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Chapter 1

Introduction

This thesis is made of three chapters which have two main threads. The �rst is the

research subject: all these works have in common the study of non-standard types

in a game theoretic setting. The second concerns the methodology: the common

feature of the three chapters is the underlying adaptive approach. Both these two

aspects constitute a substantial departure from the neoclassical approach to the

study of economic behavior.

Non standard types There is a large amount of experimental results showing

that agents do not always behave in the way standard theories would predict. It

seems that the homo economicus, fully rational and self-interested, is not represen-

tative of the majority of the economic agents. The big challenge for the economic

theory is to construct frameworks and provide models to describe and possibly ex-

plain aspects of the economic behavior that neoclassical theories cannot capture.

In this thesis, we take on this challenge.

The main characteristic of this work is the assumption that the population

of all economic agents includes non-standard types. For �non-standard�we mean

5



non self-interested and/or non fully rational in the neoclassical sense. Indeed, on

one side, we assume that economic behavior is not driven only by preferences on

consumption bundles (or lotteries over them). On the other side, we assume that

agents do not always behave in a fully rational manner according to their pref-

erences. The �rst feature characterizes the second and third chapters, where we

analyse the evolution of other-regarding preferences. The second feature mainly

regards the �rst chapter where we introduce a model where part of the players are

assumed to be boundedly rational and part of them fully rational. However, the

two aspects overlap with each other throughout the thesis. In all the three chapters

we deal with a population which is heterogenous along some dimensions. Either

we have heterogeneity in the preference types or in the degree of players�sophis-

tication. In all the three chapters, we do have standard types (in the neoclassical

sense) interacting with non-standard ones in the same strategic contexts.

In the �rst chapter (Binary cursed equilibrium) each player together with his

payo¤ type is endowed with a cursedness type which represent the degree of his

strategic sophistication.1 Players might be either cursed or non-cursed (sophisti-

cated in the standard sense). A cursed player, does not play in the way standard

theory would predict because he holds incorrect conjectures on the opponents�

play and best reply to them. In particular, a cursed player underestimate the

informational content of other players�play.

In the second chapter (A note on the evolution of other-regarding preferences)

we study the evolution of altruistic preferences in the context of a centipede game.

In that model, player might be either self-interested or altruistic. An altruistic

1This work is strictly related to Eyster and Rabin (2005) which introduces the concept of
"cursed equilibrium".
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type does not maximize only his (expected) material payo¤ but he cares also for

the material payo¤s of his co-players. To consider only one preference type other

than sel�sh is obviously restrictive. However, the strong assumption that there

are only altruists and sel�sh players in the population is enough for the speci�c

purposes of the note. Of course, if we want to construct a more general model

on the evolution of preferences, we must take into consideration further types as

alternative to the self-interested one.

That is the reason why in the third chapter ("The evolution of preferences in a

game of life") we consider all possible types of other-regarding preferences which

di¤er from the sel�sh type. We express a very generic functional form for the

players�utility which consists in the (expected) material payo¤ plus a disposition

term. This term might represent, for example, players� inclination toward the

material payo¤s of the co-players, care for egualitarian outcomes, reciprocity, envy

and whichever subjective consideration or emotion may drive agents� behavior.

For a sel�sh player this disposition term is simply equal to zero.

The adaptive approach There is a strong connection between these research

subjects and the methodology we use. Throughout the thesis we adopt an adaptive

approach to study economic behavior. On one hand, in Chapter 1, we provide a

justi�cation in terms of (implicit) learning for the existence of non-sophisticated

types and we describe the strategic interaction among di¤erently sophisticated

players with a solution concept that has a plausible learning interpretation (namely

binary cursed equilibrium). On the other hand, in Chapter 2 and 3, we intend

to provide evolutionary foundations for the existence of heterogeneous preference

types adopting an indirect evolutionary approach (introduced by Guth and Yaari
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(1992) and Guth (1995)). Learning and evolutionary considerations are proper

tools to justify from a theoretical point of view the widely observed fact that

agents do not reason in the same way and/or their behavior is not driven by

the same preferences. Learning processes develop in the short run: given their

preferences players�behavior adjusts to conjectures on opponents�play which are

formed on the basis of past observations. Di¤erently, evolutive processes develop

in the long run: preferences adjust over a long-run evolutionary dynamics on the

basis of their relative �tnesses.

In the �rst chapter (Binary cursed equilibrium) we will use only the �rst notion

of adaptation. Players are assumed to di¤er exclusively in the way they reason

about their co-players�play. To analyse strategic interactions where some players

have cognitive limitations (incorrect conjectures) we cannot refer to the notion of

Nash equilibrium (or re�nements) which is based on strong rationality assump-

tions. This is the reason why we do choose a weaker solution concept. Indeed,

binary cursed equilibrium is a particular Self-con�rming equilibrium (SCE)2. SCE

describes stable outcomes of plausible learning processes. In a SCE players are best

responding to their conjectures (rationality condition) and the information revealed

ex post, after the equilibrium play, would not induce them to change those conjec-

tures, independently on whether they are correct or not (beliefs�con�rmation). We

will point out that binary cursed equilibrium can be seen as a stable outcome re-

sulting from repeated and anonymous interactions. Players di¤er a priori in their

access to relevant (ex post) information about past plays so that less informed

players end up in equilibrium having incorrect conjectures about their co-players

2We are referring to the version proposed by Battigalli (1987), Battigalli and Guaitoli (1997)
and discussed in Battigalli et al.(1992)
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behavior. The underlying hypothesis is that players learn how to play by their ex-

perience. What players observe after each play along their adjustment process is

not always enough to lead them to behave optimally as the standard theory would

predict. We do observe sub-optimal behavior because players have limited access

to (ex post) information and this prevents them from holding correct conjectures

(in equilibrium) on the opponents�play.

In the last two chapters we adopt the indirect evolutionary approach to provide

theoretical justi�cations for the existence of non-standard preferences. The indi-

rect evolutionary approach studies whether certain preferences are evolutionarily

successful. Suppose there is an heterogenous population composed of di¤erent pref-

erence types. Individuals endowed with their speci�c preferences are repeatedly

and randomly drawn to play a basic game with material payo¤s. In each round,

players behave rationally, maximizing their expected utility associated to their own

preferences. The evolutive success of a certain preference type is evaluated on the

basis of the material payo¤s (objective �tness) induced by the equilibrium pro�le

of strategies adopted. Agents whose preferences lead to higher material payo¤s

(higher �tness) tend to reproduce faster than those with lower material payo¤s

(lower �tness).

The literature on the evolution of preferences adopts Nash equilibrium (or

variants of it) as a rule to describe behavior in any relevant state of the long-run

evolutionary dynamics. Di¤erently, in the second chapter (Note on the evolution

of other-regarding preferences) we adopt SCE to pin down the evolutive �tness of

a preference type. The underlying assumption is that evolution develop through a

two-speeds adaptive process. There is a short-run process whereby (given a distri-

bution of preference types) players�behavior adjust untill they reach the play of a
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SCE. These stable states, corresponding to the play of a SCE, in turn constitute

the rounds of an overall long term evolutionary process along which the popula-

tion composition adjusts according to a �tness criterion. We will show that the

departure from the assumption that a Bayesian Nash equilibrium is played in each

relevant state of the long-term evolutionary dynamics provides new insights on the

evolution of altruistic preferences.

In the last chapter ("The evolution of preferences in a game of life"), we intro-

duce a model which intend to describe the evolution of other-regarding preferences

assuming that economic agents choose the games to play (within a large but �nite

set of games) together with their strategies within each game. We still adopt the

indirect evolutionary approach. However, we depart from the adoption of SCE

to characterize stable outcomes of the short-run adaptive processes (within each

game). We assume that the game-speci�c plays in each relevant state of the long-

run evolutionary dynamics corresponds to a Bayesian Nash equilibrium. It is worth

noticing that this occurs only because this assumption makes the model, which is

already complex, more treatable.
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Chapter 2

Binary Cursed Equilibrium

2.1 Introduction

In this paper we provide a theoretical reinterpretation and a learning foundation

for the concept of �-cursed equilibrium introduced in Eyster and Rabin (2005).

Several authors have questioned the existence of a plausible learning foundation

for this equilibrium concept (Eyster and Rabin (2005), Fudenberg (2006), Crawford

and Irriberri (2006), Jehiel and Koessler (2008)).

The �-cursed equilibrium is based on the assumption that players in a strategic

setting neglet the informational content of other players�play. In particular, they

underestimate the degree to which opponents�actions are correlated with their

private information. In a �-cursed equilibrium each payo¤ type of each player

best responds to a convex combination of two conjectures: the correct conjecture

that each opponent plays his true type-dependent strategy and the "cursed" con-

jecture according to which each type of each of the other players plays the same

mixed action, which corresponds to his average distribution of actions. Note that
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each player correctly predicts the equilibrium distribution of opponents�actions,

but he does not identify the connection between types and actions. The parame-

ter � represents the extent to which each player believes that any other player is

playing his average strategy rather than his type contingent strategy. For � = 1;

players are said to be fully cursed, and the resulting equilibrium is called fully

cursed equilibrium (FCE). For � = 0; the equilibrium coincides with the Bayesian

Nash equilibrium (BNE). For intermediate values of � players are playing a par-

tially cursed equilibrium (PCE). The authors show that PCE outperforms BNE in

organizing experimental evidence.

Despite the fact that PCE is powerful in rationalizing experimental data it

is di¢ cult to justify it both on an intuitive and on a theoretical level. Fuden-

berg (2006), Jehiel and Koessler (2008) and the authors themselves questioned the

possibility of �nding a reasonable learning foundation for the concept of PCE. In

particular, Fudenberg (2006) argues that the amount of cursedness should decline

as players become more experienced. Thus, it is not very plausible to see an inter-

mediate degree of cursedness as an equilibrium phenomenon. Eyster and Rabin

(2005) in the discussion of their concept point out that, while the fully cursed

equilibrium might be justi�able in terms of learning, "whether one could �nd a

learning story combined with assumptions about a priori partial strategic sophis-

tication, that would provide foundations for (our) exact speci�cation of partially

cursed equilibrium, seems more doubtful".1

To the best of our knowledge there exists only one other paper, Miettinen

(2007), which tries to reinterpret and to provide a learning foundation for PCE.

He shows that any PCE may be seen as an analogy-based expectation equilibrium.

1See Eyster and Rabin (2005), pp 1633-1634
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However, this way of rationalizing partial sophistication depends on players ac-

tually believing that their opponents�play depends in a more complex way on

their types than it actually does.2 Hence, in that paper partial cursedness seems

to correspond to a form of �hyper-sophistication�rather than a form of bounded

rationality and thus goes against the original spirit of PCE.

