
Characteristics of sequential activity in networks with
temporally asymmetric Hebbian learning
Maxwell Gilletta,b , Ulises Pereirac,1, and Nicolas Brunela,b,c,d,2

aDepartment of Neurobiology, The University of Chicago, Chicago, IL 60637; bDepartment of Neurobiology, Duke University, Durham, NC 27708;
cDepartment of Statistics, The University of Chicago, Chicago, IL 60637; and dDepartment of Physics, Duke University, Durham, NC 27708

Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved October 16, 2020 (received for review October 24, 2019)

Sequential activity has been observed in multiple neuronal cir-
cuits across species, neural structures, and behaviors. It has
been hypothesized that sequences could arise from learning
processes. However, it is still unclear whether biologically plau-
sible synaptic plasticity rules can organize neuronal activity to
form sequences whose statistics match experimental observa-
tions. Here, we investigate temporally asymmetric Hebbian rules
in sparsely connected recurrent rate networks and develop a the-
ory of the transient sequential activity observed after learning.
These rules transform a sequence of random input patterns into
synaptic weight updates. After learning, recalled sequential activ-
ity is reflected in the transient correlation of network activity with
each of the stored input patterns. Using mean-field theory, we
derive a low-dimensional description of the network dynamics
and compute the storage capacity of these networks. Multiple
temporal characteristics of the recalled sequential activity are con-
sistent with experimental observations. We find that the degree
of sparseness of the recalled sequences can be controlled by non-
linearities in the learning rule. Furthermore, sequences maintain
robust decoding, but display highly labile dynamics, when synap-
tic connectivity is continuously modified due to noise or storage
of other patterns, similar to recent observations in hippocam-
pus and parietal cortex. Finally, we demonstrate that our results
also hold in recurrent networks of spiking neurons with separate
excitatory and inhibitory populations.
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Sequential activity has been reported across a wide range
of neural systems and behavioral contexts, where it plays a

critical role in temporal information encoding. Sequences can
encode choice-selective information (1), the timing of motor
actions (2), planned or recalled trajectories through the environ-
ment (3), and elapsed time (4–6). This diversity in function is
also reflected at the level of neuronal activity. Sequences occur
at varying timescales, from those lasting tens of milliseconds dur-
ing hippocampal sharp-wave ripples, to those spanning several
seconds in the striatum (7, 8). Sequential activity also varies in
temporal sparsity. In nucleus HVC of zebra finch, highly pre-
cise sequential activity is present during song production, where
many neurons fire only a single short burst during a syllable
(9). In primate motor cortex, single neurons are typically active
throughout a whole reach movement, but with heterogeneous
and rich dynamics (10).

Numerous models have explored how networks with specific
synaptic connectivity can generate sequential activity (11–20).
These models span a wide range of single neuron models, from
binary to spiking, and a wide range of synaptic connectivities.
A large class of models employs temporally asymmetric Heb-
bian (TAH) learning rules to generate a synaptic connectivity
necessary for sequence retrieval. In these models, a sequence
of random input patterns are presented to the network, and
a Hebbian learning rule transforms the resulting patterns of
activity into synaptic weight updates. In networks of binary neu-
rons, TAH learning together with synchronous update dynamics
lead to sequence storage and retrieval (21). With asynchronous

dynamics, additional mechanisms such as delays are needed to
generate robust sequence retrieval (13).

Another longstanding and influential class of model has cen-
tered on the “synfire chain” architecture (22) in networks of
spiking neurons, in which discrete pools of neurons are con-
nected in a chain-like, feedforward fashion, and a barrage of
synchronous activity in the first pool propagates down connected
pools, separated in time by synaptic delays (22, 23). Theoretical
studies have shown that synfire chains can self-organize from ini-
tially unstructured connectivity through an appropriate choice of
plasticity rule and stimulus (16, 19). Other studies have shown
that these chains produce sequential activity when embedded
into recurrent networks if appropriate recurrent and feedback
connections are introduced among pools (24–26).

Despite decades of research on this topic, the relationships
between network parameters and experimentally observed fea-
tures of sequential activity are still poorly understood. In partic-
ular, few models account for the temporal statistics of sequential
activity during retrieval and across multiple recording sessions.
In many sequences, a greater proportion of neurons encode for
earlier times, and the tuning width of recruited neurons increases
in time (5, 27, 28). Neural sequences are also not static, but
change over the timescales of days, even when controlling for the
same environment and task constraints (29, 30). TAH learning
provides an appealing framework for how sequences of neu-
ronal activity are embedded in the connectivity matrix. While
TAH learning has been extensively explored in binary neuron
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network models, it remains an open question as to whether these
learning rules can produce sequential activity in more realistic
network models and also reproduce the observed temporal statis-
tics of this activity. It is also unclear whether a theory can be
developed to understand the resulting activity, as has been done
with networks of binary neurons. Rate networks provide a use-
ful framework for investigating these questions, as they balance
analytical tractability and biological realism.

We start by constructing a theory of transient activity that can
be used to predict the sequence capacity of these networks and
focus on two features of sequences that have been described in
the experimental literature: temporal sparsity and the selectivity
of single-unit activity. We find that several temporal charac-
teristics of sequential activity are reproduced by the network
model, including the temporal distribution of firing-rate peak
widths and times. Introduction of a nonlinearity to the learning
rule allows for the generation of temporally sparse sequences.
We also find that storing multiple sequences yields selective
single-unit activity resembling that found during two-alternative
forced-choice tasks (1). Consistent with experiment, we find that
the population activity of these sequences changes over time in
the face of ongoing synaptic changes, while decoding perfor-
mance is preserved (29, 30). Finally, we demonstrate that our
findings also hold in networks of excitatory and inhibitory leaky-
integrate and fire (LIF) neurons, where learning takes place only
in excitatory-to-excitatory connections.

Results
We have studied the ability of large networks of sparsely con-
nected rate units to learn sequential activity from random,
unstructured input, using analytical and numerical methods. We
focus initially on a network model composed of N neurons, each
described by a firing rate ri (i = 1, . . . ,N ) that evolves according
to standard rate equations (31)

τ
dri
dt

=−ri +φ (hi), hi =

N∑
j 6=i

Jij rj , [1]

where τ is the time constant of rate dynamics, hi is the total
synaptic input to neuron i , and Jij is the connectivity matrix. φ is
a sigmoidal neuronal transfer function,

φ(h) =
rmax

2

(
1 + erf

(
h − θ√

2σ

))
, [2]

which is described by three parameters: rmax, the maximal firing
rate (set to one in most of the following); θ, the input at which
the firing rate is half its maximal value; and σ, a parameter which
is inversely proportional to the slope (gain) of the transfer func-
tion. Note that when σ→ 0, the transfer function becomes a step
function: φ(h) = 1 for h >θ, 0 otherwise. Note also that the spe-
cific shape of the transfer function (Eq. 2) was chosen for the
sake of analytical tractability, but our results are robust to other
choices of transfer function (see Fig. 7).

