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ABSTRACT ACTION SPACES AND THEIR TOPOLOGICAL AND

DYNAMIC PROPERTIES

RICCARDA ROSSI AND GIUSEPPE SAVARÉ

Abstract. We introduce the concept of action space, a set X endowed with an action cost
a : (0,+∞) × X × X → [0,+∞) satisfying suitable axioms, which turn out to provide a
‘dynamic’ generalization of the classical notion of metric space. Action costs naturally arise
as dissipation terms featuring in the Minimizing Movement scheme for gradient flows, which
can then be settled in general action spaces.

As in the case of metric spaces, we will show that action costs induce an intrinsic topo-
logical and metric structure on X . Moreover, we introduce the related action functional on
paths in X, investigate the properties of curves of finite action, and discuss their absolute
continuity. Finally, under a condition akin to the approximate mid-point property for metric
spaces, we provide a dynamic interpretation of action costs.

Dedicated to Pierluigi Colli on the occasion of his 65th birthday

1. Introduction

Since the pioneering work by E. De Giorgi [DG93], which was inspired the approach by
Almgren, Taylor and Wang to the mean curvature and other geometric flows, Minimizing
Movements have become a paradigmatic tool for constructing solutions to a large class of
evolutionary problems.

In its full generality, the Minimizing Movement scheme consists in finding, for a given time
interval [0, T ] and a time step τ > 0 inducing the uniform grid 0 < τ < 2τ < · · · < Nττ , with

Nτ ∈ N such that (Nτ −1)τ < T ≤ Nττ , discrete solutions (U
n
τ )

Nτ

n=0 in some topological space
X, as solutions of the following recursive family of minimum problems

Un
τ ∈ argmin

V ∈X
F (τ, n, Un−1

τ ;V ), n = 1, . . . , Nτ , (1.1)

with U0
τ = u0 a given initial datum, where F : (0,+∞) × N × X × X → R ∪ {+∞} is

a suitable functional. Minimizing Movements are limits as τ ↓ 0 of the piecewise constant
interpolations Uτ of the values Un

τ , viz. Uτ : [0, T ] → X, Uτ (t) := Un
τ if t ∈ ((n − 1)τ, nτ ].

A particularly significant example arises in the case of gradient flows of a time-dependent
functional E : [0, T ]×X → R∪{+∞}, with respect to a metric d onX: the related Minimizing
Movement scheme corresponds to a functional F of the form

F (τ, n, U ;V ) :=
1

2τ
d2(U, V ) + E (nτ, V ). (1.2)

Under suitable assumptions on E , the approximate solutions defined by interpolation of the
discrete values (Un

τ )
Nτ

n=0 converge to a curve of maximal slope [Amb95, AGS08, RMS08].

R.R. acknowledges support from the PRIN project PRIN 2020: “Mathematics for Industry 4.0”. G.S. ac-
knowledges support from the PRIN project “PRIN 202244A7YL: Gradient Flows and Non-Smooth Geometric
Structures with Applications to Optimization and Machine Learning”.
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In the applications, gradient flows model processes whose temporal evolution results from
the trade-off of energy conservation and energy dissipation. Dissipative mechanisms are then
encoded in the metric d. In the general case, dissipation may be mathematically modelled
by functionals of the type ψ(d), with ψ : [0,+∞) → [0,+∞) a convex function null at 0 (the
gradient-flow case corresponding to ψ(r) = 1

2r
2). The corresponding functional generating

the Minimizing Movement scheme, i.e.

F (τ, n, U ;V ) := τψ

(
d(U, V )

τ

)
+ E (nτ, V ) , (1.3)

for a general (convex) ψ with superlinear growth at infinity, has been tackled in [RMS08]
(cf. also [CRZ09]). The linear-growth case ψ(r) = r falls into the realm of rate-independent
evolution [MM05, MR15].

It is then natural (see [PRST22]) to study more general MM-functionals F of the form

F (τ, n, U ;V ) := a(τ, U, V ) + E (nτ, V ), (1.4)

where a : (0,+∞) × X × X → [0,+∞) can be interpreted as a sort of action functional,
measuring the cost for moving from the point U to the point V in the amount of time τ > 0.
The structure (1.4) still preserves the natural splitting between a driving energy functional E

and a metric-like dissipation functional a, which however is not derived from a given metric
d on X.

The structural property which takes into account the heuristic interpretation of a is the
concatenation inequality

a(τ1 + τ2, u1, u3) ≤ a(τ1, u1, u2) + a(τ2, u2, u3) ui ∈ X, τi > 0, (1.5)

which may also be interpreted as a dynamic version of the triangle inequality for a metric.
Still inspired by the axioms of metrics, we will focus on actions that vanish only on the

diagonal of X ×X and are symmetric, i.e. for all τ > 0, u0, u1 ∈ X,

a(τ, u0, u1) ≥ 0; a(τ, u0, u1) = 0 ⇔ u0 = u1, (1.6)

a(τ, u1, u2) = a(τ, u2, u1). (1.7)

Hereafter, we will term action cost any function complying with (1.5), (1.6), & (1.7) and
action space a pair (X , a) given by a set X and an action cost a. Under further compatibility
conditions between a and the driving energy functional E , in [PRST22] it has been shown
that the approximate solutions arising from the Minimizing Movement scheme generated
by the functional F from (1.4) converge to a curve fulfilling a suitable Energy-Dissipation
(in)equality that in fact generalizes the metric formulation of gradient flows. In particular,
the Minimizing Movement scheme (1.4) can be set up in the general framework of action
spaces, in which a is not induced by an underlying metric on the ambient space X.

It is easy to check that properties (1.5), (1.6), & (1.7) are satisfied by all functions of the
form a(τ, u, v) = τψ

(
1
τ d(u, v)

)
, where ψ : [0,+∞) → [0,+∞) is a convex function vanishing

only at 0. The class of action costs, however, is much larger and includes diverse functionals.
Paradigmatic examples are provided by costs arising from the minimization of a suitable
action functional: when X = R

d we can define

a(τ, u, v) := inf

{∫ τ

0
R(Θ(r),Θ′(r))dr : Θ ∈ AC([0, τ ];Rd) Θ(0) = u, Θ(τ) = v

}
, (1.8)

with R : Rd × R
d → [0,+∞) such that R(Θ, ·) is convex, superlinear and vanishes only at 0

(cf. Sec. 2 for all details). We emphasize that, while Riemannian-Finsler metrics are defined
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by infimizing an action integral which is positively 1-homogeneous with respect to the velocity
variable, here we allow for general convex integrands.

The other main motivating example is provided by the so-called Dynamical-Variational
Transport (DVT) costs, which generalize transport distances between measures. Their def-
inition in [PRST22] has been indeed inspired by the well-known dynamic reformulation of
the Wasserstein distance W2 advanced by Benamou & Brenier [BB00], cf. also [DNS09,
Maa11, Mie13]. Another notable and inspiring construction for the present paper has been
proposed in [FGY11], where the authors extended the Minimizing Movement scheme, and
De Giorgi’s interpolation techniques [DG93, Amb95], to carry out a variational analysis of
PDEs that are not gradient flows but, still, possess an entropy functional and an underlying
Lagrangian. It is in terms of this Lagrangian, which also depends on the spatial variable, that
they defined an action integral and, ultimately, an action cost for the Minimizing Movement
scheme.

Now, in the same way as the ‘action integral cost’ a (1.8) generalizes the standard con-
struction of Riemann-Finsler metrics, so do DVT costs extend transport distances between
measures. In fact, given two positive finite measures µ0, µ1 on R

d (for simplicity; more general
state spaces have been considered in [PRST22]), the cost for connecting them over a certain
interval [0, τ ] is defined by minimizing a suitable action integral over curves of measures
joining µ0 to µ1 and solving the continuity equation on (0, τ) with flux j:

a(τ, µ0, µ1) := inf

{∫ τ

0
R(ρ(r), j(r))dr : (ρ, j) ∈ CE(0, τ), ρ(0) = µ0, ρ(1) = µ1

}
(1.9)

(where CE(0, τ) denotes the family of solutions to the continuity equation on (0, τ)).
Because of the flexibility and frequent occurrence of action structures in the variational

approach to evolutionary problems, we believe that action spaces deserve to be studied in
their own right: like in the case of metric spaces, we will show that they induce a natural
(metrizable) topology, an intrinsic notion of completeness, and canonical action functionals
on X-valued paths.

Plan of the paper. In this note we develop a systematic analysis of a space X endowed
with an action cost a. We introduce the main definitions with relevant examples in Section
2. In Section 3 we will show that an action cost a induces a canonical topology O on X, cf.
Proposition 3.1. In fact, it even generates a uniform structure on X , namely a topological
structure (whose precise definition is postponed to Proposition 3.3 ahead) by means of which
it is possible to render the concept that two points in X are ‘close’ and to define an intrinsic
notion of completeness. Since this uniform structure has a countable base, the associated
topology O is metrizable. Indeed, in Section 4 with Theorem 4.5 we explicitly provide a family
of equivalent metrics da,λ metrizing the topology O and inducing the uniform structure.

As shown in [PRST22], the Minimizing Movement scheme (1.4) leads to limiting curves u
with finite a-action on [0, T ], i.e. such that

A(u; [0, T ]) := sup





M∑

j=1

a(tj − tj−1, u(tj−1), u(tj)) : (tj)Mj=0 ∈ Pf ([0, T ])



 < +∞

(where Pf ([0, T ]) denotes the set of all partitions of [0, T ]). In Section 5 we focus on these
curves and show that they indeed have BV-like properties. In particular, when (X, a) is
complete they are regulated in the O-topology, hence their jump set is well defined. We then
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turn to a-absolutely continuous curves u : [0, T ] → X in Section 6, for which an action density
a[u′] can be introduced, fulfilling

a(t−s, u(s), u(t)) ≤

∫ t

s
a[u′](r)dr for all 0 ≤ s ≤ t ≤ T

and

A(u; [0, T ]) =

∫ T

0
a[u′](r)dr .