As we discuss in this paper, the cursed equilibrium concept is a re�nement of

self-con�rming equilibrium (SCE), something that has gone unnoticed in previous

studies. SCE characterizes stationary states of plausible learning processes. In a

SCE players are best responding to their conjectures (rationality condition) and

the information revealed ex post, after the equilibrium play, would not induce

them to change those conjectures, independently of whether they are correct or

not (beliefs�con�rmation).3 In a PCE and in a FCE players typically hold incor-

rect joint beliefs on opponents�types and actions but their marginal beliefs are

correct. So, both PCE and FCE can be seen as SCE under speci�c assumptions

on the ex post information structure which naturally deliver a situation where

players best respond to wrong conjectures on the opponents�true type dependent

strategies. In the light of this, the question becomes: how can we justify such

a re�nement of SCE? There is a reasonable answer for FCE: players have naive

conjectures which do not take into account that the opponents�behavior depends

on the opponents�private information. On the contrary, PCE does not have such a

2Essentially, the equivalence between PCE and analogy based expectation equilibrium relies
on an enlargement of the type space in a payo¤ irrelevant way. Partial sophistication means that
players incorrectly believe that each of their opponent�s equilibrium play varies over the subsets
of types over that player�s payo¤ is constant

3This is what Battigalli (1987) calls "conjectural equilibrium". Fudenberg and Levine (1993)
coined the term "self-con�rming equilibrium" with reference to the speci�c case where the ter-
minal node of the extensive game tree is observed ex post. We use SCE in a more general way,
allowing for coarser ex post information structure.
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plausible justi�cation. No primitive theoretical assumption is provided in support

of the speci�c form of the beliefs structure of partially cursed players (i.e. the

convex combination of the naive and the correct conjecture).

In this paper we show that this pessimism with respect to the possibility of

justifying partial sophistication is not warranted. In particular, we will provide

a natural interpretation of partial cursedness in terms of full cursedness. More

precisely, we show that partial cursedness may be seen as a �reduced form� for

a game in which players are either cursed or non-cursed. Put di¤erently, we

will de�ne a game, in which each player is characterized by a two-dimensional

type: his payo¤ type and his (payo¤ irrelevant) cursedness type. We will refer

to this set up as binary cursedness (BC). In line with Eyster and Rabin (2005)

the cursedness type determines only how players form their beliefs about their

opponents�strategies. Unlike in PCE though we allow the cursedness parameter

to take only the two extreme values. We show that under some restrictions on the

game being played for any PCE with parameter � there exists a distribution over

the type space of our game such that for each payo¤type of each player the average

equilibrium behavior corresponds to this payo¤ type�s partially cursed equilibrium

behavior.

An immediate implication of this result is that providing a justi�cation in

terms of learning for partial cursedness reduces to �nding a learning foundation

for full cursedness. As has already been conjectured by several authors, the latter

problem has a very natural solution. Here, we propose two di¤erent speci�cations

of a learning foundation to PCE. In particular, we show that in a learning context

fully cursed behavior may simply re�ect the fact that a player has limited (ex post)

information about the outcomes of the game which he is playing. This implies that
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he is not able to link his opponents�actions to their payo¤ types and he forms the

simplest conjecture consistent with his (ex post) observations. So, a PCE can

be seen as a SCE of a game where better informed and less informed players are

strategically interacting. Alternatively, fully cursed behavior may be delivered

by the lack of ability to process the available information. Cursed players hold

complete beliefs over actions and types which are structured as the product of

the marginal over actions and the marginal over types. According to this second

interpretation, a PCE can be seen as a SCE of a game where all players have the

same (ex post) information structure but some of them are boundedly rational.

The paper is organized as follows. In Section 2 we describe �rst the framework

and equilibrium concept of Eyster and Rabin (2005) and then we discuss the rela-

tion between cursed equilibrium and self-con�rming equilibrium. In Section 3 we

introduce our binary cursedness set up and de�ne the corresponding equilibrium,

which we call binary cursed equilibrium (BCE). Afterwards, we discuss the learn-

ing foundation for our environment. In Section 4 we prove two equivalence results

between PCE and BCE. First, in Section 4.1 we establish a particularly strong

equivalence result for a simple environment (two-players with one-sided asymmet-

ric information): for each � and each PCE for this parameter, there exists a �xed

fraction of fully cursed types in the BC model (i.e. a share which is constant across

all payo¤ types of all players), such that the BC model has an equilibrium in which

the average behavior of each payo¤ type of each player coincides with the behavior

of this player in the �-partially cursed equilibrium we are considering (and vice

versa). Section 4.2 considers a more general environment with two sided asymmet-

ric information. We establish that in such environments equivalence holds only if
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both in the Eyster and Rabin framework as well as in our set up the cursedness

parameters are allowed to vary across players and payo¤ types. Finally, Section 5

concludes.

2.2 Cursed Equilibrium

Throughout the paper we will consider an environment with only two players.

Denote the set of their conceivable payo¤ types, independently distributed, by

�i =
�
�Ai ; �

B
i

	
, i = 1; 2 and � the set of payo¤ types�pro�les. Let pi 2 ��j

be the belief of player i on player j�s payo¤ type, i 6= j. In this set up pi(�j)

should be interpreted as an objective measure. Imagine that for each player j

there is a large heterogeneous population of agents who can play in role j. Player

j is randomly drawn from this population. With independent payo¤ types and

under the assumption that the statistical distribution of �j is known by agents

in population i, i 6= j, pi(�j) re�ects the probability that the agent drawn from

population j to play against i is of type �j:

For each player i the set of possible actions is Ai = fa0i; a00i g :

A behavior strategy for player i is a mapping from the set of his payo¤ types

to the set of his mixed actions. Denote by �i the "true" strategy of player i,

�i : �i !4Ai. Let �i � (4Ai)�iand � � �1��2: Let �i(aij�i) be the probability

that type �i of player i plays action ai according to the type contingent strategy

�i(�i): Denote �i the average strategy of player i, averaged over player i�s payo¤

types, that is �i(ai) :=
P
�i2�i

pi(�i)�i(aij�i), i = 1; 2, ai 2 Ai: That is, �i(ai) is the

fraction of agents in population i playing ai. �i represents the "cursed conjecture"

of player i�s opponent according to which each type �i of player i randomizes

according to the marginal probabilities on actions derived from the true strategy
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�i. According to PCE the beliefs of a player j are given by the convex combinationb�i = ��i + (1� �)�i, that is a �-cursed player j incorrectly believes that type �i
of player i plays action ai with probability b�i(aij�i) = ��i(ai) + (1 � �)�i(aij�i).
As Eyster and Rabin themselves point out, it is possible to generalize such a set

up allowing for � to vary across players and payo¤ types. Denote ��j the degree

of cursedness of type �j of player j. For the time being though, we consider the

special case with a unique degree of cursedness, �; for all players and all payo¤

types.

Player i�s payo¤ function ui : A � � ! R depends on players�action pro�le

a 2 A � A1 � A2 and their types.

De�nition 1 A behavioral strategy pro�le � is a partially cursed equilibrium (or

�-cursed equilibrium) if for each i, �i 2 �i, each action a�i such that �i(a�i j�i) > 0,

a�i 2 argmax
ai2Ai

P
�j2�j

P
aj2Aj

pi(�j) [��j(aj) + (1� �)�j(ajj�j)]ui(�i; �j; ai; aj):

For � = 1; each type of each player best responds to the cursed conjecture and

the equilibrium is called fully cursed equilibrium (FCE). For � = 0 each player

best responds to the correct conjecture as in a Bayesian Nash equilibrium. For

intermediate values of � a partially cursed equilibrium (PCE) is played.

2.2.1 Cursed Equilibrium and Self-Con�rming Equilibrium

What Eyster and Rabin (2005) and the related literature cited above did not notice

is that PCE is a re�nement of the self-con�rming equilibrium concept4 (SCE). If

4See Fudenberg and Levine (1993) and Dekel et al. (2004). See also Battigalli (1987) and
Battigalli and Guaitoli (1988) for the related conjectural equilibrium concept and the survey of
Battigalli et al. (1992) for a discussion on the relevance of these two concepts for the analysis of
adaptive processes in repeated interactions contexts.
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we want to provide a learning foundation to PCE we need to elaborate further

on the relation between PCE and SCE. The self-con�rming equilibrium concept

is a static solution concept which characterizes the stationary states of plausible

learning processes. Essentially, the SCE represents situations where players choose

best replies to their conjectures on the opponents�play (rationality condition) and

the information on the equilibrium play revealed ex post , after that the choices

have been made, does not induce them to change those conjectures, independently

of whether they are correct or not (conjectures�con�rmation property). The key

idea of a SCE is that individuals might have incorrect conjectures about others�

behavior as long as these conjectures are not contradicted by the evidence. To

verify if a situation is a SCE we need to make explicit assumptions on what players

can observe ex post. We argue that cursed equilibrium can be seen as a particular

SCE under two speci�c assumptions about the players�information structure:

(i) players know ex ante the objective probabilities of the states of nature �;

(ii) players observe ex post the actions played by the opponents but not their

types.

Assumption (i) justi�es the fact that in equilibrium players hold correct mar-

ginal beliefs on opponents�payo¤types. Assumption (ii) implies that if the learning

process converges to a stationary state players learn the correct marginal proba-

bilities of opponents�actions by observing the long-run frequencies. Given this

information structure, players do not have the possibility to learn the connec-

tion between types and actions and, consequently, they typically hold wrong joint

conjectures on opponents�types and actions in the stationary state.

It is immediate to see that fully cursed equilibrium is a SCE, while the link

between partially cursed equilibrium and SCE is perhaps less clear. In a PCE
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players are assumed to hold beliefs expressed as the convex combination (b�i) of
the naive conjecture (�i) and the correct conjecture (�i) on each opponent i�s be-

havior. At �rst sight, it may seem unplausible that players could to some extent

be aware of the type dependence of their opponents�strategies and still form par-

tially cursed beliefs about these strategies. The key point is that we do not have

to assume that a player has in mind the two di¤erent objects, the naive and the

correct conjectures, and combines them according to his degree of cursedness �.

Indeed, the convex combination is just a way to represent the player�s incorrect

beliefs about the opponents�equilibrium play. It is a device to represent his par-

tial strategic sophistication. How we can justify this particular characterization of

players�beliefs is a di¤erent issue which needs to be analyzed further. What we

want to point out here is just that the fact that players essentially hold correct

marginal beliefs and incorrect joint beliefs can be explained in the light of the spe-

ci�c assumptions on the information structure stated above. Cursed equilibrium

can be seen as a re�nement of SCE but still this speci�c re�nement needs to be

justi�ed. This is not an issue with fully cursed equilibrium since it is based on a

clear primitive theoretical assumption and it has a plausible learning story behind.