Learning Rule. We assume that the synaptic connectivity matrix is
the result of a learning process through which a set of sequences
of random inputs presented to the network has been stored
using a TAH learning rule. Specifically, we consider two differ-
ent types of input, corresponding to a continuous and discretized
sequence. In the continuous-input scenario, S input sequences
ηsi (t) of duration T are defined as realizations of independent
Ornstein–Uhlenbeck (OU) processes, with zero mean, SD σOU,
and correlation time constant τOU , where i = 1, . . . ,N is the
neuronal index and where s = 1, . . . ,S is the sequence index.
The strength Jij of a synaptic connection from neuron j to
neuron i is modified according to a TAH learning rule, that

associates presynaptic inputs at time t with postsynaptic inputs
at time t + ∆t , ∆Jij ∝ f (ηsi (t + ∆t))g(ηsj (t)), where the func-
tions f and g describe how postsynaptic and presynaptic inputs
affect synaptic strength, respectively, and ∆t is a temporal offset.
After presentation of all S sequences, the connectivity matrix is
given by

Jij =A
cij
K

S∑
s=1

∫ T−∆t

t=0

f (ηsi (t + ∆t))g(ηsj (t))dt , [3]

where cij is a matrix of independent and identically distributed
(i.i.d.) Bernoulli random variables (cij = 1, 0 with probabilities
c, 1− c), describing the “structural” connectivity matrix (i.e.,
whether a connection from neuron j to neuron i exists or not),
K =Nc represents the average in-degree of a neuron, and A
controls the strength of the recurrent connectivity.

In the case τOU�∆t , σOU = 1, T/∆t =P , if we discretize the
OU process with a timestep of ∆t , then Eq. 3 becomes:

Jij =A
cij
K

S∑
s=1

P−1∑
µ=1

f (ξs,µ+1
i )g(ξs,µj ), [4]

where memorized sequences are now composed of P random
i.i.d. Gaussian input patterns ξs,µi (i = 1, . . . ,N , µ= 1, . . . ,P).
This procedure is equivalent to a continuous-time learning pro-
cess where each input is active for a duration ∆t , and in Eq.
3, corresponds to random uncorrelated inputs ηsi (t) = ξs,µ(t),
where µ(t) = bt/∆tc (Fig. 1A). For simplicity, when investigat-
ing discretized input, we only explore the case in which the
discretization timestep of the input matches the temporal offset
of the learning rule, ∆t .

Note that this learning rule makes a number of simplifications,
for the sake of analytical tractability: 1) Plasticity is assumed
to depend only on external inputs to the network, and recur-
rent synaptic inputs are neglected during the learning phase.
2) Inputs are assumed to be discrete in time, and the learning
rule is assumed to associate a presynaptic input at a given time,
with postsynaptic input at the next time step. In other words,
the temporal structure in the input should be matched with
the prepost delay maximizing synaptic potentiation. Continuous-
time sequences in which inputs change on faster timescales than
this delay can also be successfully stored and retrieved (Fig. 1,
Left). We note that the temporal asymmetry is consistent with
both spike-timing dependent plasticity (STDP), that operates on
timescales of tens of milliseconds (32), and behavioral timescale
synaptic plasticity that operates on timescales of seconds (33).

Retrieval of Stored Sequences. We first ask the question of
whether such a network can recall the stored sequences and
characterize the phenomenology of the retrieved sequences. We
start by considering a network that stores a single sequence of
length T (corresponding to continuous input), or P i.i.d. Gaus-
sian patterns, ξµi ∼N (0, 1) for all i = 1, . . . ,N , µ= 1, . . . ,P
(corresponding to discretized input), using a bilinear learning
rule (f (x ) = x and g(x ) = x ). Without loss of generality, we
choose A= 1, as this parameter can be absorbed into the trans-
fer function by defining new parameters θ∗= θ

A
and σ∗= σ

A
. The

Gaussian assumption can be justified for a network in which neu-
rons receive a large number of weakly correlated inputs, since
the sum of such inputs is expected to be close to Gaussian due
to the central-limit theorem. The bilinearity assumption is made
for the sake of analytical tractability and will be relaxed below.

In Fig. 1B, we show the retrieval of a single sequence of
16 input patterns from the perspective of a single unit. The
gray line corresponds to the sequence of firing rates driven by
input patterns for this particular neuron (i.e., φ(ηi(t)), or φ(ξµi ),
for µ= 1, . . . , 16). The solid red line displays the unit’s activity
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Fig. 1. Retrieval of a stored sequence in the continuous (Left) and discrete (Right) cases. (A, Left) Continuous input to a single neuron, drawn from an OU
process with τOU = 4 ms and σOU = 1. (A, Right) Sequence of 16 discrete input patterns ξµi presented to a particular neuron i. A.u., arbitrary units. (B) Dark
red line: dynamics of the firing rate of the neuron during recall of the sequence, following initialization to the first pattern, ri =φ(η1

i (0)) (Left) or ri =φ(ξ1
i )

(Right). Gray line: input patterns passed through the neuronal nonlinearity. Note that the dynamics during recall produces a smooth approximation of the
sequence. Light red line: dynamics following initialization to a noisy version of the first pattern. (C) Dynamics of four additional representative neurons,
showing the diversity of temporal profiles of activity. (D) Overlap of network activity with each stored pattern (solid lines). In the continuous case, pattern
values were sampled every 10 ms. Dashed gray line: average squared rates, M. (E) Correlation of network activity with each stored pattern (or pattern
sampled every 10 ms in the continuous case). Parameters: N = 40,000, c = 0.005, τ = 10 ms, σ= 0.1, θ= 0.14 (Left) or θ= 0.22 (Right).

following initialization to the first pattern in that sequence, after
learning has taken place. Note that for this learning rule, the
network dynamics do not reproduce exactly the stored input
sequence, but, rather, produce a dynamical trajectory that is cor-
related with that input sequence. In Fig. 1B, we have specifically
selected a unit whose activity transits close to the stored patterns
during recall. In Fig. 1C, the activity of several random units is
displayed during sequence retrieval. As each unit experiences an
uncorrelated random sequence of inputs during learning, activity
is highly heterogeneous, and units differ in the degree to which
they are correlated with input patterns (SI Appendix, Fig. S1).
The distribution of firing rates during recall depends on the
parameters of the neural transfer function, φ. If the threshold
θ is large, then the distribution of rates is unimodal, with a peak
around zero, and few neurons firing at high rates. If the threshold
is zero, the distribution of firing rates is bimodal, with increas-
ing density at the minimal and maximal rates as the inverse gain
parameter σ is decreased (SI Appendix, Fig. S11). Retrieval is
also highly robust to noise—a random perturbation of the ini-
tial conditions of magnitude 75% of the pattern itself leads to
sequence retrieval, as shown in Fig. 1B (compare the two solid
lines, corresponding to unperturbed and perturbed initial condi-
tions, respectively—see also SI Appendix for more details about
noise robustness).