In Section 7 we provide a sufficient condition on the metric cost ensuring that all finite-action
curves on [0, T ] are in fact a-absolutely continuous on [0, T ], cf. Theorem 7.3. Finally, in
Section 8 we demonstrate that, under an additional condition on a which amounts to the
existence of ‘approximate mid-points’, a dynamic characterization for a is available, cf. Thm.
8.2, Thm. 8.3 and Corollary 8.4. In this way, we somehow ‘close the circle’ by providing, for
general costs a, a dynamic interpretation akin to (1.8) for action integral costs, and to (1.9)
for Dynamical-Variational Transport costs.

This paper is dedicated to Pierluigi Colli: it is a privilege for us to have him as a valuable

colleague and, more importantly, as a loyal friend.

2. Action spaces

In this section we introduce the main definitions we will deal with and we show some
important examples.

Definition 2.1 (Action cost). We say that a function a : (0,+∞)×X ×X → [0,+∞) is an
action cost on the set X if it satisfies the following properties:

(1) Strict positivity off the diagonal: For all τ > 0, u0, u1 ∈ X,

a(τ, u0, u1) = 0 ⇔ u0 = u1. (2.1a)

(2) Symmetry: For every τ > 0, u1, u2 ∈ X

a(τ, u1, u2) = a(τ, u2, u1) for all τ ∈ (0,+∞), u1, u2 ∈ X . (2.1b)

(3) Concatenation inequality: For all u1, u2, u3 ∈ X and τ1, τ2 ∈ (0,+∞)

a(τ1 + τ2, u1, u3) ≤ a(τ1, u1, u2) + a(τ2, u2, u3). (2.1c)

We call action space a pair (X , a) consisting of a set X endowed with an action cost a.

As mentioned in the Introduction, a(τ, u0, u1) represents the cost to reach u1 from u0 in
the amount of time τ > 0.

A first important consequence of (2.1a) and (2.1c) is the monotonicity property w.r.t. τ :

0 < τ ′ < τ ′′ ⇒ a(τ ′, u0, u1) ≥ a(τ ′′, u0, u1) for every u0, u1 ∈ X. (2.2)

In order to check (2.2) it is sufficient to notice that

a(τ ′′, u0, u1) ≤ a(τ ′, u0, u1) + a(τ ′′ − τ ′, u1, u1) = a(τ ′, u0, u1),

so that the map τ 7→ a(τ, u0, u1) is decreasing. Estimate (2.2) renders the intuitive property
that the ‘cost for connecting’ u0 and u1 decreases if they are joined over a longer time interval,
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and it is a consequence of the positivity of a and the fact that “staying” at the same point is
costless. In particular, we can define

a+(τ, u0, u1) := inf
τ ′<τ

a(τ ′, u0, u1) = lim
τ ′↑τ

a(τ ′′, u0, u1), (2.3a)

a−(τ, u0, u1) := sup
τ ′′>τ

a(τ ′′, u0, u1) = lim
τ ′′↓τ

a(τ ′′, u0, u1), (2.3b)

observing that

a−(τ, u0, u1) ≤ a(τ, u0, u1) ≤ a+(τ, u0, u1) for every τ > 0, u0, u1 ∈ X.

It is easy to check that

Proposition 2.2. If a is an action cost on X then the functions a− and a+ defined by (2.3a,b)
are action costs as well.

Proof. Let us just check the concatenation inequality for a+, as the corresponding property
for a− follows by a similar argument. For τ1, τ2 > 0, u1, u2, u3 ∈ X, ε ∈ (0, τ1 ∧ τ2) we have

a(τ1 + τ2 − 2ε, u1, u3) ≤ a(τ1 − ε, u1, u2) + a(τ2 − ε, u2, u3).

Passing to the limit as ε ↓ 0 we obtain

a+(τ1 + τ2, u1, u3) ≤ a+(τ1, u1, u2) + a+(τ2, u2, u3). �

We also set

asup(u0, u1) := sup
τ>0

a(τ, u0, u1) = lim
τ↓0

a(τ, u0, u1) ∈ [0,+∞] . (2.4)

Definition 2.3 (Continuity and superlinearity). We say that the action cost

- a is continuous if for every u0, u1 ∈ X the map τ 7→ a(τ, u0, u1) is continuous. Equiv-
alently, if

a+(τ, u0, u1) = a−(τ, u0, u1) for every τ > 0, u0, u1 ∈ X; (2.5)

- a is metric-like if asup(u0, u1) < +∞ for every u0, u1 ∈ X ;
- a has a local superlinear growth if

asup(u0, u1) = +∞ for every u0, u1 ∈ X, u0 6= u1. (2.6)

It is immediate to check that if a is metric-like then the function asup is a metric in X . In
turn, we refer to (2.5) as a continuity property on the grounds of Proposition 4.10 ahead. In
what follows, we will mostly focus on the superlinear case (2.6).

2.1. Examples. We illustrate the above definitions in some examples.

Example 2.4 (Metrics). If d is a metric onX then the τ -independent cost a(τ, u, v) := d(u, v)
is an action cost. In fact, an action cost a is τ -independent if and only if it is a metric on X.

Example 2.5 (Rescaling). If b is an action cost on X and λ, θ > 0 then also the rescaled
function

a(τ, u, v) := θb(τ/λ, u, v) (2.7)

is an action cost.
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Example 2.6 (The convex construction). If b is an action cost on X and ψ : [0,+∞) →
[0,+∞) is a convex function with 0 = ψ(0) < ψ(a) for every a > 0, then

a(τ, u, v) := τψ
(
τ−1

b(τ, u, v)
)

is an action cost. (2.8)

It is immediate to check strict positivity and symmetry. The concatenation property follows
by the convexity and the monotonicity of ψ: for every τi > 0, i = 1, 2, with τ := τ1 + τ2 and
αi := τi/τ , we have

a(τ, u, w) = τψ
(
τ−1

b(τ1 + τ2, u, w)
)

≤ τψ
(
τ−1

(
b(τ1, u, v)+b(τ2, v, w)

))

= τψ
(
α1τ

−1
1 b(τ1, u, v) + α2τ

−1
2 b(τ2, v, w)

))

≤ α1τψ
(
τ−1
1 b(τ1, u, v)

)
+ α2τψ

(
τ−1
2 b(τ2, v, w)

))

= a(τ1, u, v) + a(τ2, v, w).

Example 2.7 (Action cost induced by a metric). Recalling the metric case of Example 2.4,
as a particular case of the construction set up in Ex. 2.6 we get that the functional

a(τ, u, v) = τψ

(
d(u, v)

τ

)
, for a given metric d, on X is an action cost. (2.9)

Concerning the properties stated in Definition 2.3, we immediately see that the action cost
defined by (2.9) is continuous; moreover, setting

ψ′
∞ := lim

r→+∞

ψ(r)

r
= sup

r>0

ψ(r)−ψ(r0)

r − r0
∈ (0,+∞] (2.10)

we have two cases:

(1) If ψ′
∞ < +∞, then a is metric-like;

(2) If ψ′
∞ = +∞ (i.e. ψ has superlinear growth at infinity), then a has a local superlinear

growth.

Example 2.8 (Linear combination of action costs). It is immediate to check that if ai, i
running in a finite set I, are action costs on X and θi > 0 are positive real numbers, then
also a :=

∑
i θiai is an action cost.

In particular, if X is endowed with two metrics d1 and d2 we may consider the action cost

a(τ, u, w) = τψ1

(
d1(u,w)

τ

)
+ τψ2

(
d2(u,w)

τ

)
(2.11)

where ψi are as in Example 2.7. We mention that an action cost induced by two metrics
as in (2.11) occurs in the Minimizing-Movement scheme for the generalized gradient system
(X , d1,ψ1, d2,ψ2) providing the vanishing-viscosity approximation of the rate-independent
system (X, d1,ψ1), cf. e.g. [MRS09, MRS16].

Example 2.9 (Concave compositions). Let h : (0,+∞) × [0,+∞)I → [0,+∞) be a concave
function such that h(τ, 0) = 0 for every τ > 0 and h(τ,a) > 0 for every τ > 0,a 6= 0. If ai,
i = 1, · · · , I, are action costs on X then also

a(τ, u, v) := h(τ, a1(τ, u, v), · · · , aI(τ, u, v)) τ > 0, u, v ∈ X (2.12)
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is an action cost. We just check the concatenation property, by using the facts that

0 ≤ ai ≤ a′i, i = 1, · · · , I ⇒ h(τ, a1, · · · , aI) ≤ h(τ, a′1, · · · , a
′
I)

h(τ ′ + τ ′′, a1 + b1, · · · , aI + bI) ≤ h(τ ′, a1, · · · , aI) + h(τ ′′, b1, · · · , bI).

If τ = τ1 + τ2 we have

a(τ, u, w) = h(τ, a1(τ, u, w), · · · , aI(τ, u, w))

≤ h(τ1 + τ2, a1(τ1, u, v) + a1(τ2, v, w), · · · , aI(τ1, u, v) + aI(τ2, v, w))

≤ h(τ1, a1(τ1, u, v), · · · , aI(τ1, u, v)) + h(τ2, a1(τ2, v, w), · · · , aI(τ2, v, w))

= a(τ1, u, v) + a(τ2, v, w).

Example 2.10 (Supremum of a directed family). Let A be a directed family of actions costs
on X, i.e. for every a1, a2 ∈ A there exists a ∈ A such that a1 ∨ a2 ≤ a. If

ā := sup
a∈A

a (2.13)

is finite in (0,+∞)×X ×X , then ā is an action cost as well.