Players hold naive conjectures on opponents�play which do not take into account

that other players�behavior is linked with their private information. They update

such conjectures from time to time, they learn the correct marginal distributions

of opponents�actions but they end up in equilibrium having wrong conjetures on

the true type contingent strategies of their opponents. Di¤erently, partially cursed

equilibrium does not have such an intuitive and plausible justi�cation. To provide

a theoretical justi�cation and a learning foundation to PCE is the purpose of the

next sections. We will provide a natural interpretation of partial sophistication
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in terms of full cursedness. More precisely, we show that any game with par-

tially cursed players may be seen as a �reduced form�for a game in which players

are either cursed or non cursed. An immediate implication of this result is that

providing a justi�cation in terms of learning for partial sophistication reduces to

�nding a learning foundation for full cursedness.

2.3 Binary Cursedness

In this section we construct a di¤erent set up where players are drawn from het-

erogenous populations which di¤er not only in the private information but also

in the way players form their conjectures on their opponent�s play. Players have

either naive conjectures on the equilibrium play of the opponent, which do not

take into account that the opponent�s strategy is (payo¤) type-speci�c, or they

fully identify the type contingency of the opponent�s strategy. We do not allow

for intermediate levels of cursedness: either a player fully believes that each payo¤

type of the opponent is playing that payo¤ type contingent strategy or he fully

believes that every payo¤ type of the opponent is following through that player�s

average behavior. Essentially, we enlarge the type space in order to admit for each

player a cursedness type, besides his payo¤ type. This dimension of the type does

not in�uence the payo¤s, but just the nature of the beliefs each player holds about

the opponent�s behavior.

Denote Bj the set of player j�s beliefs parameters, B1 � B2 � fC;NCg, where

C means cursed and NC non-cursed. Hence, each player essentially has a two-

dimensional type tj 2 Tj = �j�Bj: Each payo¤ type �j of player j is cursed with a

certain probability � which represents exactly the frequency of cursed individuals

in the whole population. In this new framework, a behavioral strategy of player j
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is a mapping from the set of types Tj into the set of his mixed actions. As above,

the set of every player�s conceivable actions does not change across types. Hence,

allowing for randomized strategies, we de�ne �j : Tj ! 4Aj; j = 1; 2. We denote

the probability that player j of type tj plays action aj, under strategy �j(tj), as

�j(ajjtj): Denote by �j the average strategy of player j, averaged across the two

dimensions of type tj of player j. The frequency of action aj is

�j(aj) :=
P
�j2�j

pi(�j)
�
��j(ajj�j; C) + (1� �)�j(ajj�j; NC)

�
.

The expected utility of a cursed player i when his payo¤ type is �i and he plays

action ai is equal to:

P
�j2�j

P
aj2Aj

pi(�j)�j(aj)ui(�i; �j; ai; aj):

The expected utility of a non-cursed player i when his payo¤ type is �i and he

plays action ai is equal to:

P
�j2�j

P
aj2Aj

pi(�j)
�
��j(ajj�j; C) + (1� �)�j(ajj�j; NC)

�
ui(�i; �j; ai; aj):

De�nition 2 A behavioral strategy pro�le � 2
Q
i=1;2

(�Ai)
Ti is a binary cursed

equilibrium (or �-cursed equilibrium) if for each i,

i) for each (�i; NC) and each action a�i such that �i(a
�
i j�i; NC) > 0,

a�i 2 argmax
ai2Ai

( P
�j2�j

P
aj2Aj

pi(�j)
�
��j(ajj�j; C) + (1� �)�j(ajj�j; NC)

�
�

ui(�i; �j; ai; aj)

)
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and

ii) for each (�i; C) and each action a�i such that �i(a
�
i j�i; C) > 0,

a�i 2 argmax
ai2Ai

P
�j2�j

P
aj2Aj

pi(�j)�j(aj)ui(�i; �j; ai; aj):

Given a �-cursed equilibrium pro�le, we can express the average equilibrium

behavior of each type �i of each player i, averaged across his cursedness types, as:

�(�i) := � [�i(�i; C)]� (1� �) [�i(�i; NC)]

and the average equilibrium pro�le as � � (�1; �2); where �i � (�i(�i))�i2�i ;

i = 1; 2:

It is worth stressing that we do not make any implicit assumption on players�

awareness of other players�cursedness. In other words we do not assume that the

conjecture on action aj being played by player j with payo¤ type �j which an

uncursed player i has in mind is structured as the convex combination between

�j(ajj�j; C) and �j(ajj�j; NC). In equilibrium, we only require that an uncursed

player holds a correct conjecture on the payo¤-type dependent strategy of his co-

player regardless of his co-player cursedness type, while a cursed player holds a

correct conjecture on the probability with which each action of the co-player is

played regardless of his co-player payo¤ type and cursedness type.
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2.3.1 Learning Interpretation for Binary Cursed Equilib-

rium

In this section we will argue that BCE admits a very natural interpretation in

terms of learning. Since in the following sections we are able to show that, for

some simple environments, Eyster and Rabin�s PCE concept can be seen as a

reduced form of BCE, this will allow us to conclude that for those environments

also PCE can be seen as a steady state of a learning process.

Our learning framework has two possible interpretations: either players di¤er

in their ex post information structure or they di¤er in their strategic sophistication.

We explain how these di¤erences naturally deliver situations where (in the long

run) part of the agents will be able to infer all details about their opponents

strategies while other agents will miss some relevant aspects. Notice that such an

approach could not be applied directly to Eyster and Rabin (2005) PCE concept.

In their framework it is assumed that all types of all players hold beliefs which

are an average of correct and incorrect beliefs about the type contingent strategies

of their opponents.

We focus on an adapted version of �ctitious play. Imagine that players are

anonymously interacting among each other. They are randomly drawn each period

from a population composed of heterogeneous agents. So each individual called to

play in the role of player i = 1; 2 is drawn from sub-population i together with a

certain characteristic �i 2 �i, which describes his payo¤ type. Hence, payo¤ types

are independent and their statistical distributions are commonly known5. Each

player i knows his own payo¤ type, the set of payo¤ types of the opponent �j, his

5Recall that we have given to beliefs an objective meaning, re�ecting the true statistical
distribution of the opponent�s payo¤ type in the population.
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own payo¤ function ui : ��A! R; and that, after having played, he will receive

further information on the behavior of the opponent. We assume that each agent

inherits entirely the past observations of agents who played in their same role in

past rounds, so that they can rely on the full lenght of history to form their beliefs.

We describe now the two di¤erent speci�cations of this learning framework.

i) Di¤erent ex post information structures

We assume that each sub-population is split up into two groups of agents. These

groups di¤er in their ex post information structures, that is, in what agents can

observe after each round of play. There are less informed agents who observe only

the opponent�s action and better informed agents who observe the opponent�s ac-

tion and payo¤ type. Agents from the �rst group, who are supposed to represent

cursed players, cannot infer anything about the payo¤ type of their opponents

and, therefore, they cannot identify the type dependence of the strategy they are

following. To formalize this feature, it is natural to assume that they start with

complete beliefs (on actions and types of the opponents) that are the product

of the marginals over actions and types. Since they cannot observe their oppo-

nent�s payo¤ type they have no information which would induce them to change

the product structure of their beliefs. Indeed, they start with arbitrary weights

on the opponent�s actions (recall that they know the probability of each payo¤

type of the opponent). On the next round they update these weights and revise

(marginal) conjectures on opponents�actions on the basis of the new observation.

Each round, the agent who is called to play inherits from the previous rounds the

empirical frequencies of each action of the opponent collected in the past. Hence,

after many rounds, he learns the frequencies with which the opponent is playing
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each of his conceivable actions. They do not know who plays what, but they know

what the opponent played on average in the past and they best respond to this

average behavior. So, they will typically have wrong conjectures about the type

contingent strategy of the opponent. On the other hand, in the long-run, their

marginal conjectures about actions must be correct.

Better informed agents, who represent non-cursed players, can observe the op-

ponent�s action and type, so that they can unequivocally identify action and payo¤

type of the opponent. They start with a distribution over the pairs of type and

action of the other players which has to be consistent with the known distribution

over types. After one round the information "type �j played action aj" is inherited,

and registered by the next agent playing in the role of player i. It is intuitive that

in any steady state of this learning process players must know the type contingent

strategy of the opponent.

ii) Same ex post information structures but di¤erent structures of beliefs (bound-

edly rational agents)

Assume that all players have access to information about actions and types of the

individuals who played in the role of their opponent in the past. The candidates

for non-cursed players are able to infer the correlation between actions and types

of the opponents while the candidates for cursed players cannot. We can formalize

this by assuming that sophisticated players start with non doctrinaire beliefs about

the statistical distribution of actions and types in the population of agents playing

the opponents�role.6 Through Bayesian updating they learn the true correlation

between actions and types of the opponents. On the other hand, cursed players

6See Fudenberg and Levine (1993a)
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hold complete beliefs over actions and types which are structured as the product

of the marginal over actions and the marginal over types. That is, they do not

have the information processing ability to identify the type contingency of the op-

ponent�s strategies even if they have su¢ cient data.7 Given that they cannot link

observed actions to the payo¤ type of their opponents, it is reasonable to assume

that they only keep track of the frequencies of played actions without trying to

connect them to their opponents types. The marginals over the actions of the

other players end up being correct, while the joint beliefs are typically incorrect.

Note that any steady state of our learning dynamics in each of the two environ-

ments can be theoretically interpreted as a self-con�rming equilibrium.8 In equi-

librium, non-cursed players have correct beliefs on the type contingent strategies

of the opponents. Cursed players have wrong conjectures on the joint distribution

over actions and types but since they cannot revise these conjectures-because they

do not have either the possibility (case (i)) - or the ability to do so (case (ii)) -

additional information would not change their wrong beliefs on the type contin-

gent strategies of the other players. Given these correct and, respectively, wrong

conjectures on the opponents�behavior, each player is best responding to the other

players�equilibrium strategies.

7Note that the di¤erence between this framework and the previous one is that, in the envi-
ronment described above, individuals would have the ability to infer the correlation, but since
they do not observe the realized payo¤s they have no possibility to revise their complete beliefs
in a type contingents way. On the contrary, in the current environment, individuals are in a
sense boundedly rational : they are simply not able to infer the correlation even if they have the
possibility to do it. They update only the marginals over the actions, not being able to learn
any correlation with the types of the opponent.

8We are referring to the "conjectural equilibrium" proposed by Battigalli (1987), Battigalli
and Guaitoli (1997) and discussed in Battigalli et al.(1992)
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2.4 On the relation between Partially Cursed Equilibrium

and Binary Cursed Equilibrium

2.4.1 One-sided incomplete information

For the sake of simplicity, let us consider �rst the situation where player 1 has two

payo¤ types, while player 2 only one. Player 1 is informed about the true state of

nature, while player 2 is not and holds beliefs p2 2 ��1 which coincide with the

commonly known statistical distribution of �1 in population 1. Call (�1; �2) the

generic �-cursed equilibrium for a given � of such a Bayesian game with incomplete

information on the side of player 2.