A natural quantity to measure sequence retrieval at the pop-
ulation level is the overlap (dot product) of the instantaneous
firing rates with a given stored pattern in the sequence. For dis-
cretized input, this quantity is given by ml(t) = 1

N

∑N
i=1 ri(t)ξ

l
i .

To measure overlaps in networks storing continuous input, we
sampled pattern values every 10ms from the continuous input
(Fig. 1 D and E, Left; SI Appendix). Overlaps can be thought of
as linear decoders of the activity of the network. Another quan-
tity is the (Pearson) correlation between network activity and
the stored pattern, which for the bilinear rule corresponds to the

overlap divided by the SD of the firing rates across the popula-
tion. In the general case, we consider the correlation between the
transformed presynaptic input g(ξl) and network activity r(t) (SI
Appendix). Overlaps and correlations are shown in Fig. 1 D and
E, respectively, showing that all patterns in the sequence are suc-
cessively retrieved, with an approximately constant peak overlap
(∼ 0.1) and correlation (∼ 0.4). Note that the maximum achiev-
able overlap and correlation for the bilinear rule are 0.388 and
0.825, respectively, following retrieval from initialization to the
first pattern (SI Appendix). In the remainder of the paper, we
investigate the dynamics of sequential activity arising from stored
discretized input.
Temporal Characteristics of the Retrieved Sequence. We next
consider the temporal characteristics of retrieved sequences. The
speed of retrieval of a sequence is defined as the inverse of
the interval between the peaks in the overlaps with successive
patterns in the sequence. We find that the network retrieves
the sequence at a speed of approximately one pattern retrieved
per time constant τ . For instance, in Fig. 1, in which the time
constant of the units is 10 ms, the whole sequence of 16 pat-
terns is retrieved in approximately 150 ms (the first pattern was
retrieved at time 0). Empirically, we find that the time it takes
to retrieve the whole sequence is approximately invariant to the
number of sequences stored and the parameters of the rate-
transfer function, and is well predicted by tretrieval = τ(P − 1) (SI
Appendix, Fig. S2). When storing discretized input, the retrieval
time (and connectivity in Eq. 4) does not depend on the tempo-
ral offset of the learning rule ∆t , as the discretization timestep
of the stored input is matched to this interval. For continuous
sequences of duration T , the time to retrieve stored sequences
is proportional to τT/∆t—i.e., the retrieval time is again pro-
portional to the time constant of the rate dynamics τ , but is
inversely proportional to the temporal offset of the learning
rule ∆t .

29950 | www.pnas.org/cgi/doi/10.1073/pnas.1918674117 Gillett et al.
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While the sequence is retrieved at an approximately constant
speed, several other features of retrieval depend strongly on
the time within the sequence. In particular, the peak overlap
magnitudes decay as a function of time within the sequence,
but the width increases as τ

√
l , where l > 1 denotes the index

of the overlap (Fig. 2B and SI Appendix). Similarly, neurons at
the beginning of a sequence are sharply tuned, and those toward
the end have broader profiles (Fig. 2A). This is consistent with
experimental findings in rat CA3 (5), medial prefrontal cortex
(27) and monkey lateral prefrontal cortex (28). Another com-
monly reported experimental observation involves the temporal
ordering of these peaks. Across these same areas and species, a
larger number of neurons appear to encode for earlier parts of
the sequence than for later segments, resulting in sequences that
are not uniformly represented in time by neuronal activity (5,
27, 28). A similar pattern of overrepresentation is found in the
model. The cumulative density of firing-rate peak times deviates
from a uniform distribution, while the density of the overlap peak
times are roughly uniform in time (Fig. 2C). This is due to a com-
bination of two factors: Both initial overlaps and average activity
are larger initially, leading to a larger probability that neurons
with large values of ξs for the initial patterns in the sequence will
develop a peak.
A Low-Dimensional Description of Dynamics. To better under-
stand the properties of these networks, we employed mean-field
theory to analyze how the overlaps in a typical network real-
ization evolve in time. To this end, we defined several “order
parameters.” The first set of order parameters measures the typ-
ical overlap of network activity in time with the µ-th pattern:
qµ(t) =E (ξµr(t)), where the average is taken over the statistics
of the patterns. Note that these are distinct from the previously
defined overlaps m , which are empirically measured values for
a particular realization of sequential activity patterns. However,
for the large, sparse networks considered here, these quantities
describe any typical realization of random input patterns and
connectivity (SI Appendix). We also define the average squared
rate M (t) =E

(
r2(t)

)
, the two time autocorrelation function

C (u, t) =E (r(u)r(t)), and the network memory load as the
number of patterns stored per average synaptic in-degree—i.e.,
α= S(P−1)

K
.

Framing the network in these terms yields a low-dimensional
description in which the time-dependent evolution of the over-
laps can be written as an effective delay line system (SI
Appendix). In this formulation, the activation level of each over-
lap is driven by a gain-modulated version of the previous one in

the sequence, where the gain depends on the sequential load,
rate variability, and norm of the overlaps

τ
dqµ
dt

=−qµ + qµ−1G

(
P−1∑
ν=1

q2
ν (t) +αM

)
µ= 2, . . . ,P , [5]

and the gain function G is given by

G(x )≡ 1√
2π(σ2 + x )

exp
(
− θ2

2(σ2 + x )

)
. [6]

The dynamics of M and C are given by coupled integro-
differential equations (SI Appendix). With a constant gain G
below one, recall of a sequence would decay to zero, as each
overlap would become increasingly less effective at driving the
next one in the sequence. Conversely, a constant gain above one
would eventually result in runaway growth (SI Appendix). In Eq.
5, the gain changes in time due to its dependence on the norm
of ~q and M . During successful retrieval, the gain transiently rises
to a value that is slightly larger than one, allowing for overlap
peaks to maintain an approximately constant value (SI Appendix,
Fig. S3B). We find that there are two different regimes for
successful retrieval that depend on the shape of G (and, there-
fore, the transfer-function parameters): One in which sequences
of arbitrarily small initial overlap are retrieved and another in
which a finite initial overlap is required (SI Appendix, Fig. S3
A and C).

