deteriorates, and

it could be labeled as a partial improvement (PI). The PI occurs when some tempo-

rary actions are taken to improve a system reliability or to stop its deterioration, e.g.

replace some components of a system for its temporary functioning. In our study, we

fixed the shape parameter β0 = 1.5 (for in-control process) while β1 ∈ {1, 1.2, 1.5, 2} to

represent the out-of-control situation. The rate parameter shifted from λ0 = 0.0005 to

λ1 ∈ {0.0003, 0.0001, 0.00005}. To check the PD, we have used the upper-sided control

chart and further it is compared with the two-sided chart. Therefore, in Table-6.1/Figure-

6.1b, we compared the ARL values for the two-sided and the upper-sided charts. The CV

values have also been reported below the ARL, and one could easily recover the standard

deviation of the run length distribution using the CV and the ARL values.
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It is observed from Table-6.1/Figure-6.1b that the ARL values increase as the size

of the shift in the shape parameter increase, and therefore, we conclude that the shape

parameter has a significant impact on the control chart performance. The large shifts

in the shape parameter could be detected quickly as compared to the small shifts. For

the fixed β, if a shift occurred in the rate parameter, i.e. λ, the upper-sided chart would

detect it quickly as compared to the two-sided chart. However, the said detection ability

of the chart is also dependent on the size of a shift, i.e., the large shifts in λ will be

detected quickly in contrast to the small shifts. For the β < 1.5, the ARL values are

smaller than the case when we have β > 1.5. Moreover, it has been observed that the CV

values decrease with the size of shifts in the rate parameter.

Case B- an increase in λ: This is an important case where we are concerned in the

process deterioration detection, and it could be labeled as a total deterioration (TD), i.e.,

β > 1 and λ increases from its nominal value. In our study, we fixed the shape parameter

β0 = 1.5 (for in-control process) while we let β1 ∈ {1, 1.2, 1.5, 2} to represent the out-of-

control situation. The rate parameter shifted from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1}.
When the system deteriorates, the practitioner needs to use the lower-sided control chart,

therefore, we compare the lower-sided chart with the two-sided chart in Table-6.2/Figure-

6.1a.

For the TD case, when the shape parameter is less than its nominal value, i.e., β < 1.5,

the ARL values are greater than the case β > 1.5. Thus, an upward shift in the shape

parameter would be detected efficiently than the downward shifts. Note that an upward

shift means the case where β is greater than its nominal in-control value. Similarly, a

downward shift implies the case where β is smaller than its fixed in-control value. The

lower-sided chart is more sensitive to detect an out-of-control situation, and it outperforms

than the counterpart, i.e., two-sided chart. For the fixed shape parameter, the occurrence

of a shift in the rate parameter λ is detected quickly by the lower-sided chart except the

case when λ = 0.0005. The detection of a shift in the shape parameter is quite slow using

the lower-sided chart than the two-sided chart. However, this behavior is specific to the

case when λ = 0.0005, otherwise the detection ability of the lower-sided chart has no

question mark. The values of the ARL for β < 1.5 are greater as compared to the case

β > 1.5, i.e., ARL is biased. The CV values have an inverse relationship with the size

of shifts in the rate parameter, i.e., the CV decreases with the increase of a shift in λ.

Moreover, the CV values approach to one for small to moderate shifts, i.e., either in the

shape or the rate parameter.
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Table 6.1: ARL study of the PI-IHR case using α = 0.0027, λ0 = 0.0005, β0 = 1.5, t1 = 500 and λ1 ∈ {0.0003, 0.0001, 0.00005},
β1 ∈ {1, 1.2, 1.5, 2} for the upper and two-sided PLQC charts.

β λ
Two-Sided Upper-Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

1
ARL 26.239 7.25337 1.93946 1.39278 21.4646 6.29555 1.84648 1.35885
CV 0.980759 0.928511 0.695983 0.531048 0.976428 0.917146 0.677074 0.513892

1.2
ARL 72.4083 10.7888 1.89376 1.3205 56.0121 8.85307 1.79235 1.28917
CV 0.993071 0.952529 0.686986 0.492657 0.991033 0.941831 0.664887 0.473609

1.5
ARL 370.37 21.2746 1.80541 1.23232 370.37 15.6241 1.69725 1.20567
CV 0.998649 0.976215 0.667914 0.434193 0.998649 0.967469 0.640946 0.413018

2
ARL 1104.94 92.184 1.65858 1.13484 56164.4 51.2632 1.54874 1.11556
CV 0.999547 0.994561 0.630138 0.344705 0.999991 0.990198 0.595243 0.321858

Table 6.2: ARL study of the TD-IHR case using α = 0.0027, λ0 = 0.0005, β0 = 1.5, t1 = 500 and λ1 ∈ {0.0003, 0.0001, 0.00005},
β1 ∈ {1, 1.2, 1.5, 2} for the lower and two-sided PLQC charts.

β λ
Two-Sided Lower-Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

1
ARL 26.239 56.1192 28.3119 3.31079 278.897 28.3427 14.4258 1.95134
CV 0.980759 0.99105 0.982181 0.835438 0.998206 0.9822 0.964717 0.698235

1.2
ARL 72.4083 39.0618 17.289 1.63655 306.185 19.7917 8.90525 1.17841
CV 0.993071 0.987117 0.970649 0.623664 0.998366 0.974409 0.942182 0.389102

1.5
ARL 370.37 23.912 8.78621 1.0224 370.37 12.2034 4.65541 1.00048
CV 0.998649 0.978867 0.941374 0.14801 0.998649 0.958152 0.886113 0.0218503

2
ARL 1104.94 11.5912 3.30093 1.00001 553.322 6.04328 1.94183 1.0
CV 0.999547 0.955891 0.834898 0.00 0.999096 0.913525 0.696435 0.0
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6.4.3 Complete Performance Evaluation

As we have mentioned earlier that the control limits of the PLQC charts are sequentially

updated with the observed failure time. Therefore, every in-control or out-of-control

observation will essentially contribute to the uncertainty of the sequential control limits

and consequently, only a very large shift will be detected efficiently. Since extreme false

alarm probabilities are involved in the construction of the control limits in adaptive setup,

the control limits deteriorate/drift (cf. Figure-6.2). The control chart will be insensitive

even though one might have the knowledge of a shift in the process. Note that an exception

of the detection of a very large shift is guaranteed in the above setup. Therefore, to check

control limits for a possible trend, we propose F (x|Ti−1) ≤ CD and F (x|Ti−1) ≥ CI , where

CD and CI denote the stopping criteria for the process deterioration and improvement,

respectively. We used CD = 0.11 and CI = 0.89 as the stopping criteria in our study. A

similar rule has been used by Toubia-Stucky et al. [2012] for the sequential monitoring

of the geometric chart. Note that the proposed stopping criteria may give frequent false

alarms, which could be adjusted by choosing appropriate (small) values of CD and CI .

We extend the definitions presented in Section-3.4.3 and propose the following four

definitions for the PLP monitoring.

Definition 6.4.3.1 For the PLP, if β > 1, i.e., increasing hazard rate (IHR), and λ

is decreasing then the system is partial improving (PI). We label this situation as the

PI-IHR.

Definition 6.4.3.2 For the PLP, if β > 1, i.e., increasing hazard rate (IHR), and λ

is increasing then system is totally deteriorating (TD). We label this situation as the

TD-IHR.

Definition 6.4.3.3 For the PLP, if β < 1, i.e., decreasing hazard rate (DHR), and λ is

decreasing then system is totally improving (TI). We label this situation as the TI-DHR.

Definition 6.4.3.4 For the PLP, if β < 1, i.e., decreasing hazard rate (DHR), and λ

is increasing then system is partially deteriorating (PD). We label this situation as the

PD-DHR.

To study the control chart performance we considered shifts for the following cases:

A Increasing Hazard Rate (IHR), i.e., β > 1

1. λ decreases from λ0 = 0.0005 to λ1 ∈ {0.00045, 0.0003, 0.0002, 0.0001} while

β shifts from β0 = 1.5 to β1 ∈ {1, 1.2, 1.45, 1.55, 2} [i.e., Partial Improvement

(PI)].
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2. λ increases from λ0 = 0.0005 to λ1 ∈ {0.00055, 0.0008, 0.005, 0.01} and β shifts

from β0 = 1.5 to β1 ∈ {1, 1.2, 1.45, 1.55, 2} [i.e., Total Deterioration (TD)].

B Decreasing Hazard Rate (DHR), i.e., β < 1

1. λ decreases from λ0 = 0.0005 to λ1 ∈ {0.00045, 0.0003, 0.0002, 0.0001} and β

shifts from β0 = 0.5 to β1 ∈ {0.2, 0.45, 0.55, 0.7, 0.9, 1.0} [i.e., Total Improve-

ment (TI)].

2. λ increases from λ0 = 0.0005 to λ1 ∈ {0.00055, 0.0008, 0.005, 0.01} andβ shifts

from β0 = 0.5 to β1 ∈ {0.2, 0.45, 0.55, 0.7, 0.9, 1.0} [i.e., Partial Deterioration

(PD)].

Case A-1 a decrease in λ: When the shape parameter β of the PLP is greater than

one and λ decreases from its nominal value, we expect that the overall performance

of the system will deteriorate. However, one could observe some temporary improve-

ments due to a decrease in the rate parameter λ, e.g. some components of a machine

could be replaced to get an acceptable output. A possible task of an expert could be

to stabilize such improvements and achieve the long-run stability of the process, i.e.,

permanent improvement. Thus, we labeled this case as the partial improvement (PI).

We compare the upper-sided chart with the two-sided chart in this study. We fixed the

shape parameter β0 = 1.5 (for in-control process) while β1 ∈ {1, 1.2, 1.45, 1.55, 2} to

represent the out-of-control situation. The rate parameter shifted from λ0 = 0.0005 to

λ1 ∈ {0.00045, 0.0003, 0.0002, 0.0001}. From Table-6.3, we noticed that when β = 1.5

and λ = 0.0005, the ARL of the upper-sided chart is approximately equal to the desired

in-control ARL. However, the in-control performance of the two-sided chart is not ap-

preciable as compared to the out-of-control performance. Both, the upper-sided and the

two-sided charts detect efficiently the large shifts, either in the shape parameter or the

rate parameter, as compared to small-to-moderate shifts. However, it does not mean that

a small shift cannot be detected efficiently. From Table-6.3, one can observe that small

shifts can also be detected without a great loss of efficiency using the proposed criteria.

For the fixed β, the small shifts in λ would take more data points to raise an out-of-control

signal. Moreover, the CV of the two-sided chart is smaller than the upper-sided chart,

and therefore, we support the superiority of the two-sided chart.

Case A-2 an increase in λ: This is an important case because we are concerned in

the detection of a process deterioration. Since the shape parameter β is greater than one

while the rate parameter increases from its nominal value, the system could be labeled as

total deterioration (TD). To study this case, we fixed the shape parameter β0 = 1.5 (for in-

control process) while we let β1 ∈ {1, 1.2, 1.45, 1.55, 2} to represent the out-of-control situ-

ation. The rate parameter shifted from λ0 = 0.0005 to λ1 ∈ {0.00055, 0.0008, 0.005, 0.01}.
A comparison study of the lower-sided and two-sided charts has been given in Table-6.4.
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From Table-6.4, we notice that the downward shifts in the shape parameter, i.e. β < 1.5,

are detected quickly as compared to the upward shifts, i.e. β > 1.5. For a fixed β, a

small shift in λ takes large data points to produce an out-of-control alarm as compared

to a large shift (cf. Table-6.4). The same argument is valid for the case when λ is fixed,

and a shift occurs in β. Thus, the two-sided chart is superior than the lower-sided chart

based on the ARL and the CV values.

Case B-1 a decrease in λ: This is again another important case because here we

consider the case when λ decreases, and β < 1. Therefore, it is a sign that the system

failures becoming less frequent, i.e., the system improves, and can be labeled as a total

improvement (TI). We suggest the use of the upper-sided chart for the detection of a pro-

cess improvement. To study the TI, we fixed the shape parameter β0 = 0.5 (for in-control

process) while β1 ∈ {0.2, 0.45, 0.55, 0.7, 0.9, 1.0} to represent the out-of-control situation.

The rate parameter shifted from λ0 = 0.0005 to λ1 ∈ {0.00045, 0.0003, 0.0002, 0.0001}.
In Table-6.5, we have computed the ARL values of the two-sided and the upper-sided

charts. We skipped the standard deviation of the run length (SDRL) distribution and

reported only the CV values as the SDRL = ARL ∗ CV . In this case, the downward

shifts, i.e. β < 0.5, are detected more quickly as compared to the upward shifts, i.e.,

β > 0.5. This comment is not specific only to the upper-sided chart, but also true for the

two-sided chart. For a fixed β, both the upper-sided and the two-sided charts are good in

the detection of a large shift in λ. Moreover, one can observe that the detection ability

of both charts has been greatly improved with our proposed check.

Case B-2 an increase in λ: In this case, since the shape parameter β is less than

one and the events’ occurrence rate is assumed to increase, one could label this situation

as a partial deterioration (PD). This type of situation in a reality occurs when the system

improves overall, but due to some changes, i.e., change in material, change in the labor

force or some other environmental stress, etc., we observe a temporary deterioration. Since

a practitioner in such cases wants to stop the deterioration as soon as possible, we suggest

the use of the lower-sided chart for the PD detection. To study the PI, we fixed the

shape parameter β0 = 0.5 (for in-control process) while β1 ∈ {0.2, 0.45, 0.55, 0.7, 0.9, 1.0}
to represent the out-of-control situation. The rate parameter allowed to shift from λ0 =

0.0005 to λ1 ∈ {0.00055, 0.0008, 0.005, 0.01}. The ARL study has been tabulated to assess

the effectiveness of the lower-sided and the two-sided charts. Moreover, the CVRL values

have also been computed in Table-6.6. From Table-6.6, it is observed that the proposed

charts detect the different size of shifts very efficiently.

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



158

0 10 20 30 40 50

0
2

4
6

8

Time

LC
L

LCL

β0=1.5, λ0=0.0005, β1=1.45, λ1=0.00055
β0=1.5, λ0=0.0005, β1=1.55, λ1=0.0009

(a) Control limits of the lower-sided
PLQC chart

0 10 20 30 40 50

0
10

00
20

00
30

00
40

00

Time

T
B

E

Lines

TBE−β0=1.5, λ0=0.0005, β1=1.45, λ1=0.00055
TBE−β0=1.5, λ0=0.0005, β1=1.55, λ1=0.0009
LCL−β0=1.5, λ0=0.0005, β1=1.45, λ1=0.00055
LCL−β0=1.5, λ0=0.0005, β1=1.55, λ1=0.0009

(b) Control limits with TBE data of the
lower sided PLQC chart

0 10 20 30 40 50

1e
+

05
2e

+
05

3e
+

05
4e

+
05

5e
+

05
6e

+
05

Time

U
C

L

UCL

β0=0.5, λ0=0.0005, β1=0.55, λ1=0.00045
β0=0.5, λ0=0.0005, β1=0.40, λ1=0.0002

(c) Control limit of the upper sided PLQC
chart

0 10 20 30 40 50

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

6e
+

05

Time

T
B

E

Lines
TBE−β0=0.5, λ0=0.0005, β1=0.55, λ1=0.00045
TBE−β0=0.5, λ0=0.0005, β1=0.40, λ1=0.0002
UCL−β0=0.5, λ0=0.0005, β1=0.55, λ1=0.00045
UCL−β0=0.5, λ0=0.0005, β1=0.40, λ1=0.0002

(d) Control limits with TBE data of an
upper sided PLQC chart

Figure 6.2: Control Limits’ Drift/Deterioration for the PLP using α = 0.0027
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Table 6.3: ARL study of the PI-IHR case based on α = 0.0027, λ0 = 0.0005, β0 = 1.5, t1 = 500 and λ1 ∈ {0.00045,
0.0003, 0.0002, 0.0001}, β1 ∈ {1, 1.2, 1.45 , 1.5, 1.55, 2} for the upper and two-sided PLQC charts.

β λ
Two-Sided Upper-Sided

0.0005 0.00045 0.0003 0.0002 0.0001 0.0005 0.00045 0.0003 0.0002 0.0001

1.0
ARL 2.76508 2.60774 2.03478 1.64707 1.30081 7.4053 6.43866 3.9809 2.71166 1.73256
CV 0.798039 0.783969 0.713585 0.627254 0.480557 0.593461 0.603243 0.637749 0.642405 0.579003

1.2
ARL 3.42249 3.09178 2.14779 1.6339 1.24192 8.44924 7.15568 4.14735 2.69093 1.63697
CV 0.832643 0.818712 0.730111 0.621278 0.441145 0.525365 0.545895 0.592979 0.610921 0.547568

1.45
ARL 4.41562 3.7687 2.2187 1.57529 1.18462 9.57078 8.03193 4.32932 2.64269 1.53934
CV 0.850037 0.839758 0.742010 0.604632 0.394823 0.460285 0.481649 0.544787 0.576214 0.515929

1.5
ARL 4.61784 3.89819 2.23176 1.55999 1.17155 9.78106 8.1484 4.36549 2.62957 1.51878
CV 0.844822 0.837337 0.740214 0.601753 0.383938 0.449371 0.467718 0.537472 0.569986 0.50611

1.55
ARL 4.87504 4.05792 2.22552 1.54607 1.16582 9.99865 8.32052 4.39821 2.62674 1.50011
CV 0.843439 0.836550 0.742875 0.594975 0.376525 0.440578 0.460670 0.523574 0.562432 0.502926

2.0
ARL 7.24768 5.4279 2.22726 1.43335 1.09384 11.55485 9.41566 4.61587 2.57323 1.38307
CV 0.768301 0.807712 0.737603 0.550407 0.292026 0.365794 0.383242 0.452513 0.512749 0.455216

Table 6.4: ARL study of the TD-IHR case using α = 0.0027, λ0 = 0.0005, β0 = 1.5, t1 = 500 and λ1 ∈ {0.000055,
0.0008, 0.005, 0.01}, β1 ∈ {1, 1.2, 1.45, 1.5, 1.55, 2} for the lower and two-sided PLQC charts.

β λ
Two-Sided Lower-Sided

0.0005 0.00055 0.0008 0.005 0.01 0.0005 0.00055 0.0008 0.005 0.01

1
ARL 2.77029 2.93175 3.30734 1.28847 1.05352 7.13715 6.57216 4.69799 1.2878 1.05174
CV 0.796581 0.810449 0.832053 0.472346 0.224333 0.927055 0.924629 0.888609 0.471286 0.222016

1.2
ARL 3.4344 3.73137 4.48907 1.24557 1.0249 10.17999 9.26196 6.0577 1.24564 1.02393
CV 0.833410 0.841793 0.872314 0.442941 0.156053 0.950986 0.948720 0.912047 0.443015 0.153482

1.45
ARL 4.38397 5.04923 6.714 1.19643 1.00724 16.08578 14.11715 8.44837 1.19651 1.00712
CV 0.845361 0.852602 0.875454 0.402399 0.084521 0.969507 0.963519 0.939252 0.407040 0.083839

1.5
ARL 4.63317 5.35429 7.27372 1.19141 1.00528 17.62839 15.53338 8.98598 1.18936 1.00589
CV 0.846623 0.847747 0.868579 0.401056 0.072365 0.972214 0.963354 0.942952 0.397814 0.076848

1.55
ARL 4.84745 5.68234 7.84248 1.18253 1.00428 19.35293 16.83149 9.66755 1.18031 1.0044
CV 0.841624 0.842662 0.865811 0.392049 0.065156 0.975161 0.968993 0.947149 0.388843 0.066047

2
ARL 7.25932 9.293 14.75946 1.12066 1.00016 44.81022 37.37428 17.84751 1.119 1.00018
CV 0.765642 0.724668 0.770523 0.327015 0.012646 0.990744 0.983135 0.974265 0.325517 0.013413
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Table 6.5: ARL study of the TI-DHR case based on α = 0.0027, λ0 = 0.0005, β0 = 0.5, t1 = 500 and
λ1 ∈ {0.00045, 0.0003, 0.0002, 0.0001}, β1 ∈ {0.2, 0.45, 0.5, 0.55, 0.7, 0.9, 1} for the upper and two-sided PLQC charts.

β λ
Two-Sided Upper-Sided

0.0005 0.00045 0.0003 0.0002 0.0001 0.0005 0.00045 0.0003 0.0002 0.0001

0.2
ARL 1.38963 1.38426 1.38704 1.37664 1.3682 4.41575 4.24592 3.78954 3.42081 2.91266
CV 0.529876 0.528687 0.528363 0.521653 0.520828 0.876652 0.872281 0.858253 0.840388 0.812624

0.45
ARL 2.31502 2.32613 2.32657 2.25503 2.02751 11.22149 10.01608 6.76986 4.95017 3.2115
CV 0.755915 0.761312 0.750697 0.743738 0.711940 0.954690 0.953308 0.923728 0.889331 0.825991

0.5
ARL 2.59214 2.616 2.6155 2.51889 2.16707 14.39046 12.51068 7.85791 5.37231 3.29469
CV 0.782320 0.785106 0.783241 0.774954 0.729714 0.970043 0.957811 0.928341 0.898162 0.834950

0.55
ARL 2.90924 2.93246 2.97054 2.79956 2.32067 18.82523 15.97906 9.1675 5.90478 3.36477
CV 0.806299 0.813713 0.813130 0.798745 0.752748 0.975596 0.963383 0.941815 0.908575 0.839918

0.7
ARL 4.06941 4.19491 4.35625 3.95384 2.79032 51.11765 38.7715 15.686 7.92776 3.57451
CV 0.866796 0.869932 0.875035 0.863316 0.800717 0.994439 0.982101 0.966045 0.933496 0.848293

0.9
ARL 6.13209 6.57307 7.67814 6.62031 3.4032 338.0195 199.3241 39.4575 12.90469 3.93794
CV 0.913859 0.923357 0.928717 0.918861 0.842021 0.997038 0.998043 0.989995 0.952259 0.861219

Table 6.6: ARL study of the PD-DHR case using α = 0.0027, λ0 = 0.0005, β0 = 0.5, t1 = 500 and λ1 ∈ {0.000055,
0.0008, 0.005, 0.01}, β1 ∈ {0.2, 0.45, 0.5, 0.55, 0.7, 0.9, 1} for the lower and two-sided PLQC charts.

β λ
Two-Sided Lower-Sided

0.0005 0.00055 0.0008 0.005 0.01 0.0005 0.00055 0.0008 0.005 0.01

0.2
ARL 1.38587 1.38624 1.38458 1.32415 1.2877 2.03059 1.99691 1.90246 1.51242 1.41298
CV 0.526873 0.525211 0.525949 0.494343 0.471219 0.707098 0.699077 0.685285 0.580538 0.539745

0.45
ARL 2.32116 2.29415 2.19621 1.44292 1.24629 2.93999 2.81862 2.46423 1.44323 1.25179
CV 0.757905 0.746354 0.739504 0.553577 0.444069 0.806688 0.803576 0.772457 0.554695 0.447769

0.5
ARL 2.5927 2.55867 2.40518 1.42919 1.22677 3.16604 3.04591 2.61596 1.42893 1.22193
CV 0.783077 0.781615 0.762896 0.549702 0.431343 0.826634 0.821178 0.788582 0.547715 0.425525

0.55
ARL 2.90859 2.8547 2.61292 1.41691 1.20039 3.41968 3.29526 2.76212 1.41995 1.19966
CV 0.810367 0.808283 0.783849 0.542382 0.407840 0.842315 0.833708 0.797908 0.545081 0.408992

0.7
ARL 4.04563 3.92257 3.27449 1.37849 1.14131 4.40214 4.15516 3.31862 1.38048 1.14096
CV 0.865182 0.866621 0.830904 0.520272 0.351309 0.880246 0.870938 0.831658 0.525627 0.350157

0.9
ARL 6.12448 5.69874 4.25654 1.33366 1.08131 6.24726 5.76195 4.24456 1.33048 1.08017
CV 0.916181 0.908764 0.874114 0.497945 0.273185 0.920959 0.91033 0.872186 0.496851 0.272349
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6.4.4 Some Other Experiments

In the previous section (cf. Section-6.4), we presented a detailed performance study of

different proposed charts by assuming constant (sustained) shifts. We notice that a very

large shift can be detected with the sequential control limits. Therefore, one should use

our proposed check to get an efficient performance of the charts. Contrary to the previous

section, in this section we are interested to investigate the performance of the PLP control

charts by assuming a random shift scenario. In the existing literature, although most

researchers have been focused on the constant/fixed shifts, the random shifts are very

important, especially for on-line process monitoring, e.g. a company may buy material

from other than regular material providers to fulfil more than expected requirements

of demands/goods on a special occasion; hiring extra labour/workforce for a particular

job, etc. The importance of the random shifts has recently been highlighted by Woodall

and Driscoll [2015]. To study the control chart’s performance by assuming the random

shifts, we generated shifts from a uniform distribution (support of the uniform distribution

for a shift generation has been mentioned in Figure-6.3). The resulting study has been

summarized in Figure-6.3, where we depicted the histogram of the run length distribution.

The red vertical line in Figure-6.3 represents the mean of the run length distribution, i.e.,

ARL, while blue line indicates the standard deviation of the run length distribution, i.e.,

SDRL. Note that we assumed uniform distribution just for illustration purposes and one

can consider more realistic distributions for shifts. From Figure-6.3, we have observed

that the proposed control charts are very efficient in the detection of random shifts and

there is no need to use any deterioration/improvement check.

Another interesting experiment has been conducted and analyzed in this section, which

is penalization of the lower control limit. The idea behind this penalization is to get an

appropriate chart’s performance in the presence of control limits drift and without using

any check for it. For this purpose, we penalized the LCL by ip, where p is the penalizing

factor and i denotes the time index. From Figure-6.4a, it is observed that using p = 0.01,

one can get a similar performance (cf. Figure-6.4b) as we have observed with the process

deterioration check.

6.4.5 EQL and RARL for the PLP chart

To assess the overall performance of the control charts, expected quadratic loss (EQL) and

the relative average run length (RARL) are commonly used measures (see Section-3.4.4 of

Chapter-3). In this section, we compare the CQC chart and the PLP chart. The EQL and

RARL with λ0 = 0.0005 and β = 1.5 have been numerically computed using the statistical

software R, R Core Team [2013], considering a uniform distribution for both parameter’s

shifts over the interval [0.00005 < λ < 0.5] and [0.5 < β < 2.5], respectively. The choice

of uniform distribution has been done purely illustrative purposes, and one can consider
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(a) Process deterioration detection for a
random shift in the PLP parameters

(λ0 = 0.0005, β0 = 1.5, λ1 =
U [0.0005, 0.5], β1 = [1, 2])
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(b) Process improvement detection for a
random shift in the PLP parameters

(λ0 = 0.0005, β0 = 0.5, λ1 =
U [0.0001, 0.0005], β1 = [0, 1])
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(c) Process deterioration detection for a
random shift in the PLP parameters

(λ0 = 0.0005, β0 = 1.5, λ1 =
U [0.0001, 0.1], β1 = [1, 2])
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(d) Process improvement detection for a
random shift in the PLP parameters

(λ0 = 0.0005, β0 = 0.5, λ1 =
U [0.0001, 0.0003], β1 = [0, 1])

Figure 6.3: Histograms of run-length distribution’s for process deterioration and
improvement detection with random shifts generated from Uniform distribution; red

line-ARL, blue line-SDRL
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distribution using p = 0.01

Figure 6.4: ARL computation by penalizing LCL for different p at α = 0.0027

Table 6.7: EQL and RARL estimation at different false alarm probability using
β0 = 1.5, λ0 = 0.0005

ARL0
EQL RARL

Lower-Sided Upper-Sided Two-Sided Lower-Sided Upper-Sided Two-Sided
20,000 1.80737 123.536728 3.42907 21.3663 98.350047 34.5724
2000 0.360584 116.667372 0.518554 4.27496 75.384899 6.97753
740.74 0.263751 113.677832 0.32024 2.25048 65.482489 3.51786
370.37 0.23674 19.6782976 0.26375 1.55762 58.573908 2.26604
200 0.225146 15.376355 0.238834 1.23652 52.433984 1.62434

some more realistic distributions for shifts. Note that for the RARL computation, we have

considered the exponential chart as an alternative chart. Both, the EQL and the RARL

shown a decreasing trend with the increase of false alarm probability (cf. Table-6.7). In

the case of EQL, the loss associated with the upper-sided chart is high as compared to

the lower and the two-sided charts. This behavior confirms that one should pay special

attention to the upper side of the chart. From the RARL study, clearly the performance

of the PLP control chart is very good for process monitoring.