Consider the BC extension of such a game. Obviously, since player 2�s payo¤

type set �2 is a singleton, player 1 cannot be cursed: T1 = �1 � fNCg, where

�1 =
�
�A1 ; �

B
1

	
. On the other hand, the type set of player 2 coincides with his

cursedness type set T2 =
�
�2
	
�B2. whereB2 = fC;NCg. Let � be the probability

that player 2 is cursed and (1 � �) the probability that he is non-cursed. A

behavioral strategy for player 1 is a function �1 : �1 !4A1; a behavioral strategy

for player 2 is a function �2 : B2 ! 4A2: We denote by r2 : B2 ! A2 a pure

strategy for player 2.

Obviously, in the situation where � = 0 (� = 1) the equivalence between the

equilibrium behavior of the �-cursed player 2 and the average equilibrium behavior

of player 2 in the BC-game is immediately shown by taking � = 0 (� = 1).

We establish now the equivalence between the average equilibrium behavior

in the BC-game, where the population of agents in the role of player 2 is partly

cursed and partly non-cursed and the equilibrium behavior which would arise if
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each individual in the role of player 2 were �-cursed.

Proposition 1 Let (�1; �2) 2 (�A1)�1� (�A2)B2 be a �-cursed equilibrium strat-

egy pro�le of a BC-extension of a Bayesian game with incomplete information on

the side of player 2. There exists � 2 [0; 1] such that (�1; �2) is a �-cursed equi-

librium of the underlying Bayesian game.

Proof

Suppose that player 2 is playing in equilibrium a pure strategy r2. Given that

(�1; r2) is an equilibrium strategy pro�le of the BC-game for a given �, if r2(C)

and r2(NC) are the type contingent (pure) actions played in equilibrium by player

2, the following two conditions must hold:

P
�12�1

P
a12A1

p2(�1)�1(a1)u2(�1; a1; r2(C)) �

P
�12�1

P
a12A1

p2(�1)�1(a1)u2(�1; a1; r2(NC))

and

P
�12�1

P
a12A1

p2(�1)�1(a1j�1)u2(�1; a1; r2(NC)) �

P
�12�1

P
a12A1

p2(�1)�1(a1j�1)u2(�1; a1; r2(C))
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The �rst inequality coincides with the equilibrium condition for player 2 in a

�-Cursed Equilibrium with � = 1, while the second inequality coincides with the

equilibrium condition for player 2 in a �-cursed equilibrium with � = 0. In other

words, (�1; r2(C)) is a �-cursed equilibrium strategy pro�le when � = 1, while

(�1; r2(NC)) is a �-cursed equilibrium strategy pro�le when � = 0.

Given the linearity in � of the expected utility of player 2, there must exist a

degree of cursedness b� 2 [0; 1] such that the b�-cursed player 2 is indi¤erent be-
tween r2(C) and r2(NC), i.e.:

P
�12�1

P
a12A1

p2(�1) [b��1(a1) + (1� b�)�1(a1j�1)]u2(�1; a1; r2(C)) =
P

�12�1

P
a12A1

p2(�1) [b��1(a1) + (1� b�)�1(a1j�1)]u2(�1; a1; r2(NC))

Hence, any mixing between actions r2(C) and r2(NC) is a best response of a b�-
cursed player 2 to �1. Thus,.we can take exactly �2 � � �[r2(C)]�(1��)�[r2(NC)],

the average equilibrium behavior of player 2 in the BC-game, averaged across his

cursedness types, as the best response of a �-cursed player 2:to �1. (�1; �2) is a

�-cursed equilibrium for � = �.

Suppose now that player 2 is playing a strictly randomized strategy �2. Let

(�1; �2) be the equilibrium strategy pro�le of a BC-game. Suppose that both

(cursedness) types of player 2 are playing mixed actions. Call a2 and a02 the two

feasible actions of player 2. It must be the case that both types of player 2 are

indi¤erent between a2 and a02, so that the following holds:
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P
�12�1

P
a12A1

p2(�1)�1(a1)u2(�1; a1; a2) =
P

�12�1

P
a12A1

p2(�1)�1(a1)u2(�1; a1; a
0
2)

and

P
�12�1

P
a12A1

p2(�1)�1(a1j�1)u2(�1; a1; a2) =
P

�12�1

P
a12A1

p2(�1)�1(a1j�1)u2(�1; a1; a02)

Given �1, the two conditions above coincide with the equilibrium condition for

a �-cursed player 2, respectively, for � = 1, the former, and for � = 0, the latter.

Hence, by linearity of the expected payo¤s in �, it must hold that, for any

� 2 [0; 1],

P
�12�1

P
a12A1

p2(�1) [��1(a1) + (1� �)�1(a1j�1)]u2(�1; a1; a2) =

P
�12�1

P
a12A1

p2(�1) [��1(a1) + (1� �)�1(a1j�1)]u2(�1; a1; a02)

Thus, we can take �2 = � � [�2(C)]� (1��) � [�2(NC)] as the �-best response of

player 2 to �1, so that (�1; �2) is a �-cursed equilibrium of the underlying bayesian

game.�
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Proposition 2 Let (�1; �2) 2 (4A1)�1 � �A2 be a �-cursed equilibrium

strategy pro�le of a Bayesian game with incomplete information on the side of

player 2. There exists � 2 [0; 1] and �2 2 (�A2)B2 such that, for each a2 2 A2,

�2(a2) = �2(a2) and (�1; �2) is a �-cursed equilibrium of the BC extension of the

original Bayesian game.

Proof

Given that (�1; �2) is an equilibrium strategy pro�le, for any a2 in the support of

�2 and a02 2 A2 the following inequality holds:

P
�12�1

P
a12A1

p2(�1) [��1(a1) + (1� �)�1(a1j�1)]�

[u2(�1; a1; a2)� u2(�1; a1; a02)] � 0

Let us call d this di¤erence which is a function of �:

Let � = �, � 2 (0; 1). Let us suppose that d(�) > 0. Then it must be the

case that �2(a2) = 1. Given the linearity of the expected utility in � either d(�)

is monotonically increasing or decreasing in �. If d(�) is increasing (decreasing)

in �, then d(1) > 0 (d(0) > 0). If d(1) > 0, the �-cursed equilibrium strategy of

player 2, �2, derived from �2, must be such that �2(a2jC) = 1. If we take � = 1,

we get �2(a2) = 1 = �2(a2). If d(�) is decreasing in � so that d(0) > 0, �2 must

be such that �2(a2jNC) = 1. If we take � = 0, we get �2(a2) = 1 = �2(a2).

Suppose now that d(�) = 0; the �-cursed player 2 is indi¤erent among his two
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possible actions. As above, depending on the expected utility being increasing or

decreasing in � and, consequently, depending on �2(�), take � 2 [0; 1] such that,

for each a2 2 A2 , �2(a2) = ��2(a2jC) + (1� �)�2(a2jNC) = �2(a2).

Since we have taken an arbitrary �, then for any � 2 (0; 1) we must be able to

�nd a � such that the �-average equilibrium behavior of player 2 in the BC-game

exactly replicates the �-cursed equilibrium behavior of player 2 in the original

game.�

Remark: Notice that the preceding propositions only tell us that for any

given �-cursed equilibrium there exists a parameter � for which there exists a

�-cursed equilibrium which coincides with the �-average equilibrium behavior of

the BC-game we started with and vice versa. It is rather straightforward to show

that this statement can be strengthened in the following sense: for any equilib-

rium strategy pro�le � of a BC-game with parameter � denote the corresponding

�-parameter and �-cursed equilibrium strategy pro�le of the underlying bayesian

game by �(�; �) and �(�; �), respectively; similarly let �(�; �) and �(�; �) be

the �-parameter and equilibrium strategy of the BC-game with parameter � as-

sociated with the pair (�; �), where � is some �-cursed equilibrium strategy pro-

�le of a bayesian game. Then the following holds: for any pair (�; �) we have

�(�(�; �); �(�; �)) = � and, analogously, for any pair (�; �), �(�(�; �); �(�; �)) =

�:While interesting in itself, this observation is not really central for our purposes.

Thus we omitt its proof.

2.4.2 Two-sided incomplete information

The equivalence between players�equilibrium behavior in the two frameworks is

less immediate if it is the case that both players have more than one payo¤ type.
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Let us assume that also player 2 holds some payo¤ relevant private information,

so that also the degree of cursedness of player 1 matters now. Recall that, under

the assumption of one-sided incomplete information, given a �-cursed equilibrium,

we only needed to �nd whether there was a � which solved the unique indi¤erence

condition of the unique payo¤ type of the uninformed player. Di¤erently, with two

sided incomplete information, we must �nd a � for each payo¤ type of each player

which leaves him indi¤erent, so that we face a system of indi¤erence conditions.

In this section we show that it is not necessarily true that for any � constant

across players and/or across types for each player we are able to �nd a constant �

such that the �-cursed players�equilibrium behavior replicates the average equi-

librium behavior of both players in the BC-game, and, viceversa, that for any �;

unique for all players and types, we are able to replicate their equilibrium behavior

with their �-average behavior in the BC-game:

We show �rst that, for some constant �, we can �nd a �-cursed equilibrium

outcome that cannot be reproduced as the average equilibrium outcome of the

BC-game.