Example 2.11 (Supremum of truncated metrics). Let dλ, λ > 0, be a family of metrics on
X, increasing w.r.t. λ, such that supλ>0 dλ(u, v) < ∞ for every u, v ∈ X. Then

a(τ, u, v) := sup
λ>0

dλ(u, v) ∧ λτ (2.14)

is an action cost. In fact, each term aλ := dλ ∧λτ is an action cost, thanks Examples 2.4 and
2.9. Moreover, the set A := {aλ}λ>0 is obviously directed: by Example 2.10 it is sufficient to
prove that a is finite.

2.2. Action integral costs. Let X be, in addition, a separable and reflexive Banach space
with norm ‖ · ‖, and let us consider an integrand R : X ×X → [0,+∞) which is bounded on
bounded sets and fulfils the following properties:

(R1) for all (ϑn)n, (ζn)n ⊂ X

ϑn ⇀ ϑ,
ζn ⇀ ζ,

}
⇒ lim inf

n→∞
R(ϑn, ζn) ≥ R(ϑ, ζ); (2.15)

(R2) for all ϑ ∈ X the functional R(ϑ, ·) is convex, even, and

R(ϑ, ζ) = 0 if and only if ζ = 0; (2.16)

(R3) there exists ΦR : X → [0,+∞) with lim‖ζ‖↑+∞
ΦR(ζ)
‖ζ‖ = +∞ such that

∀ (ϑ, ζ) ∈ X ×X : R(ϑ, ζ) ≥ ΦR(ζ) . (2.17)

For later use, we point out that property (R3) is indeed equivalent to the existence of a convex
and increasing function φR : [0,+∞) → [0,+∞) such that

∀ (ϑ, ζ) ∈ X ×X : R(ϑ, ζ) ≥ φR(‖ζ‖) . (2.18)

Relying on properties (R1)– (R3) we are in a position to prove the following result.

Proposition 2.12. Let a : (0,+∞)×X ×X → [0,+∞) be defined by

a(τ, u, v) := inf

{∫ τ

0
R(Θ(r),Θ′(r))dr : Θ ∈ AC([0, τ ];X) , Θ(0) = u, Θ(τ) = v

}
. (2.19)
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Then, the infimum in (2.19) is attained, a is a continuous action cost, with local superlinear
growth.

Proof. It is easy to check that a is an action cost in the sense of Def. 2.1. We now show
that the inf in (2.19) is attained for all (τ, u, v) ∈ (0,+∞) × X × X. Indeed, let (Θn)n be
a minimizing sequence: thanks to (2.17) we have supn

∫ τ
0 ΦR(Θ

′
n(r))dr ≤ C. Combining this

with the fact that ΦR has superlinear growth, and taking into account that Θn(0) = u and
Θn(1) = v, we conclude that

(Θn)n is bounded in L∞(0, τ ;X) and (Θ′
n)n is uniformly integrable in L1(0, τ ;X). (2.20)

Therefore, there exist a (not relabeled) subsequence and Θ ∈ AC([0, τ ];X) such that
{
Θn ⇀ Θ in W 1,1(0, τ ;X),

Θn(t) ⇀ Θ(t) in X for all t ∈ [0, T ],

so that Θ connects u to v. By a variant (cf. [Val90, Theorem 21]) of the Ioffe Theorem we
gather that

a(τ, u, v) = lim inf
n→∞

∫ τ

0
R(Θn(r),Θ

′
n(r))dr ≥

∫ τ

0
R(Θ(r),Θ′(r))dr .

In order to prove continuity of a(·, u, v) with fixed u, v ∈ X, let us take τ > 0 and a sequence
τn ↓ τ ; let Θn and Θ optimal curves for a(τn, u, v) and a(τ, u, v), respectively. Extend Θ to
a curve Θ on [0, τn] by setting Θ(t) := Θ(τ) = v for all t ∈ (τ, τn]. Then, Θ is an admissible
competitor for the minimum problem defining a(τn, u, v), and we thus have for all n ∈ N

a(τn, u, v) ≤

∫ τn

0
R(Θ(r),Θ

′
(r))dr

(1)
=

∫ τ

0
R(Θ(r),Θ

′
(r))dr = a(τ, u, v) ,

where (1) follows from the fact that Θ
′
≡ 0 on [τ, τn]. Therefore,

lim sup
n→∞

a(τn, u, v) ≤ a(τ, u, v) . (2.21)

We now aim to show

lim inf
n→∞

a(τn, u, v) = lim inf
n→∞

∫ τn

0
R(Θn(r),Θ

′
n(r))dr ≥ a(τ, u, v) (2.22)

Let (Θn)n be a (non-relabeled) subsequence for which the above lim inf is a lim. It follows
from (2.21) that for (Θn)n estimates (2.20) hold. In particular, from the uniform integrability
of (Θ′

n)n we gather that

∀ ǫ > 0 ∃ n̄ ∈ N ∀n ≥ n̄ : ‖Θn(τn)−Θn(τ)‖ ≤

∫ τn

τ
‖Θ′

n(r)‖dr ≤ ǫ .

Choosing ǫ = 1
k , we thus extract subsequences (τnk

)k and (Θnk
)k such that for all k ≥ 1

‖Θnk
(τnk

)−Θnk
(τ)‖ ≤

1

k
.

Now, the same compactness arguments as in the above lines apply to the sequence (Θnk
|[0,τ ])k,

yielding convergence, along a non-relabeled subsequence, to a curve Θ̂ ∈ AC([0, τ ];X) con-
necting u to v, since

Θ̂(τ) = lim
k→∞

Θnk
(τ) = lim

k→∞
Θnk

(τnk
) = v .
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Therefore, we gather that

a(τ, u, v) ≤

∫ τ

0
R(Θ̂(r), Θ̂′(r))dr ≤ lim inf

k→∞

∫ τnk

0
R(Θnk

(r),Θ′
nk
(r))dr = lim inf

n→∞
a(τn, u, v) ,

and (2.22) ensues. All in all, we have shown that limn→∞ a(τn, u, v) = a(τ, u, v) whenever
τn ↓ τ . With analogous arguments, we show that limn→∞ a(τn, u, v) = a(τ, u, v) if τn ↑ τ .

In order to show that
asup(u, v) = +∞ if u 6= v, (2.23)

let us observe that, for any fixed τ > 0, with Θ an optimal curve for a(τ, u, v), the following
estimates hold:

a(τ, u, v) = τ−

∫ τ

0
R(Θ(t),Θ′(t))dt

(1)

≥ τ−

∫ τ

0
φR(‖Θ

′(t)‖)dt
(2)

≥ τφR

(∥∥∥∥−
∫ τ

0
Θ′(t)dt

∥∥∥∥
)

= τφR

(
‖v−u‖

τ

)

where (1) ensues from (2.18), and (2) from Jensen’s inequality, as φR is convex. Property
(2.23) then follows, taking into account that φR has superlinear growth at infinity. �

3. The topology induced by an action cost

Our first step is to show that an action cost a induces a natural Hausdorff topology in
X satisfying the first countability axiom. We start by introducing a fundamental system
of neighborhoods of every u ∈ X: it is the collection of sets U(u; τ, c) indexed by the real
parameters τ, c > 0

U(u; τ, c) :=
{
v ∈ X : a(τ, u, v) < c

}
for u ∈ X, τ ∈ (0,+∞), c ∈ (0,+∞) .

Proposition 3.1. Let (X , a) be an action space according to Definition 2.1 and consider for
every u ∈ X the family of sets

U (u) :=
{
U ⊂ X : U ⊃ U(u; τ, c) for some τ, c > 0

}
. (3.1)

The collection U (u) satisfies the axioms of a (Hausdorff) neighborhood system, i.e.

(1) If U ∈ U (u) and U ⊂ U′ then U′ ∈ U (u);
(2) Every finite intersection of elements of U (u) belongs to U (u);
(3) The element u belongs to every set of U (u);
(4) If U ∈ U (u) then there is V ∈ U (u) such that U ∈ U (v) for every v ∈ V;
(5) If u1 6= u2 then there exist Ui ∈ U (ui), i = 1, 2, such that U1 ∩U2 = ∅.

In particular, there exists a unique topology O such that for every u ∈ X U (u) is the system
of neighborhoods in the topology O. Moreover, O is a Hausdorff topology satisfying the first
countability axiom.

Proof. Property (1): obvious by the definition of (3.1).

Property (2): if Un ∈ U (u), n = 1, · · · , N , then we can find τn, cn > 0, n = 1, · · ·N , such that
Un ⊃ U(u; τn, cn). Setting τ := maxn τn and cn := minn cn, (2.2) shows that U(u; τ, c) ⊂ Un

for every n, so that
⋂N

n=1Un ∈ U (u).

Property (3) is obvious since a(τ, u, u) = 0 for all τ > 0.
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Property (4): since U ∈ U (u) there exists τ, c > 0 such that U(u; τ, c) ⊂ U. We then define
V := U(u; τ/2, c/2) and we observe that for every v ∈ V and every z ∈ U(v; τ/2, c/2)

a(τ, z, u) ≤ a(τ/2, z, v) + a(τ/2, v, u) < c/2 + c/2 = c

so that z ∈ U. Therefore U ⊃ U(v; τ/2, c/2), whence U ∈ U (v).