6.5 Effect of Parameters estimation on the ARL

As we explained in Section-3.5 (Chapter-3) that in most of the process monitoring settings,

parameters are assumed to be known. However, in reality, this assumption of known

parameters is not true. When the parameters are unknown, these should be estimated

from the phase-I data. Since control charts are very sensitive to a minor change in
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Table 6.8: Comparison of the classical estimation methods for λ and β

Method λ Shift in λ β Shift in β
MLE 0.004054 0.810800 1.039605 0.693070

Unbiased 0.001377 0.275448 1.551724 1.034483
Linealy Unbiased 0.001489 0.297877 1.498216 0.998811

the design parameters, the parameter estimation has certain consequences. Thus, care

should be taken in the selection of an appropriate method of estimation and particularly

the sample size to overcome the estimation (approximation) error. To see the effect of

estimation on the PLP chart’ ARL, we examine two methods of estimation, i.e., the

maximum likelihood and the Bayesian methods. Note that only results are reported here

and for the derivations we refer to Appendix-6.8.

Case I: Method of Maximum Likelihood (ML): The maximum likelihood is the

most commonly used method in statistics for the parameter estimation, and it has some

very nice properties. To find the ML estimates of the PLP, we shall use the time truncated

case, i.e., when testing stops at a predetermined time t and the number of failures (N(t) =

n) are random (cf. Appendix-6.8). For example, we fixed the truncation time t = 6500

and generated 30 observations with λ = 0.005 and β = 1.5, which are: 97.2527, 365.4194,

495.7257, 828.4466, 1227.7677, 1253.6769, 1418.9199, 1760.2463, 1932.8454, 2076.6877,

2505.7932, 2648.6875, 2865.9049, 3045.3843, 3090.9136, 3439.4813, 3525.5849, 3550.1209,

3658.2228, 4082.5301, 4421.1550, 4644.5209, 4847.5839, 5444.9520, 5653.6917, 5883.6398,

6053.8922, 6240.5680, 6338.2454, 6396.9758. The estimated parameter values for the given

data set are: β = 1.039605 (SD = 0.0384051) and λ = 0.004054 (SD = 0.0004873).

The unbiased estimate of the β is 1.551724 with SD = 0.051755, and the linear unbiased

estimate of β is 1.498216 with SD = 0.050855. To get an idea about the shift induced by

using the ML, the unbiased and the linearly unbiased estimates, a comparative study has

been reported in Table-6.8. It is observed from Table-6.8 that a shift in λ is high using

the MLE method as compared to the unbiased or linear unbiased estimate. In contrast

to λ case, we observed that the MLE introduced a smaller shift in β than in the other

two methods.

Case II: Bayesian estimation: In Bayesian methodology, Bayes theorem is used to

summarize the current and the prior knowledge. This updated form of the information

is known as a posterior distribution. However, for parameter estimation in Bayesian, the

choice of an appropriate loss function plays an important role (cf. Section-3.5). Therefore,

we shall compare eight different loss functions, which have already been mentioned in

Section-3.5 (cf. Chapter-3).

In the available literature, both informative and noninformative priors (Bar-Lev et al.

[1992]) have been considered for the Bayesian estimation of the PLP. Several authors

considered gamma prior for Λ(t) and a variety of informative prior distributions such
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Table 6.9: Estimates of the best decision d under various loss functions

LF λ Shift in λ β Shift in β Cumulative Intensity
SELF 0.004817 0.963400 1.660623 1.107082 304.6001

(0.000010) (0.052868)
WSELF 0.003592 0.718400 1.628726 1.085817 169.223

(0.001225) (0.031897)
MSELF 0.002822 0.564400 1.596763 1.064509 104.0958

(0.214349) (0.019625)
SLLF 0.004115 0.823000 1.644713 1.096475 222.6075

(0.290935) (0.019393)
ELF 0.003592 0.718200 1.628726 1.085817 169.223

(0.136089) (0.009767)
KLF 0.004159 0.831800 1.644597 1.096398 226.4476

(0.682066) (0.039168)
DLF 0.006976 1.395000 1.692459 1.128306 636.1651

(0.309514) (0.018811)
PLF 0.005797 1.159400 1.676466 1.117644 438.7839

(0.001959) (0.031685)

as uniform (Guida et al. [1989]), beta (Calabria et al. [1992]), and gamma (Wang et al.

[2010], Wang and Lu [2011]) for the shape parameter β. Zhao [2004, 2010] presented

empirical Bayesian procedure for the PLP based on the two and three hyperparameters

conjugate priors. Huang and Bier [1998] proposed a conjugate prior which consisted of

four hyperparameters for the PLP and studied its properties for the current and the future

intensities of the PLP. Recently, Yan-Ping and Zhen-Zhou [2015] extended the work of

Huang and Bier [1998] and developed an importance sampling procedure using gamma

prior.

Although the natural conjugate prior is a good choice for the Bayesian analysis of

the PLP, the whole approach is somewhat difficult to implement in practice. This is

because the posterior distribution of the PLP does not belong to any well-known family

of distribution, and constitutes complicated integrals with no closed-form solution. Thus,

Aminzadeh [2013] proposed a practical method for the posterior evaluation of the PLP.

A full derivation of the posterior distribution has been given in Appendix-6.8. Moreover,

a computational algorithm to compute Bayes estimates under different loss functions has

also been mentioned in Appendix-6.8.

Bayes estimates of the shape and the rate parameters with cumulative intensity have

been tabulated in Table-6.9. It is observed from Table-6.9 that the WSELF, MSELF

and ELF are not-suitable for the analysis, especially for λ, i.e., parameter value is under-

estimated. However, on the basis of minimum posterior risk for λ, we prefer the SELF,

DLF and the PLF (in the case of λ) for further use. Similarly, for the estimation of β we

suggest the use of the ELF, DLF, MSELF and SLLF, i.e., assuming minimum posterior

risk.
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6.5.1 Optimal Maintenance Time (τ)

Consider a repairable system modeled by the NHPP with an increasing intensity function

subject to two types of repairs: either a minimal repair after a failure which restores the

system, i.e., the intensity to exactly the same level as it was immediately before the failure

or a preventive maintenance, which restores the system to be as good as new condition.

If preventive maintenance is performed after every τ units of time, the expected cost per

unit of time is

H(τ) =
Cpm + CmrEN(τ)

τ
=
Cpm + CmrΛ(τ)

τ

where Cmr and Cpm are the expected costs associated with the two types of repair actions.

It can be shown that (cf. Barlow and Hunter [1960], Gilardoni and Colosimo [2007]) the

periodicity τ which minimize H(τ), satisfies τλ(τ)−Λ(τ) = Cpm/Cmr. In the special case

of the PLP, we have

τ =
1

λ

[
Cpm

Cmr(β − 1)

]1/β
Note that the inference about τ only makes sense when β > 1, leading to the necessity

of truncated prior density for β. This can be done by protecting the conjugacy and

truncating the prior p(β, ξ) to set β > 1. Since, the term (β−1)1/β in the denominator of

τ makes the posterior density non-null as β → 1 (cf. de Oliveira et al. [2012]). Therefore,

posterior expectation of τ becomes infinite. However, under the truncated prior, one can

use, for example, a maximum a posteriori estimate for the optimal time. An alternative

formulation which leads to a finite expectation of the posterior τ is gamma distribution

for (β − 1). This choice of prior assigns less weight to value of β near to one. For the

data set given in Section 6.5, let us assume that CMR/CPM = 20AC, i.e., CPM = 3AC and

CMR = 60AC. For these specifications, we have τ = 43.088694 (in hours) and expected

cost per unit of time (per hours) is 0.208871AC.

6.5.2 Discussion: Effect of Estimation on the ARL

The effect of parameter estimation on the control chart performance is multidimensional

because it is not only a result of the accuracy and precision of parameter estimates, but

also of the choice of the design parameter and of the size of a shift to be detected. In Table-

6.10, or Figure-6.5, we have reported the estimated one-step ahead ARL. From Table-6.10,

it is clear that the parameter estimation has a great effect on the ARL values (cf. Figure-

6.5). The lower-sided chart is highly affected by the estimation error than the ARL of

the upper and two-sided charts. We also noticed that the values of the ARL gradually

decrease with the increase of a sample size (cf. Table-6.10/Figure-6.5). The upper and

two-sided charts’ performance is much inflated in the case of MLE. However, the lower

and upper sided charts’ performance is effected in the case of Bayesian estimation. The
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CV of the run length distribution supports the effectiveness of the Bayesian methodology

as compared to the MLE (cf. Table-6.10/Figure-6.5).

Next, we consider the effect of estimation on the full/sequential ARL instead of one-

step ahead. We use the sample of different sizes (cf. Table-6.10/Figure-6.5) to estimate

the ARL for the full performance assessment. However, in this case, we cannot recommend

any effective sample size to overcome the estimation error. The reason for this conclusion

is the dependency of the control limits on the observed failure data. However, using

the deterioration (cf. Table-6.11/Figures 6.6a-6.6c)(improvement, cf. Table-6.12/Figures

6.6b-6.6d) check, a sample of the size 1000 will be sufficient to overcome the estimation

error (cf. Table-6.11 and 6.12/Figure-6.5). The CV of the run length distribution suggests

the use of Bayesian methodology for the parameter estimation (cf. Figures 6.5-6.6).

Table 6.10: Effect of parameter estimation on the ARL by the MLE and Bayesian
methods using α = 0.0027, λ0 = 0.005, β0 = 1.5 for the lower, the upper and the

two-sided charts.

Method MLE Bayesian
Sample Two- Upper- Lower- Two- Upper- Lower-
Size Sided Sided Sided Sided Sided Sided

30 ARL 322.2269 296.9341 920.6105 263.8332 . 1480.4873
(321.1203) (291.7979) (920.1104) (263.3324) (.) (1479.9871)

CV 0.9966 0.9827 0.9995 0.9981 . 0.9997

60 ARL 323.4106 298.0492 889.5205 295.1725 . 1198.9543
(321.3049) (291.9147) (889.0204) (293.6711) (.) (1198.4542)

CV 0.9935 0.9794 0.9994 0.9949 . 0.9996

100 ARL 325.5047 299.6756 867.2767 300.7845 . 1184.069
(322.6401) (290.5435) (866.7765) (298.2803) (.) (1183.569)

CV 0.9912 0.9695 0.9994 0.9917 . 0.9996

150 ARL 327.5913 300.8731 852.0437 305.9618 . 927.1677
(321.9567) (290.7427) (851.5436) (302.8466) (.) (926.7012)

CV 0.9828 0.9663 0.9994 0.9898 . 0.9995

300 ARL 328.6361 302.1211 831.7735 312.6656 2940.64 901.2386
(322.5355) (291.9229) (831.2734) (307.1071) (2388.875) (900.7386)

CV 0.9814 0.9662 0.9994 0.9822 0.8124 0.9995

500 ARL 329.453 302.7829 820.0859 321.0034 2195.2001 841.9306
(323.3525) (291.6549) (819.5858) (314.2023) (1780.3197) (841.4306)

CV 0.9815 0.9632 0.9994 0.9788 0.8110 0.9994

700 ARL 331.9446 310.2815 815.0098 329.6074 1838.04 804.2529
(325.4346) (296.7687) (814.5096) (317.7250) (1481.109) (803.7528)

CV 0.9804 0.9565 0.9994 0.9639 0.8058 0.9994

1000 ARL 332.9565 310.2939 831.8689 305.9618 1761.609 744.3651
(325.4465) (295.7812) (809.3112) (320.2743) (1415.83) (743.8650)

CV 0.9774 0.9532 0.9994 0.9651 0.8037 0.9993

1500 ARL 333.9452 312.8918 805.7560 338.0409 1707.235 658.2592
(326.4352) (296.7764) (805.2559) (323.0442) (1298.825) (657.7591)

CV 0.9775 0.9485 0.9994 0.9556 0.7608 0.9992

2000 ARL 335.9368 313.2568 803.4259 341.7729 1680.524 624.0508
(324.4267) (309.7438) (802.9258) (325.1711) (1609.409) (623.5507)

CV 0.9657 0.9888 0.9994 0.9514 0.9577 0.9992
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Figure 6.5: Sample size requirement to minimize the effect of estimation for ARL and
SDRL
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Figure 6.6: Sample size requirement to minimize the effect of estimation for the PLP
with the CDC
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Table 6.11: Effect of parameter estimation on the ARL by the MLE and Bayes methods
using α = 0.0027, λ0 = 0.005, β0 = 1.5 for the lower, the upper and the two-sided charts

with the process deterioration check.

Method MLE Bayesian
Sample Two- Upper- Lower- Two- Upper- Lower-
Size Sided Sided Sided Sided Sided Sided

30 ARL 6.668 24.84774 26.072 1 1 24.805
CV 0.906597 0.991951 0.992201 0 0 0.363336

60 ARL 7.481 9.888 26.43 1 1 23.71024
CV 0.981972 0.921998 1.0179 0 0 0.323884

100 ARL 7.814 10.984 26.797 1.004 1.001 22.306
CV 0.943047 0.963379 1.039913 0.062899 0.031591 0.281150

150 ARL 7.98 11.615 24.657 1.056 1.067 21.219
CV 0.931212 0.972775 0.964465 0.237549 0.252496 0.250616

300 ARL 8.678 13.3 26.083 2.732 3.227 20.179
CV 0.947808 0.944313 0.948773 0.739553 0.7165537 0.223473

500 ARL 8.983 14.201 24.67 5.717 26.50765 19.607
CV 0.958676 0.940698 0.959079 0.850113 0.576332 0.207329

700 ARL 9.203 14.369 23.276 4.003 164.2526 18.049
CV 0.991259 0.975341 1.003896 0.854881 0.522474 0.194508

1000 ARL 9.749 12.020134 21.247 2.962 162.3333 17.331
CV 0.924238 0.975393 1.001134 0.799227 2.44949 0.189887

1500 ARL 9.427 14.843 18.043 2.320988 159.73621 17.09231
CV 0.943308 0.951990 0.924234 0.743605 2.32103 0.201479

6.6 Goodness of Fit Tests

In this section, we give a brief discussion of the goodness-of-fit tests for the testing of the

homogenous and the nonhomogeneous Poisson processes. A comprehensive detail can be

found either in Rigdon and Basu [2000] or Lawless [2011]. Note that the goodness-of-fit

tests for the time truncated case are similar to tests for the failure truncated case as

given in Rigdon and Basu [2000]. Two transformations can be applied to see a trend

in the original failure times. The first transformation is the ratio power and defined as

R̂i =
(
ti/t

)β
. Therefore, to test H0 : the failure times were governed by a PLP, the

Cramér-Von Mises test statistic using ratio power transformation is

C2
R =

1

12n
+

n∑
i=1

(
R̂i −

2i− 1

2n

)2

C2
R > c, where c is a critical value used to reject or accept the null hypothesis, and the

tables of c can be found in Rigdon and Basu [2000]. Note that a critical value should

be obtained by simulation if the parameter β of the PLP has been estimated from the

data. A plot of R̂i on the horizontal axis, against its expectation E(R̂i) = 2i−1
2n

on the

vertical axis can be constructed to see a departure from the PLP. For the PLP, this plot is

expected to be approximately linear along the 45◦ line that goes through the origin (0, 0).

The second transformation that leads to a goodness-of-fit test for the PLP is the log-

ratio transformation and defined as: wj = log
(
t/tn−j+1

)
, j = 1, 2, · · · , n. If the PLP
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Table 6.12: Effect of parameter estimation on the ARL by the MLE and Bayesian
methods using α = 0.0027, λ0 = 0.0005, β0 = 0.5 for the lower, the upper and the

two-sided charts with the process improvement check.

Method MLE Bayesian
Sample Two- Upper- Lower- Two- Upper- Lower-
Size Sided Sided Sided Sided Sided Sided

30 ARL 2.995 5.147 1.865 1.045 1.021 47.13568
CV 0.842392 0.941462 0.693007 0.202046 0.140505 1.020766

60 ARL 2.781 5.56 1.869 1.146 1.072 16.554
CV 0.784995 0.955926 0.679202 0.351540 0.265321 1.033905

100 ARL 2.786 5.806 1.88 1.4535 1.192 6.494
CV 0.828947 0.903932 0.70914 0.536944 0.403529 0.9144004

150 ARL 2.76 5.754 1.82 2.0061 1.337 3.753
CV 0.784576 0.906701 0.675872 0.656033 0.454833 0.8786854

300 ARL 2.567 6.463 1.823 4.4892 1.446 2.133
CV 0.785867 0.958621 0.702334 0.772497 0.541763 0.761163

500 ARL 2.53 6.784 1.921 10.251 1.495 1.68
CV 0.809002 0.920387 0.679621 0.870592 0.574127 0.627888

700 ARL 2.478 6.8 1.945 17.382 1.437 1.534
CV 0.778471 0.927214 0.706799 0.865716 0.574149 0.574856

1000 ARL 2.539 7.078 1.916 33.875 1.388 1.482
CV 0.748750 0.933211 0.701931 0.859053 0.521516 0.582185

1500 ARL 2.669 6.919 1.891 60.49645 1.373 1.432
CV 0.798850 0.878466 0.673648 0.879529 0.520328 0.522548

is a correct model, then wj’s are distributed as n order statistics from the exponential

distribution with the mean 1/λ. Thus, one can also test exponentiality as well as PLP

using this test.

Another commonly used test is Lilliefors’ Kolmogorov type test. This is defined as the

largest difference between the empirical distribution function for w’s

SW (w) =

{
0, w < w1;
j
n
, wj ≤ w ≤ wj+1;

1, w ≥ wn.

and the estimated cumulative distribution function (where w’s are assumed to be expo-

nentially distributed) F ∗
W (w) = 1 − exp(−w/µt) where w > 0 and µt =

∑n
i=1wi/n. The

largest (actually the supermum) difference between SW (w) and F ∗
W (w) can be found by

taking the larger of the

T1 = max
1≤j≤n

|F ∗
W (wj)− SW (wj)| = max

1≤j≤n
SLj

and

T2 = max
1≤j≤n

|F ∗
W (wj)− SW (wj−1)| = max

1≤j≤n
SRj

To test H0 :PLP is a correct model, the statistic T = max(T1, T2) is compared with the

critical values (cf. Rigdon and Basu [2000]). If the test-statistic value is larger than the

critical value, we reject H0.
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It is worth mentioning that mostly goodness-of-fit tests are almost powerless for de-

tecting a failure process when the failure time is more evenly spaced than expected.

Thus, in such a situation an alternative is Durbin’s modified test which utilizes spacing

between two adjacent order statistics, i.e., Dj = (n+1− j)(wj −wj−1) for j = 1, 2, · · · , n
where w0 = 0 and Dj is exponentially distributed with mean 1/λ (cf. Rigdon and Basu

[2000]). By plotting Dj-statistics on the y-axis against the empirical distribution function,

Fn(x(i)) = i/n on the x-axis and by joining these points in a straight line we get a curve

within the unit square of the (x, y)-plan, known as TTT-plot. Note that the TTT plot is

also useful for testing exponentiality (cf. Section-8.3 of Chapter-8).

To test the hypothesis H0 : HPP versus H1 : NHPP , the Laplace test is commonly

used. The test-statistic of the Laplace test is given as follows: UL =
∑n

i=1 ti/n−t/2
t
√
12n

. We

rejectH0 either if UL > Z(1−α/2) or UL < Z(α/2), where Z denotes a critical value computed

from a standard normal at the specified level of significance.

6.7 Applications

In this section, we present three case studies to show the implementation of the PLP

chart. Note that we will use the terminologies as suggested by Chan et al. [2000].

Example#1: First data set is taken from Rigdon and Basu [2000] (page 179), and

it is about the execution times (in 0.01 sec.) between software failure. Since we have no

prior knowledge of the process, we prefer here classical analysis of this example. The

estimated parameters are: β̂ = 1.601699 and λ̂ = 0.000156 and therefore, we have

χ2
(α/2,2n) = χ2

(0.025,172) = 137.577799 and χ2
(1−α/2,2n) = χ2

(0.975,172) = 210.207633. The

confidence interval for β is 1.281153 < β < 1.957497. Note that this interval excludes

1, so there is evidence that the system reliability is deteriorating. To test hypotheses

H0 : β = 1 versus H1 : β ̸= 1, we would reject the null hypothesis if β̂ > 1.250202 or

β̂ < 0.818239. Since we have β̂ = 1.60, we reject the null hypothesis in this example.

Moreover, to test H0 : HPP versus H1 : NHPP , we apply the Laplace test which gives

UL = −0.003828. We reject H0 as UL > −1.95.

Another test to check whether PLP is an appropriate model for this data or not, is

Lilliefor’s Kolmogorov type test (cf. Section-6.6 or Rigdon and Basu [2000]). Using this

test, we have µ̂ = 0.624337 and T = max(T1, T2) = 0.077173 which is not greater than

0.116. Therefore, PLP is an adequate model for this data.

A software failure data set is given in Table-6.13, where X denotes the TBE of a

software failure. The lower, central and the upper control limits have been computed using

α = 0.0027 as the false alarm probability. Note that, ’i.c’, and ’n.d’ stand for ’in-control’,

and ’no decision’ in Table-6.13 (cf. Chan et al. [2000]). From Table-6.13, clearly, these

software failures are statistically in-control at 0.0027 false alarm probability. Moreover, we
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did not observe the software improvement sign (cf. Figure-6.7) and the CPC chart also has

a similar conclusion (cf. Figure- 6.8). However, if we use the deterioration/improvement

check, then there are many time points, which are out-of-control. We have marked the

out-of-control observations in the last column of Table-6.13, where a ∗ has been used for

the deterioration detection and ∗∗ to mark the improvement.

Table 6.13: Inspection of the Example 1 Data Set using PLQC charts

Sample# Ti Xi LCL CL UCL CP Indication Check
1 479 479 . . . . n.d. .
2 745 266 25.374547 4695.231723 20403.84287 0.015995 i.c. 0.015996∗

3 1022 277 19.605891 4502.410034 20169.56984 0.020745 i.c. 0.016739∗

4 1576 554 16.259986 4319.633556 19933.77139 0.051452 i.c. 0.037286∗

5 2610 1034 12.559371 3998.763741 19483.38101 0.123030 i.c. 0.079862∗

6 3559 949 9.283669 3520.390542 18705.56738 0.141344 i.c. 0.071777∗

7 4252 693 7.706546 3180.552716 18051.63285 0.120445 i.c. 0.048797∗∗

8 4849 597 6.925313 2975.915037 17605.26692 0.114168 i.c. 0.040768∗

9 4966 117 6.399519 2822.626797 17239.7078 0.024560 i.c. 0.006547∗

10 5136 170 6.308463 2794.736441 17170.00197 0.036096 i.c. 0.009773∗

11 5253 117 6.182106 2755.360438 17069.81055 0.025404 i.c. 0.006547∗

12 6527 1274 6.098962 2729.020077 17001.59382 0.260707 i.c. 0.103750∗

13 6996 469 5.352498 2476.88337 16295.52011 0.113856 i.c. 0.030624∗

14 8170 1174 5.133751 2397.575565 16051.41415 0.276841 i.c. 0.093617∗

15 8866 696 4.676469 2223.809681 15474.06059 0.186263 i.c. 0.049053∗

16 10774 1908 4.452085 2134.638284 15152.80448 0.459545 i.c. 0.172727
17 10909 135 3.959567 1930.162512 14343.28111 0.045175 i.c. 0.007625∗

18 11186 277 3.930019 1917.524651 14289.63163 0.091473 i.c. 0.016738∗

19 11782 596 3.871186 1892.240114 14180.94927 0.190447 i.c. 0.040686∗

20 12539 757 3.752173 1840.604319 13953.29463 0.242509 i.c. 0.054336∗

21 12976 437 3.614219 1779.95168 13675.7605 0.152133 i.c. 0.028194∗

22 15206 2230 3.540499 1747.196305 13521.16615 0.590922 i.c. 0.210019
23 15643 437 3.218333 1601.366447 12790.49911 0.168897 i.c. 0.028194∗

24 15983 340 3.163940 1576.332007 12657.78842 0.135936 i.c. 0.021107∗

25 16388 405 3.123276 1557.541456 12556.72153 0.161797 i.c. 0.025809∗

26 16963 575 3.076609 1535.899673 12438.75281 0.225173 i.c. 0.038978∗

27 17240 277 3.013437 1506.474199 12275.63147 0.117309 i.c. 0.016738∗

28 17603 363 2.984214 1492.812607 12198.81866 0.152407 i.c. 0.022749∗

29 18125 522 2.947038 1475.388072 12099.84534 0.214471 i.c. 0.034743∗

30 18738 613 2.895678 1451.235113 11960.77731 0.250886 i.c. 0.042082∗

31 19015 277 2.838309 1424.147007 11802.18816 0.124026 i.c. 0.016738∗

32 20315 1300 2.813361 1412.331978 11732.1403 0.471085 i.c. 0.106423
33 21136 821 2.703624 1360.115725 11416.11551 0.339773 i.c. 0.060016∗

34 21349 213 2.639943 1329.635416 11226.72352 0.103559 i.c. 0.012501∗

35 22969 1620 2.624065 1322.015638 11178.80535 0.573790 i.c. 0.140506
36 24570 1601 2.511098 1267.581797 10829.77785 0.584873 i.c. 0.138427
37 24868 298 2.411335 1219.199149 10509.58675 0.154268 i.c. 0.018173∗

38 25742 874 2.393908 1210.718776 10452.49275 0.392489 i.c. 0.064823∗

39 26360 618 2.344671 1186.713645 10289.30247 0.301362 i.c. 0.042495∗

40 29000 2640 2.311441 1170.476569 10177.59866 0.795827 i.c. 0.258749
41 29005 5 2.182441 1107.173132 9731.912144 0.003090 i.c. 0.000263∗

42 29154 149 2.182215 1107.061687 9731.113236 0.088241 i.c. 0.008476∗
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43 30188 1034 2.175498 1103.754111 9707.379735 0.477372 i.c. 0.079862∗

44 32629 2441 2.130354 1081.496801 9546.52677 0.795079 i.c. 0.234970
45 33089 460 2.032983 1033.330114 9191.629689 0.264318 i.c. 0.029936∗

46 33654 565 2.015931 1024.873259 9128.365214 0.316515 i.c. 0.038170∗

47 34773 1119 1.995499 1014.731934 9052.126414 0.534699 i.c. 0.088151∗

48 35210 437 1.956611 995.4055088 8905.716037 0.261293 i.c. 0.028194∗

49 36137 927 1.941964 988.117994 8850.128258 0.477923 i.c. 0.069719∗

50 40599 4462 1.911836 973.114675 8735.034301 0.961921 i.c. 0.474114
51 41313 714 1.782493 908.503487 8229.511202 0.419563 i.c. 0.050598∗

52 41494 181 1.763895 899.186761 8155.316561 0.129601 i.c. 0.010461∗

53 42979 1485 1.759260 896.864869 8136.775799 0.684159 i.c. 0.125878
54 43736 757 1.722431 878.396053 7988.591126 0.449457 i.c. 0.054336∗

55 46890 3154 1.704431 869.361137 7915.645022 0.922193 i.c. 0.320653
56 49005 2115 1.634496 834.207142 7629.026306 0.829941 i.c. 0.196575
57 49889 884 1.591679 812.646251 7451.080037 0.529677 i.c. 0.065740∗

58 51926 2037 1.574649 804.062879 7379.793268 0.829480 i.c. 0.187531
59 53407 1481 1.537186 785.165942 7221.969227 0.730894 i.c. 0.125450
60 53966 559 1.511395 772.144589 7112.522576 0.394204 i.c. 0.037688∗

61 54456 490 1.501955 767.376652 7072.307528 0.357200 i.c. 0.032242∗

62 55049 593 1.493809 763.260851 7037.533207 0.416099 i.c. 0.040441∗

63 56818 1769 1.484106 758.357345 6996.031761 0.803231 i.c. 0.157019
64 56903 85 1.456129 744.211797 6875.875854 0.075861 i.c. 0.004676∗

65 59739 2836 1.454819 743.549629 6870.235592 0.930931 i.c. 0.282315
66 59952 213 1.412863 722.315589 6688.637377 0.184438 i.c. 0.012501∗

67 61818 1866 1.409840 720.785119 6675.494389 0.835471 i.c. 0.167952
68 62308 490 1.384078 707.735419 6563.139005 0.380842 i.c. 0.032242∗

69 63795 1487 1.377519 704.411441 6534.437872 0.769777 i.c. 0.126092
70 68117 4322 1.358109 694.572426 6449.288804 0.987549 i.c. 0.458303
71 69535 1418 1.305585 667.926056 6217.263446 0.771538 i.c. 0.118748
72 70558 1023 1.289499 659.759509 6145.746835 0.659196 i.c. 0.078804∗

73 76048 5490 1.278218 654.029942 6095.460445 0.997359 i.c. 0.583320
74 77568 1520 1.221869 625.393511 5842.790207 0.815591 i.c. 0.129637
75 80849 3281 1.207406 618.038002 5777.538871 0.975703 i.c. 0.335941
76 83565 2716 1.177681 602.914555 5642.941652 0.957012 i.c. 0.267875
77 85740 2175 1.154499 591.114262 5537.522207 0.923072 i.c. 0.203574
78 89245 3505 1.136788 582.095285 5456.720664 0.985244 i.c. 0.362796
79 89970 725 1.109710 568.301878 5332.769912 0.587176 i.c. 0.051548∗

80 91933 1963 1.104321 565.555823 5308.040152 0.910815 i.c. 0.179014
81 95912 3979 1.090072 558.294158 5242.561399 0.993228 i.c. 0.418802
82 97002 1090 1.062633 544.305479 5116.090145 0.751032 i.c. 0.085301∗

83 97247 245 1.055432 540.633505 5082.820356 0.269355 i.c. 0.014594∗

84 98441 1194 1.053831 539.817181 5075.420101 0.784810 i.c. 0.095624∗

85 99435 994 1.046122 535.885229 5039.75545 0.724039 i.c. 0.076031∗

86 103337 3902 1.039817 532.669361 5010.561359 0.994077 i.c. 0.409803
87 . . 1.016011 520.524325 4900.110282 . n.d. .