The predictions from mean-field theory agree closely with the
full network simulations. Fig. 3A shows the dynamics of a net-
work in which two sequences of identical length are stored. At
time 0, we initialize to the first pattern of the first sequence (cor-
responding overlaps shown in red). At 250 ms, we present an
input lasting 10 ms corresponding to the first pattern of the sec-
ond (blue) sequence. The solid lines show the overlap of the full
network activity with each of the stored input patterns. The pre-
dicted overlaps from simulating mean-field equations are shown
in dashed lines. The average squared rate is also predicted well
by the theory, as is the two time autocorrelation function (SI
Appendix, Fig. S4).

Storage Capacity of the Network. We next asked how the proper-
ties of retrieved sequences depend on the memory load α and
what is the maximal storage capacity of the network, defined
as the largest value of α for which sequences can be retrieved

A B C

Fig. 2. Temporal characteristics of a retrieved sequence. (A) Distribution of single-neuron peak widths, defined as continuous firing intervals occurring
one SD above the single-neuron time-averaged firing rate. Black error bars denote mean and SD of widths within each 10-ms interval. Dashed red curve is
best-fit trend using scaled square root function (SI Appendix). (B) Green dots correspond to observed overlap widths, defined as the weighted sample SD of
ml(t) (SI Appendix). Red dots display the analytically predicted overlap width of τ

√
l, where τ = 10 ms and l≥ 1 (SI Appendix). (C) Cumulative percentage

of peak times for single neurons (blue) and overlaps (gray). The dashed black line represents a uniform distribution. All parameters are as in Fig. 1.
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Fig. 3. Sequence capacity for Gaussian patterns. (A) Overlaps of two discrete sequences. Solid lines are full network simulations; dashed lines are simulations
of the mean-field equations. (B) The maximal correlation with the final pattern in the stored sequence obtained from simulating mean-field equations, as a
function of sequence load, for parameters corresponding to Fig. 1 (θ= 0.22 and σ= 0.1). The vertical dashed line marks the predicted capacity for θ= 0.22
and σ= 0.1. (C) Storage capacity as a function of the gain of the neural transfer function for three values of θ (all other parameters fixed). Solid curves:
storage capacity computed from SI Appendix, Eqs. 39 and 40. Symbols: storage capacity, computed from simulations of mean-field equations (SI Appendix).
C, Insets display representative overlap dynamics for network parameters above and below the capacity curve corresponding to θ = 0.2 (solid lines within
Insets are full network simulations). Parameters for A are as in Fig. 1, except S = 2.

successfully. Fig. 3B shows the peak correlation value that the
network attained with the final pattern in a sequence as a func-
tion of the sequence load, obtained by using the mean-field
equations. It shows that the correlation with the last pattern
decreases with α until it reaches, for long enough sequences, a
value close to zero at α≈ 0.47. We calculated analytically this
sequence capacity αc and found that it is implicitly determined
by solving the relation G(αcMc) = 1 forαc , where Mc is the aver-
age squared firing rate at capacity (SI Appendix). At capacity,
for a fixed number of incoming connections K , the network can
store one long patterned sequence of length Kαc , or any num-
ber of sequences that collectively sum to this length (SI Appendix,
Fig. S6).

In Fig. 3C, the analytically computed capacity curve is shown as
a function of the inverse gain parameter of the rate-transfer func-
tion σ and for three values of θ (solid lines). Below a specified
capacity curve, a sequence can be retrieved, and above it decays
to zero. A small inverse gain corresponds to a transfer function
with a very steep slope, whereas a large inverse gain produces
a more shallow slope. The parameter θ determines the thresh-
old of input required to drive a unit to half its maximum firing
rate rmax, where a larger θ corresponds to a higher threshold.
The storage capacity obtained from simulating the mean-field
equations (symbols) agrees well with the analytical result (solid
lines).

For Gaussian patterns, we find that capacity is maximal for
transfer functions with a positive threshold θ+

c = 1/
√

2πe ≈ 0.24
(SI Appendix, Figs. S3A and 5). The capacity decreases smoothly
for θ < θ+

c , but drops abruptly to zero above θ+
c . This abrupt

drop is due to the behavior of the gain function G as param-
eters σ and θ are varied (SI Appendix, Fig. S3C). For θ < θ+

c

(SI Appendix, Fig. S3 A, region F), G has a region of stabil-
ity (range of values of x such that G(x )≥ 1) that is bounded
away from zero. For α<αc , and for appropriate initial condi-
tions, the gain eventually stabilizes around one: Either an initially
large gain will decrease or an initially small gain will grow. As θ

crosses θ+
c , however, this region of stability disappears, resulting

in zero capacity αc = 0. Capacity decreases continuously in other
parameter directions. In particular, as θ approaches its lower
bound θ−c , and as σ approaches its upper bound σc , the capacity
continuously decreases to zero.

Nonlinear Learning Rules Produce Sparse Sequences. We have
explored so far the storage of Gaussian sequences and found
that the stored sequences can be robustly retrieved. Activity at
the population level is heterogeneous in time (Fig. 1B), with
many units maintaining high levels of activity throughout recall.
However, many neural systems exhibit more temporally sparse
sequential activity (9). While the average activity level of the net-
work can be controlled to some degree by the neuronal threshold
θ, retrieved sequences are nonsparse, even for the largest values
of θ, for which the capacity is nonzero. Altering the statistics of
the stored patterns will, in turn, change the statistics of neuronal
activity during retrieval, which could lead to more sparse activity.

We therefore revisited Eq. 4 and explored nonlinear presy-
naptic and postsynaptic transformations (g(x ) and f(x ), respec-
tively). We focus on a simplified functional form, similar to one
shown to fit learning rules inferred from in vivo cortical data
(34) and shown to maximize storage capacity in networks stor-
ing fixed-point attractors (35). For each synaptic terminal (pre
and post), we apply a transformation that binarizes the activ-
ity patterns ξ into high and low values according to a threshold
(Fig. 4A):

f(x ) =

{
qf if x > xf
qf − 1 if x ≤ xf ,

[7]

g(x ) =

{
qg if x > xg
qg − 1 if x ≤ xg .