Property (5): For some τ > 0 we define c := a(τ, u1, u2) > 0 and we set Ui := U(ui; τ/2, c/2).
Clearly U1 ∩ U2 = ∅, since otherwise, there would exist y such that a( τ2 , ui, y) < c/2 for
i = 1, 2, and thus by the triangle inequality

a(τ, u1, u2) ≤ a( τ2 , u1, y) + a( τ2 , y, u2) < c = a(τ, u1, u2) ,

which is a contradiction.
In order to show that O satisfies the first countability axiom, it is sufficient to observe

that for every u ∈ X the sets (U(u; 2−n, 2−n))n∈N form a countable fundamental system of
neighborhoods. �

Remark 3.2. The last statement in Proposition 3.1, and in particular the fact that sets
(U(u; 2−n, 2−n))n∈N, parametrized by the sole index n, provide a fundamental system of
neighborhoods, suggest that, to generate the topology O, it would be sufficient to work
with a family of neighborhoods parametrized by a single real parameter. Interestingly, this
approach is equivalent to the one in which the topology is generated by the sets U(u; τ, c),
which naturally arise from an action cost.

We can considerably refine the previous Proposition by showing, more or less with the
same argument, that a even induces a uniform structure on X (see [Bou98a, Chapter II, §1]),
which allows us to formalize the concept of ‘closeness’ of two points. More precisely, for every
τ, c > 0 we define

V(τ, c) :=
{
(u1, u2) ∈ X×X : a(τ, u1, u2) < c

}
. (3.2)

We will also use the following notation for subsets V,Vi of X ×X :

V−1 :=
{
(u2, u1) : (u1, u2) ∈ V

}
(3.3)

V2 ◦ V1 :=
{
(u1, u3) ∈ X×X : ∃u2 ∈ X such that (u1, u2) ∈ V1, (u2, u3) ∈ V2

}
. (3.4)

Proposition 3.3. Let (X , a) be an action space. The family of sets

U :=
{
U ⊂ X ×X : U ⊃ V(τ, c) for some τ, c > 0

}
. (3.5)

satisfies the axioms of a uniform structure, i.e.

(1) If U ∈ U and U ⊂ U′ then U′ ∈ U;
(2) Every finite intersection of elements of U belongs to U;

(3) Every U ∈ U contains the diagonal ∆ :=
{
(u, u) : u ∈ X

}
in X ×X;

(4) If U ∈ U then also U−1 belongs to U;
(5) if U ∈ U then there is V ∈ U such that V ◦V ⊂ U.

Proof. The proof of properties (1), (2), (3) follows by the same arguments for the correspond-
ing properties of Proposition 3.1.

Property (4) is an immediate consequence of (2.1b) and the symmetry of a, yielding that
(u1, u2) ∈ V(τ, c) if and only if (u2, u1) ∈ V(τ, c).
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In order to prove property (5) we argue as for claim (4) of Proposition 3.1: we first select
τ, c > 0 such that V(τ, c) ⊂ U and we set V := V(τ/2, c/2), observing that if (u1, u3) ∈ V ◦V
we can find u2 such that a(τ/2, u1, u2) < c/2 and a(τ/2, u2, u3) < c/2. Applying (2.1c) we
get a(τ, u1, u2) < c, i.e. (u1, u3) ∈ U. �

Following the terminology of [Bou98a], we shall refer to the sets of U as entourages; if V
is an entourage in U and (u, u′) ∈ V, we may say that u and u′ are ‘V-close’. Likewise, the
structure U induces a topology on X such that the neighborhoods of a point u ∈ X are given
by the sets

V(u) := {y ∈ X : (u, y) ∈ U} for some U ∈ U. (3.6)

It is straightforward to check that

Proposition 3.4. The topology O coincides with the topology induced by the uniform structure
U.

Having a uniform structure at our disposal, we can define a corresponding notion of Cauchy
sequence and completeness.

Definition 3.5 (Cauchy sequences and complete action spaces). Let (X , a) be an action
space. We say that a sequence (un)n ⊂ X is a Cauchy sequence in the U-uniform structure if
it enjoys the following property:

∀ τ, c > 0 ∃ n̄ ∈ N : ∀n, m ≥ n̄ : (un, um) ∈ V(τ, c). (3.7)

We say that (X, a) is complete if every Cauchy sequence is convergent.

As in Proposition 3.1 we immediately see that the filter of the entourages U of the uniform
structure has a countable base, given by the collection V(2−n, 2−n). We can thus apply
[Bou98b, Theorem 1, Chap. IX, §2] to obtain the metrizability of U. In our setting, we can
be even more precise by introducing a metric which is induced by a and induces the same
uniform and topological structure: we will discuss this issue in the next section.

4. Metric structures induced by an action cost

Definition 4.1. For every u1, u2 ∈ X and every λ > 0 we set

da,λ(u1, u2) := λ inf
{
r ≥ 0 : a(r, u1, u2) ≤ λr

}
(4.1)

= inf
{
s ≥ 0 : a(s/λ, u1, u2) ≤ s

}
. (4.2)

In the particular case λ = 1 we also set da := da,1.

Recalling (2.2) we have

0 < λ′ < λ′′ ⇒
{
s ≥ 0 : a(s/λ′′, u1, u2) ≤ s

}
⊂
{
s ≥ 0 : a(s/λ′, u1, u2) ≤ s

}
.

It is then immediate to check from (4.2) that the family da,λ is increasing w.r.t. λ:

0 < λ′ < λ′′ ⇒ da,λ′ ≤ da,λ′′ . (4.3)

On the other hand, using (4.1), we see that λ−1
da,λ is decreasing w.r.t. λ:

0 < λ′ < λ′′ ⇒
da,λ′′

λ′′
≤

da,λ′

λ′
, (4.4)

so that the metrics da,λ are equivalent and there holds

(1 ∧ λ)da ≤ da,λ ≤ (1 ∨ λ)da. (4.5)
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Lemma 4.2 (Equivalent characterizations). For every λ > 0 we have

da,λ(u1, u2) ≤ λr ⇔ a−(r, u1, u2) ≤ λr ⇔ a(τ, u1, u2) ≤ λr for every τ > r, (4.6)

and

da,λ(u1, u2) ≥ λr ⇔ a+(r, u1, u2) ≥ λr ⇔ a(τ, u1, u2) ≥ λr for every τ < r. (4.7)

In particular, da,λ can also be characterized by

da,λ(u1, u2) = λr ⇔ a−(r, u1, u2) ≤ λr ≤ a+(r, u1, u2), (4.8)

and by the variational formulae

da,λ(u1, u2) = min
τ>0

a−(τ, u1, u2) ∨ λτ, (4.9)

da,λ(u1, u2) = max
τ>0

a+(τ, u1, u2) ∧ λτ. (4.10)

Proof. To check (4.6) we observe that if da,λ(u1, u2) ≤ λr then for every r′ with τ > r′ > r we
get a(τ, u1, u2) ≤ a(r′, u1, u2) ≤ λr′ so that a(τ, u1, u2) ≤ λr. Conversely, if for every τ > r we
have a(τ, u1, u2) ≤ λr we also get a(τ, u1, u2) ≤ λτ , so that da,λ(u1, u2) ≤ λτ and eventually
da,λ(u1, u2) ≤ λr.

Concerning characterization (4.7), if da,λ(u1, u2) ≥ λr then for τ < r′ < r we have
a(τ, u1, u2) ≥ a(r′, u1, u2) > λr′, so that a(τ, u1, u2) ≥ λr. Conversely, if for τ < r we
have a(τ, u1, u2) ≥ λr > λτ , then we conclude that da,λ(u1, u2) ≥ λτ : since τ < r is arbitrary
we eventually get da,λ(u1, u2) ≥ λr.

Let us now check (4.9) (notice that the minimum in (4.9) is attained since a− is decreasing
and lower semicontinuous). If r := a−(τ, u1, u2) ≤ λτ then clearly da,λ(u1, u2) ≤ λτ by
(4.6). If r > λτ then a−(r/λ, u1, u2) ≤ r = λ(r/λ) since τ 7→ a−(τ, u1, u1) is decreasing,
so that da,λ(u1, u2) ≤ r. This argument shows that da,λ(u1, u2) ≤ minτ>0 a−(τ, u1, u2) ∨ λτ .
On the other hand (4.8) yields that, when u1 6= u2, setting τ := da,λ(u1, u2)/λ we have
da,λ(u1, u2) = a−(τ, u1, u2) ∨ λτ , which provides the equality in (4.9).

A similar argument yields (4.10). �

A simple consequence of (4.9) and (4.10) is the joint continuity of the map (λ, u1, u2) 7→
da,λ(u1, u2) in (0,+∞) ×X ×X.

Remark 4.3. In view of the above discussion, we can also define da,λ using a strict inequality
in (4.1):

da,λ(u1, u2) = λ inf
{
r ≥ 0 : a(r, u1, u2) < λr

}
. (4.11)

Example 4.4. It is interesting to compute da,λ in the case a is induced by a metric d on X

as in Example 2.7. We have

da,λ(u1, u2) = λ inf
{
r ≥ 0 : ψ(1rd(u1, u2)) ≤ λ

}
.

Therefore, if ψ is invertible, we conclude that

da,λ(u1, u2) =
λ

ψ−1(λ)
d(u1, u2) . (4.12)

Theorem 4.5. If (X, a) is an action space, then for all λ > 0 the function da,λ : X×X →
[0,+∞) defined by (4.11) is a metric in X which satisfies

da,λ(u1, u2) ≤ λτ ∨ a(τ, u1, u2) ≤ λτ + a(τ, u1, u2) for every τ > 0, u1, u2 ∈ X, (4.13)
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and
da,λ(u1, u2) < λr ⇒ a(r, u1, u2) < λr. (4.14)

In particular da,λ metrizes the uniform structure U (and a fortiori the topology O): setting

Bλ(r) :=
{
(u1, u2) ∈ X ×X : da,λ(u1, u2) < λr

}
(4.15)

we have:

(1) for every τ, c > 0 choosing r ∈ (0, τ ∧ (c/λ)] we have Bλ(r) ⊂ V(τ, c);
(2) for every r > 0 choosing τ, c ∈ (0, r] we have V(τ, c) ⊂ Bλ(r).