Example#2: Zhou and Weng [1992] (page 51− 52) reported a total of 37 failures for

an engine undergoing development testing in the time interval (0, 8500]. The estimated

parameters of the PLP are: β̂ = 1.888215 and λ̂ = 0.000796, while χ2
(α/2,2n) = χ2

(0.025,74) =

52.102829 and χ2
(1−α/2,2n) = χ2

(0.975,74) = 99.678349. Thus, the confidence interval for β

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



175

is 1.329478 < β < 2.543434. Since this interval excludes 1, there is evidence that the

engine reliability is deteriorating. To test H0 : β = 1 versus H1 : β ̸= 1, we reject a null

hypothesis if either β̂ > 1.420268 or β̂ < 0.742388 is true. Therefore, we reject the null

hypothesis in this example, i.e., β̂ = 1.888215 > 1.420268.

To test H0 : HPP versus H1 : NHPP , we apply the Laplace test (cf. Section-6.6 or

Rigdon and Basu [2000]), and obtain UL = −0.002517. Since UL > −1.96, we reject H0

in the favor of H1. To apply Lilliefor’s Kolmogorov type test, we calculated µ̂ = 0.529601

and T = max(T1, T2) = 0.132486, which is not greater than 0.175 at α = 0.05. Thus, we

conclude that the PLP is an adequate model for this data.

The process monitoring has been given in Table-6.14, and it is clear that the engine

was statistically the out-of-control at the sample points, 13, 16, 31 and 33, respectively.

Moreover, we notice an improvement signal at the sample point 28. The CPC chart

also confirms this conclusion (cf. Figure-6.7 and Figure-6.8). However, if we use the

deterioration/improvement check, then there are many observations at which the engine

was statistically the out-of-control. We have marked the out-of-control observations in

the last column of Table-6.14, where a ∗ has been used for the deterioration detection and

∗∗ for the process improvement.

Note that the behavior of the adaptive control limits of the PLP chart is significantly

dependent on the value of the shape parameter β. For both examples, we considered data

sets where β̂ > 1. However, the following example is given where β̂ < 1 and control limits

drift up with the observed failure time.

Example#3: To see increasing control limits, let’s consider a data set given by Rigdon

and Basu [2000] (page: 139, example 4.17). In this example, truncation time is t = 2000

and the estimated parameters are: β̂ = 0.375 and λ̂ = 0.175233. Rigdon and Basu [2000]

applied test for appropriateness of PLP and found that PLP is a suitable process for this

data set. We apply the PLP control chart on this data set to detect any deterioration or

improvement. The results have been tabulated in Table-6.15, and one can observe that the

system is statistically in-control using both, the PLQC and the PLCP charts (cf. Figure-

6.7 and Figure-6.8). However, if we use the deterioration/improvement check, then three

observations, i.e., 3, 5 and 7, have been found statistically deteriorated while the system

was statistically improved at 8-th sample point. We have marked these observations in

the last column of Table-6.15, where a ∗ has been used for the process deterioration and

∗∗ for the process improvement.

6.8 Some Final Remarks

In this chapter, we introduced a new TBE control chart based on the power law process.

The proposed chart is suitable for adaptive process monitoring especially real time moni-
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Table 6.14: Inspection of the Example 2 Data Set using PLQC charts

Sample# Ti Xi LCL CL UCL CP Indication Check
1 171 171 . . . . n.d. .
2 234 63 5.208966 881.356654 3248.801506 0.018551 i.c. 0.041691∗

3 274 40 3.965829 832.83745 3190.912752 0.014439 i.c. 0.026150∗

4 377 103 3.453756 803.965425 3154.878023 0.045595 i.c. 0.069501∗

5 530 153 2.607863 736.001912 3064.57364 0.088861 i.c. 0.105466∗

6 533 3 1.929822 650.099241 2936.76712 0.002099 i.c. 0.001920∗

7 941 408 1.920204 648.575589 2934.334284 0.317285 i.c. 0.299988
8 1074 133 1.160211 486.029359 2627.992441 0.151633 i.c. 0.090936∗

9 1188 114 1.031794 447.856399 2538.006069 0.144613 i.c. 0.077307∗

10 1248 60 0.943432 419.306172 2464.446815 0.084063 i.c. 0.039645∗

11 2298 1050 0.903063 405.612954 2427.006616 0.882551 i.c. 0.724248
12 2347 49 0.525189 256.806077 1893.677095 0.119459 i.c. 0.032190∗

13 2347 0 0.515441 252.480989 1873.590579 0.0 o.c. 0∗

14 2381 34 0.515441 252.480989 1873.590579 0.085771 i.c. 0.022154∗

15 2456 75 0.508899 249.565928 1859.865847 0.182787 i.c. 0.049935∗

16 2456 0 0.495075 243.371876 1830.193229 0.0 o.c. 0∗

17 2500 44 0.495075 243.371876 1830.193229 0.113972 i.c. 0.028827∗

18 2913 413 0.487329 239.881807 1813.162648 0.707198 i.c. 0.303852∗

19 3022 109 0.425456 211.511246 1665.896667 0.296592 i.c. 0.073751∗

20 3038 16 0.411799 205.136465 1630.521201 0.051249 i.c. 0.010319∗

21 3728 690 0.409873 204.233932 1625.441669 0.918047 i.c. 0.509109
22 3873 145 0.341748 171.844448 1430.898333 0.441802 i.c. 0.099632∗

23 4724 851 0.330360 166.344871 1395.39815 0.978000 i.c. 0.614240
24 5147 423 0.276932 140.249189 1216.666432 0.882954 i.c. 0.311573
25 5179 32 0.256622 130.212964 1143.321549 0.155420 i.c. 0.020827∗

26 5587 408 0.255213 129.514625 1138.122254 0.893002 i.c. 0.299988
27 5626 39 0.238591 121.254317 1075.679286 0.198684 i.c. 0.025482∗

28 6824 1198 0.237121 120.522290 1070.061982 0.999428 im. 0.790845
29 6983 159 0.199758 101.822152 922.023488 0.662563 i.c. 0.109860∗

30 7106 123 0.195713 99.787981 905.403355 0.574987 i.c. 0.083740∗

31 7106 0 0.192702 98.272265 892.955045 0.0 o.c. 0∗

32 7568 462 0.192702 98.272265 892.955045 0.964280 i.c. 0.341568
33 7568 0 0.182217 92.988346 849.136316 0.0 o.c. 0∗

34 7593 25 0.182217 92.988346 849.136316 0.169406 i.c. 0.016207∗

35 7642 49 0.181684 92.719459 846.889121 0.306068 i.c. 0.032190∗

36 7928 286 0.180649 92.197183 842.519478 0.886303 i.c. 0.205638
37 8063 135 0.174849 89.268659 817.902468 0.650379 i.c. 0.092380∗

38 . . 0.172246 87.953504 806.784211 . n.d. .
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Figure 6.7: Power Law Process monitoring for Real Data Sets using α = 0.0027
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Figure 6.8: Power Law Process monitoring using the CPC Charts of Real Data Sets
using α = 0.0027
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Table 6.15: Inspection of Example 3 Data Set using PLQC charts

Sample# Ti Xi LCL CL UCL CP Indication CDC
1 1.2 1.2 . . . . n.d. .
2 55.6 54.4 0.007773 9.155639 1087.588674 0.833220 i.c. 0.194884
3 72.7 17.1 0.085333 55.217712 1918.421264 0.219974 i.c. 0.067351∗

4 111.9 39.2 0.100899 63.927896 2050.735925 0.366075 i.c. 0.145851
5 121.9 10 0.132105 81.214142 2303.655624 0.094775 i.c. 0.040133∗

6 303.6 181.7 0.139363 85.208579 2360.622352 0.723674 i.c. 0.490824
7 326.9 23.3 0.246484 143.456753 3149.91387 0.117319 i.c. 0.090295∗

8 1568.4 1241.5 0.258140 149.739152 3231.638196 0.974079 i.c. 0.960837∗∗

9 1913.5 345.1 0.687796 378.126580 5998.514345 0.470679 i.c. 0.695255
10 . . 0.778821 426.082126 6550.64807 . n.d. .

toring. Since the control limits of the proposal are sequentially updated, every observation

will contribute to uncertainty of the control limits. Therefore, one may observe a drift in

the control limits of the PLP chart. In such a situation, one cannot observe the actual

performance of the system. Hence, to test the possible deterioration (improvement)/drift

of the control limits, we proposed a check. By the simulation study and the real data

examples, it has been shown that the proposed test improves the performance of the PLP

control charts. Moreover, the proposed control charts not only studied in the case of

constant shifts but also for the random shifts. The reason of considering random shifts

is, since the control limits are sequentially updated, if there is a constant shift, then the

monitoring design may adopt a trend, and the out-of-control observation could be consid-

ered as the in-control. It is observed that the PLP chart outperforms for a random shift

scenario without deterioration/improvement (drift) check. We have assessed the superi-

ority of the PLP chart by different performance measures, i.e., the ARL, CVRL, EQL,

and the RARL.

The effect of parameter estimation has been discussed in this study. Two different

methods for the parameter estimation, namely the maximum likelihood and the Bayesian

methods, have been used to estimate the parameters of the PLP. We found that the effect

of parameter estimation on the ARL is very significant and with a minor estimation error,

the control chart performance could be seriously inflated. In the future, this work could

be extended to design more advanced control charts, like the CUSUM and the EWMA.

In this chapter, we again noticed that a large phase-I data is required to estimate

the unknown parameters of the PLP process. Phase-I data poses a problem to a situ-

ation where the sampling is expensive or one may have a short-run production process.

Therefore, in the next chapter, we introduce a TBE chart for sequential and adaptive

monitoring using the Bayesian predictive approach (cf. Chapter-7).
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Appendix

In this appendix, we shall discuss some methods of the parameter estimation of the PLP

(cf. Section-6.5).

Case-1: The Method of Maximum Likelihood (ML) Let T1 < T2 < · · · < TN <

t denote the observed failure times before time t, i.e., no failure at t. Since the number of

failures N is random, one should take into account both types of randomness, i.e., failure

time and the number of failures. The likelihood equation for the time truncated case can

be derived as follows:

The joint density of (N, T1, T2, · · · , TN) is:

f(n, t1, t2, · · · , tn) =
{
fN(n)f(t1, t2, · · · , tn|n), n ≥ 1;
fN(0), n=0.

The random variable N has a Poisson distribution with mean (λt)β, i.e.,

fN(n) =
(λt)nβ exp(−(λt)β)

n!
, n = 0, 1, · · ·

The conditional distribution of T1 < T2 < · · · < TN given N = n is distributed as the

n-th order statistics with the cumulative density function (cf. Rigdon and Basu [2000],

Theorem 26 of Chapter 2, page 59)

G(z) =


0, z < 0;
Λ(z)
Λ(t)

, 0 ≤ z ≤ t;

1, z > t.

For PLP, we have the cumulative density function G(z) =
(
z
t

)β
and therefore, the density

function corresponding to G is g(z) = β
tβ
zβ−1 for 0 ≤ z ≤ t. Given N = n, the distribution

of T1 < T2 < · · · < Tn is therefore

f(t1, t2, · · · , tn|n) = n!
n∏
i=1

G
′
(ti) = n!

n∏
i=1

β

t

(
ti
t

)β−1

, 0 < t1 < · · · < tn < t

The joint density of N and T1 < T2 < · · · < Tn is

f(t1, t2, · · · , tn, n) = λnββn
( n∏
i=1

ti
)β−1

exp
(
−(tλ)β

)
, n ≥ 1 (A.1)

and f(0) = exp
(
−(tλ)β

)
for n = 0. Note that this is nearly identical to the likelihood

function from for the failure truncation case, although we adopted a completely different
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approach for the likelihood derivation. The log-likelihood function is given as

ln f(β, λ|n, t) = l(β, λ|n, t) = n ln β + nβln(λ) + (β − 1)
n∑
i=1

ln ti − (tλ)β (A.2)

To obtain the maximum likelihood estimators, the partial derivative with respect to λ is

∂l(.)

∂λ
=
nβ

λ
− tββλβ−1 = 0 =⇒ λ̂ =

n1/β

t

The profile log-likelihood, i.e., after replacing the value of λ̂, is given by

lp(λ̂, β|n, t) = n ln β + n ln(n)− nβ ln(t) + (β − 1)
n∑
i=1

ln ti − n (A.3)

and

∂lp(.)

∂β
=
n

β
− n ln(t) +

n∑
i=1

ln ti = 0 =⇒ β̂ =
n∑n

i=1 ln
(
t
ti

)
To compute the Fisher information, we have the following expected values of the sec-

ond partial derivatives. −E
[
∂2l(.)
∂β2

]
= n

β2 − (tλ)β
[
ln(tλ)

]2
, −E

[
∂2l(.)
∂λ∂β

]
= tβλβ−1

[
1 +

β ln(β) + β ln(λ)
]
− n

λ
, and −E

[
∂2l(.)
∂λ2

]
= tββ(β − 1)λβ−2 − nβ

λ2
. Since the PLP reduces

to the HPP when β = 1, it is often interesting to see if β = 1 is in the confidence

interval. To do this, we know that by conditioning on N = n, the random variables

T1 < T2 < · · · < Tn < t are distributed as the n-th order statistics from the distri-

bution having the cdf G(z) =
(
z
t

)β
. Therefore, the random variable Z is uniformly

distributed, i.e., (z/t)β, over the interval [0, 1]. Consequently,
(
ti/t

)β
, i = 1, 2, · · · , n, are

distributed as the n-th order statistics from the uniform distribution over the interval

[0, 1]. Thus,
∑n

i=1− ln
(
ti/t

)β
= −β

∑n
i=1 ln

(
ti/t

)
has a gamma distribution Γ(n, 1). Note

that, 2nβ/β̂ = −2β
∑n

i=1 ln
(
ti/t

)
has a Chi-Square distribution with 2n degree of freedom.

Therefore, a 100(1− α)% confidence interval for β is given by
χ2
(α/2,2n)

β̂

2n
< β <

χ2
(1−α/2,2n)

β̂

2n
.

To test H0 : β = β0 vs H1 : β ̸= β0, the rule is to reject H0 if 2nβ0/β̂ < χ2
(α/2,2n) or

2nβ0/β̂ > χ2
(1−α/2,2n).

Theorem A.1 The conditionally unbiased estimator of β for n ≥ 1 is β̄ = n−1
n
β̂.

To prove this we need the following lemma.

Lemma A.2 Let Y be χ2−distributed with n degree of freedom, then E(Y k) = 2k Γ(n/2+k)
Γ(n/2)

where k is an integer such that n
2
+ k > 0. Moreover, E(Y ) = n, E(1/Y ) = 1

n−2
,
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E(Y 2) = n2 + 2n and E(1/Y 2) = 1
(n−2)(n−4)

.

Proof : By Lemma-A.2, we have E(β̂) = 2nβE
(
1/χ2

2n

)
= nβ

n−1
which implies that β̄ =

E
(
n−1
n
β̂
)
= β. To find the variance of MLE, we need E(β̂2) = E

(
2nβ/χ2

2n

)2
= 4n2β2

(2n−2)(2n−4)
=

n2β2

(n−1)(n−2)
and V ar(β̂) = n2β2

(n−1)2(n−2)
while V ar(β̄) = β2

n−2
.

We refer to Bain and Engelhardt [1991], and Calabria et al. [1987], for some additional

properties of the unbiased estimator of β. In Qiao and Tsokos [1998], it has been shown

that there exists a linearly best efficient estimator of β denoted by β
′
, which is more

efficient. Qiao and Tsokos [1998] define the following theorem to claim the efficiency of

the β
′
.

Theorem A.3 Assume θ̄ is an unbiased estimator of θ, and also θ̄ has a finite variance,

then there exists a unique ϕ0 such that the mean square errorMSE(ϕ0θ̄) = minϕMSE(ϕθ̄).

Moreover, ϕ0 =
θ2

θ2+V ar(θ̄)
.

Thus, for PLP, we have ϕ0 = n−2
n−1

and the best efficient estimate of β is β
′
= n−2

n−1
β̄ =

n−2∑n
i=1 ln(t/ti)

. We also have MSE(ϕ0β̄) = ϕ2
0V ar(β̄) + (ϕ0 − 1)2β2 = β2

n−1
. The efficiency

comparison of the MLE β̂, the unbiased estimator β̄ and the linearly best estimator β
′
is:

Efficiency(β
′
/β̄) =

MSE(β
′
)

MSE(β̄)
=
n− 2

n− 1
< 1

Efficiency(β
′
/β̂) =

MSE(β
′
)

MSE(β̂)
=
n− 2

n2
< 1

Efficiency(β̄/β̂) =
MSE(β̄)

MSE(β̂)
=
n− 1

n2
< 1

Therefore, the linearly best estimator β
′
has the greatest efficiency while the unbiased

estimator β̄ has a better efficiency than the MLE β̂.

Case-II: Bayesian Estimation Following the idea of Aminzadeh [2013], and de Oliveira

et al. [2012], let ξ = Λ(t) = (tλ)β which simplifies λ = ξ1/β

t
. Thus, the likelihood given in

Equation-A.1 can be written as follows

L(β, ξ|t, n) = C
[
ξn exp(−ξ)

][
βn exp(−nβ/β̂)

]
(A.4)

where C =
∏n

i=1 t
−1
i and β̂ = n∑n

i=1 ln(t/ti)
. Hence, both ξ and β belong to a gamma

family. Assuming independent gamma prior both for β and ξ, we have the joint prior

density given as p(β, ξ) = γ(β|a, b) ·γ(ξ|c, d) and γ(.|A,B) = BA

Γ(A)
(.)A−1 exp(−B(.)) where

the hyperparameters, i.e., a, b, c and d, all must be positive. The resulting posterior

distribution is given as

Π(β, ξ|t, t, n) ∝ γ(β|n+ a, b+ n/β̂)× γ(ξ|c+ n, d+ 1) (A.5)
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i.e. both, a priori and a posteriori of the β and ξ are independent and each follows a

gamma distribution. Therefore, the intensity function can be written as λ(t) = ξβ
t
. This

transformation of β and ξ may be facilitated in view of that both β and ξ have clear

operational interpretations, i.e., dΛ(t)/Λ(t)
dt/t

= tΛ
′
(t)

Λ(t)
= β. Therefore, β is the elasticity of

the mean number of event λ(t) with respect to time, i.e., the relative change in Λ due to

relative change in t. Indeed, the PLP is characterized by the fact that this elasticity is

constant over time. On the other hand, ξ = Λ(t) = E[N(t)] is the expected number of

events during the observed period of the process.

To derive Bayes estimator of λ(t) using SELF, we proceed as follows:

E[λ(t)|t, n] = E
[βξ
t
|t, n

]
=

1

t
E[β|t]E[ξ|t] = 1

t
· a+ n

b+ n/β̂
· c+ n

d+ 1
(A.6)

An alternative to Bayes estimator under SELF is a maximum posteriori estimator. In

this case, the mode of the posterior density is attained at βm = a+n−1

b+n/β̂
and ξm = c+n−1

d+1

respectively, where m denotes the maximum posteriori estimator. Hence, an alternative

estimate for λ(t) can be written as λm(t) = 1
t
βmξm = 1

t
a+n−1

b+n/β̂

c+n−1
d+1

.

A simulation based consistent estimate of E(g(ξ, β)) = θ can be obtained by repeating

the following steps:

1. Using t1, t2, · · · , tn, repeat steps (2-5) D times.

2. Generate βk from Π(β|t, n) from Γ(β|n+ a, b+ n/β̂) for k = 1, · · · , D.

3. Generate ξk from Π(ξ|t, n) from Γ(β|n+ c, d+ 1) for k = 1, · · · , D.

4. Compute θ(j,k) based on the kth sample, k = 1, · · · , D; j = 1, · · · , N .

5. Find β̄(j) =
∑D

k=1 θ(j,k)/D j = 1, · · · , N .

6. To find Bayes estimate of λ, compute λ(j) =
ξ1/β̄j

t
.

Similarly, the Bayes estimates and the respective posterior risks for the other loss functions

(cf. Table-3.10) can be computed. To choose hyperparameters values, the idea is to select

them in such a way that the mean of the corresponding prior distribution is close to the

selected value of ξ and β (cf. Aminzadeh [2013]). For example, for the case of λ = 0.005,

β = 1.5 and T = 6500, the “true” value of ξ is 185.2785, therefore a = 18 and b = 0.01

is close to ξ value (as the mean of the prior is a/b). Also, with c = 7, d = 4, we get the

mean of the prior c/d = 1.75 which is also close to β’s value.
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Chapter 7

Bayesian Sequential (Adaptive)

Process Monitoring

We are becoming more and more machine dependent and therefore, quality practitioners

are now interested in online process monitoring. In Chapter 6, we have introduced a TBE

control chart for the sequential process monitoring. However, we observed in Chapter 6

that a large Phase-I data was required to estimate the unknown parameters. This assump-

tion is problematic, especially when the sampling is expensive or when limited Phase-I

data are available. In the case of sequential and adaptive monitoring, since we learn from

the past experience, Bayesian methodology provides a natural solution for such a kind of

monitoring. Moreover, a restrictive assumption about the Phase-I data set to set up mon-

itoring structure, can easily be tackled within Bayesian framework. In this chapter, we

propose Bayesian control charts for TBE of the Poisson process (cf. Theorem-1.1.3). A

predictive approach is adopted for the development of control charts. In addition to the

Shewhart chart, a comparison of the CUSUM and the EWMA charts is also given in this

study. Since the control limits are sequentially updated, to detect a possible drift in the

control limits, a practical test is also introduced in this chapter. The performance of the

proposed control charts is studied in-detail, and some interesting comparisons are shown.

7.1 Motivation

There are many situations in which data arise sequentially, e.g., time between a system

failure, and engineers or quality practitioners are interested in the sequentially predictive

control limits for the future data points. In many engineering fields, classical sequential

methods are commonly used for online filtering, and Kalman’s filter is a prime example

for this purpose. However, the classical process monitoring techniques require a very large

phase-I data set to set up initial process monitoring limits and to overcome estimation

error (cf. Albers and Kallenberg [2004b], Kumar and Chakraborti [2014b] and, Chapters
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3 and 6). In some processes, this assumption of the large phase-I data make sense,

i.e., data collection may be cheap. However, there are some processes, e.g. high-quality

processes, where we have the problem of a short production run, limited phase-I data,

or expansive sampling. Therefore, the assumption of a large phase-I data is no more

valid there. Thus, it is a necessity of time and modern quality application to look some

other alternatives instead of classical process monitoring techniques. A promising and

a comprehensive methodology to deal with sequential and adaptive process monitoring,

is Bayesian methodology. In Bayesian, the Bayes theorem plays a central role while the

notion of exchangeability helps us in prediction.

In the existing literature, Zhang et al. [2006] introduced exponential chart based on

the classical sequential sampling procedure while Yang et al. [2015a] evaluated the perfor-

mance of the exponential chart using average time to signal (ATS). They also studied the

unbiased property of the ATS within a sequential sampling procedure. On the Bayesian

side, Sturm et al. [1990] suggested empirical Bayesian approach based on the sufficient

statistic for the normal process. They used the posterior distribution for the detection

of change in the mean of a normal process. To detect abrupt changes in the mean of a

normal process, Sturm et al. [1991] introduced a weighted empirical Bayes estimator, i.e.,

similar to the EWMA statistic, µ̂ =
∑i

j=1 λ
i−jXj/

∑i
j=1 λ

i−j, where λ is weight and Xi

denotes the most-recent observation. To alert the engineer about a shift in the process the

idea of a coverage probability of the posterior intervals is also discussed in Sturm et al.

[1991]. In addition to these, to test a shift in the process mean a likelihood ratio test for

the posterior distribution was also introduced.

Recently, Wu et al. [2015] also used the Bayesian approach to multi-batch process

monitoring where the chi-square, the ANOVA and Bartlett’s test are used in the decision

making for the homogeneity of a normal process.

Bayesian estimation has also been used as a method of parameter estimation instead

of pure sequential approach in quality control by various authors. For example, Zhang

et al. [2013] compared the maximum likelihood estimate of the geometric distribution with

the Bayes estimate. Zhang et al. [2013] noticed that Bayesian method can even be used

when the number of nonconformities is zero. Lee et al. [2013] also compared Bayesian

and maximum likelihood estimates for the Bernoulli CUSUM chart.

Raubenheimer and van der Merwe [2014] used a predictive approach for the designing

of a c chart based on the Poisson distribution. However, they did not try their approach in

pure sequential setting, and that’s why they could show chart performance. Bayarri and

Garćıa-Donato [2005] motivated by the fact that in the usual implementation of control

charts, a large sample size is required to set up control limits and overcome estimation

error. However, the restriction of phase-I/base period sample is very restrictive and in

many applications, e.g. short-run production, etc., such large sample is not available to

set up control chart limits. Due to a sequential and adaptive nature of Bayes theorem, this
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problem can easily be addressed. Bayarri and Garćıa-Donato [2005] proposed a sequential

u chart and compared it with the classical chart. A chart based on empirical Bayes esti-

mates is also developed and compared with sequential chart. They used objective priors

and suggested to consider only few observations such that the posterior becomes proper,

e.g. three observations in their case. Although their approach is purely sequential, they

did not explore the chart performance for various shifts. Since the control limits are se-

quentially updated, we would expect that control limits also deteriorate/drift with time.