Counter-example 1

Let us consider a game with two players, each with two payo¤ types, �i =�
�Ai ; �

B
i

	
, i = 1; 2: Suppose that payo¤ types are equally likely. Both players,

and both types of each player, are characterized by the same degree of cursedness,

� 2 (0; 1): The payo¤ matrices are the following:
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�A1 ; �
A
2 l r

U 1; 2 0; 1

D 0; 1 2; 0

�A1 ; �
B
2 l r

U 0; 1 1; 2

D 2; 0 0; 1

�B1 ; �
A
2 l r

U 0; 1 3; 0

D 1; 2 0; 1

�B1 ; �
B
2 l r

U 3; 0 0; 1

D 0; 1 1; 2

Given that l is dominant for �A2 and r is dominant for �
B
2 , in equilibrium, the weight

that the �-cursed belief of player 1 put on action l (r) is �2(l) = 1=2 (�2(r) = 1=2);

according to the average behavior �2 of player 2 that player 1 has in mind. Hence,

we can compute the di¤erence among the expected utility that a �-cursed player

1 with payo¤ type �A1 gets from action U and the expected utility he gets from

action D as:P
�22�2

P
a22A2

p1(�2) [��2(a2) + (1� �)�2(a2j�2)]�

�
u1(�

A
1 ; �2;U; a2)� u2(�A1 ; �2;D; a2)

�
=

1� 3
2
� = dA(�):

Similarly, we can compute the di¤erence among the expected utility that a �-

cursed player 1 with payo¤ type �B1 gets from action U and the expected utility

he gets from action D as:
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P
�22�2

P
a22A2

p1(�2) [��2(a2) + (1� �)�2(a2j�2)]�

�
u1(�

B
1 ; �2;U; a2)� u2(�B1 ; �2;D; a2)

�
=

2�� 1 = dB(�):

While dA(�) is decreasing in �, dB(�) is increasing in �: Moreover, dA(�) > 0

i¤ � < 2=3, while dB(�) > 0 i¤ � > 1=2: So, if we �x any � 2 (1=2; 2=3), both

the �-cursed type �A1 and the �-cursed type �
B
1 of player 1 would choose U in a

�-cursed equilibrium. But, being dA(�) decreasing in � and dB(�) increasing in �,

in order to replicate in the BC-game the �-cursed equilibrium behavior of type �A1 ;

we need to take ��A1 = 0, while to replicate the �-cursed equilibrium strategy of

type �B1 , we need to take ��B1 = 1: Hence, we have found a range of � for which we

cannot reproduce the equilibrium behavior of both payo¤ types of player 1 when

they are partially cursed, taking the same proportion � of fully cursed players in

the sub-population of agents with payo¤ type �A1 as in the sub-population of agents

with payo¤ type �B1 .�

This example suggests that, possibly, a way to establish the equivalence in the

two sided incomplete information case is to allow for more degrees of freedom of

the parameter �: The next step is, indeed, to check if, letting the parameter �

to vary across players and types, we are able to �nd a unique � through wich we

can replicate the average equilibrium behavior of every type of every player in the

BC-game. The next example shows that we are not able to always �nd such a �:
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Counter-example 2

Let us consider a BC-game where both players have two payo¤ types as above

and, besides, they can be either cursed or non-cursed. Suppose that payo¤ types

are equally likely. Let us recall that the cursedness type is payo¤ irrelevant.

We focus on player 1 and �x a vector � such that ��A1 = 0 and ��B1 = 1:

�A1 ; �
A
2 l r

U 1; 1 0; 0

D 0; 2 2; 1

�A1 ; �
B
2 l r

U 0; 0 1; 1

D 2; 1 0; 2

�B1 ; �
A
2 l r

U 0; 2 2; 1

D 1; 1 0; 0

�B1 ; �
B
2 l r

U 2; 1 0; 2

D 0; 0 1; 1

Player 2, when he has payo¤ type �A2 ; plays l with probability one, while, when he

has payo¤ type �B2 ; plays r; independently on his cursedness type. So, given this

type contingent strategy for player 2, the non-cursed type �A1 of player 1 would

play U in equilibrium. Di¤erently, the cursed type �A1 , who believes that player 2 is

playing the average �2 = (1=2; 1=2);would playD. On the contrary, the non-cursed

type �B1 would play D, while the cursed type �
B
1 would play U , i.e.

r1(�
A
1 ; NC) = r1(�

B
1 ; C) = U and r1(�

A
1 ; C) = r1(�

B
1 ; NC) = D.

Hence, since we have �xed ��A1 = 0 and ��B1 = 1; the average equilibrium
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behavior of type �A1 is the same as the average equilibrium behavior of type �B1

and it consists in playing U with probability one.

Let us check if we can replicate the average equilibrium behavior of player 1

with a unique, i.e. type independent, �.

Player 1 prefers U to D for di¤erent values of �, depending on whether he has

payo¤ type �A1 or �
B
1 . When his payo¤ type is �

A
1 , player 1 prefers U to D if and

only if � � 2=3 ��, while when his payo¤ type is �B1 , he prefers U to D if and only

if � � 6=7 � �: Therefore, we cannot replicate the average equilibrium behavior

of the two payo¤ types of player 1 with a unique degree of cursedness for both.�

This second counterexample suggests that we should allow for more degrees of

freedom also on the � parameter�s side. Indeed, it is plausible to assume that dif-

ferent players with di¤erent payo¤ types may be characterized by di¤erent degrees

of cursedness. They might have, for instance, di¤erent abilities in interpreting

opponents�actions and connecting them to opponents�private information. This

di¤erent abilities may come from the amount of experience collected in the past

(before this particular repeated interaction started) or from the particular position

they have in the interaction. It is not natural to assume that agents playing in

di¤erent roles and di¤erent payo¤ types makes mistakes to the same extent. Thus,

on the side of a BC-game, we allow for a payo¤-type dependent probability of

being cursed and we call � the vector of such probabilities, � = ((��i)�i2�i)i=1;2.

Similarly, we allow for a payo¤-type dependent degree of cursedness and we call

� the pro�le of such parameters, � = ((��i)�i2�i)i=1;2. The next two propositions

generalize, respectively, proposition 1 and proposition 2 to the environment of two-

sided incomplete information. Since the proofs to propositions 3 and 4 are very

similar to those of propositions 1 and 2, we do not report them here. They are
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available under request though.

Proposition 3 Let (�1; �2) 2 �
i=1;2

(�Ai)
Ti be a �-cursed equilibrium of a BC-

game, extension of a game with two-sided incomplete information.There exists �

such that the strategy pro�le (�1; �2) 2 �
i=1;2

(�Ai)
�i, with �i(�i) = ��i for each

�i 2 �i, of each player i, is a �-cursed equilibrium of the underlying Bayesian

game.

Proposition 4 Let (�1; �2) 2 �
i=1;2

(�Ai)
�ibe a �-cursed equilibrium of a

Bayesian game with two-sided incomplete information.There exists � such that

(�1; �2) 2 �
i=1;2

(�Ai)
Ti, which satis�es that ��i � �i(�i) for each �i of each player

i, is a �-cursed equilibrium of the BC extension of the original Bayesian game.

2.5 Conclusions

In this paper we have discussed a possible theoretical interpretation of Partially

Cursed Equilibrium. We have shown that individual partial cursedness may be

reinterpreted in terms of binary cursedness. The main advantage of the concept

of binary cursedness is that on the individual level all players are either cursed

or non-cursed and both these types of behavior admit a learning foundation. In

particular, we have discussed two possible speci�cation of the learning framework.

According to the �rst interpretation, non-cursed behavior can be seen as the steady

state behavior of a player who has detailed information about past play. A cursed

player instead may be interpreted as a player whose information does not allow him

to infer the relation between his opponent�s actions and payo¤ types. According

to the second speci�cation, the di¤erence between cursed and non-cursed players

concerns the ability to process the information they hold on past play.
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2.6 Appendix

Proof of proposition 1: partially mixed strategies

Let us suppose now that only one type of player 2 is playing a mixed action. Then

we have either

(i)
P

�12�1

P
a12A1

p2(�1)�1(a1)u2(�1; a1; a2) =
P

�12�1

P
a12A1

p2(�1)�1(a1)u2(�1; a1; a
0
2)

or

(ii)
P

�12�1

P
a12A1

p2(�1)�1(a1j�1)u2(�1; a1; a2) =
P

�12�1

P
a12A1

p2(�1)�1(a1j�1)u2(�1; a1; a02)

where (i) is the equilibrium condition for a cursed player 2, while (ii) is the equi-

librium condition for a non-cursed player 2. If (i) holds, for � = 1 (�1; �2) with �2

such that, for each a2 2 A2, �2(a2) = ��2(a2jC) + (1� �)�2(a2jNC) is a �-cursed

equilibrium. If (ii) holds, for � = 0 (�1; �2) is a �-cursed equilibrium. Hence in

both cases we are able to �nd a � in the unit interval such that the �-cursed player

2�s equilibrium behaviour replicates the average equilibrium behaviour of player 2

in the BC-game.�
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Chapter 3

A Note on the Evolution of

Other-regarding Preferences

3.1 Introduction

Most of the literature which studies the evolutionary foundations of other-regarding

preferences adopts the indirect evolutionary approach (Guth and Yaari (1992) and

Guth (1995)). While the standard approach in evolutionary game theory consists

in investigating whether a strategy is robust to evolutionary selection pressures, the

indirect approach studies whether certain preferences are evolutionarily success-

ful. Suppose there is an heterogenous population composed of di¤erent preference

types (eg. altruistic and sel�sh). Individuals endowed with their speci�c pref-

erences are repeatedly and randomly drawn to play a basic game with material

payo¤s (eg. monetary payo¤s). In each round, players behave rationally, maxi-

mizing their expected utility associated to their own preferences (which does not

necessarily match the underlying expected material payo¤). The evolutive success
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of a certain preference type is evaluated on the basis of the material payo¤s (objec-

tive �tness) induced by the pro�le of strategies adopted. Agents whose preferences

lead to higher material payo¤s (higher �tness) tend to reproduce faster than those

with lower material payo¤s (lower �tness).

It should be noted that the use of this treatment poses a potentially di¢ cult

problem. In fact, while in the traditional approach individuals are identi�ed with

strategies (each agent is programmed to play a speci�c strategy), in the indirect

evolutionary approach individuals are identi�ed with preference types. Conse-

quently, we need to choose a rule which maps pro�le of preferences into behavior

to evaluate the evolutive �tness of a certain preference type given the types of

others. Potentially, we can think of the evolution of preferences as a two-speed

dynamic process. There is a short term adaptation process whereby, given the

preferences composition of the population and the information structure, players

adjust their behavior untill they reach some plausible stationary states (equilib-

rium play). These states in turn constitute the rounds of an overall long term

evolutionary process along which the population composition adjusts according to

a �tness criterion. Thus, the choice of the static solution concept which captures

players�behavior in any relevant state of the evolutionary dynamics (when the

distribution of preferences is given) becomes crucial.

The literature on the evolution of preferences adopts Nash equilibrium (or vari-

ants of it) as a rule to describe behavior in any state of the evolutionary dynamics.

A common feature of these studies is the result that evolution can favor non-

materialistic preferences if players observe their opponents�preference types at

least to some degree. For example, Guth and Yaari (1992) argue that observabil-

ity is the driving force for the evolution of interdependent preferences (altruistic,
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reciprocal,...) by means of a commitment e¤ect. Bester and Guth (1998) show that

when the context exhibits strategic complementarities and the players can observe

their opponent�s preference type natural selections favors altruism. Conversely,

if opponents�preferences are not observable evolutionary forces favor preferences

which coincide with the material payo¤ (Ok and Vega-Redondo (2001) and Ely

and Ylankaya (2001)). In particular, Dekel, Ely and Ylankaya (2007) assume that

in each state of the long term dynamics agents play a Bayesian Nash equilibrium

given their preferences and the information about others�preferences. They show

that, if players know the distribution of preference types in the population but do

not observe the opponent�s preferences any non-Nash equilibrium outcome of the

underlying game with �tness payo¤s can be destabilized by an entering population

with materialistic preferences.