Proof. (4.13) is an trivial consequence of (4.9). In particular, the above estimate shows that
da,λ takes finite values. Similarly, (4.14) follows immediately from (4.10).

Properties (1) and (2) immediately follow by (4.14) and (4.13) respectively.
Let us now check that da is a metric. Clearly da is symmetric and satisfies da(u, u) = 0.

Property (4.14) also shows that da(u1, u2) = 0 implies u1 = u2.
Concerning the triangle inequality, let r1 := da,λ(u1, u2) and r2 := da,λ(u2, u3), so that

a−(r1, u1, u2) ≤ λr1, a−(r2, u2, u3) ≤ λr2 by (4.6). Recalling Proposition 2.2 we get a−(r1 +
r2, u1, u3) ≤ λr1 + λr2 and therefore da,λ(u1, u3) ≤ r1 + r2. �

It is interesting to notice that passing to the limit as τ ↓ 0 in (4.13) we get for all λ > 0
and u1, u2 ∈ X

da,λ(u1, u2) ≤ λasup(u0, u1), (4.16)

(cf. (2.4) for the definition of asup).
Thanks to the previous Theorem we can use the metric da (or, equivalently, any of the

equivalent metrics da,λ) to characterize completeness.

Corollary 4.6. The action space (X, a) is complete if and only if (X , da) is a complete
metric space.

Example 4.7 (Completeness for action costs induced by a metric). Let a be induced by a
metric d as in Example 2.7, with an invertible ψ: then, by virtue of (4.12) it is straightforward
to see that (X , da) is complete if and only if (X, d) is complete.

Example 4.8 (Completeness for linear combinations of actions). Let X be endowed with
finitely many costs ai, i ∈ I. Recall (cf. Example 2.8) that, for any family (ϑi)i∈I of positive
coefficients, a =

∑
i θiai is again an action cost on X. It is immediate to check that the action

space (X, a) is complete if and only if the spaces (X, ai) are complete for all i ∈ I.
In particular, in view of Example 4.7, if X is endowed with two metrics d1 and d2, and

complete w.r.t. both, then the action cost a(τ, u, w) = τψ1

(
d1(u,w)

τ

)
+ τψ2

(
d2(u,w)

τ

)
gives

rise to a complete space.

In fact, in view of Theorem 4.5 all the topological notions such as convergence of sequences
or continuity of functions can be given in terms of da. We collect the obvious definitions in
the following statements,

Corollary 4.9. A sequence (un)n ⊂ X converges to some u in the O-topology, and write

un
a
→ u as n → ∞, or a- lim

n→∞
un = u,

if
∀ τ > 0, c > 0 ∃ n̄ ∈ N : ∀n ≥ n̄ un ∈ U(u; τ, c) ,
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or, equivalently, if

lim
n→∞

a(τ, un, u) = 0 for every τ > 0. (4.17)

A sequence (un)n ⊂ X is a Cauchy sequence in the U-uniform structure if it enjoys the
following property:

∀ τ > 0, c > 0 ∃ n̄ ∈ N : ∀n, m ≥ n̄ : (un, um) ∈ V(τ, c); (4.18)

equivalently, if

lim
m,n→∞

a(τ, um, un) = 0 for every τ > 0. (4.19)

We can now easily discuss the continuity of a and the lower-upper semicontinuity of a±
(recall (2.3) for the definition of a±).

Proposition 4.10. Let (un)n, (vn)n be two sequences in X converging to u, v in the O-
topology and let (τn)n be a sequence in (0,+∞) converging to τ > 0. We have

a−(τ, u, v) ≤ lim inf
n→∞

a−(τn, un, vn) ≤ lim sup
n→∞

a+(τn, un, vn) ≤ a+(τ, u, v). (4.20)

In particular, a− (resp. a+) is lower (resp. upper) semicontinuous in (0,+∞)×X ×X with
respect to the canonical product topology; if a satisfies property (2.5), then it is continuous.

Proof. Let us select τ ′ < τ and ε < 1
2(τ − τ ′). For n sufficiently large we can assume that

τn > τ ′ + 2ε so that the concatenation property and the monotonicity of a+ yield

a+(τn, un, vn) ≤ a(τ ′ + 2ε, un, vn) ≤ a(ε, un, u) + a(τ ′, u, v) + a(ε, v, vn)

Taking the lim sup of the left hand side as n → ∞ and using the convergence property (4.17)
we get

lim sup
n→∞

a+(τ, un, vn) ≤ a(τ ′, u, v)

Since τ ′ < τ is arbitrary we obtain lim supn→∞ a+(τn, un, vn) ≤ a+(τ, u, v).
Similarly, selecting τ ′′ > τ and ε > 0 such that τ ′′ − 2ε > τ we get for n sufficiently large

a−(τ
′′, u, v) ≤ a(τn + 2ε, u, v) ≤ a(ε, u, un) + a(τn, un, vn) + a(ε, vn, v).

Taking the lim inf of the right-hand side and then the supremum with respect to τ ′′ we obtain
lim infn→∞ a−(τn, un, vn) ≥ a−(τ, u, v). �

It is interesting to consider the interaction of action costs with an auxiliary topology σ on
X. This is useful when metric costs are involved in a Minimizing Movement scheme and,
typically, the driving energy functional has compact sublevels w.r.t. σ. Our next result shows
that (sequential) lower semicontinuity of a− w.r.t. σ leads to (sequential) lower semicontinuity
of da.

Proposition 4.11. Let (X, a) be an action space and let σ be a Hausdorff topology on X for
which a− is sequentially lower semicontinuous, i.e. for all sequences (uni )n∈N, σ-converging to
ui, i = 0, 1, we have

lim inf
n→+∞

a−(τ, u
n
0 , u

n
1 ) ≥ a−(τ, u0, u1) for every τ > 0. (4.21)

Then also da is σ-sequentially lower semicontinuous, i.e. for all sequences (uni )n∈N, σ-converging
to ui, i = 0, 1, we have

lim inf
n→+∞

da(u
n
0 , u

n
1 ) ≥ da(u0, u1). (4.22)
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In particular, every σ-sequentially compact subset K ⊂ X is a-complete and every O-convergent
sequence is also σ-convergent.

Proof. It is sufficient to prove that (4.21) implies (4.22). For that, let us show that if
da(u

n
0 , u

n
1 ) ≤ r definitely, then also da(u0, u1) ≤ r. From characterization (4.6) it follows

that a−(r, u
n
0 , u

n
1 ) ≤ r. Passing to the limit as n → ∞ and using (4.21) we deduce that

a−(r, u0, u1) ≤ r, so that da(u0, u1) ≤ r as well. �

Remark 4.12. It is worth noticing that sequential lower semicontinuity of a w.r.t. σ implies
the same property for a−.

5. Curves with finite action

In this section we assume that (X , a) is an action space.

Definition 5.1 (Action of a curve). Let u : [a, b] → X. The a-action of u is defined by

A(u; [a, b]) := sup





M∑

j=1

a(tj − tj−1, u(tj−1), u(tj)) : (tj)Mj=0 ∈ Pf ([a, b])



 (5.1)

where Pf ([a, b]) is the set of all finite partitions of the interval [a, b].

This definition is clearly reminiscent of that of the total variation Vard induced by a metric
d, i.e.

Vard(u; [a, b]) := sup





M∑

j=1

d(u(tj−1), u(tj)) : (tj)Mj=0 ∈ Pf ([a, b])



 . (5.2)

Now, thanks to (4.13) we have a simple estimate of the Varda,λ -variation in terms of A(u).

Lemma 5.2. For every curve u : [a, b] → X

Varda,λ(u; [a, b]) ≤ λ
(
b− a) + A(u; [a, b]). (5.3)

In particular, if u has finite action A(u; [a, b]) < ∞ then it also has finite da,λ-variation.

Hence, assuming completeness of (X, a) we show that curves of finite a-action are regulated,
and indeed have BV-like properties.

Proposition 5.3. If the action space (X , a) is complete then every curve u : [a, b] → X with
finite action A(u; [a, b]) < +∞ satisfies

∀ t ∈ (a, b] ∃u−(t) := O- lim
s↑t

u(s), (5.4a)

∀ t ∈ [a, b) ∃u+(t) := O- lim
s↓t

u(s) (5.4b)

(we also adopt the convention u−(a) := u(a) and u+(b) := u(b)). Furthermore, the pointwise
jump set

Ju := J+u ∪ J−u with

{
J−u := {t ∈ [a, b] : u−(t) 6= u(t)},

J−u := {t ∈ [a, b] : u(t) 6= u+(t)}

consists of at most countably many points, and the function Au : [a, b] → [0,+∞), Au(t) :=
A(u; [a, t]), has bounded variation.
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Proof. From A(u; [a, b]) < +∞ we infer that Varda(u; [a, b]) < +∞ via (5.3). Since the metric
space (X, da) is complete, any u ∈ BVda([a, b];X) admits left- and right-limits w.r.t. the topol-
ogy induced by da, whence (5.4). Furthermore, Ju coincides with the (analogously defined)
jump set of the bounded variation function Vu : [a, b] → [0,+∞), Vu(t) := Varda(u; [a, t]), and
thus u has countably many jump points. �

Our next result shows that, if the cost a has local superlinear growth according to (2.6) for
any curve u with finite action u is O-continuous at any point.

Proposition 5.4. Suppose that (X , a) is complete and a has superlinear local growth. Then,
every curve u : [a, b] → X with finite action A(u; [a, b]) < +∞ is continuous.