Thus, in such a situation, an observation which is actually out-of-control might be consid-

ered wrongly in-control. Later, to address the problem of control limit’s deterioration and

study the chart performance, Toubia-Stucky et al. [2012] proposed a predictive control

chart based on geometric distribution. The authors proposed two decision rules (Section

3.3 (page 208) of Toubia-Stucky et al. [2012]) to stop the lower control limit deterioration.

A comprehensive overview of the Bayesian methodology in sequential and non-sequential

setting for the process monitoring has been given in Section-2.8 of Chapter-2.

The main focus of this chapter is to relax the restrictive assumption of a large phase-I

data set as such knowledge is seldom available in real applications. Therefore, we will in-

troduce a new predictive limits control chart for the exponential distribution, i.e., N(t) ∼
Poisson process. A test to check deterioration or improvement of the control limits is

also proposed in this study. We will investigate the predictive limits chart performance

in-detail for different size of shifts, which were ignored in the previous studies. Moreover,

the CUSUM and the EWMA charts in a predictive setup will be discussed here. The rest

of the study is categorized as follows: Some brief discussions about the Bayesian predic-

tive hypothesis testing and credible interval are given in Section 7.2. A brief discussion

about exponential family is given in Section 7.3. The process monitoring settings using

Bayesian predictive distribution, are defined in Section 7.4. The Shewhart, EWMA and

CUSUM charts are also discussed in the same Section 7.4. A numerical study to assess

the performance of different control charts, is given in Section 7.5. The idea of random

and sustained shifts is also discussed in the same Section 7.5. Section 7.6 deals with two

illustrative examples. Some thoughts about the revision of a prior information and the

false alarm probability by the decision theory approach are also discussed in Section 7.6.

Three case studies are discussed in Section 7.7. We epitomize the chapter in the last

Section 7.8.

7.2 Bayesian Predictive Hypotheses Testing and Cred-

ible Interval

In this section, we discuss some approaches of the predictive hypothesis testing. In the

classical statistics and Bayesian posterior setups, we know that there are well-defined hy-
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pothesis procedures for a parameter testing. However, in the case of Bayesian predictive

distribution, the procedure of hypothesis testing is ambiguous. This ambiguity arises as

the posterior predictive distribution is free of a parameter. Poirier [1997] motivated by

“how to specify a loss function for parametric hypothesis testing, which may be facilitated

by considering a related predictive hypothesis, and requiring that the decision which min-

imizes expected posterior loss (MEPL) over the parametric hypotheses is in accordance

with the indisputable choice among predictive hypotheses” and defined a decision pro-

cedure to accomplish the task. To define Poirier [1997] procedure, let’s suppose that x

denotes a vector of observations from the specified sampling distribution which depends

on the parameter vector λ ∈ Λ and L(x;λ) ∝ f(x|λ) be the observed likelihood function.

Similarly, let p(λ) be the prior distribution and p(λ|x) is the corresponding posterior dis-

tribution. Furthermore, suppose that f(y|λ) is a sampling density of an out-of-sample

observation y = xn+1 whereas f(y|x) = Eλ|x
(
f(y|λ)

)
=

∫
Λ
f(y|x, λ)f(λ|x)dλ the corre-

sponding predictive density. If λ is known, then by exchangeability property, we have

f(y|x, λ) = f(y|λ). In the predictive setup, a basic problem is how to define hypothesis

and more relevantly, what should be a loss function?

Since we know by the iterated expectation that E(y|X) = Eλ|x[E(y|x, λ)] = E(λ|x),
the above question can be addressed by defining a predictive hypothesis asH0 : E(λ|x) ≤ s

and H1 : E(λ|x) > s, for some constant s. To get a minimum expected posterior loss

(MEPL), Poirier [1997] considered a general quadratic loss structure defined as: L(d =

i, λ|Hj) = ai + bi(λ− s) + ci(λ− s)2 and L(d = i, λ|Hi) = 0(i = 0, 1; i ̸= j), where d = i

denotes the decision corresponding to Hi(i = 0, 1), ai ≥ 0, ci ≥ 0, b1 ≥ 0 and b2 < 0 are

the decision constants. The MEPL yields d = 0 (i.e., H0) iff

E[L(d = 0, λ)|x]− E[L(d = 1, λ)|x] = p1{a0 + b0E[(λ− s)|x, H1] + c0E[(λ− s)2|x, H1]}
− p0{a1 + b1E[(λ− s)|x, H0] + c1E[(λ− s)2|x, H0]}
=

{
[(p1a0 − p0a1)− (p1b0 − p0b1)s] + b0E(λ|x)+

c0E[(λ− s)2|x]− (b0 + b1p0E(λ|x, H0)− (c0 + c1)×
p0E[(λ− s)2|x, H0]

}
≤ 0 (7.1)

where pi = Prob(Hi|x)(i = 0, 1) denotes the posterior probability of the each hypothesis.

Poirier [1997] further showed that if bi = ci = 0 then posterior odds characterize MEPL,

i.e., d = 0 iff p0/(1 − p0) ≥ d1/d0. In order to grantee Equation-7.1, a necessary and

sufficient condition is ai = ci = 0, d0 = 1 and d1 = −1. Thus, the loss function becomes

L(d = i, λ|Hj) = |λ − s|(j ̸= i). The absolute loss is not the only loss function that

provides the desired result but used due to its simplicity. He further wrote that “choosing

a relevant predictive hypothesis forces the researcher to consider how the parameters are

linked to observations and replacing the parameter by its posterior mean, seems natural.”
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In Bayesian testing of a sharp or precise null hypothesis, one can conclude a totally

opposite result than the classical testing. This fact is well-known and called Jeffreys-

Lindley’ paradox. Girón et al. [1999] inspired by the notion of exchangeability and argued

that with this assumption, one can test homogeneity of two samples using the predictive

credible interval.

Definition 7.2.1 Girón et al. [1999]: Two samples x1 = (x11, x12, · · · , x1n1) and x2 =

(x21, x22, · · · , x2n2) are said to be homogenous, and will be denoted by x1
h
= x2, if the

resulting joint sample (x1,x2) is exchangeable.

Therefore, by Definition-7.2.1, it is equivalent to assume that the two populations share

the same parameters only if the definition holds true for all sample sizes n1 and n2. The

proposed homogeneity test of Girón et al. [1999] can be described as: let R1 and R2

be the highest predictive regions of x1|x2 and x2|x1 with a probabilistic content 1 − α.

Accept the null hypothesis of homogeneity of the two samples, H0 : x1
h
= x2, at level

1 − α if x1 ∈ R1 and x2 ∈ R2. Similarly, reject the homogeneity hypothesis if x1 /∈ R1

and x2 /∈ R2, otherwise, the test is neither accepted nor rejected, i.e., inconclusive, that

might be in a sequential setup. A fixed dimension statistic T (x) can be tested in a

similar way. Another possible way to conduct a homogeneity test is to use the Kullback-

Leibler divergence between the two predictive distributions, i.e., T (x1)|x2 and T (x2)|x1,

KL(p(T (x1)|x2 , T (x2)|x1)). A decision criterion in this case would be: Accept H0 if

KL(.) ≤ c, otherwise reject H0; where c is a some suitable positive constant.

Since the credible sets avoid unnecessary complication of imposing explicit probabili-

ties on the hypotheses, Lindley’s paradox could be avoided. It is worth mentioning that

central/credible intervals are computationally simpler than the highest posterior density

(HPD) intervals and therefore, commonly used (cf. Thulin [2014]). Moreover, credible

intervals also have a close agreement with the classical intervals. Note that a HPD interval

can be defined as the interval having the shortest length among 1− α credible sets.

Our Approach for Predictive Hypothesis Testing: It is worth mentioning that

Girón et al. [1999] approach is good if one compares two samples of sizes n1 and n2,

respectively. However, in the case of sequential setting where one observes one by one

items/failure points, e.g. TBE settings, the approach suggested by Girón et al. [1999] is a

somewhat complex, i.e., comparison of a sample of size n1 > 1 with n2 = 1. Therefore, an

alternative is the predictive cumulative distribution check (PCDC) which is also commonly

known as a predictive p-value in the Bayesian literature. Let us suppose that we have

to take one of the following two decisions at each observation, d = 0 : the process is

in-control and continued inspection, and d = 1 : the process is out-of-control, stop and
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rectify it. Suppose a loss to take one of the above decisions is

L(Yn+1, d) =

{
K0I{Yn+1>yn+1}, if d = 0

K1I{Yn+1≤yn+1}, if d = 1.

The first row gives the loss earned by taking a decision d = 0, and the second row is

the loss which we collect by taking decision d = 1. The expected value of this loss with

respect to a predictive distribution is:

Ey|x[L(F, d)] =

{
K0Pr{Yn+1 > yn+1|x}, if d = 0

K1Pr{Yn+1 ≤ yn+1|x}, if d = 1.

Thus, we take a decision d = 0 if K0Pr{Yn+1 > yn+1|x} ≤ K1Pr{Yn+1 ≤ yn+1|x}, which
is further simplified as F (yn+1|x) ≥ K0

K0+K1
, otherwise d = 1. With this inequality, one

can take a decision about the process with a specified probability, e.g. K0

K0+K1
= 1 − γ,

and 1 − γ = 0.95 or 0.9973, etc. We have depicted power curves of the proposed test in

Figure-7.1 by considering different base periods.

How to select/set stopping criterion? Let s = K0

K0+K1
be a stopping criterion, and we

have the following explanation to select it properly. When the process is in-control,

the probability that a new observation falls below the mean in the case of exponential

distribution, i.e., 1
λ
, can be computed as Fx(1/λ) = 1 − exp(−1) ≈ 0.6321206. Thus, a

rule can be established based on 5 observations and considering 10% as a threshold, i.e.,

the probability that five consecutive observations fall below the mean is (0.6321206)5 =

0.1009252. Moreover, a cumulative distribution function (CDF) has the property of non-

decreasing and right-continuous, i.e., limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. Therefore,

whenever a process deteriorates, it shortens the TBE and F (y|x) would be closed to zero.

Similarly, F (y|x) will be close to one for the process improvement, i.e., TBE is lengthened,

and around 0.5 for the in-control process. Hence, the proposed stopping criterion is quite

realistic.

7.3 Exponential Family

In this section, we discuss exponential family and some of its properties form a Bayesian

point of view.

An important question in Bayesian statistics is how to select a suitable prior which

may facilitate numerical computations without the Markov Chain Monte Carlo (MCMC)?

Therefore, if a sampling density belongs to exponential family, then one could answer this

question very easily. Exponential families are classes of probability’s measure constructed
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Figure 7.1: Comparison of the power for the base period one and five

from a dominating measure and a statistic. To define a general form of the exponential

family, let Λ(λ) be a vector of parameters, T (x) a vector of sufficient statistics, and A(λ)

be a cumulant generating function. Then

f(x) = h(x) exp(Λ(λ)T (x)− A(λ)) (7.2)

is called a mathematical form of the exponential family. It is interesting to note that x

and λ mix in exp[Λ(λ)T (x)] not elsewhere. Note that A(λ) is also known as a logarithm

of the Laplace transform of h(x), and it is convex. Products of exponential family are

again exponential family but may not have a nice parametric form anymore. Finding

the mean, the covariance and the maximum likelihood estimate of exponential family are

very easy, i.e., A′(λ) = EfΛ{T (x)}, A′′(λ) = EfΛ{T 2(x)} − E2
fΛ
{T (x)} = CovfΛ{T (x)}

(positive definite) and MLE = A′(λ̂) = n−1
∑n

i=1 T (xi), respectively.

Moreover, one can get an elegant closed form of a conjugate prior to the exponential

family. To derive a conjugate prior, let T : x → ℜ, A,Λ : λ → ℜ and define Ka,b :=∫
λ
exp(Λ(λ)a − bA(λ))dλ < ∞; a ∈ ℜq, b ∈ ℜ. A conjugate prior can be constructed by

replacing data with hyperparameters in the exponential family (cf. Diaconis and Ylvisaker

[1979]), i.e., p(λ|a, b) = K−1
a,b exp(Λ(λ)a− bA(λ)), which yields a posterior distribution

p(λ|x) ∝ exp{Λ(λ)(a+ Tn(x))− A(λ)(b+ n)} = p(λ|β = a+ Tn(x), ϕ = b+ n) (7.3)

Many well-known distributions (cf. Section-7.8) belong to exponential family, and we

refer to Casella and Berger [2002] for further details.
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The posterior predictive distribution in exponential family can be derived as follows:

f(xn+1|x) = h(xn+1)h(a+ Tn(x), b+ n)

∫
λ

exp(Λ(λ)(a+ Tn(x) + T (xn+1))−

A(λ)(b+ n+ 1))dλ

=
h(xn+1)h(a+ Tn(x), b+ n)

h(a+ Tn(x) + T (xn+1), b+ n+ 1)
= f(xn + 1|x; a+ Tn(x), b+ n) (7.4)

It is worth mentioning that when a conjugate prior is used, the posterior predictive dis-

tribution belongs to the same family as the prior predictive, i.e., marginal, distribution.

This can be determined simply by plugging the updated hyperparameters for the poste-

rior distribution into the prior predictive distribution. Note that the posterior predictive

distribution of an exponential-family random variable with a conjugate prior can always

be written in closed form (provided that the normalizing factor of the exponential-family

distribution can itself be written in closed form).

7.4 Predictive Control Charts

In this section, we define a process monitoring strategy using the Bayesian predictive

approach (cf. Equation-7.4). Let us assume that the defects are being produced by the

Poisson process where the distribution of time is exponential with the rate parameter λ.

We want to develop a control chart that should be either free from the assumption of

phase-I data set or use a minimum number of observations to monitor the future TBE.

To accomplish this task, a natural solution is to construct a chart based on the posterior

predictive distribution (cf. Equation-7.4). Note that this approach is self-adaptive and

suitable for online process monitoring, i.e., sequential nature of Bayes theorem plays an

important role.

In this chapter, the word “revise” is used when the parameters of the initial prior

distribution are recomputed while the word “update” is used when the posterior and

predictive distributions of the parameter and of the data y, respectively, are calculated

after incorporating the in-control observations to date.

Assuming the exponential distribution for the TBE, we have the posterior distribution

p(λ|x) = βϕ

Γ(ϕ)
λϕ−1 exp(−βλ) (cf. Equation-7.3), i.e., assuming gamma distribution [p(λ) =

ba/Γ(a)λa−1 exp(−bλ)] as the prior, where ϕ = a + n and β = b +
∑n

i=1 xi = b + nx̄.

Note that here we used the likelihood for n observations to generalize the concept to a

situation where one could have a few phase-I data observations. However, if the phase-I

data set is not available, then one can set up control limits by using an informative prior.

Similarly, for the noninformative or the objective priors, we suggest to collect as many

observations as the posterior becomes a proper distribution. This idea, i.e., the use of
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Figure 7.2: Sequential Predictive Distribution using hyperparameters a = 2 and b = 1

a minimum number of data points such that the posterior becomes proper, is similar to

Bayarri and Garćıa-Donato [2005] where they suggested the use of 3 − 5 data points to

get a proper posterior distribution. Later, Toubia-Stucky et al. [2012] also suggested the

use of three data points in the case of empirical Bayes. The posterior predictive for the

future observation y = xn+1 is given by (cf. Equation-7.4)

f(y|x) = ϕ

β
(
1 + y

β

)ϕ+1
, y > 0 (7.5)

which is the Pareto type-II and commonly known as the Lomax distribution. It is in-

teresting to note that the predictive distribution is a monotone decreasing in y > 0 (cf.

Figure-7.2).

A general form of the cumulative distribution function of Equation-7.5 is

F (y|x) = 1−
(
1 +

y

β

)−ϕ
, y > 0 (7.6)

To construct a two-sided control chart, one needs to find LCL = F−1(α/2|x) and UCL =

F−1(1 − α/2|x), where α is a prespecified probability of the false alarm. Since F (y|x)
is available in explicit form (cf. Equation-7.6), the control limits in sequential settings

can be written as: LCLi+1 = βi
[(

1
1−α/2

)1/ϕi − 1
]
and UCLi+1 = βi

[(
1
α/2

)1/ϕi − 1
]
, where

j is the TBE observation index and i ≥ 0. To obtain the one-sided control charts, find
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LCL = F−1(α|x) and UCL = F−1(1 − α|x), respectively. The simplified control limits

for the one-sided sequential monitoring are: LCLi+1(one-sided) = βi
[(

1
1−α

)1/ϕi − 1
]
and

UCLi+1(one-sided) = βi
[(

1
α

)1/ϕi − 1
]
, respectively.

A predictive control chart with Shewhart structure is obtained by plotting the observed

value of TBE Xi+1 against the LCLi+1 and UCLi+1. If the point is plotted below the

LCLi+1, i.e., Xi+1 < LCLi+1 then it is a signal that the process may have deteriorated

while if a point is plotted above the UCLi+1, i.e., Xi+1 > UCLi+1, it is a sign of that

process may have improved. Moreover, if the new observation falls within the control

limits, then it will be used to update the posterior distribution of parameter λ and the

predictive distribution of data Y , respectively. Therefore, continue in this fashion, the

predictive distribution of each step would be used to establish the next control limits,

i.e., the control limits for the time i + 2 are determined right after we compare Xi+1

with (LCLi+1, UCLi+1) and update Fi+1(y|x). To make a control chart adaptive, if an

observation falls outside the control limits, the most-recent observation is discarded, and

all the previous in-control observations to date, could be used to revise prior parameter (if

one wishes) and start process monitoring once again. Thus, with this approach the aim

is to detect any change in the process as quickly as possible. Moreover, it also alleviates

the requirement of a large phase-I data set to set up control limits.

7.4.1 EWMA and CUSUM

In the previous section, we have defined the Shewhart process monitoring design of the

Bayesian charts. It is a well known fact that Shewhart control charts are used to detect

a large shift. Alternatively, the EWMA and the CUSUM control charts are widely used

for the detection of small shifts, and they come under the banner of a memory type

control charts. Gan [1998] introduced the exponential EWMA chart where the upper-sided

EWMA chart was used for the detection of an increase in the mean of the exponential

distribution (or decrease in the rate parameter). The one-sided EWMA chart can be

formed by plotting

Qi = max{A, (1− θQ)Qi−1 + θQXi} (7.7)

against i, for i = 1, 2, · · · ; where θQ is a smoothing constant such that 0 < θQ < 1

and mostly it is 0.10 < θQ < 0.25 as suggested by Montgomery [2009] for the optimal

properties of the EWMA chart. A is a boundary which is nonnegative and Q0 = u,A ≤
u < UCLi, i.e., for the predictive setting. A signal will issue at the time i for which

Qi ≥ UCLi. Similarly, a lower-sided EWMA chart is designed to detect an increase in

the rate parameter, which is

qi = min{B, (1− θq)qi−1 + θqXi} (7.8)
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against i, for i = 1, 2, · · · ; where θq is a smoothing constant such that 0 < θq < 1 and

mostly it is 0.10 < θq < 0.25 as suggested by Montgomery [2009] for the optimal properties

of the EWMA chart. B is a boundary which is nonnegative and q0 = v, LCLi < v ≤ B,

i.e., LCLi for the predictive setting. A signal will issue at the time i for which qi ≤ LCL.

The use of the boundary as suggested by Gan [1998] is appealing because it ensures that

the EWMA chart is at most at a certain distance (UCLi − A for the upper-sided chart

and B − LCLi for the lower-sided chart) from the chart limit, irrespective of a situation.

The EWMA charts with a worst-case scenario can be designed by selecting q0 = B and

Q0 = A.

There are two methods in the literature to design a two-sided EWMA chart. The first

method to obtain a two-sided EWMA chart is by plotting

Zi = (1− θZ)Zi−1 + θZXi (7.9)

against i, for i = 1, 2, · · · ; where θZ is a smoothing constant such that 0 < θZ < 1 and

mostly it is 0.10 < θZ < 0.25 while Z0 = w and LCLi < w < UCLi. A signal will be

issued at the time i if Zi ≤ LCLi or Zi ≥ UCLi. The second method to establish a

two-sided EWMA chart is the simultaneous use of both, the lower and the upper sided

charts. This approach is sometimes known as combined EWMA scheme.

The upper-sided CUSUM chart is used to detect a decrease in the rate parameter and

obtained by plotting

Si = max{0, Si−1 +Xi −K} (7.10)

against i, for i = 1, 2, · · · ; where K = ln(λ0)−ln(λ1)
λ0−λ1 is a positive constant and S0 = u, 0 ≤

u < UCLi. A signal will be issued at the time i if Si ≥ UCLi. Similarly, the lower-sided

CUSUM is defined by

si = min{0, si−1 +Xi −K} (7.11)

For the worst-case scenarios, S0 = s0 = 0, however, the starting values may be set to some

nonzero values such as the out-of-control signal can be detected earlier when the process

starts from out-of-control state. A two-sided CUSUM can be designed by simultaneously

using Si and si. Liu et al. [2006b] compared the performance of the EWMA and the

CUSUM charts for the exponential distribution by considering the fixed control limits of

the both charts.

In the traditional EWMA setup, there are two proposals to find control limits of the

chart. The first method is where one assumes that the process has reached stationarity and

therefore, control limits are held constant. The second approach is where control limits

vary with the order of time but not with the actual value of the data. However, in both

approaches, the monitoring statistic is updated with the actual data points. Contrary

to these approaches, we shall study the EWMA and the CUSUM charts not only by
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updating the monitoring statistic but also the control limits. The unique feature of the

proposed control charts is the control limits are data dependent, i.e., the control limits

are updated with each in-control data point. Note that, recently, time and sample size

varying EWMA charts (cf. Shen et al. [2013], Shu et al. [2014], and Shen et al. [2015]), risk

adjusted CUSUM (cf. Tian et al. [2015]), and adaptive CUSUM (cf. Wu et al. [2009c])

have been proposed in the literature. However, there is a fundamental difference between

the existing and our approach. We use a predictive distribution to find the control limits

and the monitoring statistic whereas the existing did not have it. Moreover, our proposed

EWMA and CUSUM charts also have a self-starting feature. Similarly, our proposed

control charts could even be developed without any phase-I data point. Therefore, one

can consider this work as a generalization of the existing approaches. To find the predictive

control limits of the CUSUM and the EWMA charts, we will use the following procedure:

1. If there is no out-of control signal at time i(i ≥ 1), Y ∗
i,k(k = 1, 2, · · · ,M) are

generated from Fi(y|x).

2. Sort the M values in ascending order and find the specified empirical quantile of

these M values. This approximated value is used for approximating the control

limits of the time i+ 1.

3. Compare the value of EMWA or CUSUM statistic, which is calculated based on the

observed Yi, with control limits to decide whether to raise an out-of-control alarm

or to wait for the next TBE.

In this chapter, we usedM = 104. Next, suppose that we are interested in the upper-sided

CUSUM Si chart. The above steps ensured us that Pr(Si > UCLi) = α as M → ∞.

However, the conditional probability defined by Pr(Si > UCLi|Sj < UCLj) = α where

1 ≤ j < i, i.e., the probability that the charting statistic exceeds the control limits

given no prior signals, may be more suitable to increase the sensitivity of the chart (cf.

Shen et al. [2013]). Therefore, to determine the control limit UCLi+1, one should ensure

that the values of pseudo test statistic S∗
i,k is less than or equal to UCLi. Thus, one

needs the ranked values of S∗
i,M∗ = {S∗

i,(1), · · · , S∗
i,(M∗)}, where M∗ = ⌊M(1 − α)⌋, and

⌊V ⌋ denotes the largest integer less or equal to V . At step i + 1, the starting value to

calculate the pseudo test statistic and finding the control limits, i.e., S∗
1,k of the CUSUM

statistic, should be selected uniformly from S∗
i,M∗ . Therefore, to increase the sensitivity

of the CUSUM and EWMA charts, we modify the steps given in Shen et al. [2013] for

our settings as follows:

1. If there is no out-of control signal at time i(i ≥ 1), Y ∗
i,k(k = 1, 2, · · · ,M) are

generated from Fi(y|x). Compute the pseudo test statistic of the EWMA or the

CUSUM by using the values Y ∗
i,k, say S

∗
i,k (or q∗i,k, Q

∗
i,k, s

∗
i,k, Z

∗
i,k).
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2. Sort theM values of step-1 in ascending order. Find the specified empirical quantile

of step-1’ M values to obtain the control limits.

3. Compare the value of EWMA or CUSUM statistic, which is calculated based on the

observed Yi, with control limits computed in step-2 to decide whether to raise an

out-of-control alarm or to wait for the next TBE.

4. If it is decided to go on, set M∗ = ⌊M(1 − α)⌋ and discard the values that are

greater than and equal to the control limit. Go back to step 1.

Similarly, the above steps can be generalized to compute the control limits of lower, upper,

and two-sided EWMA/CUSUM charts.

To monitor a process improvement with the UCLi, we shall use zero as a starting

value for the CUSUM, i.e., considering a worst-case scenario, while a positive value is

used for the EWMA to represent a worst-case scenario. Similarly, to design a lower-sided

EWMA and CUSUM charts, we shall assume the fast initial response approach. A fast

initial response chart is designed to get a quick signal by assuming a positive starting

value of the CUSUM or EWMA, which is opposite to a simple EWMA or CUSUM chart

where one has zero as a starting value (cf. Montgomery [2009]).

7.5 Discussion of ARL Study

In Table-7.1, we have computed the average run length (ARL) and the coefficient of

variation (CV) of the run-length distribution for the lower, upper and two-sided charts.

These measures were computed by assuming different size of shifts in the parameter. The

standard deviation of the run-length (SDRL) distribution can easily be recovered using

the ARL and CV values. The values of the hyperparameters have been selected such that

the mean of the prior distribution was greater than 1700 with a small variance. For this

reason, the shape parameter of gamma distribution was selected very small as compared

to the rate parameter, i.e., informative prior. A misspecified prior distribution has also

been considered where we selected the hyperparameters such that the mean was greater

than 1500 but with a large value of the variance, i.e., noninformative prior. From Table-

7.1, one can observe that a larger shift is detected quickly as compared to small shifts.

The control charts are completely ineffective for the detection of small to moderate shifts.

More specifically, to detect the process deterioration for small shifts, the performance of

lower-sided and two-sided charts are approximately the same. However, for large shifts,

the lower-sided chart outperforms than the two-sided chart. The CV of the one-sided

chart is highly variable as compared to the two-sided chart. For the detection of a process

improvement, the one-sided chart is quite effective than the two-sided chart. However,

the detection is not quick as we observed in the case of a process deterioration.
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Again, it is worth mentioning that we use the predictive control limits to design the

EWMA and the CUSUM. The steps to obtain these limits have been mentioned in the

previous section.

A comparison study of the EWMA and the CUSUM charts has been given in Tables

7.1-7.2. We observed that the one-sided EWMA chart was an effective in detection of

a small to moderate shifts than the CUSUM. However, in the case of two-sided chart,

the EWMA chart performance is appreciated over the CUSUM only for the large shifts.

The CUSUM chart outperforms for small shifts than the EWMA chart. For the upper-

sided chart, the CUSUM gives a quicker detection than the two-sided chart and for large

shifts, the EWMA chart is preferred over the CUSUM. In the case of two-sided chart, the

CUSUM outperforms uniformly, which is against the believed perception, i.e., EWMA

chart performs better than a CUSUM for large shifts, and we argue this verifies the

importance of the base period. Therefore, to see the effect of a base period, we have

Table-7.2. From Table-7.2, one can notice that the predictive control chart performance

can be improved by using a large base period (cf. Tables 7.1-7.2). We notice that the

CUSUM chart is very effective for the detection of small shifts, and EWMA chart is good

for large shifts (cf. Table-7.2). Therefore, we have an advantage of a large base period,

i.e., it improves the detection ability of a control chart. This statement should not be

taken as the predictive chart can only be developed/used if a base period is available.

The main contribution of this study is to introduce a sophisticated process monitoring

technique that could be applicable without a base period requirement.