In the next section, we will discuss an application of the indirect evolutionary

approach to the Centipede Game. We will show that by adopting the solution

concept of self-con�rming equilibrium to capture the play in the relevant state of

the dynamics there is room for altruistic preferences to evolve even if preferences

are unobservable. Before going into the details of the model it is worth discussing

two preliminary observations.

The �rst point we want to make is that it is hard to justify the use of Nash equilib-

rium to capture the limit play of the short run adjustment process. Indeed, if we

follow the eductive interpretation of Binmore (1987) and we assume that in each

state of the long term dynamics agents play the basic game only once, we need

to explain how they can logically derive and play a Bayesian Nash equilibrium

(BNE). To justify the play of a BNE, we must necessarily rely on assumptions like

rationality and common certainty of rationality, given the common knowledge of
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the (Bayesian) game. First of all, these assumptions naturally deliver rationaliz-

able pro�le of strategies for Bayesian games and they do not imply in general that

a BNE is played. Secondly, even if they only deliver the unique BNE, they remain

strong epistemological assumptions. Alternatively, we can assume that the equi-

librium play in each state of the long term dynamics is the result of a (short run)

adaptive process (adaptive justi�cation)1. In this case, we would need to be more

explicit about the short-term learning dynamics to show that the play surely con-

verges to a certain BNE. In particular, we should specify what players can observe

regarding the outcomes of previous interactions to explain how they could end

up in equilibrium holding a common and correct belief about the play (whatever

their preferences). For example, in static games, under the assumption of private

values, if a player observes the actions played in every round by the opponent he

can learn the correct probabilities of each of the opponent�s actions2. Di¤erently,

if the underlying game is dynamic to observe only the actions of the opponent may

not be enough. We should be aware that there can exist stationary states that do

not correspond to BNE. Indeed, given a certain ex post information structure the

players�conjectures about the opponents�behavior can be con�rmed even if they

are not correct (and common to all players). With these considerations in mind,

we may want to adopt a weaker solution concept than BNE.

Secondly, we want to stress that observability emerges in the above cited studies

as a necessary condition to sustain the evolutive success of non-materialistic pref-

erences only because it is assumed that in every state of the long-term dynamics

1This is an implicit assumption in Guth and Yaari (1992), Bester and Guth (1998) and Dekel,
Ely and Ylankaya (2007).

2If we had interdependent values (but it is not the typical case in the cited literature) we
would need to assume, for example, that players have access to some public joint statistics on
actions and preference types of the opponent.
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a BNE is played. Indeed, if preferences are not observable, the correctness of con-

jectures about opponents�behavior implies that sel�sh players (expected material

payo¤ maximizers) will always obtain the highest possible payo¤. Consequently,

they will unavoidably perform either the same or better in terms of �tness than

the non-material utility maximizers. If instead preferences are observable, the al-

truists do not succumb when facing a sel�sh, by discriminating their behaviour

dependingly on the type of the player they face.

We suggest that self-con�rming equilibrium (SCE) is an appropriate solution con-

cept to describe the play in the relevant states of the evolutionary dynamics3.

Since self-con�rming equilibrium has a natural learning foundation, it is suitable

to represent the stationary states of the short run adaptive processes. Essentially,

the SCE describes situations where players choose best replies to their conjec-

tures on the opponents�play (rationality condition) and the information on the

equilibrium play revealed ex post, after that the choices have been made, does

not induce them to revise those conjectures, independently on whether they are

correct or not (conjectures�con�rmation property). The feature of a SCE which

matters here is that it allows situations where players hold heterogenous beliefs

about the play as long as these beliefs are not contradicted by the evidence. From

an adaptive perspective we can justify such an equilibrium situation by arguing

that, by behaving di¤erently, individuals with di¤erent preferences may accumu-

late di¤erent experience through the learning process (if they rely only on their

3We will consider the version of SCE proposed by Dekel, Fudenberg and Levine (2004), applied
to extensive form games, similar in the spirit to the notion of conjectural equilibrium proposed
by Battigalli (1987) and Battigalli and Guaitoli (1997). The original version of SCE introduced
in Fudenberg and Levine (1993) is not appropriate in this context: there the ex post information
structure is such that players can observe both the moves of the opponents and of nature. But
if this is the case then ex post observability of preference types is implied.
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own observations). We show in the next section that by weakening in this sense

the assumption of correctness of conjectures we can reach further insights into the

evolution of non-materialistic preferences.

3.2 The indirect evolutionary model

3.2.1 The scenario

Consider a population composed of individuals with heterogeneous preference types

and heterogeneous beliefs whose members interact with each other in pairs. Each

player i can be either an altruistic or a sel�sh type, that is for every i, �i = f�; �g,

where � means altruistic and � sel�sh. An altruistic type aims at maximizing the

joint (material) payo¤, whereas a sel�sh type aims at maximizing his own material

payo¤. We de�ne the material consequences of players�actions with the functions

mi : Z ! R, i 2 N , where Z is the set ot terminal histories. While the utility

of a sel�sh player i coincide with his material payo¤, Ui;�(z) = mi(z), the pref-

erences of an altruistic player i are represented by utility functions of the form:

Ui;�(z) =m1(z) +m2(z):

We denote q the measure of altruistic types in the population. We do not make

any explicit assumption on the players�knowledge of q: players might not have

any clue of the distribution of preference types in the population. Actually, they

might not even be aware of the existence of preference types di¤erent from their

own.

Denote �i;�i(�) 2 �(Sj) the belief of player i with preference type �i on the strategy

of player j.

We assume that players endowed with their preference types and their beliefs are
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repeatedly and randomly drawn to play a two-player game with material payo¤s

(monetary payo¤s). We assume that each individual can end up with a probabil-

ity of 1/2 either in the role of player 1 or player 2. Suppose that players do not

observe at all the preference type of the individual they are matched to play with.

Moreover, suppose that, after having played, they can observe only the actions ac-

tually taken by their co-player. We assume that in each round, given a preference

distribution q and the information structure the agents play a SCE of the under-

lying game. That is, players best respond to their (heterogeneous) conjectures on

the opponent�s behavior by maximizing their perceived expected utility and the

information revealed ex post, after the equilibrium play, con�rm their conjectures.

Each SCE equilibrium play determines the objective �tness of each preference

type involved in the game by means of the material payo¤ obtained by the player

endowed with that preference type. We evaluate the evolution of altruistic pref-

erences by considering a replicator dynamics. Denote m�(q) the average payo¤

of preference types � in a typical state of the evolutionary dynamics where the

fraction of altruists in the population is q. Call m(q) the current average payo¤

in the population. The growth rate for the population fraction q with altruistic

preferences equals the di¤erence between the current average payo¤ of individuals

with these preferences (m�(q)) and the current average payo¤ in the population

(m), that is: dq
dt
= [m�(q)�m(q)] q.

With this scenario in mind, we will next discuss the example of the (three-stages)

Centipede Game. We will consider an evolutionary dynamics where in each state,

given a preference distribution q, players play a SCE of the Centipede Game, given

the ex post information structure speci�ed above and their beliefs on the oppo-

nent�s play in that state. We will show that starting within a large subset of the
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simplex of all possible beliefs such an evolutionary dynamics can favor altruistic

preferences.

3.2.2 The evolutionary Centipede Game

Consider this three periods version of the Centipede Game:

d1 -A

?

D

0B@1
0

1CA

t2 -a

?

d

0B@0
2

1CA

t1 -A0

0B@2
4

1CA

?

D0

0B@3
1

1CA
Figure 1. Centipede Game with Monetary Payo¤s.

Notice that the numbers attached to the terminal nodes represent players�ma-

terial payo¤s (money) and do not necessarily coincide with their utilities.

Suppose that a sel�sh individual drawn to play in the role of player 2 has a sys-

tem of beliefs on the strategies of the co-player 1 satisfying the following conditions:

i) his beliefs on the strategies of player 1 have full support, that is supp�2;�(�) = S1;

ii) he attaches a small probability to action A0 being played after A, that is
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�2;�(AA
0) < 1=3.

Suppose that a sel�sh individual drawn to play in the role of player 1 has a system

of beliefs concerning the strategies that might be played by individuals drawn to

play in 2�s position satisfying the followings:

iii) his beliefs on the strategies of player 2 have full support that is supp�1;�(�) =

S2;

(iv) he attaches a small probability to action a being played by 2, that is �1;�(a) <

1=3.

Such a system of beliefs constitute a "large" relatively open subset of the sim-

plex of all possible beliefs. The unique restriction is that all sel�sh individuals

believe that the strategies AA0 and a are unlikely to be played. According to these

beliefs a sel�sh individual who has to play in 2�s role will choose d, while a sel�sh

individual who has to play in 1�s position will choose DD0:

We do not have to make any restriction on the system of beliefs of an altruistic

type. Indeed, whatever his beliefs, given that he wants to maximize the expected

joint payo¤s, he will play "across" whenever is his turn to move.

To sum up, with the systems of beliefs described above, sel�sh players choose to

stop whenever possible, while altruistic players choose always to continue when

they have the possibility to do so. In every state of the evolutionary dynamics (i.e.

for every q) this pro�le of strategies constitutes a SCE of the underlying game. In

fact, each preference type of each player is maximizing his (perceived) expected
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utility and given the ex post information structure none of them revise his beliefs

on the equilibrium strategies of the opponent. The probability that the strategy

AA0 is chosen by player 1 coincides with the probability that the type drawn to

play in 1�s role is altruistic, that is q, while the probability that DD0 is chosen

coincides with the probability that the type drawn to play in 1�s role is sel�sh, i.e.

(1 � q). Similarly, the probability that a is chosen coincide with the probability

that the type drawn to play in 2�s role is altruistic (q), while the probability of

d is exactly (1 � q). From an adaptive perspective, by sticking with going down

whenever they can, sel�sh players do not have the opportunity to learn these ex-

act probabilities. Expecting D0 after a with high probability, they keep playing

d after A (when they are in 2�s role), so that they are prevented from learning

that actually D0 is never chosen after Aa. Similarly, expecting d after A with high

probability, they keep playing "down" immediately (when they are in 1�s role) so

that they are prevented from learning that the probability of a is q. Their wrong

conjectures will always be con�rm. Di¤erently, altruistic types may end up having

in equilibrium a complete picture of the behavior of the opponent but still the

correctness of their beliefs is not an issue. Given their preferences they choose to

go "across" whenever they have the possibility to do so, whatever their beliefs.

Whether they learn the exact frequencies of each action or not, they would behave

altruistically anyway. What is crucial is that sel�sh individuals do not learn these

exact frequencies and so, dependingly on the value of q, they might perform worse

than altruistic individuals.