Proof. We fix t ∈ (a, b) (similar arguments can be carried out for t = a and t = b), τ > 0,
and a strictly positive vanishing sequence (ηn)n with ηn ↓ 0. For n sufficiently large we have

a(τ, u(t−ηn), u(t)) + a(τ, u(t), u(t+ηn)) ≤ a(ηn, u(t−ηn), u(t)) + a(ηn, u(t), u(t+ηn))

≤ A(u; [a, b]) < +∞.

Taking the limit inferior as n → ∞ we get

a−(τ, u−(t), u(t)) + a−(τ, u(t), u+(t)) ≤ A(u; [a, b]).

We can now pass to the limit in the above estimate along a vanishing sequence (τn)n such that
a−(τn, u−(t), u(t)) = a(τn, u−(t), u(t)) and a−(τn, u(t), u+(t)) = a(τn, u(t), u+(t)) obtaining
that asup(u−(t), u(t))+asup(u(t), u+(t)) < ∞. The local superlinearity of a then yields u−(t) =
u(t) = u+(t). �

6. Absolute continuity

We now introduce a notion of absolute continuity for curves with values in an action space.

Definition 6.1 (Absolutely continuous curves). We say that a curve u : [a, b] → X is a-
absolutely continuous if there exists g ∈ L1(a, b) such that

a(t−s, u(s), u(t)) ≤

∫ t

s
g(r)dr for all a ≤ s ≤ t ≤ b. (6.1)

Theorem 6.2 (Action density). Let u ∈ ACa([a, b];X). Then, the limit

lim
σ↓t

a(σ−t, u(t), u(σ))

σ − t
= lim

σ↑t

a(t−σ, u(σ), u(t))

t− σ
=: a[u′](t) exists at almost all t ∈ (a, b)

(6.2)
and it fulfills

a(t−s, u(s), u(t)) ≤

∫ t

s
a[u′](r)dr for all a ≤ s ≤ t ≤ b, (6.3a)

a[u′](t) ≤ g(t) for a.e. t ∈ (a, b) (6.3b)

for every g ∈ L1(a, b) such that (6.1) holds. Therefore, a[u′] ∈ L1(a, b). We shall refer to
a[u′] as the action density for u.

Proof. The proof closely follows the argument for [RMS08, Prop. 3.2]. For every fixed s ∈
[a, b), we introduce the function

ℓs : (s, b] → [0,∞) t 7→ ℓs(t) := a(t− s, u(s), u(t)) (6.4)
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and observe that, by the triangle inequality (2.1c), there holds

(ℓs(t2)−ℓs(t1))
+ ≤ a(t2−t1, u(t1), u(t2)) ≤

∫ t2

t1

g(r)dr for all s < t1 < t2 ≤ b .

Therefore, the map t 7→ ℓs(t)−
∫ t
s g(r)dr is non-increasing on (s, b], and thus it is a.e. differ-

entiable, with

(ℓ′s(t))
+ ≤ a−(t) := lim inf

σ↓t

a(σ−t, u(t), u(σ))

σ − t
for a.e. t ∈ (s, b),

Observe that a− is itself a measurable function, fulfilling 0 ≤ a−(t) ≤ g(t) for almost all
t ∈ (a, b) (with the second inequality due to (6.1)). Thus, a− ∈ L1(a, b). With the very same
argument as in the proof of [RMS08, Prop. 3.2] we deduce that

a(t− s, u(s), u(t)) = ℓs(t) ≤

∫ t

s
(ℓ′s(r))

+dr ≤

∫ t

s
a−(r)dr for all [s, t] ⊂ (a, b] . (6.5)

Finally, we consider the function

a+ : (a, b) → [0,∞), t 7→ a+(t) := lim sup
σ↓t

a(σ−t, u(t), u(σ))

σ − t

and observe that

a+(t) ≤ g(t) for almost all t ∈ (a, b), for any function g for which (6.1) holds. (6.6)

In view of (6.5), we may choose g = a− and we thus conclude that

lim sup
σ↓t

a(σ−t, u(t), u(σ))

σ − t
= a+(t) ≤ lim inf

σ↓t

a(σ−t, u(t), u(σ))

σ − t
= a−(t) for a.e. t ∈ (a, b) .

Therefore, we ultimately conclude that limσ↓t
a(σ−t,u(t),u(σ))

σ−t exists at almost all t ∈ (a, b), and,

also in view of (6.5), that it fulfills the minimality properties (6.3). The proof of the assert

for limσ↑t
a(t−σ,u(σ),u(t))

t−σ can be trivially adapted from the analogous argument in [RMS08], to
which we refer the reader for all details. �

Theorem 6.3. For every u ∈ ACa([a, b];X) we have A(u; [a, b]) < ∞ and

A(u; [a, b]) =

∫ b

a
a[u′](t)dt . (6.7)

Proof. Let us fix an arbitrary partition (tj)Mj=0 ∈ Pf ([a, b]) and observe that, for every j =
1, . . . ,M ,

a(tj − tj−1, u(tj−1), u(tj)) ≤

∫ tj

tj−1

a[u′](r)dr .

Therefore,
M∑

j=1

a(tj − tj−1, u(tj−1), u(tj)) ≤

∫ b

a
a[u′](r)dr

and, by the arbitrariness of (tj)Mj=0, we conclude that

A(u; [a, b]) ≤

∫ b

a
a[u′](t)dt. (6.8)
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In order to show the converse of inequality (6.8), let now (Pk)k∈N ⊂ Pf ([a, b]) be a sequence

of uniform partitions of size τ(k) := (b − a)/k, Pk = (tjk)
k
j=0 where tjk = a + jτ(k). Let us

introduce the piecewise constant functions associated with Pk

tk : [a, b] → [a, b], tk(a) := a, tk(t) := tjk if t ∈ (tj−1
k , tjk],

tk : [a, b] → [a, b], tk(b) := b, tk(t) := tj−1
k if t ∈ [tj−1

k , tjk),
(6.9)

and hence associate with u the functions

uk : [a, b] → X, uk(t) := u(tk(t)),

uk : [a, b] → X, uk(t) := u(tk(t)) .
(6.10)

We also introduce the functions

Υk(t) :=
a(t−tk(t), uk(t), u(t)) + a(tk(t)−t, u(t), uk(t))

τ(k)
, t ∈ [a, b] ,

and observe that for every t 6∈ Pk

Υk(t) = αk(t)
a(t−tk(t), uk(t), u(t))

t− tk(t)
+ βk(t)

a(tk(t)−t, u(t), uk(t))

τ(k)

where

αk(t) :=
t− tk(t)

τ(k)
, βk(t) :=

tk(t)− t

τ(k)
, αk(t), βk(t) ≥ 0, αk(t) + βk(t) = 1.

We have that
lim
k→∞

Υk(t) = a[u′](t) for a.e. t ∈ (a, b).

Hence, by the Fatou Lemma we find
∫ b

a
a[u′](t)dt ≤ lim inf

k→∞

∫ b

a
Υk(t)dt.

On the other hand we observe that
∫ b

a
Υk(t) dt =

k−1∑

j=0

∫ tj+1

k

tj
k

Υk(t) dt

=

k−1∑

j=0

∫ τ(k)

0
Υk(a+ jτ(k) + s) ds

=

∫ τ(k)

0

( k−1∑

j=0

Υk(a+ jτ(k) + s)

)
ds

=
1

τ(k)

∫ τ(k)

0

( k−1∑

j=0

a(s, u(a+ jτ(k)), u(a + jτ(k) + s))

+ a(τ(k)− s, u(a+ jτ(k) + s), u(a+ (j + 1)τ(k)))

)
ds

≤
1

τ(k)

∫ τ(k)

0
A(u; [a, b]) ds = A(u; [a, b]),

which finishes the proof. �
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Corollary 6.4. If u ∈ ACa([a, b];X) then u ∈ AC([a, b]; (X , da,λ)) for every λ > 0 and

|u′|da,λ ≤ λ ∨ a[u′]. (6.11)

Proof. Combining (4.13) with (6.1) one immediately sees that u is absolutely continuous with
respect to da,λ. We can then use (4.13) and (6.2) to deduce (6.11). �

7. Sufficient conditions for absolute continuity

In this section we address the converse of Theorem 6.3 hold, namely we examine the validity
of the implication

A(u; [a, b]) < ∞ ⇒ u ∈ ACa([a, b];X). (7.1)

It is immediate to realize that, in the case of the action integral costs from Section 2.2, the
existence of an action minimizing curve (cf. Proposition 2.12) guarantees the validity of (7.1).

In a different spirit, we propose the following property of a, cf. (7.2) below, as a sufficient
condition for (7.1).

Definition 7.1 (Uniform superlinearity). We say that the action cost a on X is uniformly
superlinear if there exists an action cost b on X, a convex superlinear function ψ : [0,+∞) →
[0,+∞), and a constant λ ≥ 1 such that

λ−1τψ
(
τ−1

b(τ, u, v)
)
≤ a(τ, u, v) ≤ λτψ

(
τ−1

b(τ, u, v)
)

(7.2)

for every τ > 0, u, v ∈ X .

Remark 7.2. Definition 7.1 somehow mirrors the convex construction of Example 2.6 and it
is clearly satisfied whenever ψ is superlinear. In particular, action costs induced by a metric
as in Example 2.7 comply with (7.2).

We have the following result.

Theorem 7.3. If a is a uniformly superlinear action cost on X then for every u : [a, b] → X

such that A(u; [a, b]) < ∞ we have u ∈ ACa([a, b];X).