[8]

In the following, we choose xf = xg and set qg such that∫
Dzg(z ) = 0. This fixes the mean connection strength to zero,
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A B

C D

E

Fig. 4. Sparse sequences with a nonlinear learning rule. (A) Probability den-
sity of Gaussian input pattern ξ (black). Step function f binarizing the input
patterns prior to storage in the connectivity matrix (blue) is shown. (B) Firing
rate of several representative units as a function of time. (C) Firing rates of
4,000 neurons (out of 40,000) as a function of time, with “silent” neurons
shown on top and active neurons on the bottom, sorted by time of peak
firing rate. (D) Correlation of network activity with each stored pattern. (E)
Average population rate as a function of “coding level” (probability that
input pattern is above xf ). The average of f(x) is maintained by varying qf

with xf . In red, the average of f(x) is constrained to−0.15, the value in A–D.
In black, the average of f(x) is fixed to zero. All other parameters are as in
A–D. For A–D, parameters of the learning rule were xf = 1.645, xg = 1.645,
qf = 0.8, and qg = 0.95. S = 1, P = 30.

thereby preventing the mean total synaptic input from growing
with the number of patterns stored, as was also the case with
the bilinear learning rule. The parameter qf is chosen such that∫
Dzf (z )≤ 0 (34, 35).
High thresholds (xf , xg) lead to a low “coding level” (the

probability that an input pattern is above xf ) of the binarized
representation of the patterns stored in the connectivity matrix.
We find that storage of such patterns leads to sparse sequential
activity at a population level (Fig. 4 B and C) and strong tran-
sient correlations with these patterns during retrieval (Fig. 4D).
Quantitative analysis of this activity reveals that both single-
neuron peak and overlap widths are largely constant in time,
unlike retrieval following a bilinear learning rule. Single-neuron
peak times are still biased toward the start of the sequence,
but to a lesser degree than with the bilinear rule (SI Appendix,
Fig. S7). As a result of this sparse activity, overlap values are
smaller than those resulting from the bilinear rule, but correla-
tions are of similar magnitude, due to smaller pattern and firing
rate variance.

This sparse activity is reflected in the average population fir-
ing rate, which is 0.04 · rmax in Fig. 4 B–D, compared to Fig. 1,
where it was 0.11 · rmax. Compared to networks storing Gaussian
patterned sequences, this is a consequence of fewer neurons fir-
ing, and not due to a uniform decrease of single-unit activity.
As the coding level decreases, the average population firing rate
decreases (Fig. 4E). The magnitude of this decrease is dependent
on the average of f(x ) (holding all other parameters equal) and

becomes smaller as this average becomes more negative. Given
a low coding level, we expect many neurons to be silent during
recall. As can be seen in Fig. 4C, for this choice of parame-
ters, roughly 25% of neurons display no activity. The sequence
capacity of these networks is larger than those resulting from
the bilinear rule and increases as the coding level decreases (SI
Appendix, Fig. S9).

Diverse Selectivity Properties Emerge from Learning Random
Sequences. Experimentally observed sequential activity often dis-
plays some degree of diversity in selectivity properties. For
instance, in posterior parietal cortex (PPC), mice show choice-
selective sequential activity during two-alternative force-choice
T-maze tasks. In the task, mice are briefly cued at the start of a
trial before running down a virtual track that is identical across
trial contexts. At the end of the track, they must turn either left
or right according to the remembered cue to receive reward (1).
Within a single recording session and across trials, many neu-
rons display a preference for firing at a specific location during
a single-choice context and are silent or weakly active otherwise.
Other neurons fire at the same interval during both choice con-
texts, at different intervals, or are not modulated by the task
(1). Similar activity has been described in rat CA1 hippocam-
pal neurons during the short delay period preceding a different
two-alternative figure-eight maze (4). It is an open question as
to whether these different types of selectivity are a signature of
task-specific mechanisms or simply the expected by-product of
storing uncorrelated random inputs. To investigate this question,
we stored two random uncorrelated sequences, each correspond-
ing to the “left” and “right” target decisions in the T-maze task.
The patterns in these sequences were transformed according to
the nonlinear learning rule described in the previous section.
We find that the same qualitative heterogeneity of response type
exists in our network model. In Fig. 5, subpopulations of iden-
tified right-preferring, left-preferring, and nonspecific units (i.e.,
units that fire at similar times in both sequences) are plotted dur-
ing a single recall trial of each sequence. Note that while the
model reproduces qualitatively the diversity of selectivity prop-
erties seen in the data, quantitatively, the fraction of nonspecific
neurons found in the model (∼ 1%) is much smaller than that
found in experiment (∼ 10% of putative imaged cells in ref. 1).
This discrepancy might be due to different levels of sparsity or to
correlations in the two sequences stored in mouse PPC.

Changes in Synaptic Connectivity Preserve Collective Sequence
Retrieval while Profoundly Changing Single-Neuron Dynamics.
While sequential activity in PPC is stereotyped across multi-
ple trials in a single recording session, it changes significantly
across multiday recordings (30). In a single recording session,
many neurons display a strong peak of activity at one point
in time during the task. Across consecutive days of recordings,
however, a substantial fraction of these peaks are either gained
or lost. Critically, information about trial type is not lost over
multiple recording sessions, as reflected by above chance decod-
ing performance of trial type (left vs. right) in subsets of cells
(30). Similarly, place cells in CA1 of hippocampus form stable
sequences within a single recording session, but exhibit large
changes in single neuron place fields across days, even in the
same environment (29). As in PPC, a total remapping is not
observed, and information about the position of the animal is
preserved at the population level across time (29).

We explored the possibility that these changes in single neuron
selectivity might be due to ongoing changes in synaptic con-
nectivity, consistent with spine dynamics observed in cortex and
hippocampus (36, 37). To probe whether dynamic reorganiza-
tion of sequential activity is consistent with such ongoing synaptic
dynamics, we introduced random weight perturbations to the
synaptic connectivity. We simulated the network over multiple
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Fig. 5. Diverse selectivity properties emerge after learning two random
input sequences. Single-trial raster plots display units that are active only
during the right trial (Left), left trial (Center), and at similar times dur-
ing both trials (Right). Activity is sorted by the time of maximal activity,
and this sorting is fixed across rows. Numbers indicate amount of neurons
passing selection criteria (total neuron count is 40,000). S = 2, and all other
parameters are as in Fig. 4.

days, where the weights on day n are defined as a sum of a fixed,
sequential component (J seq) as in Eq. 4, and a random dynamic
component (J dyn

ij ):

Jij (n) = J
dyn
ij (n) + J

seq
ij , [9]

J
seq
ij =A

cij
K

S∑
s=1

P−1∑
µ=1

f (ξs,µ+1
i )g(ξs,µj ), [10]

J
dyn
ij (1) =σzcij z

1
ij , [11]

J
dyn
ij (n) =λJ

dyn
ij (n − 1) +

√
1−λ2σz z

n
ij , n > 1, [12]

where λ controls the decay of random perturbations, σz controls
their amplitude, and zn

ij ∼N (0, 1) are i.i.d. random Gaussian
variables of zero mean and unit variance.