We evaluate the evolution of altruistic preferences by considering a replicator dy-

namics, where the replicators are here the preference types.

Recall that the equation of the replicator dynamics is the following: dq
dt
= [m�(q)�m(q)] q.
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We need to compute m�(q), the average SCE-payo¤ of an altruistic type, averaged

across the roles he can take and across the preference types he can face. The

average payo¤ in the sub-population of altruists is then: m�(q) = (
1
2
2+ 1

2
4)q = 3q

(with probability (1 � q) he faces a sel�sh individual and he gets 0 whatever his

role). Similarly, the average payo¤ of a sel�sh type is: m�(q) = (1
2
1 + 1

2
2)q +

(1
2
1+ 1

2
0)(1� q): So, we can compute the average payo¤ in the population, that is:

m(q) = 2q2+ 1
2
q+ 1

2
: Hence, the dynamics is represented by the following equation:

dq
dt
= [m�(q)�m(q)] q =

�
5
2
q2 � 2q3 � 1

2
q
�
, shown in Figure 2.

Figure 2. Replicator Dynamics For The Population Share q of Altruistic Types.

If we have an heterogeneous population (where the measure of altruists is high

enough (>1/4)) individuals with altruistic preferences perform better than indi-

vidual with sel�sh preferences and they can invade the whole population. More

interestingly, Figure 2 and the reasoning above tell us that a population of all

altruists is not vulnerable with respect to the injections of a small share of sel�sh

individuals.
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3.3 Conclusion

The literature on the evolution of preferences displayed a common result: condi-

tional on playing some (Bayes) Nash equilibrium in every state of the evolutionary

dynamics (when the preferences are �xed), only sel�sh individuals survive if the

preference types are not observable. We have shown that by adopting the weaker

solution concept of SCE, which allows for heterogenous beliefs across preference

types, there is room for altruistic preferences to evolve even if preferences are not

observable. Hence, adopting self-con�rming equilibrium as a rule to pin down be-

havior in the relevant states of the evolutionary dynamics is promising and on top

of all considerations it has a natural learning foundation.

It is worth noticing that we selected a particular self-con�rming equilibrium and

that, of course, there may be many for the same ex post information structure.

However, we allowed for a very large set of initial beliefs imposing some restrictions

only on the system of beliefs of sel�sh types. Nonetheless, the restrictions we have

imposed are quite plausible: sel�sh players believe that the opponent will behave

in the same way as they would behave if they were in his shoes. The implicit

assumption is that they use introspection to form their beliefs.

Moreover, we have assumed that players in every state of the long term process

play a self-con�rming equilibrium as if they learned to play it. That is, we did not

model explicitly the short-term learning dynamics that would lead to play that

speci�c self-con�rming equilibrium. By virtue of the fact that a self-con�rming

equilibrium can be typically learnt in an adaptive way, it would be interesting

to describe the short-term behavioral adaptation. This analysis would more ex-

tensively support the choice of self-con�rming equilibrium as a rule of mapping
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preferences into behavior in the relevant state of the long-term evolutive process.
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Chapter 4

The Evolution of Preferences in

the Game of Life

4.1 Introduction

In this chapter we present the project "The evolution of Preferences in the Game

of Life". We intend to study the evolution of other-regarding preferences using

an indirect evolutionary approach and assuming that individuals can play many

di¤erent games. We assume that there is ah heterogenous population made of

individuals with various preference types who have to choose which games to play

and which strategy to take within each game. For a given statistical distribution of

preference types in the population, choices of strategies within games and choices

of games must be in equilibrium at the same time. Such equilibrium con�gurations

constitute the relevant state of the long-run evolutionary dynamics along which

preferences adjust. The evolutionary success of a preference type is evaluated on

the basis of its objective �tness, that is the average material payo¤ of all the

57



individuals with that preference type.

To the best of my knowledge, the literature on the evolution of preferences

has been exclusively focused on the study of the evolutionary performance of pref-

erence types within the context of a single game. The most general model that

comes to my mind is the one introduced by Dekel, Ely and Ylankaya (2007). The

authors discussed the evolution of "subjective" (non-material) preferences consid-

ering the set of all possible modulus a¢ ne transformation utility functions. Still

they assumed that the evolution of such preferences unfolds within a single game

belonging to the class of static two-by-two simmetric games. Hence, the major

departure of our work from the previous studies is the assumption that individuals

play a game of life, meaning that they potentially play at the same time many

di¤erent games belonging to an arbitrary and large set of strategic interactions.

We do not impose any restriction on the classes of games that might be played:

they could be either static or dynamic and the number of players (roles) might vary

across games. We do believe that such an extension in the study of the evolution

of preferences can provide more insights on the relative evolutionary performances

of di¤erent preference types and so a theoretical justi�cation to the existence of

heterogeneous agents. Some preference types might bene�t from playing certain

games while they underperform with respect to others in some other games. Triv-

ially, "tougher" players choose "tougher games". By assuming that evolution takes

place within the play of a single game we cannot develop this intuition. By con-

sidering the game of life, instead, we can fully take into account eventual cross

bene�ts that some preference type might exploit by playing various games.

As we have seen in the previous chapter, most of the literature on the evolution

of preferences concludes that some degree of observability of the preference type of
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the co-players is needed in order to justify the existence of an heterogenous pop-

ulation. Suppose that there are only altruist and sel�sh agents in the population

who meet each other in the play of a single (two by two) game. If we assume that

before playing players do not observe each other�s preference type and they play

a (Bayesian) Nash equilibrium, it is hard to conclude that an altruist can perform

better (in average) than a sel�sh agent. We have shown in the previous chapter

that if we weaken the solution concept observability is not needed to justify the

survival of altruists. Here, we want to go further. Similarly to Dekel, Ely and

Ylankaya (2007) and Heifetz, Shannon and Spiegel (2006) we assume that prefer-

ences can be represented by a generic utility function. In particular, we assume

that the utility each player gets from a strategy pro�le is given by his material

payo¤ and a disposition term which accounts for any kind of subjective prefer-

ences (e.g. altruism, reciprocity, envy etc). We will stick with the assumption

that players do not receive any signal of the co-players� preference types when

matched to play. Our intuition is that individuals with similar preference types

tend to concentrate on the same subsets of games. This would imply that, on one

hand, non-sel�sh individuals can gain advantages from playing with types similar

to their own and, on the other hand, sel�sh individuals cannot exploit completely

their strategic advantages. In a nutshell, the distance between the evolutive perfor-

mance of a sel�sh agent and the performance of a non-material payo¤ maximizer

would be tempered.

It is worth noticing that to study the evolution of preferences in a very generic

game of life pose many di¢ culties. Individuals belong to an heterogeneous popula-

tion with all possibile preference types. Each of them faces many di¤erent games.

Given a distribution of preference types in the overall population and given their
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conjectures on the equilibrium plays within each game, individuals choose the

games to play via expected utility calculations. Their choices of games in�uence

the statistical distribution of preference types within each game and consequently

determine a distribution over equilibrium strategy pro�les. This complex structure

leaves few space for adopting solution concept weaker than (Bayesian) Nash equi-

librium to capture the play within each game. For simplicity, we will assume that

the equilibrium play within games is described by a Bayesian Nash equilibrium.

For what concerns the equilibrium play across games we assume that a Quantal Re-

sponse Equilibrium (QRE) is played (McKelvey and Palfrey (1995)). The Quantal

Response Equilibrium assumes that better strategies are played more often than

worse strategies but best strategies are not always played. The intuition is that

the individual�s expected utility from a strategy pro�le is subject to a random

error. This implies that players do not compute the exact best responses to their

conjectures. We will apply this concept to the choices of games: the probability

of choosing a given game is a smoothly increasing function ot the average payo¤

for that game.

The Bayesian Nash equilibrium plays within games and the quantal response

equilibrium in the (mixed) choices of games together form the overall equilibrium

con�guration in each relevant state of the long-run evolutionary dynamics. In

this states we can pin down the average (material) payo¤ of each individual and

hence the average (material) payo¤ of each preference type in the population. The

relative objective �tness of each preference type is then the drive for the evolution

of preferences via a replicator dynamics.

In the next section we describe the formal model we have in mind.
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4.2 The model

Consider a population composed of individuals with heterogeneous preference types.

This population is large but �nite. Call � the set of all possible preference types

in the population and � 2 � the generic type. We only assume that � � R and it

contains a neighborhood of 0. We call � the probability distribution on �; repre-

senting the distribution of preferences in the overall population (in a given state

of the long-run evolutionary dynamics). We denote by H = f1; :::; hg the �nite set

of individuals and by i 2 H the generic individual. There is a �nite set of games

individuals might play, G =
�
g1; :::; gL

	
with tipical element gl. The available

games are the same for all individuals. We denote the �nite set of players (roles)

of the generic game gl by N l = f1; :::; nlg and by j 2 N l the generic player of gl.

Together with a preference type, every individual i 2 H is endowed with a pro-

�le of game-speci�c probability distributions over the set of possible roles, namely

�i = (�
l
i)l=1;:::L. We denote by (�

l
i(j))j2N l the array of probability measures over

roles in game gl for individual i, where �li(j) is the probability that individual i

takes role j in game gl according to the distribution �li. Obviously, for every indi-

vidual i and every role j 2 N l, �li(j) � 0 and
P
j2N l

�li(j) = 1. We assume that roles

and preference types are independent. The idea is that each individual takes in gl

a certain role according to some personal characteristics. These personal charac-

teristics, as for example the sex, the social status, the occupation etc., determine

the propensity of individual i to �t some roles instead of others. Trivially, if an

agent is a male he will hold (with probability one) the position of the man in a

�battle of the sexes�game. Similarly, if we consider a �rm active in a �entry game�,

it might be either an incumbent or an entrant depending upon its position in the
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market. It may also be the case that in a certain �entry game� (e.g. a certain

market) a �rm can be quali�ed as an incumbent while in another �entry game�

(e.g. another market) it can be quali�ed as an entrant. Moreover, we need to take

into account the possibility that an individual does not always play the same game

in the same role but he might play in di¤erent roles with di¤erent frequencies.

We focus �rst on players� interaction at the level of the generic game gl and we

then discuss individuals�choice of games. Indeed, given the (expected) equilibrium

play in each game and the associated average utility, each individual chooses which

games to play. An agent playsmore frequently games from which he expects higher

(subjective) utility.