7.5.1 Improved Predictive Control Charts

In the previous section, we noticed that the performance of predictive charts was not

the same as expected. Thus, a natural question would be, why do all the charts have a

poor detection/performance? To address this question, we have the following explanation:

Since each observation contributes to uncertainty of the control limits, this causes deteri-

oration or improvement in the control limits. Therefore, this uncertainty will either move

up or down the control limit than its in-control position. To understand it in a better way,

let’s take a closer look of these control limits by depicting them. In Figure-7.3, we have

plotted control limits using the base period equals to one and five, respectively, for the

process deterioration and improvement monitoring. From Figure-7.3, clearly, the control

limits with a small base period are more variable than the case of large phase-I data set,

i.e., compare the control limits for base period one and five. As the process deteriorates

or improves, these control limits also drift down or up. Thus, in such a situation, a system

which is actually an out-of-control may be thought in-control (cf. Figure-7.3). We also

notice that the same problem is present in the case of a misspecified prior (cf. Figure-7.4).

Suppose that we have an observation y = xi+1 and by comparing this observation with
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the control limits, which were established at step i, i.e., (LCLi+1, UCLi+1), we found that

the observation y is in-control. Now, we have to decide whether to update the control

limits using this observation or not. Since the observation has been declared in a safe

region, i.e., in-control, it must be used to get the updated control limits for the monitoring

of TBE at time point i + 2. We have shown in Figure-7.3, however, the control limits

also drift when we update them, i.e., inclusion of an observed time causes them to drift.

Therefore, one has to wait a long time to detect an out-of-control alarm, and it leads to

control chart insensitivity. Note that this behavior is not acceptable in many situations,

e.g. short-run production processes. Similarly, one might have knowledge about the

occurrence of a shift at a particular time point, but insensitivity of the control limits

delay the search operation.

The emphasis of a production management is to keep the process on target rather than

allowing it to drift upward or downward. Therefore, one needs to introduce a measure

or a check that may inspect the control limits and gives an alarm when a minimum

allowable drift has been attained. With such a precautionary check, the out-of-control

signal could be an indication that an action must be exercised to stop the process form

further drift/deterioration.

To prevent such kinds of drifts in the lower-sided geometric chart, Toubia-Stucky et al.

[2012] proposed two decision rules (Section 3.3 of Toubia-Stucky et al. [2012], page 208),

which are:

1. The first set of decision rules has a higher power for deterioration detection but also

has a higher false alarm rate. The authors recommended its use when the risk of a

potential deterioration is very serious. The rules requires that in four consecutive

observations, any of the conditions apply:

• the sum of the deteriorations shows at least 20% deterioration in LCLs;

• one deterioration shows at least 15% deterioration in LCL; and

• there is at least 5% deterioration in each of three consecutive LCLs.

2. The second set of rules is more stringent and has less power but smaller false alarm

rate. In these rule, a necessary but not sufficient condition for deterioration detection

is to observe three deteriorations out of the four recent observations. A sufficient

condition is to have any of the following:

• the sum of the deterioration shows at least 25% deterioration in LCLs;

• one observation shows at least 20% deterioration in LCL; and

• there is at least 5% deterioration in each of three consecutive LCLs.
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(c) Deterioration Detection for λ = 0.5
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(d) Deterioration Detection for λ = 0.05
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(e) UCL for λ = 0.0001
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(f) Improvement Detection for λ = 0.0001

Figure 7.3: Sequential Control Limits Comparison for the base period n = 1 and n = 5
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(a) LCL for λ = 0.005
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(b) Deterioration Detection for λ = 0.005
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(c) Deterioration Detection for λ = 0.5
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(d) Deterioration Detection for λ = 0.05
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(e) UCL for λ = 0.0001
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(f) Improvement Detection for λ = 0.0001

Figure 7.4: Sequential Control Limits Comparison for the base period n = 1 and n = 5: the
case of a misspecified prior
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To make the control chart adaptive, Toubia-Stucky et al. [2012] proposed that if 6 points

are below the LCL, then revise the prior distribution to adopt a possible trend. With

a simulation study, they showed that the proposed chart works efficiently in different

scenarios. However, from the rules proposed by Toubia-Stucky et al. [2012], it is not

easy to define a precise criterion for the evaluation of a deterioration in the LCL. Thus,

motivated by this fact, we have proposed a mathematical formulation in Section-7.2 to

evaluate the control limits’ deterioration. Moreover, our proposed criterion is suitable for

all types of shifts, i.e., small, large and time varying shifts (will be discussed in Section-

7.5.2). With the traditional predictive control limits, this cogent identity would assist to

decide whether one should stop or not for the possible inspection of a process.

Note that this marriage of the predictive control limits with the PCDC could be

thought as a use of a synthetic chart, i.e., combining the predictive chart with the cu-

mulative probability control chart. The basic notion behind this criterion is to minimize

the impact of a drift and increase the sensitivity of the predictive chart. We define the

following steps to monitor a process with the PCDC and the predictive chart.

1. Fix c, and find the predictive control limits at time i, i.e., (LCLi+1, UCLi+1), and

wait for the next TBE appearance Xi+1. Note that i denotes the time index asso-

ciated with a system failure.

2. If Xi+1 ∈ (LCLi+1, UCLi+1), go to the next step.

3. Check whether Xi+1 satisfies the PCDC at the specified value of c. If the condition

is satisfied, go to step 1. Otherwise, go to the next step.

4. Inspect the process for a possible deterioration or improvement.

We used c = 0.10 and c = 0.90 as the stopping criteria in PCDC and results have been

given in Tables 7.3-7.4. From Tables 7.3-7.4, it is clear that using the PCDC, the control

charts’ sensitivity has been greatly improved. By comparing the lower-sided chart with

the two-sided chart, i.e., Table-7.3, one can notice that two-sided chart outperforms than

the one-sided chart. If we fix c = 0.95, however, the one-sided chart becomes superior

than the two-sided chart. The CV gradually decreases with the size of a shift in both

charts. This observation is also true for the process improvement case with one addition,

i.e., the upper-sided chart is superior than its counterpart, two-sided chart, especially for

large shifts. We observed that having a base period is advantageous and the numerical

study tabulated in Table-7.4 supports this conclusion. By comparing Tables 7.1-7.2 and

Table 7.3-7.4, one can distinguish that the control charts detection ability has greatly

been improved by the PCDC. We also observed that s = 0.0015 led to the nominal ARL,

i.e. 370, but the performance of the predictive control chart was compromised, i.e., the

results were approximately the same as reported in Tables 7.1-7.2.
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The EWMA and the CUSUM charts have also been designed with the PCDC, and we

noticed an improved performance of these charts over the simple EWMA and CUSUM

charts (cf. Tables 7.3-7.4 versus Table 7.1-7.2). However, the CV behavior is opposite

as we observed in the case of Shewhart charts, i.e., the CV increased with the size of a

shift. The lower-sided EWMA outperforms than the two-sided EWMA chart for a process

deterioration detection. For the process improvement case, however, a reverse behavior

has been observed. The small size shifts were detected efficiently by the CUSUM while

large shifts by the EWMA chart. The two-sided CUSUM detects the shifts quickly as

compared to the one-sided. Moreover, we have observed that the one-sided charts become

more efficient than the two-sided charts with the usage of a large base period. Therefore,

it is an indication that a base period has a positive effect on the control chart performance

(cf. Table-7.1 versus Table-7.4), if available.

Misspecification of prior: In addition to informative prior, we have also studied the

effect of a misspecified prior information on the control chart performance for n = 1 and

n = 5, respectively. In this case, the hyperparameters were selected to reflect a high

level of the prior uncertainty, i.e., the mean of the prior distribution was selected close

to 1700 with a large value of the prior variance. The ARL has been computed in this

case again, and results are summarized in Figures 7.5-7.6 for the lower, upper and the

two-sided Shewhart, EWMA and CUSUM control charts, respectively. We notice that

the misspecification of a prior has a significant effect on the chart performance, and again

our proposed criterion of the PCDC works efficiently. One must be very careful about

the choice or selection of the hyperparameters to design a control chart.
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Table 7.1: ARL comparison based on α = 0.0027, n = 1, λ0 = 0.0005 for the predictive charts.

λ PM Lower-Sided Upper-Sided Two-Sided

Shewhart EWMA CUSUM Shewhart EWMA CUSUM Shewhart EWMA CUSUM

0.5
ARL 1.11751 5 8.156271 . . . 1.696 7.5241 28.00227
CV 0.389586 0.00602 0.927325 . . . 1.014861 0.102671 0.001699

0.1
ARL 13.49612 5 10.351771 . . . 169.3478 7.556171 30.36865
CV 3.911209 0.001604 0.942970 . . . 1.553131 0.123516 0.018997

0.05
ARL 16.60209 5.00108 27.37181 . . . 189.5884 7.718161 32.12037
CV 3.758719 0.006568 0.956196 . . . 1.459648 0.145161 0.029227

0.005
ARL 288.8547 5.36503 34.16258 . . . 305.0023 8.168 35.65317
CV 1.201923 0.089752 0.896834 . . . 1.334888 0.223671 0.268752

0.0009
ARL 351.7705 9.20493 229.7637 . . . 353.16241 14.16271 227.653284
CV 1.031917 0.310811 0.791761 . . . 1.30145 0.252618 0.345624

0.0008
ARL 363.2888 39.80445 170.296 . . . 362.127818 45.462819 180.66533
CV 0.995812 1.277075 0.799027 . . . 1.229172 0.672514 0.436754

0.0007
ARL 365.9619 59.453713 134.8705 . . . 366.724517 165.161721 150.785325
CV 1.006588 1.283627 0.753391 . . . 1.168261 0.987161 0.512387

0.0006
ARL 370.8377 65.35271 100.2968 . . . 371.368119 187.17156 130.25372
CV 0.996533 1.313462 0.714211 . . . 1.118256 0.998161 0.643527

0.00055
ARL 371.8719 76.342561 81.90896 . . . 372.17261 190.16711 100.654238
CV 0.993126 1.338161 0.702672 . . . 1.062781 1.027167 0.765321

0.0004
ARL . . . 370.3136 34.62671 39.16613 372.3303 45.67528 44.69146
CV . . . 0.994412 1.216535 0.632355 0.988483 1.20431 0.631582

0.0003
ARL . . . 369.0865 32.16382 26.50686 360.2013 42.36271 29.02461
CV . . . 0.993886 1.286001 0.498395 1.013227 1.156721 0.494659

0.0002
ARL . . . 319.0701 29.14086 16.67229 353.768 40.16171 19.86776
CV . . . 1.111468 1.378603 0.423853 1.024611 1.136372 0.341530

0.0001
ARL . . . 310.7443 27.15721 10.86007 346.3985 38.161783 12.48067
CV . . . 1.140515 1.523123 0.324427 1.053064 1.113836 0.281696

0.00009
ARL . . . 292.3253 22.16271 11.59877 333.0463 35.62718 11.91697
CV . . . 1.200851 1.632476 0.230802 1.090416 1.082625 0.281389

0.00008
ARL . . . 271.5607 14.55617 10.08818 320.5763 30.252715 11.84683
CV . . . 1.275436 1.797293 0.295902 1.112811 1.056721 0.230973

0.00007
ARL . . . 247.5009 9.9664 9.41871 290.16271 26.748191 10.99361
CV . . . 1.221054 1.856962 0.317764 1.125271 1.036271 0.260795

0.00006
ARL . . . 220.9925 8.21189 9.27332 263.11721 21.362717 10.427
CV . . . 1.236559 1.566832 0.276679 1.136271 1.00877 0.267303

0.00005
ARL . . . 175.1687 7.89594 8.34888 231.37831 12.637381 9.45426
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CV . . . 1.253776 1.556245 0.341021 1.145613 0.965318 0.333349

Table 7.2: ARL comparison based on α = 0.0027, n = 5, λ0 = 0.0005 for the predictive charts.

λ PM Lower-Sided Upper-Sided Two-Sided

Shewhart EWMA CUSUM Shewhart EWMA CUSUM Shewhart EWMA CUSUM

0.5
ARL 1.11444 2 5.45271 . . . 1.40675 2 14.87433
CV 0.335701 0.00005 0.710237 . . . 0.616504 0.051617 0.105414

0.1
ARL 3.89043 2 10.36271 . . . 42.26126 2 16.712826
CV 1.600053 0.000388 0.744262 . . . 3.175982 0.124511 0.129446

0.05
ARL 4.750639 2 14.62819 . . . 119.1324 2 16.73628
CV 2.491653 0.000432 0.764527 . . . 2.475554 0.156171 0.226738

0.005
ARL 191.1802 2.00002 25.17168 . . . 159.2654 2.168 27.746347
CV 1.486304 0.002236 0.785267 . . . 1.672571 0.173420 0.326177

0.0009
ARL 264.4589 2.25866 220.9948 . . . 288.0223 20.464712 189.727281
CV 1.004845 0.224456 0.8073968 1.506721 0.556237 0.489261

0.0008
ARL 330.778 2.1107 160.3423 . . . 334.162721 25.637188 176.63721
CV 1.085457 0.152705 0.833019 . . . 1.372625 0.764728 0.572628

0.0007
ARL 352.753 3.08346 122.9291 . . . 355.715138 29.647271 150.454621
CV 1.03256 0.519544 0.799609 . . . 1.202635 0.807353 0.698362

0.0006
ARL 362.2115 63.51835 87.17527 . . . 364.37271 89.637214 130.487201
CV 0.990646 0.325849 0.760985 . . . 1.147251 0.998462 0.765881

0.00055
ARL 371.208 62.56802 73.58579 . . . 371.98621 98.736231 64.32288
CV 0.990160 0.345567 0.737288 . . . 1.085241 0.996518 0.852617

0.0004
ARL . . . 348.7692 34.57281 37.07558 366.3807 78.563726 26.20959
CV . . . 1.04572 0.820405 0.667424 0.999474 1.043537 0.587541

0.0003
ARL . . . 282.5849 31.67821 25.22783 358.1821 65.352371 23.79701
CV . . . 1.205145 0.856742 0.538253 1.022826 1.102726 0.627307

0.0002
ARL . . . 183.9078 28.75241 16.59847 291.262711 54.252718 17.0224
CV . . . 1.609179 0.885891 0.406721 0.992263 1.127483 0.530307

0.0001
ARL . . . 170.8358 25.16281 8.81098 192.9316 47.362184 9.12609
CV . . . 1.695015 0.919880 0.438932 1.014186 1.156382 0.467324

0.00009
ARL . . . 116.798 8.67218 6.11287 170.36172 30.563472 9.30243
CV . . . 2.123062 0.953371 0.632753 1.101172 1.156372 0.406031

0.00008
ARL . . . 82.68207 7.62771 7.42497 103.95871 20.74382 8.06135
CV . . . 2.552883 0.953438 0.463356 1.091711 1.172627 0.662849

0.00007
ARL . . . 67.73738 4.15267 4.94047 92.11671 10.26261 5.216373
CV . . . 2.881811 0.983391 0.670445 1.116271 1.20273 0.857978
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0.00006
ARL . . . 34.17376 3.15172 4.08792 78.52612 5.736214 5.84638
CV . . . 2.45103 0.830638 0.722518 1.121728 1.21022 0.821579

0.00005
ARL . . . 17.0419 1.68262 2.93325 32.25171 3.36371 4.30126
CV . . . 2.358239 1.060026 0.804909 1.128161 1.183737 0.713636

Table 7.3: ARL comparison based on α = 0.0027, n = 1, λ0 = 0.0005 for the predictive charts.

λ PM Lower-Sided Upper-Sided Two-Sided

Shewhart EWMA CUSUM Shewhart EWMA CUSUM Shewhart EWMA CUSUM

0.5
ARL 1 1 1 . . . 1 1 1
CV 0 0 0 . . . 0 0 0

0.1
ARL 1 1 1 . . . 1 1 1
CV 0 0 0 . . . 0 0 0

0.05
ARL 1.00235 1.0004 1 . . . 1.00112 1.0054 1.01167
CV 0.048512 0.019988 0 . . . 0.033410 0.073703 0.107711

0.005
ARL 3.0678 1.61343 3.30622 . . . 2.57826 1.91637 2.99375
CV 1.1704 0.310714 1.175427 . . . 0.935662 1.005225 1.136073

0.0009
ARL 9.01241 6.46371 10.22498 . . . 6.00417 6.08092 4.68603
CV 0.958089 0.846123 0.909021 . . . 0.852171 0.801911 1.033385

0.0008
ARL 10.115262 5.14936 7.76323 . . . 6.14032 5.90768 6.12198
CV 1.029564 0.778976 0.827372 . . . 0.818365 0.784510 0.824486

0.0007
ARL 9.93009 6.08596 5.32905 . . . 5.13183 5.87116 5.9691
CV 0.938149 0.829496 0.945883 . . . 0.799075 0.785703 0.788439

0.0006
ARL 10.22693 9.40633 7.21498 . . . 5.96384 6.03002 5.73424
CV 0.922607 0.861411 0.988039 . . . 0.879704 0.790148 0.912815

0.00055
ARL 11.14897 11.03286 7.50859 . . . 5.69067 5.81907 5.589981
CV 0.886427 0.889951 0.970954 . . . 0.782307 0.888212 0.878461

0.0004
ARL . . . 5.92805 7.14327 6.64098 4.74622 5.78219 4.74277
CV . . . 0.855337 0.839678 0.844475 0.810708 0.903497 0.840233

0.0003
ARL . . . 11.78675 5.65179 5.40085 3.67629 3.13395 4.41233
CV . . . 0.738681 0.93497 0.822638 0.855609 0.864077 0.817386

0.0002
ARL . . . 9.72262 3.49029 3.430159 3.94705 2.28317 3.15708
CV . . . 0.913541 0.955745 0.802672 0.842989 0.815462 0.855181

0.0001
ARL . . . 1.89232 3.7898 3.404924 2.01395 1.51277 1.94267
CV . . . 0.701019 0.965233 0.815777 0.723537 0.590802 0.755780

0.00009
ARL . . . 2.56441 2.98798 3.23473 1.7004 2.03464 1.59957
CV . . . 0.886370 0.932754 0.817668 0.696659 0.781058 0.658168

0.00008
ARL . . . 1.90361 2.19687 2.397 1.94542 1.44283 1.40254
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CV . . . 0.768883 0.839666 0.560271 0.756792 0.585316 0.541558

0.00007
ARL . . . 1.81976 1.65955 1.732584 2.85956 1.59965 1.86058
CV . . . 0.738816 0.641613 0.51767 0.853433 0.656054 0.740773

0.00006
ARL . . . 1.36575 1.99177 1.742883 2.39124 2.24957 1.58007
CV . . . 0.523131 0.718285 0.577869 0.829172 0.812893 0.612041

0.00005
ARL . . . 1.256557 1.4179 1.43823 2.28024 1.29664 1.24738
CV . . . 0.506371 0.657432 0.529321 0.820450 0.498254 0.457833

Table 7.4: ARL comparison based on α = 0.0027, n = 5, λ0 = 0.0005 for the predictive charts.

λ PM Lower-Sided Upper-Sided Two-Sided

Shewhart EWMA CUSUM Shewhart EWMA CUSUM Shewhart EWMA CUSUM

0.5
ARL 1 1 1 . . . 1 1 1
CV 0 0 0 . . . 0 0 0

0.1
ARL 1 1.00001 1 . . . 1 1 1
CV 0 0.003162 0 . . . 0 0 0

0.05
ARL 1 1.00093 1.00004 . . . 1.00001 1.0002 1.00001
CV 0 0.030454 0.006324 . . . 0.003162 0.014138 0.003162

0.005
ARL 1.26945 1.42115 1.56541 1.94153 1.53944 1.81658
CV 0.494581 0.581021 0.676015 . . . 0.989247 0.662959 0.772218

0.0009
ARL 7.31874 1.99756 6.37002 . . . 5.97862 5.79034 4.1883
CV 1.061354 0.302759 1.036145 . . . 0.866860 0.909040 0.844237

0.0008
ARL 7.46359 2.21873 4.76323 . . . 5.90957 5.29253 5.75702
CV 1.056876 0.340651 1.026943 . . . 0.852643 0.835734 0.913075

0.0007
ARL 9.68561 2.18198 3.67418 . . . 5.3181 5.99912 5.88322
CV 0.949954 0.334894 0.920492 . . . 0.959019 0.860602 0.845419

0.0006
ARL 7.18507 3.1268 3.186535 . . . 5.96384 5.55811 4.7053
CV 1.014462 0.596939 0.895704 . . . 0.879704 0.841591 0.812969

0.00055
ARL 7.9086 3.01801 2.835419 . . . 5.99925 4.70786 4.28281
CV 0.991162 0.568909 0.865289 . . . 0.876082 0.843877 0.842425

0.0004
ARL . . . 4.98567 4.78579 3.48571 4.51681 3.49605 3.95951
CV . . . 0.946240 0.955364 0.775390 0.841255 0.836428 0.840783

0.0003
ARL . . . 4.9108 3.56326 2.10462 3.01291 2.00297 3.39377
CV . . . 0.872261 0.849437 0.738532 0.815658 0.722723 0.836099

0.0002
ARL . . . 4.90644 3.97847 3.73384 1.96546 2.01677 2.91835
CV . . . 0.869382 0.865419 0.851230 0.711452 0.724078 0.815429

0.0001
ARL . . . 1.52581 1.93089 1.97334 1.80145 1.4699 1.79409
CV . . . 0.622242 0.708649 0.778042 0.724876 0.598479 0.680551
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0.00009
ARL . . . 1.4956 1.31919 2.20984 1.68455 1.49181 1.56918
CV . . . 0.582700 0.497769 0.752065 0.650537 0.582467 0.608598

0.00008
ARL . . . 1.27087 1.45595 1.58278 1.33747 1.37271 1.4016
CV . . . 0.466924 0.564305 0.61525 0.510216 0.528553 0.561172

0.00007
ARL . . . 1.30191 1.38012 1.428629 1.36753 1.29646 1.4635
CV . . . 0.485429 0.555638 0.476109 0.524195 0.483518 0.570497

0.00006
ARL . . . 1.28766 1.33123 1.420783 1.34278 1.32993 1.35127
CV . . . 0.491090 0.519558 0.414445 0.511581 0.502190 0.533943

0.00005
ARL . . . 1.180772 1.14998 1.28166 1.33558 1.28241 1.38072
CV . . . 0.478352 0.364340 0.473349 0.504902 0.476292 0.395243

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



209

7.5.2 Some Other Experiments

In previous discussions, we mainly focused at shifts that were sustained in the process.

Since the control limits are updated with time, it is natural to assume random and time

varying shifts in a process to study the control chart performance. The importance of

random shifts has recently been highlighted by Woodall and Driscoll [2015]. To enhance

the ambit of the sequential charts, we also studied them for random and time varying shifts

in this section. A summary of the run-length distribution has been depicted in Figures

7.7-7.8 by assuming different base periods. The red line in Figures 7.7-7.8 indicates the

mean of the run-length distribution, i.e., ARL, while the blue line for the SDRL. In Figure-

7.7, panel A and B, the histogram of the run-length distribution has been produced for

the Shewhart control charts, i.e., without using the PCDC. We observe that even in the

case of a random shift, the control charts are quite slow to give the out-of-control signal.

However, by using the PCDC, one can see that the detection power of the control charts

has been improved (cf. Figure-7.7, panel C and D). Note that to study the behavior

of predictive charts, we generated the random shifts using a uniform distribution. The

parameters of the uniform distribution have been selected to represent either the process

improvement or deterioration, depending on a situation. However, the choice of uniform

distribution has been done purely illustrative purpose, and one can consider some more

realistic distributions for a random shift generation.

In Figure-7.8, we have presented histograms of the random but time varying shift, i.e.,

with the passage of time shift either increase or decrease. Again in this figure, the red line

has been used to indicate the ARL while blue for the SDRL. It is worth mentioning that

the simple control chart, i.e., without PCDC, performs very well for the time-varying

shifts. Note that here we used the two-sided control chart, and we have the following

explanation of its usage: since we have a random shift which varies with time, we do not

know whether the process will either improve or deteriorate. Thus, instead of using a one-

sided chart, it makes sense to use a two-sided chart. From our study, i.e., Figure-7.7 and

Figure-7.8, we noticed that the predictive limits’ control chart performs well for random

but time varying shifts. However, in the case of just random shifts, one needs to use the

PCDC to get an appreciable performance.

Penalizing the lower control limit for the process deterioration monitoring: For a pro-

cess deterioration detection, a lower-sided control chart is commonly used. From Tables

7.1-7.2, we observed that the detection power of the lower-sided control chart is slow.

Thus, a naive way to improve the detection power of the lower-sided chart, is to penal-

ize it with a suitable factor. For this purpose, we designed a chart by penalizing the

lower control limit, i.e., LCLi+1 = ip × βi
[(

1
1−α/2

)1/ϕi − 1
]
, where i is a time index, and

p denotes a penalizing factor. To choose an appropriate p and to compare it with the

proposed improved control chart, i.e., with PCDC, we have Figure-7.9 for different values

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



210

0
10

0
20

0
30

0

Lower Sided Chart

λ

A
R

L

0.00055 7e−04 9e−04 0.05 0.1 0.5

Lines

n=1 (Simple)
n=5 (Simple)
n=1 (Improved)
n=5 (Improved)

(a) Lower-sided Shewhart control
chart

0
50

10
0

15
0

20
0

25
0

Upper Sided Chart

λ

A
R

L

4e−04 2e−04 9e−05 7e−05 5e−05

Lines

n=1 (Simple)
n=5 (Simple)
n=1 (Improved)
n=5 (Improved)

(b) Upper-sided Shewhart control
chart

0
5

10
15

20
25

Lower Sided Chart

λ

A
R

L

0.00055 7e−04 9e−04 0.05 0.1 0.5

Lines

n=1 (Simple)
n=5 (Simple)
n=1 (Improved)
n=5 (Improved)

(c) Lower-sided EWMA control chart
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(d) Upper-sided EWMA control chart
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(e) Lower-sided CUSUM control chart
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(f) Upper-sided CUSUM control chart

Figure 7.5: Comparison of the one-sided Shewhart, EWMA and CUSUM control charts
for n = 1 and n = 5 using α = 0.0027 under misspecified prior
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Figure 7.6: Comparison of the two-sided Shewhart, EWMA and CUSUM control charts
for n = 1 and n = 5 using α = 0.0027 under misspecified prior

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



212

of p. We noticed that p > 1.5 would lead to approximately the same performance as it

has been observed in a chart with the PCDC. Moreover, we also noticed that the selection

of a penalized factor is not unique for all shifts, i.e., small and large shifts. One must be

very careful to select an appropriate “p” for different size of shifts as it may lead to a

different conclusion for different “p.” However, our PCDC gives a consistent and uniform

performance as compared to this penalization approach. The usefulness of a penalized

control limit may be appreciated if someone is interested to study an estimated predictive

value for tracking a target value, e.g. ŷ =
∑j

i=1 yi
j

or ŷ =
∑j

i=1 ψ
j−iyi∑j

i=1 ψ
j−i

, where 0 < ψ < 1

denotes the relative weight or importance factor for the current and the past values of y,

which should be fixed in-advance.

7.6 Illustrative Examples

In this section, we discuss two illustrative examples to show the implementation of the

proposed control charts in a real situation. The first example is about the deterioration

detection while the second for the process improvement detection. To monitor the process

deterioration, the first 8 observations in Table-7.5 have been considered in-control and

generated by using λ = 0.0005 while the next 7 by using λ = 0.005, and the last 5 by

using λ = 0.05. Hence, we have 8 observations from the in-control process while 12 from

the out-of-control process. Note that to design a predictive charts, we will use α = 0.0027

as a false alarm probability.

From Table-7.5, one can observe that using the Shewhart charts, either the one-sided

or the two-sided chart, we do not get an out-of-control alarm, and thus the process could

be considered in-control. However, by using F < 0.10 as the PCDC, we noticed that

the chart raised a signal at the observation number 11. Therefore, predictive charts’

sensitivity can be improved by our deterioration check. We put an asterisk “⋆” in Table-

7.5 to represent the process deterioration detection with the PCDC.