In Fig. 6, we examine the reorganization of activity during a
30-d period, for parameters such that the activity strongly decor-
relates over the time course of a few days. In Fig. 6A, sorted
sequential activity is plotted for retrieval on day 1, followed by
that during the 30-d mark. We find that sequential activity shows
progressive reorganization, with the sequence on day 30 being
only weakly, but significantly correlated (with a Pearson correla-
tion coefficient of ∼ 0.4) with the sequence on day 1. Critically,
the underlying stored sequence can be read out equally well on
both days, as shown by the pattern-correlation values plotted
below. In Fig. 6B, representative single-unit activity is shown on
the first, second, and final simulated day for four neurons, show-
ing the emergence and disappearance of localized activity peaks
in multiple neurons. To measure how quickly sequential activ-
ity decorrelated across time, for each day we plotted the average
correlation of single-unit activity profiles with those on day 1 or
30 (Fig. 6C). For the parameters chosen here, sequences decor-

relate in a few days, such that by day 15, the correlation has
reached a stable baseline. This qualitatively matches the ensem-
ble activity correlation times reported in mouse CA1 (38). The
dependence of the timescale and degree of decorrelation on λ
and σz is shown in SI Appendix, Fig. S8.

Sequence Retrieval in Excitatory–Inhibitory Spiking Networks. For
simplicity, we had previously chosen to neglect two key features
of neuronal circuits: the separation of excitation and inhibi-
tion, and action-potential generation. To investigate whether
our results are valid in more realistic networks, we developed
a procedure to map the dynamics of a single-population rate
network onto a network of current-based LIF neurons with sepa-
rate populations of excitatory and inhibitory units. To implement
sequence learning in two population networks, we made the
following assumptions: 1) Learning takes place only between
excitatory-to-excitatory recurrent connections; 2) to implement
the sign constraint in those connections, we apply to the Heb-
bian connectivity matrix (Eq. 4) a nonlinear synaptic transfer
function that imposes a nonnegativity constraint—specifically,
we use a simple rectification (SI Appendix); and 3) inhibition is
faster than excitation. Under these assumptions, we reformulate
the two-population network into an equivalent single-population
network with two sets of connections: one representing the
excitatory-to-excitatory inputs, and the other representing the
inhibitory feedback. We compute the effective inhibitory drive
that balances the average positive excitatory recurrent drive
arising from rectification, and, in turn, excitatory-to-inhibitory
and inhibitory-to-excitatory connection strengths in the original
two-population model that achieve this balance.

A B

C

Fig. 6. Changes in synaptic connectivity preserve retrieval while changing
single-neuron dynamics. (A) Sorted raster plots at the start and end of a
30-d simulation. (A, Top) Sorted to activity on day 1. (A, Middle) Sorted to
activity on day 30. (A, Bottom) Pattern correlations computed on day 1 and
30. (B) Representative single-unit activity profiles of four neurons across days
1, 2, and 30. Color corresponds to unit identity. (C) Average correlation of
activity profiles between day n, and either day 1 (black) or 30 (green). λ=

0.85,σz = 0.03, S = 1, and all other parameters as in Fig. 4. Note that the SD
of the “noise” term in the connectivity matrix σz is larger than the SD of the
fixed sequential component σseq = 0.022. The colormap scale for days 1 and
30 in A are the same as in Fig. 5.
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Fig. 7 shows the results of applying this procedure in two
steps (from a one-population to two-population rate model, and
then from a two-population rate model to a two-population LIF
network—see SI Appendix for details). In Fig. 7A, sequential
activity is shown from a single-population rate network of size
N = 20,000 with a rectified linear rate-transfer function. In
Fig. 7B, we transform this population into excitatory units by rec-
tifying their synaptic weights and add an additional population
of N = 5,000 inhibitory units, with random sparse connections
to and from the excitatory units. Finally, in Fig. 7C, we con-
struct a current-based spiking network using parameters derived
from LIF transfer functions. These LIF transfer functions were
fit to a bounded region of the rectified linear transfer functions
in Fig. 7B (SI Appendix). Connectivity matrices are identical for
Fig. 7 B and C up to a constant scaling factor. Raster plots of
excitatory neurons reveal that activity is sparse, with individ-
ual neurons firing strongly for short periods of time. Inhibitory
neurons fire at rates that are much less temporally modulated
than those of excitatory neurons and inherit their fluctuations in
activity from random connections from the excitatory neurons.
Retrieval in the spiking network is robust to perturbations of
the inhibitory feedback (SI Appendix, Fig. S12). Increasing by
5% or decreasing by 20% the strength of excitatory-to-inhibitory
connections (JIE ) results in diminished or elevated global firing
activity, respectively, but the sequence is retrieved with the same
fidelity, as measured by pattern correlations.

Discussion
We have investigated a simple TAH learning rule in rate and
spiking networks models and developed a theory of the transient
activity observed in these networks. Using this theory, we have
computed analytically the storage capacity for sequences in the
case of a bilinear learning rule and derived parameters of the
neuronal transfer function (threshold and gain) that maximize
capacity.

We have found that a variety of temporal features of popu-
lation activity in the network model match experimental obser-
vations, including those made from single trials of activity and
across multiday recording sessions. A bilinear learning rule pro-
duces sequences that qualitatively match recorded distributions
of single-neuron preferred times and tuning widths in cortical

and hippocampal areas. Tuning widths increase over the course
of retrieval, and activity peaks are more concentrated at ear-
lier segments of retrieval (5, 27, 28). With a nonlinear learning
rule, sequential activity is temporally sparse and more uniform
in time, consistent with findings in nucleus HVC of zebra finch
(39, 40). To mimic the effects of synaptic turnover and ongo-
ing learning across multiday recording sessions, we continually
perturbed synaptic connectivity across repeated trials of activ-
ity. We show that single-unit activity can dramatically reorganize
over this time period while maintaining a stable readout of
sequential activity at the population level, consistent with recent
experimental findings (29, 30). Finally, we have developed a pro-
cedure to map the sequential activity in simple rate networks to
excitatory–inhibitory spiking networks.