Before going into details, it is worth clarifying some crucial features of the

model. In particular, we need to explain where the statistical distribution of

preference types of the generic player j in game gl comes from. In a standard

analysis of the evolution of preferences, the preference type of player j would

be randomly drawn from �, the distribution of preference types in the overall

population. Di¤erently, in our context, the preference type of a player in game gl

is randomly drawn from a distribution which has as observation space a subset of

the overall population. This subset is endogenously determined. Indeed,a generic

player j of a game gl is an individual i with a certain preference type �i who has

chosen to play gl (at least with positive probability) according to expected utility

considerations and takes the role of player j according to a certain (individual

speci�c) probability distribution. Hence, the fraction of individuals in the role of

player j in game gl with preference type �j is in�uenced by the fraction of preference

type �j in the overall population, by the frequency with which each individual with

that preference type plays the game gl and by the probability distributions over
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roles in game gl of all individuals with preference type �j active in gl. We denote

by qlj 2 �(�j) the statistical distribution of �j within the sub-population j in

game gl. We call q the pro�le of such statistical distributions, ql = (qlj)j2N l.

4.2.1 Equilibrium play within games

Preferences over strategy pro�les

Consider the generic game gl. Every player j in game gl is endowed with a pref-

erence type �j 2 �. Call Sj the set of possible strategies of player j with generic

element sj. 1We call �j a mixed strategy of player j, de�ned as �j : �j ! �(Sj),

�j(sjj�j) being the probability that agent j chooses strategy (or action) sj 2 Sj

when his preference type is �j: Denote �j = (�Sj)�j the set of feasible strategies

for player j. We call � the generic strategy pro�le and � the set of such pro�les,

� =
Q
j2N l

�j.

We assume that the preferences of a player over strategy pro�les are a distortion

of the true (material) payo¤. The wedge between a player�s objectives and actual

payo¤s is the disposition of the player toward a strategy pro�le and it depends on

his preference type. This disposition term is private information to player j. We

assume that the utility of player j with preference type �j from strategy pro�le �

is:

uj(�; �j) = mj(�) + �j(�; �j)

where mj(�) is the material payo¤ from strategy pro�le � while �j(�; �j) is

the disposition of player j from strategy pro�le � when his preference type is �j,

1For static games sj is a feasible action. For what concerns dynamic games, we treat them in
their normal form representation. This does not pose any problem as long as we are using BNE
as a solution concept.

63



�j : � � �j ! R: We assume that when �j = 0, player j�s utility form strategy

pro�le � coincides with j�s material payo¤mj(�), that is for every j, �j(�; 0) = 0.

That is to say that when �j = 0, j is a sel�sh player.

Bayesian Nash Equilibrium play

Given the pro�le of statistical distributions q associated to the basic game gl, we do

have a Bayesian game �l(q):We assume that aggregate play of the sub-population

involved in game gl corresponds to a Bayesian Nash equilibrium (BNE) of �l(q).

Each individual upon being selected to play holds a correct conjecture about the

distribution of his opponents�play and chooses a mixed strategy that is a best

reply to this conjecture given his own preference type. Call Bl(q) the set of all the

BNE of the (bayesian) game �l(q):

4.2.2 Equilibrium play across games

In the previous section we described the equilibrium play within each single game.

We now discuss the overall equilibrium play in each relevant state of the long-

run evolutionary dynamics, which includes the individuals�choices of games. The

adoption of Nash equilibrium (or re�nements of it) would not �t our purposes.

Indeed, it would not be plausible to assume that each individual chooses a unique

game to play and precisely the game which gives him in expected terms the highest

utility among all. It is more realistic to assume that an individual gets into di¤erent

strategic contexts in his everyday life and chooses to handle some of them. Among

the strategic interactions he decides to stick with, there might be some which he

decides to face more frequently than others. It is quite natural to assume that

the higher the utility he expects to get from a game the higher the frequency with
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which he plays that game with respect to others. The choice of one game over

another then becomes dependent of the magnitude of the di¤erence in terms of

expected utility. Still inferior games might be played with positive probability.

This is a feature that cannot be captured by strong rationality assumptions as the

ones involved by the Nash equilibrium notion.

On the contrary, the probabilistic choice approach of the quantal response equi-

librium introduced by McKelvey and Palfrey (1995) can provide us with the proper

framework to describe these aspects. Since the quantal response equilibrium de-

scribes the probabilistic choice of strategies in a given game, we need to modify

the framework so that it can �t the description of the choice of games given the

BNE plays in every single game. In our context, the decision makers are the indi-

viduals themselves with their preference types and their probability distributions

over roles within games.

The quantal response equilibrium in the choices of games

We assume that all individuals have access to the set of all available games G =�
g1; :::; gL

	
. We denote gil the choice of individual i to play game gl only. We call

such a choice pure life strategy. We denote �i a mixed life strategy of individual

i, which speci�es the probability measures attached by individual i to each of the

available games, that is �i = (�i(gl))l=1;:::L, �i 2 �i: Denote by �il the probability

that individual i plays game gl, i.e. �il = �i(gl). Call � =
Q
i2H

�i the set of mixed

life strategy pro�les. We denote by g = (g1; :::; gh) the pro�le of pure life strategies

of all individuals in the population and by � = (�1; :::; �h) the pro�le of their mixed

life strategies.

Given a mixed life strategy pro�le � individual i�s average utility from � is
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�i(�) =
P
g

p(g)�i(g) where p(g) =
Q
i2H

�i(gi) is the probability distribution over

pure life strategy pro�les induced by �. Denote by �il(�) the average utility of

individual i of adopting the pure life strategy gil when the other individuals in the

population use ��i, that is �il(�) = �i(gil; ��i): We assume that for each pure life

strategy gil there is an additional privately observed payo¤ disturbance "il so that

the disturbed average utility of individual i from gil becomes:

b�il(�) = �il(�) + �i"il
where �i , a strictly positive real number, is the error rate.

We denote by "i individual i�s pro�le of random errors, "i = ("i1; :::; "iL) and

we assume that this vector is distributed according to a joint distribution with

density function fi("i). The marginal density of fi exists for each "il and errors

are unbiased, i.e. E("i) = 0. If these two properties are satis�ed for all i, we call

f = (f1; :::; fh) admissible.

We assume that each individual chooses life strategy gil when b�il(�) � b�ik(�)
for all k = 1; :::; L:Given this decision rule, the probability that individual i chooses

game gil is:

Pil(�i) = Pr
h
�il��ik
�i

> "il � "ik; for all k 6= l
i

Hence, � = (�1; :::; �h) and f = (f1; :::; fh) induce a probability distribution

over the actual choices of each individual. Let us assume that for every individual

the random errors are independent and that all fi�s have an extreme value dis-

tribution. These assumptions imply that the probability that individual i selects

game gl given �i is:

Pil(�i) =
exp(�il=�i)
LP
k=1

exp(�ik=�i)

66



Pil which maps �i into �iis called logistic quantal response function.

De�nition 1 Let f be admissible. A Quantal Response Equilibrium (QRE) is any

vector �� 2 � such that for all i 2 H and l = 1; :::; L,

��il = Pil(�i(�
�)):

Matching technology

A QRE in the choices of games induces a probability distribution over pro�les

of pure life strategies (games). Since every individual i 2 N is endowed with a

preference type, from the probability distribution over pro�les of games we can

derive for each game gl a probability distribution of preference types in the sub-

population active in gl. We assume that players (roles) are independently drawn

from this distribution. Recall that, together with a preference type, every individ-

ual is also endowed with a distribution over the roles of each game. So it might

be the case that in game gl an individual i is drawn to play in a role j in which

he does not want or simply he cannot play, i.e. �li(j) = 0. We call a matching

of this sort incompatible. Incompatible matchings are not enforced, meaning that

players simply do not play the game untill a compatible matching occurs. The

probability that a player j has a certain preference type �j is the sum of the prob-

abilities of those compatible matches where the individuals drawn to play in the

role of that player are endowed with preference type �j. So, given � and a game

gl 2 G, given the pro�le of the mixed life strategies of all individuals and given the

individual-speci�c probability distributions over roles within games, we can de-

rive the induced probability measures of preference types in each sub-population

involved in a role j of gl, i.e. (qlj(�j))�j2�.
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4.2.3 The overall equilibrium con�guration

So an equilibrium con�guration of the game of life is characterized by a distribution

of preference types in the population �, a QRE �� which represents a distribution

of preference types over games and together with � induces a distribution of pref-

erence types within games and a set of BNE Bl(q�) within each game gl. Hence,

we can name such equilibrium con�gurations by the triple (�; ��; (Bl(q�))l=1;:::L).

De�nition 2 In each relevant state of the long-run evolutionary dynamics a triple

(�; ��; (Bl(q�))l=1;:::;L) is an equilibrium con�guration if

i) �� is a quantal response equilibrium and

ii) q� = q(��; �) induce Bl(q�) such that no individual i has incentive to change

��i .

Fitness: evolution of preferences and stable con�gurations

We follow the indirect evolutionary approach which adopt �tness as a criterion

to evaluate the evolutionary success of a certain preference type. The �tness of

a preference type in a given state of the long-run evolutionary dynamics is the

average of all material payo¤s of individuals with that preference type. In our

context the average material payo¤ of a preference type is in�uenced by:

i) the distribution of preferences in the overall population �;

ii) the pro�le of distributions over roles of each individual in each game �;

iii) the equilibrium probability measures of pure life strategy pro�les �� and

iv) the equilibrium play within each game.

We assume that preferences evolve according to a replicator dynamics. As in

the standard literature, we assume that an overall con�guration is stable if all types
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receive the same average �tness and if the statistical distribution of preferences

resists entry by mutants.

4.3 Expected results

We do believe that this project is promising along two main directions. First of

all, the innovative approach of the game of life instead of the play of a single game

provides a more complete description of the relative advantages that di¤erent pref-

erence types can gain when facing di¤erent strategic situations. Some preference

types may be evoutionary successful in some games and succumb in others. We

expect that individuals will choose games from which they expect an higher av-

erage payo¤s. Given the equilibirum con�guration we have set, these expected

payo¤s coincide with the true average payo¤s. Hence, individuals will choose more

frequently games that give them an higher objective �tness.

Secondly, it is plausible to expect that similar preference types will tend to

concentrate on the same subsets of games. This implies, for example, that altruists

will meet more frequently other altruists than sel�sh players, so that they can reach

e¢ cient outcomes and exploit strategic advantages that allow them to survive. It

is worth noticing that observability of others�preference types (before playing) will

not be necessary for preference types other than sel�sh to survive in the long-run.

It goes without saying that the necessary condition of observability is the major

limit in the studies on the evolution of preferences. It is indeed plausible to assume

that players receive some kind of signals in certain strategic context, for example

when they are facing repeatedly the same subset of individuals (trivially when

they know eachother). Though, in many strategic situations players� identities

and characteristics are anonymous. Our model will promisingly overcome this
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di¢ culty.

We expect to get a stable con�guration with an heterogenous population. Plau-

sibly, there will be a large fraction of sel�sh individuals. At the same time though,

there is room for other preference types to survive, because they frequently meet

individuals with characteristics similar to their own.
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