Similarly, to check the process improvement with the proposed predictive control

charts, we have generated the first 8 in-control observations using λ = 0.0005 in Table-

7.6. The next 7 observations have been generated using λ = 0.0003 while the last 5 from

λ = 0.00009 to represent the out-of-control situation. In Table-7.6, an asterisk “⋆” has

been used to mark the improvement detection either by the upper-sided chart or by the

proposed check. The double asterisk “⋆⋆” has been used to show the process improvement

jointly by the PCDC and the Shewhart chart. Note that to detect a process improvement

with the PCDC, we used F > 0.90 as the stopping criterion. From Table-7.6, both charts,

i.e., the upper and the two sided, indicate that the process shows an improvement signal

at the observation 12. The same conclusion is also supported by the PCDC. We also
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(a) Simple Shewhart Chart for n = 1
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(b) Simple Shewhart Chart for n = 5
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(c) Improved Shewhart Chart for n = 1
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(d) Improved Shewhart Chart for n = 5

Figure 7.7: Comparison of the simple and improved Shewhart control charts for random
shift in the process, red line represents the ARL while blue line SDRL
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Figure 7.8: Comparison of the Two-sided Shewhart control chart for time varying
random shift in the process, red line indicates the ARL while blue line SDRL
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Figure 7.9: Average run length for the process deterioration by considering different
penalization factors at λ = 0.0008
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Table 7.5: Illustration of predictive charts for the process deterioration with base period
equals to one.

Sr. Y LCL UCL LCL UCL F Posterior
No. (one-sided) (one-sided) (two-sided) (two-sided) Mean
1 2226.3477 . . . . . 0.000503
2 3837.6864 5.378964 72548.499 2.686755 104246.129 0.741049 0.000384
3 1077.786 7.045316 24579.590 3.519483 62887.805 0.321337 0.000449
4 2786.6162 6.012127 13467.545 3.003524 37496.348 0.663935 0.000428
5 1530.5017 6.316592 9001.767 3.155734 32105.816 0.459763 0.000454
6 733.7275 5.953402 6679.559 2.974354 26523.536 0.277009 0.000502
7 1431.1919 5.386199 5279.845 2.691019 21891.569 0.495408 0.000520
8 597.9523 5.196572 4352.097 2.596310 19741.018 0.263064 0.000563
9 816.53806 4.798744 3695.295 2.397570 17309.923 0.361567 0.000596
10 299.53444 4.539598 3207.349 2.268111 15718.479 0.162090 0.000644
11 119.32692 4.200487 2831.295 2.098695 14069.932 0.073691⋆ 0.000697
12 65.35899 3.877295 2532.999 1.937228 12636.259 0.044475⋆ 0.000753
13 32.44043 3.592605 2290.826 1.794995 11441.880 0.024098⋆ 0.000809
14 211.89106 3.342231 2090.434 1.669905 10437.644 0.156657 0.000856
15 11.96006 3.157591 1921.951 1.577657 9695.593 0.010186⋆ 0.000913
16 12.904326 2.962246 1778.371 1.480059 8962.717 0.011705⋆ 0.000969
17 6.624713 2.790035 1654.588 1.394019 8333.045 0.006398⋆ 0.001026
18 9.862966 2.636016 1546.796 1.317068 7783.242 0.010063⋆ 0.001082
19 21.914817 2.498672 1452.101 1.248447 7302.619 0.023421⋆ 0.001138
20 26.135665 2.376693 1368.264 1.187503 6882.641 0.029274⋆ 0.001193
21 . 2.266875 1293.528 1.132635 6510.456 . .

notice that after the observation 12, one-sided Shewhart chart gives a persistent signal

of the process improvement. However, one should be very careful to believe this singling

because of the control limits deterioration or drift. Therefore, the PCDC helps to decide

whether the process improvement is real or not.

7.6.1 Revision of Prior

In this section, we discuss some methods to revise a prior information. Although we are

not in favor of changing or revising a prior information, the effect of a prior information

would automatically be minimized as one gathered more and more data. Since our predic-

tive approach can be implemented practically with one data point, many researchers may

be comfortable by revising their prior information. We suggest that one should adopt this

approach only after confirming the out-of-control signal (cf. Toubia-Stucky et al. [2012]),

i.e., whether it is true out-of-control or just a false alarm. Therefore, we suggest empir-

ical Bayes approach, particularly the method of moments and the maximum likelihood

method, for the revision of a prior information.

Empirical Bayes procedures utilize the past data as a means of bypassing the necessity

of identifying a completely unknown and unspecified prior distribution, and have a fre-

quency interpretation. We refer interested readers to Petrone et al. [2014b], and Petrone
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Table 7.6: Illustration of predictive charts for process improvement with base period
equals to one.

Sr. Y LCL UCL LCL UCL F Posterior
No. (one-sided) (one-sided) (two-sided) (two-sided) Mean
1 2226.3477 . . . . 0.000503
2 3837.6864 5.378964 72548.499 2.686755 104246.13 0.741049 0.0003839
3 1077.786 7.045316 24579.590 3.519483 62887.81 0.3213374 0.000449
4 2786.6162 6.012127 13467.545 3.003524 37496.35 0.6639345 0.000428
5 1530.5017 6.316592 9001.767 3.155734 32105.82 0.4597634 0.000454
6 733.7275 5.953402 6679.559 2.974354 26523.54 0.2770096 0.000502
7 1431.1919 5.386199 5279.845 2.691019 21891.57 0.4954076 0.000520
8 597.9523 5.196572 4352.097 2.596310 19741.02 0.2630640 0.000563
9 1665.0554 4.798744 3695.295 2.397570 17309.92 0.5903673 0.000567
10 1029.5954 4.769038 3207.349 2.382746 16512.92 0.4329855 0.000589
11 612.0787 4.588528 2831.295 2.292572 15369.71 0.2987605 0.000622
12 16076.8912⋆⋆ 4.344027 2532.999 2.170423 14157.36 0.9993091⋆ 0.000368
13 3061.0868⋆ 7.353747 2290.826 3.674197 23420.52 0.6602216 0.000364
14 2913.5639⋆ 7.419636 2090.434 3.707131 23171.21 0.6406445 0.000363
15 7475.5625⋆ 7.450147 1921.951 3.722388 22876.17 0.9174070⋆ 0.000328
16 10085.387⋆ 8.247788 1778.371 4.120932 24954.91 0.9504853⋆ 0.000289
17 16249.293⋆ 9.366676 1654.588 4.679986 27975.61 0.9841148⋆ 0.000239
18 11563.262⋆ 11.287140 1546.796 5.639543 33327.01 0.9239590⋆ 0.000219
19 2091.274⋆ 12.338577 1452.101 6.164899 36060.72 0.3641782 0.000225
20 5214.645⋆ 12.004329 1368.264 5.997905 34763.22 0.6806101 0.000223
21 . 12.104062 1293.528 6.047746 34762.82 . .
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et al. [2014a], for theoretical justifications of empirical Bayes. In empirical Bayes setup,

one assumes the availability of x1, x2, · · · , xn of ’n’ independent observations from an ex-

periment and ith observation, i.e., xi, is assumed to be generated by the pdf f(xi|θi).
Note that each θi itself is considered as a random variable and xi are exchangeable with

specific θi. Therefore, one assumes a prior distribution to entertain the uncertainty of θ.

To implement empirical Bayes procedure, the first task is to find a marginal (prior

predictive) distribution, i.e., m(x) =
∫
Θ
f(x|θ)g(θ)dθ, which is a function of the observed

data and the hyperparameters. For finding hyperparameters by the method of moments,

find moments of a marginal distribution and solve them by equating to observed data

moments. Similarly, one can use a marginal distribution to find the maximum likelihood

estimates of the hyperparameters. In our case, we have the Lomax distribution as the

marginal distribution, i.e., f(x) = a
b

(
1 + x

b

)−(a+1)
, with the mean (cf. 7.8)

E(x) =
b

a− 1
, a > 1 (7.12)

and the variance

V (x) =
ab2

(a− 1)2(a− 2)
(7.13)

To have a finite variance a should be grater or equal to 2. Note that there exist an inverse

relationship between the prior mean (a/b) and the marginal distribution’s mean, whereas

the posterior predictive mean can be written as

E(y|x) = β

ϕ− 1
=

b+ nx̄

a+ n− 1
=

[
E(λ)

]−1
(1− w)

a

a− 1
+ wx̄ (7.14)

where w = n
a+n−1

. Equating the sample mean and the variance with Equation 7.12-7.13

and solving for hyperparameters (a and b), one can get

b =
m(v +m2)

v −m2
(7.15)

and

a =
2v

v −m2
(7.16)

where m and v denote the sample mean and the variance, respectively.

The method of moments is easy to implement, but sometimes it suffers from unde-

sirable properties, e.g. asymptotic properties, etc. Thus, an alternative method is the

maximum likelihood method. The log-likelihood of the marginal density can be written

as:

l(x; a, b) = n log(a)− n log(b)− (a+ 1)
n∑
i=1

log
(
1 +

xi
b

)
(7.17)
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Therefore, the normal equations for a and b can be derived as:

∂l(.)

∂a
=
n

a
−

n∑
i=1

log
(
1 +

xi
b

)
(7.18)

∂l(.)

∂a
= 0 ⇒ â =

n∑n
i=1 log

(
1 + xi

b

)
and by using the profile likelihood, one can get

∂l(.)

∂b
=

−n
b

+
1

b

n∑
i=1

xi
b+ xi

(
1 +

n∑n
i=1 log

(
1 + xi

b

)) = h(b) (7.19)

To find b̂, one needs to use an iterative procedure for Equation-7.19. Thus, we propose a

simple iterative scheme to solve it for b. Start with an initial guess of b(0), obtain b(1) =

h(b(0)) and proceeding in this fashion, obtain b(n+1) = h(b(n)). Stop the iterative procedure,

when |b(n+1) − b(n)| < ϵ, where ϵ is pre-assigned tolerance constant. An alternative way

to solve it, is by using the Newton Raphson method. For this method, we need

∂l(.)

∂b
=

−n
b

+
a+ 1

b

n∑
i=1

xi
b+ xi

∂2l(.)

∂a2
=

−n
a2

∂2l(.)

∂b2
=
n

b2
− a+ 1

b2

n∑
i=1

xi
b+ xi

− a+ 1

b

n∑
i=1

xi
(b+ xi)2

∂2l(.)

∂b∂a
=

1

b

n∑
i=1

xi
b+ xi

Furthermore, to find the variance of the maximum likelihood estimates, i.e., by inverting

the Fisher information matrix, we need the following proposition:

Proposition 7.6.1.1 If X has a Lomax distribution with parameters a and b then E
[
x(x+

b)−r
]
= ab1−r

(a+r)(a+r−1)
for r = 1, 2, · · · and a+ r > 1.

Proof :

E
[
x(x+ b)−r

]
=

∫ ∞

0

x(x+ b)−r
a

b

(
1 +

x

b

)−(a+1)
dx = aba

∫ ∞

0

x(x+ b)−(a+r+1)dx

Then, by letting y = b+ x we have

aba
∫ ∞

b

(y − b)y−(a+r+1)dy =
ab1−r

(a+ r)(a+ r − 1)

for r = 1, 2, · · · and a+ r > 1.
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Therefore, E
[∂2l(.)
∂a2

]
= −n

a2
, E

[∂2l(.)
∂b2

]
= −na

b2(a+2)
and E

[∂2l(.)
∂b∂a

]
= n

b(a+2)
, respectively.

7.6.2 Revise the False Alarm Probability

An alternative way instead of revising a prior information, is to revise the false alarm

probability and choose an optimal coverage of a prediction interval (cf. Landon and

Singpurwalla [2008]) for future monitoring. Landon and Singpurwalla [2008] motivated

by the statement of Granger [1996], who wrote, “academic writers concentrate almost

exclusively on 95% intervals, whereas practical forecasting seems to prefer 50% intervals.

The larger the coverage probability, we have a wider the prediction interval, and the vice

versa. But wide prediction intervals tend to be of little value.” Granger [1996] noticed

that wider intervals tend to be the embarrassment for a practitioner. Similarly, a narrow

interval is also risky, especially in quality control, because it gives too many false alarms

when the actual process is in-control. Therefore, to avoid the possible consequences of the

wide and narrow intervals, Landon and Singpurwalla [2008] suggested that the coverage

probability for a prediction interval should be chosen by considering a decision theoretic

approach.

In decision theory, utility measures the worth of a consequence while disutility is a

penalty or loss as a consequence. A decision maker always tries to choose an action

which gives minimum expected loss. Thus, using a specific disutility, the job of a decision

maker is to look for a type-I error “α” for which the total expected disutility would be

minimum. To elaborate this idea further, let dα denotes the width of a prediction interval

which is dα = UCLi+1−LCLi+1 = βi
[(

2
α

)1/ϕi−(
2

2−α

)1/ϕi], here the coverage probability is

1−α. Using the notations as defined in Landon and Singpurwalla [2008], let c(dα) be the

disutility associated with the use of dα or more specifically with α. Clearly, c(dα) should

be zero when dα = 0 (alternatively when α is large), and c(dα) must increase with dα (or

when α is small). A suitable choice for c(dα) could be c(dα) = dkα, for k > 0. Note that

Young and Mills [2014] defined c(dα) = min{dkα, γ} where γ > 0, which allows analysts

to truncate the cost/inspection at a threshold γ, i.e., any interval beyond this value will

serve a little purpose. Moreover, when k ≤ 1, c(dα) is concave increasing function of dα,

and when k > 1, c(dα) is convex and increasing in dα. More specifically (for our case),

c(dα) is a convex for k > 1 and ∀α ∈ [0, 1], while c(dα) is convex for α ≤ 0.5 and concave

for α > 0.5. Note that the choice of k is dependent on the particular application.

Let Uα = UCLi+1 and Lα = LCLi+1. Moreover, let L(dα, y) denotes the loss by using

a prediction interval of width dα. When Y reveals itself as y, L(dα, y) could be of the
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form

L(dα, y) =



1

S1

f1(y − Uα), if y > Uα;

0, if Lα < y < Uα;

1

S2

f2(Lα − y), if y < Lα.

where S1 and S2 > 0 are scaled constant (cf. Young and Mills [2014]) and their choice

depends on the application; f1 and f2 are increasing functions of their arguments which

summaries the loss of a point falling below or above the control limits, respectively. To

obtain α, we know that the value of y is unknown and thus, L(dα, y) needs to be averaged

out. Because of the availability of predictive distribution, this task is easy to accomplish.

Therefore, one can compute the risk function as follows R(dα) = EY [L(dα, Y )]. Note that

c(dα) is free from any unknown quantity, therefore, by combining it with R(dα) one could

get a total expected disutility function, D(dα) = c(dα) + R(dα). According to Landon

and Singpurwalla [2008], the additive structure of D(dα) is not necessary and one could

use any suitable structure. Therefore, one needs to choose α such that it minimizes the

D(dα).

We suggest to choose the specific form of f1(y−Uα) = (y−Uα)
2/U c

α and f2(Lα− y) =

(Lα − y)2/Lcα, where c = 0 would result into the squared error loss function, c = 1

the precautionary loss function, and c = 2 the Degroot loss function, respectively (cf.

Table-3.10). The risk function for our problem can be written as

R(dα) =

∫ ∞

Uα

(
y − β

[(
2/α

)1/ϕ − 1
])2

βc
[(
2/α

)1/ϕ − 1
]c f(y|x)dy+

∫ Lα

0

(
β
[(
2/(2− α)

)1/ϕ − 1
]
− y

)2
βc
[(
2/(2− α)

)1/ϕ − 1
]c f(y|x)dy

(7.20)

Since our predictive distribution is the Lomax distribution, Equation-7.20 has the follow-

ing simplified form (see detail in Appendix 7.8):

R(dα) =
1

βc
[(
2/α

)1/ϕ − 1
]c{ α

2(ϕ− 1)(ϕ− 2)

[
2β2 + 2β2ϕ

[(
2/α

)1/ϕ − 1
]
+ ϕ(ϕ− 1)β2

[(
2/α

)1/ϕ − 1
]2]

+
αβ2

2

[(
2/α

)1/ϕ − 1
]2 − αβ2

ϕ− 1

[(
2/α

)1/ϕ − 1
][
1 + ϕ

{(
2/α

)1/ϕ − 1
}]}

+
1

βc
[(
2/(2− α)

)1/ϕ − 1
]c{αβ2

2

[(
2/(2− α)

)1/ϕ − 1
]2

+
2− α

2(ϕ− 1)(ϕ− 2))

[
2αβ2

2− α
− 2β2ϕ

[(
2/(2− α)

)1/ϕ − 1
]
+ β2

[(
2/(2− α)

)1/ϕ − 1
]2

ϕ(ϕ− 1)

]
− β(2− α)

ϕ− 1

[(
2/(2− α)

)1/ϕ − 1
][ βα

2− α
− βϕ

[(
2/(2− α)

)1/ϕ − 1
]]}

To compute the revised false alarm probability, we used the data set given in Tables 7.5-
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Table 7.7: Revision of the false alarm probability after getting out-of-control signal for
various choices of k.

k c 0 1 2

0.1
αr 0.015332 0.015332 0.293867

Coverage Probability 0.984668 0.984668 0.706143

0.5
αr 0.015332 0.015332 0.477172

Coverage Probability 0.984668 0.984668 0.522828

1.0
αr 0.015332 0.369806 0.477172

Coverage Probability 0.984668 0.630194 0.522828

1.5
αr 0.104751 0.477172 0.477172

Coverage Probability 0.895249 0.522828 0.522828

2.0
αr 0.477172 0.477172 0.477172

Coverage Probability 0.522828 0.522828 0.522828

7.6, and results have been reported in Table-7.7. In Table-7.7 αr denotes the revised values

of the false alarm, i.e., after receiving the first out-of-control signal form the data sets

given in Tables 7.5-7.6. Note that to minimize Equation-7.20, we used the mathematical

software Mathematica, Wolfram Research [2014]. It is interesting to note that for k < 1,

the revised false alarm probabilities under the squared error and the precautionary loss

functions, are approximately the same. However, for the Degroot loss function, the revised

false alarm probability is quite high. Thus, for small k, the coverage probability of the

Degroot loss function is less than the squared error and precautionary loss functions.

Moreover, for a large value of k, all loss functions have the same coverage probability (see

the very last row k = 2 given in Table-7.7).

7.7 Real Data Examples

In this section, we discuss real-life data sets and show the implementation of the predictive

control chart. We use an asterisk “⋆” to mark the deterioration or the improvement

detected by the PCDC while an asterisk within a circle “~” to denote the detection of a

signal by a simple chart, i.e., without PCDC.

Example-1: Dunsmore [1974] (page 459, table 1) provides a data set of the times to

first breakdown of 20 machines in hours. We use this data set for the construction of one

and two sided control charts to see whether breakdowns were statistically out-of-control

or not. For this data set, the exponential distribution is well fitted with λ̂ = 0.012571. To

develop the Bayesian charts, we used a = 1 and b = 80 as hyperparameters’ values of the

gamma prior distribution. The data set and the control limits have been given in Table-

7.8. Note that we used α = 0.0027 to construct control limits. The observations at the

following points, 4, 16−18 and 20, have been tagged as improved by the simple upper-sided

predictive control chart. Moreover, we confirm the same conclusion by using the PCDC,

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



222

Table 7.8: Real Data of Example 1

Sr. Y LCL UCL LCL UCL F Posterior
No. (one-sided) (one-sided) (two-sided) (two-sided) Mean
1 18 . . . . . 0.020408
2 23 0.132569 1788.01088 0.066217 2569.2222 0.344033 0.024793
3 29 0.109096 605.7820 0.054499 973.8151 0.475093 0.026667
4 409~ 0.101421 331.91751 0.050668 632.5423 0.994815⋆ 0.008945
5 24 0.302350 221.85513 0.151052 1536.7769 0.189569 0.010292
6 74 0.262764 164.62261 0.131278 1170.6635 0.511776 0.010654
7 13 0.253806 130.12564 0.126805 1031.5646 0.128166 0.011940
8 62 0.226469 107.26061 0.113148 860.3229 0.507383 0.012295
9 46 0.219930 91.07326 0.109882 793.3267 0.422192 0.012853
10 4 0.210373 79.04746 0.105108 728.4205 0.049989⋆ 0.014066
11 57 0.192229 69.77933 0.096043 643.8883 0.538796 0.014303
12 19 0.189052 62.42760 0.094457 616.1267 0.235643 0.015152
13 47 0.178459 56.45909 0.089165 568.3656 0.500077 0.015469
14 13 0.174789 51.52028 0.087331 545.8574 0.181003 0.016339
15 19 0.165478 47.36789 0.082679 508.1124 0.264562 0.017076
16 208~ 0.158346 43.82926 0.079116 479.0994 0.959547⋆ 0.014847
17 119~ 0.182113 40.77854 0.090992 543.9212 0.813794 0.014241
18 209~ 0.189871 38.12193 0.094868 560.6223 0.936350⋆ 0.012899
19 10 0.209619 35.78809 0.104735 612.6326 0.120633 0.013486
20 188~ 0.200489 33.72187 0.100174 580.5950 0.908105⋆ 0.012567
21 . 0.215147 31.87994 0.107497 617.9021 . .

i.e., 0.10 for the lower-sided while 0.90 for the upper-sided chart, except observation

number 17, which should not be marked as improved according to the PCDC. However,

we have not noticed any alarm of either the process improvement or deterioration by the

two-sided control chart.

Example-2: Dunsmore [1974] (page 460, table 3) has given a data set of the failure

times (in mins) up to the 10th component failure of a machine. We assume the Poisson

process for this data and fit exponential distribution. Therefore, the estimated value of

the rate parameter is λ̂ = 0.003307. To develop the Bayesian predictive chart, we used

a = 1 and b = 303 as hyperparameters values of a gamma prior. Control limits of the

one and the two-sided control charts have been constructed using α = 0.0027 and given

in Table-7.9. In this case study, we have not detected any signal of either the process

improvement or deterioration by the predictive charts. Therefore, we conclude that the

failure process is statistically in-control.

Example-3 An electronic device has two kinds of major failures, i.e., modes-solder/Cu

pad interface fracture (commonly known as a catastrophic failure) and light intensity

degradation (a degradation failure). According to Huang and Askin [2003], and Cha

and Pulcini [2015], the failure modes are independent of each other. Huang and Askin

[2003] conducted a life test on electronic packaging related items for the solder/Cu pad’

interface fatigue lifetime in days (page 245, Table 2 of Huang and Askin [2003]). We
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Table 7.9: Real Data of Example 2

Sr. Y LCL UCL LCL UCL F Posterior
No. (one-sided) (one-sided) (two-sided) (two-sided) Mean
1 276 . . . . . 0.003454
2 279 0.783236 10563.8602 0.391221 15179.384 0.544611 0.003497
3 289 0.773593 3579.0590 0.386448 6905.234 0.581427 0.003487
4 294 0.775534 1961.0228 0.387439 4836.840 0.598581 0.003469
5 295 0.779403 1310.7563 0.389386 3961.530 0.605932 0.003456
6 298 0.782433 972.6173 0.390908 3485.886 0.613462 0.003441
7 304 0.785756 768.8036 0.392574 3193.611 0.622823 0.003422
8 326 0.790276 633.7132 0.394837 3002.142 0.648049 0.003378
9 327 0.800401 538.0757 0.399900 2887.189 0.647256 0.003343
10 336 0.808772 467.0253 0.404085 2800.393 0.655145 0.003306
11 . 0.817832 412.2677 0.408615 2739.407 . .

Table 7.10: Real Data Example 3

Sr. Y LCL UCL LCL UCL F Posterior
No. (one-sided) (one-sided) (two-sided) (two-sided) Mean
1 171 . . . . . 0.007968
2 49 0.339538 4579.4973 0.169597 6580.3547 0.299989 0.0100
3 69 0.270487 1551.5437 0.135122 2414.4176 0.462616 0.01084
4 135 0.249496 850.1153 0.124643 1556.0540 0.712668 0.009921
5 21 0.272602 568.2208 0.136190 1385.5735 0.184627 0.011429
6 49 0.236623 421.6355 0.118218 1054.1995 0.414557 0.012195
7 93 0.221742 333.2810 0.110786 901.2452 0.650456 0.011994
8 57 0.225455 274.7185 0.112642 856.4707 0.481083 0.012431
9 49 0.217526 233.2591 0.108682 784.6565 0.559254 0.012611
10 . 0.214429 202.4583 0.107135 742.4646 . .

fitted exponential distribution on the TBE of Solder/Cu pad interface fatigue’ data, and

found that it is a good candidate for the collected TBE data with λ = 0.012622. To

design the Bayesian one and two sided control charts, we have used a = 1 and b = 80

as hyperparameters values of the gamma distribution. Control limits for the one and the

two-sided control charts have been constructed using α = 0.0027 (cf. Table-7.10). In this

case study, we noticed that the recorded TBE of the electronic device were in statistical

control. Moreover, we have not detected any signal of either the process improvement or

deterioration by the proposed charts.

Example-4 (Historical Data set) This data set is taken from Jarrett [1979] and

have recently been used by Yang et al. [2015a,c] to develop the unbiased design of the

exponential and gamma charts. The data set is about the time intervals in days between

the explosions in coal mines from 15 March 1851 to 22 March 1962. We are not repro-

ducing data set here for the sake of space and refer to either Jarrett [1979] or Yang et al.

[2015a,c]. Yang et al. [2015a,c] used the classical approach while the rate parameter of

the exponential distribution was estimated by a sequential sampling scheme. There are

Tesi di dottorato "Stochastic Models for High-Quality Process Monitoring"
di ALI SAJID
discussa presso Università Commerciale Luigi Bocconi-Milano nell'anno 2016
La tesi è tutelata dalla normativa sul diritto d'autore(Legge 22 aprile 1941, n.633 e successive integrazioni e modifiche).
Sono comunque fatti salvi i diritti dell'università Commerciale Luigi Bocconi di riproduzione per scopi di ricerca e didattici, con citazione della fonte.



224

Table 7.11: Detection of a Signal for the Coal-Mining Data using different Charts

Chart LCL UCL
A

80 14,134,153,156,182,187,188B
C

80 134,153,156,182,187,188,189D
E

80 134,153,182,188F
G
H 80 134,153,156,182,188

I

3,5,6,16,48,51,66,79 8,13-14,25,41,52,73,81,100,106
,80,86,88,103,165,169 ,109,119-120,125,127-130,134-137

,178,185,186 ,140-141,148-149,151-153
,156,158,173,182,187-190

J
Same as the Informative Same as the Informative

Prior case except Prior except one addition
observation number 5 , i.e., observation number 35

K -
129-190L -

M -
N - 14,130-190
O -

130-190P -
Q -

130-132,134-190R -
S - 131-132,134-190

total 190 observations and Yang et al. [2015a] considered the first 30 observations as a

phase-I to sequentially estimate the rate parameter of the exponential chart. We com-

pare our proposed predictive chart with the ARL and ATS-unbiased charts studied by

Yang et al. [2015a]. Moreover, we shall also study these charts where the parameter has

been estimated by the classical sequential approach, i.e., without considering the first 30

observations as the phase-I data. In this approach, we used both the biased and the unbi-

ased estimates. Note that the rate parameter was estimated by the maximum likelihood

method in the frequentist approach. A CUSUM chart has also been constructed with

the predictive UCL. Moreover, the Bayesian chart has not only been developed for the

informative prior but also using Jeffreys’ prior. The results for the coal-mining monitor-

ing have been summarized in Figure-7.10. In Table-7.11 we used the following capital

alphabets to denote different charts:

A: Bayesian Predictive (Informative+Jeffreys), B: ARL-Unbiased by Yang et al. [2015a],

C: ATS-Unbiased by Yang et al. [2015a], D: Simple Sequential (with biased and unbiased

estimate of λ, E: Simple Sequential with unbiased ARL design and biased estimate of λ,

F: Simple Sequential with unbiased ARL design and unbiased estimate of λ, G: Simple

Sequential with unbiased ATS design and unbiased estimate of λ, H: Simple Sequential

with unbiased ATS design and biased estimate of λ, I: PCDC with Informative Prior,
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J: PCDC with Jeffreys prior, K: CUSUM Predictive, L: CUSUM with Sequential and

Biased estimate, M: CUSUM with Sequential and Unbiased estimate, N: CUSUM with

ARL-unbiased of Yang et al. [2015a], O: CUSUMwith ATS-unbiased of Yang et al. [2015a],

P: CUSUM with ATS-unbiased and biased estimate of λ, Q: CUSUM with ARL-unbiased

and biased estimate of λ, R: CUSUM with ATS-unbiased and unbiased estimate of λ, S:

CUSUM with ARL-unbiased and unbiased estimate of λ.