Proof. Since ψ is superlinear, there exists a constant β ≥ 0 such that ψ(r) ≥ r − β for all
r ∈ [0,+∞), so that τψ(τ−1r) ≥ r − τβ and

b(τ, u, v) ≤ λa(τ, u, v) + τβ for all (τ, u, v) ∈ (0,+∞)×X×X. (7.3)

From the above inequality it follows that any u : [a, b] → X satisfies

B(u; [a, b]) ≤ λA(u; [a, b]) + β(b− a)

where B denotes the action functional induced by b. In particular

A(u; [a, b]) < ∞ ⇒ B(u; [a, b]) < ∞.

Therefore, the function Bu : [a, b] → [0,+∞), Bu(t) := B(u; [a, t]) has bounded variation. Let
νu be its distributional derivative. Let now (Pk)k∈N ⊂ Pf ([a, b]) be the sequence of uniform
partitions considered in the proof of Theorem 6.3. With the same notation as in (6.9) and
(6.10), we consider now the piecewise constant functions

Γk(t) :=
b(tPk

(t)−tPk
(t), uPk

(t), uPk
(t))

tPk
(t)−tPk

(t)
, t ∈ [a, b] .
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Then, the measures νk := ΓkL
1 (where L 1 denotes the Lebesgue measure on [a, b]) weakly∗

converge to νu. In turn, we observe that for every t ∈ (a, b)

ψ
(
Γk(t)

)
≤ λ

1

tPk
(t)−tPk

(t)
a(tPk

(t)−tPk
(t), uPk

(t), uPk
(t)) ,

so that

sup
k∈N

∫ b

a
ψ
(
Γk(t)

)
dt ≤ λ sup

k∈N

∫ b

a

1

tPk
(t)−tPk

(t)
a(tPk

(t)−tPk
(t), uPk

(t), uPk
(t))dt

≤ λA(u; [a, b]) < +∞ .

(7.4)

Since the convex function ψ has superlinear growth at infinity, by the well known De Vallée-
Poussin criterion we conclude that the bounded sequence (Γk)k ⊂ L1(a, b) admits a (non-
relabeled) subsequence weakly converging to some Γ ∈ L1(a, b), so that νu = ΓL1. It then
follows from (7.4) that

∫ b

a
ψ(Γ(t))dt ≤ lim inf

k→∞

∫ b

a
ψ(Γk(t))dt ≤ λA(u; [a, b]) < +∞ .

Now we have for all a ≤ s ≤ t ≤ b

a(t−s, u(s), u(t)) ≤ λ(t−s)ψ
(

1
t−sb(t−s, u(s), u(t))

)
≤ λ(t−s)ψ

(
1

t−sνu([s, t])
)

= λ(t−s)ψ

(
1

t−s

∫ t

s
Γ(r)dr

)
(1)

≤ λ

∫ t

s
ψ(Γ(r))dr

where (1) due to the Jensen inequality. Sinceψ◦Γ ∈ L1(a, b), we conclude that u ∈ ACa([a, b];X)
and that, in fact,

a[u′](t) ≤ λψ(Γ(t)) for a.e. t ∈ (a, b) (7.5)

(cf. the minimality property (6.3b)). This finishes the proof. �

Remark 7.4. Revisiting the proof of Theorem 7.3 we observe that, a fortiori, u ∈ ACb([a, b];X),
since u ∈ ACa([a, b];X) and a dominates b, cf. (7.3). Now, we immediately check that

λ−1ψ

(
b[u′](t)

)
≤ a[u′](t) ≤ λψ

(
b[u′](t)

)
for a.e. t ∈ (a, b) . (7.6)

Indeed, since for all [s, t] ⊂ [a, b] we have
∫ t

s
Γ(r)dr = lim

k→∞

∫ t

s
Γk(r)dr

≤ lim
k→∞

∫ t

s

(
1

tPk
(r)−tPk

(r)

∫
tPk

(r)

t
Pk

(r)
b[u′](ω)dω

)
dr =

∫ t

s
b[u′](r)dr

we conclude that

Γ(t) ≤ b[u′](t) for a.e. t ∈ (a, b) ,

and thus

a[u′](t) ≤ λψ(b[u′](t)) for a.e. t ∈ (a, b) .

The other inequality in (7.6) follows by a similar argument.
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Example 1: Cost induced by a metric. If a has the structure a(τ, u, v) = τψ( 1τ d(u, v))
for a strictly increasing convex superlinear ψ, we immediately infer from Theorem 7.3 and
Remark 7.4 the following

Corollary 7.5. For every u : [a, b] → X with A(u; [a, b]) < ∞ we have u ∈ ACa([a, b];X) ⊂
ACd([a, b];X) and there holds

a[u′](t) = ψ(|u′|d(t)) for a.e. t ∈ (a, b) . (7.7)

Proof. It suffices to observe that, in the construction set up in the proof of Theorem 7.3, we
have in this case (cf. Remark 7.2) b(τ, u, v) = d(u, v) for all u, v ∈ X, λ = 1 and Γ(t) = |u′|d(t)
for almost all t ∈ (a, b). �

Example 2: cost induced by two metrics. We now address the case in which X is
endowed with two distances d1 and d2 satisfying

∃K > 0 ∀u, v ∈ X d1(u, v) ≤ Kd2(u, v) . (7.8)

Since by the latter condition d2 ‘dominates’ d1, in this case we obviously have

ACd2([a, b];X) ⊂ ACd1([a, b];X).

As in Section 2, we consider metric costs of the form

a(τ, u, w) = τψ1

(
d1(u,w)

τ

)
+τψ2

(
d2(u,w)

τ

)
for all (τ, u, w) ∈ (0,+∞)×X×X (7.9)

with ψ1, ψ2 : [0,+∞) → [0,+∞) convex, such that 0 = ψi(0) < ψi(a) for all a > 0 (cf.
Example 2.6). We have the following result.

Proposition 7.6. Assume (7.9) with ψ2 invertible. Then, for every u : [a, b] → X such that
A(u; [a, b]) < ∞ we have u ∈ ACa([a, b];X) and

a[u′](t) = ψ1(|u
′|d1(t)) +ψ2(|u

′|d2(t)) for a.e. t ∈ (a, b). (7.10)

Proof. From A(u; [a, b]) < ∞ we now gather, in particular, that A2(u; [a, b]) < ∞, where A2

is the action functional associated with a2(τ, u, v) = τψ2(
1
τ d2(u, v)). Then, by Corollary 7.5

we have u ∈ ACd2([a, b];X), and hence u ∈ ACd1([a, b];X). Then, for almost all t ∈ (a, b)

a[u′](t) = lim
σ↓t

a(σ−t, u(t), u(σ))

σ − t
= lim

σ↓t
ψ1

(
d1(u(t), u(σ))

σ − t

)
+ lim

σ↓t
ψ2

(
d2(u(t), u(σ))

σ − t

)

= ψ1(|u
′|d1(t)) +ψ2(|u

′|d2(t)) .

This finishes the proof. �

8. A dynamic interpretation of action costs

The goal of this section is to retrieve, for the action cost a, a dynamic interpretation akin to
(1.8) and (1.9) for action integral costs and Dynamical-Variational Transport costs, respec-
tively. We will obtain this if in addition a fulfills the property from Definition 8.1 below.

Definition 8.1. We say that the action space (X , a) has the approximate mid-point property
if

∀ ρ > 0 ∀u, v ∈ X ∀ 0 < ǫ ≪ 1 ∃w ∈ X : a(ρ2 , u, w) + a(ρ2 , w, v) ≤ a(ρ, u, v) + ǫ . (8.1)
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Condition (8.1) mimicks the usual approximate mid-point property for metric spaces: for
any ρ ∈ (0,+∞) and every couple of points u, v ∈ X and for any assigned threshold ǫ, we
find an ‘intermediate’ point between u and v such that the sum of the costs for connecting u
to w and w to v over intervals of half-length ρ

2 does not exceed of ǫ the cost for connecting u
to v over the whole interval of length ρ.

Theorem 8.2. Let us suppose that the action space (X, a) is complete and has the approxi-
mate mid-point property. Then, for all τ, η > 0 and for all u0, u1 ∈ X

there exists ω : [0, τ ] → X with ω(0) = u0, ω(1) = u1 such that

a(τ, u0, u1) ≤ A(ω; [0, τ ]) ≤ a(τ, u0, u1) + η .
(8.2)

In particular

a(τ, u0, u1) = inf
{
A(Θ; [0, τ ]) : Θ : [0, τ ] → X, Θ(0) = u0, Θ(τ) = u1

}
. (8.3)

Proof. Without loss of generality, we may assume that τ = 1. Let us fix a threshold η > 0:
to construct the curve ω we will resort to diadic partitions

Pn = {0,
1

2n
, . . . ,

j

2n
, . . . 1}, n ∈ N

of the interval [0, 1]. Indeed, we start by defining ‘discrete’ curves defined on Pn, in the
following way: we pick a sequence (ηn)n such that

∞∑

n=0

2n ηn = η

and perform the following steps:

Step 0: We apply (8.1) with ρ = 1 = 1
20
, u = u0, v = u1, and ǫ := η0, thus finding a point

w
.
= w1/2 such that

a(12 , u0, w1/2) + a(12 , w1/2, u1) ≤ a(1, u0, u1) + η0 .

Then, we define ω0 : P1 = {0, 12 , 1} → X by

ω0(0) := u0, ω0(
1
2) := w1/2, ω0(1) := u1 .

Clearly, we have

a(12 , ω0(0), ω0(
1
2)) + a(12 , ω0(

1
2), ω0(1)) ≤ a(1, u0, u1) + η0 . (8.4)

Step 1: We apply (8.1) with ρ = 1
2 , u = ω0(0) = u0, v = ω0(

1
2), and ǫ := η1, thus obtaining a

point w
.
= w1/4 such that

a( 1
22
, ω0(0), w1/4) + a( 1

22
, w1/4, ω0(

1
2 )) ≤ a(12 , ω0(0), ω0(

1
2 )) + η1 .