Comparison with Previous Models. A large body of work has
explored the generation and development of sequential activity
in network models (11–19, 41. The storage and retrieval of binary
activity patterns using TAH learning rules has been studied in
networks of both binary and rate units. In networks of binary
neurons, with asymmetric connectivity and parallel updating, the
activity transitions instantaneously from one pattern to the next
at each time step. With asynchronous updating, synaptic currents
induced by the asymmetric component in the connectivity need
to be endowed with delays in order to stabilize pattern transi-
tions (13, 42). In contrast to previously studied rate and binary
models, the present rate network neither transitions immediately
between patterns nor dwells in pure pattern states for fixed peri-
ods of time. Instead, network activity during retrieval smoothly
evolves in time in such a way as to become transiently correlated
successively with each of the patterns in the sequence.

Previous studies of network of spiking neurons have heav-
ily focused on the reproduction of temporally sparse synfire
chain activity (15, 16, 44). However, a growing number of
observations indicate that, outside specialized neural systems
such as nucleus HVC, sequences are rarely consistent with
such a simplified description. Contrary to previous work, our
approach seeks to provide a unified framework to account for
the diversity of observed dynamics. Recent modeling efforts to
reproduce quantitatively experimentally observed dynamics have
used supervised learning algorithms, in which initially randomly

A B C

Fig. 7. Sequence retrieval in excitatory–inhibitory (E-I) networks. (A) Single-population rate network with threshold-linear transfer function. (A, Top)
Correlation of network activity with stored patterns. (A, Middle) Firing rates of three representative units, where color corresponds to unit identity. A,
Middle, Inset displays transfer function. (A, Bottom) Raster plot of units, sorted by time of peak firing rate. (B) Two-population rate network; panels are
as in A. The lowermost graph in B shows the firing rate of representative inhibitory units. (C) Two-population LIF spiking network. (C, Top) As in A and B.
(C, Middle) Voltage traces of three representative excitatory units. (C, Bottom) Raster plots of excitatory (sorted) and inhibitory units. Note that the same
realizations of random sequences are stored in the three networks, and parameters of the E-I networks are computed so as to match the characteristics of
sequences in the single-population rate network. In A and B, every 100th neuron is plotted in the raster plots for clarity, and silent neurons (∼ 25% of the
population) are excluded. In C, every 200th neuron is plotted in the excitatory raster, and every 50th neuron in the inhibitory raster.
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connected networks are trained to reproduce exactly activ-
ity patterns observed in experiment (18, 44). However, these
learning rules are nonlocal, and there are currently no known
biophysical mechanisms that would allow them to be imple-
mented in brain networks. Here, we have shown that a simpler
and more biophysically realistic learning rule is sufficient to
reproduce many experimentally observed features of sequential
activity.

Storage Capacity. The analytical methods used in this paper are
generalizations of mean-field methods used extensively both in
networks of binary neurons (48–51) and in networks of rate
units (35, 52). Using these methods, we were able to compute
analytically the storage capacity of sequences of independent
Gaussian-distributed patterns of activity in rate models using a
TAH learning rule. This allowed us to characterize how the stor-
age capacity depends on the parameters of the transfer function
and to obtain the threshold and gain of the transfer function
that optimizes this storage capacity. We found, as in fixed-point
attractor networks (35, 48, 53), and networks of binary neurons
storing sequences (49, 50), that capacity scales linearly with the
mean number of connections per neuron. The storage capacity
of our model for the bilinear rule is of the same order of mag-
nitude as storage capacities previously computed in networks of
binary neurons, both in sparsely connected (49) and fully con-
nected networks (50). While our results are derived in the large
N limit, we have shown that it predicts well the measured capac-
ity for finite-size networks. We also computed numerically the
capacity for networks with nonlinear learning rules and found
that the capacity increases when sequences become sparser, sim-
ilar to what is found in networks storing fixed-point attractor
states (35, 54, 55).

Storage and Retrieval. In the present work, we have used a simpli-
fied version of a TAH rule in which only nearest-neighbor pairs
in the sequence of uncorrelated patterns modify the weights. This
learning rule assumes that network activity is “clamped” dur-
ing learning by external inputs, and that recurrent inputs do not
interfere with such learning. The temporally discrete input con-
sidered here can be seen as an approximation of a continuous
input sequence (Fig. 1A). Alternatively, it can describe situa-
tions in which the inputs are discrete in time and/or learning in
the presence of a strong global oscillation, where the time dif-
ference between consecutive input patterns would correspond
to the period of the oscillation. We found for the bilinear rule
that, following learning, the speed of retrieval (i.e., the inverse
time between recall of consecutive patterns) matches the time
constant of the rate dynamics. Moreover, we showed empiri-
cally that this speed does not depend on the number of stored
patterns, nor on the particulars of the neural transfer function.
This suggests that if patterns are presented during learning at
this same timescale (i.e., ∆t = τ), one that is consistent with
STDP, then they can be retrieved at the same speed as they
were presented, without any additional mechanisms (56). If pat-
terns are presented on slower timescales, then retrieval of input
patterns could proceed on a faster speed than in which they
were originally presented. Such a mechanism could underlie the
phenomenon of hippocampal replay during sharp-wave ripple
events, in which previously experienced sequences of place cell-
activity can reactivate on significantly temporally compressed
timescales (57). Whether additional cell-intrinsic or network
mechanisms allow for dynamic control of retrieval speed remains
an open question.

Retrieval in the present network model bears similarities to
that of the functionally feedforward linear-rate networks ana-
lyzed by Goldman (58), in which recurrent connectivity was
constructed by using an orthogonal random matrix to rotate a
feedforward chain of unity synaptic weights. Retrieval was ini-

tiated by briefly stimulating an input corresponding to the first
orthogonal pattern in the chain. The retrieval dynamics in those
networks correspond exactly to those of the overlap dynamics
for the bilinear rule in the presently studied network if a con-
stant gain of G = 1 is assumed (SI Appendix). The key difference
in our model is that the gain G is dynamic (Eq. 6), as it depends
on network activity and overlaps with the stored patterns (Eq.
5). When retrieval is successful, network dynamics ensure that it
maintains a value slightly above one throughout retrieval of the
full sequence (see SI Appendix for detailed discussion), without
any need for fine tuning.