We noticed that all the charts listed in Table-7.11 raised a signal of process deteriora-

tion at the 80th sample point. Seven sample points are above the UCL of the predictive

chart whereas using PCDC, we have 17 sample points below the LCL while 37 sample

points fall above the UCL. The details on these points for different charts, have been

summarized in Table-7.11. Therefore, we believe that the safety of coal-mining began

to improve between 1900− 1920 using the Bayesian predictive chart. However, with the

PCDC we believe that the safety began to improve after 1930.

Example-5 (Another Historical Data Set) Lucas [1985] gave a data set which is

about the time intervals in days between accidents in a manufacturing plant. This data

set has been used by Zhang et al. [2007b] for the gamma chart and more recently Yang

et al. [2015a] for the ATS-unbiased exponential chart. For the sake of space, we are not

reproducing data set here and refer to Lucas [1985], or Yang et al. [2015a]. This data

set consists of 177 observations and Yang et al. [2015a] used the first 110 as a phase-I

to design the ATS-unbiased exponential chart. We design the Bayesian predictive chart

for this data set, and further it would be compared with the sequential sampling ARL

and ATS unbiased charts. Moreover, a CUSUM chart has also been designed in this

study. The resulting study has been depicted in Figure-7.11. We observed that using the

Bayesian predictive chart, the sample point 129th fell above the UCL, which indicates the

occurrence rate of accidents was begun to decrease from the 129th observation, similar to

what was obtained by the Poisson CUSUM chart in Lucas [1985], gamma chart in Zhang

et al. [2007b] and the ATS-unbiased exponential chart by Yang et al. [2015a]. However,

with our designed CUSUM, we noticed that the first improvement shift was occurred

around 50 − 53 observations and the second at 129th sample point. A similar behavior

has also been observed in the case of ATS-unbiased design chart with the biased and the

unbiased sequential estimates of the rate parameter. For the biased sequential estimate

of the rate parameter, we noticed that the observations, 49− 55 and 129− 177, signalled

out-of-control situation by the CUSUM chart. Similarly, the following observations have

been indicated out-of-control 49−53, 55, and 129−177, by the CUSUM with the unbiased

estimate of λ (cf. Figure-7.11[E]). For the CUSUM chart with the ARL-unbiased design

chart using the biased and the unbiased sequential estimates of the rate parameter, we

have 50-th and 129 − 177 observations fall above the UCL. From Figure-7.11[A-D], nine

observations, i.e., 14, 17, 21, 25, 42, 56, 116, 141, 149, are below LCL while with the

PCDC we have, 14, 17, 19, 21, 25, 34, 42, 51, 56, 73, 94, 116, 126, 141 − 142, 149,
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Figure 7.10: Predictive Control Chart and some Comparison for the Coal-mining
Disaster Data using α = 0.002703
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165 − 166. Similarly using the PCDC, 28, 32, 41, 44, 48 − 50, 72, 83, 104, 107, 127,

129 − 130, 133, 136 − 137, 151 − 152, 156 − 157, 159, 161, 167, and 174, falls above the

UCL.

7.8 Conclusion

In this chapter, we have proposed a Bayesian predictive control chart for the exponential

TBE setting. The performance of the proposed chart has been studied in-detail with

by simulations and by real data examples. It has been pointed out in many studies,

that to set ordinary control chart’s limits, a large number of base period observations are

required. This requirement of a base period is difficult to fulfill in many applications. The

unique feature of the proposed control chart is its implementation without a large base

period. Since the Bayesian approach is a natural way to include the additional information

about the process, we proposed control charts using the Bayesian predictive distribution.

Moreover, the suggested approach has a self-starting feature. However, we also noticed

that the use of a base period could significantly influence the charts’ sensitivity. If the base

period is not available, then we suggest the use of precise informative prior distribution.

A flowchart to epitomize the Bayesian predictive chart has been given in Figure-7.12.

It has been shown that the predictive control chart was ineffective for small to moderate

size of shifts due to the presence of a drift or deterioration in the control limits. Therefore,

to detect a possible drift or deterioration in the control limits, a criterion using the

observed predictive cumulative distribution function (commonly known as a Bayesian p-

value), has also been proposed and implemented in this chapter. By using the PCDC as a

stopping criterion for the control limits deterioration, we observed that the performance

of a predictive chart was improved significantly. Moreover, we noticed that the detection

power of the control chart was improved not only for large shifts but also for small to

moderate shifts.

To detect small shifts, the CUSUM and the EWMA charts have also been designed and

studied with the predictive control limits. Using the CUSUM and the EWMA charts, we

noticed that to detect a relatively small size of shifts, the CUSUM outperforms than the

EWMA chart. We also noticed that the performance of the one-sided chart with a small

base period is undermined than the two-sided chart. However, it is worth mentioning

here that the performance of a predictive control chart can be improved by increasing a

base period. We observed that with a small base period, the two-sided chart was more

efficient in the detection of a shift than the one-sided chart, and vice versa.

An interesting experiment that studies the properties of the predictive control chart

with random and time varying shifts, has also been introduced in this chapter. Since
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Figure 7.11: Predictive Control Chart and some Comparison for the Manufacturing
Plant Data using α = 0.002703
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Figure 7.12: Flowchart to set-up Bayesian Predictive Control Chart
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the control limits of a predictive chart vary with observed failure time, and it is difficult

to achieve their stability, it makes sense to study the control charts properties under

random and time varying shifts. We noticed that the control charts were ineffective for

the detection of random shifts. Moreover, if we have random and time varying shifts, then

the predictive control chart outperforms without using the deterioration check. Note that

for random and time varying shifts, we used the two-sided chart as the knowledge about

the direction of a shift was not available. Moreover, we also think that the use of the

one-sided chart might have some possible consequences, i.e., poor detection or opposite

direction shift in a process, etc.

Another interesting idea that has been discussed in this chapter is the revision of the

false alarm probability using decision theory. One can use this approach either before

setting up control limits, i.e., by using phase-I data set, or after receiving an out-of-

control alarm by the predictive chart. A numerical optimization procedure, however, is

required to implement this idea. By an illustrative example, we showed that this idea is

quite effective instead of revising the prior distribution. Note that we are not against the

idea of revising a prior information because it is an interesting and an impressive idea in

many situations to set up control limits. We are only skeptical just to avoid the double

usage of data. Therefore, we have discussed mathematical formulation of empirical Bayes.

Similarly, the idea of a noninformative priors is quite useful, especially when it is difficult

to obtain a precise prior information about the process which may be due to the rapid

technological developments.
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Appendix

Appendix A: Exponential Family and Related Distributions

The following distributions belong to exponential family (cf. Section-7.3): Bernoulli,

Beta, exponential, gamma, inverted gamma, chi-squared, scaled chi-squared, geomet-

ric, inverse normal, normal, normal gamma, log normal, Poisson, Dirichlet, von-Mises,

von-Mises-Fisher, Wishart, multivariate normal and inverse Wishart distributions. Some

distributions are exponential if some of their parameters held constant, e.g. Pareto (fix

minimum bound), binomial and multinomial (fix number of trials), negative binomial (fix

number of failure), Weibull (fix shape parameter) and Laplace (fix location parameter).

Appendix B: Properties of the Lomax Distribution

The rth moment (cf. Section-7.6.1) with the scale parameter b and a as the shape param-

eter, can be written as E(xr) = abrΓ(r+1)Γ(a−r)
Γ(a+1)

, a > r and r = 1, 2, · · · . The median

of the Lomax distribution is b(2(1/a) − 1) while mode is zero. The skewness and the ex-

cess kurtosis are 2(1+a)
a−3

√
a−2
a
, a > 3 and 6(a3+a2−6a−2)

a(a−3)(a−4)
, a > 4, respectively. The Lomax

distribution also satisfies the following differential equations:

(b+ x)f
′
(x) + (a+ 1)f(x) = 0 (B.1)

and

f(0) =
a

b
(B.2)

Moreover, the Lomax distribution is a special case of the generalized Pareto distribution,

specifically: µ = 0, ψ = 1
a
, σ = b

a
.

Appendix C: Derivation Detail

To derive the risk function mentioned in Section-7.6.2, we need the following facts.∫ Lα

0
f(y|x)dy = F (Lα|x) = 1−

(
1 + Lα/β

)−ϕ
,∫∞

Uα
f(y|x)dy =

(
β

β+Uα

)−ϕ
∫ Lα

0
y2f(y|x)dy =

(
1+Lα/β

)−ϕ[
2{−1+(1+Lα/β)ϕ}β2−2Lαβϕ−L2

αϕ(ϕ−1)
]

(ϕ−1)(ϕ−2)
,∫ Lα

0
yf(y|x)dy =

(
1+Lα/β

)−ϕ[
β{−1+(1+Lα/β)ϕ}−Lαϕ

]
(ϕ−1)

,∫∞
Uα
y2f(y|x)dy =

(
β

β+Uα

)ϕ 2β2+2Uαβϕ+U2
αϕ(ϕ−1)

(ϕ−1)(ϕ−2)
,∫∞

Uα
yf(y|x)dy =

(
β

β+Uα

)ϕ Uαϕ+β
(ϕ−1)

.
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Chapter 8

Practical Advice

In Chapter 3, we proposed control charts based on the renewal process. However, before

constructing control charts, it is important to decide whether recurrent data satisfies re-

newal process assumptions or not. Another important question is: how one can decide

about constant, increasing, decreasing or bathtub shaped hazard rate? In this chapter, I

will summarize some methodologies with examples to address these concerns. The rest of

the chapter is organized as follows: Statistical tests for testing a renewal process assump-

tions are summarized in Section 8.1. Testing exponentiality is an important problem and

related tests are discussed in Section 8.2 while some properties of the hazard rate function

are given in Section 8.3. In Section 8.4, some graphical and mathematical approaches to

test the hazard rate properties are discussed. Note that tests for HPP versus NHPP have

been discussed in Section 6.6.

8.1 Tests for Renewal Process

Meeker and Escobar [1998] stated that before using a renewal process model, it is im-

portant to check for departures from the model such as trend and non-independence of

TBE. There are different definitions of trend in the literature (cf. Lawless et al. [2012]).

The commonly accepted definition is: a tendency for the rate of event occurrence to

change over time in some systematic way. The well-known Laplace test has a good basis

for testing of the trend. If the underlying process is HPP, over a period of time (0, T ],

the test statistic of the Laplace test is ZLP =
∑n

i=1 Ti/Tn−n/2√
n/12

, which has approximately, a

N(0, 1) distribution. However, Meeker and Escobar [1998] noticed that Laplace test can

give misleading conclusion for the situation where there is no trend but the underlying

process is a renewal process other than HPP. Therefore, the Lewis-Robinson test for trend

uses ZLR = ZLP × X̄/Sd(X) = ZLP × CV −1, where X̄ and Sd(X) the sample mean and

standard deviation of the TBE. In large samples, ZLR follows approximately a N(0, 1)

distribution if the underlying process is a renewal process (renewal processes, in general,
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have no trend). The statistic ZLR was derived from heuristic arguments to allow for non-

exponential TBE by adjusting for a different coefficient of variation, i.e., the exponential

distribution has a coefficient of variation equal to 1. Meeker and Escobar [1998] remarked

that ZLR is preferable to ZLP as a general test of trend in point-process data.

When assessing the adequacy of a renewal process model, it is also necessary to

check if the model assumption of independent TBE is consistent with the data. To

do this we consider the serial correlation in the sequence of TBE. Plotting TBE ver-

sus lagged TBE (Xi, versus Xi+j) provides a graphical representation of serial correla-

tion (the correlation between adjacent TBE). The serial correlation coefficient of lag-j

is ρj = Cov(Xi, Xi+j)/V ar(Xi). It is worthy to mention here that first order serial cor-

relation (j = 1) is the most important to check. For observed sample of size n, i.e.,

X1, X2, · · · , Xn the sample serial correlation coefficient is

ρ̂j =

∑n−j
i=1 (Xi − X̄)(Xi+j − X̄)√∑n

i=1(Xi − X̄)2
(8.1)

where X̄ =
∑n

i=1Xi/n. When ρ̂j = 0 and n is large,
√
n− jρ̂j ≈ N(0, 1). Thus, this

approximation help us to assess if ρ̂j is different from zero or not (see examples in Meeker

and Escobar [1998], page 411-416). I refer to Lawless et al. [2012] for some generalizations

of the Laplace and Lewis-Robinson tests based on the score test.

Lawless et al. [2012] (page 157) did not discuss tests for non-monotonic trends, and

suggested model fitting and associated diagnostic checks, rather than usual application

of a hypothesis test for trend. Lawless et al. [2012] wrote, “Naive application of the tests

considered here, however, may produce misleading results. Generally speaking, when

the factors affecting event occurrence and duration of the processes are more complex,

modelling of the processes is valuable, and often essential.” Therefore, in the coming

sections, I focus on the TBE distribution testing approach.

8.2 Testing exponentiality

To test the hypothesis H0 : Data are from a renewal process, versus H1 : Data are not from

a renewal process, Karr [1991] (page 102) noted that “it is harder to test the hypothesis

that a stationary point process is a renewal process than to test the hypothesis that it is

Poisson, because the former is broader.” Therefore, one must either narrow the structural

assumptions or consider restricted hypothesis other than renewal. To reformulate the

above hypothesis, one could consider H0 : Data are from a Poisson process, versus H1 :

Data are not from a Poisson (i.e., renewal) process. Since we are concerned with the

distribution of TBE and know that the TBE follows exponential distribution in a Poisson

process (cf. Theorem-1.1.3). We know from Chapter-3 that Tn ≤ t ⇐⇒ N(t) ≥ n,
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therefore, we can define the above hypothesis as: H0 : TBE data follow the exponential

distribution, versus H1 : TBE data do not follow the exponential distribution. A wide

range of tests are available in statistical literature to test the exponentiality and some of

them will be discussed here. For a comprehensive review of these tests, see Henze and

Meintanis [2005] and references cited therein.

Before proceeding further, suppose Exp(λ) denotes the exponential distribution with

density λ exp(−λx), x > 0. Given a non-negative random variable X with density f ,

distribution function F and mean E(X), we want to test the null hypothesis H0 : the

law of X is Exp(λ) for some λ > 0, against general alternatives, based on independent

copies X1, · · · , Xn of X. A scale invariant exponential distribution can be obtained by

considering Zi = Xi × λn for 1 ≤ i ≤ n.

8.2.1 Tests based on the Empirical Distribution Function (EDF)

These tests are based on direct measure of discrepancy between the EDF Fn(z) = n−1∑n
i=1 1{Zi ≤ z} of the scaled data Z1, · · · , Zn and the standard exponential distribution.

The most widely used EDF tests for exponentiality are the Kolomgorov-Smirnov (nu-

merically discussed in Section-3.6) and the Cramér-von Mises test. The hypothesis H0 is

rejected for the large values of

KS = sup
z≥0

|Fn(z)− (1− exp(−z))|

= max
{
max
1≤i≤n

(i/n− Z(j)), max
1≤i≤n

(Z(j) − (i− 1)/n)
}

(8.2)

and

CM2 =

∫ ∞

0

{
Fn(z)− (1− exp(−z))

}
exp(−z)dz

=
1

12n
+

n∑
i=1

(
Z(i) − (2i− 1)/2n

)2
(8.3)

respectively. The critical values of these tests can be seen in Bagdonaviéus et al. [2010],

and Hollander et al. [2014].

8.2.2 Tests based on spacings and the Gini index

D’Agostino and Stephens [1986] (page 447) proposed the following statistic based on

the normalized spacings Di = (n + 1 − i)(X(i) − X(i−1)), X(0) = 0: Calculate Wj =∑j
k=1Dk/

∑n
j=1Xj, 1 < k ≤ n − 1, which under H0 is a sample of size n − 1 from

a uniform distribution (0, 1). A two-sided test is based on Sn =
∑n−1

j=1 Wj = 2n −
2
∑n

j=1 jZ(j)/n. Since (n − 1)−1Sn = 1 − Gn, where Gn =
∑n

i,j=1 |Yi − Yj|/2n(n − 1)
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denotes the Gini index, then a test based on Sn is equivalent to a two-sided test for

exponentiality based on Gn. Such a test was proposed and thoroughly studied by Gail

and Gastwirth [1978], who also stated the exact null distribution of Gn. The limiting null

distribution of
√
12(n− 1){Gn−0.5} is standard normal. Earlier, Hoeffding [1949] shows

that, under the condition of E(X2) < ∞, {Gn − E(Gn)}/
√
Gn has a limiting standard

normal distribution. Notice that

Sn
n− 1

= 1−Gn → 1− E|X1 −X2|
2E(X)

(8.4)

as n → ∞ almost surely provided that 0 < E(X) < ∞. The limit in Equation-8.4 is

equal to 0.5 if X has an exponential distribution.

8.2.3 Tests based on the entropy characterization

It is a well known fact that among all distributions with density f concentrated on [0,∞)

and fixed mean µ, the entropy H = −
∫∞
0
f(x) log f(x)dx is maximized by the exponential

distribution. Ebrahimi et al. [1992] and Grzegorzewski and Wieczorkowski [1999] used this

result to construct goodness-of-fit tests of exponentiality based on the entropy estimator

Hm,n =
1

n

n∑
i=1

log
{ n

2m
[X(i+m) −X(i−m)]

}
(8.5)

Here, m is an integer satisfying 1 ≤ m < n/2 and X(i−m) = X(1), X(i+m) = X(n), if

i − m ≤ 0 or i + m ≥ n, respectively. Rejection of H0 is for small values of Hm,n.

Ebrahimi et al. [1992] showed that, if m,n → ∞ and m/n → 0, the test is consistent

against distributions with finite mean, while Grzegorzewski and Wieczorkowski [1999]

removed the condition on moments.

8.2.4 The statistic of Cox and Oakes

Ascher [1990] summarized the simulation results of 15 test statistics for exponentiality

and concluded that if nothing a priori is known about the alternative distribution, the

test of Cox and Oakes [1984], which rejects the null hypothesis for both small and large

values of

COn = n+
n∑
i=1

(1− Zi) logZi (8.6)

is the ’best’. The asymptotic null distribution of COn can be derived by assuming E(X) =

1 and notice that
1√
n
COn =

1√
n

n∑
i=1

[1 + (1− Zi) logZi] (8.7)
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Now letting h(λ) = (1− λX) log(X), a Taylor expansion of h(λ̂n) around λ = 1 yields

1√
n
COn ≈ 1√

n

n∑
i=1

Yi (8.8)

where Yi = 1+(1−Xi) logXi+(1−γ)(Xi−1) and γ = 0.5772 · · · denotes Euler’s constant.
Moreover, E(W1) = 0 and E(W 2

1 ) = π2/6, the central limit theorem and Equation-8.8

imply that the limiting null distribution of
√

6/n(COn/π) is standard normal. It was also

noted by Cox and Oakes [1984] that the test is consistent against finite-mean distributions

with E[X logX − logX] ̸= 1, provided that the expectation exists.

8.3 Hazard Rate

The reliability (survival) function is used to measure the chance that breakdowns of a

system occurs beyond a given time point. To monitor the lifetime of a system across the

support of its lifetime distribution, the hazard rate h(x) = limdx→0
Pr(x≤X<x+dx)

dx.S(x)
= f(x)

S(x)
,

where S(x) = 1−F (x), is used. For this reason, consideration of the hazard rate may be

the dominant method for summarizing survival data (cf. Cox and Oakes [1984]). It has

different names depending on the field of application (cf. Rinne [2014], page 9-10). Since

most materials, structures and devices wear out with time, the class of failure distributions

for which the hazard rate is increasing is one of special interest. The phenomenon of work

hardening of certain materials and the debugging of complex systems make the class of

failure distributions with decreasing hazard rate also of interest. There are, of course,

examples such as dynamic loading of structures or structures undergoing adjustment and

modification, where a monotonic or non-monotonic hazard function would be appropriate.

Therefore, in case of departure of the TBE distribution from exponential, one can identify

the direction of the departure in terms of hazard function shape, without specifying

a precise alternative from the start. Note that each shape corresponds to a class of

distributions and is not restricted to single family models. In the next section, I will focus

more on the testing of hazard function shape.

8.3.1 Increasing (Decreasing) Hazard Rate

Theorem : Increasing hazard rate (IHR) or decreasing hazard rate (DHR)

• A lifetime distribution F (.) is said to be IHR (DHR) if its hazard rate has a non-

negative (non-positive) first derivative, i.e.,

dh(x)

dx
=

d.f(x)

dx.S(x)
=
S(x)f

′
(x)− [f(x)]2

[S(x)]2
≥ (≤)0 (8.9)
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• F (.) is IHR (DHR) if and only if its logarithmic survival function lnS(x) is concave

(convex), i.e., its second derivative has to be non-positive (non-negative),

d2[lnS(x)]

dx2
= −S(x)f

′
(x)− [f(x)]2

[S(x)]2
≤ (≥)0 (8.10)

Rinne [2014] (page 72) noted that for an IHR (DHR) distribution with µ = E(X), the

µr = E(Xr) ≤ (≥)r!µ2, r = 1, 2, · · · holds. Therefore, consequently we have an inequality

on the coefficient of variation (CV), i.e., SD(X)
µ

≤ (≥)1, for IHR (DHR) distributions. This

CV check is particularly useful to check exponentiality or constant hazard rate assumption,

i.e., CV = 1. If CV ̸≈ 1, then renewal process could be good alternative to the Poisson

process.

8.3.2 Non-monotone Hazard Rate: Mathematical Test

The IHR property is characteristic for systems that consistently deteriorate with time,

whereas the DHR for systems that improve with time. However, there are many systems

or processes which exhibits hazard rate that are not monotone. Currently, reliability engi-

neers are more interested in hazard rate which first decrease and afterwards increase and

look like a bathtub, e.g. human mortality, or which first increase and then decrease and

look like an upside-down (inverted) bathtub, e.g. accelerated life testing, in which the

systems tested are subject to abnormal high stress levels. We will abbreviate the bath-

tub property by DIHR (decreasing-increasing hazard rate) and the upside-down bathtub

property by IDHR (increasing-decreasing hazard rate).

Rinne [2014] noted that the decision regarding DIHR or IDHR can be done by inves-

tigating its first derivative in the case of a continuous variate or its first difference in the

case of a discrete variable. A general definition which extend the idea of DIHR and IDHR

to situations where the hazard rate itself does not exist is

Definition : A lifetime distribution F (x) with x ∈ [0,∞) is said to be DIHR (IDHR) if

there exists a x0 > 0 such that − ln[1 − F (x)] is concave (convex) on [0, x0) and convex

(concave) on [x0,∞).

Glaser [1980] has given sufficient conditions to characterize a given lifetime distribution

as being IHR, DHR, IDHR, and DIHR, assuming that its f(x) is continuous and sec-

ond derivative exists on [0,∞). Before quoting Glaser [1980]’s theorem, the following

information is necessary: g(x) = S(x)
f(x)

with first derivative g
′
(x) = g(x)ψ(x) − 1, where

ψ(x) = −f
′
(x)

f(x)
and ψ

′
(x) = [ψ(x)]2 − f

′′
(x)

f(x)
.

Theorem : A lifetime distribution F (x) is said to be IHR, DHR, IDHR, or DIHR, if it

satisfies the following conditions:
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1. If ψ
′
(x) > 0 ∀ x ≥ 0, then IHR.

2. If ψ
′
(x) < 0 ∀ x ≥ 0, then DHR.

3. Suppose there exists x0 > 0 such that

ψ
′
(x) < 0∀x ∈ [0,∞), ψ

′
(x0) = 0 and ψ

′
(x) > 0∀x > x0 (8.11)

• If there exists y0 > 0 such that g
′
(y0) = 0, then DIHR.

• If there does not exists y0 > 0 such that g
′
(y0) = 0, then IHR.

4. Suppose there exists x0 > 0 such that

ψ
′
(x) > 0∀x ∈ [0,∞), ψ

′
(x0) = 0 and ψ

′
(x) < 0∀x > x0 (8.12)

• If there exists y0 > 0 such that g
′
(y0) = 0, then IDHR.

• If there does not exists y0 > 0 such that g
′
(y0) = 0, then DHR.

Glaser [1980] provided the following lemma that helps to avoid finding a root y0 of g
′
(.)

in above theorem.

Lemma : Suppose that Equation-8.11 or 8.12 holds in above theorem.

1. Suppose ϵ = limx→0+ f(x) exists, possibly equals to 0 or ∞.

• If ϵ = ∞ and Equation-8.11 holds, then DIHR.

• If ϵ = 0 and Equation-8.11 holds, then IHR.

• If ϵ = ∞ and Equation-8.12 holds, then DHR.

• If ϵ = 0 and Equation-8.12 holds, then IDHR.

2. Suppose δ = limx→0+ g(x)ψ(x) exists, possibly equals to 0 or −∞.

• If δ > 1 and Equation-8.11 holds, then DIHR.

• If δ < 1 and Equation-8.11 holds, then IHR.

• If δ > 1 and Equation-8.12 holds, then DHR.

• If δ < 1 and Equation-8.12 holds, then IDHR.

8.3.3 Graphical Methods for Hazard

The estimation of hazard rate can be done by different methods (cf. Cox and Oakes

[1984], Lawless [2011], and Rinne [2014]), e.g., parametric, nonparametric and smoothing

methods. However, a graphical approach like hazard plot or nonparametric test, i.e.,
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total-time-on-test (TTT) (cf. Epstein and Sobel [1953]), is the most commonly used

because one picture is worth a thousand words. However, Rinne [2014] noticed (page

212) that hazard plotting can be successfully applied to location-scale distributions and

to those distributions that after suitable transformation can be converted into a location-

scale type. Hazards plots and probability plots are very similar, the main difference is

the scaling of the y-axis where to lay down the cumulative hazard rate instead of the F (.)

and the choice of the plotting position, i.e., the ordinate-value to be plotted against the

X(i) on the x-axis. Next, I present the procedure of the TTT statistic.

Let the difference Si of two adjacent order statistics X(i−1), X(i) be called spacing, i.e.,

Si = X(i) −X(i−1), i = 2, 3, · · · , n. The total time Tn spent on the test by the n sample

until the failure of the longest living unit, can be expressed in two different ways: as the

sum of all observed times, i.e., Tn =
∑n

i=1X(i), or by the sum of all normalized spacings,

i.e., Tn =
∑n

i=1(n− i + 1)(X(i) −X(i−1)) =
∑n

i=1Di. Tn is known as TTT-statistic. The

consecutive TTT-statistics can be obtained either by Ti =
∑i

k=1X(k) + (n − i)X(i) or

Ti =
∑i

k=1(n−k+1)(X(k)−X(k−1)) =
∑i

k=1Dk. The scaled TTT-statistics, i.e., on [0, 1],

are defined as: T ∗
i = Ti/Tn.

By plotting scaled TTT-statistics on the y-axis against the empirical distribution

function, Fn(x(i)) = i/n on the x-axis and by joining these points in a straight line we get

a curve within the unit square of the (x, y)-plan, known as TTT-plot. The interpretation of

the TTT-plot is very easy, i.e., the shortest living 100(i/n)% of the sample data contribute

100(T ∗
i )% of the total time lived by all sample.