We also apply (8.1) with ρ = 1
2 , u = ω0(

1
2 ), v = ω0(1) = u1, and ǫ := η1, thus

obtaining a point w
.
= w3/4 such that

a( 1
22
, ω0(

1
2), w3/4) + a( 1

22
, w3/4, ω0(1)) ≤ a(12 , ω0(

1
2), ω0(1)) + η1 .

We then define ω1 : P2 = {0, 14 ,
1
2 ,

3
4 , 1} → X by

ω1(0) := u0, ω1(
1
4) := w1/4, ω1(

1
2) = ω0(

1
2) = w1/2, ω1(

3
4 ) := w134, ω1(1) := u1 .
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By construction, we have

a( 1
22
, ω1(0), ω1(

1
4 )) + a( 1

22
, ω1(

1
4), ω1(

1
2 )) + a( 1

22
, ω1(

1
2), ω1(

3
4 )) + a( 1

22
, ω1(

3
4), ω1(1))

≤ a(12 , ω0(0), ω0(
1
2)) + a(12 , ω0(

1
2), ω0(1)) + 2η1

≤ a(1, u0, u1) + η0 + 2η1 .

(8.5)

Step n: Let tj−1 = j−1
2n and tj = j

2n , for j ∈ {1, . . . , 2n}, be two nodes of the partition Pn.

Clearly, tj−1 =
m−2
2n+1 ∈ Pn+1 and tj =

m
2n+1 ∈ Pn+1 with m = 2j. Applying (8.1) with

ρ = 1
2n and ǫ := ηn, we find w

.
= w(m−1)/2n+1 such that

a( 1
2n+1 , ωn−1(

m−2
2n+1 ), w(m−1)/2n+1 ) + a( 1

2n+1 , w(m−1)/2n+1 , ωn−1(
m

2n+1 ))

≤ a( 1
2n , ωn−1(

m−2
2n+1 ), ωn−1(

m
2n+1 )) + ηn

= a( 1
2n , ωn−1(

j−1
2n ), ωn−1(

j
2n )) + ηn .

Repeating this construction for every pair (tj−1, tj) of consecutive nodes of the parti-

tion Pn+1, we define ωn : Pn+1 = {0, . . . , k
2n+1 , . . . 1} → X by





ωn(0) := u0,

ωn

(
k

2n+1

)
:= ωn−1

(
j
2n

)
if k is even with k = 2j,

ωn

(
k

2n+1

)
:= wk if k is odd,

ωn(1) := u1

The function ωn satisfies

2n+1∑

k=1

a( 1
2n+1 , ωn(

k−1
2n+1 ), ωn(

k
2n+1 )) ≤

2n∑

j=1

a( 1
2n , ωn−1(

j−1
2n ), ωn−1(

j
2n )) + 2nηn .

≤ a(1, u0, u1) +

n∑

j=0

2jηj

(8.6)

Let now Pdiad :=
⋃∞

n=0 Pn, and let us define ωdiad : Pdiad → X by

ωdiad(tℓ) := ωn(tℓ) if tℓ ∈ Pn .

It follows from our construction that ωdiad is well defined; from (8.6), and the fact the map
a(·, u, v) is non-increasing for every u, v ∈ X, we gather that

∞∑

ℓ=0

a(τ, ωdiad(tℓ), ωdiad(tℓ+1)) ≤ a(1, u0, u1) +
∞∑

j=0

2jηj for all τ > 0 (8.7)

We are now in a position to construct the curve ω by extending ωdiad to [0, 1]\Pdiad in the
following way: for every t ∈ [0, 1]\Pdiad we pick the sequence (tℓh)h ⊂ Pdiad with tℓh → t as
h → ∞. It follows from (8.7) that

∀ τ > 0 ∀ ε > 0 ∃ h̄ ∈ N

∀ k, h ≥ h̄ : a(τ, ωdiad(th), ωdiad(tk))

≤
k−1∑

ℓ=h

a(τ, ωdiad(tℓ), ωdiad(tℓ+1)) ≤ ε ,
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namely the sequence (ωdiad(tℓh))h is Cauchy in the O-uniform structure. Since (X, a) is
complete, (ωdiad(tℓh))h admits a limit w.r.t. the O-topology. Let

ω∞(t) := a− lim
h→∞

ωdiad(tℓh) .

Therefore, we define ω : [0, 1] → X via

ω(t) :=

{
ωdiad(t) if t ∈ Pdiad,

ω∞(t) if t ∈ [0, 1]\Pdiad.
(8.8)

Now, let (sm)Mm=1 ∈ Pf ([0, 1]) be an arbitrary partition of [0, 1]: we have that

∃ n̄ ∈ N ∀m ∈ {1, . . . ,M} ∀n ≥ n ∃ tmn ∈ Pn :

{
|sm−tmn | ≤ 1

2n ,

sm − sm−1 ≥
1

2n+1 .

Therefore,

a(sm−sm−1, ω(sm−1), ω(sm)) = lim
n→∞

a(sm−sm−1, ωdiad(t
m−1
n ), ωdiad(t

m
n ))

≤ lim inf
n→∞

a( 1
2n+1 , ωn(t

m−1
n ), ωn(t

m
n )) ,

where we have used that a(·, u, v) is non-increasing for all u, v ∈ X and the fact that ωn(t
l
n) =

ωdiad(t
l
n)

a
→ ω(sl) for l ∈ {m− 1,m}. All in all, we have

M∑

m=1

a(sm−sm−1, ω(sm−1), ω(sm))

≤ lim inf
n→∞

M∑

m=1

a( 1
2n+1 , ωn(t

m−1
n ), ωn(t

m
n ))

≤ a(1, u0, u1) +
∞∑

j=0

2jηj = a(1, u0, u1) + η

where the second estimate follows from (8.7). By the arbitrariness of (sm)Mm=1 ∈ Pf ([0, 1]),
we ultimately conclude that A(ω; [0, 1]) ≤ a(1, u0, u1) + η . In turn, since ω(0) = u0 and
ω(1) = u1, we obviously have a(1, u0, u1) ≤ A(ω; [0, 1]), and thus (8.2) follows. This finishes
the proof.

�

8.1. Existence of curves with minimal action. Suppose now that X is compact with
respect to a topology σ w.r.t. which a is lower semicontinuous (cf. (4.21)). Then, we can
exploit Theorem 8.2 to construct for all τ > 0 and u0, u1 ∈ X an optimal curve ωopt for the
minimum problem (8.3).

Theorem 8.3. Let a be, in addition, uniformly superlinear in the sense of Definition 7.1 and
suppose that X is endowed with a topology σ such that (X , σ) is compact and a is σ-lower
semicontinuous (4.21).

Then, for every τ > 0 and u0, u1 ∈ X there exists ωopt : [0, τ ] → X such that

a(τ, u0, u1) = A(ωopt; [0, τ ]) = min{A(Θ; [0, τ ]) : Θ : [0, τ ] → X , Θ(0) = u0, Θ(τ) = u1} .
(8.9)
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Proof. Applying Thm. 8.2 with η = ηn = 1
n , n ≥ 1, we construct a sequence (ωn)n of finite-

action curves such that
lim
n→∞

A(ωn; [0, τ ]) = a(τ, u0, u1) .

Due to (5.3), we have that
sup
n

Varda(ω
n; [0, τ ]) < +∞ .

Therefore, the sequence (ωn)n satisfy the conditions of [MM05, Thm. 3.2], and we infer that
there exist a subsequence (ωnk)k and ω∞ : [0, τ ] → X such that

ωnk(t)
σ
→ ω∞(t) for every t ∈ [0, T ] (8.10)

(where
σ
→ indicates convergence in the σ-topology). We now show that

A(ω∞; [0, τ ]) ≤ lim inf
n→∞

A(ωn; [0, τ ]) . (8.11)

For this, we proceed as in the proof of Theorem 8.2 and fix any partition (sm)Mm=1 ∈ Pf ([0, τ ]).
Due to (8.10) and the σ-lower semicontinuity (4.21) of a, we find that for every m = 1, . . . ,M

a(sm−sm−1, ω
∞(sm−1), ω

∞(sm)) ≤ lim inf
k→∞

a(sm−sm−1, ω
nk(sm−1), ω

nk(sm)) .

Then, (8.11) follows from adding the above estimate over m = 1, . . . ,M and using the arbi-
trariness of (sm)Mm=1 ∈ Pf ([0, τ ]). We have thus shown that

A(ω∞; [0, τ ]) ≤ a(τ, u0, u1) .

On the other hand, since by (8.10) we have ω∞(0) = u0 and ω∞(τ) = u1, the converse of the
above inequality hold, so that A(ω∞; [0, τ ]) = a(τ, u0, u1) and we may set ωopt := ω∞. �

Ultimately, under the additional property from Definition 7.1 we obtain the existence of
geodesics.

Corollary 8.4. In addition to the assumptions of Thm. 8.3, suppose that a is uniformly
superlinear in the sense of Definition 7.1. Then, for every τ > 0 and u0, u1 ∈ X there exists
ωopt ∈ ACa([0, τ ];X) such that

a(τ, u0, u1) =

∫ τ

0
a[ω′

opt](t)dt

= min

{∫ τ

0
a[Θ′](t)dt : Θ ∈ ACa([0, τ ];X), Θ(0) = u0, Θ(τ) = u1

}
.

(8.12)

Proof. It suffices to combine Theorem 8.3 with Theorem 7.3 and Theorem 6.3. �
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Riccarda Rossi, DIMI, Università degli studi di Brescia. Via Branze 38, I–25133 Brescia –

Italy

Email address: riccarda.rossi @ unibs.it
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