We also found that retrieval is highly robust to initial Gaus-
sian perturbations. Contrary to expectation, storage of additional
nonretrieved patterns/sequences confers significantly increased
robustness against a perturbation of the same magnitude (SI
Appendix, Fig. S10). This can be understood by examining the
mean-field equations and noticing that a larger α provides a
greater range of convergence in initial overlap values to a gain
that reaches an equilibrium value around one (see SI Appendix
for detailed discussion).

While we have made several simplifying assumptions in the
interest of analytical tractability, many of these assumptions do
not hold in real neural networks. Biological neurons receive
spatially and temporally correlated input. Plasticity rules also
operate over a range of temporal offsets, and not at a single
discrete time interval, as was assumed here (59). The learn-
ing rule we considered here operates on external inputs and
does not account for the recurrent inputs arising from pat-
tern presentations during learning. Feedback from these inputs
could dramatically alter firing rates during learning and require
additional mechanisms to stabilize learning. However, we note
that the learning rule described here could potentially be a
good approximation of a firing-rate-based rule, in a scenario
in which learning is gated by neuromodulators. In such a sce-
nario, plasticity would be gated by neuromodulators that would
also act to weaken recurrent inputs, ensuring that external
inputs are the primary drivers of neuronal activity. During
the retrieval phase, recurrent inputs would be strong enough
to sustain retrieval without ongoing additional external inputs
(see, e.g., ref. 60). Understanding how each of these prop-
erties impact the findings presented will be the subject of
future work.

Temporal Characteristics of Activity. We have found two emergent
features of retrieval with a bilinear learning rule that are consis-
tent with experiment: a broadening of single-unit activity profiles
with time and an overrepresentation of peaks at earlier times of
the sequence. These features have been reported in hippocampal
area CA3 (5), medial prefrontal cortex (27) and lateral prefrontal
cortex (28). Our theory provides a simple explanation for both of
these features. Mean-field theory analysis shows that the tempo-
ral profile of the overlaps control, to a large extent, the profiles of
single units. Specifically, the mean input current of a single unit
is a linear combination of overlaps, with coefficients equal to the
pattern values shown during learning. For Gaussian patterns, the
overlaps rise transiently through an effective delay-line system,
where the activation of each overlap is fed as input to drive the
next. As the overlaps decay on the same timescale that they rise,
the effective decay time grows for inputs later in the sequence,
resulting in more broadly tuned profiles. This is also reflected in
the longer decay time in the two time autocorrelation function
at later times (SI Appendix, Fig. S4B). The overrepresentation of
peaks at earlier times can be accounted for by a decrease in over-
lap magnitude throughout recall, as fluctuations in activity earlier
in recall are more likely to rise above threshold and establish a
peak.

We have also investigated the effects of storing sparse pat-
terns using a nonlinear learning rule. The form of this rule bears
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similarities to that inferred from electrophysiological data in
inferior temporal cortex (34) and has been shown to be opti-
mal for storing fixed-point attractors in the space of sepa-
rable, sigmoidal learning rules (35). Sparse patterns lead to
sequence statistics that are consistent, instead, with song-specific
sequential activity in nucleus HVC of zebra finch (39, 40).

Effects of Random Synaptic Fluctuations on Sequence Retrieval.
We showed that simulating the effects of random fluctuations
of synaptic weights by adding random weight perturbations
can account for sequences that are unstable at the single-
unit level, but which still maintain information as a popu-
lation, consistent with experiment (29, 30, 38). We assumed
that synaptic connectivity has both a stable component (stor-
ing the memory of sequences) and an unstable component
that decays over timescales of days. The fluctuations of synap-
tic connectivity described by Eqs. 9–12 are roughly consistent
with observations of spine dynamics over long timescales (e.g.,
ref. 61). When both components are of similar magnitude,
the unstable component interferes with recall, producing noise
that causes the input current to a single neuron to fluctu-
ate strongly from day to day. While this noise is of sufficient
strength to produce temporally sparse sequential activity with
activity peaks that depends on its realization, it is not strong
enough to disrupt recall driven by the stable sequential weight
component.

If synaptic weights had no stable component and performed
an unbiased random walk starting from their initial values, then
decoded sequential activity representing task variables would
unsurprisingly be expected to dissipate after some period of
elapsed time. Experimentally, sequential activity after several
weeks still exhibits a significant correlation with the initial pat-
tern of activity. It is still an open question whether this corre-
lation decays to zero on longer timescales. Here, we assumed
that there exists a stable component to the synaptic connectivity
(perhaps due to repeated exposure, and consequent relearning,
of the animal to the same sensory environment), while fluctua-
tions, described by a simple OU process, either represent purely
stochastic synaptic fluctuations or are due to learning of other
information unrelated to the specific task under which sequential
activity is measured.

From Rate to Spiking Network Model. While our initial results were
derived in rate models that do not respect Dale’s law, we have
shown that it is possible to build a network of spiking excita-
tory and inhibitory neurons that stores and retrieves sequences
in a qualitatively similar way as in the rate model. In the spiking
network, the Hebbian rule operates in excitatory-to-excitatory
connections only, while all connections involving inhibitory neu-
rons are fixed. With this architecture, most excitatory neurons
show strong temporal modulations in their firing rate, while
inhibitory neurons show much smaller temporal modulations
around an average firing rate. These firing patterns are consistent
with observations in multiple neural systems of smaller tempo-
ral modulations in the firing of inhibitory neurons, compared to
excitatory cells (9, 62, 63).

Overall, our paper demonstrates that a simple Hebbian learn-
ing rule leads to storage and retrieval of sequences in large
networks, with a phenomenology that mimics multiple experi-
mental observations in multiple neural systems. The next step
will be to investigate how the connectivity matrix used in this
study can be obtained through biophysically realistic online
learning dynamics.

Materials and Methods
Details of the numerical and analytical methods can be found in SI
Appendix, including the mean-field theory for the bilinear rule, construc-
tion of the excitatory–inhibitory rate network, and details of the LIF spiking
network. Simulation and analysis details for all figures are documented in SI
Appendix, Supplemental Procedures. Parameters for all simulations can be
found in SI Appendix, Parameter Tables.

Software. Rate and spiking network simulations were performed by using
custom C++ and Python routines with the aid of NumPy (64), SciPy
(65), Numba (66), Cython (67), Ray (68), and Jupyter (69). Graphics were
generated by using Matplotlib (70).

Data Availability. Code to generate the figures is available at GitHub,
https://www.github.com/maxgillett/hebbian sequence learning.
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