For a parametric distribution F , letH(t) be the cumulative hazard (CH)
∫ t
0
h(x)dx and

H−1
F (P ) be the P -th percentile of the CH. In fact H−1

F (P ) =
∫ F−1(P )

0
S(x)dx, 0 ≤ P ≤ 1

is the counterpart of Ti and called the TTT-transform of F (.). Note that F−1(P ) denotes

the percentile xP of order P . Moreover, H−1
F (1) = µ = E(X) for P = 1. Similarly, the

counterpart of T ∗
i is

ϕF (P ) =
H−1
F (P )

H−1
F (1)

=
H−1
F (P )

µ
(8.13)

the scaled TTT-transform of F (.). It is interesting to note that the TTT-plot of a sample

from a population with F (.) will approach the graph of the scaled TTT-transform ϕF (P )

of F (.) as the sample size, n, increases. This is guaranteed by the Glivenko-Cantelli

theorem and the strong law of large numbers with probability one:

Ti =
i∑

k=1

(n− k + 1)(X(k) −X(k−1)) =

∫ F−1
n (i/n)

0

Sn(x)dx→
∫ F−1(P )

0

S(x)dx (8.14)

uniformly in [0, 1] when n → ∞ and i/n → F (.). Rinne [2014] stated the following

properties of the TTT-transform H−1
F (P ):

• There is one-to-one correspondence between life distribution and their TTT-transforms.
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• If F (.) is strictly increasing or, equivalently, if F−1(.) is continuous, then H−1
F (P ) is

continuous.

• If F (.) is absolutely continuous and strictly increasing, then the derivative ofH−1
F (P )

is
dH−1

F (P )

dP
= 1

h(x)
for almost all P ∈ [0, 1]. This property plays an important role in

finding test statistics for hypotheses on the hazard rate.

8.4 Testing Hazard Rate Properties

We want to test the behavior of the hazard rate whether it is constant, IHR, DHR, DIHR

or IDHR.

8.4.1 Constancy of the Hazard Rate

The exponential distribution is the only continuous distribution with constant hazard rate.

Thus, testing H0 : h(x) is constant, against H1 : h(x) is not constant, we can proceed as:

For an exponential distribution with F (x) = 1− exp(−λx), F−1(P ) = − ln(1−P )/λ and

µ = 1/λ, we have H−1
F (P ) = P/λ and ϕF (P ) = P . Therefore, the TTT-plot will be a

45o-line running from (0, 0) to (1, 1), see Figure-8.1.

8.4.2 Monotonicity of the Hazard Rate

To test whether a distribution is IHR (DHR) or not, i.e., H0 : F (x) = 1−exp(−λx) where
λ is unknown, against H1 : F (x) is IHR and not exponential, or H∗

1 : F (x) is DHR and

not exponential, we know that dϕF (P )
dP

= d
dP

(H−1
F (P )/µ) = 1

µ.h(x)
. Therefore, the graph of

the scaled TTT-transform ϕF (P ) will be

• a straight line for an exponential distribution,

• concave for an IHR distribution, and

• convex for a DHR distribution.

Since the graph of ϕF (P ) runs from (0, 0) to (1, 1), an IHR distribution will have a

decreasing slope and lie above the 45o-line. Similarly, an increasing slope which lies below

the 45o-line indicates a DHR distribution. Figure-8.1 shows ϕF (P ) for three Weibull

distributions having h(x) = βλβxβ−1: β = 0.5 gives DHR, β = 1 gives the exponential

distribution and β = 1.5 gives IHR. Therefore, the hypothesis regarding the validity of

concave (convex) hazard can easily be tested.

A numerical testing procedure associated with the TTT-transform goes back to Klefsjö

[1982] and applicable only to uncensored data. Suppose that the ϕF (P ) graph is concave
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(convex). Since the graph of the scaled TTT-statistic T ∗
i converge to ϕF (P ), it is rea-

sonable to expect the TTT-plot based on a sample from an IHR (DHR) distribution to

behave concavely (convexly), too, i.e., 2T ∗
i − T ∗

i−1 − T ∗
i+1 > (<)0 for i = 1, 2, · · · , n − 1

and T ∗
0 = 0, T ∗

n = 1. Therefore, a possible test statistic against the IHR (DHR) alter-
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Figure 8.1: Scaled TTT-transform of Weibull distribution

native could be BH1 =
∑n−1

i=1 (2T
∗
i − T ∗

i−1 − T ∗
i+1) and we expect a positive (negative)

value of BH1 if F (.) is IHR (DHR), but not exponential. For a normalized spacings

Di, BH1 = (D1 − Dn)/Tn. Klefsjö [1982] gives the asymptotic distribution of BH1 un-

der H0 as a Laplace distribution and remarked that since the enumerator (D1 − Dn)

of BH1 is independent of D2, · · · , Dn−1, a test based on BH1 is not consistent against

the whole IHR (DHR) class. Therefore, he suggested another test to tackle this prob-

lem. The new test is based on the idea that, when ϕF (P ) is concave (convex) we ex-

pect T ∗
i + (T ∗

i+j − T ∗
i )k/(j/n)n > (<)T ∗

j+k for i = 1, · · · , n − 1, j = 2, 3, · · · , n − i and

k = 1, 2, · · · j − 1. An alternative representation is (T ∗
i+j − T ∗

i )k > (<)j(T ∗
j+k − T ∗

j ).

Therefore, we have the test statistic

B∗
H1

=
n−2∑
i=0

n−i∑
j=2

j−1∑
k=1

[(T ∗
i+j − T ∗

i )k − j(T ∗
j+k − T ∗

j )] (8.15)

For F (.) to be IHR (DHR), but not exponential, we expect B∗
H1

to be positive (negative).

Another representation of B∗
H1

is
∑n

i=1 ψiDi/Tn where ψi = [(n + 1)3i − 3(n + 1)2i2 +

2(n + 1)i3]/6. Klefsjö [1982] then considers the slightly modified test statistic BH =

B∗
H1

√
7560/n7 which is asymptotically N(0, 1). H0 is rejected in favor of HA(H

∗
A) at level
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of α when BH is greater (smaller) than the critical value. Exact critical values have also

been given in Klefsjö [1982].

Many test of H0 versus H1 or H
∗
1 are based on the normalized spacings Di = (n− i+

1)(X(i)−X(i−1)) while other tests only use the ranks of the normalized spacings. One of the

oldest test normalized spacings is the cttot-test (cumulative total-time-on-test) of Barlow

[1968], and Epstein [1960]. This test is applicable for censored as well as uncensored data.

Since under H0 the Ti =
∑i

k=1Dk are uniformly distributed over [0, Tr] where 1 ≤ r ≤ n

is the number of failures in a sample of size n. The test statistic is

Yr =

∑r−1
i=1

∑i
k=1Dk∑r

k=1Dk

=

∑r−1
i=1 (r − i)Di∑r

k=1Dk

(8.16)

Epstein [1960] has given the exact critical values for this test. H0 is rejected in favor of

HA(H
∗
A) at level α if Yr ≥ yr,1−α(Yr ≤ yr,α). Moreover, for small r we can use a normal

approximation of Yr under H0, i.e., yr,γ ≈ (r − 1)/2 + τγ
√

(r − 1)/12 where τγ denotes

the γ percentile of N(0, 1).

Bickel and Doksum [1969] extensively studied tests of One of H0 versus H1(H
∗
1 ) based

on the ranks of the normalized spacings. In fact their statistics were motivated by the

test of Proschan and Pyke [1967] and requires uncensored samples, which is as follows.

Let Wij = 1 if Di ≥ Dj for i, j = 1, 2, · · · , n and Wij = 0, otherwise. The test statistic is

Wn =
∑
i,j=1
i<j

Wij (8.17)

H0 would be rejected in favor of H1(H
∗
1 ) at α level if Wn ≥ wn,1−α(Wn ≤ wn,α), whereas

wn,γ = Pr(Wn < wn,γ|H0) = γ. The exact value of wn,γ is calculated from (cf. Rinne

[2014]) Pr(Wn = m|H0) = Pn(m)/n! and Pn(m) denotes the number of orderings of

D1, D2, · · · , Dn with exactly m inversions of indices, i.e., an inversion of indices i < j

occurs when Di > Dj. Moreover,Wn is asymptotically normal with E(Wn) = 0.25n(n−1)

and V ar(Wn) = n(2n+5)(n−1)/72 and therefore, wn,γ ≈ 0.25n(n−1)+τγ

√
n(2n+5)(n−1)

72
.

The justification of this is as follows: Under H0 the normalized spacings are iid, each with

F (x) = 1− exp(−λx). Therefore, Pr(Wij = 1) = 0.5 with i ̸= j. However, under H1, we

have Pr(Wij = 1) > 0.5 for i < j. Thus, each Wij and Wn tend to be larger under H1,

which leads to the rejection of H0 in favor of H1 for large values of Wn. It is interesting

to mention here that the asymptotic relative efficiency of the cttot-test is higher than the

test proposed by Proschan and Pyke [1967].

Using ranks of the spacings, i.e., Ri is rank of Di, Bickel and Doksum [1969] suggested

many test statistics and some of them are: V0 =
∑n

i=1 iRi/(n+1)2, V1 =
∑n

i=1
−i
n+1

ln
(
1−

Ri/(n+ 1)
)
, V2 =

∑n
i=1 ln

(
1− i/(n+ 1)

)
ln
(
1−Ri/(n+ 1)

)
, and V3 =

∑n
i=1 ln

[
− ln

(
1−

i/(n+ 1)
)]

ln
(
1−Ri/(n+ 1)

)
. Large (small) values of these test statistics are significant
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for H1(H
∗
1 ).

Example-1 Rinne [2014] consider a data set of r = n = 15 generated from the Weibull

distribution with λ = 0.1 and β = 0.7 is: 00309, 0.3641, 0.5317, 0.9545, 1.0119, 1.9145,

3.5331, 3.9321, 4.1219, 10.9776, 13.5405, 14.9801, 15.2600, 15.8278, 31.4019. Thus, data

are from a DHR distribution. The cott-test gives Yr = 5.58, thus H0 is rejected in favor

of H∗
1 (DHR) at α = 0.10. A test given by Klefsjö [1982] results into BH = −1.766,

and again H0 is rejected in favor of H∗
1 . Similarly, Proschan and Pyke [1967] test gives

Wn = 41, and H0 is rejected in favor of H∗
1 approximately at α = 0.12.

Example-2 Another data set of n = 20 from the IHRWeibull distribution with β = 2 and

λ = 0.05 is: 2.5349, 2.6149, 4.4532, 4.8567, 5.7627, 11.0273, 15.5141, 16.8996, 18.3318,

18.5556, 18.6857, 19.8772, 20.7875, 22.1906, 22.9138, 25.4471, 26.2949, 29.9485, 34.3137,

40.8301. The cttot-test Yr = 12.57, thus H0 is rejected in favor of H1 (IHR) at α < 0.01.

Klefsjö [1982] test results into BH = 3.26, which reject H0 with α ≪ 0.01. Proschan and

Pyke [1967] test gives Wn = 122, and H0 is rejected at α ≈ 0.04.

8.4.3 Bathtub Shape of the Hazard Rate
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Figure 8.2: Scaled TTT-transform of Inverse-Weibull and power function distributions

There are two types of non-monotonic hazard rates which are interested: the bathtub

shape DIHR where the hazard rate initially decrease (infant mortality) then constant (use-

ful life) and finally increase (wear-out); and the inverted bathtub shape, IDHR where the

situation is reversed as mentioned in case of the DIHR. From the scaled TTT-transform

ϕF (P ) of F (.) for the DIHR, we expect that ϕF (P ) is convex and lies below the 45o-line
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for P being small and ϕF (P ) is concave lies above the line. Similarly, for the IDHR the

said order is reversed. Figure-8.2 shows the scaled TTT-transforms of the inverse Weibull

F (x) = exp(−λx)−β, x > 0, which is IDHR distribution, and of the power function

F (x) = (xλ)β, x < λ distribution, which is DIHR.

Bergman [1979] suggested the following procedure of testing H0 : F (.) is the exponen-

tial distribution versus H1 : F (.) is DIHR, for the uncensored data: Define

W ∗
n =

{
min{i ≥ 1 : T ∗

i ≥ i/n} (8.18)

n, if T ∗
i < i/n for i = 1, 2, · · · , n− 1.

Y ∗
n =

{
max{i ≤ n− 1 : T ∗

i ≤ i/n} (8.19)

0, if T ∗
i > i/n for i = 1, 2, · · · , n− 1.

and D∗
n = W ∗

n+n−Y ∗
n . Reject H0 when D

∗
n is large. The idea behind the test is when the

distribution is IDHR, we may expect W ∗
n as well as n− Y ∗

n to be large and therefore, D∗
n

takes integer values in [2, n + 1]. Since the graph of ϕF (P ) for an IDHR is the reflection

of the ϕF (P ) for a DIHR, thus, we can modify Equations 8.22 and 8.19 to develop test

for IDHR as:

W ∗∗
n =

{
min{i ≥ 1 : T ∗

i ≤ i/n} (8.20)

n, if T ∗
i > i/n for i = 1, 2, · · · , n− 1.

Y ∗∗
n =

{
max{i ≤ n− 1 : T ∗

i ≥ i/n} (8.21)

0, if T ∗
i < i/n for i = 1, 2, · · · , n− 1.

and D∗∗
n = W ∗∗

n + n− Y ∗∗
n . H0 is rejected when D∗∗

n is large.

Aarset [1985] derived the following null distribution, i.e., assuming exponentiality, of

D∗
n:

Pr(D∗
n = j) =



j−1∑
i=1

(n− 1)!

(j − 1)!(n− j + 1)!(j − i− 1)!

(
i

n

)i−1

× (8.22)(
n− j

n

)n−j+1(
j − i

n

)j−i−1
1

i(j − i)
for j = 2, · · · , n− 1

0, for i = n

2

n

(
n+ 1

n

)n−2

for i = n+ 1.

see page 59 of Aarset [1985] for the critical values. Moreover, Aarset [1985] also derived

an asymptotic result: limn→∞ Pr(D∗
n = n − l) = 2ll+1 exp(−l)/(l + 1)!. Later, Aarset

[1987] suggested modification of Cramér-Von-Mises goodness-of-fit test for uncensored
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data. Aarset [1987] defines Rn =
∫ 1

0
∆2
n(v)dv, where

∆n(v) =

{√
n[T ∗

i − ϕF (v)] for
i− 1

n
< v ≤ i

n
, 1 ≤ i ≤ n (8.23)

0, for v = 0.

Under H0, i.e., F (.) is the exponential distribution, Rn can be written as: Rn =
∑n

i=1 T
∗
i

×[T ∗
i − (2i − 1)/n] + n/3 and has the same asymptotic distribution (due to invariance

principle) as the Cramér-Von-Mises test.

Example 3 We are interested to know whether the data set given in Rinne [2014] (page

247): 0.2, 0.4, 2, 2, 2, 2, 2, 4, 6, 12, 14, 22, 24, 36, 36, 36, 36, 36, 43, 64, 72, 80, 90, 92,

94, 100, 110, 120, 126, 126, 134, 134, 134, 134, 144, 150, 158, 164, 164, 166, 168, 168, 168,

170, 170, 170, 170, 170, 172, and 172, of 50 observations comes from a DIHR distribution

or not. The Bergman [1979] test is D∗
50 = 45 and Pr(D∗

50 ≥ 45) ≈ 0.14 which favor the

hypothesis of DIHR. Similarly, Aarset [1987] test gives R50 = 1.2922 and again we favor

DIHR at α≪ 0.001. The graphical presentation is given in Figure-8.3a.

Similarly, using the data set given in Example 2, we have D∗
20 = 21, which favors both

the DIHR and the IDHR, and R20 = 0.88 also favors H1. However, Figure-8.3b indicates

neither DIHR nor IDHR but IHR.
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(a) TTT-plot for a data set from DIHR
distribution
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(b) TTT-plot for a data set from an IHR
distribution

Figure 8.3: TTT-plot for checking DIHR and IHR distributions

Çiğşar [2010] also suggested some tests for testing trend and carryover effect (i.e.,

event intensity may be temporarily increased or decreased) for recurrent event processes.

Moreover, I refer to see Dykstra and Laud [1981], Singpurwalla [1995], and Hjort [1990]

for estimation and testing of the random hazard function using nonparametric Bayesian

approach.
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Chapter 9

Conclusion and Recommendations

The results and contributions of the research works included in this dissertation are sum-

marized in this chapter. The limitations of current works are discussed, and some future

works are also suggested.

9.1 Conclusion

The success and progress of human society depend on the reliable physical infrastructures,

i.e., roads, bridges, hospitals, fire stations, dams, sewage, gas pipelines, nuclear power

plant, transmission lines, etc., for distributing resources and essential services to the

public. A common problem associated with the infrastructure is that, as the service

time progresses, the infrastructure ages, its performance deteriorates and its reliability

declines. The deteriorating infrastructure can have an adverse impact on a utility’s profit

and sometimes even on a whole nation’s economy. Statistical quality control is a collection

of statistical methods, which are used to monitor and improve the quality of a process.

Currently, statistical quality control is not limited to manufacturing industry, but also

used in environmental science, biology, genetics, epidemiology, medicine, finance, law

enforcement and athletics.

TBE charts were shown to be highly effective in both industry system improvement

and human management. The example areas of applications of the TBE charts include the

manufacturing systems, reliability and maintenance monitoring problems, human health

surveillance, etc. Despite its effectiveness and generality of applications, the current TBE

chart techniques are facing more and more challenges as the implementing circumstance

becomes more complex. To monitor complex TBE data, therefore, the need of generalized

processes is emerging. In addition, there is a strong need to develop control charts for

reliability data to ensure the product/process maintains the expected reliability standards

as recently highlighted by Vining et al. [2015].

This thesis expanded the application area of the TBE charts by developing them using
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the renewal, renewal reward and nonhomogeneous Poisson processes. The renewal process

was used to generalize the existing TBE charts which are based on the Poisson process

while the renewal reward process for the joint monitoring of the time and magnitude.

Similarly, the nonhomogeneous Poisson process with power law intensity is used to gen-

eralize the existing work to a situation where failure risk varies over time, and the quality

engineer requires adaptive monitoring. A Bayesian chart using the predictive distribu-

tion, to overcome the restrictive assumption of a large phase-I data, was also introduced

in this thesis. We have demonstrated that proposed control charts’ performance in mon-

itoring different types of complex data set is quite effective. The proposed control charts

are assessed using different commonly used performance measures, including average run

length, coefficient of variation of the run-length distribution and the length of inspection

distribution. The guidelines for various situations in which the proposed charts would

work are given in each respective chapter. Results from each chapter showed that the

control charts proposed in this thesis did improve the effectiveness of the TBE charting

technique and made it more practical for complex TBE data monitoring. However, this

thesis also has its limitations which, along with future research direction are discussed in

the next section.

In Chapter 2, we have reviewed 114 articles related to the TBE or high-quality concept

and 63% of the reviewed articles deal with discrete or attribute data while 31% deal with

continuous data and the remaining 6% with both. Thus, the trend of research is highly

influenced by the discrete distributions. Of our reviewed articles, only 23 deal with the

parameter estimation problem while in the remaining ones, i.e., 91 articles, the parameter

is assumed known. The maximum likelihood method is used 4 times in the continuous case

while 6 times in the discrete case. The use of Bayesian methods is not very popular in the

continuous case as compared to the discrete case. Geometric and negative binomial models

are commonly used in discrete cases while the exponential model is used for continuous

data. It is observed that CUSUM, EWMA and synthetic or joint charts are used for

both types of data. We also noticed from Chapter 2 that the existing TBE control charts

are either based on approximations or simple processes. Parameter estimation is also

often overlooked, and most of the previous research has been done by assuming known

parameter values.

In Chapter 3, we proposed a control chart based on the renewal process where a class

of continuous distribution was assumed for the TBE. The use of a renewal process was

motivated by TBE with a non-constant hazard rate. The control chart performance was

studied in terms of different commonly used measures like ARL, CV of the run-length

distribution, and CV of the length of inspection (or time to signal) distribution. In

previous studies, mostly it is assumed that the parameters of the TBE distribution are

known. When the parameters are unknown or unspecified, these should be estimated from

reference data or Phase-I data. However, in practice, parameter’s estimation is subject
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to estimation and approximation error. Therefore, we examined the performance of the

renewal process chart in terms of different sample sizes by assuming that both parameters

unknown of the Weibull distribution. We found that a very large sample size is required to

overcome estimation and approximation error. A method for the detection of a shift, i.e.,

to decide whether a shift is in the shape or the rate parameter, based on the coefficient

of variation was also proposed in Chapter 3. Furthermore, some historical data sets were

also analyzed to show the implementation and effectiveness of the proposed chart.

In Chapter 4, we proposed a control chart for the joint monitoring of time and magni-

tude by assuming a fixed threshold/critical value. Since obtaining an explicit form of the

first-passage distribution is extremely difficult in general cases, we proposed an algorithm

to compute the control limits for any lifetime distribution of the time and the magnitude,

respectively. Moreover, an algorithm to compute the effectiveness of the control chart was

also proposed in the same chapter. We noticed that the performance of the renewal reward

process’s control chart is mainly dependent on the magnitude distribution. Therefore, we

suggest the use of the one-sided chart only if one has an idea about the direction of a

shift and in general cases, the two-sided chart is recommended. Similarly, we proposed

a control chart with the random threshold to monitor jointly the time and magnitude in

Chapter 5. It was shown by the ARL study that the proposed chart is quite effective in

different situations where the threshold varies over time.

Chapters 6 and 7 deal with the control charts which are suitable for sequential and

adaptive monitoring. In Chapter 6, we have proposed a TBE chart based on the nonhomo-

geneous Poisson process for the adaptive process monitoring. In particular, we considered

the power law intensity for the nonhomogeneous process. We found that the proposed

chart was also useful to monitor a time-varying failure risk (cf. Chapter 6). With simu-

lation studies and real data examples, it has been shown that the proposed chart is quite

effective to handle different situations. However, it is shown in Chapter 6 that one needs

a large phase-I/base period data to estimate the unknown parameters of the power law

process. Therefore, to overcome this restrictive assumption, we proposed a Bayesian pre-

dictive chart based on the Poisson process in Chapter 7. Since the sequential use of Bayes

theorem helps us to calculate the posterior distribution of parameter and the predictive

distribution of data, the proposed methodology is also suitable for the online sequential

and adaptive monitoring. We have shown successfully in this chapter that the restric-

tive assumption about the availability of a large base period could be avoided by using

a predictive approach. Moreover, the EWMA and the CUSUM charts for the predictive

setup have been proposed and studied in this Chapter 7. The charts in chapters 6 and 7

are tested under different scenarios, i.e., fixed/sustained versus random and time varying

shifts. In the case of nonhomogeneous Poisson, we noticed that performance of the se-

quential limits’ chart was good for random and time varying shifts while predictive chart

was efficient for random shifts. Furthermore, since both the chapters deal with the control
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limits which are sequential updated, we showed that the control limits deteriorate with

the inclusion of each new observation. The price of these sequentially updated control

limits is that the designed charts are insensitive to moderate size shifts and useful only

for a very large shift. Therefore, we proposed a check to improve the detection power of

the charts in chapters 6 and 7.

Some people may feel comfortable with the idea of revising a prior information in the

light of observed data. This approach is not commonly welcomed in the classical Bayesian

analysis, however, many researchers favor it. Therefore, we proposed empirical Bayesian

approach in Chapter 7 for this purpose. We suggest that the Bayesian approach should be

used with extreme care, especially in control chart setting. A method to select the false

alarm probability by using a decision theory approach has also been discussed in Chapter

7. However, a numerical optimization procedure is required to implement this approach.

To help practitioners and to verify the assumptions of the renewal process, some

statistical tests have been discussed in Chapter 8. Moreover, testing of exponentiality is

an important problem in statistics, and related tests have been mentioned in the same

Chapter 8. It is also important to verify whether the incoming data have the constant,

decreasing or increasing hazard rate, to develop a suitable control chart. Therefore,

parametric and nonparametric tests for testing hazard shape have been given in Chapter

8, with some examples.

9.2 Future Work

The importance of TBE control charts continues to grow, and we suggest the quality

engineers, practitioners, statisticians to do further research in this area. Moreover, it is

a necessity of the modern industry to look for some other general processes, which are

more appropriate for the (new) complex data sets, e.g., spatiotemporal data. After the

book of Xie et al. [2002a], a comprehensive literature review has been given in Chapter 2,

where we have attempted to classify a large number of papers, can help locating groups

of articles by subject and by methodology, providing a starting point for study.

In this thesis, we presented some new type of TBE control charts for improving and

monitoring complex system’s reliability. However, several concerns of the proposed charts

using the generalized (stochastic) processes still require further exploration. Firstly, we

have not introduced EWMA and CUSUM charts based on the nonhomogeneous Poisson

process. In future, it would be interesting to study the properties of nonhomogeneous

Poisson CUSUM and EWMA charts. Moreover, the effect of aggregation of data under

these different designed charts is an open issue and there is a room for improvement.

Due to the impact of estimation error on the detection power of control charts, special

attention is required for the selection of a sample size in the SPC setup. Some new process
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monitoring strategies are needed to account for estimation error efficiently. In processes

where collecting large amount of phase-I data is infeasible, it has been recommended by

several researchers that monitoring should start using the available data and parameter

estimate should be updated as more data become available. Therefore, we suggest the

use of a Bayesian approach in such a situation. Moreover, the impact of updating con-

trol limits, for sequential monitoring, to account for the extra variability introduced by

parameter estimation at each step, needs special attention.

In Chapter 3, we observed that when a large shift was appeared in the shape parameter

than the nominal value, the control chart performance was biased. Therefore, in the

future, an interesting work could be to consider unbiased design of the Weibull chart by

assuming both parameters unknown.

Another widely studied method for designing control charts is the economic approach

which has not discussed throughout this thesis. In future, one could introduce and study

the proposed charts’ properties within the economic design framework.

A related but significantly different area to process monitoring is a process control

(see Chapter 11 of Montgomery [2009]). Many practitioners do not distinguish between

these two related areas, but there is an important difference. Process control deals with

maintaining the output of a specific process within a desired range. For instance, the

temperature of a chemical reactor may be controlled to maintain a consistent product

output. Process monitoring deals with the decision, whether the finished good is up to

customer requirement or not. We have not studied the chart performance in the control

theory setup, and it would be an interesting study to move from process monitoring to

control theory, i.e., integration of process monitoring and process control techniques, in

the future.

Moreover, there are lots of multivariate attributes or variable TBE models with impor-

tant applications in literature. In the existing TBE literature, multivariate TBE charts for

monitoring several TBE quantities at the same time have been rarely studied. Although

some authors have developed various non-parametric control charts for bivariate data,

the performances of such charts are usually poor compared to distribution-based control

charts. To improve the effectiveness of the control charts and to overcome the weakness

of the univariate TBE charts for correlated quantities, it would be beneficial to extend

the univariate TBE charts, especially for the time and magnitude monitoring.

Future work is also needed on developing strategies to deal with the monitoring of

multiple data streams, such as studies on the effect of TBE data aggregation (cf. Schuh

et al. [2014]), accompanied by appropriate methods for visualizing large data sets.

Finally, the overwhelming majority of research on monitoring high quality processes

restricts attention to process response data. Among the reviewed studies (cf. Chapter

2), only Steiner and MacKay [2004] take covariates into account. This research pat-

tern does not reflect industrial reality. Modern high quality manufacturing technology
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accounts for factors influencing the process response, in particular, machine conditions

and material characteristics. Usually the factor-response relationships are well-studied

and documented, and the relevant levels of factors are continuously measured over time.

Instead of assuming an artificial setting of restricted information, monitoring research

should rather exploit the wealth of information and measurements available under mod-

ern manufacturing technology, particularly in data-rich environments as addressed by the

Industry 4.0 concept, by appropriately designed covariate-response models. This will en-

able more successful monitoring schemes, and will significantly increase the disposition of

the engineering community to use statistical monitoring.
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